]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
drm/ttm: Quick-test mmap offset in ttm_bo_mmap()
[people/arne_f/kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include <linux/hmm.h>
47 #include "amdgpu.h"
48 #include "amdgpu_object.h"
49 #include "amdgpu_trace.h"
50 #include "amdgpu_amdkfd.h"
51 #include "amdgpu_sdma.h"
52 #include "bif/bif_4_1_d.h"
53
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 struct ttm_mem_reg *mem, unsigned num_pages,
56 uint64_t offset, unsigned window,
57 struct amdgpu_ring *ring,
58 uint64_t *addr);
59
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62
63 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
64 {
65 return 0;
66 }
67
68 /**
69 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
70 * memory request.
71 *
72 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
73 * @type: The type of memory requested
74 * @man: The memory type manager for each domain
75 *
76 * This is called by ttm_bo_init_mm() when a buffer object is being
77 * initialized.
78 */
79 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
80 struct ttm_mem_type_manager *man)
81 {
82 struct amdgpu_device *adev;
83
84 adev = amdgpu_ttm_adev(bdev);
85
86 switch (type) {
87 case TTM_PL_SYSTEM:
88 /* System memory */
89 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
90 man->available_caching = TTM_PL_MASK_CACHING;
91 man->default_caching = TTM_PL_FLAG_CACHED;
92 break;
93 case TTM_PL_TT:
94 /* GTT memory */
95 man->func = &amdgpu_gtt_mgr_func;
96 man->gpu_offset = adev->gmc.gart_start;
97 man->available_caching = TTM_PL_MASK_CACHING;
98 man->default_caching = TTM_PL_FLAG_CACHED;
99 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
100 break;
101 case TTM_PL_VRAM:
102 /* "On-card" video ram */
103 man->func = &amdgpu_vram_mgr_func;
104 man->gpu_offset = adev->gmc.vram_start;
105 man->flags = TTM_MEMTYPE_FLAG_FIXED |
106 TTM_MEMTYPE_FLAG_MAPPABLE;
107 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
108 man->default_caching = TTM_PL_FLAG_WC;
109 break;
110 case AMDGPU_PL_GDS:
111 case AMDGPU_PL_GWS:
112 case AMDGPU_PL_OA:
113 /* On-chip GDS memory*/
114 man->func = &ttm_bo_manager_func;
115 man->gpu_offset = 0;
116 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
117 man->available_caching = TTM_PL_FLAG_UNCACHED;
118 man->default_caching = TTM_PL_FLAG_UNCACHED;
119 break;
120 default:
121 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
122 return -EINVAL;
123 }
124 return 0;
125 }
126
127 /**
128 * amdgpu_evict_flags - Compute placement flags
129 *
130 * @bo: The buffer object to evict
131 * @placement: Possible destination(s) for evicted BO
132 *
133 * Fill in placement data when ttm_bo_evict() is called
134 */
135 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
136 struct ttm_placement *placement)
137 {
138 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
139 struct amdgpu_bo *abo;
140 static const struct ttm_place placements = {
141 .fpfn = 0,
142 .lpfn = 0,
143 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
144 };
145
146 /* Don't handle scatter gather BOs */
147 if (bo->type == ttm_bo_type_sg) {
148 placement->num_placement = 0;
149 placement->num_busy_placement = 0;
150 return;
151 }
152
153 /* Object isn't an AMDGPU object so ignore */
154 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
155 placement->placement = &placements;
156 placement->busy_placement = &placements;
157 placement->num_placement = 1;
158 placement->num_busy_placement = 1;
159 return;
160 }
161
162 abo = ttm_to_amdgpu_bo(bo);
163 switch (bo->mem.mem_type) {
164 case AMDGPU_PL_GDS:
165 case AMDGPU_PL_GWS:
166 case AMDGPU_PL_OA:
167 placement->num_placement = 0;
168 placement->num_busy_placement = 0;
169 return;
170
171 case TTM_PL_VRAM:
172 if (!adev->mman.buffer_funcs_enabled) {
173 /* Move to system memory */
174 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
175 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
176 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
177 amdgpu_bo_in_cpu_visible_vram(abo)) {
178
179 /* Try evicting to the CPU inaccessible part of VRAM
180 * first, but only set GTT as busy placement, so this
181 * BO will be evicted to GTT rather than causing other
182 * BOs to be evicted from VRAM
183 */
184 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
185 AMDGPU_GEM_DOMAIN_GTT);
186 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
187 abo->placements[0].lpfn = 0;
188 abo->placement.busy_placement = &abo->placements[1];
189 abo->placement.num_busy_placement = 1;
190 } else {
191 /* Move to GTT memory */
192 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
193 }
194 break;
195 case TTM_PL_TT:
196 default:
197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
198 break;
199 }
200 *placement = abo->placement;
201 }
202
203 /**
204 * amdgpu_verify_access - Verify access for a mmap call
205 *
206 * @bo: The buffer object to map
207 * @filp: The file pointer from the process performing the mmap
208 *
209 * This is called by ttm_bo_mmap() to verify whether a process
210 * has the right to mmap a BO to their process space.
211 */
212 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
213 {
214 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
215
216 /*
217 * Don't verify access for KFD BOs. They don't have a GEM
218 * object associated with them.
219 */
220 if (abo->kfd_bo)
221 return 0;
222
223 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
224 return -EPERM;
225 return drm_vma_node_verify_access(&abo->gem_base.vma_node,
226 filp->private_data);
227 }
228
229 /**
230 * amdgpu_move_null - Register memory for a buffer object
231 *
232 * @bo: The bo to assign the memory to
233 * @new_mem: The memory to be assigned.
234 *
235 * Assign the memory from new_mem to the memory of the buffer object bo.
236 */
237 static void amdgpu_move_null(struct ttm_buffer_object *bo,
238 struct ttm_mem_reg *new_mem)
239 {
240 struct ttm_mem_reg *old_mem = &bo->mem;
241
242 BUG_ON(old_mem->mm_node != NULL);
243 *old_mem = *new_mem;
244 new_mem->mm_node = NULL;
245 }
246
247 /**
248 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
249 *
250 * @bo: The bo to assign the memory to.
251 * @mm_node: Memory manager node for drm allocator.
252 * @mem: The region where the bo resides.
253 *
254 */
255 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
256 struct drm_mm_node *mm_node,
257 struct ttm_mem_reg *mem)
258 {
259 uint64_t addr = 0;
260
261 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
262 addr = mm_node->start << PAGE_SHIFT;
263 addr += bo->bdev->man[mem->mem_type].gpu_offset;
264 }
265 return addr;
266 }
267
268 /**
269 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
270 * @offset. It also modifies the offset to be within the drm_mm_node returned
271 *
272 * @mem: The region where the bo resides.
273 * @offset: The offset that drm_mm_node is used for finding.
274 *
275 */
276 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
277 unsigned long *offset)
278 {
279 struct drm_mm_node *mm_node = mem->mm_node;
280
281 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
282 *offset -= (mm_node->size << PAGE_SHIFT);
283 ++mm_node;
284 }
285 return mm_node;
286 }
287
288 /**
289 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
290 *
291 * The function copies @size bytes from {src->mem + src->offset} to
292 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
293 * move and different for a BO to BO copy.
294 *
295 * @f: Returns the last fence if multiple jobs are submitted.
296 */
297 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
298 struct amdgpu_copy_mem *src,
299 struct amdgpu_copy_mem *dst,
300 uint64_t size,
301 struct reservation_object *resv,
302 struct dma_fence **f)
303 {
304 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
305 struct drm_mm_node *src_mm, *dst_mm;
306 uint64_t src_node_start, dst_node_start, src_node_size,
307 dst_node_size, src_page_offset, dst_page_offset;
308 struct dma_fence *fence = NULL;
309 int r = 0;
310 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
311 AMDGPU_GPU_PAGE_SIZE);
312
313 if (!adev->mman.buffer_funcs_enabled) {
314 DRM_ERROR("Trying to move memory with ring turned off.\n");
315 return -EINVAL;
316 }
317
318 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
319 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
320 src->offset;
321 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
322 src_page_offset = src_node_start & (PAGE_SIZE - 1);
323
324 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
325 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
326 dst->offset;
327 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
328 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
329
330 mutex_lock(&adev->mman.gtt_window_lock);
331
332 while (size) {
333 unsigned long cur_size;
334 uint64_t from = src_node_start, to = dst_node_start;
335 struct dma_fence *next;
336
337 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
338 * begins at an offset, then adjust the size accordingly
339 */
340 cur_size = min3(min(src_node_size, dst_node_size), size,
341 GTT_MAX_BYTES);
342 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
343 cur_size + dst_page_offset > GTT_MAX_BYTES)
344 cur_size -= max(src_page_offset, dst_page_offset);
345
346 /* Map only what needs to be accessed. Map src to window 0 and
347 * dst to window 1
348 */
349 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
350 r = amdgpu_map_buffer(src->bo, src->mem,
351 PFN_UP(cur_size + src_page_offset),
352 src_node_start, 0, ring,
353 &from);
354 if (r)
355 goto error;
356 /* Adjust the offset because amdgpu_map_buffer returns
357 * start of mapped page
358 */
359 from += src_page_offset;
360 }
361
362 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
363 r = amdgpu_map_buffer(dst->bo, dst->mem,
364 PFN_UP(cur_size + dst_page_offset),
365 dst_node_start, 1, ring,
366 &to);
367 if (r)
368 goto error;
369 to += dst_page_offset;
370 }
371
372 r = amdgpu_copy_buffer(ring, from, to, cur_size,
373 resv, &next, false, true);
374 if (r)
375 goto error;
376
377 dma_fence_put(fence);
378 fence = next;
379
380 size -= cur_size;
381 if (!size)
382 break;
383
384 src_node_size -= cur_size;
385 if (!src_node_size) {
386 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
387 src->mem);
388 src_node_size = (src_mm->size << PAGE_SHIFT);
389 } else {
390 src_node_start += cur_size;
391 src_page_offset = src_node_start & (PAGE_SIZE - 1);
392 }
393 dst_node_size -= cur_size;
394 if (!dst_node_size) {
395 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
396 dst->mem);
397 dst_node_size = (dst_mm->size << PAGE_SHIFT);
398 } else {
399 dst_node_start += cur_size;
400 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
401 }
402 }
403 error:
404 mutex_unlock(&adev->mman.gtt_window_lock);
405 if (f)
406 *f = dma_fence_get(fence);
407 dma_fence_put(fence);
408 return r;
409 }
410
411 /**
412 * amdgpu_move_blit - Copy an entire buffer to another buffer
413 *
414 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
415 * help move buffers to and from VRAM.
416 */
417 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
418 bool evict, bool no_wait_gpu,
419 struct ttm_mem_reg *new_mem,
420 struct ttm_mem_reg *old_mem)
421 {
422 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
423 struct amdgpu_copy_mem src, dst;
424 struct dma_fence *fence = NULL;
425 int r;
426
427 src.bo = bo;
428 dst.bo = bo;
429 src.mem = old_mem;
430 dst.mem = new_mem;
431 src.offset = 0;
432 dst.offset = 0;
433
434 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
435 new_mem->num_pages << PAGE_SHIFT,
436 bo->resv, &fence);
437 if (r)
438 goto error;
439
440 /* Always block for VM page tables before committing the new location */
441 if (bo->type == ttm_bo_type_kernel)
442 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
443 else
444 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
445 dma_fence_put(fence);
446 return r;
447
448 error:
449 if (fence)
450 dma_fence_wait(fence, false);
451 dma_fence_put(fence);
452 return r;
453 }
454
455 /**
456 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
457 *
458 * Called by amdgpu_bo_move().
459 */
460 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
461 struct ttm_operation_ctx *ctx,
462 struct ttm_mem_reg *new_mem)
463 {
464 struct amdgpu_device *adev;
465 struct ttm_mem_reg *old_mem = &bo->mem;
466 struct ttm_mem_reg tmp_mem;
467 struct ttm_place placements;
468 struct ttm_placement placement;
469 int r;
470
471 adev = amdgpu_ttm_adev(bo->bdev);
472
473 /* create space/pages for new_mem in GTT space */
474 tmp_mem = *new_mem;
475 tmp_mem.mm_node = NULL;
476 placement.num_placement = 1;
477 placement.placement = &placements;
478 placement.num_busy_placement = 1;
479 placement.busy_placement = &placements;
480 placements.fpfn = 0;
481 placements.lpfn = 0;
482 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
483 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
484 if (unlikely(r)) {
485 return r;
486 }
487
488 /* set caching flags */
489 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
490 if (unlikely(r)) {
491 goto out_cleanup;
492 }
493
494 /* Bind the memory to the GTT space */
495 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
496 if (unlikely(r)) {
497 goto out_cleanup;
498 }
499
500 /* blit VRAM to GTT */
501 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
502 if (unlikely(r)) {
503 goto out_cleanup;
504 }
505
506 /* move BO (in tmp_mem) to new_mem */
507 r = ttm_bo_move_ttm(bo, ctx, new_mem);
508 out_cleanup:
509 ttm_bo_mem_put(bo, &tmp_mem);
510 return r;
511 }
512
513 /**
514 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
515 *
516 * Called by amdgpu_bo_move().
517 */
518 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
519 struct ttm_operation_ctx *ctx,
520 struct ttm_mem_reg *new_mem)
521 {
522 struct amdgpu_device *adev;
523 struct ttm_mem_reg *old_mem = &bo->mem;
524 struct ttm_mem_reg tmp_mem;
525 struct ttm_placement placement;
526 struct ttm_place placements;
527 int r;
528
529 adev = amdgpu_ttm_adev(bo->bdev);
530
531 /* make space in GTT for old_mem buffer */
532 tmp_mem = *new_mem;
533 tmp_mem.mm_node = NULL;
534 placement.num_placement = 1;
535 placement.placement = &placements;
536 placement.num_busy_placement = 1;
537 placement.busy_placement = &placements;
538 placements.fpfn = 0;
539 placements.lpfn = 0;
540 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
541 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
542 if (unlikely(r)) {
543 return r;
544 }
545
546 /* move/bind old memory to GTT space */
547 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
548 if (unlikely(r)) {
549 goto out_cleanup;
550 }
551
552 /* copy to VRAM */
553 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
554 if (unlikely(r)) {
555 goto out_cleanup;
556 }
557 out_cleanup:
558 ttm_bo_mem_put(bo, &tmp_mem);
559 return r;
560 }
561
562 /**
563 * amdgpu_bo_move - Move a buffer object to a new memory location
564 *
565 * Called by ttm_bo_handle_move_mem()
566 */
567 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
568 struct ttm_operation_ctx *ctx,
569 struct ttm_mem_reg *new_mem)
570 {
571 struct amdgpu_device *adev;
572 struct amdgpu_bo *abo;
573 struct ttm_mem_reg *old_mem = &bo->mem;
574 int r;
575
576 /* Can't move a pinned BO */
577 abo = ttm_to_amdgpu_bo(bo);
578 if (WARN_ON_ONCE(abo->pin_count > 0))
579 return -EINVAL;
580
581 adev = amdgpu_ttm_adev(bo->bdev);
582
583 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
584 amdgpu_move_null(bo, new_mem);
585 return 0;
586 }
587 if ((old_mem->mem_type == TTM_PL_TT &&
588 new_mem->mem_type == TTM_PL_SYSTEM) ||
589 (old_mem->mem_type == TTM_PL_SYSTEM &&
590 new_mem->mem_type == TTM_PL_TT)) {
591 /* bind is enough */
592 amdgpu_move_null(bo, new_mem);
593 return 0;
594 }
595 if (old_mem->mem_type == AMDGPU_PL_GDS ||
596 old_mem->mem_type == AMDGPU_PL_GWS ||
597 old_mem->mem_type == AMDGPU_PL_OA ||
598 new_mem->mem_type == AMDGPU_PL_GDS ||
599 new_mem->mem_type == AMDGPU_PL_GWS ||
600 new_mem->mem_type == AMDGPU_PL_OA) {
601 /* Nothing to save here */
602 amdgpu_move_null(bo, new_mem);
603 return 0;
604 }
605
606 if (!adev->mman.buffer_funcs_enabled)
607 goto memcpy;
608
609 if (old_mem->mem_type == TTM_PL_VRAM &&
610 new_mem->mem_type == TTM_PL_SYSTEM) {
611 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
612 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
613 new_mem->mem_type == TTM_PL_VRAM) {
614 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
615 } else {
616 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
617 new_mem, old_mem);
618 }
619
620 if (r) {
621 memcpy:
622 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
623 if (r) {
624 return r;
625 }
626 }
627
628 if (bo->type == ttm_bo_type_device &&
629 new_mem->mem_type == TTM_PL_VRAM &&
630 old_mem->mem_type != TTM_PL_VRAM) {
631 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
632 * accesses the BO after it's moved.
633 */
634 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
635 }
636
637 /* update statistics */
638 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
639 return 0;
640 }
641
642 /**
643 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
644 *
645 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
646 */
647 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
648 {
649 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
650 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
651 struct drm_mm_node *mm_node = mem->mm_node;
652
653 mem->bus.addr = NULL;
654 mem->bus.offset = 0;
655 mem->bus.size = mem->num_pages << PAGE_SHIFT;
656 mem->bus.base = 0;
657 mem->bus.is_iomem = false;
658 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
659 return -EINVAL;
660 switch (mem->mem_type) {
661 case TTM_PL_SYSTEM:
662 /* system memory */
663 return 0;
664 case TTM_PL_TT:
665 break;
666 case TTM_PL_VRAM:
667 mem->bus.offset = mem->start << PAGE_SHIFT;
668 /* check if it's visible */
669 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
670 return -EINVAL;
671 /* Only physically contiguous buffers apply. In a contiguous
672 * buffer, size of the first mm_node would match the number of
673 * pages in ttm_mem_reg.
674 */
675 if (adev->mman.aper_base_kaddr &&
676 (mm_node->size == mem->num_pages))
677 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
678 mem->bus.offset;
679
680 mem->bus.base = adev->gmc.aper_base;
681 mem->bus.is_iomem = true;
682 break;
683 default:
684 return -EINVAL;
685 }
686 return 0;
687 }
688
689 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
690 {
691 }
692
693 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
694 unsigned long page_offset)
695 {
696 struct drm_mm_node *mm;
697 unsigned long offset = (page_offset << PAGE_SHIFT);
698
699 mm = amdgpu_find_mm_node(&bo->mem, &offset);
700 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
701 (offset >> PAGE_SHIFT);
702 }
703
704 /*
705 * TTM backend functions.
706 */
707 struct amdgpu_ttm_tt {
708 struct ttm_dma_tt ttm;
709 u64 offset;
710 uint64_t userptr;
711 struct task_struct *usertask;
712 uint32_t userflags;
713 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
714 struct hmm_range range;
715 #endif
716 };
717
718 /**
719 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
720 * memory and start HMM tracking CPU page table update
721 *
722 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
723 * once afterwards to stop HMM tracking
724 */
725 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
726 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
727 {
728 struct amdgpu_ttm_tt *gtt = (void *)ttm;
729 struct mm_struct *mm = gtt->usertask->mm;
730 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
731 struct hmm_range *range = &gtt->range;
732 int r = 0, i;
733
734 if (!mm) /* Happens during process shutdown */
735 return -ESRCH;
736
737 amdgpu_hmm_init_range(range);
738
739 down_read(&mm->mmap_sem);
740
741 range->vma = find_vma(mm, gtt->userptr);
742 if (!range_in_vma(range->vma, gtt->userptr, end))
743 r = -EFAULT;
744 else if ((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
745 range->vma->vm_file)
746 r = -EPERM;
747 if (r)
748 goto out;
749
750 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(uint64_t),
751 GFP_KERNEL);
752 if (range->pfns == NULL) {
753 r = -ENOMEM;
754 goto out;
755 }
756 range->start = gtt->userptr;
757 range->end = end;
758
759 range->pfns[0] = range->flags[HMM_PFN_VALID];
760 range->pfns[0] |= amdgpu_ttm_tt_is_readonly(ttm) ?
761 0 : range->flags[HMM_PFN_WRITE];
762 for (i = 1; i < ttm->num_pages; i++)
763 range->pfns[i] = range->pfns[0];
764
765 /* This may trigger page table update */
766 r = hmm_vma_fault(range, true);
767 if (r)
768 goto out_free_pfns;
769
770 up_read(&mm->mmap_sem);
771
772 for (i = 0; i < ttm->num_pages; i++)
773 pages[i] = hmm_pfn_to_page(range, range->pfns[i]);
774
775 return 0;
776
777 out_free_pfns:
778 kvfree(range->pfns);
779 range->pfns = NULL;
780 out:
781 up_read(&mm->mmap_sem);
782 return r;
783 }
784
785 /**
786 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
787 * Check if the pages backing this ttm range have been invalidated
788 *
789 * Returns: true if pages are still valid
790 */
791 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
792 {
793 struct amdgpu_ttm_tt *gtt = (void *)ttm;
794 bool r = false;
795
796 if (!gtt || !gtt->userptr)
797 return false;
798
799 WARN_ONCE(!gtt->range.pfns, "No user pages to check\n");
800 if (gtt->range.pfns) {
801 r = hmm_vma_range_done(&gtt->range);
802 kvfree(gtt->range.pfns);
803 gtt->range.pfns = NULL;
804 }
805
806 return r;
807 }
808 #endif
809
810 /**
811 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
812 *
813 * Called by amdgpu_cs_list_validate(). This creates the page list
814 * that backs user memory and will ultimately be mapped into the device
815 * address space.
816 */
817 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
818 {
819 unsigned i;
820
821 for (i = 0; i < ttm->num_pages; ++i)
822 ttm->pages[i] = pages ? pages[i] : NULL;
823 }
824
825 /**
826 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
827 *
828 * Called by amdgpu_ttm_backend_bind()
829 **/
830 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
831 {
832 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
833 struct amdgpu_ttm_tt *gtt = (void *)ttm;
834 unsigned nents;
835 int r;
836
837 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
838 enum dma_data_direction direction = write ?
839 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
840
841 /* Allocate an SG array and squash pages into it */
842 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
843 ttm->num_pages << PAGE_SHIFT,
844 GFP_KERNEL);
845 if (r)
846 goto release_sg;
847
848 /* Map SG to device */
849 r = -ENOMEM;
850 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
851 if (nents != ttm->sg->nents)
852 goto release_sg;
853
854 /* convert SG to linear array of pages and dma addresses */
855 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
856 gtt->ttm.dma_address, ttm->num_pages);
857
858 return 0;
859
860 release_sg:
861 kfree(ttm->sg);
862 return r;
863 }
864
865 /**
866 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
867 */
868 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
869 {
870 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
871 struct amdgpu_ttm_tt *gtt = (void *)ttm;
872
873 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
874 enum dma_data_direction direction = write ?
875 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
876
877 /* double check that we don't free the table twice */
878 if (!ttm->sg->sgl)
879 return;
880
881 /* unmap the pages mapped to the device */
882 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
883
884 sg_free_table(ttm->sg);
885
886 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
887 if (gtt->range.pfns &&
888 ttm->pages[0] == hmm_pfn_to_page(&gtt->range, gtt->range.pfns[0]))
889 WARN_ONCE(1, "Missing get_user_page_done\n");
890 #endif
891 }
892
893 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
894 struct ttm_buffer_object *tbo,
895 uint64_t flags)
896 {
897 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
898 struct ttm_tt *ttm = tbo->ttm;
899 struct amdgpu_ttm_tt *gtt = (void *)ttm;
900 int r;
901
902 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
903 uint64_t page_idx = 1;
904
905 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
906 ttm->pages, gtt->ttm.dma_address, flags);
907 if (r)
908 goto gart_bind_fail;
909
910 /* Patch mtype of the second part BO */
911 flags &= ~AMDGPU_PTE_MTYPE_MASK;
912 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
913
914 r = amdgpu_gart_bind(adev,
915 gtt->offset + (page_idx << PAGE_SHIFT),
916 ttm->num_pages - page_idx,
917 &ttm->pages[page_idx],
918 &(gtt->ttm.dma_address[page_idx]), flags);
919 } else {
920 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
921 ttm->pages, gtt->ttm.dma_address, flags);
922 }
923
924 gart_bind_fail:
925 if (r)
926 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
927 ttm->num_pages, gtt->offset);
928
929 return r;
930 }
931
932 /**
933 * amdgpu_ttm_backend_bind - Bind GTT memory
934 *
935 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
936 * This handles binding GTT memory to the device address space.
937 */
938 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
939 struct ttm_mem_reg *bo_mem)
940 {
941 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
942 struct amdgpu_ttm_tt *gtt = (void*)ttm;
943 uint64_t flags;
944 int r = 0;
945
946 if (gtt->userptr) {
947 r = amdgpu_ttm_tt_pin_userptr(ttm);
948 if (r) {
949 DRM_ERROR("failed to pin userptr\n");
950 return r;
951 }
952 }
953 if (!ttm->num_pages) {
954 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
955 ttm->num_pages, bo_mem, ttm);
956 }
957
958 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
959 bo_mem->mem_type == AMDGPU_PL_GWS ||
960 bo_mem->mem_type == AMDGPU_PL_OA)
961 return -EINVAL;
962
963 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
964 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
965 return 0;
966 }
967
968 /* compute PTE flags relevant to this BO memory */
969 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
970
971 /* bind pages into GART page tables */
972 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
973 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
974 ttm->pages, gtt->ttm.dma_address, flags);
975
976 if (r)
977 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
978 ttm->num_pages, gtt->offset);
979 return r;
980 }
981
982 /**
983 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
984 */
985 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
986 {
987 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
988 struct ttm_operation_ctx ctx = { false, false };
989 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
990 struct ttm_mem_reg tmp;
991 struct ttm_placement placement;
992 struct ttm_place placements;
993 uint64_t addr, flags;
994 int r;
995
996 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
997 return 0;
998
999 addr = amdgpu_gmc_agp_addr(bo);
1000 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1001 bo->mem.start = addr >> PAGE_SHIFT;
1002 } else {
1003
1004 /* allocate GART space */
1005 tmp = bo->mem;
1006 tmp.mm_node = NULL;
1007 placement.num_placement = 1;
1008 placement.placement = &placements;
1009 placement.num_busy_placement = 1;
1010 placement.busy_placement = &placements;
1011 placements.fpfn = 0;
1012 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1013 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1014 TTM_PL_FLAG_TT;
1015
1016 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1017 if (unlikely(r))
1018 return r;
1019
1020 /* compute PTE flags for this buffer object */
1021 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1022
1023 /* Bind pages */
1024 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1025 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1026 if (unlikely(r)) {
1027 ttm_bo_mem_put(bo, &tmp);
1028 return r;
1029 }
1030
1031 ttm_bo_mem_put(bo, &bo->mem);
1032 bo->mem = tmp;
1033 }
1034
1035 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1036 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1037
1038 return 0;
1039 }
1040
1041 /**
1042 * amdgpu_ttm_recover_gart - Rebind GTT pages
1043 *
1044 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1045 * rebind GTT pages during a GPU reset.
1046 */
1047 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1048 {
1049 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1050 uint64_t flags;
1051 int r;
1052
1053 if (!tbo->ttm)
1054 return 0;
1055
1056 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1057 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1058
1059 return r;
1060 }
1061
1062 /**
1063 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1064 *
1065 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1066 * ttm_tt_destroy().
1067 */
1068 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1069 {
1070 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1071 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1072 int r;
1073
1074 /* if the pages have userptr pinning then clear that first */
1075 if (gtt->userptr)
1076 amdgpu_ttm_tt_unpin_userptr(ttm);
1077
1078 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1079 return 0;
1080
1081 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1082 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1083 if (r)
1084 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1085 gtt->ttm.ttm.num_pages, gtt->offset);
1086 return r;
1087 }
1088
1089 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1090 {
1091 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1092
1093 if (gtt->usertask)
1094 put_task_struct(gtt->usertask);
1095
1096 ttm_dma_tt_fini(&gtt->ttm);
1097 kfree(gtt);
1098 }
1099
1100 static struct ttm_backend_func amdgpu_backend_func = {
1101 .bind = &amdgpu_ttm_backend_bind,
1102 .unbind = &amdgpu_ttm_backend_unbind,
1103 .destroy = &amdgpu_ttm_backend_destroy,
1104 };
1105
1106 /**
1107 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1108 *
1109 * @bo: The buffer object to create a GTT ttm_tt object around
1110 *
1111 * Called by ttm_tt_create().
1112 */
1113 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1114 uint32_t page_flags)
1115 {
1116 struct amdgpu_device *adev;
1117 struct amdgpu_ttm_tt *gtt;
1118
1119 adev = amdgpu_ttm_adev(bo->bdev);
1120
1121 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1122 if (gtt == NULL) {
1123 return NULL;
1124 }
1125 gtt->ttm.ttm.func = &amdgpu_backend_func;
1126
1127 /* allocate space for the uninitialized page entries */
1128 if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1129 kfree(gtt);
1130 return NULL;
1131 }
1132 return &gtt->ttm.ttm;
1133 }
1134
1135 /**
1136 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1137 *
1138 * Map the pages of a ttm_tt object to an address space visible
1139 * to the underlying device.
1140 */
1141 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1142 struct ttm_operation_ctx *ctx)
1143 {
1144 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1145 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1146 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1147
1148 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1149 if (gtt && gtt->userptr) {
1150 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1151 if (!ttm->sg)
1152 return -ENOMEM;
1153
1154 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1155 ttm->state = tt_unbound;
1156 return 0;
1157 }
1158
1159 if (slave && ttm->sg) {
1160 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1161 gtt->ttm.dma_address,
1162 ttm->num_pages);
1163 ttm->state = tt_unbound;
1164 return 0;
1165 }
1166
1167 #ifdef CONFIG_SWIOTLB
1168 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1169 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1170 }
1171 #endif
1172
1173 /* fall back to generic helper to populate the page array
1174 * and map them to the device */
1175 return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1176 }
1177
1178 /**
1179 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1180 *
1181 * Unmaps pages of a ttm_tt object from the device address space and
1182 * unpopulates the page array backing it.
1183 */
1184 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1185 {
1186 struct amdgpu_device *adev;
1187 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1188 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1189
1190 if (gtt && gtt->userptr) {
1191 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1192 kfree(ttm->sg);
1193 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1194 return;
1195 }
1196
1197 if (slave)
1198 return;
1199
1200 adev = amdgpu_ttm_adev(ttm->bdev);
1201
1202 #ifdef CONFIG_SWIOTLB
1203 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1204 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1205 return;
1206 }
1207 #endif
1208
1209 /* fall back to generic helper to unmap and unpopulate array */
1210 ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1211 }
1212
1213 /**
1214 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1215 * task
1216 *
1217 * @ttm: The ttm_tt object to bind this userptr object to
1218 * @addr: The address in the current tasks VM space to use
1219 * @flags: Requirements of userptr object.
1220 *
1221 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1222 * to current task
1223 */
1224 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1225 uint32_t flags)
1226 {
1227 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1228
1229 if (gtt == NULL)
1230 return -EINVAL;
1231
1232 gtt->userptr = addr;
1233 gtt->userflags = flags;
1234
1235 if (gtt->usertask)
1236 put_task_struct(gtt->usertask);
1237 gtt->usertask = current->group_leader;
1238 get_task_struct(gtt->usertask);
1239
1240 return 0;
1241 }
1242
1243 /**
1244 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1245 */
1246 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1247 {
1248 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249
1250 if (gtt == NULL)
1251 return NULL;
1252
1253 if (gtt->usertask == NULL)
1254 return NULL;
1255
1256 return gtt->usertask->mm;
1257 }
1258
1259 /**
1260 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1261 * address range for the current task.
1262 *
1263 */
1264 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1265 unsigned long end)
1266 {
1267 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1268 unsigned long size;
1269
1270 if (gtt == NULL || !gtt->userptr)
1271 return false;
1272
1273 /* Return false if no part of the ttm_tt object lies within
1274 * the range
1275 */
1276 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1277 if (gtt->userptr > end || gtt->userptr + size <= start)
1278 return false;
1279
1280 return true;
1281 }
1282
1283 /**
1284 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1285 */
1286 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1287 {
1288 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1289
1290 if (gtt == NULL || !gtt->userptr)
1291 return false;
1292
1293 return true;
1294 }
1295
1296 /**
1297 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1298 */
1299 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1300 {
1301 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1302
1303 if (gtt == NULL)
1304 return false;
1305
1306 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1307 }
1308
1309 /**
1310 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1311 *
1312 * @ttm: The ttm_tt object to compute the flags for
1313 * @mem: The memory registry backing this ttm_tt object
1314 *
1315 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1316 */
1317 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1318 {
1319 uint64_t flags = 0;
1320
1321 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1322 flags |= AMDGPU_PTE_VALID;
1323
1324 if (mem && mem->mem_type == TTM_PL_TT) {
1325 flags |= AMDGPU_PTE_SYSTEM;
1326
1327 if (ttm->caching_state == tt_cached)
1328 flags |= AMDGPU_PTE_SNOOPED;
1329 }
1330
1331 return flags;
1332 }
1333
1334 /**
1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336 *
1337 * @ttm: The ttm_tt object to compute the flags for
1338 * @mem: The memory registry backing this ttm_tt object
1339
1340 * Figure out the flags to use for a VM PTE (Page Table Entry).
1341 */
1342 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1343 struct ttm_mem_reg *mem)
1344 {
1345 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1346
1347 flags |= adev->gart.gart_pte_flags;
1348 flags |= AMDGPU_PTE_READABLE;
1349
1350 if (!amdgpu_ttm_tt_is_readonly(ttm))
1351 flags |= AMDGPU_PTE_WRITEABLE;
1352
1353 return flags;
1354 }
1355
1356 /**
1357 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1358 * object.
1359 *
1360 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1361 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1362 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1363 * used to clean out a memory space.
1364 */
1365 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1366 const struct ttm_place *place)
1367 {
1368 unsigned long num_pages = bo->mem.num_pages;
1369 struct drm_mm_node *node = bo->mem.mm_node;
1370 struct reservation_object_list *flist;
1371 struct dma_fence *f;
1372 int i;
1373
1374 /* If bo is a KFD BO, check if the bo belongs to the current process.
1375 * If true, then return false as any KFD process needs all its BOs to
1376 * be resident to run successfully
1377 */
1378 flist = reservation_object_get_list(bo->resv);
1379 if (flist) {
1380 for (i = 0; i < flist->shared_count; ++i) {
1381 f = rcu_dereference_protected(flist->shared[i],
1382 reservation_object_held(bo->resv));
1383 if (amdkfd_fence_check_mm(f, current->mm))
1384 return false;
1385 }
1386 }
1387
1388 switch (bo->mem.mem_type) {
1389 case TTM_PL_TT:
1390 return true;
1391
1392 case TTM_PL_VRAM:
1393 /* Check each drm MM node individually */
1394 while (num_pages) {
1395 if (place->fpfn < (node->start + node->size) &&
1396 !(place->lpfn && place->lpfn <= node->start))
1397 return true;
1398
1399 num_pages -= node->size;
1400 ++node;
1401 }
1402 return false;
1403
1404 default:
1405 break;
1406 }
1407
1408 return ttm_bo_eviction_valuable(bo, place);
1409 }
1410
1411 /**
1412 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1413 *
1414 * @bo: The buffer object to read/write
1415 * @offset: Offset into buffer object
1416 * @buf: Secondary buffer to write/read from
1417 * @len: Length in bytes of access
1418 * @write: true if writing
1419 *
1420 * This is used to access VRAM that backs a buffer object via MMIO
1421 * access for debugging purposes.
1422 */
1423 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1424 unsigned long offset,
1425 void *buf, int len, int write)
1426 {
1427 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1428 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1429 struct drm_mm_node *nodes;
1430 uint32_t value = 0;
1431 int ret = 0;
1432 uint64_t pos;
1433 unsigned long flags;
1434
1435 if (bo->mem.mem_type != TTM_PL_VRAM)
1436 return -EIO;
1437
1438 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1439 pos = (nodes->start << PAGE_SHIFT) + offset;
1440
1441 while (len && pos < adev->gmc.mc_vram_size) {
1442 uint64_t aligned_pos = pos & ~(uint64_t)3;
1443 uint32_t bytes = 4 - (pos & 3);
1444 uint32_t shift = (pos & 3) * 8;
1445 uint32_t mask = 0xffffffff << shift;
1446
1447 if (len < bytes) {
1448 mask &= 0xffffffff >> (bytes - len) * 8;
1449 bytes = len;
1450 }
1451
1452 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1453 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1454 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1455 if (!write || mask != 0xffffffff)
1456 value = RREG32_NO_KIQ(mmMM_DATA);
1457 if (write) {
1458 value &= ~mask;
1459 value |= (*(uint32_t *)buf << shift) & mask;
1460 WREG32_NO_KIQ(mmMM_DATA, value);
1461 }
1462 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1463 if (!write) {
1464 value = (value & mask) >> shift;
1465 memcpy(buf, &value, bytes);
1466 }
1467
1468 ret += bytes;
1469 buf = (uint8_t *)buf + bytes;
1470 pos += bytes;
1471 len -= bytes;
1472 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1473 ++nodes;
1474 pos = (nodes->start << PAGE_SHIFT);
1475 }
1476 }
1477
1478 return ret;
1479 }
1480
1481 static struct ttm_bo_driver amdgpu_bo_driver = {
1482 .ttm_tt_create = &amdgpu_ttm_tt_create,
1483 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1484 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1485 .invalidate_caches = &amdgpu_invalidate_caches,
1486 .init_mem_type = &amdgpu_init_mem_type,
1487 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1488 .evict_flags = &amdgpu_evict_flags,
1489 .move = &amdgpu_bo_move,
1490 .verify_access = &amdgpu_verify_access,
1491 .move_notify = &amdgpu_bo_move_notify,
1492 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1493 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1494 .io_mem_free = &amdgpu_ttm_io_mem_free,
1495 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1496 .access_memory = &amdgpu_ttm_access_memory,
1497 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1498 };
1499
1500 /*
1501 * Firmware Reservation functions
1502 */
1503 /**
1504 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1505 *
1506 * @adev: amdgpu_device pointer
1507 *
1508 * free fw reserved vram if it has been reserved.
1509 */
1510 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1511 {
1512 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1513 NULL, &adev->fw_vram_usage.va);
1514 }
1515
1516 /**
1517 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1518 *
1519 * @adev: amdgpu_device pointer
1520 *
1521 * create bo vram reservation from fw.
1522 */
1523 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1524 {
1525 struct ttm_operation_ctx ctx = { false, false };
1526 struct amdgpu_bo_param bp;
1527 int r = 0;
1528 int i;
1529 u64 vram_size = adev->gmc.visible_vram_size;
1530 u64 offset = adev->fw_vram_usage.start_offset;
1531 u64 size = adev->fw_vram_usage.size;
1532 struct amdgpu_bo *bo;
1533
1534 memset(&bp, 0, sizeof(bp));
1535 bp.size = adev->fw_vram_usage.size;
1536 bp.byte_align = PAGE_SIZE;
1537 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1538 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1539 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1540 bp.type = ttm_bo_type_kernel;
1541 bp.resv = NULL;
1542 adev->fw_vram_usage.va = NULL;
1543 adev->fw_vram_usage.reserved_bo = NULL;
1544
1545 if (adev->fw_vram_usage.size > 0 &&
1546 adev->fw_vram_usage.size <= vram_size) {
1547
1548 r = amdgpu_bo_create(adev, &bp,
1549 &adev->fw_vram_usage.reserved_bo);
1550 if (r)
1551 goto error_create;
1552
1553 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1554 if (r)
1555 goto error_reserve;
1556
1557 /* remove the original mem node and create a new one at the
1558 * request position
1559 */
1560 bo = adev->fw_vram_usage.reserved_bo;
1561 offset = ALIGN(offset, PAGE_SIZE);
1562 for (i = 0; i < bo->placement.num_placement; ++i) {
1563 bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1564 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1565 }
1566
1567 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1568 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1569 &bo->tbo.mem, &ctx);
1570 if (r)
1571 goto error_pin;
1572
1573 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1574 AMDGPU_GEM_DOMAIN_VRAM,
1575 adev->fw_vram_usage.start_offset,
1576 (adev->fw_vram_usage.start_offset +
1577 adev->fw_vram_usage.size));
1578 if (r)
1579 goto error_pin;
1580 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1581 &adev->fw_vram_usage.va);
1582 if (r)
1583 goto error_kmap;
1584
1585 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1586 }
1587 return r;
1588
1589 error_kmap:
1590 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1591 error_pin:
1592 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1593 error_reserve:
1594 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1595 error_create:
1596 adev->fw_vram_usage.va = NULL;
1597 adev->fw_vram_usage.reserved_bo = NULL;
1598 return r;
1599 }
1600 /**
1601 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1602 * gtt/vram related fields.
1603 *
1604 * This initializes all of the memory space pools that the TTM layer
1605 * will need such as the GTT space (system memory mapped to the device),
1606 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1607 * can be mapped per VMID.
1608 */
1609 int amdgpu_ttm_init(struct amdgpu_device *adev)
1610 {
1611 uint64_t gtt_size;
1612 int r;
1613 u64 vis_vram_limit;
1614
1615 mutex_init(&adev->mman.gtt_window_lock);
1616
1617 /* No others user of address space so set it to 0 */
1618 r = ttm_bo_device_init(&adev->mman.bdev,
1619 &amdgpu_bo_driver,
1620 adev->ddev->anon_inode->i_mapping,
1621 adev->need_dma32);
1622 if (r) {
1623 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1624 return r;
1625 }
1626 adev->mman.initialized = true;
1627
1628 /* We opt to avoid OOM on system pages allocations */
1629 adev->mman.bdev.no_retry = true;
1630
1631 /* Initialize VRAM pool with all of VRAM divided into pages */
1632 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1633 adev->gmc.real_vram_size >> PAGE_SHIFT);
1634 if (r) {
1635 DRM_ERROR("Failed initializing VRAM heap.\n");
1636 return r;
1637 }
1638
1639 /* Reduce size of CPU-visible VRAM if requested */
1640 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1641 if (amdgpu_vis_vram_limit > 0 &&
1642 vis_vram_limit <= adev->gmc.visible_vram_size)
1643 adev->gmc.visible_vram_size = vis_vram_limit;
1644
1645 /* Change the size here instead of the init above so only lpfn is affected */
1646 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1647 #ifdef CONFIG_64BIT
1648 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1649 adev->gmc.visible_vram_size);
1650 #endif
1651
1652 /*
1653 *The reserved vram for firmware must be pinned to the specified
1654 *place on the VRAM, so reserve it early.
1655 */
1656 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1657 if (r) {
1658 return r;
1659 }
1660
1661 /* allocate memory as required for VGA
1662 * This is used for VGA emulation and pre-OS scanout buffers to
1663 * avoid display artifacts while transitioning between pre-OS
1664 * and driver. */
1665 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1666 AMDGPU_GEM_DOMAIN_VRAM,
1667 &adev->stolen_vga_memory,
1668 NULL, NULL);
1669 if (r)
1670 return r;
1671 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1672 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1673
1674 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1675 * or whatever the user passed on module init */
1676 if (amdgpu_gtt_size == -1) {
1677 struct sysinfo si;
1678
1679 si_meminfo(&si);
1680 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1681 adev->gmc.mc_vram_size),
1682 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1683 }
1684 else
1685 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1686
1687 /* Initialize GTT memory pool */
1688 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1689 if (r) {
1690 DRM_ERROR("Failed initializing GTT heap.\n");
1691 return r;
1692 }
1693 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1694 (unsigned)(gtt_size / (1024 * 1024)));
1695
1696 /* Initialize various on-chip memory pools */
1697 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1698 adev->gds.mem.total_size);
1699 if (r) {
1700 DRM_ERROR("Failed initializing GDS heap.\n");
1701 return r;
1702 }
1703
1704 r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size,
1705 4, AMDGPU_GEM_DOMAIN_GDS,
1706 &adev->gds.gds_gfx_bo, NULL, NULL);
1707 if (r)
1708 return r;
1709
1710 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1711 adev->gds.gws.total_size);
1712 if (r) {
1713 DRM_ERROR("Failed initializing gws heap.\n");
1714 return r;
1715 }
1716
1717 r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size,
1718 1, AMDGPU_GEM_DOMAIN_GWS,
1719 &adev->gds.gws_gfx_bo, NULL, NULL);
1720 if (r)
1721 return r;
1722
1723 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1724 adev->gds.oa.total_size);
1725 if (r) {
1726 DRM_ERROR("Failed initializing oa heap.\n");
1727 return r;
1728 }
1729
1730 r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size,
1731 1, AMDGPU_GEM_DOMAIN_OA,
1732 &adev->gds.oa_gfx_bo, NULL, NULL);
1733 if (r)
1734 return r;
1735
1736 /* Register debugfs entries for amdgpu_ttm */
1737 r = amdgpu_ttm_debugfs_init(adev);
1738 if (r) {
1739 DRM_ERROR("Failed to init debugfs\n");
1740 return r;
1741 }
1742 return 0;
1743 }
1744
1745 /**
1746 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1747 */
1748 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1749 {
1750 /* return the VGA stolen memory (if any) back to VRAM */
1751 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1752 }
1753
1754 /**
1755 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1756 */
1757 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1758 {
1759 if (!adev->mman.initialized)
1760 return;
1761
1762 amdgpu_ttm_debugfs_fini(adev);
1763 amdgpu_ttm_fw_reserve_vram_fini(adev);
1764 if (adev->mman.aper_base_kaddr)
1765 iounmap(adev->mman.aper_base_kaddr);
1766 adev->mman.aper_base_kaddr = NULL;
1767
1768 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1769 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1770 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1771 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1772 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1773 ttm_bo_device_release(&adev->mman.bdev);
1774 adev->mman.initialized = false;
1775 DRM_INFO("amdgpu: ttm finalized\n");
1776 }
1777
1778 /**
1779 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1780 *
1781 * @adev: amdgpu_device pointer
1782 * @enable: true when we can use buffer functions.
1783 *
1784 * Enable/disable use of buffer functions during suspend/resume. This should
1785 * only be called at bootup or when userspace isn't running.
1786 */
1787 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1788 {
1789 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1790 uint64_t size;
1791 int r;
1792
1793 if (!adev->mman.initialized || adev->in_gpu_reset ||
1794 adev->mman.buffer_funcs_enabled == enable)
1795 return;
1796
1797 if (enable) {
1798 struct amdgpu_ring *ring;
1799 struct drm_sched_rq *rq;
1800
1801 ring = adev->mman.buffer_funcs_ring;
1802 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1803 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1804 if (r) {
1805 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1806 r);
1807 return;
1808 }
1809 } else {
1810 drm_sched_entity_destroy(&adev->mman.entity);
1811 dma_fence_put(man->move);
1812 man->move = NULL;
1813 }
1814
1815 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1816 if (enable)
1817 size = adev->gmc.real_vram_size;
1818 else
1819 size = adev->gmc.visible_vram_size;
1820 man->size = size >> PAGE_SHIFT;
1821 adev->mman.buffer_funcs_enabled = enable;
1822 }
1823
1824 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1825 {
1826 struct drm_file *file_priv = filp->private_data;
1827 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1828
1829 if (adev == NULL)
1830 return -EINVAL;
1831
1832 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1833 }
1834
1835 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1836 struct ttm_mem_reg *mem, unsigned num_pages,
1837 uint64_t offset, unsigned window,
1838 struct amdgpu_ring *ring,
1839 uint64_t *addr)
1840 {
1841 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1842 struct amdgpu_device *adev = ring->adev;
1843 struct ttm_tt *ttm = bo->ttm;
1844 struct amdgpu_job *job;
1845 unsigned num_dw, num_bytes;
1846 dma_addr_t *dma_address;
1847 struct dma_fence *fence;
1848 uint64_t src_addr, dst_addr;
1849 uint64_t flags;
1850 int r;
1851
1852 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1853 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1854
1855 *addr = adev->gmc.gart_start;
1856 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1857 AMDGPU_GPU_PAGE_SIZE;
1858
1859 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1860 while (num_dw & 0x7)
1861 num_dw++;
1862
1863 num_bytes = num_pages * 8;
1864
1865 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1866 if (r)
1867 return r;
1868
1869 src_addr = num_dw * 4;
1870 src_addr += job->ibs[0].gpu_addr;
1871
1872 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1873 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1874 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1875 dst_addr, num_bytes);
1876
1877 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1878 WARN_ON(job->ibs[0].length_dw > num_dw);
1879
1880 dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1881 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1882 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1883 &job->ibs[0].ptr[num_dw]);
1884 if (r)
1885 goto error_free;
1886
1887 r = amdgpu_job_submit(job, &adev->mman.entity,
1888 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1889 if (r)
1890 goto error_free;
1891
1892 dma_fence_put(fence);
1893
1894 return r;
1895
1896 error_free:
1897 amdgpu_job_free(job);
1898 return r;
1899 }
1900
1901 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1902 uint64_t dst_offset, uint32_t byte_count,
1903 struct reservation_object *resv,
1904 struct dma_fence **fence, bool direct_submit,
1905 bool vm_needs_flush)
1906 {
1907 struct amdgpu_device *adev = ring->adev;
1908 struct amdgpu_job *job;
1909
1910 uint32_t max_bytes;
1911 unsigned num_loops, num_dw;
1912 unsigned i;
1913 int r;
1914
1915 if (direct_submit && !ring->sched.ready) {
1916 DRM_ERROR("Trying to move memory with ring turned off.\n");
1917 return -EINVAL;
1918 }
1919
1920 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1921 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1922 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1923
1924 /* for IB padding */
1925 while (num_dw & 0x7)
1926 num_dw++;
1927
1928 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1929 if (r)
1930 return r;
1931
1932 if (vm_needs_flush) {
1933 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1934 job->vm_needs_flush = true;
1935 }
1936 if (resv) {
1937 r = amdgpu_sync_resv(adev, &job->sync, resv,
1938 AMDGPU_FENCE_OWNER_UNDEFINED,
1939 false);
1940 if (r) {
1941 DRM_ERROR("sync failed (%d).\n", r);
1942 goto error_free;
1943 }
1944 }
1945
1946 for (i = 0; i < num_loops; i++) {
1947 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1948
1949 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1950 dst_offset, cur_size_in_bytes);
1951
1952 src_offset += cur_size_in_bytes;
1953 dst_offset += cur_size_in_bytes;
1954 byte_count -= cur_size_in_bytes;
1955 }
1956
1957 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1958 WARN_ON(job->ibs[0].length_dw > num_dw);
1959 if (direct_submit)
1960 r = amdgpu_job_submit_direct(job, ring, fence);
1961 else
1962 r = amdgpu_job_submit(job, &adev->mman.entity,
1963 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1964 if (r)
1965 goto error_free;
1966
1967 return r;
1968
1969 error_free:
1970 amdgpu_job_free(job);
1971 DRM_ERROR("Error scheduling IBs (%d)\n", r);
1972 return r;
1973 }
1974
1975 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1976 uint32_t src_data,
1977 struct reservation_object *resv,
1978 struct dma_fence **fence)
1979 {
1980 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1981 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1982 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1983
1984 struct drm_mm_node *mm_node;
1985 unsigned long num_pages;
1986 unsigned int num_loops, num_dw;
1987
1988 struct amdgpu_job *job;
1989 int r;
1990
1991 if (!adev->mman.buffer_funcs_enabled) {
1992 DRM_ERROR("Trying to clear memory with ring turned off.\n");
1993 return -EINVAL;
1994 }
1995
1996 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
1997 r = amdgpu_ttm_alloc_gart(&bo->tbo);
1998 if (r)
1999 return r;
2000 }
2001
2002 num_pages = bo->tbo.num_pages;
2003 mm_node = bo->tbo.mem.mm_node;
2004 num_loops = 0;
2005 while (num_pages) {
2006 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2007
2008 num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2009 num_pages -= mm_node->size;
2010 ++mm_node;
2011 }
2012 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2013
2014 /* for IB padding */
2015 num_dw += 64;
2016
2017 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2018 if (r)
2019 return r;
2020
2021 if (resv) {
2022 r = amdgpu_sync_resv(adev, &job->sync, resv,
2023 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2024 if (r) {
2025 DRM_ERROR("sync failed (%d).\n", r);
2026 goto error_free;
2027 }
2028 }
2029
2030 num_pages = bo->tbo.num_pages;
2031 mm_node = bo->tbo.mem.mm_node;
2032
2033 while (num_pages) {
2034 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2035 uint64_t dst_addr;
2036
2037 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2038 while (byte_count) {
2039 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2040
2041 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2042 dst_addr, cur_size_in_bytes);
2043
2044 dst_addr += cur_size_in_bytes;
2045 byte_count -= cur_size_in_bytes;
2046 }
2047
2048 num_pages -= mm_node->size;
2049 ++mm_node;
2050 }
2051
2052 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2053 WARN_ON(job->ibs[0].length_dw > num_dw);
2054 r = amdgpu_job_submit(job, &adev->mman.entity,
2055 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2056 if (r)
2057 goto error_free;
2058
2059 return 0;
2060
2061 error_free:
2062 amdgpu_job_free(job);
2063 return r;
2064 }
2065
2066 #if defined(CONFIG_DEBUG_FS)
2067
2068 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2069 {
2070 struct drm_info_node *node = (struct drm_info_node *)m->private;
2071 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2072 struct drm_device *dev = node->minor->dev;
2073 struct amdgpu_device *adev = dev->dev_private;
2074 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2075 struct drm_printer p = drm_seq_file_printer(m);
2076
2077 man->func->debug(man, &p);
2078 return 0;
2079 }
2080
2081 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2082 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2083 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2084 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2085 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2086 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2087 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2088 #ifdef CONFIG_SWIOTLB
2089 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2090 #endif
2091 };
2092
2093 /**
2094 * amdgpu_ttm_vram_read - Linear read access to VRAM
2095 *
2096 * Accesses VRAM via MMIO for debugging purposes.
2097 */
2098 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2099 size_t size, loff_t *pos)
2100 {
2101 struct amdgpu_device *adev = file_inode(f)->i_private;
2102 ssize_t result = 0;
2103 int r;
2104
2105 if (size & 0x3 || *pos & 0x3)
2106 return -EINVAL;
2107
2108 if (*pos >= adev->gmc.mc_vram_size)
2109 return -ENXIO;
2110
2111 while (size) {
2112 unsigned long flags;
2113 uint32_t value;
2114
2115 if (*pos >= adev->gmc.mc_vram_size)
2116 return result;
2117
2118 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2119 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2120 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2121 value = RREG32_NO_KIQ(mmMM_DATA);
2122 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2123
2124 r = put_user(value, (uint32_t *)buf);
2125 if (r)
2126 return r;
2127
2128 result += 4;
2129 buf += 4;
2130 *pos += 4;
2131 size -= 4;
2132 }
2133
2134 return result;
2135 }
2136
2137 /**
2138 * amdgpu_ttm_vram_write - Linear write access to VRAM
2139 *
2140 * Accesses VRAM via MMIO for debugging purposes.
2141 */
2142 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2143 size_t size, loff_t *pos)
2144 {
2145 struct amdgpu_device *adev = file_inode(f)->i_private;
2146 ssize_t result = 0;
2147 int r;
2148
2149 if (size & 0x3 || *pos & 0x3)
2150 return -EINVAL;
2151
2152 if (*pos >= adev->gmc.mc_vram_size)
2153 return -ENXIO;
2154
2155 while (size) {
2156 unsigned long flags;
2157 uint32_t value;
2158
2159 if (*pos >= adev->gmc.mc_vram_size)
2160 return result;
2161
2162 r = get_user(value, (uint32_t *)buf);
2163 if (r)
2164 return r;
2165
2166 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2167 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2168 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2169 WREG32_NO_KIQ(mmMM_DATA, value);
2170 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2171
2172 result += 4;
2173 buf += 4;
2174 *pos += 4;
2175 size -= 4;
2176 }
2177
2178 return result;
2179 }
2180
2181 static const struct file_operations amdgpu_ttm_vram_fops = {
2182 .owner = THIS_MODULE,
2183 .read = amdgpu_ttm_vram_read,
2184 .write = amdgpu_ttm_vram_write,
2185 .llseek = default_llseek,
2186 };
2187
2188 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2189
2190 /**
2191 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2192 */
2193 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2194 size_t size, loff_t *pos)
2195 {
2196 struct amdgpu_device *adev = file_inode(f)->i_private;
2197 ssize_t result = 0;
2198 int r;
2199
2200 while (size) {
2201 loff_t p = *pos / PAGE_SIZE;
2202 unsigned off = *pos & ~PAGE_MASK;
2203 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2204 struct page *page;
2205 void *ptr;
2206
2207 if (p >= adev->gart.num_cpu_pages)
2208 return result;
2209
2210 page = adev->gart.pages[p];
2211 if (page) {
2212 ptr = kmap(page);
2213 ptr += off;
2214
2215 r = copy_to_user(buf, ptr, cur_size);
2216 kunmap(adev->gart.pages[p]);
2217 } else
2218 r = clear_user(buf, cur_size);
2219
2220 if (r)
2221 return -EFAULT;
2222
2223 result += cur_size;
2224 buf += cur_size;
2225 *pos += cur_size;
2226 size -= cur_size;
2227 }
2228
2229 return result;
2230 }
2231
2232 static const struct file_operations amdgpu_ttm_gtt_fops = {
2233 .owner = THIS_MODULE,
2234 .read = amdgpu_ttm_gtt_read,
2235 .llseek = default_llseek
2236 };
2237
2238 #endif
2239
2240 /**
2241 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2242 *
2243 * This function is used to read memory that has been mapped to the
2244 * GPU and the known addresses are not physical addresses but instead
2245 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2246 */
2247 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2248 size_t size, loff_t *pos)
2249 {
2250 struct amdgpu_device *adev = file_inode(f)->i_private;
2251 struct iommu_domain *dom;
2252 ssize_t result = 0;
2253 int r;
2254
2255 /* retrieve the IOMMU domain if any for this device */
2256 dom = iommu_get_domain_for_dev(adev->dev);
2257
2258 while (size) {
2259 phys_addr_t addr = *pos & PAGE_MASK;
2260 loff_t off = *pos & ~PAGE_MASK;
2261 size_t bytes = PAGE_SIZE - off;
2262 unsigned long pfn;
2263 struct page *p;
2264 void *ptr;
2265
2266 bytes = bytes < size ? bytes : size;
2267
2268 /* Translate the bus address to a physical address. If
2269 * the domain is NULL it means there is no IOMMU active
2270 * and the address translation is the identity
2271 */
2272 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2273
2274 pfn = addr >> PAGE_SHIFT;
2275 if (!pfn_valid(pfn))
2276 return -EPERM;
2277
2278 p = pfn_to_page(pfn);
2279 if (p->mapping != adev->mman.bdev.dev_mapping)
2280 return -EPERM;
2281
2282 ptr = kmap(p);
2283 r = copy_to_user(buf, ptr + off, bytes);
2284 kunmap(p);
2285 if (r)
2286 return -EFAULT;
2287
2288 size -= bytes;
2289 *pos += bytes;
2290 result += bytes;
2291 }
2292
2293 return result;
2294 }
2295
2296 /**
2297 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2298 *
2299 * This function is used to write memory that has been mapped to the
2300 * GPU and the known addresses are not physical addresses but instead
2301 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2302 */
2303 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2304 size_t size, loff_t *pos)
2305 {
2306 struct amdgpu_device *adev = file_inode(f)->i_private;
2307 struct iommu_domain *dom;
2308 ssize_t result = 0;
2309 int r;
2310
2311 dom = iommu_get_domain_for_dev(adev->dev);
2312
2313 while (size) {
2314 phys_addr_t addr = *pos & PAGE_MASK;
2315 loff_t off = *pos & ~PAGE_MASK;
2316 size_t bytes = PAGE_SIZE - off;
2317 unsigned long pfn;
2318 struct page *p;
2319 void *ptr;
2320
2321 bytes = bytes < size ? bytes : size;
2322
2323 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2324
2325 pfn = addr >> PAGE_SHIFT;
2326 if (!pfn_valid(pfn))
2327 return -EPERM;
2328
2329 p = pfn_to_page(pfn);
2330 if (p->mapping != adev->mman.bdev.dev_mapping)
2331 return -EPERM;
2332
2333 ptr = kmap(p);
2334 r = copy_from_user(ptr + off, buf, bytes);
2335 kunmap(p);
2336 if (r)
2337 return -EFAULT;
2338
2339 size -= bytes;
2340 *pos += bytes;
2341 result += bytes;
2342 }
2343
2344 return result;
2345 }
2346
2347 static const struct file_operations amdgpu_ttm_iomem_fops = {
2348 .owner = THIS_MODULE,
2349 .read = amdgpu_iomem_read,
2350 .write = amdgpu_iomem_write,
2351 .llseek = default_llseek
2352 };
2353
2354 static const struct {
2355 char *name;
2356 const struct file_operations *fops;
2357 int domain;
2358 } ttm_debugfs_entries[] = {
2359 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2360 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2361 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2362 #endif
2363 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2364 };
2365
2366 #endif
2367
2368 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2369 {
2370 #if defined(CONFIG_DEBUG_FS)
2371 unsigned count;
2372
2373 struct drm_minor *minor = adev->ddev->primary;
2374 struct dentry *ent, *root = minor->debugfs_root;
2375
2376 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2377 ent = debugfs_create_file(
2378 ttm_debugfs_entries[count].name,
2379 S_IFREG | S_IRUGO, root,
2380 adev,
2381 ttm_debugfs_entries[count].fops);
2382 if (IS_ERR(ent))
2383 return PTR_ERR(ent);
2384 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2385 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2386 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2387 i_size_write(ent->d_inode, adev->gmc.gart_size);
2388 adev->mman.debugfs_entries[count] = ent;
2389 }
2390
2391 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2392
2393 #ifdef CONFIG_SWIOTLB
2394 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2395 --count;
2396 #endif
2397
2398 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2399 #else
2400 return 0;
2401 #endif
2402 }
2403
2404 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2405 {
2406 #if defined(CONFIG_DEBUG_FS)
2407 unsigned i;
2408
2409 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2410 debugfs_remove(adev->mman.debugfs_entries[i]);
2411 #endif
2412 }