]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/amd/display/dc/dcn20/dcn20_mpc.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / drivers / gpu / drm / amd / display / dc / dcn20 / dcn20_mpc.c
1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dcn20_mpc.h"
27
28 #include "reg_helper.h"
29 #include "dc.h"
30 #include "mem_input.h"
31 #include "dcn10/dcn10_cm_common.h"
32
33 #define REG(reg)\
34 mpc20->mpc_regs->reg
35
36 #define IND_REG(index) \
37 (index)
38
39 #define CTX \
40 mpc20->base.ctx
41
42 #undef FN
43 #define FN(reg_name, field_name) \
44 mpc20->mpc_shift->field_name, mpc20->mpc_mask->field_name
45
46 #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
47
48 void mpc2_update_blending(
49 struct mpc *mpc,
50 struct mpcc_blnd_cfg *blnd_cfg,
51 int mpcc_id)
52 {
53 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
54
55 struct mpcc *mpcc = mpc1_get_mpcc(mpc, mpcc_id);
56
57 REG_UPDATE_7(MPCC_CONTROL[mpcc_id],
58 MPCC_ALPHA_BLND_MODE, blnd_cfg->alpha_mode,
59 MPCC_ALPHA_MULTIPLIED_MODE, blnd_cfg->pre_multiplied_alpha,
60 MPCC_BLND_ACTIVE_OVERLAP_ONLY, blnd_cfg->overlap_only,
61 MPCC_GLOBAL_ALPHA, blnd_cfg->global_alpha,
62 MPCC_GLOBAL_GAIN, blnd_cfg->global_gain,
63 MPCC_BG_BPC, blnd_cfg->background_color_bpc,
64 MPCC_BOT_GAIN_MODE, blnd_cfg->bottom_gain_mode);
65
66 REG_SET(MPCC_TOP_GAIN[mpcc_id], 0, MPCC_TOP_GAIN, blnd_cfg->top_gain);
67 REG_SET(MPCC_BOT_GAIN_INSIDE[mpcc_id], 0, MPCC_BOT_GAIN_INSIDE, blnd_cfg->bottom_inside_gain);
68 REG_SET(MPCC_BOT_GAIN_OUTSIDE[mpcc_id], 0, MPCC_BOT_GAIN_OUTSIDE, blnd_cfg->bottom_outside_gain);
69
70 mpc1_set_bg_color(mpc, &blnd_cfg->black_color, mpcc_id);
71 mpcc->blnd_cfg = *blnd_cfg;
72 }
73
74 void mpc2_set_denorm(
75 struct mpc *mpc,
76 int opp_id,
77 enum dc_color_depth output_depth)
78 {
79 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
80 int denorm_mode = 0;
81
82 switch (output_depth) {
83 case COLOR_DEPTH_666:
84 denorm_mode = 1;
85 break;
86 case COLOR_DEPTH_888:
87 denorm_mode = 2;
88 break;
89 case COLOR_DEPTH_999:
90 denorm_mode = 3;
91 break;
92 case COLOR_DEPTH_101010:
93 denorm_mode = 4;
94 break;
95 case COLOR_DEPTH_111111:
96 denorm_mode = 5;
97 break;
98 case COLOR_DEPTH_121212:
99 denorm_mode = 6;
100 break;
101 case COLOR_DEPTH_141414:
102 case COLOR_DEPTH_161616:
103 default:
104 /* not valid used case! */
105 break;
106 }
107
108 REG_UPDATE(DENORM_CONTROL[opp_id],
109 MPC_OUT_DENORM_MODE, denorm_mode);
110 }
111
112 void mpc2_set_denorm_clamp(
113 struct mpc *mpc,
114 int opp_id,
115 struct mpc_denorm_clamp denorm_clamp)
116 {
117 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
118
119 REG_UPDATE_2(DENORM_CONTROL[opp_id],
120 MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr,
121 MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr);
122 REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id],
123 MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y,
124 MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y);
125 REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id],
126 MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb,
127 MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb);
128 }
129
130
131
132 void mpc2_set_output_csc(
133 struct mpc *mpc,
134 int opp_id,
135 const uint16_t *regval,
136 enum mpc_output_csc_mode ocsc_mode)
137 {
138 uint32_t cur_mode;
139 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
140 struct color_matrices_reg ocsc_regs;
141
142 if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) {
143 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
144 return;
145 }
146
147 if (regval == NULL) {
148 BREAK_TO_DEBUGGER();
149 return;
150 }
151
152 /* determine which CSC coefficients (A or B) we are using
153 * currently. select the alternate set to double buffer
154 * the CSC update so CSC is updated on frame boundary
155 */
156 IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA,
157 MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX,
158 MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode);
159
160 if (cur_mode != MPC_OUTPUT_CSC_COEF_A)
161 ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
162 else
163 ocsc_mode = MPC_OUTPUT_CSC_COEF_B;
164
165 ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A;
166 ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A;
167 ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A;
168 ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A;
169
170 if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
171 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
172 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
173 } else {
174 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
175 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
176 }
177
178 cm_helper_program_color_matrices(
179 mpc20->base.ctx,
180 regval,
181 &ocsc_regs);
182
183 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
184 }
185
186 void mpc2_set_ocsc_default(
187 struct mpc *mpc,
188 int opp_id,
189 enum dc_color_space color_space,
190 enum mpc_output_csc_mode ocsc_mode)
191 {
192 uint32_t cur_mode;
193 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
194 uint32_t arr_size;
195 struct color_matrices_reg ocsc_regs;
196 const uint16_t *regval = NULL;
197
198 if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) {
199 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
200 return;
201 }
202
203 regval = find_color_matrix(color_space, &arr_size);
204
205 if (regval == NULL) {
206 BREAK_TO_DEBUGGER();
207 return;
208 }
209
210 /* determine which CSC coefficients (A or B) we are using
211 * currently. select the alternate set to double buffer
212 * the CSC update so CSC is updated on frame boundary
213 */
214 IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA,
215 MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX,
216 MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode);
217
218 if (cur_mode != MPC_OUTPUT_CSC_COEF_A)
219 ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
220 else
221 ocsc_mode = MPC_OUTPUT_CSC_COEF_B;
222
223 ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A;
224 ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A;
225 ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A;
226 ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A;
227
228
229 if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
230 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
231 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
232 } else {
233 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
234 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
235 }
236
237 cm_helper_program_color_matrices(
238 mpc20->base.ctx,
239 regval,
240 &ocsc_regs);
241
242 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
243 }
244
245 static void mpc2_ogam_get_reg_field(
246 struct mpc *mpc,
247 struct xfer_func_reg *reg)
248 {
249 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
250
251 reg->shifts.exp_region0_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
252 reg->masks.exp_region0_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
253 reg->shifts.exp_region0_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
254 reg->masks.exp_region0_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
255 reg->shifts.exp_region1_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
256 reg->masks.exp_region1_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
257 reg->shifts.exp_region1_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
258 reg->masks.exp_region1_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
259 reg->shifts.field_region_end = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B;
260 reg->masks.field_region_end = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B;
261 reg->shifts.field_region_end_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
262 reg->masks.field_region_end_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
263 reg->shifts.field_region_end_base = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
264 reg->masks.field_region_end_base = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
265 reg->shifts.field_region_linear_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B;
266 reg->masks.field_region_linear_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B;
267 reg->shifts.exp_region_start = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B;
268 reg->masks.exp_region_start = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B;
269 reg->shifts.exp_resion_start_segment = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
270 reg->masks.exp_resion_start_segment = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
271 }
272
273 void mpc20_power_on_ogam_lut(
274 struct mpc *mpc, int mpcc_id,
275 bool power_on)
276 {
277 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
278
279 REG_SET(MPCC_MEM_PWR_CTRL[mpcc_id], 0,
280 MPCC_OGAM_MEM_PWR_DIS, power_on == true ? 1:0);
281
282 }
283
284 static void mpc20_configure_ogam_lut(
285 struct mpc *mpc, int mpcc_id,
286 bool is_ram_a)
287 {
288 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
289
290 REG_UPDATE_2(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id],
291 MPCC_OGAM_LUT_WRITE_EN_MASK, 7,
292 MPCC_OGAM_LUT_RAM_SEL, is_ram_a == true ? 0:1);
293
294 REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);
295 }
296
297 static enum dc_lut_mode mpc20_get_ogam_current(struct mpc *mpc, int mpcc_id)
298 {
299 enum dc_lut_mode mode;
300 uint32_t state_mode;
301 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
302
303 REG_GET(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id],
304 MPCC_OGAM_CONFIG_STATUS, &state_mode);
305
306 switch (state_mode) {
307 case 0:
308 mode = LUT_BYPASS;
309 break;
310 case 1:
311 mode = LUT_RAM_A;
312 break;
313 case 2:
314 mode = LUT_RAM_B;
315 break;
316 default:
317 mode = LUT_BYPASS;
318 break;
319 }
320 return mode;
321 }
322
323 static void mpc2_program_lutb(struct mpc *mpc, int mpcc_id,
324 const struct pwl_params *params)
325 {
326 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
327 struct xfer_func_reg gam_regs;
328
329 mpc2_ogam_get_reg_field(mpc, &gam_regs);
330
331 gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]);
332 gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]);
333 gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]);
334 gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_B[mpcc_id]);
335 gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_G[mpcc_id]);
336 gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_R[mpcc_id]);
337 gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]);
338 gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]);
339 gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]);
340 gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]);
341 gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]);
342 gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]);
343 gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]);
344 gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]);
345
346 cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs);
347
348 }
349
350 static void mpc2_program_luta(struct mpc *mpc, int mpcc_id,
351 const struct pwl_params *params)
352 {
353 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
354 struct xfer_func_reg gam_regs;
355
356 mpc2_ogam_get_reg_field(mpc, &gam_regs);
357
358 gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]);
359 gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]);
360 gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]);
361 gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_B[mpcc_id]);
362 gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_G[mpcc_id]);
363 gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_R[mpcc_id]);
364 gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]);
365 gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]);
366 gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]);
367 gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]);
368 gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]);
369 gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]);
370 gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]);
371 gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]);
372
373 cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs);
374
375 }
376
377 static void mpc20_program_ogam_pwl(
378 struct mpc *mpc, int mpcc_id,
379 const struct pwl_result_data *rgb,
380 uint32_t num)
381 {
382 uint32_t i;
383 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
384
385 PERF_TRACE();
386 REG_SEQ_START();
387
388 for (i = 0 ; i < num; i++) {
389 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg);
390 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg);
391 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg);
392
393 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
394 MPCC_OGAM_LUT_DATA, rgb[i].delta_red_reg);
395 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
396 MPCC_OGAM_LUT_DATA, rgb[i].delta_green_reg);
397 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
398 MPCC_OGAM_LUT_DATA, rgb[i].delta_blue_reg);
399
400 }
401
402 }
403
404 void apply_DEDCN20_305_wa(
405 struct mpc *mpc,
406 int mpcc_id, enum dc_lut_mode current_mode,
407 enum dc_lut_mode next_mode)
408 {
409 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
410
411 if (mpc->ctx->dc->debug.cm_in_bypass) {
412 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
413 return;
414 }
415
416 if (mpc->ctx->dc->work_arounds.dedcn20_305_wa == false) {
417 /*hw fixed in new review*/
418 return;
419 }
420 if (current_mode == LUT_BYPASS)
421 /*this will only work if OTG is locked.
422 *if we were to support OTG unlock case,
423 *the workaround will be more complex
424 */
425 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE,
426 next_mode == LUT_RAM_A ? 1:2);
427 }
428
429 void mpc2_set_output_gamma(
430 struct mpc *mpc,
431 int mpcc_id,
432 const struct pwl_params *params)
433 {
434 enum dc_lut_mode current_mode;
435 enum dc_lut_mode next_mode;
436 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
437
438 if (mpc->ctx->dc->debug.cm_in_bypass) {
439 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
440 return;
441 }
442
443 if (params == NULL) {
444 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
445 return;
446 }
447
448 current_mode = mpc20_get_ogam_current(mpc, mpcc_id);
449 if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
450 next_mode = LUT_RAM_B;
451 else
452 next_mode = LUT_RAM_A;
453
454 mpc20_power_on_ogam_lut(mpc, mpcc_id, true);
455 mpc20_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A ? true:false);
456
457 if (next_mode == LUT_RAM_A)
458 mpc2_program_luta(mpc, mpcc_id, params);
459 else
460 mpc2_program_lutb(mpc, mpcc_id, params);
461
462 apply_DEDCN20_305_wa(mpc, mpcc_id, current_mode, next_mode);
463
464 mpc20_program_ogam_pwl(
465 mpc, mpcc_id, params->rgb_resulted, params->hw_points_num);
466
467 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE,
468 next_mode == LUT_RAM_A ? 1:2);
469 }
470 void mpc2_assert_idle_mpcc(struct mpc *mpc, int id)
471 {
472 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
473 unsigned int mpc_disabled;
474
475 ASSERT(!(mpc20->mpcc_in_use_mask & 1 << id));
476 REG_GET(MPCC_STATUS[id], MPCC_DISABLED, &mpc_disabled);
477 if (mpc_disabled)
478 return;
479
480 REG_WAIT(MPCC_STATUS[id],
481 MPCC_IDLE, 1,
482 1, 100000);
483 }
484
485 void mpc2_assert_mpcc_idle_before_connect(struct mpc *mpc, int mpcc_id)
486 {
487 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
488 unsigned int top_sel, mpc_busy, mpc_idle, mpc_disabled;
489
490 REG_GET(MPCC_TOP_SEL[mpcc_id],
491 MPCC_TOP_SEL, &top_sel);
492
493 REG_GET_3(MPCC_STATUS[mpcc_id],
494 MPCC_BUSY, &mpc_busy,
495 MPCC_IDLE, &mpc_idle,
496 MPCC_DISABLED, &mpc_disabled);
497
498 if (top_sel == 0xf) {
499 ASSERT(!mpc_busy);
500 ASSERT(mpc_idle);
501 ASSERT(mpc_disabled);
502 } else {
503 ASSERT(!mpc_disabled);
504 ASSERT(!mpc_idle);
505 }
506
507 REG_SEQ_SUBMIT();
508 PERF_TRACE();
509 REG_SEQ_WAIT_DONE();
510 PERF_TRACE();
511 }
512
513 static void mpc2_init_mpcc(struct mpcc *mpcc, int mpcc_inst)
514 {
515 mpcc->mpcc_id = mpcc_inst;
516 mpcc->dpp_id = 0xf;
517 mpcc->mpcc_bot = NULL;
518 mpcc->blnd_cfg.overlap_only = false;
519 mpcc->blnd_cfg.global_alpha = 0xff;
520 mpcc->blnd_cfg.global_gain = 0xff;
521 mpcc->blnd_cfg.background_color_bpc = 4;
522 mpcc->blnd_cfg.bottom_gain_mode = 0;
523 mpcc->blnd_cfg.top_gain = 0x1f000;
524 mpcc->blnd_cfg.bottom_inside_gain = 0x1f000;
525 mpcc->blnd_cfg.bottom_outside_gain = 0x1f000;
526 mpcc->sm_cfg.enable = false;
527 }
528
529 struct mpcc *mpc2_get_mpcc_for_dpp(struct mpc_tree *tree, int dpp_id)
530 {
531 struct mpcc *tmp_mpcc = tree->opp_list;
532
533 while (tmp_mpcc != NULL) {
534 if (tmp_mpcc->dpp_id == 0xf || tmp_mpcc->dpp_id == dpp_id)
535 return tmp_mpcc;
536 tmp_mpcc = tmp_mpcc->mpcc_bot;
537 }
538 return NULL;
539 }
540
541 const struct mpc_funcs dcn20_mpc_funcs = {
542 .read_mpcc_state = mpc1_read_mpcc_state,
543 .insert_plane = mpc1_insert_plane,
544 .remove_mpcc = mpc1_remove_mpcc,
545 .mpc_init = mpc1_mpc_init,
546 .mpc_init_single_inst = mpc1_mpc_init_single_inst,
547 .update_blending = mpc2_update_blending,
548 .get_mpcc_for_dpp = mpc2_get_mpcc_for_dpp,
549 .wait_for_idle = mpc2_assert_idle_mpcc,
550 .assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect,
551 .init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw,
552 .set_denorm = mpc2_set_denorm,
553 .set_denorm_clamp = mpc2_set_denorm_clamp,
554 .set_output_csc = mpc2_set_output_csc,
555 .set_ocsc_default = mpc2_set_ocsc_default,
556 .set_output_gamma = mpc2_set_output_gamma,
557 .power_on_mpc_mem_pwr = mpc20_power_on_ogam_lut,
558 };
559
560 void dcn20_mpc_construct(struct dcn20_mpc *mpc20,
561 struct dc_context *ctx,
562 const struct dcn20_mpc_registers *mpc_regs,
563 const struct dcn20_mpc_shift *mpc_shift,
564 const struct dcn20_mpc_mask *mpc_mask,
565 int num_mpcc)
566 {
567 int i;
568
569 mpc20->base.ctx = ctx;
570
571 mpc20->base.funcs = &dcn20_mpc_funcs;
572
573 mpc20->mpc_regs = mpc_regs;
574 mpc20->mpc_shift = mpc_shift;
575 mpc20->mpc_mask = mpc_mask;
576
577 mpc20->mpcc_in_use_mask = 0;
578 mpc20->num_mpcc = num_mpcc;
579
580 for (i = 0; i < MAX_MPCC; i++)
581 mpc2_init_mpcc(&mpc20->base.mpcc_array[i], i);
582 }
583