]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/firmware/efi/libstub/arm32-stub.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / drivers / firmware / efi / libstub / arm32-stub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
4 */
5 #include <linux/efi.h>
6 #include <asm/efi.h>
7
8 #include "efistub.h"
9
10 efi_status_t check_platform_features(void)
11 {
12 int block;
13
14 /* non-LPAE kernels can run anywhere */
15 if (!IS_ENABLED(CONFIG_ARM_LPAE))
16 return EFI_SUCCESS;
17
18 /* LPAE kernels need compatible hardware */
19 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
20 if (block < 5) {
21 pr_efi_err("This LPAE kernel is not supported by your CPU\n");
22 return EFI_UNSUPPORTED;
23 }
24 return EFI_SUCCESS;
25 }
26
27 static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
28
29 struct screen_info *alloc_screen_info(void)
30 {
31 struct screen_info *si;
32 efi_status_t status;
33
34 /*
35 * Unlike on arm64, where we can directly fill out the screen_info
36 * structure from the stub, we need to allocate a buffer to hold
37 * its contents while we hand over to the kernel proper from the
38 * decompressor.
39 */
40 status = efi_bs_call(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
41 sizeof(*si), (void **)&si);
42
43 if (status != EFI_SUCCESS)
44 return NULL;
45
46 status = efi_bs_call(install_configuration_table,
47 &screen_info_guid, si);
48 if (status == EFI_SUCCESS)
49 return si;
50
51 efi_bs_call(free_pool, si);
52 return NULL;
53 }
54
55 void free_screen_info(struct screen_info *si)
56 {
57 if (!si)
58 return;
59
60 efi_bs_call(install_configuration_table, &screen_info_guid, NULL);
61 efi_bs_call(free_pool, si);
62 }
63
64 static efi_status_t reserve_kernel_base(unsigned long dram_base,
65 unsigned long *reserve_addr,
66 unsigned long *reserve_size)
67 {
68 efi_physical_addr_t alloc_addr;
69 efi_memory_desc_t *memory_map;
70 unsigned long nr_pages, map_size, desc_size, buff_size;
71 efi_status_t status;
72 unsigned long l;
73
74 struct efi_boot_memmap map = {
75 .map = &memory_map,
76 .map_size = &map_size,
77 .desc_size = &desc_size,
78 .desc_ver = NULL,
79 .key_ptr = NULL,
80 .buff_size = &buff_size,
81 };
82
83 /*
84 * Reserve memory for the uncompressed kernel image. This is
85 * all that prevents any future allocations from conflicting
86 * with the kernel. Since we can't tell from the compressed
87 * image how much DRAM the kernel actually uses (due to BSS
88 * size uncertainty) we allocate the maximum possible size.
89 * Do this very early, as prints can cause memory allocations
90 * that may conflict with this.
91 */
92 alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
93 nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
94 status = efi_bs_call(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
95 EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
96 if (status == EFI_SUCCESS) {
97 if (alloc_addr == dram_base) {
98 *reserve_addr = alloc_addr;
99 *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
100 return EFI_SUCCESS;
101 }
102 /*
103 * If we end up here, the allocation succeeded but starts below
104 * dram_base. This can only occur if the real base of DRAM is
105 * not a multiple of 128 MB, in which case dram_base will have
106 * been rounded up. Since this implies that a part of the region
107 * was already occupied, we need to fall through to the code
108 * below to ensure that the existing allocations don't conflict.
109 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
110 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
111 * allocations that we want to disallow.
112 */
113 }
114
115 /*
116 * If the allocation above failed, we may still be able to proceed:
117 * if the only allocations in the region are of types that will be
118 * released to the OS after ExitBootServices(), the decompressor can
119 * safely overwrite them.
120 */
121 status = efi_get_memory_map(&map);
122 if (status != EFI_SUCCESS) {
123 pr_efi_err("reserve_kernel_base(): Unable to retrieve memory map.\n");
124 return status;
125 }
126
127 for (l = 0; l < map_size; l += desc_size) {
128 efi_memory_desc_t *desc;
129 u64 start, end;
130
131 desc = (void *)memory_map + l;
132 start = desc->phys_addr;
133 end = start + desc->num_pages * EFI_PAGE_SIZE;
134
135 /* Skip if entry does not intersect with region */
136 if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
137 end <= dram_base)
138 continue;
139
140 switch (desc->type) {
141 case EFI_BOOT_SERVICES_CODE:
142 case EFI_BOOT_SERVICES_DATA:
143 /* Ignore types that are released to the OS anyway */
144 continue;
145
146 case EFI_CONVENTIONAL_MEMORY:
147 /* Skip soft reserved conventional memory */
148 if (efi_soft_reserve_enabled() &&
149 (desc->attribute & EFI_MEMORY_SP))
150 continue;
151
152 /*
153 * Reserve the intersection between this entry and the
154 * region.
155 */
156 start = max(start, (u64)dram_base);
157 end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
158
159 status = efi_bs_call(allocate_pages,
160 EFI_ALLOCATE_ADDRESS,
161 EFI_LOADER_DATA,
162 (end - start) / EFI_PAGE_SIZE,
163 &start);
164 if (status != EFI_SUCCESS) {
165 pr_efi_err("reserve_kernel_base(): alloc failed.\n");
166 goto out;
167 }
168 break;
169
170 case EFI_LOADER_CODE:
171 case EFI_LOADER_DATA:
172 /*
173 * These regions may be released and reallocated for
174 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
175 * at any time during the execution of the OS loader,
176 * so we cannot consider them as safe.
177 */
178 default:
179 /*
180 * Treat any other allocation in the region as unsafe */
181 status = EFI_OUT_OF_RESOURCES;
182 goto out;
183 }
184 }
185
186 status = EFI_SUCCESS;
187 out:
188 efi_bs_call(free_pool, memory_map);
189 return status;
190 }
191
192 efi_status_t handle_kernel_image(unsigned long *image_addr,
193 unsigned long *image_size,
194 unsigned long *reserve_addr,
195 unsigned long *reserve_size,
196 unsigned long dram_base,
197 efi_loaded_image_t *image)
198 {
199 unsigned long kernel_base;
200 efi_status_t status;
201
202 /*
203 * Verify that the DRAM base address is compatible with the ARM
204 * boot protocol, which determines the base of DRAM by masking
205 * off the low 27 bits of the address at which the zImage is
206 * loaded. These assumptions are made by the decompressor,
207 * before any memory map is available.
208 */
209 kernel_base = round_up(dram_base, SZ_128M);
210
211 /*
212 * Note that some platforms (notably, the Raspberry Pi 2) put
213 * spin-tables and other pieces of firmware at the base of RAM,
214 * abusing the fact that the window of TEXT_OFFSET bytes at the
215 * base of the kernel image is only partially used at the moment.
216 * (Up to 5 pages are used for the swapper page tables)
217 */
218 kernel_base += TEXT_OFFSET - 5 * PAGE_SIZE;
219
220 status = reserve_kernel_base(kernel_base, reserve_addr, reserve_size);
221 if (status != EFI_SUCCESS) {
222 pr_efi_err("Unable to allocate memory for uncompressed kernel.\n");
223 return status;
224 }
225
226 /*
227 * Relocate the zImage, so that it appears in the lowest 128 MB
228 * memory window.
229 */
230 *image_addr = (unsigned long)image->image_base;
231 *image_size = image->image_size;
232 status = efi_relocate_kernel(image_addr, *image_size, *image_size,
233 kernel_base + MAX_UNCOMP_KERNEL_SIZE, 0, 0);
234 if (status != EFI_SUCCESS) {
235 pr_efi_err("Failed to relocate kernel.\n");
236 efi_free(*reserve_size, *reserve_addr);
237 *reserve_size = 0;
238 return status;
239 }
240
241 /*
242 * Check to see if we were able to allocate memory low enough
243 * in memory. The kernel determines the base of DRAM from the
244 * address at which the zImage is loaded.
245 */
246 if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
247 pr_efi_err("Failed to relocate kernel, no low memory available.\n");
248 efi_free(*reserve_size, *reserve_addr);
249 *reserve_size = 0;
250 efi_free(*image_size, *image_addr);
251 *image_size = 0;
252 return EFI_LOAD_ERROR;
253 }
254 return EFI_SUCCESS;
255 }