]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
Merge tag 'drm-misc-next-2018-11-07' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/kernel/stable.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37
38 /**
39 * DOC: GPUVM
40 *
41 * GPUVM is similar to the legacy gart on older asics, however
42 * rather than there being a single global gart table
43 * for the entire GPU, there are multiple VM page tables active
44 * at any given time. The VM page tables can contain a mix
45 * vram pages and system memory pages and system memory pages
46 * can be mapped as snooped (cached system pages) or unsnooped
47 * (uncached system pages).
48 * Each VM has an ID associated with it and there is a page table
49 * associated with each VMID. When execting a command buffer,
50 * the kernel tells the the ring what VMID to use for that command
51 * buffer. VMIDs are allocated dynamically as commands are submitted.
52 * The userspace drivers maintain their own address space and the kernel
53 * sets up their pages tables accordingly when they submit their
54 * command buffers and a VMID is assigned.
55 * Cayman/Trinity support up to 8 active VMs at any given time;
56 * SI supports 16.
57 */
58
59 #define START(node) ((node)->start)
60 #define LAST(node) ((node)->last)
61
62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
63 START, LAST, static, amdgpu_vm_it)
64
65 #undef START
66 #undef LAST
67
68 /**
69 * struct amdgpu_pte_update_params - Local structure
70 *
71 * Encapsulate some VM table update parameters to reduce
72 * the number of function parameters
73 *
74 */
75 struct amdgpu_pte_update_params {
76
77 /**
78 * @adev: amdgpu device we do this update for
79 */
80 struct amdgpu_device *adev;
81
82 /**
83 * @vm: optional amdgpu_vm we do this update for
84 */
85 struct amdgpu_vm *vm;
86
87 /**
88 * @src: address where to copy page table entries from
89 */
90 uint64_t src;
91
92 /**
93 * @ib: indirect buffer to fill with commands
94 */
95 struct amdgpu_ib *ib;
96
97 /**
98 * @func: Function which actually does the update
99 */
100 void (*func)(struct amdgpu_pte_update_params *params,
101 struct amdgpu_bo *bo, uint64_t pe,
102 uint64_t addr, unsigned count, uint32_t incr,
103 uint64_t flags);
104 /**
105 * @pages_addr:
106 *
107 * DMA addresses to use for mapping, used during VM update by CPU
108 */
109 dma_addr_t *pages_addr;
110
111 /**
112 * @kptr:
113 *
114 * Kernel pointer of PD/PT BO that needs to be updated,
115 * used during VM update by CPU
116 */
117 void *kptr;
118 };
119
120 /**
121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
122 */
123 struct amdgpu_prt_cb {
124
125 /**
126 * @adev: amdgpu device
127 */
128 struct amdgpu_device *adev;
129
130 /**
131 * @cb: callback
132 */
133 struct dma_fence_cb cb;
134 };
135
136 /**
137 * amdgpu_vm_level_shift - return the addr shift for each level
138 *
139 * @adev: amdgpu_device pointer
140 * @level: VMPT level
141 *
142 * Returns:
143 * The number of bits the pfn needs to be right shifted for a level.
144 */
145 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
146 unsigned level)
147 {
148 unsigned shift = 0xff;
149
150 switch (level) {
151 case AMDGPU_VM_PDB2:
152 case AMDGPU_VM_PDB1:
153 case AMDGPU_VM_PDB0:
154 shift = 9 * (AMDGPU_VM_PDB0 - level) +
155 adev->vm_manager.block_size;
156 break;
157 case AMDGPU_VM_PTB:
158 shift = 0;
159 break;
160 default:
161 dev_err(adev->dev, "the level%d isn't supported.\n", level);
162 }
163
164 return shift;
165 }
166
167 /**
168 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
169 *
170 * @adev: amdgpu_device pointer
171 * @level: VMPT level
172 *
173 * Returns:
174 * The number of entries in a page directory or page table.
175 */
176 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
177 unsigned level)
178 {
179 unsigned shift = amdgpu_vm_level_shift(adev,
180 adev->vm_manager.root_level);
181
182 if (level == adev->vm_manager.root_level)
183 /* For the root directory */
184 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift;
185 else if (level != AMDGPU_VM_PTB)
186 /* Everything in between */
187 return 512;
188 else
189 /* For the page tables on the leaves */
190 return AMDGPU_VM_PTE_COUNT(adev);
191 }
192
193 /**
194 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
195 *
196 * @adev: amdgpu_device pointer
197 * @level: VMPT level
198 *
199 * Returns:
200 * The mask to extract the entry number of a PD/PT from an address.
201 */
202 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
203 unsigned int level)
204 {
205 if (level <= adev->vm_manager.root_level)
206 return 0xffffffff;
207 else if (level != AMDGPU_VM_PTB)
208 return 0x1ff;
209 else
210 return AMDGPU_VM_PTE_COUNT(adev) - 1;
211 }
212
213 /**
214 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
215 *
216 * @adev: amdgpu_device pointer
217 * @level: VMPT level
218 *
219 * Returns:
220 * The size of the BO for a page directory or page table in bytes.
221 */
222 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
223 {
224 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
225 }
226
227 /**
228 * amdgpu_vm_bo_evicted - vm_bo is evicted
229 *
230 * @vm_bo: vm_bo which is evicted
231 *
232 * State for PDs/PTs and per VM BOs which are not at the location they should
233 * be.
234 */
235 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
236 {
237 struct amdgpu_vm *vm = vm_bo->vm;
238 struct amdgpu_bo *bo = vm_bo->bo;
239
240 vm_bo->moved = true;
241 if (bo->tbo.type == ttm_bo_type_kernel)
242 list_move(&vm_bo->vm_status, &vm->evicted);
243 else
244 list_move_tail(&vm_bo->vm_status, &vm->evicted);
245 }
246
247 /**
248 * amdgpu_vm_bo_relocated - vm_bo is reloacted
249 *
250 * @vm_bo: vm_bo which is relocated
251 *
252 * State for PDs/PTs which needs to update their parent PD.
253 */
254 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
255 {
256 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
257 }
258
259 /**
260 * amdgpu_vm_bo_moved - vm_bo is moved
261 *
262 * @vm_bo: vm_bo which is moved
263 *
264 * State for per VM BOs which are moved, but that change is not yet reflected
265 * in the page tables.
266 */
267 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
270 }
271
272 /**
273 * amdgpu_vm_bo_idle - vm_bo is idle
274 *
275 * @vm_bo: vm_bo which is now idle
276 *
277 * State for PDs/PTs and per VM BOs which have gone through the state machine
278 * and are now idle.
279 */
280 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
281 {
282 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
283 vm_bo->moved = false;
284 }
285
286 /**
287 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
288 *
289 * @vm_bo: vm_bo which is now invalidated
290 *
291 * State for normal BOs which are invalidated and that change not yet reflected
292 * in the PTs.
293 */
294 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
295 {
296 spin_lock(&vm_bo->vm->invalidated_lock);
297 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
298 spin_unlock(&vm_bo->vm->invalidated_lock);
299 }
300
301 /**
302 * amdgpu_vm_bo_done - vm_bo is done
303 *
304 * @vm_bo: vm_bo which is now done
305 *
306 * State for normal BOs which are invalidated and that change has been updated
307 * in the PTs.
308 */
309 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
310 {
311 spin_lock(&vm_bo->vm->invalidated_lock);
312 list_del_init(&vm_bo->vm_status);
313 spin_unlock(&vm_bo->vm->invalidated_lock);
314 }
315
316 /**
317 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
318 *
319 * @base: base structure for tracking BO usage in a VM
320 * @vm: vm to which bo is to be added
321 * @bo: amdgpu buffer object
322 *
323 * Initialize a bo_va_base structure and add it to the appropriate lists
324 *
325 */
326 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
327 struct amdgpu_vm *vm,
328 struct amdgpu_bo *bo)
329 {
330 base->vm = vm;
331 base->bo = bo;
332 base->next = NULL;
333 INIT_LIST_HEAD(&base->vm_status);
334
335 if (!bo)
336 return;
337 base->next = bo->vm_bo;
338 bo->vm_bo = base;
339
340 if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
341 return;
342
343 vm->bulk_moveable = false;
344 if (bo->tbo.type == ttm_bo_type_kernel)
345 amdgpu_vm_bo_relocated(base);
346 else
347 amdgpu_vm_bo_idle(base);
348
349 if (bo->preferred_domains &
350 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
351 return;
352
353 /*
354 * we checked all the prerequisites, but it looks like this per vm bo
355 * is currently evicted. add the bo to the evicted list to make sure it
356 * is validated on next vm use to avoid fault.
357 * */
358 amdgpu_vm_bo_evicted(base);
359 }
360
361 /**
362 * amdgpu_vm_pt_parent - get the parent page directory
363 *
364 * @pt: child page table
365 *
366 * Helper to get the parent entry for the child page table. NULL if we are at
367 * the root page directory.
368 */
369 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
370 {
371 struct amdgpu_bo *parent = pt->base.bo->parent;
372
373 if (!parent)
374 return NULL;
375
376 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
377 }
378
379 /**
380 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
381 */
382 struct amdgpu_vm_pt_cursor {
383 uint64_t pfn;
384 struct amdgpu_vm_pt *parent;
385 struct amdgpu_vm_pt *entry;
386 unsigned level;
387 };
388
389 /**
390 * amdgpu_vm_pt_start - start PD/PT walk
391 *
392 * @adev: amdgpu_device pointer
393 * @vm: amdgpu_vm structure
394 * @start: start address of the walk
395 * @cursor: state to initialize
396 *
397 * Initialize a amdgpu_vm_pt_cursor to start a walk.
398 */
399 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
400 struct amdgpu_vm *vm, uint64_t start,
401 struct amdgpu_vm_pt_cursor *cursor)
402 {
403 cursor->pfn = start;
404 cursor->parent = NULL;
405 cursor->entry = &vm->root;
406 cursor->level = adev->vm_manager.root_level;
407 }
408
409 /**
410 * amdgpu_vm_pt_descendant - go to child node
411 *
412 * @adev: amdgpu_device pointer
413 * @cursor: current state
414 *
415 * Walk to the child node of the current node.
416 * Returns:
417 * True if the walk was possible, false otherwise.
418 */
419 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
420 struct amdgpu_vm_pt_cursor *cursor)
421 {
422 unsigned mask, shift, idx;
423
424 if (!cursor->entry->entries)
425 return false;
426
427 BUG_ON(!cursor->entry->base.bo);
428 mask = amdgpu_vm_entries_mask(adev, cursor->level);
429 shift = amdgpu_vm_level_shift(adev, cursor->level);
430
431 ++cursor->level;
432 idx = (cursor->pfn >> shift) & mask;
433 cursor->parent = cursor->entry;
434 cursor->entry = &cursor->entry->entries[idx];
435 return true;
436 }
437
438 /**
439 * amdgpu_vm_pt_sibling - go to sibling node
440 *
441 * @adev: amdgpu_device pointer
442 * @cursor: current state
443 *
444 * Walk to the sibling node of the current node.
445 * Returns:
446 * True if the walk was possible, false otherwise.
447 */
448 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
449 struct amdgpu_vm_pt_cursor *cursor)
450 {
451 unsigned shift, num_entries;
452
453 /* Root doesn't have a sibling */
454 if (!cursor->parent)
455 return false;
456
457 /* Go to our parents and see if we got a sibling */
458 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
459 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
460
461 if (cursor->entry == &cursor->parent->entries[num_entries - 1])
462 return false;
463
464 cursor->pfn += 1ULL << shift;
465 cursor->pfn &= ~((1ULL << shift) - 1);
466 ++cursor->entry;
467 return true;
468 }
469
470 /**
471 * amdgpu_vm_pt_ancestor - go to parent node
472 *
473 * @cursor: current state
474 *
475 * Walk to the parent node of the current node.
476 * Returns:
477 * True if the walk was possible, false otherwise.
478 */
479 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
480 {
481 if (!cursor->parent)
482 return false;
483
484 --cursor->level;
485 cursor->entry = cursor->parent;
486 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
487 return true;
488 }
489
490 /**
491 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
492 *
493 * @adev: amdgpu_device pointer
494 * @cursor: current state
495 *
496 * Walk the PD/PT tree to the next node.
497 */
498 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
499 struct amdgpu_vm_pt_cursor *cursor)
500 {
501 /* First try a newborn child */
502 if (amdgpu_vm_pt_descendant(adev, cursor))
503 return;
504
505 /* If that didn't worked try to find a sibling */
506 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
507 /* No sibling, go to our parents and grandparents */
508 if (!amdgpu_vm_pt_ancestor(cursor)) {
509 cursor->pfn = ~0ll;
510 return;
511 }
512 }
513 }
514
515 /**
516 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT
517 *
518 * @adev: amdgpu_device pointer
519 * @vm: amdgpu_vm structure
520 * @start: start addr of the walk
521 * @cursor: state to initialize
522 *
523 * Start a walk and go directly to the leaf node.
524 */
525 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev,
526 struct amdgpu_vm *vm, uint64_t start,
527 struct amdgpu_vm_pt_cursor *cursor)
528 {
529 amdgpu_vm_pt_start(adev, vm, start, cursor);
530 while (amdgpu_vm_pt_descendant(adev, cursor));
531 }
532
533 /**
534 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT
535 *
536 * @adev: amdgpu_device pointer
537 * @cursor: current state
538 *
539 * Walk the PD/PT tree to the next leaf node.
540 */
541 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev,
542 struct amdgpu_vm_pt_cursor *cursor)
543 {
544 amdgpu_vm_pt_next(adev, cursor);
545 if (cursor->pfn != ~0ll)
546 while (amdgpu_vm_pt_descendant(adev, cursor));
547 }
548
549 /**
550 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy
551 */
552 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \
553 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \
554 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor)))
555
556 /**
557 * amdgpu_vm_pt_first_dfs - start a deep first search
558 *
559 * @adev: amdgpu_device structure
560 * @vm: amdgpu_vm structure
561 * @cursor: state to initialize
562 *
563 * Starts a deep first traversal of the PD/PT tree.
564 */
565 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
566 struct amdgpu_vm *vm,
567 struct amdgpu_vm_pt_cursor *cursor)
568 {
569 amdgpu_vm_pt_start(adev, vm, 0, cursor);
570 while (amdgpu_vm_pt_descendant(adev, cursor));
571 }
572
573 /**
574 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
575 *
576 * @adev: amdgpu_device structure
577 * @cursor: current state
578 *
579 * Move the cursor to the next node in a deep first search.
580 */
581 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
582 struct amdgpu_vm_pt_cursor *cursor)
583 {
584 if (!cursor->entry)
585 return;
586
587 if (!cursor->parent)
588 cursor->entry = NULL;
589 else if (amdgpu_vm_pt_sibling(adev, cursor))
590 while (amdgpu_vm_pt_descendant(adev, cursor));
591 else
592 amdgpu_vm_pt_ancestor(cursor);
593 }
594
595 /**
596 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
597 */
598 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \
599 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \
600 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
601 (entry); (entry) = (cursor).entry, \
602 amdgpu_vm_pt_next_dfs((adev), &(cursor)))
603
604 /**
605 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
606 *
607 * @vm: vm providing the BOs
608 * @validated: head of validation list
609 * @entry: entry to add
610 *
611 * Add the page directory to the list of BOs to
612 * validate for command submission.
613 */
614 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
615 struct list_head *validated,
616 struct amdgpu_bo_list_entry *entry)
617 {
618 entry->priority = 0;
619 entry->tv.bo = &vm->root.base.bo->tbo;
620 entry->tv.shared = true;
621 entry->user_pages = NULL;
622 list_add(&entry->tv.head, validated);
623 }
624
625 /**
626 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
627 *
628 * @adev: amdgpu device pointer
629 * @vm: vm providing the BOs
630 *
631 * Move all BOs to the end of LRU and remember their positions to put them
632 * together.
633 */
634 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
635 struct amdgpu_vm *vm)
636 {
637 struct ttm_bo_global *glob = adev->mman.bdev.glob;
638 struct amdgpu_vm_bo_base *bo_base;
639
640 if (vm->bulk_moveable) {
641 spin_lock(&glob->lru_lock);
642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643 spin_unlock(&glob->lru_lock);
644 return;
645 }
646
647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648
649 spin_lock(&glob->lru_lock);
650 list_for_each_entry(bo_base, &vm->idle, vm_status) {
651 struct amdgpu_bo *bo = bo_base->bo;
652
653 if (!bo->parent)
654 continue;
655
656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
657 if (bo->shadow)
658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
659 &vm->lru_bulk_move);
660 }
661 spin_unlock(&glob->lru_lock);
662
663 vm->bulk_moveable = true;
664 }
665
666 /**
667 * amdgpu_vm_validate_pt_bos - validate the page table BOs
668 *
669 * @adev: amdgpu device pointer
670 * @vm: vm providing the BOs
671 * @validate: callback to do the validation
672 * @param: parameter for the validation callback
673 *
674 * Validate the page table BOs on command submission if neccessary.
675 *
676 * Returns:
677 * Validation result.
678 */
679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
680 int (*validate)(void *p, struct amdgpu_bo *bo),
681 void *param)
682 {
683 struct amdgpu_vm_bo_base *bo_base, *tmp;
684 int r = 0;
685
686 vm->bulk_moveable &= list_empty(&vm->evicted);
687
688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
689 struct amdgpu_bo *bo = bo_base->bo;
690
691 r = validate(param, bo);
692 if (r)
693 break;
694
695 if (bo->tbo.type != ttm_bo_type_kernel) {
696 amdgpu_vm_bo_moved(bo_base);
697 } else {
698 if (vm->use_cpu_for_update)
699 r = amdgpu_bo_kmap(bo, NULL);
700 else
701 r = amdgpu_ttm_alloc_gart(&bo->tbo);
702 if (r)
703 break;
704 if (bo->shadow) {
705 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo);
706 if (r)
707 break;
708 }
709 amdgpu_vm_bo_relocated(bo_base);
710 }
711 }
712
713 return r;
714 }
715
716 /**
717 * amdgpu_vm_ready - check VM is ready for updates
718 *
719 * @vm: VM to check
720 *
721 * Check if all VM PDs/PTs are ready for updates
722 *
723 * Returns:
724 * True if eviction list is empty.
725 */
726 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
727 {
728 return list_empty(&vm->evicted);
729 }
730
731 /**
732 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
733 *
734 * @adev: amdgpu_device pointer
735 * @vm: VM to clear BO from
736 * @bo: BO to clear
737 * @level: level this BO is at
738 * @pte_support_ats: indicate ATS support from PTE
739 *
740 * Root PD needs to be reserved when calling this.
741 *
742 * Returns:
743 * 0 on success, errno otherwise.
744 */
745 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
746 struct amdgpu_vm *vm, struct amdgpu_bo *bo,
747 unsigned level, bool pte_support_ats)
748 {
749 struct ttm_operation_ctx ctx = { true, false };
750 struct dma_fence *fence = NULL;
751 unsigned entries, ats_entries;
752 struct amdgpu_ring *ring;
753 struct amdgpu_job *job;
754 uint64_t addr;
755 int r;
756
757 entries = amdgpu_bo_size(bo) / 8;
758
759 if (pte_support_ats) {
760 if (level == adev->vm_manager.root_level) {
761 ats_entries = amdgpu_vm_level_shift(adev, level);
762 ats_entries += AMDGPU_GPU_PAGE_SHIFT;
763 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries;
764 ats_entries = min(ats_entries, entries);
765 entries -= ats_entries;
766 } else {
767 ats_entries = entries;
768 entries = 0;
769 }
770 } else {
771 ats_entries = 0;
772 }
773
774 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
775
776 r = reservation_object_reserve_shared(bo->tbo.resv, 1);
777 if (r)
778 return r;
779
780 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
781 if (r)
782 goto error;
783
784 r = amdgpu_ttm_alloc_gart(&bo->tbo);
785 if (r)
786 return r;
787
788 r = amdgpu_job_alloc_with_ib(adev, 64, &job);
789 if (r)
790 goto error;
791
792 addr = amdgpu_bo_gpu_offset(bo);
793 if (ats_entries) {
794 uint64_t ats_value;
795
796 ats_value = AMDGPU_PTE_DEFAULT_ATC;
797 if (level != AMDGPU_VM_PTB)
798 ats_value |= AMDGPU_PDE_PTE;
799
800 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
801 ats_entries, 0, ats_value);
802 addr += ats_entries * 8;
803 }
804
805 if (entries)
806 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
807 entries, 0, 0);
808
809 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
810
811 WARN_ON(job->ibs[0].length_dw > 64);
812 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv,
813 AMDGPU_FENCE_OWNER_UNDEFINED, false);
814 if (r)
815 goto error_free;
816
817 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED,
818 &fence);
819 if (r)
820 goto error_free;
821
822 amdgpu_bo_fence(bo, fence, true);
823 dma_fence_put(fence);
824
825 if (bo->shadow)
826 return amdgpu_vm_clear_bo(adev, vm, bo->shadow,
827 level, pte_support_ats);
828
829 return 0;
830
831 error_free:
832 amdgpu_job_free(job);
833
834 error:
835 return r;
836 }
837
838 /**
839 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
840 *
841 * @adev: amdgpu_device pointer
842 * @vm: requesting vm
843 * @bp: resulting BO allocation parameters
844 */
845 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
846 int level, struct amdgpu_bo_param *bp)
847 {
848 memset(bp, 0, sizeof(*bp));
849
850 bp->size = amdgpu_vm_bo_size(adev, level);
851 bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
852 bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
853 if (bp->size <= PAGE_SIZE && adev->asic_type >= CHIP_VEGA10 &&
854 adev->flags & AMD_IS_APU)
855 bp->domain |= AMDGPU_GEM_DOMAIN_GTT;
856 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
857 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
858 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
859 if (vm->use_cpu_for_update)
860 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
861 else if (!vm->root.base.bo || vm->root.base.bo->shadow)
862 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
863 bp->type = ttm_bo_type_kernel;
864 if (vm->root.base.bo)
865 bp->resv = vm->root.base.bo->tbo.resv;
866 }
867
868 /**
869 * amdgpu_vm_alloc_pts - Allocate page tables.
870 *
871 * @adev: amdgpu_device pointer
872 * @vm: VM to allocate page tables for
873 * @saddr: Start address which needs to be allocated
874 * @size: Size from start address we need.
875 *
876 * Make sure the page directories and page tables are allocated
877 *
878 * Returns:
879 * 0 on success, errno otherwise.
880 */
881 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
882 struct amdgpu_vm *vm,
883 uint64_t saddr, uint64_t size)
884 {
885 struct amdgpu_vm_pt_cursor cursor;
886 struct amdgpu_bo *pt;
887 bool ats = false;
888 uint64_t eaddr;
889 int r;
890
891 /* validate the parameters */
892 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
893 return -EINVAL;
894
895 eaddr = saddr + size - 1;
896
897 if (vm->pte_support_ats)
898 ats = saddr < AMDGPU_GMC_HOLE_START;
899
900 saddr /= AMDGPU_GPU_PAGE_SIZE;
901 eaddr /= AMDGPU_GPU_PAGE_SIZE;
902
903 if (eaddr >= adev->vm_manager.max_pfn) {
904 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
905 eaddr, adev->vm_manager.max_pfn);
906 return -EINVAL;
907 }
908
909 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) {
910 struct amdgpu_vm_pt *entry = cursor.entry;
911 struct amdgpu_bo_param bp;
912
913 if (cursor.level < AMDGPU_VM_PTB) {
914 unsigned num_entries;
915
916 num_entries = amdgpu_vm_num_entries(adev, cursor.level);
917 entry->entries = kvmalloc_array(num_entries,
918 sizeof(*entry->entries),
919 GFP_KERNEL |
920 __GFP_ZERO);
921 if (!entry->entries)
922 return -ENOMEM;
923 }
924
925
926 if (entry->base.bo)
927 continue;
928
929 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp);
930
931 r = amdgpu_bo_create(adev, &bp, &pt);
932 if (r)
933 return r;
934
935 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats);
936 if (r)
937 goto error_free_pt;
938
939 if (vm->use_cpu_for_update) {
940 r = amdgpu_bo_kmap(pt, NULL);
941 if (r)
942 goto error_free_pt;
943 }
944
945 /* Keep a reference to the root directory to avoid
946 * freeing them up in the wrong order.
947 */
948 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo);
949
950 amdgpu_vm_bo_base_init(&entry->base, vm, pt);
951 }
952
953 return 0;
954
955 error_free_pt:
956 amdgpu_bo_unref(&pt->shadow);
957 amdgpu_bo_unref(&pt);
958 return r;
959 }
960
961 /**
962 * amdgpu_vm_free_pts - free PD/PT levels
963 *
964 * @adev: amdgpu device structure
965 * @vm: amdgpu vm structure
966 *
967 * Free the page directory or page table level and all sub levels.
968 */
969 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
970 struct amdgpu_vm *vm)
971 {
972 struct amdgpu_vm_pt_cursor cursor;
973 struct amdgpu_vm_pt *entry;
974
975 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) {
976
977 if (entry->base.bo) {
978 entry->base.bo->vm_bo = NULL;
979 list_del(&entry->base.vm_status);
980 amdgpu_bo_unref(&entry->base.bo->shadow);
981 amdgpu_bo_unref(&entry->base.bo);
982 }
983 kvfree(entry->entries);
984 }
985
986 BUG_ON(vm->root.base.bo);
987 }
988
989 /**
990 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
991 *
992 * @adev: amdgpu_device pointer
993 */
994 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
995 {
996 const struct amdgpu_ip_block *ip_block;
997 bool has_compute_vm_bug;
998 struct amdgpu_ring *ring;
999 int i;
1000
1001 has_compute_vm_bug = false;
1002
1003 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1004 if (ip_block) {
1005 /* Compute has a VM bug for GFX version < 7.
1006 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1007 if (ip_block->version->major <= 7)
1008 has_compute_vm_bug = true;
1009 else if (ip_block->version->major == 8)
1010 if (adev->gfx.mec_fw_version < 673)
1011 has_compute_vm_bug = true;
1012 }
1013
1014 for (i = 0; i < adev->num_rings; i++) {
1015 ring = adev->rings[i];
1016 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1017 /* only compute rings */
1018 ring->has_compute_vm_bug = has_compute_vm_bug;
1019 else
1020 ring->has_compute_vm_bug = false;
1021 }
1022 }
1023
1024 /**
1025 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1026 *
1027 * @ring: ring on which the job will be submitted
1028 * @job: job to submit
1029 *
1030 * Returns:
1031 * True if sync is needed.
1032 */
1033 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1034 struct amdgpu_job *job)
1035 {
1036 struct amdgpu_device *adev = ring->adev;
1037 unsigned vmhub = ring->funcs->vmhub;
1038 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1039 struct amdgpu_vmid *id;
1040 bool gds_switch_needed;
1041 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1042
1043 if (job->vmid == 0)
1044 return false;
1045 id = &id_mgr->ids[job->vmid];
1046 gds_switch_needed = ring->funcs->emit_gds_switch && (
1047 id->gds_base != job->gds_base ||
1048 id->gds_size != job->gds_size ||
1049 id->gws_base != job->gws_base ||
1050 id->gws_size != job->gws_size ||
1051 id->oa_base != job->oa_base ||
1052 id->oa_size != job->oa_size);
1053
1054 if (amdgpu_vmid_had_gpu_reset(adev, id))
1055 return true;
1056
1057 return vm_flush_needed || gds_switch_needed;
1058 }
1059
1060 /**
1061 * amdgpu_vm_flush - hardware flush the vm
1062 *
1063 * @ring: ring to use for flush
1064 * @job: related job
1065 * @need_pipe_sync: is pipe sync needed
1066 *
1067 * Emit a VM flush when it is necessary.
1068 *
1069 * Returns:
1070 * 0 on success, errno otherwise.
1071 */
1072 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
1073 {
1074 struct amdgpu_device *adev = ring->adev;
1075 unsigned vmhub = ring->funcs->vmhub;
1076 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1077 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1078 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1079 id->gds_base != job->gds_base ||
1080 id->gds_size != job->gds_size ||
1081 id->gws_base != job->gws_base ||
1082 id->gws_size != job->gws_size ||
1083 id->oa_base != job->oa_base ||
1084 id->oa_size != job->oa_size);
1085 bool vm_flush_needed = job->vm_needs_flush;
1086 bool pasid_mapping_needed = id->pasid != job->pasid ||
1087 !id->pasid_mapping ||
1088 !dma_fence_is_signaled(id->pasid_mapping);
1089 struct dma_fence *fence = NULL;
1090 unsigned patch_offset = 0;
1091 int r;
1092
1093 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1094 gds_switch_needed = true;
1095 vm_flush_needed = true;
1096 pasid_mapping_needed = true;
1097 }
1098
1099 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1100 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1101 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1102 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1103 ring->funcs->emit_wreg;
1104
1105 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1106 return 0;
1107
1108 if (ring->funcs->init_cond_exec)
1109 patch_offset = amdgpu_ring_init_cond_exec(ring);
1110
1111 if (need_pipe_sync)
1112 amdgpu_ring_emit_pipeline_sync(ring);
1113
1114 if (vm_flush_needed) {
1115 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1116 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1117 }
1118
1119 if (pasid_mapping_needed)
1120 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1121
1122 if (vm_flush_needed || pasid_mapping_needed) {
1123 r = amdgpu_fence_emit(ring, &fence, 0);
1124 if (r)
1125 return r;
1126 }
1127
1128 if (vm_flush_needed) {
1129 mutex_lock(&id_mgr->lock);
1130 dma_fence_put(id->last_flush);
1131 id->last_flush = dma_fence_get(fence);
1132 id->current_gpu_reset_count =
1133 atomic_read(&adev->gpu_reset_counter);
1134 mutex_unlock(&id_mgr->lock);
1135 }
1136
1137 if (pasid_mapping_needed) {
1138 id->pasid = job->pasid;
1139 dma_fence_put(id->pasid_mapping);
1140 id->pasid_mapping = dma_fence_get(fence);
1141 }
1142 dma_fence_put(fence);
1143
1144 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1145 id->gds_base = job->gds_base;
1146 id->gds_size = job->gds_size;
1147 id->gws_base = job->gws_base;
1148 id->gws_size = job->gws_size;
1149 id->oa_base = job->oa_base;
1150 id->oa_size = job->oa_size;
1151 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1152 job->gds_size, job->gws_base,
1153 job->gws_size, job->oa_base,
1154 job->oa_size);
1155 }
1156
1157 if (ring->funcs->patch_cond_exec)
1158 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1159
1160 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1161 if (ring->funcs->emit_switch_buffer) {
1162 amdgpu_ring_emit_switch_buffer(ring);
1163 amdgpu_ring_emit_switch_buffer(ring);
1164 }
1165 return 0;
1166 }
1167
1168 /**
1169 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1170 *
1171 * @vm: requested vm
1172 * @bo: requested buffer object
1173 *
1174 * Find @bo inside the requested vm.
1175 * Search inside the @bos vm list for the requested vm
1176 * Returns the found bo_va or NULL if none is found
1177 *
1178 * Object has to be reserved!
1179 *
1180 * Returns:
1181 * Found bo_va or NULL.
1182 */
1183 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1184 struct amdgpu_bo *bo)
1185 {
1186 struct amdgpu_vm_bo_base *base;
1187
1188 for (base = bo->vm_bo; base; base = base->next) {
1189 if (base->vm != vm)
1190 continue;
1191
1192 return container_of(base, struct amdgpu_bo_va, base);
1193 }
1194 return NULL;
1195 }
1196
1197 /**
1198 * amdgpu_vm_do_set_ptes - helper to call the right asic function
1199 *
1200 * @params: see amdgpu_pte_update_params definition
1201 * @bo: PD/PT to update
1202 * @pe: addr of the page entry
1203 * @addr: dst addr to write into pe
1204 * @count: number of page entries to update
1205 * @incr: increase next addr by incr bytes
1206 * @flags: hw access flags
1207 *
1208 * Traces the parameters and calls the right asic functions
1209 * to setup the page table using the DMA.
1210 */
1211 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
1212 struct amdgpu_bo *bo,
1213 uint64_t pe, uint64_t addr,
1214 unsigned count, uint32_t incr,
1215 uint64_t flags)
1216 {
1217 pe += amdgpu_bo_gpu_offset(bo);
1218 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1219
1220 if (count < 3) {
1221 amdgpu_vm_write_pte(params->adev, params->ib, pe,
1222 addr | flags, count, incr);
1223
1224 } else {
1225 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
1226 count, incr, flags);
1227 }
1228 }
1229
1230 /**
1231 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
1232 *
1233 * @params: see amdgpu_pte_update_params definition
1234 * @bo: PD/PT to update
1235 * @pe: addr of the page entry
1236 * @addr: dst addr to write into pe
1237 * @count: number of page entries to update
1238 * @incr: increase next addr by incr bytes
1239 * @flags: hw access flags
1240 *
1241 * Traces the parameters and calls the DMA function to copy the PTEs.
1242 */
1243 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
1244 struct amdgpu_bo *bo,
1245 uint64_t pe, uint64_t addr,
1246 unsigned count, uint32_t incr,
1247 uint64_t flags)
1248 {
1249 uint64_t src = (params->src + (addr >> 12) * 8);
1250
1251 pe += amdgpu_bo_gpu_offset(bo);
1252 trace_amdgpu_vm_copy_ptes(pe, src, count);
1253
1254 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
1255 }
1256
1257 /**
1258 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1259 *
1260 * @pages_addr: optional DMA address to use for lookup
1261 * @addr: the unmapped addr
1262 *
1263 * Look up the physical address of the page that the pte resolves
1264 * to.
1265 *
1266 * Returns:
1267 * The pointer for the page table entry.
1268 */
1269 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1270 {
1271 uint64_t result;
1272
1273 /* page table offset */
1274 result = pages_addr[addr >> PAGE_SHIFT];
1275
1276 /* in case cpu page size != gpu page size*/
1277 result |= addr & (~PAGE_MASK);
1278
1279 result &= 0xFFFFFFFFFFFFF000ULL;
1280
1281 return result;
1282 }
1283
1284 /**
1285 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
1286 *
1287 * @params: see amdgpu_pte_update_params definition
1288 * @bo: PD/PT to update
1289 * @pe: kmap addr of the page entry
1290 * @addr: dst addr to write into pe
1291 * @count: number of page entries to update
1292 * @incr: increase next addr by incr bytes
1293 * @flags: hw access flags
1294 *
1295 * Write count number of PT/PD entries directly.
1296 */
1297 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
1298 struct amdgpu_bo *bo,
1299 uint64_t pe, uint64_t addr,
1300 unsigned count, uint32_t incr,
1301 uint64_t flags)
1302 {
1303 unsigned int i;
1304 uint64_t value;
1305
1306 pe += (unsigned long)amdgpu_bo_kptr(bo);
1307
1308 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1309
1310 for (i = 0; i < count; i++) {
1311 value = params->pages_addr ?
1312 amdgpu_vm_map_gart(params->pages_addr, addr) :
1313 addr;
1314 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
1315 i, value, flags);
1316 addr += incr;
1317 }
1318 }
1319
1320
1321 /**
1322 * amdgpu_vm_wait_pd - Wait for PT BOs to be free.
1323 *
1324 * @adev: amdgpu_device pointer
1325 * @vm: related vm
1326 * @owner: fence owner
1327 *
1328 * Returns:
1329 * 0 on success, errno otherwise.
1330 */
1331 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1332 void *owner)
1333 {
1334 struct amdgpu_sync sync;
1335 int r;
1336
1337 amdgpu_sync_create(&sync);
1338 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false);
1339 r = amdgpu_sync_wait(&sync, true);
1340 amdgpu_sync_free(&sync);
1341
1342 return r;
1343 }
1344
1345 /**
1346 * amdgpu_vm_update_func - helper to call update function
1347 *
1348 * Calls the update function for both the given BO as well as its shadow.
1349 */
1350 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params,
1351 struct amdgpu_bo *bo,
1352 uint64_t pe, uint64_t addr,
1353 unsigned count, uint32_t incr,
1354 uint64_t flags)
1355 {
1356 if (bo->shadow)
1357 params->func(params, bo->shadow, pe, addr, count, incr, flags);
1358 params->func(params, bo, pe, addr, count, incr, flags);
1359 }
1360
1361 /*
1362 * amdgpu_vm_update_pde - update a single level in the hierarchy
1363 *
1364 * @param: parameters for the update
1365 * @vm: requested vm
1366 * @parent: parent directory
1367 * @entry: entry to update
1368 *
1369 * Makes sure the requested entry in parent is up to date.
1370 */
1371 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
1372 struct amdgpu_vm *vm,
1373 struct amdgpu_vm_pt *parent,
1374 struct amdgpu_vm_pt *entry)
1375 {
1376 struct amdgpu_bo *bo = parent->base.bo, *pbo;
1377 uint64_t pde, pt, flags;
1378 unsigned level;
1379
1380 /* Don't update huge pages here */
1381 if (entry->huge)
1382 return;
1383
1384 for (level = 0, pbo = bo->parent; pbo; ++level)
1385 pbo = pbo->parent;
1386
1387 level += params->adev->vm_manager.root_level;
1388 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1389 pde = (entry - parent->entries) * 8;
1390 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags);
1391 }
1392
1393 /*
1394 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1395 *
1396 * @adev: amdgpu_device pointer
1397 * @vm: related vm
1398 *
1399 * Mark all PD level as invalid after an error.
1400 */
1401 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1402 struct amdgpu_vm *vm)
1403 {
1404 struct amdgpu_vm_pt_cursor cursor;
1405 struct amdgpu_vm_pt *entry;
1406
1407 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry)
1408 if (entry->base.bo && !entry->base.moved)
1409 amdgpu_vm_bo_relocated(&entry->base);
1410 }
1411
1412 /*
1413 * amdgpu_vm_update_directories - make sure that all directories are valid
1414 *
1415 * @adev: amdgpu_device pointer
1416 * @vm: requested vm
1417 *
1418 * Makes sure all directories are up to date.
1419 *
1420 * Returns:
1421 * 0 for success, error for failure.
1422 */
1423 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1424 struct amdgpu_vm *vm)
1425 {
1426 struct amdgpu_pte_update_params params;
1427 struct amdgpu_job *job;
1428 unsigned ndw = 0;
1429 int r = 0;
1430
1431 if (list_empty(&vm->relocated))
1432 return 0;
1433
1434 restart:
1435 memset(&params, 0, sizeof(params));
1436 params.adev = adev;
1437
1438 if (vm->use_cpu_for_update) {
1439 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
1440 if (unlikely(r))
1441 return r;
1442
1443 params.func = amdgpu_vm_cpu_set_ptes;
1444 } else {
1445 ndw = 512 * 8;
1446 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1447 if (r)
1448 return r;
1449
1450 params.ib = &job->ibs[0];
1451 params.func = amdgpu_vm_do_set_ptes;
1452 }
1453
1454 while (!list_empty(&vm->relocated)) {
1455 struct amdgpu_vm_pt *pt, *entry;
1456
1457 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1458 base.vm_status);
1459 amdgpu_vm_bo_idle(&entry->base);
1460
1461 pt = amdgpu_vm_pt_parent(entry);
1462 if (!pt)
1463 continue;
1464
1465 amdgpu_vm_update_pde(&params, vm, pt, entry);
1466
1467 if (!vm->use_cpu_for_update &&
1468 (ndw - params.ib->length_dw) < 32)
1469 break;
1470 }
1471
1472 if (vm->use_cpu_for_update) {
1473 /* Flush HDP */
1474 mb();
1475 amdgpu_asic_flush_hdp(adev, NULL);
1476 } else if (params.ib->length_dw == 0) {
1477 amdgpu_job_free(job);
1478 } else {
1479 struct amdgpu_bo *root = vm->root.base.bo;
1480 struct amdgpu_ring *ring;
1481 struct dma_fence *fence;
1482
1483 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring,
1484 sched);
1485
1486 amdgpu_ring_pad_ib(ring, params.ib);
1487 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
1488 AMDGPU_FENCE_OWNER_VM, false);
1489 WARN_ON(params.ib->length_dw > ndw);
1490 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM,
1491 &fence);
1492 if (r)
1493 goto error;
1494
1495 amdgpu_bo_fence(root, fence, true);
1496 dma_fence_put(vm->last_update);
1497 vm->last_update = fence;
1498 }
1499
1500 if (!list_empty(&vm->relocated))
1501 goto restart;
1502
1503 return 0;
1504
1505 error:
1506 amdgpu_vm_invalidate_pds(adev, vm);
1507 amdgpu_job_free(job);
1508 return r;
1509 }
1510
1511 /**
1512 * amdgpu_vm_update_huge - figure out parameters for PTE updates
1513 *
1514 * Make sure to set the right flags for the PTEs at the desired level.
1515 */
1516 static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params,
1517 struct amdgpu_bo *bo, unsigned level,
1518 uint64_t pe, uint64_t addr,
1519 unsigned count, uint32_t incr,
1520 uint64_t flags)
1521
1522 {
1523 if (level != AMDGPU_VM_PTB) {
1524 flags |= AMDGPU_PDE_PTE;
1525 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1526 }
1527
1528 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags);
1529 }
1530
1531 /**
1532 * amdgpu_vm_fragment - get fragment for PTEs
1533 *
1534 * @params: see amdgpu_pte_update_params definition
1535 * @start: first PTE to handle
1536 * @end: last PTE to handle
1537 * @flags: hw mapping flags
1538 * @frag: resulting fragment size
1539 * @frag_end: end of this fragment
1540 *
1541 * Returns the first possible fragment for the start and end address.
1542 */
1543 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params,
1544 uint64_t start, uint64_t end, uint64_t flags,
1545 unsigned int *frag, uint64_t *frag_end)
1546 {
1547 /**
1548 * The MC L1 TLB supports variable sized pages, based on a fragment
1549 * field in the PTE. When this field is set to a non-zero value, page
1550 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1551 * flags are considered valid for all PTEs within the fragment range
1552 * and corresponding mappings are assumed to be physically contiguous.
1553 *
1554 * The L1 TLB can store a single PTE for the whole fragment,
1555 * significantly increasing the space available for translation
1556 * caching. This leads to large improvements in throughput when the
1557 * TLB is under pressure.
1558 *
1559 * The L2 TLB distributes small and large fragments into two
1560 * asymmetric partitions. The large fragment cache is significantly
1561 * larger. Thus, we try to use large fragments wherever possible.
1562 * Userspace can support this by aligning virtual base address and
1563 * allocation size to the fragment size.
1564 *
1565 * Starting with Vega10 the fragment size only controls the L1. The L2
1566 * is now directly feed with small/huge/giant pages from the walker.
1567 */
1568 unsigned max_frag;
1569
1570 if (params->adev->asic_type < CHIP_VEGA10)
1571 max_frag = params->adev->vm_manager.fragment_size;
1572 else
1573 max_frag = 31;
1574
1575 /* system pages are non continuously */
1576 if (params->src) {
1577 *frag = 0;
1578 *frag_end = end;
1579 return;
1580 }
1581
1582 /* This intentionally wraps around if no bit is set */
1583 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1584 if (*frag >= max_frag) {
1585 *frag = max_frag;
1586 *frag_end = end & ~((1ULL << max_frag) - 1);
1587 } else {
1588 *frag_end = start + (1 << *frag);
1589 }
1590 }
1591
1592 /**
1593 * amdgpu_vm_update_ptes - make sure that page tables are valid
1594 *
1595 * @params: see amdgpu_pte_update_params definition
1596 * @start: start of GPU address range
1597 * @end: end of GPU address range
1598 * @dst: destination address to map to, the next dst inside the function
1599 * @flags: mapping flags
1600 *
1601 * Update the page tables in the range @start - @end.
1602 *
1603 * Returns:
1604 * 0 for success, -EINVAL for failure.
1605 */
1606 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1607 uint64_t start, uint64_t end,
1608 uint64_t dst, uint64_t flags)
1609 {
1610 struct amdgpu_device *adev = params->adev;
1611 struct amdgpu_vm_pt_cursor cursor;
1612 uint64_t frag_start = start, frag_end;
1613 unsigned int frag;
1614
1615 /* figure out the initial fragment */
1616 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1617
1618 /* walk over the address space and update the PTs */
1619 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1620 while (cursor.pfn < end) {
1621 struct amdgpu_bo *pt = cursor.entry->base.bo;
1622 unsigned shift, parent_shift, mask;
1623 uint64_t incr, entry_end, pe_start;
1624
1625 if (!pt)
1626 return -ENOENT;
1627
1628 /* The root level can't be a huge page */
1629 if (cursor.level == adev->vm_manager.root_level) {
1630 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1631 return -ENOENT;
1632 continue;
1633 }
1634
1635 /* If it isn't already handled it can't be a huge page */
1636 if (cursor.entry->huge) {
1637 /* Add the entry to the relocated list to update it. */
1638 cursor.entry->huge = false;
1639 amdgpu_vm_bo_relocated(&cursor.entry->base);
1640 }
1641
1642 shift = amdgpu_vm_level_shift(adev, cursor.level);
1643 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1644 if (adev->asic_type < CHIP_VEGA10) {
1645 /* No huge page support before GMC v9 */
1646 if (cursor.level != AMDGPU_VM_PTB) {
1647 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1648 return -ENOENT;
1649 continue;
1650 }
1651 } else if (frag < shift) {
1652 /* We can't use this level when the fragment size is
1653 * smaller than the address shift. Go to the next
1654 * child entry and try again.
1655 */
1656 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1657 return -ENOENT;
1658 continue;
1659 } else if (frag >= parent_shift) {
1660 /* If the fragment size is even larger than the parent
1661 * shift we should go up one level and check it again.
1662 */
1663 if (!amdgpu_vm_pt_ancestor(&cursor))
1664 return -ENOENT;
1665 continue;
1666 }
1667
1668 /* Looks good so far, calculate parameters for the update */
1669 incr = AMDGPU_GPU_PAGE_SIZE << shift;
1670 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1671 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1672 entry_end = (mask + 1) << shift;
1673 entry_end += cursor.pfn & ~(entry_end - 1);
1674 entry_end = min(entry_end, end);
1675
1676 do {
1677 uint64_t upd_end = min(entry_end, frag_end);
1678 unsigned nptes = (upd_end - frag_start) >> shift;
1679
1680 amdgpu_vm_update_huge(params, pt, cursor.level,
1681 pe_start, dst, nptes, incr,
1682 flags | AMDGPU_PTE_FRAG(frag));
1683
1684 pe_start += nptes * 8;
1685 dst += nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1686
1687 frag_start = upd_end;
1688 if (frag_start >= frag_end) {
1689 /* figure out the next fragment */
1690 amdgpu_vm_fragment(params, frag_start, end,
1691 flags, &frag, &frag_end);
1692 if (frag < shift)
1693 break;
1694 }
1695 } while (frag_start < entry_end);
1696
1697 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1698 /* Mark all child entries as huge */
1699 while (cursor.pfn < frag_start) {
1700 cursor.entry->huge = true;
1701 amdgpu_vm_pt_next(adev, &cursor);
1702 }
1703
1704 } else if (frag >= shift) {
1705 /* or just move on to the next on the same level. */
1706 amdgpu_vm_pt_next(adev, &cursor);
1707 }
1708 }
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1715 *
1716 * @adev: amdgpu_device pointer
1717 * @exclusive: fence we need to sync to
1718 * @pages_addr: DMA addresses to use for mapping
1719 * @vm: requested vm
1720 * @start: start of mapped range
1721 * @last: last mapped entry
1722 * @flags: flags for the entries
1723 * @addr: addr to set the area to
1724 * @fence: optional resulting fence
1725 *
1726 * Fill in the page table entries between @start and @last.
1727 *
1728 * Returns:
1729 * 0 for success, -EINVAL for failure.
1730 */
1731 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1732 struct dma_fence *exclusive,
1733 dma_addr_t *pages_addr,
1734 struct amdgpu_vm *vm,
1735 uint64_t start, uint64_t last,
1736 uint64_t flags, uint64_t addr,
1737 struct dma_fence **fence)
1738 {
1739 struct amdgpu_ring *ring;
1740 void *owner = AMDGPU_FENCE_OWNER_VM;
1741 unsigned nptes, ncmds, ndw;
1742 struct amdgpu_job *job;
1743 struct amdgpu_pte_update_params params;
1744 struct dma_fence *f = NULL;
1745 int r;
1746
1747 memset(&params, 0, sizeof(params));
1748 params.adev = adev;
1749 params.vm = vm;
1750
1751 /* sync to everything on unmapping */
1752 if (!(flags & AMDGPU_PTE_VALID))
1753 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1754
1755 if (vm->use_cpu_for_update) {
1756 /* params.src is used as flag to indicate system Memory */
1757 if (pages_addr)
1758 params.src = ~0;
1759
1760 /* Wait for PT BOs to be free. PTs share the same resv. object
1761 * as the root PD BO
1762 */
1763 r = amdgpu_vm_wait_pd(adev, vm, owner);
1764 if (unlikely(r))
1765 return r;
1766
1767 params.func = amdgpu_vm_cpu_set_ptes;
1768 params.pages_addr = pages_addr;
1769 return amdgpu_vm_update_ptes(&params, start, last + 1,
1770 addr, flags);
1771 }
1772
1773 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
1774
1775 nptes = last - start + 1;
1776
1777 /*
1778 * reserve space for two commands every (1 << BLOCK_SIZE)
1779 * entries or 2k dwords (whatever is smaller)
1780 *
1781 * The second command is for the shadow pagetables.
1782 */
1783 if (vm->root.base.bo->shadow)
1784 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
1785 else
1786 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
1787
1788 /* padding, etc. */
1789 ndw = 64;
1790
1791 if (pages_addr) {
1792 /* copy commands needed */
1793 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1794
1795 /* and also PTEs */
1796 ndw += nptes * 2;
1797
1798 params.func = amdgpu_vm_do_copy_ptes;
1799
1800 } else {
1801 /* set page commands needed */
1802 ndw += ncmds * 10;
1803
1804 /* extra commands for begin/end fragments */
1805 if (vm->root.base.bo->shadow)
1806 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2;
1807 else
1808 ndw += 2 * 10 * adev->vm_manager.fragment_size;
1809
1810 params.func = amdgpu_vm_do_set_ptes;
1811 }
1812
1813 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1814 if (r)
1815 return r;
1816
1817 params.ib = &job->ibs[0];
1818
1819 if (pages_addr) {
1820 uint64_t *pte;
1821 unsigned i;
1822
1823 /* Put the PTEs at the end of the IB. */
1824 i = ndw - nptes * 2;
1825 pte= (uint64_t *)&(job->ibs->ptr[i]);
1826 params.src = job->ibs->gpu_addr + i * 4;
1827
1828 for (i = 0; i < nptes; ++i) {
1829 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1830 AMDGPU_GPU_PAGE_SIZE);
1831 pte[i] |= flags;
1832 }
1833 addr = 0;
1834 }
1835
1836 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
1837 if (r)
1838 goto error_free;
1839
1840 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1841 owner, false);
1842 if (r)
1843 goto error_free;
1844
1845 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv, 1);
1846 if (r)
1847 goto error_free;
1848
1849 r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1850 if (r)
1851 goto error_free;
1852
1853 amdgpu_ring_pad_ib(ring, params.ib);
1854 WARN_ON(params.ib->length_dw > ndw);
1855 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f);
1856 if (r)
1857 goto error_free;
1858
1859 amdgpu_bo_fence(vm->root.base.bo, f, true);
1860 dma_fence_put(*fence);
1861 *fence = f;
1862 return 0;
1863
1864 error_free:
1865 amdgpu_job_free(job);
1866 return r;
1867 }
1868
1869 /**
1870 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1871 *
1872 * @adev: amdgpu_device pointer
1873 * @exclusive: fence we need to sync to
1874 * @pages_addr: DMA addresses to use for mapping
1875 * @vm: requested vm
1876 * @mapping: mapped range and flags to use for the update
1877 * @flags: HW flags for the mapping
1878 * @nodes: array of drm_mm_nodes with the MC addresses
1879 * @fence: optional resulting fence
1880 *
1881 * Split the mapping into smaller chunks so that each update fits
1882 * into a SDMA IB.
1883 *
1884 * Returns:
1885 * 0 for success, -EINVAL for failure.
1886 */
1887 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1888 struct dma_fence *exclusive,
1889 dma_addr_t *pages_addr,
1890 struct amdgpu_vm *vm,
1891 struct amdgpu_bo_va_mapping *mapping,
1892 uint64_t flags,
1893 struct drm_mm_node *nodes,
1894 struct dma_fence **fence)
1895 {
1896 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1897 uint64_t pfn, start = mapping->start;
1898 int r;
1899
1900 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1901 * but in case of something, we filter the flags in first place
1902 */
1903 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1904 flags &= ~AMDGPU_PTE_READABLE;
1905 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1906 flags &= ~AMDGPU_PTE_WRITEABLE;
1907
1908 flags &= ~AMDGPU_PTE_EXECUTABLE;
1909 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1910
1911 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1912 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1913
1914 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1915 (adev->asic_type >= CHIP_VEGA10)) {
1916 flags |= AMDGPU_PTE_PRT;
1917 flags &= ~AMDGPU_PTE_VALID;
1918 }
1919
1920 trace_amdgpu_vm_bo_update(mapping);
1921
1922 pfn = mapping->offset >> PAGE_SHIFT;
1923 if (nodes) {
1924 while (pfn >= nodes->size) {
1925 pfn -= nodes->size;
1926 ++nodes;
1927 }
1928 }
1929
1930 do {
1931 dma_addr_t *dma_addr = NULL;
1932 uint64_t max_entries;
1933 uint64_t addr, last;
1934
1935 if (nodes) {
1936 addr = nodes->start << PAGE_SHIFT;
1937 max_entries = (nodes->size - pfn) *
1938 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1939 } else {
1940 addr = 0;
1941 max_entries = S64_MAX;
1942 }
1943
1944 if (pages_addr) {
1945 uint64_t count;
1946
1947 max_entries = min(max_entries, 16ull * 1024ull);
1948 for (count = 1;
1949 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1950 ++count) {
1951 uint64_t idx = pfn + count;
1952
1953 if (pages_addr[idx] !=
1954 (pages_addr[idx - 1] + PAGE_SIZE))
1955 break;
1956 }
1957
1958 if (count < min_linear_pages) {
1959 addr = pfn << PAGE_SHIFT;
1960 dma_addr = pages_addr;
1961 } else {
1962 addr = pages_addr[pfn];
1963 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1964 }
1965
1966 } else if (flags & AMDGPU_PTE_VALID) {
1967 addr += adev->vm_manager.vram_base_offset;
1968 addr += pfn << PAGE_SHIFT;
1969 }
1970
1971 last = min((uint64_t)mapping->last, start + max_entries - 1);
1972 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1973 start, last, flags, addr,
1974 fence);
1975 if (r)
1976 return r;
1977
1978 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1979 if (nodes && nodes->size == pfn) {
1980 pfn = 0;
1981 ++nodes;
1982 }
1983 start = last + 1;
1984
1985 } while (unlikely(start != mapping->last + 1));
1986
1987 return 0;
1988 }
1989
1990 /**
1991 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1992 *
1993 * @adev: amdgpu_device pointer
1994 * @bo_va: requested BO and VM object
1995 * @clear: if true clear the entries
1996 *
1997 * Fill in the page table entries for @bo_va.
1998 *
1999 * Returns:
2000 * 0 for success, -EINVAL for failure.
2001 */
2002 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
2003 struct amdgpu_bo_va *bo_va,
2004 bool clear)
2005 {
2006 struct amdgpu_bo *bo = bo_va->base.bo;
2007 struct amdgpu_vm *vm = bo_va->base.vm;
2008 struct amdgpu_bo_va_mapping *mapping;
2009 dma_addr_t *pages_addr = NULL;
2010 struct ttm_mem_reg *mem;
2011 struct drm_mm_node *nodes;
2012 struct dma_fence *exclusive, **last_update;
2013 uint64_t flags;
2014 int r;
2015
2016 if (clear || !bo) {
2017 mem = NULL;
2018 nodes = NULL;
2019 exclusive = NULL;
2020 } else {
2021 struct ttm_dma_tt *ttm;
2022
2023 mem = &bo->tbo.mem;
2024 nodes = mem->mm_node;
2025 if (mem->mem_type == TTM_PL_TT) {
2026 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
2027 pages_addr = ttm->dma_address;
2028 }
2029 exclusive = reservation_object_get_excl(bo->tbo.resv);
2030 }
2031
2032 if (bo)
2033 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
2034 else
2035 flags = 0x0;
2036
2037 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
2038 last_update = &vm->last_update;
2039 else
2040 last_update = &bo_va->last_pt_update;
2041
2042 if (!clear && bo_va->base.moved) {
2043 bo_va->base.moved = false;
2044 list_splice_init(&bo_va->valids, &bo_va->invalids);
2045
2046 } else if (bo_va->cleared != clear) {
2047 list_splice_init(&bo_va->valids, &bo_va->invalids);
2048 }
2049
2050 list_for_each_entry(mapping, &bo_va->invalids, list) {
2051 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
2052 mapping, flags, nodes,
2053 last_update);
2054 if (r)
2055 return r;
2056 }
2057
2058 if (vm->use_cpu_for_update) {
2059 /* Flush HDP */
2060 mb();
2061 amdgpu_asic_flush_hdp(adev, NULL);
2062 }
2063
2064 /* If the BO is not in its preferred location add it back to
2065 * the evicted list so that it gets validated again on the
2066 * next command submission.
2067 */
2068 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2069 uint32_t mem_type = bo->tbo.mem.mem_type;
2070
2071 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
2072 amdgpu_vm_bo_evicted(&bo_va->base);
2073 else
2074 amdgpu_vm_bo_idle(&bo_va->base);
2075 } else {
2076 amdgpu_vm_bo_done(&bo_va->base);
2077 }
2078
2079 list_splice_init(&bo_va->invalids, &bo_va->valids);
2080 bo_va->cleared = clear;
2081
2082 if (trace_amdgpu_vm_bo_mapping_enabled()) {
2083 list_for_each_entry(mapping, &bo_va->valids, list)
2084 trace_amdgpu_vm_bo_mapping(mapping);
2085 }
2086
2087 return 0;
2088 }
2089
2090 /**
2091 * amdgpu_vm_update_prt_state - update the global PRT state
2092 *
2093 * @adev: amdgpu_device pointer
2094 */
2095 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
2096 {
2097 unsigned long flags;
2098 bool enable;
2099
2100 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2101 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2102 adev->gmc.gmc_funcs->set_prt(adev, enable);
2103 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2104 }
2105
2106 /**
2107 * amdgpu_vm_prt_get - add a PRT user
2108 *
2109 * @adev: amdgpu_device pointer
2110 */
2111 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2112 {
2113 if (!adev->gmc.gmc_funcs->set_prt)
2114 return;
2115
2116 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2117 amdgpu_vm_update_prt_state(adev);
2118 }
2119
2120 /**
2121 * amdgpu_vm_prt_put - drop a PRT user
2122 *
2123 * @adev: amdgpu_device pointer
2124 */
2125 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2126 {
2127 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2128 amdgpu_vm_update_prt_state(adev);
2129 }
2130
2131 /**
2132 * amdgpu_vm_prt_cb - callback for updating the PRT status
2133 *
2134 * @fence: fence for the callback
2135 * @_cb: the callback function
2136 */
2137 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2138 {
2139 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2140
2141 amdgpu_vm_prt_put(cb->adev);
2142 kfree(cb);
2143 }
2144
2145 /**
2146 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2147 *
2148 * @adev: amdgpu_device pointer
2149 * @fence: fence for the callback
2150 */
2151 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2152 struct dma_fence *fence)
2153 {
2154 struct amdgpu_prt_cb *cb;
2155
2156 if (!adev->gmc.gmc_funcs->set_prt)
2157 return;
2158
2159 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2160 if (!cb) {
2161 /* Last resort when we are OOM */
2162 if (fence)
2163 dma_fence_wait(fence, false);
2164
2165 amdgpu_vm_prt_put(adev);
2166 } else {
2167 cb->adev = adev;
2168 if (!fence || dma_fence_add_callback(fence, &cb->cb,
2169 amdgpu_vm_prt_cb))
2170 amdgpu_vm_prt_cb(fence, &cb->cb);
2171 }
2172 }
2173
2174 /**
2175 * amdgpu_vm_free_mapping - free a mapping
2176 *
2177 * @adev: amdgpu_device pointer
2178 * @vm: requested vm
2179 * @mapping: mapping to be freed
2180 * @fence: fence of the unmap operation
2181 *
2182 * Free a mapping and make sure we decrease the PRT usage count if applicable.
2183 */
2184 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2185 struct amdgpu_vm *vm,
2186 struct amdgpu_bo_va_mapping *mapping,
2187 struct dma_fence *fence)
2188 {
2189 if (mapping->flags & AMDGPU_PTE_PRT)
2190 amdgpu_vm_add_prt_cb(adev, fence);
2191 kfree(mapping);
2192 }
2193
2194 /**
2195 * amdgpu_vm_prt_fini - finish all prt mappings
2196 *
2197 * @adev: amdgpu_device pointer
2198 * @vm: requested vm
2199 *
2200 * Register a cleanup callback to disable PRT support after VM dies.
2201 */
2202 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2203 {
2204 struct reservation_object *resv = vm->root.base.bo->tbo.resv;
2205 struct dma_fence *excl, **shared;
2206 unsigned i, shared_count;
2207 int r;
2208
2209 r = reservation_object_get_fences_rcu(resv, &excl,
2210 &shared_count, &shared);
2211 if (r) {
2212 /* Not enough memory to grab the fence list, as last resort
2213 * block for all the fences to complete.
2214 */
2215 reservation_object_wait_timeout_rcu(resv, true, false,
2216 MAX_SCHEDULE_TIMEOUT);
2217 return;
2218 }
2219
2220 /* Add a callback for each fence in the reservation object */
2221 amdgpu_vm_prt_get(adev);
2222 amdgpu_vm_add_prt_cb(adev, excl);
2223
2224 for (i = 0; i < shared_count; ++i) {
2225 amdgpu_vm_prt_get(adev);
2226 amdgpu_vm_add_prt_cb(adev, shared[i]);
2227 }
2228
2229 kfree(shared);
2230 }
2231
2232 /**
2233 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2234 *
2235 * @adev: amdgpu_device pointer
2236 * @vm: requested vm
2237 * @fence: optional resulting fence (unchanged if no work needed to be done
2238 * or if an error occurred)
2239 *
2240 * Make sure all freed BOs are cleared in the PT.
2241 * PTs have to be reserved and mutex must be locked!
2242 *
2243 * Returns:
2244 * 0 for success.
2245 *
2246 */
2247 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2248 struct amdgpu_vm *vm,
2249 struct dma_fence **fence)
2250 {
2251 struct amdgpu_bo_va_mapping *mapping;
2252 uint64_t init_pte_value = 0;
2253 struct dma_fence *f = NULL;
2254 int r;
2255
2256 while (!list_empty(&vm->freed)) {
2257 mapping = list_first_entry(&vm->freed,
2258 struct amdgpu_bo_va_mapping, list);
2259 list_del(&mapping->list);
2260
2261 if (vm->pte_support_ats &&
2262 mapping->start < AMDGPU_GMC_HOLE_START)
2263 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2264
2265 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
2266 mapping->start, mapping->last,
2267 init_pte_value, 0, &f);
2268 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2269 if (r) {
2270 dma_fence_put(f);
2271 return r;
2272 }
2273 }
2274
2275 if (fence && f) {
2276 dma_fence_put(*fence);
2277 *fence = f;
2278 } else {
2279 dma_fence_put(f);
2280 }
2281
2282 return 0;
2283
2284 }
2285
2286 /**
2287 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2288 *
2289 * @adev: amdgpu_device pointer
2290 * @vm: requested vm
2291 *
2292 * Make sure all BOs which are moved are updated in the PTs.
2293 *
2294 * Returns:
2295 * 0 for success.
2296 *
2297 * PTs have to be reserved!
2298 */
2299 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2300 struct amdgpu_vm *vm)
2301 {
2302 struct amdgpu_bo_va *bo_va, *tmp;
2303 struct reservation_object *resv;
2304 bool clear;
2305 int r;
2306
2307 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2308 /* Per VM BOs never need to bo cleared in the page tables */
2309 r = amdgpu_vm_bo_update(adev, bo_va, false);
2310 if (r)
2311 return r;
2312 }
2313
2314 spin_lock(&vm->invalidated_lock);
2315 while (!list_empty(&vm->invalidated)) {
2316 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2317 base.vm_status);
2318 resv = bo_va->base.bo->tbo.resv;
2319 spin_unlock(&vm->invalidated_lock);
2320
2321 /* Try to reserve the BO to avoid clearing its ptes */
2322 if (!amdgpu_vm_debug && reservation_object_trylock(resv))
2323 clear = false;
2324 /* Somebody else is using the BO right now */
2325 else
2326 clear = true;
2327
2328 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2329 if (r)
2330 return r;
2331
2332 if (!clear)
2333 reservation_object_unlock(resv);
2334 spin_lock(&vm->invalidated_lock);
2335 }
2336 spin_unlock(&vm->invalidated_lock);
2337
2338 return 0;
2339 }
2340
2341 /**
2342 * amdgpu_vm_bo_add - add a bo to a specific vm
2343 *
2344 * @adev: amdgpu_device pointer
2345 * @vm: requested vm
2346 * @bo: amdgpu buffer object
2347 *
2348 * Add @bo into the requested vm.
2349 * Add @bo to the list of bos associated with the vm
2350 *
2351 * Returns:
2352 * Newly added bo_va or NULL for failure
2353 *
2354 * Object has to be reserved!
2355 */
2356 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2357 struct amdgpu_vm *vm,
2358 struct amdgpu_bo *bo)
2359 {
2360 struct amdgpu_bo_va *bo_va;
2361
2362 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2363 if (bo_va == NULL) {
2364 return NULL;
2365 }
2366 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2367
2368 bo_va->ref_count = 1;
2369 INIT_LIST_HEAD(&bo_va->valids);
2370 INIT_LIST_HEAD(&bo_va->invalids);
2371
2372 return bo_va;
2373 }
2374
2375
2376 /**
2377 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2378 *
2379 * @adev: amdgpu_device pointer
2380 * @bo_va: bo_va to store the address
2381 * @mapping: the mapping to insert
2382 *
2383 * Insert a new mapping into all structures.
2384 */
2385 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2386 struct amdgpu_bo_va *bo_va,
2387 struct amdgpu_bo_va_mapping *mapping)
2388 {
2389 struct amdgpu_vm *vm = bo_va->base.vm;
2390 struct amdgpu_bo *bo = bo_va->base.bo;
2391
2392 mapping->bo_va = bo_va;
2393 list_add(&mapping->list, &bo_va->invalids);
2394 amdgpu_vm_it_insert(mapping, &vm->va);
2395
2396 if (mapping->flags & AMDGPU_PTE_PRT)
2397 amdgpu_vm_prt_get(adev);
2398
2399 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv &&
2400 !bo_va->base.moved) {
2401 list_move(&bo_va->base.vm_status, &vm->moved);
2402 }
2403 trace_amdgpu_vm_bo_map(bo_va, mapping);
2404 }
2405
2406 /**
2407 * amdgpu_vm_bo_map - map bo inside a vm
2408 *
2409 * @adev: amdgpu_device pointer
2410 * @bo_va: bo_va to store the address
2411 * @saddr: where to map the BO
2412 * @offset: requested offset in the BO
2413 * @size: BO size in bytes
2414 * @flags: attributes of pages (read/write/valid/etc.)
2415 *
2416 * Add a mapping of the BO at the specefied addr into the VM.
2417 *
2418 * Returns:
2419 * 0 for success, error for failure.
2420 *
2421 * Object has to be reserved and unreserved outside!
2422 */
2423 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2424 struct amdgpu_bo_va *bo_va,
2425 uint64_t saddr, uint64_t offset,
2426 uint64_t size, uint64_t flags)
2427 {
2428 struct amdgpu_bo_va_mapping *mapping, *tmp;
2429 struct amdgpu_bo *bo = bo_va->base.bo;
2430 struct amdgpu_vm *vm = bo_va->base.vm;
2431 uint64_t eaddr;
2432
2433 /* validate the parameters */
2434 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2435 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2436 return -EINVAL;
2437
2438 /* make sure object fit at this offset */
2439 eaddr = saddr + size - 1;
2440 if (saddr >= eaddr ||
2441 (bo && offset + size > amdgpu_bo_size(bo)))
2442 return -EINVAL;
2443
2444 saddr /= AMDGPU_GPU_PAGE_SIZE;
2445 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2446
2447 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2448 if (tmp) {
2449 /* bo and tmp overlap, invalid addr */
2450 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2451 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2452 tmp->start, tmp->last + 1);
2453 return -EINVAL;
2454 }
2455
2456 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2457 if (!mapping)
2458 return -ENOMEM;
2459
2460 mapping->start = saddr;
2461 mapping->last = eaddr;
2462 mapping->offset = offset;
2463 mapping->flags = flags;
2464
2465 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2466
2467 return 0;
2468 }
2469
2470 /**
2471 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2472 *
2473 * @adev: amdgpu_device pointer
2474 * @bo_va: bo_va to store the address
2475 * @saddr: where to map the BO
2476 * @offset: requested offset in the BO
2477 * @size: BO size in bytes
2478 * @flags: attributes of pages (read/write/valid/etc.)
2479 *
2480 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2481 * mappings as we do so.
2482 *
2483 * Returns:
2484 * 0 for success, error for failure.
2485 *
2486 * Object has to be reserved and unreserved outside!
2487 */
2488 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2489 struct amdgpu_bo_va *bo_va,
2490 uint64_t saddr, uint64_t offset,
2491 uint64_t size, uint64_t flags)
2492 {
2493 struct amdgpu_bo_va_mapping *mapping;
2494 struct amdgpu_bo *bo = bo_va->base.bo;
2495 uint64_t eaddr;
2496 int r;
2497
2498 /* validate the parameters */
2499 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2500 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2501 return -EINVAL;
2502
2503 /* make sure object fit at this offset */
2504 eaddr = saddr + size - 1;
2505 if (saddr >= eaddr ||
2506 (bo && offset + size > amdgpu_bo_size(bo)))
2507 return -EINVAL;
2508
2509 /* Allocate all the needed memory */
2510 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2511 if (!mapping)
2512 return -ENOMEM;
2513
2514 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2515 if (r) {
2516 kfree(mapping);
2517 return r;
2518 }
2519
2520 saddr /= AMDGPU_GPU_PAGE_SIZE;
2521 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2522
2523 mapping->start = saddr;
2524 mapping->last = eaddr;
2525 mapping->offset = offset;
2526 mapping->flags = flags;
2527
2528 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2529
2530 return 0;
2531 }
2532
2533 /**
2534 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2535 *
2536 * @adev: amdgpu_device pointer
2537 * @bo_va: bo_va to remove the address from
2538 * @saddr: where to the BO is mapped
2539 *
2540 * Remove a mapping of the BO at the specefied addr from the VM.
2541 *
2542 * Returns:
2543 * 0 for success, error for failure.
2544 *
2545 * Object has to be reserved and unreserved outside!
2546 */
2547 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2548 struct amdgpu_bo_va *bo_va,
2549 uint64_t saddr)
2550 {
2551 struct amdgpu_bo_va_mapping *mapping;
2552 struct amdgpu_vm *vm = bo_va->base.vm;
2553 bool valid = true;
2554
2555 saddr /= AMDGPU_GPU_PAGE_SIZE;
2556
2557 list_for_each_entry(mapping, &bo_va->valids, list) {
2558 if (mapping->start == saddr)
2559 break;
2560 }
2561
2562 if (&mapping->list == &bo_va->valids) {
2563 valid = false;
2564
2565 list_for_each_entry(mapping, &bo_va->invalids, list) {
2566 if (mapping->start == saddr)
2567 break;
2568 }
2569
2570 if (&mapping->list == &bo_va->invalids)
2571 return -ENOENT;
2572 }
2573
2574 list_del(&mapping->list);
2575 amdgpu_vm_it_remove(mapping, &vm->va);
2576 mapping->bo_va = NULL;
2577 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2578
2579 if (valid)
2580 list_add(&mapping->list, &vm->freed);
2581 else
2582 amdgpu_vm_free_mapping(adev, vm, mapping,
2583 bo_va->last_pt_update);
2584
2585 return 0;
2586 }
2587
2588 /**
2589 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2590 *
2591 * @adev: amdgpu_device pointer
2592 * @vm: VM structure to use
2593 * @saddr: start of the range
2594 * @size: size of the range
2595 *
2596 * Remove all mappings in a range, split them as appropriate.
2597 *
2598 * Returns:
2599 * 0 for success, error for failure.
2600 */
2601 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2602 struct amdgpu_vm *vm,
2603 uint64_t saddr, uint64_t size)
2604 {
2605 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2606 LIST_HEAD(removed);
2607 uint64_t eaddr;
2608
2609 eaddr = saddr + size - 1;
2610 saddr /= AMDGPU_GPU_PAGE_SIZE;
2611 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2612
2613 /* Allocate all the needed memory */
2614 before = kzalloc(sizeof(*before), GFP_KERNEL);
2615 if (!before)
2616 return -ENOMEM;
2617 INIT_LIST_HEAD(&before->list);
2618
2619 after = kzalloc(sizeof(*after), GFP_KERNEL);
2620 if (!after) {
2621 kfree(before);
2622 return -ENOMEM;
2623 }
2624 INIT_LIST_HEAD(&after->list);
2625
2626 /* Now gather all removed mappings */
2627 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2628 while (tmp) {
2629 /* Remember mapping split at the start */
2630 if (tmp->start < saddr) {
2631 before->start = tmp->start;
2632 before->last = saddr - 1;
2633 before->offset = tmp->offset;
2634 before->flags = tmp->flags;
2635 before->bo_va = tmp->bo_va;
2636 list_add(&before->list, &tmp->bo_va->invalids);
2637 }
2638
2639 /* Remember mapping split at the end */
2640 if (tmp->last > eaddr) {
2641 after->start = eaddr + 1;
2642 after->last = tmp->last;
2643 after->offset = tmp->offset;
2644 after->offset += after->start - tmp->start;
2645 after->flags = tmp->flags;
2646 after->bo_va = tmp->bo_va;
2647 list_add(&after->list, &tmp->bo_va->invalids);
2648 }
2649
2650 list_del(&tmp->list);
2651 list_add(&tmp->list, &removed);
2652
2653 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2654 }
2655
2656 /* And free them up */
2657 list_for_each_entry_safe(tmp, next, &removed, list) {
2658 amdgpu_vm_it_remove(tmp, &vm->va);
2659 list_del(&tmp->list);
2660
2661 if (tmp->start < saddr)
2662 tmp->start = saddr;
2663 if (tmp->last > eaddr)
2664 tmp->last = eaddr;
2665
2666 tmp->bo_va = NULL;
2667 list_add(&tmp->list, &vm->freed);
2668 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2669 }
2670
2671 /* Insert partial mapping before the range */
2672 if (!list_empty(&before->list)) {
2673 amdgpu_vm_it_insert(before, &vm->va);
2674 if (before->flags & AMDGPU_PTE_PRT)
2675 amdgpu_vm_prt_get(adev);
2676 } else {
2677 kfree(before);
2678 }
2679
2680 /* Insert partial mapping after the range */
2681 if (!list_empty(&after->list)) {
2682 amdgpu_vm_it_insert(after, &vm->va);
2683 if (after->flags & AMDGPU_PTE_PRT)
2684 amdgpu_vm_prt_get(adev);
2685 } else {
2686 kfree(after);
2687 }
2688
2689 return 0;
2690 }
2691
2692 /**
2693 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2694 *
2695 * @vm: the requested VM
2696 * @addr: the address
2697 *
2698 * Find a mapping by it's address.
2699 *
2700 * Returns:
2701 * The amdgpu_bo_va_mapping matching for addr or NULL
2702 *
2703 */
2704 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2705 uint64_t addr)
2706 {
2707 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2708 }
2709
2710 /**
2711 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2712 *
2713 * @vm: the requested vm
2714 * @ticket: CS ticket
2715 *
2716 * Trace all mappings of BOs reserved during a command submission.
2717 */
2718 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2719 {
2720 struct amdgpu_bo_va_mapping *mapping;
2721
2722 if (!trace_amdgpu_vm_bo_cs_enabled())
2723 return;
2724
2725 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2726 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2727 if (mapping->bo_va && mapping->bo_va->base.bo) {
2728 struct amdgpu_bo *bo;
2729
2730 bo = mapping->bo_va->base.bo;
2731 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket)
2732 continue;
2733 }
2734
2735 trace_amdgpu_vm_bo_cs(mapping);
2736 }
2737 }
2738
2739 /**
2740 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2741 *
2742 * @adev: amdgpu_device pointer
2743 * @bo_va: requested bo_va
2744 *
2745 * Remove @bo_va->bo from the requested vm.
2746 *
2747 * Object have to be reserved!
2748 */
2749 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2750 struct amdgpu_bo_va *bo_va)
2751 {
2752 struct amdgpu_bo_va_mapping *mapping, *next;
2753 struct amdgpu_bo *bo = bo_va->base.bo;
2754 struct amdgpu_vm *vm = bo_va->base.vm;
2755 struct amdgpu_vm_bo_base **base;
2756
2757 if (bo) {
2758 if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2759 vm->bulk_moveable = false;
2760
2761 for (base = &bo_va->base.bo->vm_bo; *base;
2762 base = &(*base)->next) {
2763 if (*base != &bo_va->base)
2764 continue;
2765
2766 *base = bo_va->base.next;
2767 break;
2768 }
2769 }
2770
2771 spin_lock(&vm->invalidated_lock);
2772 list_del(&bo_va->base.vm_status);
2773 spin_unlock(&vm->invalidated_lock);
2774
2775 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2776 list_del(&mapping->list);
2777 amdgpu_vm_it_remove(mapping, &vm->va);
2778 mapping->bo_va = NULL;
2779 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2780 list_add(&mapping->list, &vm->freed);
2781 }
2782 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2783 list_del(&mapping->list);
2784 amdgpu_vm_it_remove(mapping, &vm->va);
2785 amdgpu_vm_free_mapping(adev, vm, mapping,
2786 bo_va->last_pt_update);
2787 }
2788
2789 dma_fence_put(bo_va->last_pt_update);
2790 kfree(bo_va);
2791 }
2792
2793 /**
2794 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2795 *
2796 * @adev: amdgpu_device pointer
2797 * @bo: amdgpu buffer object
2798 * @evicted: is the BO evicted
2799 *
2800 * Mark @bo as invalid.
2801 */
2802 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2803 struct amdgpu_bo *bo, bool evicted)
2804 {
2805 struct amdgpu_vm_bo_base *bo_base;
2806
2807 /* shadow bo doesn't have bo base, its validation needs its parent */
2808 if (bo->parent && bo->parent->shadow == bo)
2809 bo = bo->parent;
2810
2811 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2812 struct amdgpu_vm *vm = bo_base->vm;
2813
2814 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2815 amdgpu_vm_bo_evicted(bo_base);
2816 continue;
2817 }
2818
2819 if (bo_base->moved)
2820 continue;
2821 bo_base->moved = true;
2822
2823 if (bo->tbo.type == ttm_bo_type_kernel)
2824 amdgpu_vm_bo_relocated(bo_base);
2825 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2826 amdgpu_vm_bo_moved(bo_base);
2827 else
2828 amdgpu_vm_bo_invalidated(bo_base);
2829 }
2830 }
2831
2832 /**
2833 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2834 *
2835 * @vm_size: VM size
2836 *
2837 * Returns:
2838 * VM page table as power of two
2839 */
2840 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2841 {
2842 /* Total bits covered by PD + PTs */
2843 unsigned bits = ilog2(vm_size) + 18;
2844
2845 /* Make sure the PD is 4K in size up to 8GB address space.
2846 Above that split equal between PD and PTs */
2847 if (vm_size <= 8)
2848 return (bits - 9);
2849 else
2850 return ((bits + 3) / 2);
2851 }
2852
2853 /**
2854 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2855 *
2856 * @adev: amdgpu_device pointer
2857 * @min_vm_size: the minimum vm size in GB if it's set auto
2858 * @fragment_size_default: Default PTE fragment size
2859 * @max_level: max VMPT level
2860 * @max_bits: max address space size in bits
2861 *
2862 */
2863 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2864 uint32_t fragment_size_default, unsigned max_level,
2865 unsigned max_bits)
2866 {
2867 unsigned int max_size = 1 << (max_bits - 30);
2868 unsigned int vm_size;
2869 uint64_t tmp;
2870
2871 /* adjust vm size first */
2872 if (amdgpu_vm_size != -1) {
2873 vm_size = amdgpu_vm_size;
2874 if (vm_size > max_size) {
2875 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2876 amdgpu_vm_size, max_size);
2877 vm_size = max_size;
2878 }
2879 } else {
2880 struct sysinfo si;
2881 unsigned int phys_ram_gb;
2882
2883 /* Optimal VM size depends on the amount of physical
2884 * RAM available. Underlying requirements and
2885 * assumptions:
2886 *
2887 * - Need to map system memory and VRAM from all GPUs
2888 * - VRAM from other GPUs not known here
2889 * - Assume VRAM <= system memory
2890 * - On GFX8 and older, VM space can be segmented for
2891 * different MTYPEs
2892 * - Need to allow room for fragmentation, guard pages etc.
2893 *
2894 * This adds up to a rough guess of system memory x3.
2895 * Round up to power of two to maximize the available
2896 * VM size with the given page table size.
2897 */
2898 si_meminfo(&si);
2899 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2900 (1 << 30) - 1) >> 30;
2901 vm_size = roundup_pow_of_two(
2902 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2903 }
2904
2905 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2906
2907 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2908 if (amdgpu_vm_block_size != -1)
2909 tmp >>= amdgpu_vm_block_size - 9;
2910 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2911 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2912 switch (adev->vm_manager.num_level) {
2913 case 3:
2914 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2915 break;
2916 case 2:
2917 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2918 break;
2919 case 1:
2920 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2921 break;
2922 default:
2923 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2924 }
2925 /* block size depends on vm size and hw setup*/
2926 if (amdgpu_vm_block_size != -1)
2927 adev->vm_manager.block_size =
2928 min((unsigned)amdgpu_vm_block_size, max_bits
2929 - AMDGPU_GPU_PAGE_SHIFT
2930 - 9 * adev->vm_manager.num_level);
2931 else if (adev->vm_manager.num_level > 1)
2932 adev->vm_manager.block_size = 9;
2933 else
2934 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2935
2936 if (amdgpu_vm_fragment_size == -1)
2937 adev->vm_manager.fragment_size = fragment_size_default;
2938 else
2939 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2940
2941 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2942 vm_size, adev->vm_manager.num_level + 1,
2943 adev->vm_manager.block_size,
2944 adev->vm_manager.fragment_size);
2945 }
2946
2947 static struct amdgpu_retryfault_hashtable *init_fault_hash(void)
2948 {
2949 struct amdgpu_retryfault_hashtable *fault_hash;
2950
2951 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL);
2952 if (!fault_hash)
2953 return fault_hash;
2954
2955 INIT_CHASH_TABLE(fault_hash->hash,
2956 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0);
2957 spin_lock_init(&fault_hash->lock);
2958 fault_hash->count = 0;
2959
2960 return fault_hash;
2961 }
2962
2963 /**
2964 * amdgpu_vm_init - initialize a vm instance
2965 *
2966 * @adev: amdgpu_device pointer
2967 * @vm: requested vm
2968 * @vm_context: Indicates if it GFX or Compute context
2969 * @pasid: Process address space identifier
2970 *
2971 * Init @vm fields.
2972 *
2973 * Returns:
2974 * 0 for success, error for failure.
2975 */
2976 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2977 int vm_context, unsigned int pasid)
2978 {
2979 struct amdgpu_bo_param bp;
2980 struct amdgpu_bo *root;
2981 int r, i;
2982
2983 vm->va = RB_ROOT_CACHED;
2984 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2985 vm->reserved_vmid[i] = NULL;
2986 INIT_LIST_HEAD(&vm->evicted);
2987 INIT_LIST_HEAD(&vm->relocated);
2988 INIT_LIST_HEAD(&vm->moved);
2989 INIT_LIST_HEAD(&vm->idle);
2990 INIT_LIST_HEAD(&vm->invalidated);
2991 spin_lock_init(&vm->invalidated_lock);
2992 INIT_LIST_HEAD(&vm->freed);
2993
2994 /* create scheduler entity for page table updates */
2995 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
2996 adev->vm_manager.vm_pte_num_rqs, NULL);
2997 if (r)
2998 return r;
2999
3000 vm->pte_support_ats = false;
3001
3002 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
3003 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3004 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3005
3006 if (adev->asic_type == CHIP_RAVEN)
3007 vm->pte_support_ats = true;
3008 } else {
3009 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3010 AMDGPU_VM_USE_CPU_FOR_GFX);
3011 }
3012 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3013 vm->use_cpu_for_update ? "CPU" : "SDMA");
3014 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3015 "CPU update of VM recommended only for large BAR system\n");
3016 vm->last_update = NULL;
3017
3018 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
3019 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
3020 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
3021 r = amdgpu_bo_create(adev, &bp, &root);
3022 if (r)
3023 goto error_free_sched_entity;
3024
3025 r = amdgpu_bo_reserve(root, true);
3026 if (r)
3027 goto error_free_root;
3028
3029 r = amdgpu_vm_clear_bo(adev, vm, root,
3030 adev->vm_manager.root_level,
3031 vm->pte_support_ats);
3032 if (r)
3033 goto error_unreserve;
3034
3035 amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
3036 amdgpu_bo_unreserve(vm->root.base.bo);
3037
3038 if (pasid) {
3039 unsigned long flags;
3040
3041 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3042 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3043 GFP_ATOMIC);
3044 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3045 if (r < 0)
3046 goto error_free_root;
3047
3048 vm->pasid = pasid;
3049 }
3050
3051 vm->fault_hash = init_fault_hash();
3052 if (!vm->fault_hash) {
3053 r = -ENOMEM;
3054 goto error_free_root;
3055 }
3056
3057 INIT_KFIFO(vm->faults);
3058 vm->fault_credit = 16;
3059
3060 return 0;
3061
3062 error_unreserve:
3063 amdgpu_bo_unreserve(vm->root.base.bo);
3064
3065 error_free_root:
3066 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3067 amdgpu_bo_unref(&vm->root.base.bo);
3068 vm->root.base.bo = NULL;
3069
3070 error_free_sched_entity:
3071 drm_sched_entity_destroy(&vm->entity);
3072
3073 return r;
3074 }
3075
3076 /**
3077 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3078 *
3079 * @adev: amdgpu_device pointer
3080 * @vm: requested vm
3081 *
3082 * This only works on GFX VMs that don't have any BOs added and no
3083 * page tables allocated yet.
3084 *
3085 * Changes the following VM parameters:
3086 * - use_cpu_for_update
3087 * - pte_supports_ats
3088 * - pasid (old PASID is released, because compute manages its own PASIDs)
3089 *
3090 * Reinitializes the page directory to reflect the changed ATS
3091 * setting.
3092 *
3093 * Returns:
3094 * 0 for success, -errno for errors.
3095 */
3096 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
3097 {
3098 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3099 int r;
3100
3101 r = amdgpu_bo_reserve(vm->root.base.bo, true);
3102 if (r)
3103 return r;
3104
3105 /* Sanity checks */
3106 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
3107 r = -EINVAL;
3108 goto unreserve_bo;
3109 }
3110
3111 if (pasid) {
3112 unsigned long flags;
3113
3114 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3115 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3116 GFP_ATOMIC);
3117 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3118
3119 if (r == -ENOSPC)
3120 goto unreserve_bo;
3121 r = 0;
3122 }
3123
3124 /* Check if PD needs to be reinitialized and do it before
3125 * changing any other state, in case it fails.
3126 */
3127 if (pte_support_ats != vm->pte_support_ats) {
3128 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
3129 adev->vm_manager.root_level,
3130 pte_support_ats);
3131 if (r)
3132 goto free_idr;
3133 }
3134
3135 /* Update VM state */
3136 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3137 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3138 vm->pte_support_ats = pte_support_ats;
3139 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3140 vm->use_cpu_for_update ? "CPU" : "SDMA");
3141 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3142 "CPU update of VM recommended only for large BAR system\n");
3143
3144 if (vm->pasid) {
3145 unsigned long flags;
3146
3147 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3148 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3149 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3150
3151 /* Free the original amdgpu allocated pasid
3152 * Will be replaced with kfd allocated pasid
3153 */
3154 amdgpu_pasid_free(vm->pasid);
3155 vm->pasid = 0;
3156 }
3157
3158 /* Free the shadow bo for compute VM */
3159 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3160
3161 if (pasid)
3162 vm->pasid = pasid;
3163
3164 goto unreserve_bo;
3165
3166 free_idr:
3167 if (pasid) {
3168 unsigned long flags;
3169
3170 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3171 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3172 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3173 }
3174 unreserve_bo:
3175 amdgpu_bo_unreserve(vm->root.base.bo);
3176 return r;
3177 }
3178
3179 /**
3180 * amdgpu_vm_release_compute - release a compute vm
3181 * @adev: amdgpu_device pointer
3182 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3183 *
3184 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3185 * pasid from vm. Compute should stop use of vm after this call.
3186 */
3187 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3188 {
3189 if (vm->pasid) {
3190 unsigned long flags;
3191
3192 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3193 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3194 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3195 }
3196 vm->pasid = 0;
3197 }
3198
3199 /**
3200 * amdgpu_vm_fini - tear down a vm instance
3201 *
3202 * @adev: amdgpu_device pointer
3203 * @vm: requested vm
3204 *
3205 * Tear down @vm.
3206 * Unbind the VM and remove all bos from the vm bo list
3207 */
3208 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3209 {
3210 struct amdgpu_bo_va_mapping *mapping, *tmp;
3211 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3212 struct amdgpu_bo *root;
3213 u64 fault;
3214 int i, r;
3215
3216 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3217
3218 /* Clear pending page faults from IH when the VM is destroyed */
3219 while (kfifo_get(&vm->faults, &fault))
3220 amdgpu_vm_clear_fault(vm->fault_hash, fault);
3221
3222 if (vm->pasid) {
3223 unsigned long flags;
3224
3225 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3226 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3227 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3228 }
3229
3230 kfree(vm->fault_hash);
3231 vm->fault_hash = NULL;
3232
3233 drm_sched_entity_destroy(&vm->entity);
3234
3235 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3236 dev_err(adev->dev, "still active bo inside vm\n");
3237 }
3238 rbtree_postorder_for_each_entry_safe(mapping, tmp,
3239 &vm->va.rb_root, rb) {
3240 /* Don't remove the mapping here, we don't want to trigger a
3241 * rebalance and the tree is about to be destroyed anyway.
3242 */
3243 list_del(&mapping->list);
3244 kfree(mapping);
3245 }
3246 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3247 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3248 amdgpu_vm_prt_fini(adev, vm);
3249 prt_fini_needed = false;
3250 }
3251
3252 list_del(&mapping->list);
3253 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3254 }
3255
3256 root = amdgpu_bo_ref(vm->root.base.bo);
3257 r = amdgpu_bo_reserve(root, true);
3258 if (r) {
3259 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
3260 } else {
3261 amdgpu_vm_free_pts(adev, vm);
3262 amdgpu_bo_unreserve(root);
3263 }
3264 amdgpu_bo_unref(&root);
3265 dma_fence_put(vm->last_update);
3266 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3267 amdgpu_vmid_free_reserved(adev, vm, i);
3268 }
3269
3270 /**
3271 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID
3272 *
3273 * @adev: amdgpu_device pointer
3274 * @pasid: PASID do identify the VM
3275 *
3276 * This function is expected to be called in interrupt context.
3277 *
3278 * Returns:
3279 * True if there was fault credit, false otherwise
3280 */
3281 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev,
3282 unsigned int pasid)
3283 {
3284 struct amdgpu_vm *vm;
3285
3286 spin_lock(&adev->vm_manager.pasid_lock);
3287 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3288 if (!vm) {
3289 /* VM not found, can't track fault credit */
3290 spin_unlock(&adev->vm_manager.pasid_lock);
3291 return true;
3292 }
3293
3294 /* No lock needed. only accessed by IRQ handler */
3295 if (!vm->fault_credit) {
3296 /* Too many faults in this VM */
3297 spin_unlock(&adev->vm_manager.pasid_lock);
3298 return false;
3299 }
3300
3301 vm->fault_credit--;
3302 spin_unlock(&adev->vm_manager.pasid_lock);
3303 return true;
3304 }
3305
3306 /**
3307 * amdgpu_vm_manager_init - init the VM manager
3308 *
3309 * @adev: amdgpu_device pointer
3310 *
3311 * Initialize the VM manager structures
3312 */
3313 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3314 {
3315 unsigned i;
3316
3317 amdgpu_vmid_mgr_init(adev);
3318
3319 adev->vm_manager.fence_context =
3320 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3321 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3322 adev->vm_manager.seqno[i] = 0;
3323
3324 spin_lock_init(&adev->vm_manager.prt_lock);
3325 atomic_set(&adev->vm_manager.num_prt_users, 0);
3326
3327 /* If not overridden by the user, by default, only in large BAR systems
3328 * Compute VM tables will be updated by CPU
3329 */
3330 #ifdef CONFIG_X86_64
3331 if (amdgpu_vm_update_mode == -1) {
3332 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3333 adev->vm_manager.vm_update_mode =
3334 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3335 else
3336 adev->vm_manager.vm_update_mode = 0;
3337 } else
3338 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3339 #else
3340 adev->vm_manager.vm_update_mode = 0;
3341 #endif
3342
3343 idr_init(&adev->vm_manager.pasid_idr);
3344 spin_lock_init(&adev->vm_manager.pasid_lock);
3345 }
3346
3347 /**
3348 * amdgpu_vm_manager_fini - cleanup VM manager
3349 *
3350 * @adev: amdgpu_device pointer
3351 *
3352 * Cleanup the VM manager and free resources.
3353 */
3354 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3355 {
3356 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3357 idr_destroy(&adev->vm_manager.pasid_idr);
3358
3359 amdgpu_vmid_mgr_fini(adev);
3360 }
3361
3362 /**
3363 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3364 *
3365 * @dev: drm device pointer
3366 * @data: drm_amdgpu_vm
3367 * @filp: drm file pointer
3368 *
3369 * Returns:
3370 * 0 for success, -errno for errors.
3371 */
3372 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3373 {
3374 union drm_amdgpu_vm *args = data;
3375 struct amdgpu_device *adev = dev->dev_private;
3376 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3377 int r;
3378
3379 switch (args->in.op) {
3380 case AMDGPU_VM_OP_RESERVE_VMID:
3381 /* current, we only have requirement to reserve vmid from gfxhub */
3382 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3383 if (r)
3384 return r;
3385 break;
3386 case AMDGPU_VM_OP_UNRESERVE_VMID:
3387 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3388 break;
3389 default:
3390 return -EINVAL;
3391 }
3392
3393 return 0;
3394 }
3395
3396 /**
3397 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3398 *
3399 * @adev: drm device pointer
3400 * @pasid: PASID identifier for VM
3401 * @task_info: task_info to fill.
3402 */
3403 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3404 struct amdgpu_task_info *task_info)
3405 {
3406 struct amdgpu_vm *vm;
3407
3408 spin_lock(&adev->vm_manager.pasid_lock);
3409
3410 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3411 if (vm)
3412 *task_info = vm->task_info;
3413
3414 spin_unlock(&adev->vm_manager.pasid_lock);
3415 }
3416
3417 /**
3418 * amdgpu_vm_set_task_info - Sets VMs task info.
3419 *
3420 * @vm: vm for which to set the info
3421 */
3422 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3423 {
3424 if (!vm->task_info.pid) {
3425 vm->task_info.pid = current->pid;
3426 get_task_comm(vm->task_info.task_name, current);
3427
3428 if (current->group_leader->mm == current->mm) {
3429 vm->task_info.tgid = current->group_leader->pid;
3430 get_task_comm(vm->task_info.process_name, current->group_leader);
3431 }
3432 }
3433 }
3434
3435 /**
3436 * amdgpu_vm_add_fault - Add a page fault record to fault hash table
3437 *
3438 * @fault_hash: fault hash table
3439 * @key: 64-bit encoding of PASID and address
3440 *
3441 * This should be called when a retry page fault interrupt is
3442 * received. If this is a new page fault, it will be added to a hash
3443 * table. The return value indicates whether this is a new fault, or
3444 * a fault that was already known and is already being handled.
3445 *
3446 * If there are too many pending page faults, this will fail. Retry
3447 * interrupts should be ignored in this case until there is enough
3448 * free space.
3449 *
3450 * Returns 0 if the fault was added, 1 if the fault was already known,
3451 * -ENOSPC if there are too many pending faults.
3452 */
3453 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
3454 {
3455 unsigned long flags;
3456 int r = -ENOSPC;
3457
3458 if (WARN_ON_ONCE(!fault_hash))
3459 /* Should be allocated in amdgpu_vm_init
3460 */
3461 return r;
3462
3463 spin_lock_irqsave(&fault_hash->lock, flags);
3464
3465 /* Only let the hash table fill up to 50% for best performance */
3466 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1)))
3467 goto unlock_out;
3468
3469 r = chash_table_copy_in(&fault_hash->hash, key, NULL);
3470 if (!r)
3471 fault_hash->count++;
3472
3473 /* chash_table_copy_in should never fail unless we're losing count */
3474 WARN_ON_ONCE(r < 0);
3475
3476 unlock_out:
3477 spin_unlock_irqrestore(&fault_hash->lock, flags);
3478 return r;
3479 }
3480
3481 /**
3482 * amdgpu_vm_clear_fault - Remove a page fault record
3483 *
3484 * @fault_hash: fault hash table
3485 * @key: 64-bit encoding of PASID and address
3486 *
3487 * This should be called when a page fault has been handled. Any
3488 * future interrupt with this key will be processed as a new
3489 * page fault.
3490 */
3491 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
3492 {
3493 unsigned long flags;
3494 int r;
3495
3496 if (!fault_hash)
3497 return;
3498
3499 spin_lock_irqsave(&fault_hash->lock, flags);
3500
3501 r = chash_table_remove(&fault_hash->hash, key, NULL);
3502 if (!WARN_ON_ONCE(r < 0)) {
3503 fault_hash->count--;
3504 WARN_ON_ONCE(fault_hash->count < 0);
3505 }
3506
3507 spin_unlock_irqrestore(&fault_hash->lock, flags);
3508 }