]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c
selftests: forwarding: add shebang for sch_red.sh
[people/ms/linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57
58 #include "amdgpu_ras.h"
59 #include "sdma_v4_4.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
74
75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
77
78 #define WREG32_SDMA(instance, offset, value) \
79 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
80 #define RREG32_SDMA(instance, offset) \
81 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
82
83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
88
89 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
100 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
101 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
102 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
112 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
113 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
114 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
115 };
116
117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
118 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
120 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
121 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
122 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
123 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
124 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
125 };
126
127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
128 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
129 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
130 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
131 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
133 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
134 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
135 };
136
137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
143 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
144 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
148 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
149 };
150
151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
153 };
154
155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
156 {
157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
183 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
184 };
185
186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
213 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
214 };
215
216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
217 {
218 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
219 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
220 };
221
222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
223 {
224 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
225 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
226 };
227
228 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
229 {
230 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
234 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
235 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
236 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
237 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
238 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
242 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
245 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
246 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
247 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
248 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
249 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
250 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
251 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
252 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
253 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
254 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
255 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
256 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
257 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
258 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
259 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
260 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
261 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
262 };
263
264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
265 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
266 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
267 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
268 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
269 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
270 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
271 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
272 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
273 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
274 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
275 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
276 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
277 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
278 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
279 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
280 };
281
282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
283 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
284 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
285 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
286 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
287 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
288 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
289 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
290 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
291 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
292 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
293 };
294
295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
296 { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
298 0, 0,
299 },
300 { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
302 0, 0,
303 },
304 { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
306 0, 0,
307 },
308 { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
310 0, 0,
311 },
312 { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
314 0, 0,
315 },
316 { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
318 0, 0,
319 },
320 { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
322 0, 0,
323 },
324 { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
326 0, 0,
327 },
328 { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
330 0, 0,
331 },
332 { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
334 0, 0,
335 },
336 { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
338 0, 0,
339 },
340 { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
342 0, 0,
343 },
344 { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
346 0, 0,
347 },
348 { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
350 0, 0,
351 },
352 { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
354 0, 0,
355 },
356 { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
358 0, 0,
359 },
360 { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
362 0, 0,
363 },
364 { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
366 0, 0,
367 },
368 { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
370 0, 0,
371 },
372 { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
373 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
374 0, 0,
375 },
376 { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
377 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
378 0, 0,
379 },
380 { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
381 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
382 0, 0,
383 },
384 { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
385 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
386 0, 0,
387 },
388 { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
389 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
390 0, 0,
391 },
392 };
393
394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
395 u32 instance, u32 offset)
396 {
397 switch (instance) {
398 case 0:
399 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
400 case 1:
401 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
402 case 2:
403 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
404 case 3:
405 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
406 case 4:
407 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
408 case 5:
409 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
410 case 6:
411 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
412 case 7:
413 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
414 default:
415 break;
416 }
417 return 0;
418 }
419
420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
421 {
422 switch (seq_num) {
423 case 0:
424 return SOC15_IH_CLIENTID_SDMA0;
425 case 1:
426 return SOC15_IH_CLIENTID_SDMA1;
427 case 2:
428 return SOC15_IH_CLIENTID_SDMA2;
429 case 3:
430 return SOC15_IH_CLIENTID_SDMA3;
431 case 4:
432 return SOC15_IH_CLIENTID_SDMA4;
433 case 5:
434 return SOC15_IH_CLIENTID_SDMA5;
435 case 6:
436 return SOC15_IH_CLIENTID_SDMA6;
437 case 7:
438 return SOC15_IH_CLIENTID_SDMA7;
439 default:
440 break;
441 }
442 return -EINVAL;
443 }
444
445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
446 {
447 switch (client_id) {
448 case SOC15_IH_CLIENTID_SDMA0:
449 return 0;
450 case SOC15_IH_CLIENTID_SDMA1:
451 return 1;
452 case SOC15_IH_CLIENTID_SDMA2:
453 return 2;
454 case SOC15_IH_CLIENTID_SDMA3:
455 return 3;
456 case SOC15_IH_CLIENTID_SDMA4:
457 return 4;
458 case SOC15_IH_CLIENTID_SDMA5:
459 return 5;
460 case SOC15_IH_CLIENTID_SDMA6:
461 return 6;
462 case SOC15_IH_CLIENTID_SDMA7:
463 return 7;
464 default:
465 break;
466 }
467 return -EINVAL;
468 }
469
470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
471 {
472 switch (adev->ip_versions[SDMA0_HWIP][0]) {
473 case IP_VERSION(4, 0, 0):
474 soc15_program_register_sequence(adev,
475 golden_settings_sdma_4,
476 ARRAY_SIZE(golden_settings_sdma_4));
477 soc15_program_register_sequence(adev,
478 golden_settings_sdma_vg10,
479 ARRAY_SIZE(golden_settings_sdma_vg10));
480 break;
481 case IP_VERSION(4, 0, 1):
482 soc15_program_register_sequence(adev,
483 golden_settings_sdma_4,
484 ARRAY_SIZE(golden_settings_sdma_4));
485 soc15_program_register_sequence(adev,
486 golden_settings_sdma_vg12,
487 ARRAY_SIZE(golden_settings_sdma_vg12));
488 break;
489 case IP_VERSION(4, 2, 0):
490 soc15_program_register_sequence(adev,
491 golden_settings_sdma0_4_2_init,
492 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
493 soc15_program_register_sequence(adev,
494 golden_settings_sdma0_4_2,
495 ARRAY_SIZE(golden_settings_sdma0_4_2));
496 soc15_program_register_sequence(adev,
497 golden_settings_sdma1_4_2,
498 ARRAY_SIZE(golden_settings_sdma1_4_2));
499 break;
500 case IP_VERSION(4, 2, 2):
501 soc15_program_register_sequence(adev,
502 golden_settings_sdma_arct,
503 ARRAY_SIZE(golden_settings_sdma_arct));
504 break;
505 case IP_VERSION(4, 4, 0):
506 soc15_program_register_sequence(adev,
507 golden_settings_sdma_aldebaran,
508 ARRAY_SIZE(golden_settings_sdma_aldebaran));
509 break;
510 case IP_VERSION(4, 1, 0):
511 case IP_VERSION(4, 1, 1):
512 soc15_program_register_sequence(adev,
513 golden_settings_sdma_4_1,
514 ARRAY_SIZE(golden_settings_sdma_4_1));
515 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
516 soc15_program_register_sequence(adev,
517 golden_settings_sdma_rv2,
518 ARRAY_SIZE(golden_settings_sdma_rv2));
519 else
520 soc15_program_register_sequence(adev,
521 golden_settings_sdma_rv1,
522 ARRAY_SIZE(golden_settings_sdma_rv1));
523 break;
524 case IP_VERSION(4, 1, 2):
525 soc15_program_register_sequence(adev,
526 golden_settings_sdma_4_3,
527 ARRAY_SIZE(golden_settings_sdma_4_3));
528 break;
529 default:
530 break;
531 }
532 }
533
534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
535 {
536 int i;
537
538 /*
539 * The only chips with SDMAv4 and ULV are VG10 and VG20.
540 * Server SKUs take a different hysteresis setting from other SKUs.
541 */
542 switch (adev->ip_versions[SDMA0_HWIP][0]) {
543 case IP_VERSION(4, 0, 0):
544 if (adev->pdev->device == 0x6860)
545 break;
546 return;
547 case IP_VERSION(4, 2, 0):
548 if (adev->pdev->device == 0x66a1)
549 break;
550 return;
551 default:
552 return;
553 }
554
555 for (i = 0; i < adev->sdma.num_instances; i++) {
556 uint32_t temp;
557
558 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
559 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
560 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
561 }
562 }
563
564 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
565 {
566 int err = 0;
567 const struct sdma_firmware_header_v1_0 *hdr;
568
569 err = amdgpu_ucode_validate(sdma_inst->fw);
570 if (err)
571 return err;
572
573 hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
574 sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
575 sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
576
577 if (sdma_inst->feature_version >= 20)
578 sdma_inst->burst_nop = true;
579
580 return 0;
581 }
582
583 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
584 {
585 int i;
586
587 for (i = 0; i < adev->sdma.num_instances; i++) {
588 release_firmware(adev->sdma.instance[i].fw);
589 adev->sdma.instance[i].fw = NULL;
590
591 /* arcturus shares the same FW memory across
592 all SDMA isntances */
593 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
594 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0))
595 break;
596 }
597
598 memset((void *)adev->sdma.instance, 0,
599 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
600 }
601
602 /**
603 * sdma_v4_0_init_microcode - load ucode images from disk
604 *
605 * @adev: amdgpu_device pointer
606 *
607 * Use the firmware interface to load the ucode images into
608 * the driver (not loaded into hw).
609 * Returns 0 on success, error on failure.
610 */
611
612 // emulation only, won't work on real chip
613 // vega10 real chip need to use PSP to load firmware
614 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
615 {
616 const char *chip_name;
617 char fw_name[30];
618 int err = 0, i;
619 struct amdgpu_firmware_info *info = NULL;
620 const struct common_firmware_header *header = NULL;
621
622 DRM_DEBUG("\n");
623
624 switch (adev->ip_versions[SDMA0_HWIP][0]) {
625 case IP_VERSION(4, 0, 0):
626 chip_name = "vega10";
627 break;
628 case IP_VERSION(4, 0, 1):
629 chip_name = "vega12";
630 break;
631 case IP_VERSION(4, 2, 0):
632 chip_name = "vega20";
633 break;
634 case IP_VERSION(4, 1, 0):
635 case IP_VERSION(4, 1, 1):
636 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
637 chip_name = "raven2";
638 else if (adev->apu_flags & AMD_APU_IS_PICASSO)
639 chip_name = "picasso";
640 else
641 chip_name = "raven";
642 break;
643 case IP_VERSION(4, 2, 2):
644 chip_name = "arcturus";
645 break;
646 case IP_VERSION(4, 1, 2):
647 if (adev->apu_flags & AMD_APU_IS_RENOIR)
648 chip_name = "renoir";
649 else
650 chip_name = "green_sardine";
651 break;
652 case IP_VERSION(4, 4, 0):
653 chip_name = "aldebaran";
654 break;
655 default:
656 BUG();
657 }
658
659 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
660
661 err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
662 if (err)
663 goto out;
664
665 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
666 if (err)
667 goto out;
668
669 for (i = 1; i < adev->sdma.num_instances; i++) {
670 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
671 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) {
672 /* Acturus & Aldebaran will leverage the same FW memory
673 for every SDMA instance */
674 memcpy((void *)&adev->sdma.instance[i],
675 (void *)&adev->sdma.instance[0],
676 sizeof(struct amdgpu_sdma_instance));
677 }
678 else {
679 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
680
681 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
682 if (err)
683 goto out;
684
685 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
686 if (err)
687 goto out;
688 }
689 }
690
691 DRM_DEBUG("psp_load == '%s'\n",
692 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
693
694 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
695 for (i = 0; i < adev->sdma.num_instances; i++) {
696 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
697 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
698 info->fw = adev->sdma.instance[i].fw;
699 header = (const struct common_firmware_header *)info->fw->data;
700 adev->firmware.fw_size +=
701 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
702 }
703 }
704
705 out:
706 if (err) {
707 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
708 sdma_v4_0_destroy_inst_ctx(adev);
709 }
710 return err;
711 }
712
713 /**
714 * sdma_v4_0_ring_get_rptr - get the current read pointer
715 *
716 * @ring: amdgpu ring pointer
717 *
718 * Get the current rptr from the hardware (VEGA10+).
719 */
720 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
721 {
722 u64 *rptr;
723
724 /* XXX check if swapping is necessary on BE */
725 rptr = ((u64 *)ring->rptr_cpu_addr);
726
727 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
728 return ((*rptr) >> 2);
729 }
730
731 /**
732 * sdma_v4_0_ring_get_wptr - get the current write pointer
733 *
734 * @ring: amdgpu ring pointer
735 *
736 * Get the current wptr from the hardware (VEGA10+).
737 */
738 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
739 {
740 struct amdgpu_device *adev = ring->adev;
741 u64 wptr;
742
743 if (ring->use_doorbell) {
744 /* XXX check if swapping is necessary on BE */
745 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
746 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
747 } else {
748 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
749 wptr = wptr << 32;
750 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
751 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
752 ring->me, wptr);
753 }
754
755 return wptr >> 2;
756 }
757
758 /**
759 * sdma_v4_0_ring_set_wptr - commit the write pointer
760 *
761 * @ring: amdgpu ring pointer
762 *
763 * Write the wptr back to the hardware (VEGA10+).
764 */
765 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
766 {
767 struct amdgpu_device *adev = ring->adev;
768
769 DRM_DEBUG("Setting write pointer\n");
770 if (ring->use_doorbell) {
771 u64 *wb = (u64 *)ring->wptr_cpu_addr;
772
773 DRM_DEBUG("Using doorbell -- "
774 "wptr_offs == 0x%08x "
775 "lower_32_bits(ring->wptr << 2) == 0x%08x "
776 "upper_32_bits(ring->wptr << 2) == 0x%08x\n",
777 ring->wptr_offs,
778 lower_32_bits(ring->wptr << 2),
779 upper_32_bits(ring->wptr << 2));
780 /* XXX check if swapping is necessary on BE */
781 WRITE_ONCE(*wb, (ring->wptr << 2));
782 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
783 ring->doorbell_index, ring->wptr << 2);
784 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
785 } else {
786 DRM_DEBUG("Not using doorbell -- "
787 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
788 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
789 ring->me,
790 lower_32_bits(ring->wptr << 2),
791 ring->me,
792 upper_32_bits(ring->wptr << 2));
793 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
794 lower_32_bits(ring->wptr << 2));
795 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
796 upper_32_bits(ring->wptr << 2));
797 }
798 }
799
800 /**
801 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
802 *
803 * @ring: amdgpu ring pointer
804 *
805 * Get the current wptr from the hardware (VEGA10+).
806 */
807 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
808 {
809 struct amdgpu_device *adev = ring->adev;
810 u64 wptr;
811
812 if (ring->use_doorbell) {
813 /* XXX check if swapping is necessary on BE */
814 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
815 } else {
816 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
817 wptr = wptr << 32;
818 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
819 }
820
821 return wptr >> 2;
822 }
823
824 /**
825 * sdma_v4_0_page_ring_set_wptr - commit the write pointer
826 *
827 * @ring: amdgpu ring pointer
828 *
829 * Write the wptr back to the hardware (VEGA10+).
830 */
831 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
832 {
833 struct amdgpu_device *adev = ring->adev;
834
835 if (ring->use_doorbell) {
836 u64 *wb = (u64 *)ring->wptr_cpu_addr;
837
838 /* XXX check if swapping is necessary on BE */
839 WRITE_ONCE(*wb, (ring->wptr << 2));
840 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
841 } else {
842 uint64_t wptr = ring->wptr << 2;
843
844 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
845 lower_32_bits(wptr));
846 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
847 upper_32_bits(wptr));
848 }
849 }
850
851 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
852 {
853 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
854 int i;
855
856 for (i = 0; i < count; i++)
857 if (sdma && sdma->burst_nop && (i == 0))
858 amdgpu_ring_write(ring, ring->funcs->nop |
859 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
860 else
861 amdgpu_ring_write(ring, ring->funcs->nop);
862 }
863
864 /**
865 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
866 *
867 * @ring: amdgpu ring pointer
868 * @job: job to retrieve vmid from
869 * @ib: IB object to schedule
870 * @flags: unused
871 *
872 * Schedule an IB in the DMA ring (VEGA10).
873 */
874 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
875 struct amdgpu_job *job,
876 struct amdgpu_ib *ib,
877 uint32_t flags)
878 {
879 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
880
881 /* IB packet must end on a 8 DW boundary */
882 sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
883
884 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
885 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
886 /* base must be 32 byte aligned */
887 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
888 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
889 amdgpu_ring_write(ring, ib->length_dw);
890 amdgpu_ring_write(ring, 0);
891 amdgpu_ring_write(ring, 0);
892
893 }
894
895 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
896 int mem_space, int hdp,
897 uint32_t addr0, uint32_t addr1,
898 uint32_t ref, uint32_t mask,
899 uint32_t inv)
900 {
901 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
902 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
903 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
904 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
905 if (mem_space) {
906 /* memory */
907 amdgpu_ring_write(ring, addr0);
908 amdgpu_ring_write(ring, addr1);
909 } else {
910 /* registers */
911 amdgpu_ring_write(ring, addr0 << 2);
912 amdgpu_ring_write(ring, addr1 << 2);
913 }
914 amdgpu_ring_write(ring, ref); /* reference */
915 amdgpu_ring_write(ring, mask); /* mask */
916 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
917 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
918 }
919
920 /**
921 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
922 *
923 * @ring: amdgpu ring pointer
924 *
925 * Emit an hdp flush packet on the requested DMA ring.
926 */
927 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
928 {
929 struct amdgpu_device *adev = ring->adev;
930 u32 ref_and_mask = 0;
931 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
932
933 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
934
935 sdma_v4_0_wait_reg_mem(ring, 0, 1,
936 adev->nbio.funcs->get_hdp_flush_done_offset(adev),
937 adev->nbio.funcs->get_hdp_flush_req_offset(adev),
938 ref_and_mask, ref_and_mask, 10);
939 }
940
941 /**
942 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
943 *
944 * @ring: amdgpu ring pointer
945 * @addr: address
946 * @seq: sequence number
947 * @flags: fence related flags
948 *
949 * Add a DMA fence packet to the ring to write
950 * the fence seq number and DMA trap packet to generate
951 * an interrupt if needed (VEGA10).
952 */
953 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
954 unsigned flags)
955 {
956 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
957 /* write the fence */
958 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
959 /* zero in first two bits */
960 BUG_ON(addr & 0x3);
961 amdgpu_ring_write(ring, lower_32_bits(addr));
962 amdgpu_ring_write(ring, upper_32_bits(addr));
963 amdgpu_ring_write(ring, lower_32_bits(seq));
964
965 /* optionally write high bits as well */
966 if (write64bit) {
967 addr += 4;
968 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
969 /* zero in first two bits */
970 BUG_ON(addr & 0x3);
971 amdgpu_ring_write(ring, lower_32_bits(addr));
972 amdgpu_ring_write(ring, upper_32_bits(addr));
973 amdgpu_ring_write(ring, upper_32_bits(seq));
974 }
975
976 /* generate an interrupt */
977 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
978 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
979 }
980
981
982 /**
983 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
984 *
985 * @adev: amdgpu_device pointer
986 *
987 * Stop the gfx async dma ring buffers (VEGA10).
988 */
989 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
990 {
991 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
992 u32 rb_cntl, ib_cntl;
993 int i, unset = 0;
994
995 for (i = 0; i < adev->sdma.num_instances; i++) {
996 sdma[i] = &adev->sdma.instance[i].ring;
997
998 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
999 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1000 unset = 1;
1001 }
1002
1003 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1004 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
1005 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1006 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1007 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
1008 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1009 }
1010 }
1011
1012 /**
1013 * sdma_v4_0_rlc_stop - stop the compute async dma engines
1014 *
1015 * @adev: amdgpu_device pointer
1016 *
1017 * Stop the compute async dma queues (VEGA10).
1018 */
1019 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
1020 {
1021 /* XXX todo */
1022 }
1023
1024 /**
1025 * sdma_v4_0_page_stop - stop the page async dma engines
1026 *
1027 * @adev: amdgpu_device pointer
1028 *
1029 * Stop the page async dma ring buffers (VEGA10).
1030 */
1031 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
1032 {
1033 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
1034 u32 rb_cntl, ib_cntl;
1035 int i;
1036 bool unset = false;
1037
1038 for (i = 0; i < adev->sdma.num_instances; i++) {
1039 sdma[i] = &adev->sdma.instance[i].page;
1040
1041 if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1042 (!unset)) {
1043 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1044 unset = true;
1045 }
1046
1047 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1048 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1049 RB_ENABLE, 0);
1050 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1051 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1052 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1053 IB_ENABLE, 0);
1054 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1055 }
1056 }
1057
1058 /**
1059 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1060 *
1061 * @adev: amdgpu_device pointer
1062 * @enable: enable/disable the DMA MEs context switch.
1063 *
1064 * Halt or unhalt the async dma engines context switch (VEGA10).
1065 */
1066 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1067 {
1068 u32 f32_cntl, phase_quantum = 0;
1069 int i;
1070
1071 if (amdgpu_sdma_phase_quantum) {
1072 unsigned value = amdgpu_sdma_phase_quantum;
1073 unsigned unit = 0;
1074
1075 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1076 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1077 value = (value + 1) >> 1;
1078 unit++;
1079 }
1080 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1081 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1082 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1083 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1084 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1085 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1086 WARN_ONCE(1,
1087 "clamping sdma_phase_quantum to %uK clock cycles\n",
1088 value << unit);
1089 }
1090 phase_quantum =
1091 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1092 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1093 }
1094
1095 for (i = 0; i < adev->sdma.num_instances; i++) {
1096 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1097 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1098 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1099 if (enable && amdgpu_sdma_phase_quantum) {
1100 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1101 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1102 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1103 }
1104 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1105
1106 /*
1107 * Enable SDMA utilization. Its only supported on
1108 * Arcturus for the moment and firmware version 14
1109 * and above.
1110 */
1111 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) &&
1112 adev->sdma.instance[i].fw_version >= 14)
1113 WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1114 /* Extend page fault timeout to avoid interrupt storm */
1115 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
1116 }
1117
1118 }
1119
1120 /**
1121 * sdma_v4_0_enable - stop the async dma engines
1122 *
1123 * @adev: amdgpu_device pointer
1124 * @enable: enable/disable the DMA MEs.
1125 *
1126 * Halt or unhalt the async dma engines (VEGA10).
1127 */
1128 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1129 {
1130 u32 f32_cntl;
1131 int i;
1132
1133 if (!enable) {
1134 sdma_v4_0_gfx_stop(adev);
1135 sdma_v4_0_rlc_stop(adev);
1136 if (adev->sdma.has_page_queue)
1137 sdma_v4_0_page_stop(adev);
1138 }
1139
1140 for (i = 0; i < adev->sdma.num_instances; i++) {
1141 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1142 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1143 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1144 }
1145 }
1146
1147 /*
1148 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1149 */
1150 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1151 {
1152 /* Set ring buffer size in dwords */
1153 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1154
1155 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1156 #ifdef __BIG_ENDIAN
1157 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1158 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1159 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1160 #endif
1161 return rb_cntl;
1162 }
1163
1164 /**
1165 * sdma_v4_0_gfx_resume - setup and start the async dma engines
1166 *
1167 * @adev: amdgpu_device pointer
1168 * @i: instance to resume
1169 *
1170 * Set up the gfx DMA ring buffers and enable them (VEGA10).
1171 * Returns 0 for success, error for failure.
1172 */
1173 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1174 {
1175 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1176 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1177 u32 doorbell;
1178 u32 doorbell_offset;
1179 u64 wptr_gpu_addr;
1180
1181 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1182 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1183 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1184
1185 /* Initialize the ring buffer's read and write pointers */
1186 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1187 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1188 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1189 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1190
1191 /* set the wb address whether it's enabled or not */
1192 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1193 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1194 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1195 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1196
1197 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1198 RPTR_WRITEBACK_ENABLE, 1);
1199
1200 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1201 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1202
1203 ring->wptr = 0;
1204
1205 /* before programing wptr to a less value, need set minor_ptr_update first */
1206 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1207
1208 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1209 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1210
1211 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1212 ring->use_doorbell);
1213 doorbell_offset = REG_SET_FIELD(doorbell_offset,
1214 SDMA0_GFX_DOORBELL_OFFSET,
1215 OFFSET, ring->doorbell_index);
1216 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1217 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1218
1219 sdma_v4_0_ring_set_wptr(ring);
1220
1221 /* set minor_ptr_update to 0 after wptr programed */
1222 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1223
1224 /* setup the wptr shadow polling */
1225 wptr_gpu_addr = ring->wptr_gpu_addr;
1226 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1227 lower_32_bits(wptr_gpu_addr));
1228 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1229 upper_32_bits(wptr_gpu_addr));
1230 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1231 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1232 SDMA0_GFX_RB_WPTR_POLL_CNTL,
1233 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1234 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1235
1236 /* enable DMA RB */
1237 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1238 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1239
1240 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1241 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1242 #ifdef __BIG_ENDIAN
1243 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1244 #endif
1245 /* enable DMA IBs */
1246 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1247
1248 ring->sched.ready = true;
1249 }
1250
1251 /**
1252 * sdma_v4_0_page_resume - setup and start the async dma engines
1253 *
1254 * @adev: amdgpu_device pointer
1255 * @i: instance to resume
1256 *
1257 * Set up the page DMA ring buffers and enable them (VEGA10).
1258 * Returns 0 for success, error for failure.
1259 */
1260 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1261 {
1262 struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1263 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1264 u32 doorbell;
1265 u32 doorbell_offset;
1266 u64 wptr_gpu_addr;
1267
1268 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1269 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1270 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1271
1272 /* Initialize the ring buffer's read and write pointers */
1273 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1274 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1275 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1276 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1277
1278 /* set the wb address whether it's enabled or not */
1279 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1280 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1281 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1282 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1283
1284 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1285 RPTR_WRITEBACK_ENABLE, 1);
1286
1287 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1288 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1289
1290 ring->wptr = 0;
1291
1292 /* before programing wptr to a less value, need set minor_ptr_update first */
1293 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1294
1295 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1296 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1297
1298 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1299 ring->use_doorbell);
1300 doorbell_offset = REG_SET_FIELD(doorbell_offset,
1301 SDMA0_PAGE_DOORBELL_OFFSET,
1302 OFFSET, ring->doorbell_index);
1303 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1304 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1305
1306 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1307 sdma_v4_0_page_ring_set_wptr(ring);
1308
1309 /* set minor_ptr_update to 0 after wptr programed */
1310 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1311
1312 /* setup the wptr shadow polling */
1313 wptr_gpu_addr = ring->wptr_gpu_addr;
1314 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1315 lower_32_bits(wptr_gpu_addr));
1316 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1317 upper_32_bits(wptr_gpu_addr));
1318 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1319 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1320 SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1321 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1322 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1323
1324 /* enable DMA RB */
1325 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1326 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1327
1328 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1329 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1330 #ifdef __BIG_ENDIAN
1331 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1332 #endif
1333 /* enable DMA IBs */
1334 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1335
1336 ring->sched.ready = true;
1337 }
1338
1339 static void
1340 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1341 {
1342 uint32_t def, data;
1343
1344 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1345 /* enable idle interrupt */
1346 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1347 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1348
1349 if (data != def)
1350 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1351 } else {
1352 /* disable idle interrupt */
1353 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1354 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1355 if (data != def)
1356 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1357 }
1358 }
1359
1360 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1361 {
1362 uint32_t def, data;
1363
1364 /* Enable HW based PG. */
1365 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1366 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1367 if (data != def)
1368 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1369
1370 /* enable interrupt */
1371 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1372 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1373 if (data != def)
1374 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1375
1376 /* Configure hold time to filter in-valid power on/off request. Use default right now */
1377 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1378 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1379 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1380 /* Configure switch time for hysteresis purpose. Use default right now */
1381 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1382 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1383 if(data != def)
1384 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1385 }
1386
1387 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1388 {
1389 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1390 return;
1391
1392 switch (adev->ip_versions[SDMA0_HWIP][0]) {
1393 case IP_VERSION(4, 1, 0):
1394 case IP_VERSION(4, 1, 1):
1395 case IP_VERSION(4, 1, 2):
1396 sdma_v4_1_init_power_gating(adev);
1397 sdma_v4_1_update_power_gating(adev, true);
1398 break;
1399 default:
1400 break;
1401 }
1402 }
1403
1404 /**
1405 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1406 *
1407 * @adev: amdgpu_device pointer
1408 *
1409 * Set up the compute DMA queues and enable them (VEGA10).
1410 * Returns 0 for success, error for failure.
1411 */
1412 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1413 {
1414 sdma_v4_0_init_pg(adev);
1415
1416 return 0;
1417 }
1418
1419 /**
1420 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1421 *
1422 * @adev: amdgpu_device pointer
1423 *
1424 * Loads the sDMA0/1 ucode.
1425 * Returns 0 for success, -EINVAL if the ucode is not available.
1426 */
1427 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1428 {
1429 const struct sdma_firmware_header_v1_0 *hdr;
1430 const __le32 *fw_data;
1431 u32 fw_size;
1432 int i, j;
1433
1434 /* halt the MEs */
1435 sdma_v4_0_enable(adev, false);
1436
1437 for (i = 0; i < adev->sdma.num_instances; i++) {
1438 if (!adev->sdma.instance[i].fw)
1439 return -EINVAL;
1440
1441 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1442 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1443 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1444
1445 fw_data = (const __le32 *)
1446 (adev->sdma.instance[i].fw->data +
1447 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1448
1449 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1450
1451 for (j = 0; j < fw_size; j++)
1452 WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1453 le32_to_cpup(fw_data++));
1454
1455 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1456 adev->sdma.instance[i].fw_version);
1457 }
1458
1459 return 0;
1460 }
1461
1462 /**
1463 * sdma_v4_0_start - setup and start the async dma engines
1464 *
1465 * @adev: amdgpu_device pointer
1466 *
1467 * Set up the DMA engines and enable them (VEGA10).
1468 * Returns 0 for success, error for failure.
1469 */
1470 static int sdma_v4_0_start(struct amdgpu_device *adev)
1471 {
1472 struct amdgpu_ring *ring;
1473 int i, r = 0;
1474
1475 if (amdgpu_sriov_vf(adev)) {
1476 sdma_v4_0_ctx_switch_enable(adev, false);
1477 sdma_v4_0_enable(adev, false);
1478 } else {
1479
1480 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1481 r = sdma_v4_0_load_microcode(adev);
1482 if (r)
1483 return r;
1484 }
1485
1486 /* unhalt the MEs */
1487 sdma_v4_0_enable(adev, true);
1488 /* enable sdma ring preemption */
1489 sdma_v4_0_ctx_switch_enable(adev, true);
1490 }
1491
1492 /* start the gfx rings and rlc compute queues */
1493 for (i = 0; i < adev->sdma.num_instances; i++) {
1494 uint32_t temp;
1495
1496 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1497 sdma_v4_0_gfx_resume(adev, i);
1498 if (adev->sdma.has_page_queue)
1499 sdma_v4_0_page_resume(adev, i);
1500
1501 /* set utc l1 enable flag always to 1 */
1502 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1503 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1504 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1505
1506 if (!amdgpu_sriov_vf(adev)) {
1507 /* unhalt engine */
1508 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1509 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1510 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1511 }
1512 }
1513
1514 if (amdgpu_sriov_vf(adev)) {
1515 sdma_v4_0_ctx_switch_enable(adev, true);
1516 sdma_v4_0_enable(adev, true);
1517 } else {
1518 r = sdma_v4_0_rlc_resume(adev);
1519 if (r)
1520 return r;
1521 }
1522
1523 for (i = 0; i < adev->sdma.num_instances; i++) {
1524 ring = &adev->sdma.instance[i].ring;
1525
1526 r = amdgpu_ring_test_helper(ring);
1527 if (r)
1528 return r;
1529
1530 if (adev->sdma.has_page_queue) {
1531 struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1532
1533 r = amdgpu_ring_test_helper(page);
1534 if (r)
1535 return r;
1536
1537 if (adev->mman.buffer_funcs_ring == page)
1538 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1539 }
1540
1541 if (adev->mman.buffer_funcs_ring == ring)
1542 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1543 }
1544
1545 return r;
1546 }
1547
1548 /**
1549 * sdma_v4_0_ring_test_ring - simple async dma engine test
1550 *
1551 * @ring: amdgpu_ring structure holding ring information
1552 *
1553 * Test the DMA engine by writing using it to write an
1554 * value to memory. (VEGA10).
1555 * Returns 0 for success, error for failure.
1556 */
1557 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1558 {
1559 struct amdgpu_device *adev = ring->adev;
1560 unsigned i;
1561 unsigned index;
1562 int r;
1563 u32 tmp;
1564 u64 gpu_addr;
1565
1566 r = amdgpu_device_wb_get(adev, &index);
1567 if (r)
1568 return r;
1569
1570 gpu_addr = adev->wb.gpu_addr + (index * 4);
1571 tmp = 0xCAFEDEAD;
1572 adev->wb.wb[index] = cpu_to_le32(tmp);
1573
1574 r = amdgpu_ring_alloc(ring, 5);
1575 if (r)
1576 goto error_free_wb;
1577
1578 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1579 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1580 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1581 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1582 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1583 amdgpu_ring_write(ring, 0xDEADBEEF);
1584 amdgpu_ring_commit(ring);
1585
1586 for (i = 0; i < adev->usec_timeout; i++) {
1587 tmp = le32_to_cpu(adev->wb.wb[index]);
1588 if (tmp == 0xDEADBEEF)
1589 break;
1590 udelay(1);
1591 }
1592
1593 if (i >= adev->usec_timeout)
1594 r = -ETIMEDOUT;
1595
1596 error_free_wb:
1597 amdgpu_device_wb_free(adev, index);
1598 return r;
1599 }
1600
1601 /**
1602 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1603 *
1604 * @ring: amdgpu_ring structure holding ring information
1605 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1606 *
1607 * Test a simple IB in the DMA ring (VEGA10).
1608 * Returns 0 on success, error on failure.
1609 */
1610 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1611 {
1612 struct amdgpu_device *adev = ring->adev;
1613 struct amdgpu_ib ib;
1614 struct dma_fence *f = NULL;
1615 unsigned index;
1616 long r;
1617 u32 tmp = 0;
1618 u64 gpu_addr;
1619
1620 r = amdgpu_device_wb_get(adev, &index);
1621 if (r)
1622 return r;
1623
1624 gpu_addr = adev->wb.gpu_addr + (index * 4);
1625 tmp = 0xCAFEDEAD;
1626 adev->wb.wb[index] = cpu_to_le32(tmp);
1627 memset(&ib, 0, sizeof(ib));
1628 r = amdgpu_ib_get(adev, NULL, 256,
1629 AMDGPU_IB_POOL_DIRECT, &ib);
1630 if (r)
1631 goto err0;
1632
1633 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1634 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1635 ib.ptr[1] = lower_32_bits(gpu_addr);
1636 ib.ptr[2] = upper_32_bits(gpu_addr);
1637 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1638 ib.ptr[4] = 0xDEADBEEF;
1639 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1640 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1641 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1642 ib.length_dw = 8;
1643
1644 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1645 if (r)
1646 goto err1;
1647
1648 r = dma_fence_wait_timeout(f, false, timeout);
1649 if (r == 0) {
1650 r = -ETIMEDOUT;
1651 goto err1;
1652 } else if (r < 0) {
1653 goto err1;
1654 }
1655 tmp = le32_to_cpu(adev->wb.wb[index]);
1656 if (tmp == 0xDEADBEEF)
1657 r = 0;
1658 else
1659 r = -EINVAL;
1660
1661 err1:
1662 amdgpu_ib_free(adev, &ib, NULL);
1663 dma_fence_put(f);
1664 err0:
1665 amdgpu_device_wb_free(adev, index);
1666 return r;
1667 }
1668
1669
1670 /**
1671 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1672 *
1673 * @ib: indirect buffer to fill with commands
1674 * @pe: addr of the page entry
1675 * @src: src addr to copy from
1676 * @count: number of page entries to update
1677 *
1678 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1679 */
1680 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1681 uint64_t pe, uint64_t src,
1682 unsigned count)
1683 {
1684 unsigned bytes = count * 8;
1685
1686 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1687 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1688 ib->ptr[ib->length_dw++] = bytes - 1;
1689 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1690 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1691 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1692 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1693 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1694
1695 }
1696
1697 /**
1698 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1699 *
1700 * @ib: indirect buffer to fill with commands
1701 * @pe: addr of the page entry
1702 * @value: dst addr to write into pe
1703 * @count: number of page entries to update
1704 * @incr: increase next addr by incr bytes
1705 *
1706 * Update PTEs by writing them manually using sDMA (VEGA10).
1707 */
1708 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1709 uint64_t value, unsigned count,
1710 uint32_t incr)
1711 {
1712 unsigned ndw = count * 2;
1713
1714 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1715 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1716 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1717 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1718 ib->ptr[ib->length_dw++] = ndw - 1;
1719 for (; ndw > 0; ndw -= 2) {
1720 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1721 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1722 value += incr;
1723 }
1724 }
1725
1726 /**
1727 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1728 *
1729 * @ib: indirect buffer to fill with commands
1730 * @pe: addr of the page entry
1731 * @addr: dst addr to write into pe
1732 * @count: number of page entries to update
1733 * @incr: increase next addr by incr bytes
1734 * @flags: access flags
1735 *
1736 * Update the page tables using sDMA (VEGA10).
1737 */
1738 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1739 uint64_t pe,
1740 uint64_t addr, unsigned count,
1741 uint32_t incr, uint64_t flags)
1742 {
1743 /* for physically contiguous pages (vram) */
1744 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1745 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1746 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1747 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1748 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1749 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1750 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1751 ib->ptr[ib->length_dw++] = incr; /* increment size */
1752 ib->ptr[ib->length_dw++] = 0;
1753 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1754 }
1755
1756 /**
1757 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1758 *
1759 * @ring: amdgpu_ring structure holding ring information
1760 * @ib: indirect buffer to fill with padding
1761 */
1762 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1763 {
1764 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1765 u32 pad_count;
1766 int i;
1767
1768 pad_count = (-ib->length_dw) & 7;
1769 for (i = 0; i < pad_count; i++)
1770 if (sdma && sdma->burst_nop && (i == 0))
1771 ib->ptr[ib->length_dw++] =
1772 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1773 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1774 else
1775 ib->ptr[ib->length_dw++] =
1776 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1777 }
1778
1779
1780 /**
1781 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1782 *
1783 * @ring: amdgpu_ring pointer
1784 *
1785 * Make sure all previous operations are completed (CIK).
1786 */
1787 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1788 {
1789 uint32_t seq = ring->fence_drv.sync_seq;
1790 uint64_t addr = ring->fence_drv.gpu_addr;
1791
1792 /* wait for idle */
1793 sdma_v4_0_wait_reg_mem(ring, 1, 0,
1794 addr & 0xfffffffc,
1795 upper_32_bits(addr) & 0xffffffff,
1796 seq, 0xffffffff, 4);
1797 }
1798
1799
1800 /**
1801 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1802 *
1803 * @ring: amdgpu_ring pointer
1804 * @vmid: vmid number to use
1805 * @pd_addr: address
1806 *
1807 * Update the page table base and flush the VM TLB
1808 * using sDMA (VEGA10).
1809 */
1810 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1811 unsigned vmid, uint64_t pd_addr)
1812 {
1813 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1814 }
1815
1816 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1817 uint32_t reg, uint32_t val)
1818 {
1819 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1820 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1821 amdgpu_ring_write(ring, reg);
1822 amdgpu_ring_write(ring, val);
1823 }
1824
1825 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1826 uint32_t val, uint32_t mask)
1827 {
1828 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1829 }
1830
1831 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1832 {
1833 uint fw_version = adev->sdma.instance[0].fw_version;
1834
1835 switch (adev->ip_versions[SDMA0_HWIP][0]) {
1836 case IP_VERSION(4, 0, 0):
1837 return fw_version >= 430;
1838 case IP_VERSION(4, 0, 1):
1839 /*return fw_version >= 31;*/
1840 return false;
1841 case IP_VERSION(4, 2, 0):
1842 return fw_version >= 123;
1843 default:
1844 return false;
1845 }
1846 }
1847
1848 static int sdma_v4_0_early_init(void *handle)
1849 {
1850 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1851 int r;
1852
1853 r = sdma_v4_0_init_microcode(adev);
1854 if (r) {
1855 DRM_ERROR("Failed to load sdma firmware!\n");
1856 return r;
1857 }
1858
1859 /* TODO: Page queue breaks driver reload under SRIOV */
1860 if ((adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 0, 0)) &&
1861 amdgpu_sriov_vf((adev)))
1862 adev->sdma.has_page_queue = false;
1863 else if (sdma_v4_0_fw_support_paging_queue(adev))
1864 adev->sdma.has_page_queue = true;
1865
1866 sdma_v4_0_set_ring_funcs(adev);
1867 sdma_v4_0_set_buffer_funcs(adev);
1868 sdma_v4_0_set_vm_pte_funcs(adev);
1869 sdma_v4_0_set_irq_funcs(adev);
1870 sdma_v4_0_set_ras_funcs(adev);
1871
1872 return 0;
1873 }
1874
1875 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1876 void *err_data,
1877 struct amdgpu_iv_entry *entry);
1878
1879 static int sdma_v4_0_late_init(void *handle)
1880 {
1881 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1882
1883 sdma_v4_0_setup_ulv(adev);
1884
1885 if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1886 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops &&
1887 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count)
1888 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev);
1889 }
1890
1891 return 0;
1892 }
1893
1894 static int sdma_v4_0_sw_init(void *handle)
1895 {
1896 struct amdgpu_ring *ring;
1897 int r, i;
1898 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1899
1900 /* SDMA trap event */
1901 for (i = 0; i < adev->sdma.num_instances; i++) {
1902 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1903 SDMA0_4_0__SRCID__SDMA_TRAP,
1904 &adev->sdma.trap_irq);
1905 if (r)
1906 return r;
1907 }
1908
1909 /* SDMA SRAM ECC event */
1910 for (i = 0; i < adev->sdma.num_instances; i++) {
1911 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1912 SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1913 &adev->sdma.ecc_irq);
1914 if (r)
1915 return r;
1916 }
1917
1918 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1919 for (i = 0; i < adev->sdma.num_instances; i++) {
1920 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1921 SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1922 &adev->sdma.vm_hole_irq);
1923 if (r)
1924 return r;
1925
1926 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1927 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1928 &adev->sdma.doorbell_invalid_irq);
1929 if (r)
1930 return r;
1931
1932 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1933 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1934 &adev->sdma.pool_timeout_irq);
1935 if (r)
1936 return r;
1937
1938 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1939 SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1940 &adev->sdma.srbm_write_irq);
1941 if (r)
1942 return r;
1943 }
1944
1945 for (i = 0; i < adev->sdma.num_instances; i++) {
1946 ring = &adev->sdma.instance[i].ring;
1947 ring->ring_obj = NULL;
1948 ring->use_doorbell = true;
1949
1950 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1951 ring->use_doorbell?"true":"false");
1952
1953 /* doorbell size is 2 dwords, get DWORD offset */
1954 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1955
1956 sprintf(ring->name, "sdma%d", i);
1957 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1958 AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1959 AMDGPU_RING_PRIO_DEFAULT, NULL);
1960 if (r)
1961 return r;
1962
1963 if (adev->sdma.has_page_queue) {
1964 ring = &adev->sdma.instance[i].page;
1965 ring->ring_obj = NULL;
1966 ring->use_doorbell = true;
1967
1968 /* paging queue use same doorbell index/routing as gfx queue
1969 * with 0x400 (4096 dwords) offset on second doorbell page
1970 */
1971 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1972 ring->doorbell_index += 0x400;
1973
1974 sprintf(ring->name, "page%d", i);
1975 r = amdgpu_ring_init(adev, ring, 1024,
1976 &adev->sdma.trap_irq,
1977 AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1978 AMDGPU_RING_PRIO_DEFAULT, NULL);
1979 if (r)
1980 return r;
1981 }
1982 }
1983
1984 return r;
1985 }
1986
1987 static int sdma_v4_0_sw_fini(void *handle)
1988 {
1989 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1990 int i;
1991
1992 for (i = 0; i < adev->sdma.num_instances; i++) {
1993 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1994 if (adev->sdma.has_page_queue)
1995 amdgpu_ring_fini(&adev->sdma.instance[i].page);
1996 }
1997
1998 sdma_v4_0_destroy_inst_ctx(adev);
1999
2000 return 0;
2001 }
2002
2003 static int sdma_v4_0_hw_init(void *handle)
2004 {
2005 int r;
2006 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2007
2008 if (adev->flags & AMD_IS_APU)
2009 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
2010
2011 if (!amdgpu_sriov_vf(adev))
2012 sdma_v4_0_init_golden_registers(adev);
2013
2014 r = sdma_v4_0_start(adev);
2015
2016 return r;
2017 }
2018
2019 static int sdma_v4_0_hw_fini(void *handle)
2020 {
2021 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2022 int i;
2023
2024 if (amdgpu_sriov_vf(adev))
2025 return 0;
2026
2027 for (i = 0; i < adev->sdma.num_instances; i++) {
2028 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2029 AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2030 }
2031
2032 sdma_v4_0_ctx_switch_enable(adev, false);
2033 sdma_v4_0_enable(adev, false);
2034
2035 if (adev->flags & AMD_IS_APU)
2036 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
2037
2038 return 0;
2039 }
2040
2041 static int sdma_v4_0_suspend(void *handle)
2042 {
2043 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2044
2045 /* SMU saves SDMA state for us */
2046 if (adev->in_s0ix)
2047 return 0;
2048
2049 return sdma_v4_0_hw_fini(adev);
2050 }
2051
2052 static int sdma_v4_0_resume(void *handle)
2053 {
2054 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2055
2056 /* SMU restores SDMA state for us */
2057 if (adev->in_s0ix)
2058 return 0;
2059
2060 return sdma_v4_0_hw_init(adev);
2061 }
2062
2063 static bool sdma_v4_0_is_idle(void *handle)
2064 {
2065 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2066 u32 i;
2067
2068 for (i = 0; i < adev->sdma.num_instances; i++) {
2069 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2070
2071 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2072 return false;
2073 }
2074
2075 return true;
2076 }
2077
2078 static int sdma_v4_0_wait_for_idle(void *handle)
2079 {
2080 unsigned i, j;
2081 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2082 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2083
2084 for (i = 0; i < adev->usec_timeout; i++) {
2085 for (j = 0; j < adev->sdma.num_instances; j++) {
2086 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2087 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2088 break;
2089 }
2090 if (j == adev->sdma.num_instances)
2091 return 0;
2092 udelay(1);
2093 }
2094 return -ETIMEDOUT;
2095 }
2096
2097 static int sdma_v4_0_soft_reset(void *handle)
2098 {
2099 /* todo */
2100
2101 return 0;
2102 }
2103
2104 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2105 struct amdgpu_irq_src *source,
2106 unsigned type,
2107 enum amdgpu_interrupt_state state)
2108 {
2109 u32 sdma_cntl;
2110
2111 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2112 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2113 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2114 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2115
2116 return 0;
2117 }
2118
2119 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2120 struct amdgpu_irq_src *source,
2121 struct amdgpu_iv_entry *entry)
2122 {
2123 uint32_t instance;
2124
2125 DRM_DEBUG("IH: SDMA trap\n");
2126 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2127 switch (entry->ring_id) {
2128 case 0:
2129 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2130 break;
2131 case 1:
2132 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0))
2133 amdgpu_fence_process(&adev->sdma.instance[instance].page);
2134 break;
2135 case 2:
2136 /* XXX compute */
2137 break;
2138 case 3:
2139 if (adev->ip_versions[SDMA0_HWIP][0] != IP_VERSION(4, 2, 0))
2140 amdgpu_fence_process(&adev->sdma.instance[instance].page);
2141 break;
2142 }
2143 return 0;
2144 }
2145
2146 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2147 void *err_data,
2148 struct amdgpu_iv_entry *entry)
2149 {
2150 int instance;
2151
2152 /* When “Full RAS” is enabled, the per-IP interrupt sources should
2153 * be disabled and the driver should only look for the aggregated
2154 * interrupt via sync flood
2155 */
2156 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2157 goto out;
2158
2159 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2160 if (instance < 0)
2161 goto out;
2162
2163 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2164
2165 out:
2166 return AMDGPU_RAS_SUCCESS;
2167 }
2168
2169 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2170 struct amdgpu_irq_src *source,
2171 struct amdgpu_iv_entry *entry)
2172 {
2173 int instance;
2174
2175 DRM_ERROR("Illegal instruction in SDMA command stream\n");
2176
2177 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2178 if (instance < 0)
2179 return 0;
2180
2181 switch (entry->ring_id) {
2182 case 0:
2183 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2184 break;
2185 }
2186 return 0;
2187 }
2188
2189 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2190 struct amdgpu_irq_src *source,
2191 unsigned type,
2192 enum amdgpu_interrupt_state state)
2193 {
2194 u32 sdma_edc_config;
2195
2196 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2197 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2198 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2199 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2200
2201 return 0;
2202 }
2203
2204 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2205 struct amdgpu_iv_entry *entry)
2206 {
2207 int instance;
2208 struct amdgpu_task_info task_info;
2209 u64 addr;
2210
2211 instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2212 if (instance < 0 || instance >= adev->sdma.num_instances) {
2213 dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2214 return -EINVAL;
2215 }
2216
2217 addr = (u64)entry->src_data[0] << 12;
2218 addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2219
2220 memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2221 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2222
2223 dev_dbg_ratelimited(adev->dev,
2224 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2225 "pasid:%u, for process %s pid %d thread %s pid %d\n",
2226 instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2227 entry->pasid, task_info.process_name, task_info.tgid,
2228 task_info.task_name, task_info.pid);
2229 return 0;
2230 }
2231
2232 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2233 struct amdgpu_irq_src *source,
2234 struct amdgpu_iv_entry *entry)
2235 {
2236 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2237 sdma_v4_0_print_iv_entry(adev, entry);
2238 return 0;
2239 }
2240
2241 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2242 struct amdgpu_irq_src *source,
2243 struct amdgpu_iv_entry *entry)
2244 {
2245 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2246 sdma_v4_0_print_iv_entry(adev, entry);
2247 return 0;
2248 }
2249
2250 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2251 struct amdgpu_irq_src *source,
2252 struct amdgpu_iv_entry *entry)
2253 {
2254 dev_dbg_ratelimited(adev->dev,
2255 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2256 sdma_v4_0_print_iv_entry(adev, entry);
2257 return 0;
2258 }
2259
2260 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2261 struct amdgpu_irq_src *source,
2262 struct amdgpu_iv_entry *entry)
2263 {
2264 dev_dbg_ratelimited(adev->dev,
2265 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2266 sdma_v4_0_print_iv_entry(adev, entry);
2267 return 0;
2268 }
2269
2270 static void sdma_v4_0_update_medium_grain_clock_gating(
2271 struct amdgpu_device *adev,
2272 bool enable)
2273 {
2274 uint32_t data, def;
2275 int i;
2276
2277 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2278 for (i = 0; i < adev->sdma.num_instances; i++) {
2279 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2280 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2281 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2282 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2283 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2284 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2285 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2286 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2287 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2288 if (def != data)
2289 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2290 }
2291 } else {
2292 for (i = 0; i < adev->sdma.num_instances; i++) {
2293 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2294 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2295 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2296 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2297 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2298 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2299 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2300 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2301 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2302 if (def != data)
2303 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2304 }
2305 }
2306 }
2307
2308
2309 static void sdma_v4_0_update_medium_grain_light_sleep(
2310 struct amdgpu_device *adev,
2311 bool enable)
2312 {
2313 uint32_t data, def;
2314 int i;
2315
2316 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2317 for (i = 0; i < adev->sdma.num_instances; i++) {
2318 /* 1-not override: enable sdma mem light sleep */
2319 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2320 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2321 if (def != data)
2322 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2323 }
2324 } else {
2325 for (i = 0; i < adev->sdma.num_instances; i++) {
2326 /* 0-override:disable sdma mem light sleep */
2327 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2328 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2329 if (def != data)
2330 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2331 }
2332 }
2333 }
2334
2335 static int sdma_v4_0_set_clockgating_state(void *handle,
2336 enum amd_clockgating_state state)
2337 {
2338 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2339
2340 if (amdgpu_sriov_vf(adev))
2341 return 0;
2342
2343 sdma_v4_0_update_medium_grain_clock_gating(adev,
2344 state == AMD_CG_STATE_GATE);
2345 sdma_v4_0_update_medium_grain_light_sleep(adev,
2346 state == AMD_CG_STATE_GATE);
2347 return 0;
2348 }
2349
2350 static int sdma_v4_0_set_powergating_state(void *handle,
2351 enum amd_powergating_state state)
2352 {
2353 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2354
2355 switch (adev->ip_versions[SDMA0_HWIP][0]) {
2356 case IP_VERSION(4, 1, 0):
2357 case IP_VERSION(4, 1, 1):
2358 case IP_VERSION(4, 1, 2):
2359 sdma_v4_1_update_power_gating(adev,
2360 state == AMD_PG_STATE_GATE);
2361 break;
2362 default:
2363 break;
2364 }
2365
2366 return 0;
2367 }
2368
2369 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2370 {
2371 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2372 int data;
2373
2374 if (amdgpu_sriov_vf(adev))
2375 *flags = 0;
2376
2377 /* AMD_CG_SUPPORT_SDMA_MGCG */
2378 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2379 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2380 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2381
2382 /* AMD_CG_SUPPORT_SDMA_LS */
2383 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2384 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2385 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2386 }
2387
2388 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2389 .name = "sdma_v4_0",
2390 .early_init = sdma_v4_0_early_init,
2391 .late_init = sdma_v4_0_late_init,
2392 .sw_init = sdma_v4_0_sw_init,
2393 .sw_fini = sdma_v4_0_sw_fini,
2394 .hw_init = sdma_v4_0_hw_init,
2395 .hw_fini = sdma_v4_0_hw_fini,
2396 .suspend = sdma_v4_0_suspend,
2397 .resume = sdma_v4_0_resume,
2398 .is_idle = sdma_v4_0_is_idle,
2399 .wait_for_idle = sdma_v4_0_wait_for_idle,
2400 .soft_reset = sdma_v4_0_soft_reset,
2401 .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2402 .set_powergating_state = sdma_v4_0_set_powergating_state,
2403 .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2404 };
2405
2406 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2407 .type = AMDGPU_RING_TYPE_SDMA,
2408 .align_mask = 0xf,
2409 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2410 .support_64bit_ptrs = true,
2411 .secure_submission_supported = true,
2412 .vmhub = AMDGPU_MMHUB_0,
2413 .get_rptr = sdma_v4_0_ring_get_rptr,
2414 .get_wptr = sdma_v4_0_ring_get_wptr,
2415 .set_wptr = sdma_v4_0_ring_set_wptr,
2416 .emit_frame_size =
2417 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2418 3 + /* hdp invalidate */
2419 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2420 /* sdma_v4_0_ring_emit_vm_flush */
2421 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2422 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2423 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2424 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2425 .emit_ib = sdma_v4_0_ring_emit_ib,
2426 .emit_fence = sdma_v4_0_ring_emit_fence,
2427 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2428 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2429 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2430 .test_ring = sdma_v4_0_ring_test_ring,
2431 .test_ib = sdma_v4_0_ring_test_ib,
2432 .insert_nop = sdma_v4_0_ring_insert_nop,
2433 .pad_ib = sdma_v4_0_ring_pad_ib,
2434 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2435 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2436 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2437 };
2438
2439 /*
2440 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2441 * So create a individual constant ring_funcs for those instances.
2442 */
2443 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2444 .type = AMDGPU_RING_TYPE_SDMA,
2445 .align_mask = 0xf,
2446 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2447 .support_64bit_ptrs = true,
2448 .secure_submission_supported = true,
2449 .vmhub = AMDGPU_MMHUB_1,
2450 .get_rptr = sdma_v4_0_ring_get_rptr,
2451 .get_wptr = sdma_v4_0_ring_get_wptr,
2452 .set_wptr = sdma_v4_0_ring_set_wptr,
2453 .emit_frame_size =
2454 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2455 3 + /* hdp invalidate */
2456 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2457 /* sdma_v4_0_ring_emit_vm_flush */
2458 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2459 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2460 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2461 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2462 .emit_ib = sdma_v4_0_ring_emit_ib,
2463 .emit_fence = sdma_v4_0_ring_emit_fence,
2464 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2465 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2466 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2467 .test_ring = sdma_v4_0_ring_test_ring,
2468 .test_ib = sdma_v4_0_ring_test_ib,
2469 .insert_nop = sdma_v4_0_ring_insert_nop,
2470 .pad_ib = sdma_v4_0_ring_pad_ib,
2471 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2472 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2473 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2474 };
2475
2476 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2477 .type = AMDGPU_RING_TYPE_SDMA,
2478 .align_mask = 0xf,
2479 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2480 .support_64bit_ptrs = true,
2481 .secure_submission_supported = true,
2482 .vmhub = AMDGPU_MMHUB_0,
2483 .get_rptr = sdma_v4_0_ring_get_rptr,
2484 .get_wptr = sdma_v4_0_page_ring_get_wptr,
2485 .set_wptr = sdma_v4_0_page_ring_set_wptr,
2486 .emit_frame_size =
2487 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2488 3 + /* hdp invalidate */
2489 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2490 /* sdma_v4_0_ring_emit_vm_flush */
2491 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2492 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2493 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2494 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2495 .emit_ib = sdma_v4_0_ring_emit_ib,
2496 .emit_fence = sdma_v4_0_ring_emit_fence,
2497 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2498 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2499 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2500 .test_ring = sdma_v4_0_ring_test_ring,
2501 .test_ib = sdma_v4_0_ring_test_ib,
2502 .insert_nop = sdma_v4_0_ring_insert_nop,
2503 .pad_ib = sdma_v4_0_ring_pad_ib,
2504 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2505 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2506 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2507 };
2508
2509 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2510 .type = AMDGPU_RING_TYPE_SDMA,
2511 .align_mask = 0xf,
2512 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2513 .support_64bit_ptrs = true,
2514 .secure_submission_supported = true,
2515 .vmhub = AMDGPU_MMHUB_1,
2516 .get_rptr = sdma_v4_0_ring_get_rptr,
2517 .get_wptr = sdma_v4_0_page_ring_get_wptr,
2518 .set_wptr = sdma_v4_0_page_ring_set_wptr,
2519 .emit_frame_size =
2520 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2521 3 + /* hdp invalidate */
2522 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2523 /* sdma_v4_0_ring_emit_vm_flush */
2524 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2525 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2526 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2527 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2528 .emit_ib = sdma_v4_0_ring_emit_ib,
2529 .emit_fence = sdma_v4_0_ring_emit_fence,
2530 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2531 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2532 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2533 .test_ring = sdma_v4_0_ring_test_ring,
2534 .test_ib = sdma_v4_0_ring_test_ib,
2535 .insert_nop = sdma_v4_0_ring_insert_nop,
2536 .pad_ib = sdma_v4_0_ring_pad_ib,
2537 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2538 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2539 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2540 };
2541
2542 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2543 {
2544 int i;
2545
2546 for (i = 0; i < adev->sdma.num_instances; i++) {
2547 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
2548 adev->sdma.instance[i].ring.funcs =
2549 &sdma_v4_0_ring_funcs_2nd_mmhub;
2550 else
2551 adev->sdma.instance[i].ring.funcs =
2552 &sdma_v4_0_ring_funcs;
2553 adev->sdma.instance[i].ring.me = i;
2554 if (adev->sdma.has_page_queue) {
2555 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
2556 adev->sdma.instance[i].page.funcs =
2557 &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2558 else
2559 adev->sdma.instance[i].page.funcs =
2560 &sdma_v4_0_page_ring_funcs;
2561 adev->sdma.instance[i].page.me = i;
2562 }
2563 }
2564 }
2565
2566 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2567 .set = sdma_v4_0_set_trap_irq_state,
2568 .process = sdma_v4_0_process_trap_irq,
2569 };
2570
2571 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2572 .process = sdma_v4_0_process_illegal_inst_irq,
2573 };
2574
2575 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2576 .set = sdma_v4_0_set_ecc_irq_state,
2577 .process = amdgpu_sdma_process_ecc_irq,
2578 };
2579
2580 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2581 .process = sdma_v4_0_process_vm_hole_irq,
2582 };
2583
2584 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2585 .process = sdma_v4_0_process_doorbell_invalid_irq,
2586 };
2587
2588 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2589 .process = sdma_v4_0_process_pool_timeout_irq,
2590 };
2591
2592 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2593 .process = sdma_v4_0_process_srbm_write_irq,
2594 };
2595
2596 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2597 {
2598 adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2599 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2600 /*For Arcturus and Aldebaran, add another 4 irq handler*/
2601 switch (adev->sdma.num_instances) {
2602 case 5:
2603 case 8:
2604 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2605 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2606 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2607 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2608 break;
2609 default:
2610 break;
2611 }
2612 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2613 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2614 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2615 adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2616 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2617 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2618 adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2619 }
2620
2621 /**
2622 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2623 *
2624 * @ib: indirect buffer to copy to
2625 * @src_offset: src GPU address
2626 * @dst_offset: dst GPU address
2627 * @byte_count: number of bytes to xfer
2628 * @tmz: if a secure copy should be used
2629 *
2630 * Copy GPU buffers using the DMA engine (VEGA10/12).
2631 * Used by the amdgpu ttm implementation to move pages if
2632 * registered as the asic copy callback.
2633 */
2634 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2635 uint64_t src_offset,
2636 uint64_t dst_offset,
2637 uint32_t byte_count,
2638 bool tmz)
2639 {
2640 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2641 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2642 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2643 ib->ptr[ib->length_dw++] = byte_count - 1;
2644 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2645 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2646 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2647 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2648 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2649 }
2650
2651 /**
2652 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2653 *
2654 * @ib: indirect buffer to copy to
2655 * @src_data: value to write to buffer
2656 * @dst_offset: dst GPU address
2657 * @byte_count: number of bytes to xfer
2658 *
2659 * Fill GPU buffers using the DMA engine (VEGA10/12).
2660 */
2661 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2662 uint32_t src_data,
2663 uint64_t dst_offset,
2664 uint32_t byte_count)
2665 {
2666 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2667 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2668 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2669 ib->ptr[ib->length_dw++] = src_data;
2670 ib->ptr[ib->length_dw++] = byte_count - 1;
2671 }
2672
2673 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2674 .copy_max_bytes = 0x400000,
2675 .copy_num_dw = 7,
2676 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2677
2678 .fill_max_bytes = 0x400000,
2679 .fill_num_dw = 5,
2680 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2681 };
2682
2683 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2684 {
2685 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2686 if (adev->sdma.has_page_queue)
2687 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2688 else
2689 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2690 }
2691
2692 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2693 .copy_pte_num_dw = 7,
2694 .copy_pte = sdma_v4_0_vm_copy_pte,
2695
2696 .write_pte = sdma_v4_0_vm_write_pte,
2697 .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2698 };
2699
2700 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2701 {
2702 struct drm_gpu_scheduler *sched;
2703 unsigned i;
2704
2705 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2706 for (i = 0; i < adev->sdma.num_instances; i++) {
2707 if (adev->sdma.has_page_queue)
2708 sched = &adev->sdma.instance[i].page.sched;
2709 else
2710 sched = &adev->sdma.instance[i].ring.sched;
2711 adev->vm_manager.vm_pte_scheds[i] = sched;
2712 }
2713 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2714 }
2715
2716 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2717 uint32_t instance,
2718 uint32_t *sec_count)
2719 {
2720 uint32_t i;
2721 uint32_t sec_cnt;
2722
2723 /* double bits error (multiple bits) error detection is not supported */
2724 for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2725 /* the SDMA_EDC_COUNTER register in each sdma instance
2726 * shares the same sed shift_mask
2727 * */
2728 sec_cnt = (value &
2729 sdma_v4_0_ras_fields[i].sec_count_mask) >>
2730 sdma_v4_0_ras_fields[i].sec_count_shift;
2731 if (sec_cnt) {
2732 DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2733 sdma_v4_0_ras_fields[i].name,
2734 instance, sec_cnt);
2735 *sec_count += sec_cnt;
2736 }
2737 }
2738 }
2739
2740 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2741 uint32_t instance, void *ras_error_status)
2742 {
2743 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2744 uint32_t sec_count = 0;
2745 uint32_t reg_value = 0;
2746
2747 reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2748 /* double bit error is not supported */
2749 if (reg_value)
2750 sdma_v4_0_get_ras_error_count(reg_value,
2751 instance, &sec_count);
2752 /* err_data->ce_count should be initialized to 0
2753 * before calling into this function */
2754 err_data->ce_count += sec_count;
2755 /* double bit error is not supported
2756 * set ue count to 0 */
2757 err_data->ue_count = 0;
2758
2759 return 0;
2760 };
2761
2762 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev, void *ras_error_status)
2763 {
2764 int i = 0;
2765
2766 for (i = 0; i < adev->sdma.num_instances; i++) {
2767 if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2768 dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2769 return;
2770 }
2771 }
2772 }
2773
2774 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2775 {
2776 int i;
2777
2778 /* read back edc counter registers to clear the counters */
2779 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2780 for (i = 0; i < adev->sdma.num_instances; i++)
2781 RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2782 }
2783 }
2784
2785 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2786 .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2787 .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2788 };
2789
2790 static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2791 .ras_block = {
2792 .hw_ops = &sdma_v4_0_ras_hw_ops,
2793 .ras_cb = sdma_v4_0_process_ras_data_cb,
2794 },
2795 };
2796
2797 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2798 {
2799 switch (adev->ip_versions[SDMA0_HWIP][0]) {
2800 case IP_VERSION(4, 2, 0):
2801 case IP_VERSION(4, 2, 2):
2802 adev->sdma.ras = &sdma_v4_0_ras;
2803 break;
2804 case IP_VERSION(4, 4, 0):
2805 adev->sdma.ras = &sdma_v4_4_ras;
2806 break;
2807 default:
2808 break;
2809 }
2810
2811 if (adev->sdma.ras) {
2812 amdgpu_ras_register_ras_block(adev, &adev->sdma.ras->ras_block);
2813
2814 strcpy(adev->sdma.ras->ras_block.ras_comm.name, "sdma");
2815 adev->sdma.ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__SDMA;
2816 adev->sdma.ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
2817 adev->sdma.ras_if = &adev->sdma.ras->ras_block.ras_comm;
2818
2819 /* If don't define special ras_late_init function, use default ras_late_init */
2820 if (!adev->sdma.ras->ras_block.ras_late_init)
2821 adev->sdma.ras->ras_block.ras_late_init = amdgpu_sdma_ras_late_init;
2822
2823 /* If not defined special ras_cb function, use default ras_cb */
2824 if (!adev->sdma.ras->ras_block.ras_cb)
2825 adev->sdma.ras->ras_block.ras_cb = amdgpu_sdma_process_ras_data_cb;
2826 }
2827 }
2828
2829 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2830 .type = AMD_IP_BLOCK_TYPE_SDMA,
2831 .major = 4,
2832 .minor = 0,
2833 .rev = 0,
2834 .funcs = &sdma_v4_0_ip_funcs,
2835 };