]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/amd/display/dc/dce110/dce110_hw_sequencer.c
Merge tag 'kvm-x86-docs-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / drivers / gpu / drm / amd / display / dc / dce110 / dce110_hw_sequencer.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36
37 #include "dce110_compressor.h"
38
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_enc_cfg.h"
48 #include "link_hwss.h"
49 #include "link.h"
50 #include "dccg.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 #include "dpcd_defs.h"
58 /* include DCE11 register header files */
59 #include "dce/dce_11_0_d.h"
60 #include "dce/dce_11_0_sh_mask.h"
61 #include "custom_float.h"
62
63 #include "atomfirmware.h"
64
65 #include "dcn10/dcn10_hw_sequencer.h"
66
67 #include "dce110_hw_sequencer.h"
68
69 #define GAMMA_HW_POINTS_NUM 256
70
71 /*
72 * All values are in milliseconds;
73 * For eDP, after power-up/power/down,
74 * 300/500 msec max. delay from LCDVCC to black video generation
75 */
76 #define PANEL_POWER_UP_TIMEOUT 300
77 #define PANEL_POWER_DOWN_TIMEOUT 500
78 #define HPD_CHECK_INTERVAL 10
79 #define OLED_POST_T7_DELAY 100
80 #define OLED_PRE_T11_DELAY 150
81
82 #define CTX \
83 hws->ctx
84
85 #define DC_LOGGER_INIT()
86
87 #define REG(reg)\
88 hws->regs->reg
89
90 #undef FN
91 #define FN(reg_name, field_name) \
92 hws->shifts->field_name, hws->masks->field_name
93
94 struct dce110_hw_seq_reg_offsets {
95 uint32_t crtc;
96 };
97
98 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
99 {
100 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
101 },
102 {
103 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
104 },
105 {
106 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
107 },
108 {
109 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
110 }
111 };
112
113 #define HW_REG_BLND(reg, id)\
114 (reg + reg_offsets[id].blnd)
115
116 #define HW_REG_CRTC(reg, id)\
117 (reg + reg_offsets[id].crtc)
118
119 #define MAX_WATERMARK 0xFFFF
120 #define SAFE_NBP_MARK 0x7FFF
121
122 /*******************************************************************************
123 * Private definitions
124 ******************************************************************************/
125 /***************************PIPE_CONTROL***********************************/
126 static void dce110_init_pte(struct dc_context *ctx)
127 {
128 uint32_t addr;
129 uint32_t value = 0;
130 uint32_t chunk_int = 0;
131 uint32_t chunk_mul = 0;
132
133 addr = mmUNP_DVMM_PTE_CONTROL;
134 value = dm_read_reg(ctx, addr);
135
136 set_reg_field_value(
137 value,
138 0,
139 DVMM_PTE_CONTROL,
140 DVMM_USE_SINGLE_PTE);
141
142 set_reg_field_value(
143 value,
144 1,
145 DVMM_PTE_CONTROL,
146 DVMM_PTE_BUFFER_MODE0);
147
148 set_reg_field_value(
149 value,
150 1,
151 DVMM_PTE_CONTROL,
152 DVMM_PTE_BUFFER_MODE1);
153
154 dm_write_reg(ctx, addr, value);
155
156 addr = mmDVMM_PTE_REQ;
157 value = dm_read_reg(ctx, addr);
158
159 chunk_int = get_reg_field_value(
160 value,
161 DVMM_PTE_REQ,
162 HFLIP_PTEREQ_PER_CHUNK_INT);
163
164 chunk_mul = get_reg_field_value(
165 value,
166 DVMM_PTE_REQ,
167 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
168
169 if (chunk_int != 0x4 || chunk_mul != 0x4) {
170
171 set_reg_field_value(
172 value,
173 255,
174 DVMM_PTE_REQ,
175 MAX_PTEREQ_TO_ISSUE);
176
177 set_reg_field_value(
178 value,
179 4,
180 DVMM_PTE_REQ,
181 HFLIP_PTEREQ_PER_CHUNK_INT);
182
183 set_reg_field_value(
184 value,
185 4,
186 DVMM_PTE_REQ,
187 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
188
189 dm_write_reg(ctx, addr, value);
190 }
191 }
192 /**************************************************************************/
193
194 static void enable_display_pipe_clock_gating(
195 struct dc_context *ctx,
196 bool clock_gating)
197 {
198 /*TODO*/
199 }
200
201 static bool dce110_enable_display_power_gating(
202 struct dc *dc,
203 uint8_t controller_id,
204 struct dc_bios *dcb,
205 enum pipe_gating_control power_gating)
206 {
207 enum bp_result bp_result = BP_RESULT_OK;
208 enum bp_pipe_control_action cntl;
209 struct dc_context *ctx = dc->ctx;
210 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
211
212 if (power_gating == PIPE_GATING_CONTROL_INIT)
213 cntl = ASIC_PIPE_INIT;
214 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
215 cntl = ASIC_PIPE_ENABLE;
216 else
217 cntl = ASIC_PIPE_DISABLE;
218
219 if (controller_id == underlay_idx)
220 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
221
222 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
223
224 bp_result = dcb->funcs->enable_disp_power_gating(
225 dcb, controller_id + 1, cntl);
226
227 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
228 * by default when command table is called
229 *
230 * Bios parser accepts controller_id = 6 as indicative of
231 * underlay pipe in dce110. But we do not support more
232 * than 3.
233 */
234 if (controller_id < CONTROLLER_ID_MAX - 1)
235 dm_write_reg(ctx,
236 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
237 0);
238 }
239
240 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
241 dce110_init_pte(ctx);
242
243 if (bp_result == BP_RESULT_OK)
244 return true;
245 else
246 return false;
247 }
248
249 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
250 const struct dc_plane_state *plane_state)
251 {
252 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
253
254 switch (plane_state->format) {
255 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
256 prescale_params->scale = 0x2082;
257 break;
258 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
259 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
260 prescale_params->scale = 0x2020;
261 break;
262 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
263 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
264 prescale_params->scale = 0x2008;
265 break;
266 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
267 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
268 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
269 prescale_params->scale = 0x2000;
270 break;
271 default:
272 ASSERT(false);
273 break;
274 }
275 }
276
277 static bool
278 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
279 const struct dc_plane_state *plane_state)
280 {
281 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
282 const struct dc_transfer_func *tf = NULL;
283 struct ipp_prescale_params prescale_params = { 0 };
284 bool result = true;
285
286 if (ipp == NULL)
287 return false;
288
289 if (plane_state->in_transfer_func)
290 tf = plane_state->in_transfer_func;
291
292 build_prescale_params(&prescale_params, plane_state);
293 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
294
295 if (plane_state->gamma_correction &&
296 !plane_state->gamma_correction->is_identity &&
297 dce_use_lut(plane_state->format))
298 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
299
300 if (tf == NULL) {
301 /* Default case if no input transfer function specified */
302 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
303 } else if (tf->type == TF_TYPE_PREDEFINED) {
304 switch (tf->tf) {
305 case TRANSFER_FUNCTION_SRGB:
306 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 break;
308 case TRANSFER_FUNCTION_BT709:
309 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 break;
311 case TRANSFER_FUNCTION_LINEAR:
312 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 break;
314 case TRANSFER_FUNCTION_PQ:
315 default:
316 result = false;
317 break;
318 }
319 } else if (tf->type == TF_TYPE_BYPASS) {
320 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 } else {
322 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 result = false;
324 }
325
326 return result;
327 }
328
329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 struct curve_points *arr_points,
331 uint32_t hw_points_num)
332 {
333 struct custom_float_format fmt;
334
335 struct pwl_result_data *rgb = rgb_resulted;
336
337 uint32_t i = 0;
338
339 fmt.exponenta_bits = 6;
340 fmt.mantissa_bits = 12;
341 fmt.sign = true;
342
343 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 &arr_points[0].custom_float_x)) {
345 BREAK_TO_DEBUGGER();
346 return false;
347 }
348
349 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 &arr_points[0].custom_float_offset)) {
351 BREAK_TO_DEBUGGER();
352 return false;
353 }
354
355 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 &arr_points[0].custom_float_slope)) {
357 BREAK_TO_DEBUGGER();
358 return false;
359 }
360
361 fmt.mantissa_bits = 10;
362 fmt.sign = false;
363
364 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 &arr_points[1].custom_float_x)) {
366 BREAK_TO_DEBUGGER();
367 return false;
368 }
369
370 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 &arr_points[1].custom_float_y)) {
372 BREAK_TO_DEBUGGER();
373 return false;
374 }
375
376 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 &arr_points[1].custom_float_slope)) {
378 BREAK_TO_DEBUGGER();
379 return false;
380 }
381
382 fmt.mantissa_bits = 12;
383 fmt.sign = true;
384
385 while (i != hw_points_num) {
386 if (!convert_to_custom_float_format(rgb->red, &fmt,
387 &rgb->red_reg)) {
388 BREAK_TO_DEBUGGER();
389 return false;
390 }
391
392 if (!convert_to_custom_float_format(rgb->green, &fmt,
393 &rgb->green_reg)) {
394 BREAK_TO_DEBUGGER();
395 return false;
396 }
397
398 if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 &rgb->blue_reg)) {
400 BREAK_TO_DEBUGGER();
401 return false;
402 }
403
404 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 &rgb->delta_red_reg)) {
406 BREAK_TO_DEBUGGER();
407 return false;
408 }
409
410 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 &rgb->delta_green_reg)) {
412 BREAK_TO_DEBUGGER();
413 return false;
414 }
415
416 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 &rgb->delta_blue_reg)) {
418 BREAK_TO_DEBUGGER();
419 return false;
420 }
421
422 ++rgb;
423 ++i;
424 }
425
426 return true;
427 }
428
429 #define MAX_LOW_POINT 25
430 #define NUMBER_REGIONS 16
431 #define NUMBER_SW_SEGMENTS 16
432
433 static bool
434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 struct pwl_params *regamma_params)
436 {
437 struct curve_points *arr_points;
438 struct pwl_result_data *rgb_resulted;
439 struct pwl_result_data *rgb;
440 struct pwl_result_data *rgb_plus_1;
441 struct fixed31_32 y_r;
442 struct fixed31_32 y_g;
443 struct fixed31_32 y_b;
444 struct fixed31_32 y1_min;
445 struct fixed31_32 y3_max;
446
447 int32_t region_start, region_end;
448 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449
450 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 return false;
452
453 arr_points = regamma_params->arr_points;
454 rgb_resulted = regamma_params->rgb_resulted;
455 hw_points = 0;
456
457 memset(regamma_params, 0, sizeof(struct pwl_params));
458
459 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 /* 16 segments
461 * segments are from 2^-11 to 2^5
462 */
463 region_start = -11;
464 region_end = region_start + NUMBER_REGIONS;
465
466 for (i = 0; i < NUMBER_REGIONS; i++)
467 seg_distr[i] = 4;
468
469 } else {
470 /* 10 segments
471 * segment is from 2^-10 to 2^1
472 * We include an extra segment for range [2^0, 2^1). This is to
473 * ensure that colors with normalized values of 1 don't miss the
474 * LUT.
475 */
476 region_start = -10;
477 region_end = 1;
478
479 seg_distr[0] = 4;
480 seg_distr[1] = 4;
481 seg_distr[2] = 4;
482 seg_distr[3] = 4;
483 seg_distr[4] = 4;
484 seg_distr[5] = 4;
485 seg_distr[6] = 4;
486 seg_distr[7] = 4;
487 seg_distr[8] = 4;
488 seg_distr[9] = 4;
489 seg_distr[10] = 0;
490 seg_distr[11] = -1;
491 seg_distr[12] = -1;
492 seg_distr[13] = -1;
493 seg_distr[14] = -1;
494 seg_distr[15] = -1;
495 }
496
497 for (k = 0; k < 16; k++) {
498 if (seg_distr[k] != -1)
499 hw_points += (1 << seg_distr[k]);
500 }
501
502 j = 0;
503 for (k = 0; k < (region_end - region_start); k++) {
504 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 start_index = (region_start + k + MAX_LOW_POINT) *
506 NUMBER_SW_SEGMENTS;
507 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 i += increment) {
509 if (j == hw_points - 1)
510 break;
511 rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 j++;
515 }
516 }
517
518 /* last point */
519 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523
524 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 dc_fixpt_from_int(region_start));
526 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 dc_fixpt_from_int(region_end));
528
529 y_r = rgb_resulted[0].red;
530 y_g = rgb_resulted[0].green;
531 y_b = rgb_resulted[0].blue;
532
533 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534
535 arr_points[0].y = y1_min;
536 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 arr_points[0].x);
538
539 y_r = rgb_resulted[hw_points - 1].red;
540 y_g = rgb_resulted[hw_points - 1].green;
541 y_b = rgb_resulted[hw_points - 1].blue;
542
543 /* see comment above, m_arrPoints[1].y should be the Y value for the
544 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 */
546 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547
548 arr_points[1].y = y3_max;
549
550 arr_points[1].slope = dc_fixpt_zero;
551
552 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 /* for PQ, we want to have a straight line from last HW X point,
554 * and the slope to be such that we hit 1.0 at 10000 nits.
555 */
556 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557
558 arr_points[1].slope = dc_fixpt_div(
559 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 dc_fixpt_sub(end_value, arr_points[1].x));
561 }
562
563 regamma_params->hw_points_num = hw_points;
564
565 k = 0;
566 for (i = 1; i < 16; i++) {
567 if (seg_distr[k] != -1) {
568 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 regamma_params->arr_curve_points[i].offset =
570 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 }
572 k++;
573 }
574
575 if (seg_distr[k] != -1)
576 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577
578 rgb = rgb_resulted;
579 rgb_plus_1 = rgb_resulted + 1;
580
581 i = 1;
582
583 while (i != hw_points + 1) {
584 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 rgb_plus_1->red = rgb->red;
586 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 rgb_plus_1->green = rgb->green;
588 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 rgb_plus_1->blue = rgb->blue;
590
591 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594
595 ++rgb_plus_1;
596 ++rgb;
597 ++i;
598 }
599
600 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601
602 return true;
603 }
604
605 static bool
606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 const struct dc_stream_state *stream)
608 {
609 struct transform *xfm = pipe_ctx->plane_res.xfm;
610
611 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613
614 if (stream->out_transfer_func &&
615 stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
616 stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
617 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
618 } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
619 &xfm->regamma_params)) {
620 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
621 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
622 } else {
623 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
624 }
625
626 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
627
628 return true;
629 }
630
631 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
632 {
633 bool is_hdmi_tmds;
634 bool is_dp;
635
636 ASSERT(pipe_ctx->stream);
637
638 if (pipe_ctx->stream_res.stream_enc == NULL)
639 return; /* this is not root pipe */
640
641 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
642 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
643
644 if (!is_hdmi_tmds && !is_dp)
645 return;
646
647 if (is_hdmi_tmds)
648 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
649 pipe_ctx->stream_res.stream_enc,
650 &pipe_ctx->stream_res.encoder_info_frame);
651 else {
652 if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
653 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
654 pipe_ctx->stream_res.stream_enc,
655 &pipe_ctx->stream_res.encoder_info_frame);
656
657 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
658 pipe_ctx->stream_res.stream_enc,
659 &pipe_ctx->stream_res.encoder_info_frame);
660 }
661 }
662
663 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
664 {
665 enum dc_lane_count lane_count =
666 pipe_ctx->stream->link->cur_link_settings.lane_count;
667 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
668 struct dc_link *link = pipe_ctx->stream->link;
669 const struct dc *dc = link->dc;
670 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
671 uint32_t active_total_with_borders;
672 uint32_t early_control = 0;
673 struct timing_generator *tg = pipe_ctx->stream_res.tg;
674
675 link_hwss->setup_stream_encoder(pipe_ctx);
676
677 dc->hwss.update_info_frame(pipe_ctx);
678
679 /* enable early control to avoid corruption on DP monitor*/
680 active_total_with_borders =
681 timing->h_addressable
682 + timing->h_border_left
683 + timing->h_border_right;
684
685 if (lane_count != 0)
686 early_control = active_total_with_borders % lane_count;
687
688 if (early_control == 0)
689 early_control = lane_count;
690
691 tg->funcs->set_early_control(tg, early_control);
692 }
693
694 static enum bp_result link_transmitter_control(
695 struct dc_bios *bios,
696 struct bp_transmitter_control *cntl)
697 {
698 enum bp_result result;
699
700 result = bios->funcs->transmitter_control(bios, cntl);
701
702 return result;
703 }
704
705 /*
706 * @brief
707 * eDP only.
708 */
709 void dce110_edp_wait_for_hpd_ready(
710 struct dc_link *link,
711 bool power_up)
712 {
713 struct dc_context *ctx = link->ctx;
714 struct graphics_object_id connector = link->link_enc->connector;
715 struct gpio *hpd;
716 bool edp_hpd_high = false;
717 uint32_t time_elapsed = 0;
718 uint32_t timeout = power_up ?
719 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
720
721 if (dal_graphics_object_id_get_connector_id(connector)
722 != CONNECTOR_ID_EDP) {
723 BREAK_TO_DEBUGGER();
724 return;
725 }
726
727 if (!power_up)
728 /*
729 * From KV, we will not HPD low after turning off VCC -
730 * instead, we will check the SW timer in power_up().
731 */
732 return;
733
734 /*
735 * When we power on/off the eDP panel,
736 * we need to wait until SENSE bit is high/low.
737 */
738
739 /* obtain HPD */
740 /* TODO what to do with this? */
741 hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
742
743 if (!hpd) {
744 BREAK_TO_DEBUGGER();
745 return;
746 }
747
748 if (link != NULL) {
749 if (link->panel_config.pps.extra_t3_ms > 0) {
750 int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
751
752 msleep(extra_t3_in_ms);
753 }
754 }
755
756 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
757
758 /* wait until timeout or panel detected */
759
760 do {
761 uint32_t detected = 0;
762
763 dal_gpio_get_value(hpd, &detected);
764
765 if (!(detected ^ power_up)) {
766 edp_hpd_high = true;
767 break;
768 }
769
770 msleep(HPD_CHECK_INTERVAL);
771
772 time_elapsed += HPD_CHECK_INTERVAL;
773 } while (time_elapsed < timeout);
774
775 dal_gpio_close(hpd);
776
777 dal_gpio_destroy_irq(&hpd);
778
779 /* ensure that the panel is detected */
780 if (!edp_hpd_high)
781 DC_LOG_DC("%s: wait timed out!\n", __func__);
782 }
783
784 void dce110_edp_power_control(
785 struct dc_link *link,
786 bool power_up)
787 {
788 struct dc_context *ctx = link->ctx;
789 struct bp_transmitter_control cntl = { 0 };
790 enum bp_result bp_result;
791 uint8_t panel_instance;
792
793
794 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
795 != CONNECTOR_ID_EDP) {
796 BREAK_TO_DEBUGGER();
797 return;
798 }
799
800 if (!link->panel_cntl)
801 return;
802 if (power_up !=
803 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
804
805 unsigned long long current_ts = dm_get_timestamp(ctx);
806 unsigned long long time_since_edp_poweroff_ms =
807 div64_u64(dm_get_elapse_time_in_ns(
808 ctx,
809 current_ts,
810 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
811 unsigned long long time_since_edp_poweron_ms =
812 div64_u64(dm_get_elapse_time_in_ns(
813 ctx,
814 current_ts,
815 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
816 DC_LOG_HW_RESUME_S3(
817 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
818 __func__,
819 power_up,
820 current_ts,
821 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
822 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
823 time_since_edp_poweroff_ms,
824 time_since_edp_poweron_ms);
825
826 /* Send VBIOS command to prompt eDP panel power */
827 if (power_up) {
828 /* edp requires a min of 500ms from LCDVDD off to on */
829 unsigned long long remaining_min_edp_poweroff_time_ms = 500;
830
831 /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
832 if (link->local_sink != NULL)
833 remaining_min_edp_poweroff_time_ms +=
834 link->panel_config.pps.extra_t12_ms;
835
836 /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
837 if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
838 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
839 remaining_min_edp_poweroff_time_ms =
840 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
841 else
842 remaining_min_edp_poweroff_time_ms = 0;
843 }
844
845 if (remaining_min_edp_poweroff_time_ms) {
846 DC_LOG_HW_RESUME_S3(
847 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
848 __func__, remaining_min_edp_poweroff_time_ms);
849 msleep(remaining_min_edp_poweroff_time_ms);
850 DC_LOG_HW_RESUME_S3(
851 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
852 __func__, remaining_min_edp_poweroff_time_ms);
853 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
854 __func__, remaining_min_edp_poweroff_time_ms);
855 } else {
856 DC_LOG_HW_RESUME_S3(
857 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
858 __func__, remaining_min_edp_poweroff_time_ms);
859 }
860 }
861
862 DC_LOG_HW_RESUME_S3(
863 "%s: BEGIN: Panel Power action: %s\n",
864 __func__, (power_up ? "On":"Off"));
865
866 cntl.action = power_up ?
867 TRANSMITTER_CONTROL_POWER_ON :
868 TRANSMITTER_CONTROL_POWER_OFF;
869 cntl.transmitter = link->link_enc->transmitter;
870 cntl.connector_obj_id = link->link_enc->connector;
871 cntl.coherent = false;
872 cntl.lanes_number = LANE_COUNT_FOUR;
873 cntl.hpd_sel = link->link_enc->hpd_source;
874 panel_instance = link->panel_cntl->inst;
875
876 if (ctx->dc->ctx->dmub_srv &&
877 ctx->dc->debug.dmub_command_table) {
878
879 if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
880 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
881 LVTMA_CONTROL_POWER_ON,
882 panel_instance, link->link_powered_externally);
883 } else {
884 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
885 LVTMA_CONTROL_POWER_OFF,
886 panel_instance, link->link_powered_externally);
887 }
888 }
889
890 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
891
892 DC_LOG_HW_RESUME_S3(
893 "%s: END: Panel Power action: %s bp_result=%u\n",
894 __func__, (power_up ? "On":"Off"),
895 bp_result);
896
897 ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
898
899 DC_LOG_HW_RESUME_S3(
900 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
901 __func__,
902 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
903 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
904
905 if (bp_result != BP_RESULT_OK)
906 DC_LOG_ERROR(
907 "%s: Panel Power bp_result: %d\n",
908 __func__, bp_result);
909 } else {
910 DC_LOG_HW_RESUME_S3(
911 "%s: Skipping Panel Power action: %s\n",
912 __func__, (power_up ? "On":"Off"));
913 }
914 }
915
916 void dce110_edp_wait_for_T12(
917 struct dc_link *link)
918 {
919 struct dc_context *ctx = link->ctx;
920
921 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
922 != CONNECTOR_ID_EDP) {
923 BREAK_TO_DEBUGGER();
924 return;
925 }
926
927 if (!link->panel_cntl)
928 return;
929
930 if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
931 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
932 unsigned int t12_duration = 500; // Default T12 as per spec
933 unsigned long long current_ts = dm_get_timestamp(ctx);
934 unsigned long long time_since_edp_poweroff_ms =
935 div64_u64(dm_get_elapse_time_in_ns(
936 ctx,
937 current_ts,
938 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
939
940 t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
941
942 if (time_since_edp_poweroff_ms < t12_duration)
943 msleep(t12_duration - time_since_edp_poweroff_ms);
944 }
945 }
946 /*todo: cloned in stream enc, fix*/
947 /*
948 * @brief
949 * eDP only. Control the backlight of the eDP panel
950 */
951 void dce110_edp_backlight_control(
952 struct dc_link *link,
953 bool enable)
954 {
955 struct dc_context *ctx = link->ctx;
956 struct bp_transmitter_control cntl = { 0 };
957 uint8_t panel_instance;
958 unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
959 unsigned int post_T7_delay = OLED_POST_T7_DELAY;
960
961 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
962 != CONNECTOR_ID_EDP) {
963 BREAK_TO_DEBUGGER();
964 return;
965 }
966
967 if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
968 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
969 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
970 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
971
972 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
973 DC_LOG_HW_RESUME_S3(
974 "%s: panel already powered up/off. Do nothing.\n",
975 __func__);
976 return;
977 }
978 }
979
980 /* Send VBIOS command to control eDP panel backlight */
981
982 DC_LOG_HW_RESUME_S3(
983 "%s: backlight action: %s\n",
984 __func__, (enable ? "On":"Off"));
985
986 cntl.action = enable ?
987 TRANSMITTER_CONTROL_BACKLIGHT_ON :
988 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
989
990 /*cntl.engine_id = ctx->engine;*/
991 cntl.transmitter = link->link_enc->transmitter;
992 cntl.connector_obj_id = link->link_enc->connector;
993 /*todo: unhardcode*/
994 cntl.lanes_number = LANE_COUNT_FOUR;
995 cntl.hpd_sel = link->link_enc->hpd_source;
996 cntl.signal = SIGNAL_TYPE_EDP;
997
998 /* For eDP, the following delays might need to be considered
999 * after link training completed:
1000 * idle period - min. accounts for required BS-Idle pattern,
1001 * max. allows for source frame synchronization);
1002 * 50 msec max. delay from valid video data from source
1003 * to video on dislpay or backlight enable.
1004 *
1005 * Disable the delay for now.
1006 * Enable it in the future if necessary.
1007 */
1008 /* dc_service_sleep_in_milliseconds(50); */
1009 /*edp 1.2*/
1010 panel_instance = link->panel_cntl->inst;
1011
1012 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1013 if (!link->dc->config.edp_no_power_sequencing)
1014 /*
1015 * Sometimes, DP receiver chip power-controlled externally by an
1016 * Embedded Controller could be treated and used as eDP,
1017 * if it drives mobile display. In this case,
1018 * we shouldn't be doing power-sequencing, hence we can skip
1019 * waiting for T7-ready.
1020 */
1021 ctx->dc->link_srv->edp_receiver_ready_T7(link);
1022 else
1023 DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1024 }
1025
1026 /* Setting link_powered_externally will bypass delays in the backlight
1027 * as they are not required if the link is being powered by a different
1028 * source.
1029 */
1030 if (ctx->dc->ctx->dmub_srv &&
1031 ctx->dc->debug.dmub_command_table) {
1032 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1033 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1034 LVTMA_CONTROL_LCD_BLON,
1035 panel_instance, link->link_powered_externally);
1036 else
1037 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1038 LVTMA_CONTROL_LCD_BLOFF,
1039 panel_instance, link->link_powered_externally);
1040 }
1041
1042 link_transmitter_control(ctx->dc_bios, &cntl);
1043
1044 if (enable && link->dpcd_sink_ext_caps.bits.oled) {
1045 post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1046 msleep(post_T7_delay);
1047 }
1048
1049 if (link->dpcd_sink_ext_caps.bits.oled ||
1050 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052 ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1053
1054 /*edp 1.2*/
1055 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056 if (!link->dc->config.edp_no_power_sequencing)
1057 /*
1058 * Sometimes, DP receiver chip power-controlled externally by an
1059 * Embedded Controller could be treated and used as eDP,
1060 * if it drives mobile display. In this case,
1061 * we shouldn't be doing power-sequencing, hence we can skip
1062 * waiting for T9-ready.
1063 */
1064 ctx->dc->link_srv->edp_add_delay_for_T9(link);
1065 else
1066 DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067 }
1068
1069 if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
1070 pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1071 msleep(pre_T11_delay);
1072 }
1073 }
1074
1075 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1076 {
1077 /* notify audio driver for audio modes of monitor */
1078 struct dc *dc;
1079 struct clk_mgr *clk_mgr;
1080 unsigned int i, num_audio = 1;
1081 const struct link_hwss *link_hwss;
1082
1083 if (!pipe_ctx->stream)
1084 return;
1085
1086 dc = pipe_ctx->stream->ctx->dc;
1087 clk_mgr = dc->clk_mgr;
1088 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1089
1090 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1091 return;
1092
1093 if (pipe_ctx->stream_res.audio) {
1094 for (i = 0; i < MAX_PIPES; i++) {
1095 /*current_state not updated yet*/
1096 if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1097 num_audio++;
1098 }
1099
1100 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1101
1102 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1103 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1104 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1105
1106 link_hwss->enable_audio_packet(pipe_ctx);
1107
1108 if (pipe_ctx->stream_res.audio)
1109 pipe_ctx->stream_res.audio->enabled = true;
1110 }
1111 }
1112
1113 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1114 {
1115 struct dc *dc;
1116 struct clk_mgr *clk_mgr;
1117 const struct link_hwss *link_hwss;
1118
1119 if (!pipe_ctx || !pipe_ctx->stream)
1120 return;
1121
1122 dc = pipe_ctx->stream->ctx->dc;
1123 clk_mgr = dc->clk_mgr;
1124 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1125
1126 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1127 return;
1128
1129 link_hwss->disable_audio_packet(pipe_ctx);
1130
1131 if (pipe_ctx->stream_res.audio) {
1132 pipe_ctx->stream_res.audio->enabled = false;
1133
1134 if (clk_mgr->funcs->enable_pme_wa)
1135 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1136 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1137
1138 /* TODO: notify audio driver for if audio modes list changed
1139 * add audio mode list change flag */
1140 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1141 * stream->stream_engine_id);
1142 */
1143 }
1144 }
1145
1146 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1147 {
1148 struct dc_stream_state *stream = pipe_ctx->stream;
1149 struct dc_link *link = stream->link;
1150 struct dc *dc = pipe_ctx->stream->ctx->dc;
1151 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1152 struct dccg *dccg = dc->res_pool->dccg;
1153 struct timing_generator *tg = pipe_ctx->stream_res.tg;
1154 struct dtbclk_dto_params dto_params = {0};
1155 int dp_hpo_inst;
1156 struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
1157 struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1158
1159 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1160 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1161 pipe_ctx->stream_res.stream_enc);
1162 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1163 pipe_ctx->stream_res.stream_enc);
1164 }
1165
1166 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1167 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1168 pipe_ctx->stream_res.hpo_dp_stream_enc);
1169 } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1170 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1171 pipe_ctx->stream_res.stream_enc);
1172
1173 dc->hwss.disable_audio_stream(pipe_ctx);
1174
1175 link_hwss->reset_stream_encoder(pipe_ctx);
1176
1177 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1178 dto_params.otg_inst = tg->inst;
1179 dto_params.timing = &pipe_ctx->stream->timing;
1180 dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1181 if (dccg) {
1182 dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1183 dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1184 dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1185 }
1186 } else if (dccg && dccg->funcs->disable_symclk_se) {
1187 dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1188 link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1189 }
1190
1191 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1192 /* TODO: This looks like a bug to me as we are disabling HPO IO when
1193 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1194 * HW control only when HPOs for all streams are disabled?
1195 */
1196 if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1197 pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1198 pipe_ctx->stream->ctx->dc->hwseq, false);
1199 }
1200 }
1201
1202 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1203 struct dc_link_settings *link_settings)
1204 {
1205 struct encoder_unblank_param params = { { 0 } };
1206 struct dc_stream_state *stream = pipe_ctx->stream;
1207 struct dc_link *link = stream->link;
1208 struct dce_hwseq *hws = link->dc->hwseq;
1209
1210 /* only 3 items below are used by unblank */
1211 params.timing = pipe_ctx->stream->timing;
1212 params.link_settings.link_rate = link_settings->link_rate;
1213
1214 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1215 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1216
1217 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1218 hws->funcs.edp_backlight_control(link, true);
1219 }
1220 }
1221
1222 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1223 {
1224 struct dc_stream_state *stream = pipe_ctx->stream;
1225 struct dc_link *link = stream->link;
1226 struct dce_hwseq *hws = link->dc->hwseq;
1227
1228 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229 if (!stream->skip_edp_power_down)
1230 hws->funcs.edp_backlight_control(link, false);
1231 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1232 }
1233
1234 if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1235 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1236 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1237 pipe_ctx->stream_res.hpo_dp_stream_enc);
1238 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1239 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1240
1241 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1242 /*
1243 * After output is idle pattern some sinks need time to recognize the stream
1244 * has changed or they enter protection state and hang.
1245 */
1246 msleep(60);
1247 } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1248 if (!link->dc->config.edp_no_power_sequencing) {
1249 /*
1250 * Sometimes, DP receiver chip power-controlled externally by an
1251 * Embedded Controller could be treated and used as eDP,
1252 * if it drives mobile display. In this case,
1253 * we shouldn't be doing power-sequencing, hence we can skip
1254 * waiting for T9-ready.
1255 */
1256 link->dc->link_srv->edp_receiver_ready_T9(link);
1257 }
1258 }
1259 }
1260
1261 }
1262
1263
1264 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1265 {
1266 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1267 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1268 }
1269
1270 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1271 {
1272 switch (crtc_id) {
1273 case CONTROLLER_ID_D0:
1274 return DTO_SOURCE_ID0;
1275 case CONTROLLER_ID_D1:
1276 return DTO_SOURCE_ID1;
1277 case CONTROLLER_ID_D2:
1278 return DTO_SOURCE_ID2;
1279 case CONTROLLER_ID_D3:
1280 return DTO_SOURCE_ID3;
1281 case CONTROLLER_ID_D4:
1282 return DTO_SOURCE_ID4;
1283 case CONTROLLER_ID_D5:
1284 return DTO_SOURCE_ID5;
1285 default:
1286 return DTO_SOURCE_UNKNOWN;
1287 }
1288 }
1289
1290 static void build_audio_output(
1291 struct dc_state *state,
1292 const struct pipe_ctx *pipe_ctx,
1293 struct audio_output *audio_output)
1294 {
1295 const struct dc_stream_state *stream = pipe_ctx->stream;
1296 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1297
1298 audio_output->signal = pipe_ctx->stream->signal;
1299
1300 /* audio_crtc_info */
1301
1302 audio_output->crtc_info.h_total =
1303 stream->timing.h_total;
1304
1305 /*
1306 * Audio packets are sent during actual CRTC blank physical signal, we
1307 * need to specify actual active signal portion
1308 */
1309 audio_output->crtc_info.h_active =
1310 stream->timing.h_addressable
1311 + stream->timing.h_border_left
1312 + stream->timing.h_border_right;
1313
1314 audio_output->crtc_info.v_active =
1315 stream->timing.v_addressable
1316 + stream->timing.v_border_top
1317 + stream->timing.v_border_bottom;
1318
1319 audio_output->crtc_info.pixel_repetition = 1;
1320
1321 audio_output->crtc_info.interlaced =
1322 stream->timing.flags.INTERLACE;
1323
1324 audio_output->crtc_info.refresh_rate =
1325 (stream->timing.pix_clk_100hz*100)/
1326 (stream->timing.h_total*stream->timing.v_total);
1327
1328 audio_output->crtc_info.color_depth =
1329 stream->timing.display_color_depth;
1330
1331 audio_output->crtc_info.requested_pixel_clock_100Hz =
1332 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1333
1334 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1335 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1336
1337 /*for HDMI, audio ACR is with deep color ratio factor*/
1338 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1339 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1340 (stream->timing.pix_clk_100hz)) {
1341 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1342 audio_output->crtc_info.requested_pixel_clock_100Hz =
1343 audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1344 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1345 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1346
1347 }
1348 }
1349
1350 if (state->clk_mgr &&
1351 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1352 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1353 audio_output->pll_info.dp_dto_source_clock_in_khz =
1354 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1355 state->clk_mgr);
1356 }
1357
1358 audio_output->pll_info.feed_back_divider =
1359 pipe_ctx->pll_settings.feedback_divider;
1360
1361 audio_output->pll_info.dto_source =
1362 translate_to_dto_source(
1363 pipe_ctx->stream_res.tg->inst + 1);
1364
1365 /* TODO hard code to enable for now. Need get from stream */
1366 audio_output->pll_info.ss_enabled = true;
1367
1368 audio_output->pll_info.ss_percentage =
1369 pipe_ctx->pll_settings.ss_percentage;
1370 }
1371
1372 static void program_scaler(const struct dc *dc,
1373 const struct pipe_ctx *pipe_ctx)
1374 {
1375 struct tg_color color = {0};
1376
1377 /* TOFPGA */
1378 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1379 return;
1380
1381 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1382 get_surface_visual_confirm_color(pipe_ctx, &color);
1383 else
1384 color_space_to_black_color(dc,
1385 pipe_ctx->stream->output_color_space,
1386 &color);
1387
1388 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1389 pipe_ctx->plane_res.xfm,
1390 pipe_ctx->plane_res.scl_data.lb_params.depth,
1391 &pipe_ctx->stream->bit_depth_params);
1392
1393 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1394 /*
1395 * The way 420 is packed, 2 channels carry Y component, 1 channel
1396 * alternate between Cb and Cr, so both channels need the pixel
1397 * value for Y
1398 */
1399 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1400 color.color_r_cr = color.color_g_y;
1401
1402 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1403 pipe_ctx->stream_res.tg,
1404 &color);
1405 }
1406
1407 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1408 &pipe_ctx->plane_res.scl_data);
1409 }
1410
1411 static enum dc_status dce110_enable_stream_timing(
1412 struct pipe_ctx *pipe_ctx,
1413 struct dc_state *context,
1414 struct dc *dc)
1415 {
1416 struct dc_stream_state *stream = pipe_ctx->stream;
1417 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1418 pipe_ctx[pipe_ctx->pipe_idx];
1419 struct tg_color black_color = {0};
1420
1421 if (!pipe_ctx_old->stream) {
1422
1423 /* program blank color */
1424 color_space_to_black_color(dc,
1425 stream->output_color_space, &black_color);
1426 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1427 pipe_ctx->stream_res.tg,
1428 &black_color);
1429
1430 /*
1431 * Must blank CRTC after disabling power gating and before any
1432 * programming, otherwise CRTC will be hung in bad state
1433 */
1434 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1435
1436 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1437 pipe_ctx->clock_source,
1438 &pipe_ctx->stream_res.pix_clk_params,
1439 dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1440 &pipe_ctx->pll_settings)) {
1441 BREAK_TO_DEBUGGER();
1442 return DC_ERROR_UNEXPECTED;
1443 }
1444
1445 if (dc_is_hdmi_tmds_signal(stream->signal)) {
1446 stream->link->phy_state.symclk_ref_cnts.otg = 1;
1447 if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1448 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1449 else
1450 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1451 }
1452
1453 pipe_ctx->stream_res.tg->funcs->program_timing(
1454 pipe_ctx->stream_res.tg,
1455 &stream->timing,
1456 0,
1457 0,
1458 0,
1459 0,
1460 pipe_ctx->stream->signal,
1461 true);
1462 }
1463
1464 if (!pipe_ctx_old->stream) {
1465 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1466 pipe_ctx->stream_res.tg)) {
1467 BREAK_TO_DEBUGGER();
1468 return DC_ERROR_UNEXPECTED;
1469 }
1470 }
1471
1472 return DC_OK;
1473 }
1474
1475 static enum dc_status apply_single_controller_ctx_to_hw(
1476 struct pipe_ctx *pipe_ctx,
1477 struct dc_state *context,
1478 struct dc *dc)
1479 {
1480 struct dc_stream_state *stream = pipe_ctx->stream;
1481 struct dc_link *link = stream->link;
1482 struct drr_params params = {0};
1483 unsigned int event_triggers = 0;
1484 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1485 struct dce_hwseq *hws = dc->hwseq;
1486 const struct link_hwss *link_hwss = get_link_hwss(
1487 link, &pipe_ctx->link_res);
1488
1489
1490 if (hws->funcs.disable_stream_gating) {
1491 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1492 }
1493
1494 if (pipe_ctx->stream_res.audio != NULL) {
1495 struct audio_output audio_output;
1496
1497 build_audio_output(context, pipe_ctx, &audio_output);
1498
1499 link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1500 pipe_ctx->stream_res.audio->inst);
1501
1502 pipe_ctx->stream_res.audio->funcs->az_configure(
1503 pipe_ctx->stream_res.audio,
1504 pipe_ctx->stream->signal,
1505 &audio_output.crtc_info,
1506 &pipe_ctx->stream->audio_info);
1507 }
1508
1509 /* make sure no pipes syncd to the pipe being enabled */
1510 if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1511 check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1512
1513 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1514 pipe_ctx->stream_res.opp,
1515 &stream->bit_depth_params,
1516 &stream->clamping);
1517
1518 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1519 pipe_ctx->stream_res.opp,
1520 COLOR_SPACE_YCBCR601,
1521 stream->timing.display_color_depth,
1522 stream->signal);
1523
1524 while (odm_pipe) {
1525 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1526 odm_pipe->stream_res.opp,
1527 COLOR_SPACE_YCBCR601,
1528 stream->timing.display_color_depth,
1529 stream->signal);
1530
1531 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1532 odm_pipe->stream_res.opp,
1533 &stream->bit_depth_params,
1534 &stream->clamping);
1535 odm_pipe = odm_pipe->next_odm_pipe;
1536 }
1537
1538 /* DCN3.1 FPGA Workaround
1539 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1540 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1541 * function core_link_enable_stream
1542 */
1543 if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1544 /* */
1545 /* Do not touch stream timing on seamless boot optimization. */
1546 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1547 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1548
1549 if (hws->funcs.setup_vupdate_interrupt)
1550 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1551
1552 params.vertical_total_min = stream->adjust.v_total_min;
1553 params.vertical_total_max = stream->adjust.v_total_max;
1554 if (pipe_ctx->stream_res.tg->funcs->set_drr)
1555 pipe_ctx->stream_res.tg->funcs->set_drr(
1556 pipe_ctx->stream_res.tg, &params);
1557
1558 // DRR should set trigger event to monitor surface update event
1559 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1560 event_triggers = 0x80;
1561 /* Event triggers and num frames initialized for DRR, but can be
1562 * later updated for PSR use. Note DRR trigger events are generated
1563 * regardless of whether num frames met.
1564 */
1565 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1566 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1567 pipe_ctx->stream_res.tg, event_triggers, 2);
1568
1569 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1570 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1571 pipe_ctx->stream_res.stream_enc,
1572 pipe_ctx->stream_res.tg->inst);
1573
1574 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1575 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1576
1577 if (!stream->dpms_off)
1578 dc->link_srv->set_dpms_on(context, pipe_ctx);
1579
1580 /* DCN3.1 FPGA Workaround
1581 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1582 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1583 * function core_link_enable_stream
1584 */
1585 if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1586 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1587 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1588 }
1589
1590 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1591
1592 /* Phantom and main stream share the same link (because the stream
1593 * is constructed with the same sink). Make sure not to override
1594 * and link programming on the main.
1595 */
1596 if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1597 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1598 pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1599 }
1600 return DC_OK;
1601 }
1602
1603 /******************************************************************************/
1604
1605 static void power_down_encoders(struct dc *dc)
1606 {
1607 int i;
1608
1609 for (i = 0; i < dc->link_count; i++) {
1610 enum signal_type signal = dc->links[i]->connector_signal;
1611
1612 dc->link_srv->blank_dp_stream(dc->links[i], false);
1613
1614 if (signal != SIGNAL_TYPE_EDP)
1615 signal = SIGNAL_TYPE_NONE;
1616
1617 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1618 dc->links[i]->link_enc->funcs->disable_output(
1619 dc->links[i]->link_enc, signal);
1620
1621 dc->links[i]->link_status.link_active = false;
1622 memset(&dc->links[i]->cur_link_settings, 0,
1623 sizeof(dc->links[i]->cur_link_settings));
1624 }
1625 }
1626
1627 static void power_down_controllers(struct dc *dc)
1628 {
1629 int i;
1630
1631 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1632 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1633 dc->res_pool->timing_generators[i]);
1634 }
1635 }
1636
1637 static void power_down_clock_sources(struct dc *dc)
1638 {
1639 int i;
1640
1641 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1642 dc->res_pool->dp_clock_source) == false)
1643 dm_error("Failed to power down pll! (dp clk src)\n");
1644
1645 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1646 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1647 dc->res_pool->clock_sources[i]) == false)
1648 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1649 }
1650 }
1651
1652 static void power_down_all_hw_blocks(struct dc *dc)
1653 {
1654 power_down_encoders(dc);
1655
1656 power_down_controllers(dc);
1657
1658 power_down_clock_sources(dc);
1659
1660 if (dc->fbc_compressor)
1661 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1662 }
1663
1664 static void disable_vga_and_power_gate_all_controllers(
1665 struct dc *dc)
1666 {
1667 int i;
1668 struct timing_generator *tg;
1669 struct dc_context *ctx = dc->ctx;
1670
1671 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1672 tg = dc->res_pool->timing_generators[i];
1673
1674 if (tg->funcs->disable_vga)
1675 tg->funcs->disable_vga(tg);
1676 }
1677 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1678 /* Enable CLOCK gating for each pipe BEFORE controller
1679 * powergating. */
1680 enable_display_pipe_clock_gating(ctx,
1681 true);
1682
1683 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1684 dc->hwss.disable_plane(dc,
1685 &dc->current_state->res_ctx.pipe_ctx[i]);
1686 }
1687 }
1688
1689
1690 static void get_edp_streams(struct dc_state *context,
1691 struct dc_stream_state **edp_streams,
1692 int *edp_stream_num)
1693 {
1694 int i;
1695
1696 *edp_stream_num = 0;
1697 for (i = 0; i < context->stream_count; i++) {
1698 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1699 edp_streams[*edp_stream_num] = context->streams[i];
1700 if (++(*edp_stream_num) == MAX_NUM_EDP)
1701 return;
1702 }
1703 }
1704 }
1705
1706 static void get_edp_links_with_sink(
1707 struct dc *dc,
1708 struct dc_link **edp_links_with_sink,
1709 int *edp_with_sink_num)
1710 {
1711 int i;
1712
1713 /* check if there is an eDP panel not in use */
1714 *edp_with_sink_num = 0;
1715 for (i = 0; i < dc->link_count; i++) {
1716 if (dc->links[i]->local_sink &&
1717 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1718 edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1719 if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1720 return;
1721 }
1722 }
1723 }
1724
1725 /*
1726 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1727 * 1. Power down all DC HW blocks
1728 * 2. Disable VGA engine on all controllers
1729 * 3. Enable power gating for controller
1730 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1731 */
1732 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1733 {
1734 struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1735 struct dc_link *edp_links[MAX_NUM_EDP];
1736 struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1737 struct dc_link *edp_link_with_sink = NULL;
1738 struct dc_link *edp_link = NULL;
1739 struct dce_hwseq *hws = dc->hwseq;
1740 int edp_with_sink_num;
1741 int edp_num;
1742 int edp_stream_num;
1743 int i;
1744 bool can_apply_edp_fast_boot = false;
1745 bool can_apply_seamless_boot = false;
1746 bool keep_edp_vdd_on = false;
1747 DC_LOGGER_INIT();
1748
1749
1750 get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1751 dc_get_edp_links(dc, edp_links, &edp_num);
1752
1753 if (hws->funcs.init_pipes)
1754 hws->funcs.init_pipes(dc, context);
1755
1756 get_edp_streams(context, edp_streams, &edp_stream_num);
1757
1758 // Check fastboot support, disable on DCE8 because of blank screens
1759 if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1760 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1761 dc->ctx->dce_version != DCE_VERSION_8_3) {
1762 for (i = 0; i < edp_num; i++) {
1763 edp_link = edp_links[i];
1764 if (edp_link != edp_streams[0]->link)
1765 continue;
1766 // enable fastboot if backend is enabled on eDP
1767 if (edp_link->link_enc->funcs->is_dig_enabled &&
1768 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1769 edp_link->link_status.link_active) {
1770 struct dc_stream_state *edp_stream = edp_streams[0];
1771
1772 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1773 edp_stream->sink, &edp_stream->timing);
1774 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1775 if (can_apply_edp_fast_boot)
1776 DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1777
1778 break;
1779 }
1780 }
1781 // We are trying to enable eDP, don't power down VDD
1782 if (can_apply_edp_fast_boot)
1783 keep_edp_vdd_on = true;
1784 }
1785
1786 // Check seamless boot support
1787 for (i = 0; i < context->stream_count; i++) {
1788 if (context->streams[i]->apply_seamless_boot_optimization) {
1789 can_apply_seamless_boot = true;
1790 break;
1791 }
1792 }
1793
1794 /* eDP should not have stream in resume from S4 and so even with VBios post
1795 * it should get turned off
1796 */
1797 if (edp_with_sink_num)
1798 edp_link_with_sink = edp_links_with_sink[0];
1799
1800 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1801 if (edp_link_with_sink && !keep_edp_vdd_on) {
1802 /*turn off backlight before DP_blank and encoder powered down*/
1803 hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1804 }
1805 /*resume from S3, no vbios posting, no need to power down again*/
1806 clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1807
1808 power_down_all_hw_blocks(dc);
1809 disable_vga_and_power_gate_all_controllers(dc);
1810 if (edp_link_with_sink && !keep_edp_vdd_on)
1811 dc->hwss.edp_power_control(edp_link_with_sink, false);
1812 clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1813 }
1814 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1815 }
1816
1817 static uint32_t compute_pstate_blackout_duration(
1818 struct bw_fixed blackout_duration,
1819 const struct dc_stream_state *stream)
1820 {
1821 uint32_t total_dest_line_time_ns;
1822 uint32_t pstate_blackout_duration_ns;
1823
1824 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1825
1826 total_dest_line_time_ns = 1000000UL *
1827 (stream->timing.h_total * 10) /
1828 stream->timing.pix_clk_100hz +
1829 pstate_blackout_duration_ns;
1830
1831 return total_dest_line_time_ns;
1832 }
1833
1834 static void dce110_set_displaymarks(
1835 const struct dc *dc,
1836 struct dc_state *context)
1837 {
1838 uint8_t i, num_pipes;
1839 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1840
1841 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1842 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1843 uint32_t total_dest_line_time_ns;
1844
1845 if (pipe_ctx->stream == NULL)
1846 continue;
1847
1848 total_dest_line_time_ns = compute_pstate_blackout_duration(
1849 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1850 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1851 pipe_ctx->plane_res.mi,
1852 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1853 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1854 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1855 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1856 total_dest_line_time_ns);
1857 if (i == underlay_idx) {
1858 num_pipes++;
1859 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1860 pipe_ctx->plane_res.mi,
1861 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1862 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1863 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1864 total_dest_line_time_ns);
1865 }
1866 num_pipes++;
1867 }
1868 }
1869
1870 void dce110_set_safe_displaymarks(
1871 struct resource_context *res_ctx,
1872 const struct resource_pool *pool)
1873 {
1874 int i;
1875 int underlay_idx = pool->underlay_pipe_index;
1876 struct dce_watermarks max_marks = {
1877 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1878 struct dce_watermarks nbp_marks = {
1879 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1880 struct dce_watermarks min_marks = { 0, 0, 0, 0};
1881
1882 for (i = 0; i < MAX_PIPES; i++) {
1883 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1884 continue;
1885
1886 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1887 res_ctx->pipe_ctx[i].plane_res.mi,
1888 nbp_marks,
1889 max_marks,
1890 min_marks,
1891 max_marks,
1892 MAX_WATERMARK);
1893
1894 if (i == underlay_idx)
1895 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1896 res_ctx->pipe_ctx[i].plane_res.mi,
1897 nbp_marks,
1898 max_marks,
1899 max_marks,
1900 MAX_WATERMARK);
1901
1902 }
1903 }
1904
1905 /*******************************************************************************
1906 * Public functions
1907 ******************************************************************************/
1908
1909 static void set_drr(struct pipe_ctx **pipe_ctx,
1910 int num_pipes, struct dc_crtc_timing_adjust adjust)
1911 {
1912 int i = 0;
1913 struct drr_params params = {0};
1914 // DRR should set trigger event to monitor surface update event
1915 unsigned int event_triggers = 0x80;
1916 // Note DRR trigger events are generated regardless of whether num frames met.
1917 unsigned int num_frames = 2;
1918
1919 params.vertical_total_max = adjust.v_total_max;
1920 params.vertical_total_min = adjust.v_total_min;
1921
1922 /* TODO: If multiple pipes are to be supported, you need
1923 * some GSL stuff. Static screen triggers may be programmed differently
1924 * as well.
1925 */
1926 for (i = 0; i < num_pipes; i++) {
1927 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1928 pipe_ctx[i]->stream_res.tg, &params);
1929
1930 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1931 pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1932 pipe_ctx[i]->stream_res.tg,
1933 event_triggers, num_frames);
1934 }
1935 }
1936
1937 static void get_position(struct pipe_ctx **pipe_ctx,
1938 int num_pipes,
1939 struct crtc_position *position)
1940 {
1941 int i = 0;
1942
1943 /* TODO: handle pipes > 1
1944 */
1945 for (i = 0; i < num_pipes; i++)
1946 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1947 }
1948
1949 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1950 int num_pipes, const struct dc_static_screen_params *params)
1951 {
1952 unsigned int i;
1953 unsigned int triggers = 0;
1954
1955 if (params->triggers.overlay_update)
1956 triggers |= 0x100;
1957 if (params->triggers.surface_update)
1958 triggers |= 0x80;
1959 if (params->triggers.cursor_update)
1960 triggers |= 0x2;
1961 if (params->triggers.force_trigger)
1962 triggers |= 0x1;
1963
1964 if (num_pipes) {
1965 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1966
1967 if (dc->fbc_compressor)
1968 triggers |= 0x84;
1969 }
1970
1971 for (i = 0; i < num_pipes; i++)
1972 pipe_ctx[i]->stream_res.tg->funcs->
1973 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1974 triggers, params->num_frames);
1975 }
1976
1977 /*
1978 * Check if FBC can be enabled
1979 */
1980 static bool should_enable_fbc(struct dc *dc,
1981 struct dc_state *context,
1982 uint32_t *pipe_idx)
1983 {
1984 uint32_t i;
1985 struct pipe_ctx *pipe_ctx = NULL;
1986 struct resource_context *res_ctx = &context->res_ctx;
1987 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1988
1989
1990 ASSERT(dc->fbc_compressor);
1991
1992 /* FBC memory should be allocated */
1993 if (!dc->ctx->fbc_gpu_addr)
1994 return false;
1995
1996 /* Only supports single display */
1997 if (context->stream_count != 1)
1998 return false;
1999
2000 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2001 if (res_ctx->pipe_ctx[i].stream) {
2002
2003 pipe_ctx = &res_ctx->pipe_ctx[i];
2004
2005 if (!pipe_ctx)
2006 continue;
2007
2008 /* fbc not applicable on underlay pipe */
2009 if (pipe_ctx->pipe_idx != underlay_idx) {
2010 *pipe_idx = i;
2011 break;
2012 }
2013 }
2014 }
2015
2016 if (i == dc->res_pool->pipe_count)
2017 return false;
2018
2019 if (!pipe_ctx->stream->link)
2020 return false;
2021
2022 /* Only supports eDP */
2023 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2024 return false;
2025
2026 /* PSR should not be enabled */
2027 if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2028 return false;
2029
2030 /* Replay should not be enabled */
2031 if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2032 return false;
2033
2034 /* Nothing to compress */
2035 if (!pipe_ctx->plane_state)
2036 return false;
2037
2038 /* Only for non-linear tiling */
2039 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2040 return false;
2041
2042 return true;
2043 }
2044
2045 /*
2046 * Enable FBC
2047 */
2048 static void enable_fbc(
2049 struct dc *dc,
2050 struct dc_state *context)
2051 {
2052 uint32_t pipe_idx = 0;
2053
2054 if (should_enable_fbc(dc, context, &pipe_idx)) {
2055 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2056 struct compr_addr_and_pitch_params params = {0, 0, 0};
2057 struct compressor *compr = dc->fbc_compressor;
2058 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2059
2060 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2061 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2062 params.inst = pipe_ctx->stream_res.tg->inst;
2063 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2064
2065 compr->funcs->surface_address_and_pitch(compr, &params);
2066 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2067
2068 compr->funcs->enable_fbc(compr, &params);
2069 }
2070 }
2071
2072 static void dce110_reset_hw_ctx_wrap(
2073 struct dc *dc,
2074 struct dc_state *context)
2075 {
2076 int i;
2077
2078 /* Reset old context */
2079 /* look up the targets that have been removed since last commit */
2080 for (i = 0; i < MAX_PIPES; i++) {
2081 struct pipe_ctx *pipe_ctx_old =
2082 &dc->current_state->res_ctx.pipe_ctx[i];
2083 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2084
2085 /* Note: We need to disable output if clock sources change,
2086 * since bios does optimization and doesn't apply if changing
2087 * PHY when not already disabled.
2088 */
2089
2090 /* Skip underlay pipe since it will be handled in commit surface*/
2091 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2092 continue;
2093
2094 if (!pipe_ctx->stream ||
2095 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2096 struct clock_source *old_clk = pipe_ctx_old->clock_source;
2097
2098 /* Disable if new stream is null. O/w, if stream is
2099 * disabled already, no need to disable again.
2100 */
2101 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2102 dc->link_srv->set_dpms_off(pipe_ctx_old);
2103
2104 /* free acquired resources*/
2105 if (pipe_ctx_old->stream_res.audio) {
2106 /*disable az_endpoint*/
2107 pipe_ctx_old->stream_res.audio->funcs->
2108 az_disable(pipe_ctx_old->stream_res.audio);
2109
2110 /*free audio*/
2111 if (dc->caps.dynamic_audio == true) {
2112 /*we have to dynamic arbitrate the audio endpoints*/
2113 /*we free the resource, need reset is_audio_acquired*/
2114 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2115 pipe_ctx_old->stream_res.audio, false);
2116 pipe_ctx_old->stream_res.audio = NULL;
2117 }
2118 }
2119 }
2120
2121 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2122 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2123 dm_error("DC: failed to blank crtc!\n");
2124 BREAK_TO_DEBUGGER();
2125 }
2126 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2127 pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2128 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2129 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2130
2131 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2132 dc->res_pool,
2133 old_clk))
2134 old_clk->funcs->cs_power_down(old_clk);
2135
2136 dc->hwss.disable_plane(dc, pipe_ctx_old);
2137
2138 pipe_ctx_old->stream = NULL;
2139 }
2140 }
2141 }
2142
2143 static void dce110_setup_audio_dto(
2144 struct dc *dc,
2145 struct dc_state *context)
2146 {
2147 int i;
2148
2149 /* program audio wall clock. use HDMI as clock source if HDMI
2150 * audio active. Otherwise, use DP as clock source
2151 * first, loop to find any HDMI audio, if not, loop find DP audio
2152 */
2153 /* Setup audio rate clock source */
2154 /* Issue:
2155 * Audio lag happened on DP monitor when unplug a HDMI monitor
2156 *
2157 * Cause:
2158 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2159 * is set to either dto0 or dto1, audio should work fine.
2160 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2161 * set to dto0 will cause audio lag.
2162 *
2163 * Solution:
2164 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2165 * find first available pipe with audio, setup audio wall DTO per topology
2166 * instead of per pipe.
2167 */
2168 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2169 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2170
2171 if (pipe_ctx->stream == NULL)
2172 continue;
2173
2174 if (pipe_ctx->top_pipe)
2175 continue;
2176 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2177 continue;
2178 if (pipe_ctx->stream_res.audio != NULL) {
2179 struct audio_output audio_output;
2180
2181 build_audio_output(context, pipe_ctx, &audio_output);
2182
2183 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2184 struct dtbclk_dto_params dto_params = {0};
2185
2186 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2187 dc->res_pool->dccg, &dto_params);
2188
2189 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2190 pipe_ctx->stream_res.audio,
2191 pipe_ctx->stream->signal,
2192 &audio_output.crtc_info,
2193 &audio_output.pll_info);
2194 } else
2195 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2196 pipe_ctx->stream_res.audio,
2197 pipe_ctx->stream->signal,
2198 &audio_output.crtc_info,
2199 &audio_output.pll_info);
2200 break;
2201 }
2202 }
2203
2204 /* no HDMI audio is found, try DP audio */
2205 if (i == dc->res_pool->pipe_count) {
2206 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2207 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2208
2209 if (pipe_ctx->stream == NULL)
2210 continue;
2211
2212 if (pipe_ctx->top_pipe)
2213 continue;
2214
2215 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2216 continue;
2217
2218 if (pipe_ctx->stream_res.audio != NULL) {
2219 struct audio_output audio_output;
2220
2221 build_audio_output(context, pipe_ctx, &audio_output);
2222
2223 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2224 pipe_ctx->stream_res.audio,
2225 pipe_ctx->stream->signal,
2226 &audio_output.crtc_info,
2227 &audio_output.pll_info);
2228 break;
2229 }
2230 }
2231 }
2232 }
2233
2234 enum dc_status dce110_apply_ctx_to_hw(
2235 struct dc *dc,
2236 struct dc_state *context)
2237 {
2238 struct dce_hwseq *hws = dc->hwseq;
2239 struct dc_bios *dcb = dc->ctx->dc_bios;
2240 enum dc_status status;
2241 int i;
2242
2243 /* reset syncd pipes from disabled pipes */
2244 if (dc->config.use_pipe_ctx_sync_logic)
2245 reset_syncd_pipes_from_disabled_pipes(dc, context);
2246
2247 /* Reset old context */
2248 /* look up the targets that have been removed since last commit */
2249 hws->funcs.reset_hw_ctx_wrap(dc, context);
2250
2251 /* Skip applying if no targets */
2252 if (context->stream_count <= 0)
2253 return DC_OK;
2254
2255 /* Apply new context */
2256 dcb->funcs->set_scratch_critical_state(dcb, true);
2257
2258 /* below is for real asic only */
2259 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2260 struct pipe_ctx *pipe_ctx_old =
2261 &dc->current_state->res_ctx.pipe_ctx[i];
2262 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2263
2264 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2265 continue;
2266
2267 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2268 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2269 dce_crtc_switch_to_clk_src(dc->hwseq,
2270 pipe_ctx->clock_source, i);
2271 continue;
2272 }
2273
2274 hws->funcs.enable_display_power_gating(
2275 dc, i, dc->ctx->dc_bios,
2276 PIPE_GATING_CONTROL_DISABLE);
2277 }
2278
2279 if (dc->fbc_compressor)
2280 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2281
2282 dce110_setup_audio_dto(dc, context);
2283
2284 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2285 struct pipe_ctx *pipe_ctx_old =
2286 &dc->current_state->res_ctx.pipe_ctx[i];
2287 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2288
2289 if (pipe_ctx->stream == NULL)
2290 continue;
2291
2292 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2293 pipe_ctx->stream->link->link_state_valid) {
2294 continue;
2295 }
2296
2297 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2298 continue;
2299
2300 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2301 continue;
2302
2303 status = apply_single_controller_ctx_to_hw(
2304 pipe_ctx,
2305 context,
2306 dc);
2307
2308 if (DC_OK != status)
2309 return status;
2310
2311 #ifdef CONFIG_DRM_AMD_DC_FP
2312 if (hws->funcs.resync_fifo_dccg_dio)
2313 hws->funcs.resync_fifo_dccg_dio(hws, dc, context);
2314 #endif
2315 }
2316
2317 if (dc->fbc_compressor)
2318 enable_fbc(dc, dc->current_state);
2319
2320 dcb->funcs->set_scratch_critical_state(dcb, false);
2321
2322 return DC_OK;
2323 }
2324
2325 /*******************************************************************************
2326 * Front End programming
2327 ******************************************************************************/
2328 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2329 {
2330 struct default_adjustment default_adjust = { 0 };
2331
2332 default_adjust.force_hw_default = false;
2333 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2334 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2335 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2336 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2337
2338 /* display color depth */
2339 default_adjust.color_depth =
2340 pipe_ctx->stream->timing.display_color_depth;
2341
2342 /* Lb color depth */
2343 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2344
2345 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2346 pipe_ctx->plane_res.xfm, &default_adjust);
2347 }
2348
2349
2350 /*******************************************************************************
2351 * In order to turn on/off specific surface we will program
2352 * Blender + CRTC
2353 *
2354 * In case that we have two surfaces and they have a different visibility
2355 * we can't turn off the CRTC since it will turn off the entire display
2356 *
2357 * |----------------------------------------------- |
2358 * |bottom pipe|curr pipe | | |
2359 * |Surface |Surface | Blender | CRCT |
2360 * |visibility |visibility | Configuration| |
2361 * |------------------------------------------------|
2362 * | off | off | CURRENT_PIPE | blank |
2363 * | off | on | CURRENT_PIPE | unblank |
2364 * | on | off | OTHER_PIPE | unblank |
2365 * | on | on | BLENDING | unblank |
2366 * -------------------------------------------------|
2367 *
2368 ******************************************************************************/
2369 static void program_surface_visibility(const struct dc *dc,
2370 struct pipe_ctx *pipe_ctx)
2371 {
2372 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2373 bool blank_target = false;
2374
2375 if (pipe_ctx->bottom_pipe) {
2376
2377 /* For now we are supporting only two pipes */
2378 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2379
2380 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2381 if (pipe_ctx->plane_state->visible)
2382 blender_mode = BLND_MODE_BLENDING;
2383 else
2384 blender_mode = BLND_MODE_OTHER_PIPE;
2385
2386 } else if (!pipe_ctx->plane_state->visible)
2387 blank_target = true;
2388
2389 } else if (!pipe_ctx->plane_state->visible)
2390 blank_target = true;
2391
2392 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2393 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2394
2395 }
2396
2397 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2398 {
2399 int i = 0;
2400 struct xfm_grph_csc_adjustment adjust;
2401 memset(&adjust, 0, sizeof(adjust));
2402 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2403
2404
2405 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2406 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2407
2408 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2409 adjust.temperature_matrix[i] =
2410 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2411 }
2412
2413 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2414 }
2415 static void update_plane_addr(const struct dc *dc,
2416 struct pipe_ctx *pipe_ctx)
2417 {
2418 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2419
2420 if (plane_state == NULL)
2421 return;
2422
2423 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2424 pipe_ctx->plane_res.mi,
2425 &plane_state->address,
2426 plane_state->flip_immediate);
2427
2428 plane_state->status.requested_address = plane_state->address;
2429 }
2430
2431 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2432 {
2433 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2434
2435 if (plane_state == NULL)
2436 return;
2437
2438 plane_state->status.is_flip_pending =
2439 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2440 pipe_ctx->plane_res.mi);
2441
2442 if (plane_state->status.is_flip_pending && !plane_state->visible)
2443 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2444
2445 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2446 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2447 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2448 plane_state->status.is_right_eye =\
2449 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2450 }
2451 }
2452
2453 void dce110_power_down(struct dc *dc)
2454 {
2455 power_down_all_hw_blocks(dc);
2456 disable_vga_and_power_gate_all_controllers(dc);
2457 }
2458
2459 static bool wait_for_reset_trigger_to_occur(
2460 struct dc_context *dc_ctx,
2461 struct timing_generator *tg)
2462 {
2463 bool rc = false;
2464
2465 /* To avoid endless loop we wait at most
2466 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2467 const uint32_t frames_to_wait_on_triggered_reset = 10;
2468 uint32_t i;
2469
2470 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2471
2472 if (!tg->funcs->is_counter_moving(tg)) {
2473 DC_ERROR("TG counter is not moving!\n");
2474 break;
2475 }
2476
2477 if (tg->funcs->did_triggered_reset_occur(tg)) {
2478 rc = true;
2479 /* usually occurs at i=1 */
2480 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2481 i);
2482 break;
2483 }
2484
2485 /* Wait for one frame. */
2486 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2487 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2488 }
2489
2490 if (false == rc)
2491 DC_ERROR("GSL: Timeout on reset trigger!\n");
2492
2493 return rc;
2494 }
2495
2496 /* Enable timing synchronization for a group of Timing Generators. */
2497 static void dce110_enable_timing_synchronization(
2498 struct dc *dc,
2499 int group_index,
2500 int group_size,
2501 struct pipe_ctx *grouped_pipes[])
2502 {
2503 struct dc_context *dc_ctx = dc->ctx;
2504 struct dcp_gsl_params gsl_params = { 0 };
2505 int i;
2506
2507 DC_SYNC_INFO("GSL: Setting-up...\n");
2508
2509 /* Designate a single TG in the group as a master.
2510 * Since HW doesn't care which one, we always assign
2511 * the 1st one in the group. */
2512 gsl_params.gsl_group = 0;
2513 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2514
2515 for (i = 0; i < group_size; i++)
2516 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2517 grouped_pipes[i]->stream_res.tg, &gsl_params);
2518
2519 /* Reset slave controllers on master VSync */
2520 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2521
2522 for (i = 1 /* skip the master */; i < group_size; i++)
2523 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2524 grouped_pipes[i]->stream_res.tg,
2525 gsl_params.gsl_group);
2526
2527 for (i = 1 /* skip the master */; i < group_size; i++) {
2528 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2529 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2530 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2531 grouped_pipes[i]->stream_res.tg);
2532 }
2533
2534 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2535 * is that the sync'ed displays will not drift out of sync over time*/
2536 DC_SYNC_INFO("GSL: Restoring register states.\n");
2537 for (i = 0; i < group_size; i++)
2538 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2539
2540 DC_SYNC_INFO("GSL: Set-up complete.\n");
2541 }
2542
2543 static void dce110_enable_per_frame_crtc_position_reset(
2544 struct dc *dc,
2545 int group_size,
2546 struct pipe_ctx *grouped_pipes[])
2547 {
2548 struct dc_context *dc_ctx = dc->ctx;
2549 struct dcp_gsl_params gsl_params = { 0 };
2550 int i;
2551
2552 gsl_params.gsl_group = 0;
2553 gsl_params.gsl_master = 0;
2554
2555 for (i = 0; i < group_size; i++)
2556 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2557 grouped_pipes[i]->stream_res.tg, &gsl_params);
2558
2559 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2560
2561 for (i = 1; i < group_size; i++)
2562 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2563 grouped_pipes[i]->stream_res.tg,
2564 gsl_params.gsl_master,
2565 &grouped_pipes[i]->stream->triggered_crtc_reset);
2566
2567 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2568 for (i = 1; i < group_size; i++)
2569 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2570
2571 for (i = 0; i < group_size; i++)
2572 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2573
2574 }
2575
2576 static void init_pipes(struct dc *dc, struct dc_state *context)
2577 {
2578 // Do nothing
2579 }
2580
2581 static void init_hw(struct dc *dc)
2582 {
2583 int i;
2584 struct dc_bios *bp;
2585 struct transform *xfm;
2586 struct abm *abm;
2587 struct dmcu *dmcu;
2588 struct dce_hwseq *hws = dc->hwseq;
2589 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2590
2591 bp = dc->ctx->dc_bios;
2592 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2593 xfm = dc->res_pool->transforms[i];
2594 xfm->funcs->transform_reset(xfm);
2595
2596 hws->funcs.enable_display_power_gating(
2597 dc, i, bp,
2598 PIPE_GATING_CONTROL_INIT);
2599 hws->funcs.enable_display_power_gating(
2600 dc, i, bp,
2601 PIPE_GATING_CONTROL_DISABLE);
2602 hws->funcs.enable_display_pipe_clock_gating(
2603 dc->ctx,
2604 true);
2605 }
2606
2607 dce_clock_gating_power_up(dc->hwseq, false);
2608 /***************************************/
2609
2610 for (i = 0; i < dc->link_count; i++) {
2611 /****************************************/
2612 /* Power up AND update implementation according to the
2613 * required signal (which may be different from the
2614 * default signal on connector). */
2615 struct dc_link *link = dc->links[i];
2616
2617 link->link_enc->funcs->hw_init(link->link_enc);
2618 }
2619
2620 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2621 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2622
2623 tg->funcs->disable_vga(tg);
2624
2625 /* Blank controller using driver code instead of
2626 * command table. */
2627 tg->funcs->set_blank(tg, true);
2628 hwss_wait_for_blank_complete(tg);
2629 }
2630
2631 for (i = 0; i < dc->res_pool->audio_count; i++) {
2632 struct audio *audio = dc->res_pool->audios[i];
2633 audio->funcs->hw_init(audio);
2634 }
2635
2636 for (i = 0; i < dc->link_count; i++) {
2637 struct dc_link *link = dc->links[i];
2638
2639 if (link->panel_cntl)
2640 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2641 }
2642
2643 abm = dc->res_pool->abm;
2644 if (abm != NULL)
2645 abm->funcs->abm_init(abm, backlight);
2646
2647 dmcu = dc->res_pool->dmcu;
2648 if (dmcu != NULL && abm != NULL)
2649 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2650
2651 if (dc->fbc_compressor)
2652 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2653
2654 }
2655
2656
2657 void dce110_prepare_bandwidth(
2658 struct dc *dc,
2659 struct dc_state *context)
2660 {
2661 struct clk_mgr *dccg = dc->clk_mgr;
2662
2663 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2664 if (dccg)
2665 dccg->funcs->update_clocks(
2666 dccg,
2667 context,
2668 false);
2669 }
2670
2671 void dce110_optimize_bandwidth(
2672 struct dc *dc,
2673 struct dc_state *context)
2674 {
2675 struct clk_mgr *dccg = dc->clk_mgr;
2676
2677 dce110_set_displaymarks(dc, context);
2678
2679 if (dccg)
2680 dccg->funcs->update_clocks(
2681 dccg,
2682 context,
2683 true);
2684 }
2685
2686 static void dce110_program_front_end_for_pipe(
2687 struct dc *dc, struct pipe_ctx *pipe_ctx)
2688 {
2689 struct mem_input *mi = pipe_ctx->plane_res.mi;
2690 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2691 struct xfm_grph_csc_adjustment adjust;
2692 struct out_csc_color_matrix tbl_entry;
2693 unsigned int i;
2694 struct dce_hwseq *hws = dc->hwseq;
2695
2696 DC_LOGGER_INIT();
2697 memset(&tbl_entry, 0, sizeof(tbl_entry));
2698
2699 memset(&adjust, 0, sizeof(adjust));
2700 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2701
2702 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2703
2704 set_default_colors(pipe_ctx);
2705 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2706 == true) {
2707 tbl_entry.color_space =
2708 pipe_ctx->stream->output_color_space;
2709
2710 for (i = 0; i < 12; i++)
2711 tbl_entry.regval[i] =
2712 pipe_ctx->stream->csc_color_matrix.matrix[i];
2713
2714 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2715 (pipe_ctx->plane_res.xfm, &tbl_entry);
2716 }
2717
2718 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2719 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2720
2721 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2722 adjust.temperature_matrix[i] =
2723 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2724 }
2725
2726 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2727
2728 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2729
2730 program_scaler(dc, pipe_ctx);
2731
2732 mi->funcs->mem_input_program_surface_config(
2733 mi,
2734 plane_state->format,
2735 &plane_state->tiling_info,
2736 &plane_state->plane_size,
2737 plane_state->rotation,
2738 NULL,
2739 false);
2740 if (mi->funcs->set_blank)
2741 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2742
2743 if (dc->config.gpu_vm_support)
2744 mi->funcs->mem_input_program_pte_vm(
2745 pipe_ctx->plane_res.mi,
2746 plane_state->format,
2747 &plane_state->tiling_info,
2748 plane_state->rotation);
2749
2750 /* Moved programming gamma from dc to hwss */
2751 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2752 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2753 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2754 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2755
2756 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2757 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2758
2759 DC_LOG_SURFACE(
2760 "Pipe:%d %p: addr hi:0x%x, "
2761 "addr low:0x%x, "
2762 "src: %d, %d, %d,"
2763 " %d; dst: %d, %d, %d, %d;"
2764 "clip: %d, %d, %d, %d\n",
2765 pipe_ctx->pipe_idx,
2766 (void *) pipe_ctx->plane_state,
2767 pipe_ctx->plane_state->address.grph.addr.high_part,
2768 pipe_ctx->plane_state->address.grph.addr.low_part,
2769 pipe_ctx->plane_state->src_rect.x,
2770 pipe_ctx->plane_state->src_rect.y,
2771 pipe_ctx->plane_state->src_rect.width,
2772 pipe_ctx->plane_state->src_rect.height,
2773 pipe_ctx->plane_state->dst_rect.x,
2774 pipe_ctx->plane_state->dst_rect.y,
2775 pipe_ctx->plane_state->dst_rect.width,
2776 pipe_ctx->plane_state->dst_rect.height,
2777 pipe_ctx->plane_state->clip_rect.x,
2778 pipe_ctx->plane_state->clip_rect.y,
2779 pipe_ctx->plane_state->clip_rect.width,
2780 pipe_ctx->plane_state->clip_rect.height);
2781
2782 DC_LOG_SURFACE(
2783 "Pipe %d: width, height, x, y\n"
2784 "viewport:%d, %d, %d, %d\n"
2785 "recout: %d, %d, %d, %d\n",
2786 pipe_ctx->pipe_idx,
2787 pipe_ctx->plane_res.scl_data.viewport.width,
2788 pipe_ctx->plane_res.scl_data.viewport.height,
2789 pipe_ctx->plane_res.scl_data.viewport.x,
2790 pipe_ctx->plane_res.scl_data.viewport.y,
2791 pipe_ctx->plane_res.scl_data.recout.width,
2792 pipe_ctx->plane_res.scl_data.recout.height,
2793 pipe_ctx->plane_res.scl_data.recout.x,
2794 pipe_ctx->plane_res.scl_data.recout.y);
2795 }
2796
2797 static void dce110_apply_ctx_for_surface(
2798 struct dc *dc,
2799 const struct dc_stream_state *stream,
2800 int num_planes,
2801 struct dc_state *context)
2802 {
2803 int i;
2804
2805 if (num_planes == 0)
2806 return;
2807
2808 if (dc->fbc_compressor)
2809 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2810
2811 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2812 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2813
2814 if (pipe_ctx->stream != stream)
2815 continue;
2816
2817 /* Need to allocate mem before program front end for Fiji */
2818 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2819 pipe_ctx->plane_res.mi,
2820 pipe_ctx->stream->timing.h_total,
2821 pipe_ctx->stream->timing.v_total,
2822 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2823 context->stream_count);
2824
2825 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2826
2827 dc->hwss.update_plane_addr(dc, pipe_ctx);
2828
2829 program_surface_visibility(dc, pipe_ctx);
2830
2831 }
2832
2833 if (dc->fbc_compressor)
2834 enable_fbc(dc, context);
2835 }
2836
2837 static void dce110_post_unlock_program_front_end(
2838 struct dc *dc,
2839 struct dc_state *context)
2840 {
2841 }
2842
2843 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2844 {
2845 struct dce_hwseq *hws = dc->hwseq;
2846 int fe_idx = pipe_ctx->plane_res.mi ?
2847 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2848
2849 /* Do not power down fe when stream is active on dce*/
2850 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2851 return;
2852
2853 hws->funcs.enable_display_power_gating(
2854 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2855
2856 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2857 dc->res_pool->transforms[fe_idx]);
2858 }
2859
2860 static void dce110_wait_for_mpcc_disconnect(
2861 struct dc *dc,
2862 struct resource_pool *res_pool,
2863 struct pipe_ctx *pipe_ctx)
2864 {
2865 /* do nothing*/
2866 }
2867
2868 static void program_output_csc(struct dc *dc,
2869 struct pipe_ctx *pipe_ctx,
2870 enum dc_color_space colorspace,
2871 uint16_t *matrix,
2872 int opp_id)
2873 {
2874 int i;
2875 struct out_csc_color_matrix tbl_entry;
2876
2877 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2878 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2879
2880 for (i = 0; i < 12; i++)
2881 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2882
2883 tbl_entry.color_space = color_space;
2884
2885 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2886 pipe_ctx->plane_res.xfm, &tbl_entry);
2887 }
2888 }
2889
2890 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2891 {
2892 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2893 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2894 struct mem_input *mi = pipe_ctx->plane_res.mi;
2895 struct dc_cursor_mi_param param = {
2896 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2897 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2898 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2899 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2900 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2901 .rotation = pipe_ctx->plane_state->rotation,
2902 .mirror = pipe_ctx->plane_state->horizontal_mirror
2903 };
2904
2905 /**
2906 * If the cursor's source viewport is clipped then we need to
2907 * translate the cursor to appear in the correct position on
2908 * the screen.
2909 *
2910 * This translation isn't affected by scaling so it needs to be
2911 * done *after* we adjust the position for the scale factor.
2912 *
2913 * This is only done by opt-in for now since there are still
2914 * some usecases like tiled display that might enable the
2915 * cursor on both streams while expecting dc to clip it.
2916 */
2917 if (pos_cpy.translate_by_source) {
2918 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2919 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2920 }
2921
2922 if (pipe_ctx->plane_state->address.type
2923 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2924 pos_cpy.enable = false;
2925
2926 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2927 pos_cpy.enable = false;
2928
2929 if (ipp->funcs->ipp_cursor_set_position)
2930 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2931 if (mi->funcs->set_cursor_position)
2932 mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2933 }
2934
2935 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2936 {
2937 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2938
2939 if (pipe_ctx->plane_res.ipp &&
2940 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2941 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2942 pipe_ctx->plane_res.ipp, attributes);
2943
2944 if (pipe_ctx->plane_res.mi &&
2945 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2946 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2947 pipe_ctx->plane_res.mi, attributes);
2948
2949 if (pipe_ctx->plane_res.xfm &&
2950 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2951 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2952 pipe_ctx->plane_res.xfm, attributes);
2953 }
2954
2955 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2956 uint32_t backlight_pwm_u16_16,
2957 uint32_t frame_ramp)
2958 {
2959 struct dc_link *link = pipe_ctx->stream->link;
2960 struct dc *dc = link->ctx->dc;
2961 struct abm *abm = pipe_ctx->stream_res.abm;
2962 struct panel_cntl *panel_cntl = link->panel_cntl;
2963 struct dmcu *dmcu = dc->res_pool->dmcu;
2964 bool fw_set_brightness = true;
2965 /* DMCU -1 for all controller id values,
2966 * therefore +1 here
2967 */
2968 uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2969
2970 if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2971 return false;
2972
2973 if (dmcu)
2974 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2975
2976 if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2977 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2978 else
2979 abm->funcs->set_backlight_level_pwm(
2980 abm,
2981 backlight_pwm_u16_16,
2982 frame_ramp,
2983 controller_id,
2984 link->panel_cntl->inst);
2985
2986 return true;
2987 }
2988
2989 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2990 {
2991 struct abm *abm = pipe_ctx->stream_res.abm;
2992 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2993
2994 if (abm)
2995 abm->funcs->set_abm_immediate_disable(abm,
2996 pipe_ctx->stream->link->panel_cntl->inst);
2997
2998 if (panel_cntl)
2999 panel_cntl->funcs->store_backlight_level(panel_cntl);
3000 }
3001
3002 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3003 {
3004 struct abm *abm = pipe_ctx->stream_res.abm;
3005 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3006 uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3007
3008 if (abm && panel_cntl)
3009 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3010 }
3011
3012 void dce110_enable_lvds_link_output(struct dc_link *link,
3013 const struct link_resource *link_res,
3014 enum clock_source_id clock_source,
3015 uint32_t pixel_clock)
3016 {
3017 link->link_enc->funcs->enable_lvds_output(
3018 link->link_enc,
3019 clock_source,
3020 pixel_clock);
3021 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3022 }
3023
3024 void dce110_enable_tmds_link_output(struct dc_link *link,
3025 const struct link_resource *link_res,
3026 enum signal_type signal,
3027 enum clock_source_id clock_source,
3028 enum dc_color_depth color_depth,
3029 uint32_t pixel_clock)
3030 {
3031 link->link_enc->funcs->enable_tmds_output(
3032 link->link_enc,
3033 clock_source,
3034 color_depth,
3035 signal,
3036 pixel_clock);
3037 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3038 }
3039
3040 void dce110_enable_dp_link_output(
3041 struct dc_link *link,
3042 const struct link_resource *link_res,
3043 enum signal_type signal,
3044 enum clock_source_id clock_source,
3045 const struct dc_link_settings *link_settings)
3046 {
3047 struct dc *dc = link->ctx->dc;
3048 struct dmcu *dmcu = dc->res_pool->dmcu;
3049 struct pipe_ctx *pipes =
3050 link->dc->current_state->res_ctx.pipe_ctx;
3051 struct clock_source *dp_cs =
3052 link->dc->res_pool->dp_clock_source;
3053 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3054 unsigned int i;
3055
3056 /*
3057 * Add the logic to extract BOTH power up and power down sequences
3058 * from enable/disable link output and only call edp panel control
3059 * in enable_link_dp and disable_link_dp once.
3060 */
3061 if (link->connector_signal == SIGNAL_TYPE_EDP) {
3062 link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3063 }
3064
3065 /* If the current pixel clock source is not DTO(happens after
3066 * switching from HDMI passive dongle to DP on the same connector),
3067 * switch the pixel clock source to DTO.
3068 */
3069
3070 for (i = 0; i < MAX_PIPES; i++) {
3071 if (pipes[i].stream != NULL &&
3072 pipes[i].stream->link == link) {
3073 if (pipes[i].clock_source != NULL &&
3074 pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3075 pipes[i].clock_source = dp_cs;
3076 pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3077 pipes[i].stream->timing.pix_clk_100hz;
3078 pipes[i].clock_source->funcs->program_pix_clk(
3079 pipes[i].clock_source,
3080 &pipes[i].stream_res.pix_clk_params,
3081 dc->link_srv->dp_get_encoding_format(link_settings),
3082 &pipes[i].pll_settings);
3083 }
3084 }
3085 }
3086
3087 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3088 if (dc->clk_mgr->funcs->notify_link_rate_change)
3089 dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3090 }
3091
3092 if (dmcu != NULL && dmcu->funcs->lock_phy)
3093 dmcu->funcs->lock_phy(dmcu);
3094
3095 if (link_hwss->ext.enable_dp_link_output)
3096 link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3097 clock_source, link_settings);
3098
3099 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3100
3101 if (dmcu != NULL && dmcu->funcs->unlock_phy)
3102 dmcu->funcs->unlock_phy(dmcu);
3103
3104 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3105 }
3106
3107 void dce110_disable_link_output(struct dc_link *link,
3108 const struct link_resource *link_res,
3109 enum signal_type signal)
3110 {
3111 struct dc *dc = link->ctx->dc;
3112 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3113 struct dmcu *dmcu = dc->res_pool->dmcu;
3114
3115 if (signal == SIGNAL_TYPE_EDP &&
3116 link->dc->hwss.edp_backlight_control)
3117 link->dc->hwss.edp_backlight_control(link, false);
3118 else if (dmcu != NULL && dmcu->funcs->lock_phy)
3119 dmcu->funcs->lock_phy(dmcu);
3120
3121 link_hwss->disable_link_output(link, link_res, signal);
3122 link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3123 /*
3124 * Add the logic to extract BOTH power up and power down sequences
3125 * from enable/disable link output and only call edp panel control
3126 * in enable_link_dp and disable_link_dp once.
3127 */
3128 if (dmcu != NULL && dmcu->funcs->lock_phy)
3129 dmcu->funcs->unlock_phy(dmcu);
3130 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3131 }
3132
3133 static const struct hw_sequencer_funcs dce110_funcs = {
3134 .program_gamut_remap = program_gamut_remap,
3135 .program_output_csc = program_output_csc,
3136 .init_hw = init_hw,
3137 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3138 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3139 .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3140 .update_plane_addr = update_plane_addr,
3141 .update_pending_status = dce110_update_pending_status,
3142 .enable_accelerated_mode = dce110_enable_accelerated_mode,
3143 .enable_timing_synchronization = dce110_enable_timing_synchronization,
3144 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3145 .update_info_frame = dce110_update_info_frame,
3146 .enable_stream = dce110_enable_stream,
3147 .disable_stream = dce110_disable_stream,
3148 .unblank_stream = dce110_unblank_stream,
3149 .blank_stream = dce110_blank_stream,
3150 .enable_audio_stream = dce110_enable_audio_stream,
3151 .disable_audio_stream = dce110_disable_audio_stream,
3152 .disable_plane = dce110_power_down_fe,
3153 .pipe_control_lock = dce_pipe_control_lock,
3154 .interdependent_update_lock = NULL,
3155 .cursor_lock = dce_pipe_control_lock,
3156 .prepare_bandwidth = dce110_prepare_bandwidth,
3157 .optimize_bandwidth = dce110_optimize_bandwidth,
3158 .set_drr = set_drr,
3159 .get_position = get_position,
3160 .set_static_screen_control = set_static_screen_control,
3161 .setup_stereo = NULL,
3162 .set_avmute = dce110_set_avmute,
3163 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3164 .edp_backlight_control = dce110_edp_backlight_control,
3165 .edp_power_control = dce110_edp_power_control,
3166 .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3167 .set_cursor_position = dce110_set_cursor_position,
3168 .set_cursor_attribute = dce110_set_cursor_attribute,
3169 .set_backlight_level = dce110_set_backlight_level,
3170 .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3171 .set_pipe = dce110_set_pipe,
3172 .enable_lvds_link_output = dce110_enable_lvds_link_output,
3173 .enable_tmds_link_output = dce110_enable_tmds_link_output,
3174 .enable_dp_link_output = dce110_enable_dp_link_output,
3175 .disable_link_output = dce110_disable_link_output,
3176 };
3177
3178 static const struct hwseq_private_funcs dce110_private_funcs = {
3179 .init_pipes = init_pipes,
3180 .update_plane_addr = update_plane_addr,
3181 .set_input_transfer_func = dce110_set_input_transfer_func,
3182 .set_output_transfer_func = dce110_set_output_transfer_func,
3183 .power_down = dce110_power_down,
3184 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3185 .enable_display_power_gating = dce110_enable_display_power_gating,
3186 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3187 .enable_stream_timing = dce110_enable_stream_timing,
3188 .disable_stream_gating = NULL,
3189 .enable_stream_gating = NULL,
3190 .edp_backlight_control = dce110_edp_backlight_control,
3191 };
3192
3193 void dce110_hw_sequencer_construct(struct dc *dc)
3194 {
3195 dc->hwss = dce110_funcs;
3196 dc->hwseq->funcs = dce110_private_funcs;
3197 }
3198