]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/fpga/zynqpl.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[people/ms/u-boot.git] / drivers / fpga / zynqpl.c
1 /*
2 * (C) Copyright 2012-2013, Xilinx, Michal Simek
3 *
4 * (C) Copyright 2012
5 * Joe Hershberger <joe.hershberger@ni.com>
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10 #include <common.h>
11 #include <asm/io.h>
12 #include <zynqpl.h>
13 #include <linux/sizes.h>
14 #include <asm/arch/hardware.h>
15 #include <asm/arch/sys_proto.h>
16
17 #define DEVCFG_CTRL_PCFG_PROG_B 0x40000000
18 #define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040
19 #define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840
20 #define DEVCFG_ISR_RX_FIFO_OV 0x00040000
21 #define DEVCFG_ISR_DMA_DONE 0x00002000
22 #define DEVCFG_ISR_PCFG_DONE 0x00000004
23 #define DEVCFG_STATUS_DMA_CMD_Q_F 0x80000000
24 #define DEVCFG_STATUS_DMA_CMD_Q_E 0x40000000
25 #define DEVCFG_STATUS_DMA_DONE_CNT_MASK 0x30000000
26 #define DEVCFG_STATUS_PCFG_INIT 0x00000010
27 #define DEVCFG_MCTRL_PCAP_LPBK 0x00000010
28 #define DEVCFG_MCTRL_RFIFO_FLUSH 0x00000002
29 #define DEVCFG_MCTRL_WFIFO_FLUSH 0x00000001
30
31 #ifndef CONFIG_SYS_FPGA_WAIT
32 #define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100 /* 10 ms */
33 #endif
34
35 #ifndef CONFIG_SYS_FPGA_PROG_TIME
36 #define CONFIG_SYS_FPGA_PROG_TIME (CONFIG_SYS_HZ * 4) /* 4 s */
37 #endif
38
39 int zynq_info(Xilinx_desc *desc)
40 {
41 return FPGA_SUCCESS;
42 }
43
44 #define DUMMY_WORD 0xffffffff
45
46 /* Xilinx binary format header */
47 static const u32 bin_format[] = {
48 DUMMY_WORD, /* Dummy words */
49 DUMMY_WORD,
50 DUMMY_WORD,
51 DUMMY_WORD,
52 DUMMY_WORD,
53 DUMMY_WORD,
54 DUMMY_WORD,
55 DUMMY_WORD,
56 0x000000bb, /* Sync word */
57 0x11220044, /* Sync word */
58 DUMMY_WORD,
59 DUMMY_WORD,
60 0xaa995566, /* Sync word */
61 };
62
63 #define SWAP_NO 1
64 #define SWAP_DONE 2
65
66 /*
67 * Load the whole word from unaligned buffer
68 * Keep in your mind that it is byte loading on little-endian system
69 */
70 static u32 load_word(const void *buf, u32 swap)
71 {
72 u32 word = 0;
73 u8 *bitc = (u8 *)buf;
74 int p;
75
76 if (swap == SWAP_NO) {
77 for (p = 0; p < 4; p++) {
78 word <<= 8;
79 word |= bitc[p];
80 }
81 } else {
82 for (p = 3; p >= 0; p--) {
83 word <<= 8;
84 word |= bitc[p];
85 }
86 }
87
88 return word;
89 }
90
91 static u32 check_header(const void *buf)
92 {
93 u32 i, pattern;
94 int swap = SWAP_NO;
95 u32 *test = (u32 *)buf;
96
97 debug("%s: Let's check bitstream header\n", __func__);
98
99 /* Checking that passing bin is not a bitstream */
100 for (i = 0; i < ARRAY_SIZE(bin_format); i++) {
101 pattern = load_word(&test[i], swap);
102
103 /*
104 * Bitstreams in binary format are swapped
105 * compare to regular bistream.
106 * Do not swap dummy word but if swap is done assume
107 * that parsing buffer is binary format
108 */
109 if ((__swab32(pattern) != DUMMY_WORD) &&
110 (__swab32(pattern) == bin_format[i])) {
111 pattern = __swab32(pattern);
112 swap = SWAP_DONE;
113 debug("%s: data swapped - let's swap\n", __func__);
114 }
115
116 debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i,
117 (u32)&test[i], pattern, bin_format[i]);
118 if (pattern != bin_format[i]) {
119 debug("%s: Bitstream is not recognized\n", __func__);
120 return 0;
121 }
122 }
123 debug("%s: Found bitstream header at %x %s swapinng\n", __func__,
124 (u32)buf, swap == SWAP_NO ? "without" : "with");
125
126 return swap;
127 }
128
129 static void *check_data(u8 *buf, size_t bsize, u32 *swap)
130 {
131 u32 word, p = 0; /* possition */
132
133 /* Because buf doesn't need to be aligned let's read it by chars */
134 for (p = 0; p < bsize; p++) {
135 word = load_word(&buf[p], SWAP_NO);
136 debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]);
137
138 /* Find the first bitstream dummy word */
139 if (word == DUMMY_WORD) {
140 debug("%s: Found dummy word at position %x/%x\n",
141 __func__, p, (u32)&buf[p]);
142 *swap = check_header(&buf[p]);
143 if (*swap) {
144 /* FIXME add full bitstream checking here */
145 return &buf[p];
146 }
147 }
148 /* Loop can be huge - support CTRL + C */
149 if (ctrlc())
150 return 0;
151 }
152 return 0;
153 }
154
155
156 int zynq_load(Xilinx_desc *desc, const void *buf, size_t bsize)
157 {
158 unsigned long ts; /* Timestamp */
159 u32 partialbit = 0;
160 u32 i, control, isr_status, status, swap, diff;
161 u32 *buf_start;
162
163 /* Detect if we are going working with partial or full bitstream */
164 if (bsize != desc->size) {
165 printf("%s: Working with partial bitstream\n", __func__);
166 partialbit = 1;
167 }
168
169 buf_start = check_data((u8 *)buf, bsize, &swap);
170 if (!buf_start)
171 return FPGA_FAIL;
172
173 /* Check if data is postpone from start */
174 diff = (u32)buf_start - (u32)buf;
175 if (diff) {
176 printf("%s: Bitstream is not validated yet (diff %x)\n",
177 __func__, diff);
178 return FPGA_FAIL;
179 }
180
181 if ((u32)buf < SZ_1M) {
182 printf("%s: Bitstream has to be placed up to 1MB (%x)\n",
183 __func__, (u32)buf);
184 return FPGA_FAIL;
185 }
186
187 if ((u32)buf != ALIGN((u32)buf, ARCH_DMA_MINALIGN)) {
188 u32 *new_buf = (u32 *)ALIGN((u32)buf, ARCH_DMA_MINALIGN);
189
190 /*
191 * This might be dangerous but permits to flash if
192 * ARCH_DMA_MINALIGN is greater than header size
193 */
194 if (new_buf > buf_start) {
195 debug("%s: Aligned buffer is after buffer start\n",
196 __func__);
197 new_buf -= ARCH_DMA_MINALIGN;
198 }
199
200 printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
201 (u32)buf_start, (u32)new_buf, swap);
202
203 for (i = 0; i < (bsize/4); i++)
204 new_buf[i] = load_word(&buf_start[i], swap);
205
206 swap = SWAP_DONE;
207 buf = new_buf;
208 } else if (swap != SWAP_DONE) {
209 /* For bitstream which are aligned */
210 u32 *new_buf = (u32 *)buf;
211
212 printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
213 swap);
214
215 for (i = 0; i < (bsize/4); i++)
216 new_buf[i] = load_word(&buf_start[i], swap);
217
218 swap = SWAP_DONE;
219 }
220
221 /* Clear loopback bit */
222 clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK);
223
224 if (!partialbit) {
225 zynq_slcr_devcfg_disable();
226
227 /* Setting PCFG_PROG_B signal to high */
228 control = readl(&devcfg_base->ctrl);
229 writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
230 /* Setting PCFG_PROG_B signal to low */
231 writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
232
233 /* Polling the PCAP_INIT status for Reset */
234 ts = get_timer(0);
235 while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
236 if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
237 printf("%s: Timeout wait for INIT to clear\n",
238 __func__);
239 return FPGA_FAIL;
240 }
241 }
242
243 /* Setting PCFG_PROG_B signal to high */
244 writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
245
246 /* Polling the PCAP_INIT status for Set */
247 ts = get_timer(0);
248 while (!(readl(&devcfg_base->status) &
249 DEVCFG_STATUS_PCFG_INIT)) {
250 if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
251 printf("%s: Timeout wait for INIT to set\n",
252 __func__);
253 return FPGA_FAIL;
254 }
255 }
256 }
257
258 isr_status = readl(&devcfg_base->int_sts);
259
260 /* Clear it all, so if Boot ROM comes back, it can proceed */
261 writel(0xFFFFFFFF, &devcfg_base->int_sts);
262
263 if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
264 debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);
265
266 /* If RX FIFO overflow, need to flush RX FIFO first */
267 if (isr_status & DEVCFG_ISR_RX_FIFO_OV) {
268 writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl);
269 writel(0xFFFFFFFF, &devcfg_base->int_sts);
270 }
271 return FPGA_FAIL;
272 }
273
274 status = readl(&devcfg_base->status);
275
276 debug("%s: Status = 0x%08X\n", __func__, status);
277
278 if (status & DEVCFG_STATUS_DMA_CMD_Q_F) {
279 debug("%s: Error: device busy\n", __func__);
280 return FPGA_FAIL;
281 }
282
283 debug("%s: Device ready\n", __func__);
284
285 if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) {
286 if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) {
287 /* Error state, transfer cannot occur */
288 debug("%s: ISR indicates error\n", __func__);
289 return FPGA_FAIL;
290 } else {
291 /* Clear out the status */
292 writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
293 }
294 }
295
296 if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) {
297 /* Clear the count of completed DMA transfers */
298 writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status);
299 }
300
301 debug("%s: Source = 0x%08X\n", __func__, (u32)buf);
302 debug("%s: Size = %zu\n", __func__, bsize);
303
304 /* flush(clean & invalidate) d-cache range buf */
305 flush_dcache_range((u32)buf, (u32)buf +
306 roundup(bsize, ARCH_DMA_MINALIGN));
307
308 /* Set up the transfer */
309 writel((u32)buf | 1, &devcfg_base->dma_src_addr);
310 writel(0xFFFFFFFF, &devcfg_base->dma_dst_addr);
311 writel(bsize >> 2, &devcfg_base->dma_src_len);
312 writel(0, &devcfg_base->dma_dst_len);
313
314 isr_status = readl(&devcfg_base->int_sts);
315
316 /* Polling the PCAP_INIT status for Set */
317 ts = get_timer(0);
318 while (!(isr_status & DEVCFG_ISR_DMA_DONE)) {
319 if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) {
320 debug("%s: Error: isr = 0x%08X\n", __func__,
321 isr_status);
322 debug("%s: Write count = 0x%08X\n", __func__,
323 readl(&devcfg_base->write_count));
324 debug("%s: Read count = 0x%08X\n", __func__,
325 readl(&devcfg_base->read_count));
326
327 return FPGA_FAIL;
328 }
329 if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) {
330 printf("%s: Timeout wait for DMA to complete\n",
331 __func__);
332 return FPGA_FAIL;
333 }
334 isr_status = readl(&devcfg_base->int_sts);
335 }
336
337 debug("%s: DMA transfer is done\n", __func__);
338
339 /* Check FPGA configuration completion */
340 ts = get_timer(0);
341 while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
342 if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
343 printf("%s: Timeout wait for FPGA to config\n",
344 __func__);
345 return FPGA_FAIL;
346 }
347 isr_status = readl(&devcfg_base->int_sts);
348 }
349
350 debug("%s: FPGA config done\n", __func__);
351
352 /* Clear out the DMA status */
353 writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
354
355 if (!partialbit)
356 zynq_slcr_devcfg_enable();
357
358 return FPGA_SUCCESS;
359 }
360
361 int zynq_dump(Xilinx_desc *desc, const void *buf, size_t bsize)
362 {
363 return FPGA_FAIL;
364 }