]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/firmware/efi/libstub/fdt.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / drivers / firmware / efi / libstub / fdt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * FDT related Helper functions used by the EFI stub on multiple
4 * architectures. This should be #included by the EFI stub
5 * implementation files.
6 *
7 * Copyright 2013 Linaro Limited; author Roy Franz
8 */
9
10 #include <linux/efi.h>
11 #include <linux/libfdt.h>
12 #include <asm/efi.h>
13
14 #include "efistub.h"
15
16 #define EFI_DT_ADDR_CELLS_DEFAULT 2
17 #define EFI_DT_SIZE_CELLS_DEFAULT 2
18
19 static void fdt_update_cell_size(void *fdt)
20 {
21 int offset;
22
23 offset = fdt_path_offset(fdt, "/");
24 /* Set the #address-cells and #size-cells values for an empty tree */
25
26 fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
27 fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
28 }
29
30 static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
31 void *fdt, int new_fdt_size, char *cmdline_ptr,
32 u64 initrd_addr, u64 initrd_size)
33 {
34 int node, num_rsv;
35 int status;
36 u32 fdt_val32;
37 u64 fdt_val64;
38
39 /* Do some checks on provided FDT, if it exists: */
40 if (orig_fdt) {
41 if (fdt_check_header(orig_fdt)) {
42 pr_efi_err("Device Tree header not valid!\n");
43 return EFI_LOAD_ERROR;
44 }
45 /*
46 * We don't get the size of the FDT if we get if from a
47 * configuration table:
48 */
49 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
50 pr_efi_err("Truncated device tree! foo!\n");
51 return EFI_LOAD_ERROR;
52 }
53 }
54
55 if (orig_fdt) {
56 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
57 } else {
58 status = fdt_create_empty_tree(fdt, new_fdt_size);
59 if (status == 0) {
60 /*
61 * Any failure from the following function is
62 * non-critical:
63 */
64 fdt_update_cell_size(fdt);
65 }
66 }
67
68 if (status != 0)
69 goto fdt_set_fail;
70
71 /*
72 * Delete all memory reserve map entries. When booting via UEFI,
73 * kernel will use the UEFI memory map to find reserved regions.
74 */
75 num_rsv = fdt_num_mem_rsv(fdt);
76 while (num_rsv-- > 0)
77 fdt_del_mem_rsv(fdt, num_rsv);
78
79 node = fdt_subnode_offset(fdt, 0, "chosen");
80 if (node < 0) {
81 node = fdt_add_subnode(fdt, 0, "chosen");
82 if (node < 0) {
83 /* 'node' is an error code when negative: */
84 status = node;
85 goto fdt_set_fail;
86 }
87 }
88
89 if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
90 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
91 strlen(cmdline_ptr) + 1);
92 if (status)
93 goto fdt_set_fail;
94 }
95
96 /* Set initrd address/end in device tree, if present */
97 if (initrd_size != 0) {
98 u64 initrd_image_end;
99 u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
100
101 status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
102 if (status)
103 goto fdt_set_fail;
104
105 initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
106 status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
107 if (status)
108 goto fdt_set_fail;
109 }
110
111 /* Add FDT entries for EFI runtime services in chosen node. */
112 node = fdt_subnode_offset(fdt, 0, "chosen");
113 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table());
114
115 status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
116 if (status)
117 goto fdt_set_fail;
118
119 fdt_val64 = U64_MAX; /* placeholder */
120
121 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
122 if (status)
123 goto fdt_set_fail;
124
125 fdt_val32 = U32_MAX; /* placeholder */
126
127 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
128 if (status)
129 goto fdt_set_fail;
130
131 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
132 if (status)
133 goto fdt_set_fail;
134
135 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
136 if (status)
137 goto fdt_set_fail;
138
139 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
140 efi_status_t efi_status;
141
142 efi_status = efi_get_random_bytes(sizeof(fdt_val64),
143 (u8 *)&fdt_val64);
144 if (efi_status == EFI_SUCCESS) {
145 status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
146 if (status)
147 goto fdt_set_fail;
148 } else if (efi_status != EFI_NOT_FOUND) {
149 return efi_status;
150 }
151 }
152
153 /* Shrink the FDT back to its minimum size: */
154 fdt_pack(fdt);
155
156 return EFI_SUCCESS;
157
158 fdt_set_fail:
159 if (status == -FDT_ERR_NOSPACE)
160 return EFI_BUFFER_TOO_SMALL;
161
162 return EFI_LOAD_ERROR;
163 }
164
165 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
166 {
167 int node = fdt_path_offset(fdt, "/chosen");
168 u64 fdt_val64;
169 u32 fdt_val32;
170 int err;
171
172 if (node < 0)
173 return EFI_LOAD_ERROR;
174
175 fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
176
177 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
178 if (err)
179 return EFI_LOAD_ERROR;
180
181 fdt_val32 = cpu_to_fdt32(*map->map_size);
182
183 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
184 if (err)
185 return EFI_LOAD_ERROR;
186
187 fdt_val32 = cpu_to_fdt32(*map->desc_size);
188
189 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
190 if (err)
191 return EFI_LOAD_ERROR;
192
193 fdt_val32 = cpu_to_fdt32(*map->desc_ver);
194
195 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
196 if (err)
197 return EFI_LOAD_ERROR;
198
199 return EFI_SUCCESS;
200 }
201
202 struct exit_boot_struct {
203 efi_memory_desc_t *runtime_map;
204 int *runtime_entry_count;
205 void *new_fdt_addr;
206 };
207
208 static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
209 void *priv)
210 {
211 struct exit_boot_struct *p = priv;
212 /*
213 * Update the memory map with virtual addresses. The function will also
214 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
215 * entries so that we can pass it straight to SetVirtualAddressMap()
216 */
217 efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
218 p->runtime_map, p->runtime_entry_count);
219
220 return update_fdt_memmap(p->new_fdt_addr, map);
221 }
222
223 #ifndef MAX_FDT_SIZE
224 # define MAX_FDT_SIZE SZ_2M
225 #endif
226
227 /*
228 * Allocate memory for a new FDT, then add EFI, commandline, and
229 * initrd related fields to the FDT. This routine increases the
230 * FDT allocation size until the allocated memory is large
231 * enough. EFI allocations are in EFI_PAGE_SIZE granules,
232 * which are fixed at 4K bytes, so in most cases the first
233 * allocation should succeed.
234 * EFI boot services are exited at the end of this function.
235 * There must be no allocations between the get_memory_map()
236 * call and the exit_boot_services() call, so the exiting of
237 * boot services is very tightly tied to the creation of the FDT
238 * with the final memory map in it.
239 */
240
241 efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
242 unsigned long *new_fdt_addr,
243 unsigned long max_addr,
244 u64 initrd_addr, u64 initrd_size,
245 char *cmdline_ptr,
246 unsigned long fdt_addr,
247 unsigned long fdt_size)
248 {
249 unsigned long map_size, desc_size, buff_size;
250 u32 desc_ver;
251 unsigned long mmap_key;
252 efi_memory_desc_t *memory_map, *runtime_map;
253 efi_status_t status;
254 int runtime_entry_count;
255 struct efi_boot_memmap map;
256 struct exit_boot_struct priv;
257
258 map.map = &runtime_map;
259 map.map_size = &map_size;
260 map.desc_size = &desc_size;
261 map.desc_ver = &desc_ver;
262 map.key_ptr = &mmap_key;
263 map.buff_size = &buff_size;
264
265 /*
266 * Get a copy of the current memory map that we will use to prepare
267 * the input for SetVirtualAddressMap(). We don't have to worry about
268 * subsequent allocations adding entries, since they could not affect
269 * the number of EFI_MEMORY_RUNTIME regions.
270 */
271 status = efi_get_memory_map(&map);
272 if (status != EFI_SUCCESS) {
273 pr_efi_err("Unable to retrieve UEFI memory map.\n");
274 return status;
275 }
276
277 pr_efi("Exiting boot services and installing virtual address map...\n");
278
279 map.map = &memory_map;
280 status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, max_addr);
281 if (status != EFI_SUCCESS) {
282 pr_efi_err("Unable to allocate memory for new device tree.\n");
283 goto fail;
284 }
285
286 /*
287 * Now that we have done our final memory allocation (and free)
288 * we can get the memory map key needed for exit_boot_services().
289 */
290 status = efi_get_memory_map(&map);
291 if (status != EFI_SUCCESS)
292 goto fail_free_new_fdt;
293
294 status = update_fdt((void *)fdt_addr, fdt_size,
295 (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
296 initrd_addr, initrd_size);
297
298 if (status != EFI_SUCCESS) {
299 pr_efi_err("Unable to construct new device tree.\n");
300 goto fail_free_new_fdt;
301 }
302
303 runtime_entry_count = 0;
304 priv.runtime_map = runtime_map;
305 priv.runtime_entry_count = &runtime_entry_count;
306 priv.new_fdt_addr = (void *)*new_fdt_addr;
307
308 status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
309
310 if (status == EFI_SUCCESS) {
311 efi_set_virtual_address_map_t *svam;
312
313 if (novamap())
314 return EFI_SUCCESS;
315
316 /* Install the new virtual address map */
317 svam = efi_system_table()->runtime->set_virtual_address_map;
318 status = svam(runtime_entry_count * desc_size, desc_size,
319 desc_ver, runtime_map);
320
321 /*
322 * We are beyond the point of no return here, so if the call to
323 * SetVirtualAddressMap() failed, we need to signal that to the
324 * incoming kernel but proceed normally otherwise.
325 */
326 if (status != EFI_SUCCESS) {
327 int l;
328
329 /*
330 * Set the virtual address field of all
331 * EFI_MEMORY_RUNTIME entries to 0. This will signal
332 * the incoming kernel that no virtual translation has
333 * been installed.
334 */
335 for (l = 0; l < map_size; l += desc_size) {
336 efi_memory_desc_t *p = (void *)memory_map + l;
337
338 if (p->attribute & EFI_MEMORY_RUNTIME)
339 p->virt_addr = 0;
340 }
341 }
342 return EFI_SUCCESS;
343 }
344
345 pr_efi_err("Exit boot services failed.\n");
346
347 fail_free_new_fdt:
348 efi_free(MAX_FDT_SIZE, *new_fdt_addr);
349
350 fail:
351 efi_system_table()->boottime->free_pool(runtime_map);
352
353 return EFI_LOAD_ERROR;
354 }
355
356 void *get_fdt(unsigned long *fdt_size)
357 {
358 void *fdt;
359
360 fdt = get_efi_config_table(DEVICE_TREE_GUID);
361
362 if (!fdt)
363 return NULL;
364
365 if (fdt_check_header(fdt) != 0) {
366 pr_efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
367 return NULL;
368 }
369 *fdt_size = fdt_totalsize(fdt);
370 return fdt;
371 }