]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/firmware/efi/libstub/efi-stub.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / drivers / firmware / efi / libstub / efi-stub.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * EFI stub implementation that is shared by arm and arm64 architectures.
4 * This should be #included by the EFI stub implementation files.
5 *
6 * Copyright (C) 2013,2014 Linaro Limited
7 * Roy Franz <roy.franz@linaro.org
8 * Copyright (C) 2013 Red Hat, Inc.
9 * Mark Salter <msalter@redhat.com>
10 */
11
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15
16 #include "efistub.h"
17
18 /*
19 * This is the base address at which to start allocating virtual memory ranges
20 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21 * any allocation we choose, and eliminate the risk of a conflict after kexec.
22 * The value chosen is the largest non-zero power of 2 suitable for this purpose
23 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24 * be mapped efficiently.
25 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27 * entire footprint of the UEFI runtime services memory regions)
28 */
29 #define EFI_RT_VIRTUAL_BASE SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE SZ_512M
31
32 #ifdef CONFIG_ARM64
33 # define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64
34 #else
35 # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
36 #endif
37
38 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
39 static bool flat_va_mapping;
40
41 const efi_system_table_t *efi_system_table;
42
43 static struct screen_info *setup_graphics(void)
44 {
45 efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
46 efi_status_t status;
47 unsigned long size;
48 void **gop_handle = NULL;
49 struct screen_info *si = NULL;
50
51 size = 0;
52 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
53 &gop_proto, NULL, &size, gop_handle);
54 if (status == EFI_BUFFER_TOO_SMALL) {
55 si = alloc_screen_info();
56 if (!si)
57 return NULL;
58 status = efi_setup_gop(si, &gop_proto, size);
59 if (status != EFI_SUCCESS) {
60 free_screen_info(si);
61 return NULL;
62 }
63 }
64 return si;
65 }
66
67 static void install_memreserve_table(void)
68 {
69 struct linux_efi_memreserve *rsv;
70 efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
71 efi_status_t status;
72
73 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
74 (void **)&rsv);
75 if (status != EFI_SUCCESS) {
76 efi_err("Failed to allocate memreserve entry!\n");
77 return;
78 }
79
80 rsv->next = 0;
81 rsv->size = 0;
82 atomic_set(&rsv->count, 0);
83
84 status = efi_bs_call(install_configuration_table,
85 &memreserve_table_guid, rsv);
86 if (status != EFI_SUCCESS)
87 efi_err("Failed to install memreserve config table!\n");
88 }
89
90 static unsigned long get_dram_base(void)
91 {
92 efi_status_t status;
93 unsigned long map_size, buff_size;
94 unsigned long membase = EFI_ERROR;
95 struct efi_memory_map map;
96 efi_memory_desc_t *md;
97 struct efi_boot_memmap boot_map;
98
99 boot_map.map = (efi_memory_desc_t **)&map.map;
100 boot_map.map_size = &map_size;
101 boot_map.desc_size = &map.desc_size;
102 boot_map.desc_ver = NULL;
103 boot_map.key_ptr = NULL;
104 boot_map.buff_size = &buff_size;
105
106 status = efi_get_memory_map(&boot_map);
107 if (status != EFI_SUCCESS)
108 return membase;
109
110 map.map_end = map.map + map_size;
111
112 for_each_efi_memory_desc_in_map(&map, md) {
113 if (md->attribute & EFI_MEMORY_WB) {
114 if (membase > md->phys_addr)
115 membase = md->phys_addr;
116 }
117 }
118
119 efi_bs_call(free_pool, map.map);
120
121 return membase;
122 }
123
124 /*
125 * This function handles the architcture specific differences between arm and
126 * arm64 regarding where the kernel image must be loaded and any memory that
127 * must be reserved. On failure it is required to free all
128 * all allocations it has made.
129 */
130 efi_status_t handle_kernel_image(unsigned long *image_addr,
131 unsigned long *image_size,
132 unsigned long *reserve_addr,
133 unsigned long *reserve_size,
134 unsigned long dram_base,
135 efi_loaded_image_t *image);
136
137 asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
138 unsigned long fdt_addr,
139 unsigned long fdt_size);
140
141 /*
142 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
143 * that is described in the PE/COFF header. Most of the code is the same
144 * for both archictectures, with the arch-specific code provided in the
145 * handle_kernel_image() function.
146 */
147 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
148 efi_system_table_t *sys_table_arg)
149 {
150 efi_loaded_image_t *image;
151 efi_status_t status;
152 unsigned long image_addr;
153 unsigned long image_size = 0;
154 unsigned long dram_base;
155 /* addr/point and size pairs for memory management*/
156 unsigned long initrd_addr = 0;
157 unsigned long initrd_size = 0;
158 unsigned long fdt_addr = 0; /* Original DTB */
159 unsigned long fdt_size = 0;
160 char *cmdline_ptr = NULL;
161 int cmdline_size = 0;
162 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
163 unsigned long reserve_addr = 0;
164 unsigned long reserve_size = 0;
165 enum efi_secureboot_mode secure_boot;
166 struct screen_info *si;
167 efi_properties_table_t *prop_tbl;
168 unsigned long max_addr;
169
170 efi_system_table = sys_table_arg;
171
172 /* Check if we were booted by the EFI firmware */
173 if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
174 status = EFI_INVALID_PARAMETER;
175 goto fail;
176 }
177
178 status = check_platform_features();
179 if (status != EFI_SUCCESS)
180 goto fail;
181
182 /*
183 * Get a handle to the loaded image protocol. This is used to get
184 * information about the running image, such as size and the command
185 * line.
186 */
187 status = efi_system_table->boottime->handle_protocol(handle,
188 &loaded_image_proto, (void *)&image);
189 if (status != EFI_SUCCESS) {
190 efi_err("Failed to get loaded image protocol\n");
191 goto fail;
192 }
193
194 dram_base = get_dram_base();
195 if (dram_base == EFI_ERROR) {
196 efi_err("Failed to find DRAM base\n");
197 status = EFI_LOAD_ERROR;
198 goto fail;
199 }
200
201 /*
202 * Get the command line from EFI, using the LOADED_IMAGE
203 * protocol. We are going to copy the command line into the
204 * device tree, so this can be allocated anywhere.
205 */
206 cmdline_ptr = efi_convert_cmdline(image, &cmdline_size);
207 if (!cmdline_ptr) {
208 efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
209 status = EFI_OUT_OF_RESOURCES;
210 goto fail;
211 }
212
213 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
214 IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
215 cmdline_size == 0) {
216 status = efi_parse_options(CONFIG_CMDLINE);
217 if (status != EFI_SUCCESS) {
218 efi_err("Failed to parse options\n");
219 goto fail_free_cmdline;
220 }
221 }
222
223 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
224 status = efi_parse_options(cmdline_ptr);
225 if (status != EFI_SUCCESS) {
226 efi_err("Failed to parse options\n");
227 goto fail_free_cmdline;
228 }
229 }
230
231 efi_info("Booting Linux Kernel...\n");
232
233 si = setup_graphics();
234
235 status = handle_kernel_image(&image_addr, &image_size,
236 &reserve_addr,
237 &reserve_size,
238 dram_base, image);
239 if (status != EFI_SUCCESS) {
240 efi_err("Failed to relocate kernel\n");
241 goto fail_free_screeninfo;
242 }
243
244 efi_retrieve_tpm2_eventlog();
245
246 /* Ask the firmware to clear memory on unclean shutdown */
247 efi_enable_reset_attack_mitigation();
248
249 secure_boot = efi_get_secureboot();
250
251 /*
252 * Unauthenticated device tree data is a security hazard, so ignore
253 * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
254 * boot is enabled if we can't determine its state.
255 */
256 if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
257 secure_boot != efi_secureboot_mode_disabled) {
258 if (strstr(cmdline_ptr, "dtb="))
259 efi_err("Ignoring DTB from command line.\n");
260 } else {
261 status = efi_load_dtb(image, &fdt_addr, &fdt_size);
262
263 if (status != EFI_SUCCESS) {
264 efi_err("Failed to load device tree!\n");
265 goto fail_free_image;
266 }
267 }
268
269 if (fdt_addr) {
270 efi_info("Using DTB from command line\n");
271 } else {
272 /* Look for a device tree configuration table entry. */
273 fdt_addr = (uintptr_t)get_fdt(&fdt_size);
274 if (fdt_addr)
275 efi_info("Using DTB from configuration table\n");
276 }
277
278 if (!fdt_addr)
279 efi_info("Generating empty DTB\n");
280
281 if (!efi_noinitrd) {
282 max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
283 status = efi_load_initrd(image, &initrd_addr, &initrd_size,
284 ULONG_MAX, max_addr);
285 if (status != EFI_SUCCESS)
286 efi_err("Failed to load initrd!\n");
287 }
288
289 efi_random_get_seed();
290
291 /*
292 * If the NX PE data feature is enabled in the properties table, we
293 * should take care not to create a virtual mapping that changes the
294 * relative placement of runtime services code and data regions, as
295 * they may belong to the same PE/COFF executable image in memory.
296 * The easiest way to achieve that is to simply use a 1:1 mapping.
297 */
298 prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
299 flat_va_mapping = prop_tbl &&
300 (prop_tbl->memory_protection_attribute &
301 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
302
303 /* hibernation expects the runtime regions to stay in the same place */
304 if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) {
305 /*
306 * Randomize the base of the UEFI runtime services region.
307 * Preserve the 2 MB alignment of the region by taking a
308 * shift of 21 bit positions into account when scaling
309 * the headroom value using a 32-bit random value.
310 */
311 static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
312 EFI_RT_VIRTUAL_BASE -
313 EFI_RT_VIRTUAL_SIZE;
314 u32 rnd;
315
316 status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
317 if (status == EFI_SUCCESS) {
318 virtmap_base = EFI_RT_VIRTUAL_BASE +
319 (((headroom >> 21) * rnd) >> (32 - 21));
320 }
321 }
322
323 install_memreserve_table();
324
325 status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
326 efi_get_max_fdt_addr(dram_base),
327 initrd_addr, initrd_size,
328 cmdline_ptr, fdt_addr, fdt_size);
329 if (status != EFI_SUCCESS)
330 goto fail_free_initrd;
331
332 efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
333 /* not reached */
334
335 fail_free_initrd:
336 efi_err("Failed to update FDT and exit boot services\n");
337
338 efi_free(initrd_size, initrd_addr);
339 efi_free(fdt_size, fdt_addr);
340
341 fail_free_image:
342 efi_free(image_size, image_addr);
343 efi_free(reserve_size, reserve_addr);
344 fail_free_screeninfo:
345 free_screen_info(si);
346 fail_free_cmdline:
347 efi_bs_call(free_pool, cmdline_ptr);
348 fail:
349 return status;
350 }
351
352 /*
353 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
354 *
355 * This function populates the virt_addr fields of all memory region descriptors
356 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
357 * are also copied to @runtime_map, and their total count is returned in @count.
358 */
359 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
360 unsigned long desc_size, efi_memory_desc_t *runtime_map,
361 int *count)
362 {
363 u64 efi_virt_base = virtmap_base;
364 efi_memory_desc_t *in, *out = runtime_map;
365 int l;
366
367 for (l = 0; l < map_size; l += desc_size) {
368 u64 paddr, size;
369
370 in = (void *)memory_map + l;
371 if (!(in->attribute & EFI_MEMORY_RUNTIME))
372 continue;
373
374 paddr = in->phys_addr;
375 size = in->num_pages * EFI_PAGE_SIZE;
376
377 in->virt_addr = in->phys_addr;
378 if (efi_novamap) {
379 continue;
380 }
381
382 /*
383 * Make the mapping compatible with 64k pages: this allows
384 * a 4k page size kernel to kexec a 64k page size kernel and
385 * vice versa.
386 */
387 if (!flat_va_mapping) {
388
389 paddr = round_down(in->phys_addr, SZ_64K);
390 size += in->phys_addr - paddr;
391
392 /*
393 * Avoid wasting memory on PTEs by choosing a virtual
394 * base that is compatible with section mappings if this
395 * region has the appropriate size and physical
396 * alignment. (Sections are 2 MB on 4k granule kernels)
397 */
398 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
399 efi_virt_base = round_up(efi_virt_base, SZ_2M);
400 else
401 efi_virt_base = round_up(efi_virt_base, SZ_64K);
402
403 in->virt_addr += efi_virt_base - paddr;
404 efi_virt_base += size;
405 }
406
407 memcpy(out, in, desc_size);
408 out = (void *)out + desc_size;
409 ++*count;
410 }
411 }