]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/amd/display/dc/hwss/dcn32/dcn32_hwseq.c
Merge tag 'loongarch-kvm-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhu...
[thirdparty/kernel/stable.git] / drivers / gpu / drm / amd / display / dc / hwss / dcn32 / dcn32_hwseq.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26
27 #include "dm_services.h"
28 #include "dm_helpers.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "dccg.h"
32 #include "dce/dce_hwseq.h"
33 #include "dcn30/dcn30_cm_common.h"
34 #include "reg_helper.h"
35 #include "abm.h"
36 #include "hubp.h"
37 #include "dchubbub.h"
38 #include "timing_generator.h"
39 #include "opp.h"
40 #include "ipp.h"
41 #include "mpc.h"
42 #include "mcif_wb.h"
43 #include "dc_dmub_srv.h"
44 #include "link_hwss.h"
45 #include "dpcd_defs.h"
46 #include "dcn32_hwseq.h"
47 #include "clk_mgr.h"
48 #include "dsc.h"
49 #include "dcn20/dcn20_optc.h"
50 #include "dce/dmub_hw_lock_mgr.h"
51 #include "dcn32/dcn32_resource.h"
52 #include "link.h"
53 #include "../dcn20/dcn20_hwseq.h"
54
55 #define DC_LOGGER_INIT(logger)
56
57 #define CTX \
58 hws->ctx
59 #define REG(reg)\
60 hws->regs->reg
61 #define DC_LOGGER \
62 stream->ctx->logger
63
64
65 #undef FN
66 #define FN(reg_name, field_name) \
67 hws->shifts->field_name, hws->masks->field_name
68
69 void dcn32_dsc_pg_control(
70 struct dce_hwseq *hws,
71 unsigned int dsc_inst,
72 bool power_on)
73 {
74 uint32_t power_gate = power_on ? 0 : 1;
75 uint32_t pwr_status = power_on ? 0 : 2;
76 uint32_t org_ip_request_cntl = 0;
77
78 if (hws->ctx->dc->debug.disable_dsc_power_gate)
79 return;
80
81 if (!hws->ctx->dc->debug.enable_double_buffered_dsc_pg_support)
82 return;
83
84 REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
85 if (org_ip_request_cntl == 0)
86 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
87
88 switch (dsc_inst) {
89 case 0: /* DSC0 */
90 REG_UPDATE(DOMAIN16_PG_CONFIG,
91 DOMAIN_POWER_GATE, power_gate);
92
93 REG_WAIT(DOMAIN16_PG_STATUS,
94 DOMAIN_PGFSM_PWR_STATUS, pwr_status,
95 1, 1000);
96 break;
97 case 1: /* DSC1 */
98 REG_UPDATE(DOMAIN17_PG_CONFIG,
99 DOMAIN_POWER_GATE, power_gate);
100
101 REG_WAIT(DOMAIN17_PG_STATUS,
102 DOMAIN_PGFSM_PWR_STATUS, pwr_status,
103 1, 1000);
104 break;
105 case 2: /* DSC2 */
106 REG_UPDATE(DOMAIN18_PG_CONFIG,
107 DOMAIN_POWER_GATE, power_gate);
108
109 REG_WAIT(DOMAIN18_PG_STATUS,
110 DOMAIN_PGFSM_PWR_STATUS, pwr_status,
111 1, 1000);
112 break;
113 case 3: /* DSC3 */
114 REG_UPDATE(DOMAIN19_PG_CONFIG,
115 DOMAIN_POWER_GATE, power_gate);
116
117 REG_WAIT(DOMAIN19_PG_STATUS,
118 DOMAIN_PGFSM_PWR_STATUS, pwr_status,
119 1, 1000);
120 break;
121 default:
122 BREAK_TO_DEBUGGER();
123 break;
124 }
125
126 if (org_ip_request_cntl == 0)
127 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
128 }
129
130
131 void dcn32_enable_power_gating_plane(
132 struct dce_hwseq *hws,
133 bool enable)
134 {
135 bool force_on = true; /* disable power gating */
136 uint32_t org_ip_request_cntl = 0;
137
138 if (enable)
139 force_on = false;
140
141 REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
142 if (org_ip_request_cntl == 0)
143 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
144
145 /* DCHUBP0/1/2/3 */
146 REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
147 REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
148 REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
149 REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
150
151 /* DCS0/1/2/3 */
152 REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
153 REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
154 REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
155 REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
156
157 if (org_ip_request_cntl == 0)
158 REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
159 }
160
161 void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on)
162 {
163 uint32_t power_gate = power_on ? 0 : 1;
164 uint32_t pwr_status = power_on ? 0 : 2;
165
166 if (hws->ctx->dc->debug.disable_hubp_power_gate)
167 return;
168
169 if (REG(DOMAIN0_PG_CONFIG) == 0)
170 return;
171
172 switch (hubp_inst) {
173 case 0:
174 REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
175 REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
176 break;
177 case 1:
178 REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
179 REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
180 break;
181 case 2:
182 REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
183 REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
184 break;
185 case 3:
186 REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
187 REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
188 break;
189 default:
190 BREAK_TO_DEBUGGER();
191 break;
192 }
193 }
194
195 static bool dcn32_check_no_memory_request_for_cab(struct dc *dc)
196 {
197 int i;
198
199 /* First, check no-memory-request case */
200 for (i = 0; i < dc->current_state->stream_count; i++) {
201 if ((dc->current_state->stream_status[i].plane_count) &&
202 (dc->current_state->streams[i]->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED))
203 /* Fail eligibility on a visible stream */
204 break;
205 }
206
207 if (i == dc->current_state->stream_count)
208 return true;
209
210 return false;
211 }
212
213
214 /* This function loops through every surface that needs to be cached in CAB for SS,
215 * and calculates the total number of ways required to store all surfaces (primary,
216 * meta, cursor).
217 */
218 static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
219 {
220 int i;
221 uint32_t num_ways = 0;
222 uint32_t mall_ss_size_bytes = 0;
223
224 mall_ss_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_size_bytes;
225 // TODO add additional logic for PSR active stream exclusion optimization
226 // mall_ss_psr_active_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes;
227
228 // Include cursor size for CAB allocation
229 for (i = 0; i < dc->res_pool->pipe_count; i++) {
230 struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[i];
231
232 if (!pipe->stream || !pipe->plane_state)
233 continue;
234
235 mall_ss_size_bytes += dcn32_helper_calculate_mall_bytes_for_cursor(dc, pipe, false);
236 }
237
238 // Convert number of cache lines required to number of ways
239 if (dc->debug.force_mall_ss_num_ways > 0) {
240 num_ways = dc->debug.force_mall_ss_num_ways;
241 } else {
242 num_ways = dcn32_helper_mall_bytes_to_ways(dc, mall_ss_size_bytes);
243 }
244
245 return num_ways;
246 }
247
248 bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable)
249 {
250 union dmub_rb_cmd cmd;
251 uint8_t i;
252 uint32_t ways;
253 int j;
254 bool mall_ss_unsupported = false;
255 struct dc_plane_state *plane = NULL;
256
257 if (!dc->ctx->dmub_srv)
258 return false;
259
260 for (i = 0; i < dc->current_state->stream_count; i++) {
261 /* MALL SS messaging is not supported with PSR at this time */
262 if (dc->current_state->streams[i] != NULL &&
263 dc->current_state->streams[i]->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED)
264 return false;
265 }
266
267 if (enable) {
268 if (dc->current_state) {
269
270 /* 1. Check no memory request case for CAB.
271 * If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message
272 */
273 if (dcn32_check_no_memory_request_for_cab(dc)) {
274 /* Enable no-memory-requests case */
275 memset(&cmd, 0, sizeof(cmd));
276 cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
277 cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
278 cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
279
280 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
281
282 return true;
283 }
284
285 /* 2. Check if all surfaces can fit in CAB.
286 * If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
287 * and configure HUBP's to fetch from MALL
288 */
289 ways = dcn32_calculate_cab_allocation(dc, dc->current_state);
290
291 /* MALL not supported with Stereo3D or TMZ surface. If any plane is using stereo,
292 * or TMZ surface, don't try to enter MALL.
293 */
294 for (i = 0; i < dc->current_state->stream_count; i++) {
295 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
296 plane = dc->current_state->stream_status[i].plane_states[j];
297
298 if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO ||
299 plane->address.tmz_surface) {
300 mall_ss_unsupported = true;
301 break;
302 }
303 }
304 if (mall_ss_unsupported)
305 break;
306 }
307 if (ways <= dc->caps.cache_num_ways && !mall_ss_unsupported) {
308 memset(&cmd, 0, sizeof(cmd));
309 cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
310 cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
311 cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
312 cmd.cab.cab_alloc_ways = (uint8_t)ways;
313
314 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
315
316 return true;
317 }
318
319 }
320 return false;
321 }
322
323 /* Disable CAB */
324 memset(&cmd, 0, sizeof(cmd));
325 cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
326 cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
327 cmd.cab.header.payload_bytes =
328 sizeof(cmd.cab) - sizeof(cmd.cab.header);
329
330 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
331
332 return true;
333 }
334
335 /* Send DMCUB message with SubVP pipe info
336 * - For each pipe in context, populate payload with required SubVP information
337 * if the pipe is using SubVP for MCLK switch
338 * - This function must be called while the DMUB HW lock is acquired by driver
339 */
340 void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context)
341 {
342 int i;
343 bool enable_subvp = false;
344
345 if (!dc->ctx || !dc->ctx->dmub_srv)
346 return;
347
348 for (i = 0; i < dc->res_pool->pipe_count; i++) {
349 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
350
351 if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.paired_stream &&
352 pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN) {
353 // There is at least 1 SubVP pipe, so enable SubVP
354 enable_subvp = true;
355 break;
356 }
357 }
358 dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp);
359 }
360
361 /* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and:
362 * 1. Any full update for any SubVP main pipe
363 * 2. Any immediate flip for any SubVP pipe
364 * 3. Any flip for DRR pipe
365 * 4. If SubVP was previously in use (i.e. in old context)
366 */
367 void dcn32_subvp_pipe_control_lock(struct dc *dc,
368 struct dc_state *context,
369 bool lock,
370 bool should_lock_all_pipes,
371 struct pipe_ctx *top_pipe_to_program,
372 bool subvp_prev_use)
373 {
374 unsigned int i = 0;
375 bool subvp_immediate_flip = false;
376 bool subvp_in_use = false;
377 struct pipe_ctx *pipe;
378
379 for (i = 0; i < dc->res_pool->pipe_count; i++) {
380 pipe = &context->res_ctx.pipe_ctx[i];
381
382 if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
383 subvp_in_use = true;
384 break;
385 }
386 }
387
388 if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) {
389 if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_MAIN &&
390 top_pipe_to_program->plane_state->flip_immediate)
391 subvp_immediate_flip = true;
392 }
393
394 // Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared.
395 if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip)) || (!subvp_in_use && subvp_prev_use)) {
396 union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
397
398 if (!lock) {
399 for (i = 0; i < dc->res_pool->pipe_count; i++) {
400 pipe = &context->res_ctx.pipe_ctx[i];
401 if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
402 should_lock_all_pipes)
403 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
404 }
405 }
406
407 hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
408 hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
409 hw_lock_cmd.bits.lock = lock;
410 hw_lock_cmd.bits.should_release = !lock;
411 dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
412 }
413 }
414
415 void dcn32_subvp_pipe_control_lock_fast(union block_sequence_params *params)
416 {
417 struct dc *dc = params->subvp_pipe_control_lock_fast_params.dc;
418 bool lock = params->subvp_pipe_control_lock_fast_params.lock;
419 struct pipe_ctx *pipe_ctx = params->subvp_pipe_control_lock_fast_params.pipe_ctx;
420 bool subvp_immediate_flip = false;
421
422 if (pipe_ctx && pipe_ctx->stream && pipe_ctx->plane_state) {
423 if (pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN &&
424 pipe_ctx->plane_state->flip_immediate)
425 subvp_immediate_flip = true;
426 }
427
428 // Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared.
429 if (subvp_immediate_flip) {
430 union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
431
432 hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
433 hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
434 hw_lock_cmd.bits.lock = lock;
435 hw_lock_cmd.bits.should_release = !lock;
436 dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
437 }
438 }
439
440 bool dcn32_set_mpc_shaper_3dlut(
441 struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream)
442 {
443 struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
444 int mpcc_id = pipe_ctx->plane_res.hubp->inst;
445 struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
446 bool result = false;
447
448 const struct pwl_params *shaper_lut = NULL;
449 //get the shaper lut params
450 if (stream->func_shaper) {
451 if (stream->func_shaper->type == TF_TYPE_HWPWL)
452 shaper_lut = &stream->func_shaper->pwl;
453 else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
454 cm_helper_translate_curve_to_hw_format(stream->ctx,
455 stream->func_shaper,
456 &dpp_base->shaper_params, true);
457 shaper_lut = &dpp_base->shaper_params;
458 }
459 }
460
461 if (stream->lut3d_func &&
462 stream->lut3d_func->state.bits.initialized == 1) {
463
464 result = mpc->funcs->program_3dlut(mpc,
465 &stream->lut3d_func->lut_3d,
466 mpcc_id);
467
468 result = mpc->funcs->program_shaper(mpc,
469 shaper_lut,
470 mpcc_id);
471 }
472
473 return result;
474 }
475
476 bool dcn32_set_mcm_luts(
477 struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
478 {
479 struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
480 int mpcc_id = pipe_ctx->plane_res.hubp->inst;
481 struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
482 bool result = true;
483 struct pwl_params *lut_params = NULL;
484
485 // 1D LUT
486 if (plane_state->blend_tf) {
487 if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
488 lut_params = &plane_state->blend_tf->pwl;
489 else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
490 cm3_helper_translate_curve_to_hw_format(plane_state->blend_tf,
491 &dpp_base->regamma_params, false);
492 lut_params = &dpp_base->regamma_params;
493 }
494 }
495 result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
496 lut_params = NULL;
497
498 // Shaper
499 if (plane_state->in_shaper_func) {
500 if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
501 lut_params = &plane_state->in_shaper_func->pwl;
502 else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
503 // TODO: dpp_base replace
504 ASSERT(false);
505 cm3_helper_translate_curve_to_hw_format(plane_state->in_shaper_func,
506 &dpp_base->shaper_params, true);
507 lut_params = &dpp_base->shaper_params;
508 }
509 }
510
511 result = mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);
512
513 // 3D
514 if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1)
515 result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func->lut_3d, mpcc_id);
516 else
517 result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
518
519 return result;
520 }
521
522 bool dcn32_set_input_transfer_func(struct dc *dc,
523 struct pipe_ctx *pipe_ctx,
524 const struct dc_plane_state *plane_state)
525 {
526 struct dce_hwseq *hws = dc->hwseq;
527 struct mpc *mpc = dc->res_pool->mpc;
528 struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
529
530 enum dc_transfer_func_predefined tf;
531 bool result = true;
532 struct pwl_params *params = NULL;
533
534 if (mpc == NULL || plane_state == NULL)
535 return false;
536
537 tf = TRANSFER_FUNCTION_UNITY;
538
539 if (plane_state->in_transfer_func &&
540 plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED)
541 tf = plane_state->in_transfer_func->tf;
542
543 dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf);
544
545 if (plane_state->in_transfer_func) {
546 if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL)
547 params = &plane_state->in_transfer_func->pwl;
548 else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS &&
549 cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func,
550 &dpp_base->degamma_params, false))
551 params = &dpp_base->degamma_params;
552 }
553
554 dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params);
555
556 if (pipe_ctx->stream_res.opp &&
557 pipe_ctx->stream_res.opp->ctx &&
558 hws->funcs.set_mcm_luts)
559 result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state);
560
561 return result;
562 }
563
564 bool dcn32_set_output_transfer_func(struct dc *dc,
565 struct pipe_ctx *pipe_ctx,
566 const struct dc_stream_state *stream)
567 {
568 int mpcc_id = pipe_ctx->plane_res.hubp->inst;
569 struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
570 struct pwl_params *params = NULL;
571 bool ret = false;
572
573 /* program OGAM or 3DLUT only for the top pipe*/
574 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD)) {
575 /*program shaper and 3dlut in MPC*/
576 ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
577 if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) {
578 if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
579 params = &stream->out_transfer_func->pwl;
580 else if (pipe_ctx->stream->out_transfer_func->type ==
581 TF_TYPE_DISTRIBUTED_POINTS &&
582 cm3_helper_translate_curve_to_hw_format(
583 stream->out_transfer_func,
584 &mpc->blender_params, false))
585 params = &mpc->blender_params;
586 /* there are no ROM LUTs in OUTGAM */
587 if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
588 BREAK_TO_DEBUGGER();
589 }
590 }
591
592 mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
593 return ret;
594 }
595
596 /* Program P-State force value according to if pipe is using SubVP / FPO or not:
597 * 1. Reset P-State force on all pipes first
598 * 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB)
599 */
600 void dcn32_update_force_pstate(struct dc *dc, struct dc_state *context)
601 {
602 int i;
603
604 /* Unforce p-state for each pipe if it is not FPO or SubVP.
605 * For FPO and SubVP, if it's already forced disallow, leave
606 * it as disallow.
607 */
608 for (i = 0; i < dc->res_pool->pipe_count; i++) {
609 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
610 struct hubp *hubp = pipe->plane_res.hubp;
611
612 if (!pipe->stream || !(pipe->stream->mall_stream_config.type == SUBVP_MAIN ||
613 pipe->stream->fpo_in_use)) {
614 if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
615 hubp->funcs->hubp_update_force_pstate_disallow(hubp, false);
616 if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow)
617 hubp->funcs->hubp_update_force_cursor_pstate_disallow(hubp, false);
618 }
619 }
620
621 /* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false.
622 */
623 for (i = 0; i < dc->res_pool->pipe_count; i++) {
624 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
625 struct hubp *hubp = pipe->plane_res.hubp;
626
627 if (pipe->stream && (pipe->stream->mall_stream_config.type == SUBVP_MAIN ||
628 pipe->stream->fpo_in_use)) {
629 if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
630 hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
631 if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow)
632 hubp->funcs->hubp_update_force_cursor_pstate_disallow(hubp, true);
633 }
634 }
635 }
636
637 /* Update MALL_SEL register based on if pipe / plane
638 * is a phantom pipe, main pipe, and if using MALL
639 * for SS.
640 */
641 void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context)
642 {
643 int i;
644 unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context);
645 bool cache_cursor = false;
646
647 for (i = 0; i < dc->res_pool->pipe_count; i++) {
648 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
649 struct hubp *hubp = pipe->plane_res.hubp;
650
651 if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) {
652 int cursor_size = hubp->curs_attr.pitch * hubp->curs_attr.height;
653
654 switch (hubp->curs_attr.color_format) {
655 case CURSOR_MODE_MONO:
656 cursor_size /= 2;
657 break;
658 case CURSOR_MODE_COLOR_1BIT_AND:
659 case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
660 case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
661 cursor_size *= 4;
662 break;
663
664 case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
665 case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
666 default:
667 cursor_size *= 8;
668 break;
669 }
670
671 if (cursor_size > 16384)
672 cache_cursor = true;
673
674 if (pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
675 hubp->funcs->hubp_update_mall_sel(hubp, 1, false);
676 } else {
677 // MALL not supported with Stereo3D
678 hubp->funcs->hubp_update_mall_sel(hubp,
679 num_ways <= dc->caps.cache_num_ways &&
680 pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED &&
681 pipe->plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO &&
682 !pipe->plane_state->address.tmz_surface ? 2 : 0,
683 cache_cursor);
684 }
685 }
686 }
687 }
688
689 /* Program the sub-viewport pipe configuration after the main / phantom pipes
690 * have been programmed in hardware.
691 * 1. Update force P-State for all the main pipes (disallow P-state)
692 * 2. Update MALL_SEL register
693 * 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes
694 */
695 void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context)
696 {
697 int i;
698 struct dce_hwseq *hws = dc->hwseq;
699
700 // Don't force p-state disallow -- can't block dummy p-state
701
702 // Update MALL_SEL register for each pipe
703 if (hws && hws->funcs.update_mall_sel)
704 hws->funcs.update_mall_sel(dc, context);
705
706 // Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes
707 for (i = 0; i < dc->res_pool->pipe_count; i++) {
708 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
709 struct hubp *hubp = pipe->plane_res.hubp;
710
711 if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) {
712 /* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases
713 * - need to investigate single pipe MPO + SubVP case to
714 * see if CURSOR_REQ_MODE will be back to 1 for SubVP
715 * when it should be 0 for MPO
716 */
717 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
718 hubp->funcs->hubp_prepare_subvp_buffering(hubp, true);
719 }
720 }
721 }
722 }
723
724 static void dcn32_initialize_min_clocks(struct dc *dc)
725 {
726 struct dc_clocks *clocks = &dc->current_state->bw_ctx.bw.dcn.clk;
727
728 clocks->dcfclk_deep_sleep_khz = DCN3_2_DCFCLK_DS_INIT_KHZ;
729 clocks->dcfclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz * 1000;
730 clocks->socclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].socclk_mhz * 1000;
731 clocks->dramclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 1000;
732 clocks->dppclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dppclk_mhz * 1000;
733 clocks->ref_dtbclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dtbclk_mhz * 1000;
734 clocks->fclk_p_state_change_support = true;
735 clocks->p_state_change_support = true;
736 if (dc->debug.disable_boot_optimizations) {
737 clocks->dispclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz * 1000;
738 } else {
739 /* Even though DPG_EN = 1 for the connected display, it still requires the
740 * correct timing so we cannot set DISPCLK to min freq or it could cause
741 * audio corruption. Read current DISPCLK from DENTIST and request the same
742 * freq to ensure that the timing is valid and unchanged.
743 */
744 clocks->dispclk_khz = dc->clk_mgr->funcs->get_dispclk_from_dentist(dc->clk_mgr);
745 }
746
747 dc->clk_mgr->funcs->update_clocks(
748 dc->clk_mgr,
749 dc->current_state,
750 true);
751 }
752
753 void dcn32_init_hw(struct dc *dc)
754 {
755 struct abm **abms = dc->res_pool->multiple_abms;
756 struct dce_hwseq *hws = dc->hwseq;
757 struct dc_bios *dcb = dc->ctx->dc_bios;
758 struct resource_pool *res_pool = dc->res_pool;
759 int i;
760 int edp_num;
761 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
762
763 if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
764 dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
765
766 // Initialize the dccg
767 if (res_pool->dccg->funcs->dccg_init)
768 res_pool->dccg->funcs->dccg_init(res_pool->dccg);
769
770 if (!dcb->funcs->is_accelerated_mode(dcb)) {
771 hws->funcs.bios_golden_init(dc);
772 hws->funcs.disable_vga(dc->hwseq);
773 }
774
775 // Set default OPTC memory power states
776 if (dc->debug.enable_mem_low_power.bits.optc) {
777 // Shutdown when unassigned and light sleep in VBLANK
778 REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
779 }
780
781 if (dc->debug.enable_mem_low_power.bits.vga) {
782 // Power down VGA memory
783 REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
784 }
785
786 if (dc->ctx->dc_bios->fw_info_valid) {
787 res_pool->ref_clocks.xtalin_clock_inKhz =
788 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
789
790 if (res_pool->dccg && res_pool->hubbub) {
791 (res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
792 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
793 &res_pool->ref_clocks.dccg_ref_clock_inKhz);
794
795 (res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
796 res_pool->ref_clocks.dccg_ref_clock_inKhz,
797 &res_pool->ref_clocks.dchub_ref_clock_inKhz);
798 } else {
799 // Not all ASICs have DCCG sw component
800 res_pool->ref_clocks.dccg_ref_clock_inKhz =
801 res_pool->ref_clocks.xtalin_clock_inKhz;
802 res_pool->ref_clocks.dchub_ref_clock_inKhz =
803 res_pool->ref_clocks.xtalin_clock_inKhz;
804 }
805 } else
806 ASSERT_CRITICAL(false);
807
808 for (i = 0; i < dc->link_count; i++) {
809 /* Power up AND update implementation according to the
810 * required signal (which may be different from the
811 * default signal on connector).
812 */
813 struct dc_link *link = dc->links[i];
814
815 link->link_enc->funcs->hw_init(link->link_enc);
816
817 /* Check for enabled DIG to identify enabled display */
818 if (link->link_enc->funcs->is_dig_enabled &&
819 link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
820 link->link_status.link_active = true;
821 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
822 if (link->link_enc->funcs->fec_is_active &&
823 link->link_enc->funcs->fec_is_active(link->link_enc))
824 link->fec_state = dc_link_fec_enabled;
825 }
826 }
827
828 /* enable_power_gating_plane before dsc_pg_control because
829 * FORCEON = 1 with hw default value on bootup, resume from s3
830 */
831 if (hws->funcs.enable_power_gating_plane)
832 hws->funcs.enable_power_gating_plane(dc->hwseq, true);
833
834 /* we want to turn off all dp displays before doing detection */
835 dc->link_srv->blank_all_dp_displays(dc);
836
837 /* If taking control over from VBIOS, we may want to optimize our first
838 * mode set, so we need to skip powering down pipes until we know which
839 * pipes we want to use.
840 * Otherwise, if taking control is not possible, we need to power
841 * everything down.
842 */
843 if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
844 /* Disable boot optimizations means power down everything including PHY, DIG,
845 * and OTG (i.e. the boot is not optimized because we do a full power down).
846 */
847 if (dc->hwss.enable_accelerated_mode && dc->debug.disable_boot_optimizations)
848 dc->hwss.enable_accelerated_mode(dc, dc->current_state);
849 else
850 hws->funcs.init_pipes(dc, dc->current_state);
851
852 if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
853 dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
854 !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
855
856 dcn32_initialize_min_clocks(dc);
857
858 /* On HW init, allow idle optimizations after pipes have been turned off.
859 *
860 * In certain D3 cases (i.e. BOCO / BOMACO) it's possible that hardware state
861 * is reset (i.e. not in idle at the time hw init is called), but software state
862 * still has idle_optimizations = true, so we must disable idle optimizations first
863 * (i.e. set false), then re-enable (set true).
864 */
865 dc_allow_idle_optimizations(dc, false);
866 dc_allow_idle_optimizations(dc, true);
867 }
868
869 /* In headless boot cases, DIG may be turned
870 * on which causes HW/SW discrepancies.
871 * To avoid this, power down hardware on boot
872 * if DIG is turned on and seamless boot not enabled
873 */
874 if (!dc->config.seamless_boot_edp_requested) {
875 struct dc_link *edp_links[MAX_NUM_EDP];
876 struct dc_link *edp_link;
877
878 dc_get_edp_links(dc, edp_links, &edp_num);
879 if (edp_num) {
880 for (i = 0; i < edp_num; i++) {
881 edp_link = edp_links[i];
882 if (edp_link->link_enc->funcs->is_dig_enabled &&
883 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
884 dc->hwss.edp_backlight_control &&
885 dc->hwss.power_down &&
886 dc->hwss.edp_power_control) {
887 dc->hwss.edp_backlight_control(edp_link, false);
888 dc->hwss.power_down(dc);
889 dc->hwss.edp_power_control(edp_link, false);
890 }
891 }
892 } else {
893 for (i = 0; i < dc->link_count; i++) {
894 struct dc_link *link = dc->links[i];
895
896 if (link->link_enc->funcs->is_dig_enabled &&
897 link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
898 dc->hwss.power_down) {
899 dc->hwss.power_down(dc);
900 break;
901 }
902
903 }
904 }
905 }
906
907 for (i = 0; i < res_pool->audio_count; i++) {
908 struct audio *audio = res_pool->audios[i];
909
910 audio->funcs->hw_init(audio);
911 }
912
913 for (i = 0; i < dc->link_count; i++) {
914 struct dc_link *link = dc->links[i];
915
916 if (link->panel_cntl)
917 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
918 }
919
920 for (i = 0; i < dc->res_pool->pipe_count; i++) {
921 if (abms[i] != NULL && abms[i]->funcs != NULL)
922 abms[i]->funcs->abm_init(abms[i], backlight);
923 }
924
925 /* power AFMT HDMI memory TODO: may move to dis/en output save power*/
926 REG_WRITE(DIO_MEM_PWR_CTRL, 0);
927
928 if (!dc->debug.disable_clock_gate) {
929 /* enable all DCN clock gating */
930 REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
931
932 REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
933
934 REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
935 }
936
937 if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
938 dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
939
940 if (dc->clk_mgr->funcs->notify_wm_ranges)
941 dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
942
943 if (dc->clk_mgr->funcs->set_hard_max_memclk && !dc->clk_mgr->dc_mode_softmax_enabled)
944 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
945
946 if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
947 dc->res_pool->hubbub->funcs->force_pstate_change_control(
948 dc->res_pool->hubbub, false, false);
949
950 if (dc->res_pool->hubbub->funcs->init_crb)
951 dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
952
953 if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0)
954 dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc);
955
956 // Get DMCUB capabilities
957 if (dc->ctx->dmub_srv) {
958 dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv);
959 dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
960 dc->caps.dmub_caps.subvp_psr = dc->ctx->dmub_srv->dmub->feature_caps.subvp_psr_support;
961 dc->caps.dmub_caps.gecc_enable = dc->ctx->dmub_srv->dmub->feature_caps.gecc_enable;
962 dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch;
963 }
964 }
965
966 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
967 int opp_cnt)
968 {
969 bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
970 int flow_ctrl_cnt;
971
972 if (opp_cnt >= 2)
973 hblank_halved = true;
974
975 flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
976 stream->timing.h_border_left -
977 stream->timing.h_border_right;
978
979 if (hblank_halved)
980 flow_ctrl_cnt /= 2;
981
982 /* ODM combine 4:1 case */
983 if (opp_cnt == 4)
984 flow_ctrl_cnt /= 2;
985
986 return flow_ctrl_cnt;
987 }
988
989 static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
990 {
991 struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
992 struct dc_stream_state *stream = pipe_ctx->stream;
993 struct pipe_ctx *odm_pipe;
994 int opp_cnt = 1;
995
996 ASSERT(dsc);
997 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
998 opp_cnt++;
999
1000 if (enable) {
1001 struct dsc_config dsc_cfg;
1002 struct dsc_optc_config dsc_optc_cfg;
1003 enum optc_dsc_mode optc_dsc_mode;
1004
1005 /* Enable DSC hw block */
1006 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
1007 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
1008 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1009 dsc_cfg.color_depth = stream->timing.display_color_depth;
1010 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1011 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1012 ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
1013 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1014
1015 dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
1016 dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
1017 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1018 struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
1019
1020 ASSERT(odm_dsc);
1021 odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
1022 odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
1023 }
1024 dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
1025 dsc_cfg.pic_width *= opp_cnt;
1026
1027 optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
1028
1029 /* Enable DSC in OPTC */
1030 DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
1031 pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
1032 optc_dsc_mode,
1033 dsc_optc_cfg.bytes_per_pixel,
1034 dsc_optc_cfg.slice_width);
1035 } else {
1036 /* disable DSC in OPTC */
1037 pipe_ctx->stream_res.tg->funcs->set_dsc_config(
1038 pipe_ctx->stream_res.tg,
1039 OPTC_DSC_DISABLED, 0, 0);
1040
1041 /* disable DSC block */
1042 dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
1043 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1044 ASSERT(odm_pipe->stream_res.dsc);
1045 odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
1046 }
1047 }
1048 }
1049
1050 /*
1051 * Given any pipe_ctx, return the total ODM combine factor, and optionally return
1052 * the OPPids which are used
1053 * */
1054 static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
1055 {
1056 unsigned int opp_count = 1;
1057 struct pipe_ctx *odm_pipe;
1058
1059 /* First get to the top pipe */
1060 for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
1061 ;
1062
1063 /* First pipe is always used */
1064 if (opp_instances)
1065 opp_instances[0] = odm_pipe->stream_res.opp->inst;
1066
1067 /* Find and count odm pipes, if any */
1068 for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1069 if (opp_instances)
1070 opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
1071 opp_count++;
1072 }
1073
1074 return opp_count;
1075 }
1076
1077 void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1078 {
1079 struct pipe_ctx *odm_pipe;
1080 int opp_cnt = 0;
1081 int opp_inst[MAX_PIPES] = {0};
1082 bool rate_control_2x_pclk = (pipe_ctx->stream->timing.flags.INTERLACE || optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing));
1083 struct mpc_dwb_flow_control flow_control;
1084 struct mpc *mpc = dc->res_pool->mpc;
1085 int i;
1086
1087 opp_cnt = get_odm_config(pipe_ctx, opp_inst);
1088
1089 if (opp_cnt > 1)
1090 pipe_ctx->stream_res.tg->funcs->set_odm_combine(
1091 pipe_ctx->stream_res.tg,
1092 opp_inst, opp_cnt,
1093 &pipe_ctx->stream->timing);
1094 else
1095 pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
1096 pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
1097
1098 rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
1099 flow_control.flow_ctrl_mode = 0;
1100 flow_control.flow_ctrl_cnt0 = 0x80;
1101 flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(pipe_ctx->stream, opp_cnt);
1102 if (mpc->funcs->set_out_rate_control) {
1103 for (i = 0; i < opp_cnt; ++i) {
1104 mpc->funcs->set_out_rate_control(
1105 mpc, opp_inst[i],
1106 true,
1107 rate_control_2x_pclk,
1108 &flow_control);
1109 }
1110 }
1111
1112 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1113 odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
1114 odm_pipe->stream_res.opp,
1115 true);
1116 }
1117
1118 if (pipe_ctx->stream_res.dsc) {
1119 struct pipe_ctx *current_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
1120
1121 update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
1122
1123 /* Check if no longer using pipe for ODM, then need to disconnect DSC for that pipe */
1124 if (!pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe &&
1125 current_pipe_ctx->next_odm_pipe->stream_res.dsc) {
1126 struct display_stream_compressor *dsc = current_pipe_ctx->next_odm_pipe->stream_res.dsc;
1127 /* disconnect DSC block from stream */
1128 dsc->funcs->dsc_disconnect(dsc);
1129 }
1130 }
1131 }
1132
1133 unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div)
1134 {
1135 struct dc_stream_state *stream = pipe_ctx->stream;
1136 unsigned int odm_combine_factor = 0;
1137 bool two_pix_per_container = false;
1138
1139 two_pix_per_container = optc2_is_two_pixels_per_containter(&stream->timing);
1140 odm_combine_factor = get_odm_config(pipe_ctx, NULL);
1141
1142 if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1143 *k1_div = PIXEL_RATE_DIV_BY_1;
1144 *k2_div = PIXEL_RATE_DIV_BY_1;
1145 } else if (dc_is_hdmi_tmds_signal(stream->signal) || dc_is_dvi_signal(stream->signal)) {
1146 *k1_div = PIXEL_RATE_DIV_BY_1;
1147 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1148 *k2_div = PIXEL_RATE_DIV_BY_2;
1149 else
1150 *k2_div = PIXEL_RATE_DIV_BY_4;
1151 } else if (dc_is_dp_signal(stream->signal) || dc_is_virtual_signal(stream->signal)) {
1152 if (two_pix_per_container) {
1153 *k1_div = PIXEL_RATE_DIV_BY_1;
1154 *k2_div = PIXEL_RATE_DIV_BY_2;
1155 } else {
1156 *k1_div = PIXEL_RATE_DIV_BY_1;
1157 *k2_div = PIXEL_RATE_DIV_BY_4;
1158 if ((odm_combine_factor == 2) || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1159 *k2_div = PIXEL_RATE_DIV_BY_2;
1160 }
1161 }
1162
1163 if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA))
1164 ASSERT(false);
1165
1166 return odm_combine_factor;
1167 }
1168
1169 void dcn32_set_pixels_per_cycle(struct pipe_ctx *pipe_ctx)
1170 {
1171 uint32_t pix_per_cycle = 1;
1172 uint32_t odm_combine_factor = 1;
1173
1174 if (!pipe_ctx || !pipe_ctx->stream || !pipe_ctx->stream_res.stream_enc)
1175 return;
1176
1177 odm_combine_factor = get_odm_config(pipe_ctx, NULL);
1178 if (optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing) || odm_combine_factor > 1
1179 || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1180 pix_per_cycle = 2;
1181
1182 if (pipe_ctx->stream_res.stream_enc->funcs->set_input_mode)
1183 pipe_ctx->stream_res.stream_enc->funcs->set_input_mode(pipe_ctx->stream_res.stream_enc,
1184 pix_per_cycle);
1185 }
1186
1187 void dcn32_resync_fifo_dccg_dio(struct dce_hwseq *hws, struct dc *dc, struct dc_state *context)
1188 {
1189 unsigned int i;
1190 struct pipe_ctx *pipe = NULL;
1191 bool otg_disabled[MAX_PIPES] = {false};
1192
1193 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1194 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1195
1196 if (!resource_is_pipe_type(pipe, OTG_MASTER))
1197 continue;
1198
1199 if ((pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))
1200 && pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1201 pipe->stream_res.tg->funcs->disable_crtc(pipe->stream_res.tg);
1202 reset_sync_context_for_pipe(dc, context, i);
1203 otg_disabled[i] = true;
1204 }
1205 }
1206
1207 hws->ctx->dc->res_pool->dccg->funcs->trigger_dio_fifo_resync(hws->ctx->dc->res_pool->dccg);
1208
1209 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1210 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1211
1212 if (otg_disabled[i])
1213 pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
1214 }
1215 }
1216
1217 void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx,
1218 struct dc_link_settings *link_settings)
1219 {
1220 struct encoder_unblank_param params = {0};
1221 struct dc_stream_state *stream = pipe_ctx->stream;
1222 struct dc_link *link = stream->link;
1223 struct dce_hwseq *hws = link->dc->hwseq;
1224 struct pipe_ctx *odm_pipe;
1225 uint32_t pix_per_cycle = 1;
1226
1227 params.opp_cnt = 1;
1228 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1229 params.opp_cnt++;
1230
1231 /* only 3 items below are used by unblank */
1232 params.timing = pipe_ctx->stream->timing;
1233
1234 params.link_settings.link_rate = link_settings->link_rate;
1235
1236 if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1237 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1238 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
1239 pipe_ctx->stream_res.hpo_dp_stream_enc,
1240 pipe_ctx->stream_res.tg->inst);
1241 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1242 if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1
1243 || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx)) {
1244 params.timing.pix_clk_100hz /= 2;
1245 pix_per_cycle = 2;
1246 }
1247 pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
1248 pipe_ctx->stream_res.stream_enc, pix_per_cycle > 1);
1249 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1250 }
1251
1252 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
1253 hws->funcs.edp_backlight_control(link, true);
1254 }
1255
1256 bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
1257 {
1258 struct dc *dc = pipe_ctx->stream->ctx->dc;
1259
1260 if (!is_h_timing_divisible_by_2(pipe_ctx->stream))
1261 return false;
1262
1263 if (dc_is_dp_signal(pipe_ctx->stream->signal) && !dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) &&
1264 dc->debug.enable_dp_dig_pixel_rate_div_policy)
1265 return true;
1266 return false;
1267 }
1268
1269 static void apply_symclk_on_tx_off_wa(struct dc_link *link)
1270 {
1271 /* There are use cases where SYMCLK is referenced by OTG. For instance
1272 * for TMDS signal, OTG relies SYMCLK even if TX video output is off.
1273 * However current link interface will power off PHY when disabling link
1274 * output. This will turn off SYMCLK generated by PHY. The workaround is
1275 * to identify such case where SYMCLK is still in use by OTG when we
1276 * power off PHY. When this is detected, we will temporarily power PHY
1277 * back on and move PHY's SYMCLK state to SYMCLK_ON_TX_OFF by calling
1278 * program_pix_clk interface. When OTG is disabled, we will then power
1279 * off PHY by calling disable link output again.
1280 *
1281 * In future dcn generations, we plan to rework transmitter control
1282 * interface so that we could have an option to set SYMCLK ON TX OFF
1283 * state in one step without this workaround
1284 */
1285
1286 struct dc *dc = link->ctx->dc;
1287 struct pipe_ctx *pipe_ctx = NULL;
1288 uint8_t i;
1289
1290 if (link->phy_state.symclk_ref_cnts.otg > 0) {
1291 for (i = 0; i < MAX_PIPES; i++) {
1292 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1293 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) && pipe_ctx->stream->link == link) {
1294 pipe_ctx->clock_source->funcs->program_pix_clk(
1295 pipe_ctx->clock_source,
1296 &pipe_ctx->stream_res.pix_clk_params,
1297 dc->link_srv->dp_get_encoding_format(
1298 &pipe_ctx->link_config.dp_link_settings),
1299 &pipe_ctx->pll_settings);
1300 link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1301 break;
1302 }
1303 }
1304 }
1305 }
1306
1307 void dcn32_disable_link_output(struct dc_link *link,
1308 const struct link_resource *link_res,
1309 enum signal_type signal)
1310 {
1311 struct dc *dc = link->ctx->dc;
1312 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
1313 struct dmcu *dmcu = dc->res_pool->dmcu;
1314
1315 if (signal == SIGNAL_TYPE_EDP &&
1316 link->dc->hwss.edp_backlight_control &&
1317 !link->skip_implict_edp_power_control)
1318 link->dc->hwss.edp_backlight_control(link, false);
1319 else if (dmcu != NULL && dmcu->funcs->lock_phy)
1320 dmcu->funcs->lock_phy(dmcu);
1321
1322 link_hwss->disable_link_output(link, link_res, signal);
1323 link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
1324
1325 if (signal == SIGNAL_TYPE_EDP &&
1326 link->dc->hwss.edp_backlight_control &&
1327 !link->skip_implict_edp_power_control)
1328 link->dc->hwss.edp_power_control(link, false);
1329 else if (dmcu != NULL && dmcu->funcs->lock_phy)
1330 dmcu->funcs->unlock_phy(dmcu);
1331
1332 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
1333
1334 apply_symclk_on_tx_off_wa(link);
1335 }
1336
1337 /* For SubVP the main pipe can have a viewport position change
1338 * without a full update. In this case we must also update the
1339 * viewport positions for the phantom pipe accordingly.
1340 */
1341 void dcn32_update_phantom_vp_position(struct dc *dc,
1342 struct dc_state *context,
1343 struct pipe_ctx *phantom_pipe)
1344 {
1345 uint32_t i;
1346 struct dc_plane_state *phantom_plane = phantom_pipe->plane_state;
1347
1348 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1349 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1350
1351 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
1352 pipe->stream->mall_stream_config.paired_stream == phantom_pipe->stream) {
1353 if (pipe->plane_state && pipe->plane_state->update_flags.bits.position_change) {
1354
1355 phantom_plane->src_rect.x = pipe->plane_state->src_rect.x;
1356 phantom_plane->src_rect.y = pipe->plane_state->src_rect.y;
1357 phantom_plane->clip_rect.x = pipe->plane_state->clip_rect.x;
1358 phantom_plane->dst_rect.x = pipe->plane_state->dst_rect.x;
1359 phantom_plane->dst_rect.y = pipe->plane_state->dst_rect.y;
1360
1361 phantom_pipe->plane_state->update_flags.bits.position_change = 1;
1362 resource_build_scaling_params(phantom_pipe);
1363 return;
1364 }
1365 }
1366 }
1367 }
1368
1369 /* Treat the phantom pipe as if it needs to be fully enabled.
1370 * If the pipe was previously in use but not phantom, it would
1371 * have been disabled earlier in the sequence so we need to run
1372 * the full enable sequence.
1373 */
1374 void dcn32_apply_update_flags_for_phantom(struct pipe_ctx *phantom_pipe)
1375 {
1376 phantom_pipe->update_flags.raw = 0;
1377 if (phantom_pipe->stream && phantom_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1378 if (resource_is_pipe_type(phantom_pipe, DPP_PIPE)) {
1379 phantom_pipe->update_flags.bits.enable = 1;
1380 phantom_pipe->update_flags.bits.mpcc = 1;
1381 phantom_pipe->update_flags.bits.dppclk = 1;
1382 phantom_pipe->update_flags.bits.hubp_interdependent = 1;
1383 phantom_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1;
1384 phantom_pipe->update_flags.bits.gamut_remap = 1;
1385 phantom_pipe->update_flags.bits.scaler = 1;
1386 phantom_pipe->update_flags.bits.viewport = 1;
1387 phantom_pipe->update_flags.bits.det_size = 1;
1388 if (resource_is_pipe_type(phantom_pipe, OTG_MASTER)) {
1389 phantom_pipe->update_flags.bits.odm = 1;
1390 phantom_pipe->update_flags.bits.global_sync = 1;
1391 }
1392 }
1393 }
1394 }
1395
1396 bool dcn32_dsc_pg_status(
1397 struct dce_hwseq *hws,
1398 unsigned int dsc_inst)
1399 {
1400 uint32_t pwr_status = 0;
1401
1402 switch (dsc_inst) {
1403 case 0: /* DSC0 */
1404 REG_GET(DOMAIN16_PG_STATUS,
1405 DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
1406 break;
1407 case 1: /* DSC1 */
1408
1409 REG_GET(DOMAIN17_PG_STATUS,
1410 DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
1411 break;
1412 case 2: /* DSC2 */
1413 REG_GET(DOMAIN18_PG_STATUS,
1414 DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
1415 break;
1416 case 3: /* DSC3 */
1417 REG_GET(DOMAIN19_PG_STATUS,
1418 DOMAIN_PGFSM_PWR_STATUS, &pwr_status);
1419 break;
1420 default:
1421 BREAK_TO_DEBUGGER();
1422 break;
1423 }
1424
1425 return pwr_status == 0;
1426 }
1427
1428 void dcn32_update_dsc_pg(struct dc *dc,
1429 struct dc_state *context,
1430 bool safe_to_disable)
1431 {
1432 struct dce_hwseq *hws = dc->hwseq;
1433 int i;
1434
1435 for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1436 struct display_stream_compressor *dsc = dc->res_pool->dscs[i];
1437 bool is_dsc_ungated = hws->funcs.dsc_pg_status(hws, dsc->inst);
1438
1439 if (context->res_ctx.is_dsc_acquired[i]) {
1440 if (!is_dsc_ungated) {
1441 hws->funcs.dsc_pg_control(hws, dsc->inst, true);
1442 }
1443 } else if (safe_to_disable) {
1444 if (is_dsc_ungated) {
1445 hws->funcs.dsc_pg_control(hws, dsc->inst, false);
1446 }
1447 }
1448 }
1449 }
1450
1451 void dcn32_enable_phantom_streams(struct dc *dc, struct dc_state *context)
1452 {
1453 unsigned int i;
1454
1455 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1456 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1457 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1458
1459 /* If an active, non-phantom pipe is being transitioned into a phantom
1460 * pipe, wait for the double buffer update to complete first before we do
1461 * ANY phantom pipe programming.
1462 */
1463 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM &&
1464 old_pipe->stream && old_pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1465 old_pipe->stream_res.tg->funcs->wait_for_state(
1466 old_pipe->stream_res.tg,
1467 CRTC_STATE_VBLANK);
1468 old_pipe->stream_res.tg->funcs->wait_for_state(
1469 old_pipe->stream_res.tg,
1470 CRTC_STATE_VACTIVE);
1471 }
1472 }
1473 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1474 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
1475
1476 if (new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1477 // If old context or new context has phantom pipes, apply
1478 // the phantom timings now. We can't change the phantom
1479 // pipe configuration safely without driver acquiring
1480 // the DMCUB lock first.
1481 dc->hwss.apply_ctx_to_hw(dc, context);
1482 break;
1483 }
1484 }
1485 }
1486
1487 /* Blank pixel data during initialization */
1488 void dcn32_init_blank(
1489 struct dc *dc,
1490 struct timing_generator *tg)
1491 {
1492 struct dce_hwseq *hws = dc->hwseq;
1493 enum dc_color_space color_space;
1494 struct tg_color black_color = {0};
1495 struct output_pixel_processor *opp = NULL;
1496 struct output_pixel_processor *bottom_opp = NULL;
1497 uint32_t num_opps, opp_id_src0, opp_id_src1;
1498 uint32_t otg_active_width, otg_active_height;
1499 uint32_t i;
1500
1501 /* program opp dpg blank color */
1502 color_space = COLOR_SPACE_SRGB;
1503 color_space_to_black_color(dc, color_space, &black_color);
1504
1505 /* get the OTG active size */
1506 tg->funcs->get_otg_active_size(tg,
1507 &otg_active_width,
1508 &otg_active_height);
1509
1510 /* get the OPTC source */
1511 tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
1512
1513 if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) {
1514 ASSERT(false);
1515 return;
1516 }
1517
1518 for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1519 if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src0) {
1520 opp = dc->res_pool->opps[i];
1521 break;
1522 }
1523 }
1524
1525 if (num_opps == 2) {
1526 otg_active_width = otg_active_width / 2;
1527
1528 if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) {
1529 ASSERT(false);
1530 return;
1531 }
1532 for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1533 if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src1) {
1534 bottom_opp = dc->res_pool->opps[i];
1535 break;
1536 }
1537 }
1538 }
1539
1540 if (opp && opp->funcs->opp_set_disp_pattern_generator)
1541 opp->funcs->opp_set_disp_pattern_generator(
1542 opp,
1543 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
1544 CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1545 COLOR_DEPTH_UNDEFINED,
1546 &black_color,
1547 otg_active_width,
1548 otg_active_height,
1549 0);
1550
1551 if (num_opps == 2) {
1552 if (bottom_opp && bottom_opp->funcs->opp_set_disp_pattern_generator) {
1553 bottom_opp->funcs->opp_set_disp_pattern_generator(
1554 bottom_opp,
1555 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
1556 CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1557 COLOR_DEPTH_UNDEFINED,
1558 &black_color,
1559 otg_active_width,
1560 otg_active_height,
1561 0);
1562 hws->funcs.wait_for_blank_complete(bottom_opp);
1563 }
1564 }
1565
1566 if (opp)
1567 hws->funcs.wait_for_blank_complete(opp);
1568 }
1569
1570 void dcn32_blank_phantom(struct dc *dc,
1571 struct timing_generator *tg,
1572 int width,
1573 int height)
1574 {
1575 struct dce_hwseq *hws = dc->hwseq;
1576 enum dc_color_space color_space;
1577 struct tg_color black_color = {0};
1578 struct output_pixel_processor *opp = NULL;
1579 uint32_t num_opps, opp_id_src0, opp_id_src1;
1580 uint32_t otg_active_width, otg_active_height;
1581 uint32_t i;
1582
1583 /* program opp dpg blank color */
1584 color_space = COLOR_SPACE_SRGB;
1585 color_space_to_black_color(dc, color_space, &black_color);
1586
1587 otg_active_width = width;
1588 otg_active_height = height;
1589
1590 /* get the OPTC source */
1591 tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
1592 ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
1593
1594 for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1595 if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src0) {
1596 opp = dc->res_pool->opps[i];
1597 break;
1598 }
1599 }
1600
1601 if (opp && opp->funcs->opp_set_disp_pattern_generator)
1602 opp->funcs->opp_set_disp_pattern_generator(
1603 opp,
1604 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
1605 CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1606 COLOR_DEPTH_UNDEFINED,
1607 &black_color,
1608 otg_active_width,
1609 otg_active_height,
1610 0);
1611
1612 if (tg->funcs->is_tg_enabled(tg))
1613 hws->funcs.wait_for_blank_complete(opp);
1614 }
1615
1616 bool dcn32_is_pipe_topology_transition_seamless(struct dc *dc,
1617 const struct dc_state *cur_ctx,
1618 const struct dc_state *new_ctx)
1619 {
1620 int i;
1621 const struct pipe_ctx *cur_pipe, *new_pipe;
1622 bool is_seamless = true;
1623
1624 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1625 cur_pipe = &cur_ctx->res_ctx.pipe_ctx[i];
1626 new_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1627
1628 if (resource_is_pipe_type(cur_pipe, FREE_PIPE) ||
1629 resource_is_pipe_type(new_pipe, FREE_PIPE))
1630 /* adding or removing free pipes is always seamless */
1631 continue;
1632 else if (resource_is_pipe_type(cur_pipe, OTG_MASTER)) {
1633 if (resource_is_pipe_type(new_pipe, OTG_MASTER))
1634 if (cur_pipe->stream->stream_id == new_pipe->stream->stream_id)
1635 /* OTG master with the same stream is seamless */
1636 continue;
1637 } else if (resource_is_pipe_type(cur_pipe, OPP_HEAD)) {
1638 if (resource_is_pipe_type(new_pipe, OPP_HEAD)) {
1639 if (cur_pipe->stream_res.tg == new_pipe->stream_res.tg)
1640 /*
1641 * OPP heads sharing the same timing
1642 * generator is seamless
1643 */
1644 continue;
1645 }
1646 } else if (resource_is_pipe_type(cur_pipe, DPP_PIPE)) {
1647 if (resource_is_pipe_type(new_pipe, DPP_PIPE)) {
1648 if (cur_pipe->stream_res.opp == new_pipe->stream_res.opp)
1649 /*
1650 * DPP pipes sharing the same OPP head is
1651 * seamless
1652 */
1653 continue;
1654 }
1655 }
1656
1657 /*
1658 * This pipe's transition doesn't fall under any seamless
1659 * conditions
1660 */
1661 is_seamless = false;
1662 break;
1663 }
1664
1665 return is_seamless;
1666 }
1667
1668 void dcn32_prepare_bandwidth(struct dc *dc,
1669 struct dc_state *context)
1670 {
1671 bool p_state_change_support = context->bw_ctx.bw.dcn.clk.p_state_change_support;
1672 /* Any transition into an FPO config should disable MCLK switching first to avoid
1673 * driver and FW P-State synchronization issues.
1674 */
1675 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dc->clk_mgr->clks.fw_based_mclk_switching) {
1676 dc->optimized_required = true;
1677 context->bw_ctx.bw.dcn.clk.p_state_change_support = false;
1678 }
1679
1680 if (dc->clk_mgr->dc_mode_softmax_enabled)
1681 if (dc->clk_mgr->clks.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
1682 context->bw_ctx.bw.dcn.clk.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
1683 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz);
1684
1685 dcn20_prepare_bandwidth(dc, context);
1686
1687 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching)
1688 dc_dmub_srv_p_state_delegate(dc, false, context);
1689
1690 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dc->clk_mgr->clks.fw_based_mclk_switching) {
1691 /* After disabling P-State, restore the original value to ensure we get the correct P-State
1692 * on the next optimize.
1693 */
1694 context->bw_ctx.bw.dcn.clk.p_state_change_support = p_state_change_support;
1695 }
1696 }