]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
Merge tag 'drm-misc-next-2020-06-26' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
64
65
66 /**
67 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
68 * memory request.
69 *
70 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
71 * @type: The type of memory requested
72 * @man: The memory type manager for each domain
73 *
74 * This is called by ttm_bo_init_mm() when a buffer object is being
75 * initialized.
76 */
77 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
78 struct ttm_mem_type_manager *man)
79 {
80 struct amdgpu_device *adev;
81
82 adev = amdgpu_ttm_adev(bdev);
83
84 switch (type) {
85 case TTM_PL_SYSTEM:
86 /* System memory */
87 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
88 man->available_caching = TTM_PL_MASK_CACHING;
89 man->default_caching = TTM_PL_FLAG_CACHED;
90 break;
91 case TTM_PL_TT:
92 /* GTT memory */
93 man->func = &amdgpu_gtt_mgr_func;
94 man->available_caching = TTM_PL_MASK_CACHING;
95 man->default_caching = TTM_PL_FLAG_CACHED;
96 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
97 break;
98 case TTM_PL_VRAM:
99 /* "On-card" video ram */
100 man->func = &amdgpu_vram_mgr_func;
101 man->flags = TTM_MEMTYPE_FLAG_FIXED |
102 TTM_MEMTYPE_FLAG_MAPPABLE;
103 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
104 man->default_caching = TTM_PL_FLAG_WC;
105 break;
106 case AMDGPU_PL_GDS:
107 case AMDGPU_PL_GWS:
108 case AMDGPU_PL_OA:
109 /* On-chip GDS memory*/
110 man->func = &ttm_bo_manager_func;
111 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
112 man->available_caching = TTM_PL_FLAG_UNCACHED;
113 man->default_caching = TTM_PL_FLAG_UNCACHED;
114 break;
115 default:
116 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
117 return -EINVAL;
118 }
119 return 0;
120 }
121
122 /**
123 * amdgpu_evict_flags - Compute placement flags
124 *
125 * @bo: The buffer object to evict
126 * @placement: Possible destination(s) for evicted BO
127 *
128 * Fill in placement data when ttm_bo_evict() is called
129 */
130 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
131 struct ttm_placement *placement)
132 {
133 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
134 struct amdgpu_bo *abo;
135 static const struct ttm_place placements = {
136 .fpfn = 0,
137 .lpfn = 0,
138 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
139 };
140
141 /* Don't handle scatter gather BOs */
142 if (bo->type == ttm_bo_type_sg) {
143 placement->num_placement = 0;
144 placement->num_busy_placement = 0;
145 return;
146 }
147
148 /* Object isn't an AMDGPU object so ignore */
149 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
150 placement->placement = &placements;
151 placement->busy_placement = &placements;
152 placement->num_placement = 1;
153 placement->num_busy_placement = 1;
154 return;
155 }
156
157 abo = ttm_to_amdgpu_bo(bo);
158 switch (bo->mem.mem_type) {
159 case AMDGPU_PL_GDS:
160 case AMDGPU_PL_GWS:
161 case AMDGPU_PL_OA:
162 placement->num_placement = 0;
163 placement->num_busy_placement = 0;
164 return;
165
166 case TTM_PL_VRAM:
167 if (!adev->mman.buffer_funcs_enabled) {
168 /* Move to system memory */
169 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
170 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
171 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
172 amdgpu_bo_in_cpu_visible_vram(abo)) {
173
174 /* Try evicting to the CPU inaccessible part of VRAM
175 * first, but only set GTT as busy placement, so this
176 * BO will be evicted to GTT rather than causing other
177 * BOs to be evicted from VRAM
178 */
179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
180 AMDGPU_GEM_DOMAIN_GTT);
181 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
182 abo->placements[0].lpfn = 0;
183 abo->placement.busy_placement = &abo->placements[1];
184 abo->placement.num_busy_placement = 1;
185 } else {
186 /* Move to GTT memory */
187 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
188 }
189 break;
190 case TTM_PL_TT:
191 default:
192 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
193 break;
194 }
195 *placement = abo->placement;
196 }
197
198 /**
199 * amdgpu_verify_access - Verify access for a mmap call
200 *
201 * @bo: The buffer object to map
202 * @filp: The file pointer from the process performing the mmap
203 *
204 * This is called by ttm_bo_mmap() to verify whether a process
205 * has the right to mmap a BO to their process space.
206 */
207 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
208 {
209 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
210
211 /*
212 * Don't verify access for KFD BOs. They don't have a GEM
213 * object associated with them.
214 */
215 if (abo->kfd_bo)
216 return 0;
217
218 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
219 return -EPERM;
220 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
221 filp->private_data);
222 }
223
224 /**
225 * amdgpu_move_null - Register memory for a buffer object
226 *
227 * @bo: The bo to assign the memory to
228 * @new_mem: The memory to be assigned.
229 *
230 * Assign the memory from new_mem to the memory of the buffer object bo.
231 */
232 static void amdgpu_move_null(struct ttm_buffer_object *bo,
233 struct ttm_mem_reg *new_mem)
234 {
235 struct ttm_mem_reg *old_mem = &bo->mem;
236
237 BUG_ON(old_mem->mm_node != NULL);
238 *old_mem = *new_mem;
239 new_mem->mm_node = NULL;
240 }
241
242 /**
243 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
244 *
245 * @bo: The bo to assign the memory to.
246 * @mm_node: Memory manager node for drm allocator.
247 * @mem: The region where the bo resides.
248 *
249 */
250 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
251 struct drm_mm_node *mm_node,
252 struct ttm_mem_reg *mem)
253 {
254 uint64_t addr = 0;
255
256 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
257 addr = mm_node->start << PAGE_SHIFT;
258 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
259 mem->mem_type);
260 }
261 return addr;
262 }
263
264 /**
265 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
266 * @offset. It also modifies the offset to be within the drm_mm_node returned
267 *
268 * @mem: The region where the bo resides.
269 * @offset: The offset that drm_mm_node is used for finding.
270 *
271 */
272 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
273 uint64_t *offset)
274 {
275 struct drm_mm_node *mm_node = mem->mm_node;
276
277 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
278 *offset -= (mm_node->size << PAGE_SHIFT);
279 ++mm_node;
280 }
281 return mm_node;
282 }
283
284 /**
285 * amdgpu_ttm_map_buffer - Map memory into the GART windows
286 * @bo: buffer object to map
287 * @mem: memory object to map
288 * @mm_node: drm_mm node object to map
289 * @num_pages: number of pages to map
290 * @offset: offset into @mm_node where to start
291 * @window: which GART window to use
292 * @ring: DMA ring to use for the copy
293 * @tmz: if we should setup a TMZ enabled mapping
294 * @addr: resulting address inside the MC address space
295 *
296 * Setup one of the GART windows to access a specific piece of memory or return
297 * the physical address for local memory.
298 */
299 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
300 struct ttm_mem_reg *mem,
301 struct drm_mm_node *mm_node,
302 unsigned num_pages, uint64_t offset,
303 unsigned window, struct amdgpu_ring *ring,
304 bool tmz, uint64_t *addr)
305 {
306 struct amdgpu_device *adev = ring->adev;
307 struct amdgpu_job *job;
308 unsigned num_dw, num_bytes;
309 struct dma_fence *fence;
310 uint64_t src_addr, dst_addr;
311 void *cpu_addr;
312 uint64_t flags;
313 unsigned int i;
314 int r;
315
316 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
317 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
318
319 /* Map only what can't be accessed directly */
320 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
321 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
322 return 0;
323 }
324
325 *addr = adev->gmc.gart_start;
326 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
327 AMDGPU_GPU_PAGE_SIZE;
328 *addr += offset & ~PAGE_MASK;
329
330 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
331 num_bytes = num_pages * 8;
332
333 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
334 AMDGPU_IB_POOL_DELAYED, &job);
335 if (r)
336 return r;
337
338 src_addr = num_dw * 4;
339 src_addr += job->ibs[0].gpu_addr;
340
341 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
342 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
343 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
344 dst_addr, num_bytes, false);
345
346 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
347 WARN_ON(job->ibs[0].length_dw > num_dw);
348
349 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
350 if (tmz)
351 flags |= AMDGPU_PTE_TMZ;
352
353 cpu_addr = &job->ibs[0].ptr[num_dw];
354
355 if (mem->mem_type == TTM_PL_TT) {
356 struct ttm_dma_tt *dma;
357 dma_addr_t *dma_address;
358
359 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
360 dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
361 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
362 cpu_addr);
363 if (r)
364 goto error_free;
365 } else {
366 dma_addr_t dma_address;
367
368 dma_address = (mm_node->start << PAGE_SHIFT) + offset;
369 dma_address += adev->vm_manager.vram_base_offset;
370
371 for (i = 0; i < num_pages; ++i) {
372 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
373 &dma_address, flags, cpu_addr);
374 if (r)
375 goto error_free;
376
377 dma_address += PAGE_SIZE;
378 }
379 }
380
381 r = amdgpu_job_submit(job, &adev->mman.entity,
382 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
383 if (r)
384 goto error_free;
385
386 dma_fence_put(fence);
387
388 return r;
389
390 error_free:
391 amdgpu_job_free(job);
392 return r;
393 }
394
395 /**
396 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
397 * @adev: amdgpu device
398 * @src: buffer/address where to read from
399 * @dst: buffer/address where to write to
400 * @size: number of bytes to copy
401 * @tmz: if a secure copy should be used
402 * @resv: resv object to sync to
403 * @f: Returns the last fence if multiple jobs are submitted.
404 *
405 * The function copies @size bytes from {src->mem + src->offset} to
406 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
407 * move and different for a BO to BO copy.
408 *
409 */
410 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
411 const struct amdgpu_copy_mem *src,
412 const struct amdgpu_copy_mem *dst,
413 uint64_t size, bool tmz,
414 struct dma_resv *resv,
415 struct dma_fence **f)
416 {
417 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
418 AMDGPU_GPU_PAGE_SIZE);
419
420 uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
421 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
422 struct drm_mm_node *src_mm, *dst_mm;
423 struct dma_fence *fence = NULL;
424 int r = 0;
425
426 if (!adev->mman.buffer_funcs_enabled) {
427 DRM_ERROR("Trying to move memory with ring turned off.\n");
428 return -EINVAL;
429 }
430
431 src_offset = src->offset;
432 src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
433 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
434
435 dst_offset = dst->offset;
436 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
437 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
438
439 mutex_lock(&adev->mman.gtt_window_lock);
440
441 while (size) {
442 uint32_t src_page_offset = src_offset & ~PAGE_MASK;
443 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
444 struct dma_fence *next;
445 uint32_t cur_size;
446 uint64_t from, to;
447
448 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
449 * begins at an offset, then adjust the size accordingly
450 */
451 cur_size = max(src_page_offset, dst_page_offset);
452 cur_size = min(min3(src_node_size, dst_node_size, size),
453 (uint64_t)(GTT_MAX_BYTES - cur_size));
454
455 /* Map src to window 0 and dst to window 1. */
456 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
457 PFN_UP(cur_size + src_page_offset),
458 src_offset, 0, ring, tmz, &from);
459 if (r)
460 goto error;
461
462 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
463 PFN_UP(cur_size + dst_page_offset),
464 dst_offset, 1, ring, tmz, &to);
465 if (r)
466 goto error;
467
468 r = amdgpu_copy_buffer(ring, from, to, cur_size,
469 resv, &next, false, true, tmz);
470 if (r)
471 goto error;
472
473 dma_fence_put(fence);
474 fence = next;
475
476 size -= cur_size;
477 if (!size)
478 break;
479
480 src_node_size -= cur_size;
481 if (!src_node_size) {
482 ++src_mm;
483 src_node_size = src_mm->size << PAGE_SHIFT;
484 src_offset = 0;
485 } else {
486 src_offset += cur_size;
487 }
488
489 dst_node_size -= cur_size;
490 if (!dst_node_size) {
491 ++dst_mm;
492 dst_node_size = dst_mm->size << PAGE_SHIFT;
493 dst_offset = 0;
494 } else {
495 dst_offset += cur_size;
496 }
497 }
498 error:
499 mutex_unlock(&adev->mman.gtt_window_lock);
500 if (f)
501 *f = dma_fence_get(fence);
502 dma_fence_put(fence);
503 return r;
504 }
505
506 /**
507 * amdgpu_move_blit - Copy an entire buffer to another buffer
508 *
509 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
510 * help move buffers to and from VRAM.
511 */
512 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
513 bool evict, bool no_wait_gpu,
514 struct ttm_mem_reg *new_mem,
515 struct ttm_mem_reg *old_mem)
516 {
517 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
518 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
519 struct amdgpu_copy_mem src, dst;
520 struct dma_fence *fence = NULL;
521 int r;
522
523 src.bo = bo;
524 dst.bo = bo;
525 src.mem = old_mem;
526 dst.mem = new_mem;
527 src.offset = 0;
528 dst.offset = 0;
529
530 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
531 new_mem->num_pages << PAGE_SHIFT,
532 amdgpu_bo_encrypted(abo),
533 bo->base.resv, &fence);
534 if (r)
535 goto error;
536
537 /* clear the space being freed */
538 if (old_mem->mem_type == TTM_PL_VRAM &&
539 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
540 struct dma_fence *wipe_fence = NULL;
541
542 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
543 NULL, &wipe_fence);
544 if (r) {
545 goto error;
546 } else if (wipe_fence) {
547 dma_fence_put(fence);
548 fence = wipe_fence;
549 }
550 }
551
552 /* Always block for VM page tables before committing the new location */
553 if (bo->type == ttm_bo_type_kernel)
554 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
555 else
556 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
557 dma_fence_put(fence);
558 return r;
559
560 error:
561 if (fence)
562 dma_fence_wait(fence, false);
563 dma_fence_put(fence);
564 return r;
565 }
566
567 /**
568 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
569 *
570 * Called by amdgpu_bo_move().
571 */
572 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
573 struct ttm_operation_ctx *ctx,
574 struct ttm_mem_reg *new_mem)
575 {
576 struct ttm_mem_reg *old_mem = &bo->mem;
577 struct ttm_mem_reg tmp_mem;
578 struct ttm_place placements;
579 struct ttm_placement placement;
580 int r;
581
582 /* create space/pages for new_mem in GTT space */
583 tmp_mem = *new_mem;
584 tmp_mem.mm_node = NULL;
585 placement.num_placement = 1;
586 placement.placement = &placements;
587 placement.num_busy_placement = 1;
588 placement.busy_placement = &placements;
589 placements.fpfn = 0;
590 placements.lpfn = 0;
591 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
592 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
593 if (unlikely(r)) {
594 pr_err("Failed to find GTT space for blit from VRAM\n");
595 return r;
596 }
597
598 /* set caching flags */
599 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
600 if (unlikely(r)) {
601 goto out_cleanup;
602 }
603
604 /* Bind the memory to the GTT space */
605 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
606 if (unlikely(r)) {
607 goto out_cleanup;
608 }
609
610 /* blit VRAM to GTT */
611 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
612 if (unlikely(r)) {
613 goto out_cleanup;
614 }
615
616 /* move BO (in tmp_mem) to new_mem */
617 r = ttm_bo_move_ttm(bo, ctx, new_mem);
618 out_cleanup:
619 ttm_bo_mem_put(bo, &tmp_mem);
620 return r;
621 }
622
623 /**
624 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
625 *
626 * Called by amdgpu_bo_move().
627 */
628 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
629 struct ttm_operation_ctx *ctx,
630 struct ttm_mem_reg *new_mem)
631 {
632 struct ttm_mem_reg *old_mem = &bo->mem;
633 struct ttm_mem_reg tmp_mem;
634 struct ttm_placement placement;
635 struct ttm_place placements;
636 int r;
637
638 /* make space in GTT for old_mem buffer */
639 tmp_mem = *new_mem;
640 tmp_mem.mm_node = NULL;
641 placement.num_placement = 1;
642 placement.placement = &placements;
643 placement.num_busy_placement = 1;
644 placement.busy_placement = &placements;
645 placements.fpfn = 0;
646 placements.lpfn = 0;
647 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
648 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
649 if (unlikely(r)) {
650 pr_err("Failed to find GTT space for blit to VRAM\n");
651 return r;
652 }
653
654 /* move/bind old memory to GTT space */
655 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
656 if (unlikely(r)) {
657 goto out_cleanup;
658 }
659
660 /* copy to VRAM */
661 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
662 if (unlikely(r)) {
663 goto out_cleanup;
664 }
665 out_cleanup:
666 ttm_bo_mem_put(bo, &tmp_mem);
667 return r;
668 }
669
670 /**
671 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
672 *
673 * Called by amdgpu_bo_move()
674 */
675 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
676 struct ttm_mem_reg *mem)
677 {
678 struct drm_mm_node *nodes = mem->mm_node;
679
680 if (mem->mem_type == TTM_PL_SYSTEM ||
681 mem->mem_type == TTM_PL_TT)
682 return true;
683 if (mem->mem_type != TTM_PL_VRAM)
684 return false;
685
686 /* ttm_mem_reg_ioremap only supports contiguous memory */
687 if (nodes->size != mem->num_pages)
688 return false;
689
690 return ((nodes->start + nodes->size) << PAGE_SHIFT)
691 <= adev->gmc.visible_vram_size;
692 }
693
694 /**
695 * amdgpu_bo_move - Move a buffer object to a new memory location
696 *
697 * Called by ttm_bo_handle_move_mem()
698 */
699 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
700 struct ttm_operation_ctx *ctx,
701 struct ttm_mem_reg *new_mem)
702 {
703 struct amdgpu_device *adev;
704 struct amdgpu_bo *abo;
705 struct ttm_mem_reg *old_mem = &bo->mem;
706 int r;
707
708 /* Can't move a pinned BO */
709 abo = ttm_to_amdgpu_bo(bo);
710 if (WARN_ON_ONCE(abo->pin_count > 0))
711 return -EINVAL;
712
713 adev = amdgpu_ttm_adev(bo->bdev);
714
715 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
716 amdgpu_move_null(bo, new_mem);
717 return 0;
718 }
719 if ((old_mem->mem_type == TTM_PL_TT &&
720 new_mem->mem_type == TTM_PL_SYSTEM) ||
721 (old_mem->mem_type == TTM_PL_SYSTEM &&
722 new_mem->mem_type == TTM_PL_TT)) {
723 /* bind is enough */
724 amdgpu_move_null(bo, new_mem);
725 return 0;
726 }
727 if (old_mem->mem_type == AMDGPU_PL_GDS ||
728 old_mem->mem_type == AMDGPU_PL_GWS ||
729 old_mem->mem_type == AMDGPU_PL_OA ||
730 new_mem->mem_type == AMDGPU_PL_GDS ||
731 new_mem->mem_type == AMDGPU_PL_GWS ||
732 new_mem->mem_type == AMDGPU_PL_OA) {
733 /* Nothing to save here */
734 amdgpu_move_null(bo, new_mem);
735 return 0;
736 }
737
738 if (!adev->mman.buffer_funcs_enabled) {
739 r = -ENODEV;
740 goto memcpy;
741 }
742
743 if (old_mem->mem_type == TTM_PL_VRAM &&
744 new_mem->mem_type == TTM_PL_SYSTEM) {
745 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
746 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
747 new_mem->mem_type == TTM_PL_VRAM) {
748 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
749 } else {
750 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
751 new_mem, old_mem);
752 }
753
754 if (r) {
755 memcpy:
756 /* Check that all memory is CPU accessible */
757 if (!amdgpu_mem_visible(adev, old_mem) ||
758 !amdgpu_mem_visible(adev, new_mem)) {
759 pr_err("Move buffer fallback to memcpy unavailable\n");
760 return r;
761 }
762
763 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
764 if (r)
765 return r;
766 }
767
768 if (bo->type == ttm_bo_type_device &&
769 new_mem->mem_type == TTM_PL_VRAM &&
770 old_mem->mem_type != TTM_PL_VRAM) {
771 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
772 * accesses the BO after it's moved.
773 */
774 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
775 }
776
777 /* update statistics */
778 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
779 return 0;
780 }
781
782 /**
783 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
784 *
785 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
786 */
787 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
788 {
789 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
790 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
791 struct drm_mm_node *mm_node = mem->mm_node;
792
793 mem->bus.addr = NULL;
794 mem->bus.offset = 0;
795 mem->bus.size = mem->num_pages << PAGE_SHIFT;
796 mem->bus.base = 0;
797 mem->bus.is_iomem = false;
798 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
799 return -EINVAL;
800 switch (mem->mem_type) {
801 case TTM_PL_SYSTEM:
802 /* system memory */
803 return 0;
804 case TTM_PL_TT:
805 break;
806 case TTM_PL_VRAM:
807 mem->bus.offset = mem->start << PAGE_SHIFT;
808 /* check if it's visible */
809 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
810 return -EINVAL;
811 /* Only physically contiguous buffers apply. In a contiguous
812 * buffer, size of the first mm_node would match the number of
813 * pages in ttm_mem_reg.
814 */
815 if (adev->mman.aper_base_kaddr &&
816 (mm_node->size == mem->num_pages))
817 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
818 mem->bus.offset;
819
820 mem->bus.base = adev->gmc.aper_base;
821 mem->bus.is_iomem = true;
822 break;
823 default:
824 return -EINVAL;
825 }
826 return 0;
827 }
828
829 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
830 {
831 }
832
833 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
834 unsigned long page_offset)
835 {
836 uint64_t offset = (page_offset << PAGE_SHIFT);
837 struct drm_mm_node *mm;
838
839 mm = amdgpu_find_mm_node(&bo->mem, &offset);
840 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
841 (offset >> PAGE_SHIFT);
842 }
843
844 /**
845 * amdgpu_ttm_domain_start - Returns GPU start address
846 * @adev: amdgpu device object
847 * @type: type of the memory
848 *
849 * Returns:
850 * GPU start address of a memory domain
851 */
852
853 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
854 {
855 switch (type) {
856 case TTM_PL_TT:
857 return adev->gmc.gart_start;
858 case TTM_PL_VRAM:
859 return adev->gmc.vram_start;
860 }
861
862 return 0;
863 }
864
865 /*
866 * TTM backend functions.
867 */
868 struct amdgpu_ttm_tt {
869 struct ttm_dma_tt ttm;
870 struct drm_gem_object *gobj;
871 u64 offset;
872 uint64_t userptr;
873 struct task_struct *usertask;
874 uint32_t userflags;
875 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
876 struct hmm_range *range;
877 #endif
878 };
879
880 #ifdef CONFIG_DRM_AMDGPU_USERPTR
881 /**
882 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
883 * memory and start HMM tracking CPU page table update
884 *
885 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
886 * once afterwards to stop HMM tracking
887 */
888 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
889 {
890 struct ttm_tt *ttm = bo->tbo.ttm;
891 struct amdgpu_ttm_tt *gtt = (void *)ttm;
892 unsigned long start = gtt->userptr;
893 struct vm_area_struct *vma;
894 struct hmm_range *range;
895 unsigned long timeout;
896 struct mm_struct *mm;
897 unsigned long i;
898 int r = 0;
899
900 mm = bo->notifier.mm;
901 if (unlikely(!mm)) {
902 DRM_DEBUG_DRIVER("BO is not registered?\n");
903 return -EFAULT;
904 }
905
906 /* Another get_user_pages is running at the same time?? */
907 if (WARN_ON(gtt->range))
908 return -EFAULT;
909
910 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
911 return -ESRCH;
912
913 range = kzalloc(sizeof(*range), GFP_KERNEL);
914 if (unlikely(!range)) {
915 r = -ENOMEM;
916 goto out;
917 }
918 range->notifier = &bo->notifier;
919 range->start = bo->notifier.interval_tree.start;
920 range->end = bo->notifier.interval_tree.last + 1;
921 range->default_flags = HMM_PFN_REQ_FAULT;
922 if (!amdgpu_ttm_tt_is_readonly(ttm))
923 range->default_flags |= HMM_PFN_REQ_WRITE;
924
925 range->hmm_pfns = kvmalloc_array(ttm->num_pages,
926 sizeof(*range->hmm_pfns), GFP_KERNEL);
927 if (unlikely(!range->hmm_pfns)) {
928 r = -ENOMEM;
929 goto out_free_ranges;
930 }
931
932 mmap_read_lock(mm);
933 vma = find_vma(mm, start);
934 if (unlikely(!vma || start < vma->vm_start)) {
935 r = -EFAULT;
936 goto out_unlock;
937 }
938 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
939 vma->vm_file)) {
940 r = -EPERM;
941 goto out_unlock;
942 }
943 mmap_read_unlock(mm);
944 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
945
946 retry:
947 range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
948
949 mmap_read_lock(mm);
950 r = hmm_range_fault(range);
951 mmap_read_unlock(mm);
952 if (unlikely(r)) {
953 /*
954 * FIXME: This timeout should encompass the retry from
955 * mmu_interval_read_retry() as well.
956 */
957 if (r == -EBUSY && !time_after(jiffies, timeout))
958 goto retry;
959 goto out_free_pfns;
960 }
961
962 /*
963 * Due to default_flags, all pages are HMM_PFN_VALID or
964 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
965 * the notifier_lock, and mmu_interval_read_retry() must be done first.
966 */
967 for (i = 0; i < ttm->num_pages; i++)
968 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
969
970 gtt->range = range;
971 mmput(mm);
972
973 return 0;
974
975 out_unlock:
976 mmap_read_unlock(mm);
977 out_free_pfns:
978 kvfree(range->hmm_pfns);
979 out_free_ranges:
980 kfree(range);
981 out:
982 mmput(mm);
983 return r;
984 }
985
986 /**
987 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
988 * Check if the pages backing this ttm range have been invalidated
989 *
990 * Returns: true if pages are still valid
991 */
992 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
993 {
994 struct amdgpu_ttm_tt *gtt = (void *)ttm;
995 bool r = false;
996
997 if (!gtt || !gtt->userptr)
998 return false;
999
1000 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
1001 gtt->userptr, ttm->num_pages);
1002
1003 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
1004 "No user pages to check\n");
1005
1006 if (gtt->range) {
1007 /*
1008 * FIXME: Must always hold notifier_lock for this, and must
1009 * not ignore the return code.
1010 */
1011 r = mmu_interval_read_retry(gtt->range->notifier,
1012 gtt->range->notifier_seq);
1013 kvfree(gtt->range->hmm_pfns);
1014 kfree(gtt->range);
1015 gtt->range = NULL;
1016 }
1017
1018 return !r;
1019 }
1020 #endif
1021
1022 /**
1023 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1024 *
1025 * Called by amdgpu_cs_list_validate(). This creates the page list
1026 * that backs user memory and will ultimately be mapped into the device
1027 * address space.
1028 */
1029 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1030 {
1031 unsigned long i;
1032
1033 for (i = 0; i < ttm->num_pages; ++i)
1034 ttm->pages[i] = pages ? pages[i] : NULL;
1035 }
1036
1037 /**
1038 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
1039 *
1040 * Called by amdgpu_ttm_backend_bind()
1041 **/
1042 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1043 {
1044 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1045 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1046 unsigned nents;
1047 int r;
1048
1049 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1050 enum dma_data_direction direction = write ?
1051 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1052
1053 /* Allocate an SG array and squash pages into it */
1054 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1055 ttm->num_pages << PAGE_SHIFT,
1056 GFP_KERNEL);
1057 if (r)
1058 goto release_sg;
1059
1060 /* Map SG to device */
1061 r = -ENOMEM;
1062 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1063 if (nents == 0)
1064 goto release_sg;
1065
1066 /* convert SG to linear array of pages and dma addresses */
1067 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1068 gtt->ttm.dma_address, ttm->num_pages);
1069
1070 return 0;
1071
1072 release_sg:
1073 kfree(ttm->sg);
1074 return r;
1075 }
1076
1077 /**
1078 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1079 */
1080 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1081 {
1082 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1083 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1084
1085 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1086 enum dma_data_direction direction = write ?
1087 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1088
1089 /* double check that we don't free the table twice */
1090 if (!ttm->sg->sgl)
1091 return;
1092
1093 /* unmap the pages mapped to the device */
1094 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1095
1096 sg_free_table(ttm->sg);
1097
1098 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1099 if (gtt->range) {
1100 unsigned long i;
1101
1102 for (i = 0; i < ttm->num_pages; i++) {
1103 if (ttm->pages[i] !=
1104 hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1105 break;
1106 }
1107
1108 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1109 }
1110 #endif
1111 }
1112
1113 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1114 struct ttm_buffer_object *tbo,
1115 uint64_t flags)
1116 {
1117 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1118 struct ttm_tt *ttm = tbo->ttm;
1119 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1120 int r;
1121
1122 if (amdgpu_bo_encrypted(abo))
1123 flags |= AMDGPU_PTE_TMZ;
1124
1125 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1126 uint64_t page_idx = 1;
1127
1128 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1129 ttm->pages, gtt->ttm.dma_address, flags);
1130 if (r)
1131 goto gart_bind_fail;
1132
1133 /* The memory type of the first page defaults to UC. Now
1134 * modify the memory type to NC from the second page of
1135 * the BO onward.
1136 */
1137 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1138 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1139
1140 r = amdgpu_gart_bind(adev,
1141 gtt->offset + (page_idx << PAGE_SHIFT),
1142 ttm->num_pages - page_idx,
1143 &ttm->pages[page_idx],
1144 &(gtt->ttm.dma_address[page_idx]), flags);
1145 } else {
1146 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1147 ttm->pages, gtt->ttm.dma_address, flags);
1148 }
1149
1150 gart_bind_fail:
1151 if (r)
1152 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1153 ttm->num_pages, gtt->offset);
1154
1155 return r;
1156 }
1157
1158 /**
1159 * amdgpu_ttm_backend_bind - Bind GTT memory
1160 *
1161 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1162 * This handles binding GTT memory to the device address space.
1163 */
1164 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1165 struct ttm_mem_reg *bo_mem)
1166 {
1167 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1168 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1169 uint64_t flags;
1170 int r = 0;
1171
1172 if (gtt->userptr) {
1173 r = amdgpu_ttm_tt_pin_userptr(ttm);
1174 if (r) {
1175 DRM_ERROR("failed to pin userptr\n");
1176 return r;
1177 }
1178 }
1179 if (!ttm->num_pages) {
1180 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1181 ttm->num_pages, bo_mem, ttm);
1182 }
1183
1184 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1185 bo_mem->mem_type == AMDGPU_PL_GWS ||
1186 bo_mem->mem_type == AMDGPU_PL_OA)
1187 return -EINVAL;
1188
1189 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1190 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1191 return 0;
1192 }
1193
1194 /* compute PTE flags relevant to this BO memory */
1195 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1196
1197 /* bind pages into GART page tables */
1198 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1199 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1200 ttm->pages, gtt->ttm.dma_address, flags);
1201
1202 if (r)
1203 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1204 ttm->num_pages, gtt->offset);
1205 return r;
1206 }
1207
1208 /**
1209 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1210 */
1211 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1212 {
1213 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1214 struct ttm_operation_ctx ctx = { false, false };
1215 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1216 struct ttm_mem_reg tmp;
1217 struct ttm_placement placement;
1218 struct ttm_place placements;
1219 uint64_t addr, flags;
1220 int r;
1221
1222 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1223 return 0;
1224
1225 addr = amdgpu_gmc_agp_addr(bo);
1226 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1227 bo->mem.start = addr >> PAGE_SHIFT;
1228 } else {
1229
1230 /* allocate GART space */
1231 tmp = bo->mem;
1232 tmp.mm_node = NULL;
1233 placement.num_placement = 1;
1234 placement.placement = &placements;
1235 placement.num_busy_placement = 1;
1236 placement.busy_placement = &placements;
1237 placements.fpfn = 0;
1238 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1239 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1240 TTM_PL_FLAG_TT;
1241
1242 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1243 if (unlikely(r))
1244 return r;
1245
1246 /* compute PTE flags for this buffer object */
1247 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1248
1249 /* Bind pages */
1250 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1251 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1252 if (unlikely(r)) {
1253 ttm_bo_mem_put(bo, &tmp);
1254 return r;
1255 }
1256
1257 ttm_bo_mem_put(bo, &bo->mem);
1258 bo->mem = tmp;
1259 }
1260
1261 return 0;
1262 }
1263
1264 /**
1265 * amdgpu_ttm_recover_gart - Rebind GTT pages
1266 *
1267 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1268 * rebind GTT pages during a GPU reset.
1269 */
1270 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1271 {
1272 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1273 uint64_t flags;
1274 int r;
1275
1276 if (!tbo->ttm)
1277 return 0;
1278
1279 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1280 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1281
1282 return r;
1283 }
1284
1285 /**
1286 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1287 *
1288 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1289 * ttm_tt_destroy().
1290 */
1291 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1292 {
1293 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1294 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1295 int r;
1296
1297 /* if the pages have userptr pinning then clear that first */
1298 if (gtt->userptr)
1299 amdgpu_ttm_tt_unpin_userptr(ttm);
1300
1301 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1302 return 0;
1303
1304 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1305 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1306 if (r)
1307 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1308 gtt->ttm.ttm.num_pages, gtt->offset);
1309 return r;
1310 }
1311
1312 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1313 {
1314 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1315
1316 if (gtt->usertask)
1317 put_task_struct(gtt->usertask);
1318
1319 ttm_dma_tt_fini(&gtt->ttm);
1320 kfree(gtt);
1321 }
1322
1323 static struct ttm_backend_func amdgpu_backend_func = {
1324 .bind = &amdgpu_ttm_backend_bind,
1325 .unbind = &amdgpu_ttm_backend_unbind,
1326 .destroy = &amdgpu_ttm_backend_destroy,
1327 };
1328
1329 /**
1330 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1331 *
1332 * @bo: The buffer object to create a GTT ttm_tt object around
1333 *
1334 * Called by ttm_tt_create().
1335 */
1336 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1337 uint32_t page_flags)
1338 {
1339 struct amdgpu_ttm_tt *gtt;
1340
1341 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1342 if (gtt == NULL) {
1343 return NULL;
1344 }
1345 gtt->ttm.ttm.func = &amdgpu_backend_func;
1346 gtt->gobj = &bo->base;
1347
1348 /* allocate space for the uninitialized page entries */
1349 if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1350 kfree(gtt);
1351 return NULL;
1352 }
1353 return &gtt->ttm.ttm;
1354 }
1355
1356 /**
1357 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1358 *
1359 * Map the pages of a ttm_tt object to an address space visible
1360 * to the underlying device.
1361 */
1362 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1363 struct ttm_operation_ctx *ctx)
1364 {
1365 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1366 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1367
1368 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1369 if (gtt && gtt->userptr) {
1370 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1371 if (!ttm->sg)
1372 return -ENOMEM;
1373
1374 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1375 ttm->state = tt_unbound;
1376 return 0;
1377 }
1378
1379 if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1380 if (!ttm->sg) {
1381 struct dma_buf_attachment *attach;
1382 struct sg_table *sgt;
1383
1384 attach = gtt->gobj->import_attach;
1385 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1386 if (IS_ERR(sgt))
1387 return PTR_ERR(sgt);
1388
1389 ttm->sg = sgt;
1390 }
1391
1392 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1393 gtt->ttm.dma_address,
1394 ttm->num_pages);
1395 ttm->state = tt_unbound;
1396 return 0;
1397 }
1398
1399 #ifdef CONFIG_SWIOTLB
1400 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1401 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1402 }
1403 #endif
1404
1405 /* fall back to generic helper to populate the page array
1406 * and map them to the device */
1407 return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1408 }
1409
1410 /**
1411 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1412 *
1413 * Unmaps pages of a ttm_tt object from the device address space and
1414 * unpopulates the page array backing it.
1415 */
1416 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1417 {
1418 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1419 struct amdgpu_device *adev;
1420
1421 if (gtt && gtt->userptr) {
1422 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1423 kfree(ttm->sg);
1424 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1425 return;
1426 }
1427
1428 if (ttm->sg && gtt->gobj->import_attach) {
1429 struct dma_buf_attachment *attach;
1430
1431 attach = gtt->gobj->import_attach;
1432 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1433 ttm->sg = NULL;
1434 return;
1435 }
1436
1437 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1438 return;
1439
1440 adev = amdgpu_ttm_adev(ttm->bdev);
1441
1442 #ifdef CONFIG_SWIOTLB
1443 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1444 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1445 return;
1446 }
1447 #endif
1448
1449 /* fall back to generic helper to unmap and unpopulate array */
1450 ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1451 }
1452
1453 /**
1454 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1455 * task
1456 *
1457 * @ttm: The ttm_tt object to bind this userptr object to
1458 * @addr: The address in the current tasks VM space to use
1459 * @flags: Requirements of userptr object.
1460 *
1461 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1462 * to current task
1463 */
1464 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1465 uint32_t flags)
1466 {
1467 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1468
1469 if (gtt == NULL)
1470 return -EINVAL;
1471
1472 gtt->userptr = addr;
1473 gtt->userflags = flags;
1474
1475 if (gtt->usertask)
1476 put_task_struct(gtt->usertask);
1477 gtt->usertask = current->group_leader;
1478 get_task_struct(gtt->usertask);
1479
1480 return 0;
1481 }
1482
1483 /**
1484 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1485 */
1486 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1487 {
1488 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1489
1490 if (gtt == NULL)
1491 return NULL;
1492
1493 if (gtt->usertask == NULL)
1494 return NULL;
1495
1496 return gtt->usertask->mm;
1497 }
1498
1499 /**
1500 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1501 * address range for the current task.
1502 *
1503 */
1504 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1505 unsigned long end)
1506 {
1507 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1508 unsigned long size;
1509
1510 if (gtt == NULL || !gtt->userptr)
1511 return false;
1512
1513 /* Return false if no part of the ttm_tt object lies within
1514 * the range
1515 */
1516 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1517 if (gtt->userptr > end || gtt->userptr + size <= start)
1518 return false;
1519
1520 return true;
1521 }
1522
1523 /**
1524 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1525 */
1526 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1527 {
1528 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1529
1530 if (gtt == NULL || !gtt->userptr)
1531 return false;
1532
1533 return true;
1534 }
1535
1536 /**
1537 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1538 */
1539 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1540 {
1541 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1542
1543 if (gtt == NULL)
1544 return false;
1545
1546 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1547 }
1548
1549 /**
1550 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1551 *
1552 * @ttm: The ttm_tt object to compute the flags for
1553 * @mem: The memory registry backing this ttm_tt object
1554 *
1555 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1556 */
1557 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1558 {
1559 uint64_t flags = 0;
1560
1561 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1562 flags |= AMDGPU_PTE_VALID;
1563
1564 if (mem && mem->mem_type == TTM_PL_TT) {
1565 flags |= AMDGPU_PTE_SYSTEM;
1566
1567 if (ttm->caching_state == tt_cached)
1568 flags |= AMDGPU_PTE_SNOOPED;
1569 }
1570
1571 return flags;
1572 }
1573
1574 /**
1575 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1576 *
1577 * @ttm: The ttm_tt object to compute the flags for
1578 * @mem: The memory registry backing this ttm_tt object
1579
1580 * Figure out the flags to use for a VM PTE (Page Table Entry).
1581 */
1582 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1583 struct ttm_mem_reg *mem)
1584 {
1585 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1586
1587 flags |= adev->gart.gart_pte_flags;
1588 flags |= AMDGPU_PTE_READABLE;
1589
1590 if (!amdgpu_ttm_tt_is_readonly(ttm))
1591 flags |= AMDGPU_PTE_WRITEABLE;
1592
1593 return flags;
1594 }
1595
1596 /**
1597 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1598 * object.
1599 *
1600 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1601 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1602 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1603 * used to clean out a memory space.
1604 */
1605 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1606 const struct ttm_place *place)
1607 {
1608 unsigned long num_pages = bo->mem.num_pages;
1609 struct drm_mm_node *node = bo->mem.mm_node;
1610 struct dma_resv_list *flist;
1611 struct dma_fence *f;
1612 int i;
1613
1614 if (bo->type == ttm_bo_type_kernel &&
1615 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1616 return false;
1617
1618 /* If bo is a KFD BO, check if the bo belongs to the current process.
1619 * If true, then return false as any KFD process needs all its BOs to
1620 * be resident to run successfully
1621 */
1622 flist = dma_resv_get_list(bo->base.resv);
1623 if (flist) {
1624 for (i = 0; i < flist->shared_count; ++i) {
1625 f = rcu_dereference_protected(flist->shared[i],
1626 dma_resv_held(bo->base.resv));
1627 if (amdkfd_fence_check_mm(f, current->mm))
1628 return false;
1629 }
1630 }
1631
1632 switch (bo->mem.mem_type) {
1633 case TTM_PL_TT:
1634 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1635 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1636 return false;
1637 return true;
1638
1639 case TTM_PL_VRAM:
1640 /* Check each drm MM node individually */
1641 while (num_pages) {
1642 if (place->fpfn < (node->start + node->size) &&
1643 !(place->lpfn && place->lpfn <= node->start))
1644 return true;
1645
1646 num_pages -= node->size;
1647 ++node;
1648 }
1649 return false;
1650
1651 default:
1652 break;
1653 }
1654
1655 return ttm_bo_eviction_valuable(bo, place);
1656 }
1657
1658 /**
1659 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1660 *
1661 * @bo: The buffer object to read/write
1662 * @offset: Offset into buffer object
1663 * @buf: Secondary buffer to write/read from
1664 * @len: Length in bytes of access
1665 * @write: true if writing
1666 *
1667 * This is used to access VRAM that backs a buffer object via MMIO
1668 * access for debugging purposes.
1669 */
1670 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1671 unsigned long offset,
1672 void *buf, int len, int write)
1673 {
1674 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1675 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1676 struct drm_mm_node *nodes;
1677 uint32_t value = 0;
1678 int ret = 0;
1679 uint64_t pos;
1680 unsigned long flags;
1681
1682 if (bo->mem.mem_type != TTM_PL_VRAM)
1683 return -EIO;
1684
1685 pos = offset;
1686 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1687 pos += (nodes->start << PAGE_SHIFT);
1688
1689 while (len && pos < adev->gmc.mc_vram_size) {
1690 uint64_t aligned_pos = pos & ~(uint64_t)3;
1691 uint64_t bytes = 4 - (pos & 3);
1692 uint32_t shift = (pos & 3) * 8;
1693 uint32_t mask = 0xffffffff << shift;
1694
1695 if (len < bytes) {
1696 mask &= 0xffffffff >> (bytes - len) * 8;
1697 bytes = len;
1698 }
1699
1700 if (mask != 0xffffffff) {
1701 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1702 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1703 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1704 if (!write || mask != 0xffffffff)
1705 value = RREG32_NO_KIQ(mmMM_DATA);
1706 if (write) {
1707 value &= ~mask;
1708 value |= (*(uint32_t *)buf << shift) & mask;
1709 WREG32_NO_KIQ(mmMM_DATA, value);
1710 }
1711 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1712 if (!write) {
1713 value = (value & mask) >> shift;
1714 memcpy(buf, &value, bytes);
1715 }
1716 } else {
1717 bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1718 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1719
1720 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1721 bytes, write);
1722 }
1723
1724 ret += bytes;
1725 buf = (uint8_t *)buf + bytes;
1726 pos += bytes;
1727 len -= bytes;
1728 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1729 ++nodes;
1730 pos = (nodes->start << PAGE_SHIFT);
1731 }
1732 }
1733
1734 return ret;
1735 }
1736
1737 static struct ttm_bo_driver amdgpu_bo_driver = {
1738 .ttm_tt_create = &amdgpu_ttm_tt_create,
1739 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1740 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1741 .init_mem_type = &amdgpu_init_mem_type,
1742 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1743 .evict_flags = &amdgpu_evict_flags,
1744 .move = &amdgpu_bo_move,
1745 .verify_access = &amdgpu_verify_access,
1746 .move_notify = &amdgpu_bo_move_notify,
1747 .release_notify = &amdgpu_bo_release_notify,
1748 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1749 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1750 .io_mem_free = &amdgpu_ttm_io_mem_free,
1751 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1752 .access_memory = &amdgpu_ttm_access_memory,
1753 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1754 };
1755
1756 /*
1757 * Firmware Reservation functions
1758 */
1759 /**
1760 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1761 *
1762 * @adev: amdgpu_device pointer
1763 *
1764 * free fw reserved vram if it has been reserved.
1765 */
1766 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1767 {
1768 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1769 NULL, &adev->fw_vram_usage.va);
1770 }
1771
1772 /**
1773 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1774 *
1775 * @adev: amdgpu_device pointer
1776 *
1777 * create bo vram reservation from fw.
1778 */
1779 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1780 {
1781 uint64_t vram_size = adev->gmc.visible_vram_size;
1782
1783 adev->fw_vram_usage.va = NULL;
1784 adev->fw_vram_usage.reserved_bo = NULL;
1785
1786 if (adev->fw_vram_usage.size == 0 ||
1787 adev->fw_vram_usage.size > vram_size)
1788 return 0;
1789
1790 return amdgpu_bo_create_kernel_at(adev,
1791 adev->fw_vram_usage.start_offset,
1792 adev->fw_vram_usage.size,
1793 AMDGPU_GEM_DOMAIN_VRAM,
1794 &adev->fw_vram_usage.reserved_bo,
1795 &adev->fw_vram_usage.va);
1796 }
1797
1798 /*
1799 * Memoy training reservation functions
1800 */
1801
1802 /**
1803 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1804 *
1805 * @adev: amdgpu_device pointer
1806 *
1807 * free memory training reserved vram if it has been reserved.
1808 */
1809 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1810 {
1811 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1812
1813 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1814 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1815 ctx->c2p_bo = NULL;
1816
1817 return 0;
1818 }
1819
1820 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1821 {
1822 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1823 vram_size -= SZ_1M;
1824
1825 return ALIGN(vram_size, SZ_1M);
1826 }
1827
1828 /**
1829 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1830 *
1831 * @adev: amdgpu_device pointer
1832 *
1833 * create bo vram reservation from memory training.
1834 */
1835 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1836 {
1837 int ret;
1838 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1839
1840 memset(ctx, 0, sizeof(*ctx));
1841 if (!adev->fw_vram_usage.mem_train_support) {
1842 DRM_DEBUG("memory training does not support!\n");
1843 return 0;
1844 }
1845
1846 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1847 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1848 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1849
1850 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1851 ctx->train_data_size,
1852 ctx->p2c_train_data_offset,
1853 ctx->c2p_train_data_offset);
1854
1855 ret = amdgpu_bo_create_kernel_at(adev,
1856 ctx->c2p_train_data_offset,
1857 ctx->train_data_size,
1858 AMDGPU_GEM_DOMAIN_VRAM,
1859 &ctx->c2p_bo,
1860 NULL);
1861 if (ret) {
1862 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1863 amdgpu_ttm_training_reserve_vram_fini(adev);
1864 return ret;
1865 }
1866
1867 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1868 return 0;
1869 }
1870
1871 /**
1872 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1873 * gtt/vram related fields.
1874 *
1875 * This initializes all of the memory space pools that the TTM layer
1876 * will need such as the GTT space (system memory mapped to the device),
1877 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1878 * can be mapped per VMID.
1879 */
1880 int amdgpu_ttm_init(struct amdgpu_device *adev)
1881 {
1882 uint64_t gtt_size;
1883 int r;
1884 u64 vis_vram_limit;
1885 void *stolen_vga_buf;
1886
1887 mutex_init(&adev->mman.gtt_window_lock);
1888
1889 /* No others user of address space so set it to 0 */
1890 r = ttm_bo_device_init(&adev->mman.bdev,
1891 &amdgpu_bo_driver,
1892 adev->ddev->anon_inode->i_mapping,
1893 adev->ddev->vma_offset_manager,
1894 dma_addressing_limited(adev->dev));
1895 if (r) {
1896 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1897 return r;
1898 }
1899 adev->mman.initialized = true;
1900
1901 /* We opt to avoid OOM on system pages allocations */
1902 adev->mman.bdev.no_retry = true;
1903
1904 /* Initialize VRAM pool with all of VRAM divided into pages */
1905 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1906 adev->gmc.real_vram_size >> PAGE_SHIFT);
1907 if (r) {
1908 DRM_ERROR("Failed initializing VRAM heap.\n");
1909 return r;
1910 }
1911
1912 /* Reduce size of CPU-visible VRAM if requested */
1913 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1914 if (amdgpu_vis_vram_limit > 0 &&
1915 vis_vram_limit <= adev->gmc.visible_vram_size)
1916 adev->gmc.visible_vram_size = vis_vram_limit;
1917
1918 /* Change the size here instead of the init above so only lpfn is affected */
1919 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1920 #ifdef CONFIG_64BIT
1921 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1922 adev->gmc.visible_vram_size);
1923 #endif
1924
1925 /*
1926 *The reserved vram for firmware must be pinned to the specified
1927 *place on the VRAM, so reserve it early.
1928 */
1929 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1930 if (r) {
1931 return r;
1932 }
1933
1934 /*
1935 *The reserved vram for memory training must be pinned to the specified
1936 *place on the VRAM, so reserve it early.
1937 */
1938 if (!amdgpu_sriov_vf(adev)) {
1939 r = amdgpu_ttm_training_reserve_vram_init(adev);
1940 if (r)
1941 return r;
1942 }
1943
1944 /* allocate memory as required for VGA
1945 * This is used for VGA emulation and pre-OS scanout buffers to
1946 * avoid display artifacts while transitioning between pre-OS
1947 * and driver. */
1948 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1949 AMDGPU_GEM_DOMAIN_VRAM,
1950 &adev->stolen_vga_memory,
1951 NULL, &stolen_vga_buf);
1952 if (r)
1953 return r;
1954
1955 /*
1956 * reserve TMR memory at the top of VRAM which holds
1957 * IP Discovery data and is protected by PSP.
1958 */
1959 if (adev->discovery_tmr_size > 0) {
1960 r = amdgpu_bo_create_kernel_at(adev,
1961 adev->gmc.real_vram_size - adev->discovery_tmr_size,
1962 adev->discovery_tmr_size,
1963 AMDGPU_GEM_DOMAIN_VRAM,
1964 &adev->discovery_memory,
1965 NULL);
1966 if (r)
1967 return r;
1968 }
1969
1970 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1971 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1972
1973 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1974 * or whatever the user passed on module init */
1975 if (amdgpu_gtt_size == -1) {
1976 struct sysinfo si;
1977
1978 si_meminfo(&si);
1979 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1980 adev->gmc.mc_vram_size),
1981 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1982 }
1983 else
1984 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1985
1986 /* Initialize GTT memory pool */
1987 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1988 if (r) {
1989 DRM_ERROR("Failed initializing GTT heap.\n");
1990 return r;
1991 }
1992 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1993 (unsigned)(gtt_size / (1024 * 1024)));
1994
1995 /* Initialize various on-chip memory pools */
1996 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1997 adev->gds.gds_size);
1998 if (r) {
1999 DRM_ERROR("Failed initializing GDS heap.\n");
2000 return r;
2001 }
2002
2003 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2004 adev->gds.gws_size);
2005 if (r) {
2006 DRM_ERROR("Failed initializing gws heap.\n");
2007 return r;
2008 }
2009
2010 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2011 adev->gds.oa_size);
2012 if (r) {
2013 DRM_ERROR("Failed initializing oa heap.\n");
2014 return r;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /**
2021 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2022 */
2023 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2024 {
2025 void *stolen_vga_buf;
2026 /* return the VGA stolen memory (if any) back to VRAM */
2027 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2028 }
2029
2030 /**
2031 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2032 */
2033 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2034 {
2035 if (!adev->mman.initialized)
2036 return;
2037
2038 amdgpu_ttm_training_reserve_vram_fini(adev);
2039 /* return the IP Discovery TMR memory back to VRAM */
2040 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2041 amdgpu_ttm_fw_reserve_vram_fini(adev);
2042
2043 if (adev->mman.aper_base_kaddr)
2044 iounmap(adev->mman.aper_base_kaddr);
2045 adev->mman.aper_base_kaddr = NULL;
2046
2047 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2048 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2049 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2050 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2051 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2052 ttm_bo_device_release(&adev->mman.bdev);
2053 adev->mman.initialized = false;
2054 DRM_INFO("amdgpu: ttm finalized\n");
2055 }
2056
2057 /**
2058 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2059 *
2060 * @adev: amdgpu_device pointer
2061 * @enable: true when we can use buffer functions.
2062 *
2063 * Enable/disable use of buffer functions during suspend/resume. This should
2064 * only be called at bootup or when userspace isn't running.
2065 */
2066 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2067 {
2068 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2069 uint64_t size;
2070 int r;
2071
2072 if (!adev->mman.initialized || adev->in_gpu_reset ||
2073 adev->mman.buffer_funcs_enabled == enable)
2074 return;
2075
2076 if (enable) {
2077 struct amdgpu_ring *ring;
2078 struct drm_gpu_scheduler *sched;
2079
2080 ring = adev->mman.buffer_funcs_ring;
2081 sched = &ring->sched;
2082 r = drm_sched_entity_init(&adev->mman.entity,
2083 DRM_SCHED_PRIORITY_KERNEL, &sched,
2084 1, NULL);
2085 if (r) {
2086 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2087 r);
2088 return;
2089 }
2090 } else {
2091 drm_sched_entity_destroy(&adev->mman.entity);
2092 dma_fence_put(man->move);
2093 man->move = NULL;
2094 }
2095
2096 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2097 if (enable)
2098 size = adev->gmc.real_vram_size;
2099 else
2100 size = adev->gmc.visible_vram_size;
2101 man->size = size >> PAGE_SHIFT;
2102 adev->mman.buffer_funcs_enabled = enable;
2103 }
2104
2105 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2106 {
2107 struct drm_file *file_priv = filp->private_data;
2108 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2109
2110 if (adev == NULL)
2111 return -EINVAL;
2112
2113 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2114 }
2115
2116 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2117 uint64_t dst_offset, uint32_t byte_count,
2118 struct dma_resv *resv,
2119 struct dma_fence **fence, bool direct_submit,
2120 bool vm_needs_flush, bool tmz)
2121 {
2122 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2123 AMDGPU_IB_POOL_DELAYED;
2124 struct amdgpu_device *adev = ring->adev;
2125 struct amdgpu_job *job;
2126
2127 uint32_t max_bytes;
2128 unsigned num_loops, num_dw;
2129 unsigned i;
2130 int r;
2131
2132 if (direct_submit && !ring->sched.ready) {
2133 DRM_ERROR("Trying to move memory with ring turned off.\n");
2134 return -EINVAL;
2135 }
2136
2137 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2138 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2139 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2140
2141 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2142 if (r)
2143 return r;
2144
2145 if (vm_needs_flush) {
2146 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2147 job->vm_needs_flush = true;
2148 }
2149 if (resv) {
2150 r = amdgpu_sync_resv(adev, &job->sync, resv,
2151 AMDGPU_SYNC_ALWAYS,
2152 AMDGPU_FENCE_OWNER_UNDEFINED);
2153 if (r) {
2154 DRM_ERROR("sync failed (%d).\n", r);
2155 goto error_free;
2156 }
2157 }
2158
2159 for (i = 0; i < num_loops; i++) {
2160 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163 dst_offset, cur_size_in_bytes, tmz);
2164
2165 src_offset += cur_size_in_bytes;
2166 dst_offset += cur_size_in_bytes;
2167 byte_count -= cur_size_in_bytes;
2168 }
2169
2170 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171 WARN_ON(job->ibs[0].length_dw > num_dw);
2172 if (direct_submit)
2173 r = amdgpu_job_submit_direct(job, ring, fence);
2174 else
2175 r = amdgpu_job_submit(job, &adev->mman.entity,
2176 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2177 if (r)
2178 goto error_free;
2179
2180 return r;
2181
2182 error_free:
2183 amdgpu_job_free(job);
2184 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2185 return r;
2186 }
2187
2188 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2189 uint32_t src_data,
2190 struct dma_resv *resv,
2191 struct dma_fence **fence)
2192 {
2193 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2194 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2195 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2196
2197 struct drm_mm_node *mm_node;
2198 unsigned long num_pages;
2199 unsigned int num_loops, num_dw;
2200
2201 struct amdgpu_job *job;
2202 int r;
2203
2204 if (!adev->mman.buffer_funcs_enabled) {
2205 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2206 return -EINVAL;
2207 }
2208
2209 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2210 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2211 if (r)
2212 return r;
2213 }
2214
2215 num_pages = bo->tbo.num_pages;
2216 mm_node = bo->tbo.mem.mm_node;
2217 num_loops = 0;
2218 while (num_pages) {
2219 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2220
2221 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2222 num_pages -= mm_node->size;
2223 ++mm_node;
2224 }
2225 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2226
2227 /* for IB padding */
2228 num_dw += 64;
2229
2230 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2231 &job);
2232 if (r)
2233 return r;
2234
2235 if (resv) {
2236 r = amdgpu_sync_resv(adev, &job->sync, resv,
2237 AMDGPU_SYNC_ALWAYS,
2238 AMDGPU_FENCE_OWNER_UNDEFINED);
2239 if (r) {
2240 DRM_ERROR("sync failed (%d).\n", r);
2241 goto error_free;
2242 }
2243 }
2244
2245 num_pages = bo->tbo.num_pages;
2246 mm_node = bo->tbo.mem.mm_node;
2247
2248 while (num_pages) {
2249 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2250 uint64_t dst_addr;
2251
2252 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2253 while (byte_count) {
2254 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2255 max_bytes);
2256
2257 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2258 dst_addr, cur_size_in_bytes);
2259
2260 dst_addr += cur_size_in_bytes;
2261 byte_count -= cur_size_in_bytes;
2262 }
2263
2264 num_pages -= mm_node->size;
2265 ++mm_node;
2266 }
2267
2268 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2269 WARN_ON(job->ibs[0].length_dw > num_dw);
2270 r = amdgpu_job_submit(job, &adev->mman.entity,
2271 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2272 if (r)
2273 goto error_free;
2274
2275 return 0;
2276
2277 error_free:
2278 amdgpu_job_free(job);
2279 return r;
2280 }
2281
2282 #if defined(CONFIG_DEBUG_FS)
2283
2284 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2285 {
2286 struct drm_info_node *node = (struct drm_info_node *)m->private;
2287 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2288 struct drm_device *dev = node->minor->dev;
2289 struct amdgpu_device *adev = dev->dev_private;
2290 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2291 struct drm_printer p = drm_seq_file_printer(m);
2292
2293 man->func->debug(man, &p);
2294 return 0;
2295 }
2296
2297 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2298 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2299 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2300 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2301 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2302 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2303 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2304 #ifdef CONFIG_SWIOTLB
2305 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2306 #endif
2307 };
2308
2309 /**
2310 * amdgpu_ttm_vram_read - Linear read access to VRAM
2311 *
2312 * Accesses VRAM via MMIO for debugging purposes.
2313 */
2314 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2315 size_t size, loff_t *pos)
2316 {
2317 struct amdgpu_device *adev = file_inode(f)->i_private;
2318 ssize_t result = 0;
2319
2320 if (size & 0x3 || *pos & 0x3)
2321 return -EINVAL;
2322
2323 if (*pos >= adev->gmc.mc_vram_size)
2324 return -ENXIO;
2325
2326 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2327 while (size) {
2328 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2329 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2330
2331 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2332 if (copy_to_user(buf, value, bytes))
2333 return -EFAULT;
2334
2335 result += bytes;
2336 buf += bytes;
2337 *pos += bytes;
2338 size -= bytes;
2339 }
2340
2341 return result;
2342 }
2343
2344 /**
2345 * amdgpu_ttm_vram_write - Linear write access to VRAM
2346 *
2347 * Accesses VRAM via MMIO for debugging purposes.
2348 */
2349 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2350 size_t size, loff_t *pos)
2351 {
2352 struct amdgpu_device *adev = file_inode(f)->i_private;
2353 ssize_t result = 0;
2354 int r;
2355
2356 if (size & 0x3 || *pos & 0x3)
2357 return -EINVAL;
2358
2359 if (*pos >= adev->gmc.mc_vram_size)
2360 return -ENXIO;
2361
2362 while (size) {
2363 unsigned long flags;
2364 uint32_t value;
2365
2366 if (*pos >= adev->gmc.mc_vram_size)
2367 return result;
2368
2369 r = get_user(value, (uint32_t *)buf);
2370 if (r)
2371 return r;
2372
2373 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2374 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2375 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2376 WREG32_NO_KIQ(mmMM_DATA, value);
2377 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2378
2379 result += 4;
2380 buf += 4;
2381 *pos += 4;
2382 size -= 4;
2383 }
2384
2385 return result;
2386 }
2387
2388 static const struct file_operations amdgpu_ttm_vram_fops = {
2389 .owner = THIS_MODULE,
2390 .read = amdgpu_ttm_vram_read,
2391 .write = amdgpu_ttm_vram_write,
2392 .llseek = default_llseek,
2393 };
2394
2395 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2396
2397 /**
2398 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2399 */
2400 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2401 size_t size, loff_t *pos)
2402 {
2403 struct amdgpu_device *adev = file_inode(f)->i_private;
2404 ssize_t result = 0;
2405 int r;
2406
2407 while (size) {
2408 loff_t p = *pos / PAGE_SIZE;
2409 unsigned off = *pos & ~PAGE_MASK;
2410 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2411 struct page *page;
2412 void *ptr;
2413
2414 if (p >= adev->gart.num_cpu_pages)
2415 return result;
2416
2417 page = adev->gart.pages[p];
2418 if (page) {
2419 ptr = kmap(page);
2420 ptr += off;
2421
2422 r = copy_to_user(buf, ptr, cur_size);
2423 kunmap(adev->gart.pages[p]);
2424 } else
2425 r = clear_user(buf, cur_size);
2426
2427 if (r)
2428 return -EFAULT;
2429
2430 result += cur_size;
2431 buf += cur_size;
2432 *pos += cur_size;
2433 size -= cur_size;
2434 }
2435
2436 return result;
2437 }
2438
2439 static const struct file_operations amdgpu_ttm_gtt_fops = {
2440 .owner = THIS_MODULE,
2441 .read = amdgpu_ttm_gtt_read,
2442 .llseek = default_llseek
2443 };
2444
2445 #endif
2446
2447 /**
2448 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2449 *
2450 * This function is used to read memory that has been mapped to the
2451 * GPU and the known addresses are not physical addresses but instead
2452 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2453 */
2454 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2455 size_t size, loff_t *pos)
2456 {
2457 struct amdgpu_device *adev = file_inode(f)->i_private;
2458 struct iommu_domain *dom;
2459 ssize_t result = 0;
2460 int r;
2461
2462 /* retrieve the IOMMU domain if any for this device */
2463 dom = iommu_get_domain_for_dev(adev->dev);
2464
2465 while (size) {
2466 phys_addr_t addr = *pos & PAGE_MASK;
2467 loff_t off = *pos & ~PAGE_MASK;
2468 size_t bytes = PAGE_SIZE - off;
2469 unsigned long pfn;
2470 struct page *p;
2471 void *ptr;
2472
2473 bytes = bytes < size ? bytes : size;
2474
2475 /* Translate the bus address to a physical address. If
2476 * the domain is NULL it means there is no IOMMU active
2477 * and the address translation is the identity
2478 */
2479 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481 pfn = addr >> PAGE_SHIFT;
2482 if (!pfn_valid(pfn))
2483 return -EPERM;
2484
2485 p = pfn_to_page(pfn);
2486 if (p->mapping != adev->mman.bdev.dev_mapping)
2487 return -EPERM;
2488
2489 ptr = kmap(p);
2490 r = copy_to_user(buf, ptr + off, bytes);
2491 kunmap(p);
2492 if (r)
2493 return -EFAULT;
2494
2495 size -= bytes;
2496 *pos += bytes;
2497 result += bytes;
2498 }
2499
2500 return result;
2501 }
2502
2503 /**
2504 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2505 *
2506 * This function is used to write memory that has been mapped to the
2507 * GPU and the known addresses are not physical addresses but instead
2508 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2509 */
2510 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2511 size_t size, loff_t *pos)
2512 {
2513 struct amdgpu_device *adev = file_inode(f)->i_private;
2514 struct iommu_domain *dom;
2515 ssize_t result = 0;
2516 int r;
2517
2518 dom = iommu_get_domain_for_dev(adev->dev);
2519
2520 while (size) {
2521 phys_addr_t addr = *pos & PAGE_MASK;
2522 loff_t off = *pos & ~PAGE_MASK;
2523 size_t bytes = PAGE_SIZE - off;
2524 unsigned long pfn;
2525 struct page *p;
2526 void *ptr;
2527
2528 bytes = bytes < size ? bytes : size;
2529
2530 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2531
2532 pfn = addr >> PAGE_SHIFT;
2533 if (!pfn_valid(pfn))
2534 return -EPERM;
2535
2536 p = pfn_to_page(pfn);
2537 if (p->mapping != adev->mman.bdev.dev_mapping)
2538 return -EPERM;
2539
2540 ptr = kmap(p);
2541 r = copy_from_user(ptr + off, buf, bytes);
2542 kunmap(p);
2543 if (r)
2544 return -EFAULT;
2545
2546 size -= bytes;
2547 *pos += bytes;
2548 result += bytes;
2549 }
2550
2551 return result;
2552 }
2553
2554 static const struct file_operations amdgpu_ttm_iomem_fops = {
2555 .owner = THIS_MODULE,
2556 .read = amdgpu_iomem_read,
2557 .write = amdgpu_iomem_write,
2558 .llseek = default_llseek
2559 };
2560
2561 static const struct {
2562 char *name;
2563 const struct file_operations *fops;
2564 int domain;
2565 } ttm_debugfs_entries[] = {
2566 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2567 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2568 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2569 #endif
2570 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2571 };
2572
2573 #endif
2574
2575 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2576 {
2577 #if defined(CONFIG_DEBUG_FS)
2578 unsigned count;
2579
2580 struct drm_minor *minor = adev->ddev->primary;
2581 struct dentry *ent, *root = minor->debugfs_root;
2582
2583 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2584 ent = debugfs_create_file(
2585 ttm_debugfs_entries[count].name,
2586 S_IFREG | S_IRUGO, root,
2587 adev,
2588 ttm_debugfs_entries[count].fops);
2589 if (IS_ERR(ent))
2590 return PTR_ERR(ent);
2591 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2592 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2593 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2594 i_size_write(ent->d_inode, adev->gmc.gart_size);
2595 adev->mman.debugfs_entries[count] = ent;
2596 }
2597
2598 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2599
2600 #ifdef CONFIG_SWIOTLB
2601 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2602 --count;
2603 #endif
2604
2605 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2606 #else
2607 return 0;
2608 #endif
2609 }