]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/processpptables.c
Merge tag 'block-5.7-2020-05-16' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / processpptables.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "pp_debug.h"
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <drm/amdgpu_drm.h>
28 #include "processpptables.h"
29 #include <atom-types.h>
30 #include <atombios.h>
31 #include "pptable.h"
32 #include "power_state.h"
33 #include "hwmgr.h"
34 #include "hardwaremanager.h"
35
36
37 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
38 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
39 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
40 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
41 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
42 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
43 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24
44 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26
45
46 #define NUM_BITS_CLOCK_INFO_ARRAY_INDEX 6
47
48 static uint16_t get_vce_table_offset(struct pp_hwmgr *hwmgr,
49 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
50 {
51 uint16_t vce_table_offset = 0;
52
53 if (le16_to_cpu(powerplay_table->usTableSize) >=
54 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
55 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
56 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
57
58 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
59 const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
60 (const ATOM_PPLIB_EXTENDEDHEADER *)
61 (((unsigned long)powerplay_table3) +
62 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
63 if (le16_to_cpu(extended_header->usSize) >=
64 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2)
65 vce_table_offset = le16_to_cpu(extended_header->usVCETableOffset);
66 }
67 }
68
69 return vce_table_offset;
70 }
71
72 static uint16_t get_vce_clock_info_array_offset(struct pp_hwmgr *hwmgr,
73 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
74 {
75 uint16_t table_offset = get_vce_table_offset(hwmgr,
76 powerplay_table);
77
78 if (table_offset > 0)
79 return table_offset + 1;
80
81 return 0;
82 }
83
84 static uint16_t get_vce_clock_info_array_size(struct pp_hwmgr *hwmgr,
85 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
86 {
87 uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr,
88 powerplay_table);
89 uint16_t table_size = 0;
90
91 if (table_offset > 0) {
92 const VCEClockInfoArray *p = (const VCEClockInfoArray *)
93 (((unsigned long) powerplay_table) + table_offset);
94 table_size = sizeof(uint8_t) + p->ucNumEntries * sizeof(VCEClockInfo);
95 }
96
97 return table_size;
98 }
99
100 static uint16_t get_vce_clock_voltage_limit_table_offset(struct pp_hwmgr *hwmgr,
101 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
102 {
103 uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr,
104 powerplay_table);
105
106 if (table_offset > 0)
107 return table_offset + get_vce_clock_info_array_size(hwmgr,
108 powerplay_table);
109
110 return 0;
111 }
112
113 static uint16_t get_vce_clock_voltage_limit_table_size(struct pp_hwmgr *hwmgr,
114 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
115 {
116 uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
117 uint16_t table_size = 0;
118
119 if (table_offset > 0) {
120 const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *ptable =
121 (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)(((unsigned long) powerplay_table) + table_offset);
122
123 table_size = sizeof(uint8_t) + ptable->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record);
124 }
125 return table_size;
126 }
127
128 static uint16_t get_vce_state_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
129 {
130 uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
131
132 if (table_offset > 0)
133 return table_offset + get_vce_clock_voltage_limit_table_size(hwmgr, powerplay_table);
134
135 return 0;
136 }
137
138 static const ATOM_PPLIB_VCE_State_Table *get_vce_state_table(
139 struct pp_hwmgr *hwmgr,
140 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
141 {
142 uint16_t table_offset = get_vce_state_table_offset(hwmgr, powerplay_table);
143
144 if (table_offset > 0)
145 return (const ATOM_PPLIB_VCE_State_Table *)(((unsigned long) powerplay_table) + table_offset);
146
147 return NULL;
148 }
149
150 static uint16_t get_uvd_table_offset(struct pp_hwmgr *hwmgr,
151 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
152 {
153 uint16_t uvd_table_offset = 0;
154
155 if (le16_to_cpu(powerplay_table->usTableSize) >=
156 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
157 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
158 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
159 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
160 const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
161 (const ATOM_PPLIB_EXTENDEDHEADER *)
162 (((unsigned long)powerplay_table3) +
163 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
164 if (le16_to_cpu(extended_header->usSize) >=
165 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3)
166 uvd_table_offset = le16_to_cpu(extended_header->usUVDTableOffset);
167 }
168 }
169 return uvd_table_offset;
170 }
171
172 static uint16_t get_uvd_clock_info_array_offset(struct pp_hwmgr *hwmgr,
173 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
174 {
175 uint16_t table_offset = get_uvd_table_offset(hwmgr,
176 powerplay_table);
177
178 if (table_offset > 0)
179 return table_offset + 1;
180 return 0;
181 }
182
183 static uint16_t get_uvd_clock_info_array_size(struct pp_hwmgr *hwmgr,
184 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
185 {
186 uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr,
187 powerplay_table);
188 uint16_t table_size = 0;
189
190 if (table_offset > 0) {
191 const UVDClockInfoArray *p = (const UVDClockInfoArray *)
192 (((unsigned long) powerplay_table)
193 + table_offset);
194 table_size = sizeof(UCHAR) +
195 p->ucNumEntries * sizeof(UVDClockInfo);
196 }
197
198 return table_size;
199 }
200
201 static uint16_t get_uvd_clock_voltage_limit_table_offset(
202 struct pp_hwmgr *hwmgr,
203 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
204 {
205 uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr,
206 powerplay_table);
207
208 if (table_offset > 0)
209 return table_offset +
210 get_uvd_clock_info_array_size(hwmgr, powerplay_table);
211
212 return 0;
213 }
214
215 static uint16_t get_samu_table_offset(struct pp_hwmgr *hwmgr,
216 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
217 {
218 uint16_t samu_table_offset = 0;
219
220 if (le16_to_cpu(powerplay_table->usTableSize) >=
221 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
222 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
223 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
224 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
225 const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
226 (const ATOM_PPLIB_EXTENDEDHEADER *)
227 (((unsigned long)powerplay_table3) +
228 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
229 if (le16_to_cpu(extended_header->usSize) >=
230 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4)
231 samu_table_offset = le16_to_cpu(extended_header->usSAMUTableOffset);
232 }
233 }
234
235 return samu_table_offset;
236 }
237
238 static uint16_t get_samu_clock_voltage_limit_table_offset(
239 struct pp_hwmgr *hwmgr,
240 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
241 {
242 uint16_t table_offset = get_samu_table_offset(hwmgr,
243 powerplay_table);
244
245 if (table_offset > 0)
246 return table_offset + 1;
247
248 return 0;
249 }
250
251 static uint16_t get_acp_table_offset(struct pp_hwmgr *hwmgr,
252 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
253 {
254 uint16_t acp_table_offset = 0;
255
256 if (le16_to_cpu(powerplay_table->usTableSize) >=
257 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
258 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
259 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
260 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
261 const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
262 (const ATOM_PPLIB_EXTENDEDHEADER *)
263 (((unsigned long)powerplay_table3) +
264 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
265 if (le16_to_cpu(pExtendedHeader->usSize) >=
266 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6)
267 acp_table_offset = le16_to_cpu(pExtendedHeader->usACPTableOffset);
268 }
269 }
270
271 return acp_table_offset;
272 }
273
274 static uint16_t get_acp_clock_voltage_limit_table_offset(
275 struct pp_hwmgr *hwmgr,
276 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
277 {
278 uint16_t tableOffset = get_acp_table_offset(hwmgr, powerplay_table);
279
280 if (tableOffset > 0)
281 return tableOffset + 1;
282
283 return 0;
284 }
285
286 static uint16_t get_cacp_tdp_table_offset(
287 struct pp_hwmgr *hwmgr,
288 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
289 {
290 uint16_t cacTdpTableOffset = 0;
291
292 if (le16_to_cpu(powerplay_table->usTableSize) >=
293 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
294 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
295 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
296 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
297 const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
298 (const ATOM_PPLIB_EXTENDEDHEADER *)
299 (((unsigned long)powerplay_table3) +
300 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
301 if (le16_to_cpu(pExtendedHeader->usSize) >=
302 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7)
303 cacTdpTableOffset = le16_to_cpu(pExtendedHeader->usPowerTuneTableOffset);
304 }
305 }
306
307 return cacTdpTableOffset;
308 }
309
310 static int get_cac_tdp_table(struct pp_hwmgr *hwmgr,
311 struct phm_cac_tdp_table **ptable,
312 const ATOM_PowerTune_Table *table,
313 uint16_t us_maximum_power_delivery_limit)
314 {
315 unsigned long table_size;
316 struct phm_cac_tdp_table *tdp_table;
317
318 table_size = sizeof(unsigned long) + sizeof(struct phm_cac_tdp_table);
319
320 tdp_table = kzalloc(table_size, GFP_KERNEL);
321 if (NULL == tdp_table)
322 return -ENOMEM;
323
324 tdp_table->usTDP = le16_to_cpu(table->usTDP);
325 tdp_table->usConfigurableTDP = le16_to_cpu(table->usConfigurableTDP);
326 tdp_table->usTDC = le16_to_cpu(table->usTDC);
327 tdp_table->usBatteryPowerLimit = le16_to_cpu(table->usBatteryPowerLimit);
328 tdp_table->usSmallPowerLimit = le16_to_cpu(table->usSmallPowerLimit);
329 tdp_table->usLowCACLeakage = le16_to_cpu(table->usLowCACLeakage);
330 tdp_table->usHighCACLeakage = le16_to_cpu(table->usHighCACLeakage);
331 tdp_table->usMaximumPowerDeliveryLimit = us_maximum_power_delivery_limit;
332
333 *ptable = tdp_table;
334
335 return 0;
336 }
337
338 static uint16_t get_sclk_vdd_gfx_table_offset(struct pp_hwmgr *hwmgr,
339 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
340 {
341 uint16_t sclk_vdd_gfx_table_offset = 0;
342
343 if (le16_to_cpu(powerplay_table->usTableSize) >=
344 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
345 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
346 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
347 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
348 const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
349 (const ATOM_PPLIB_EXTENDEDHEADER *)
350 (((unsigned long)powerplay_table3) +
351 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
352 if (le16_to_cpu(pExtendedHeader->usSize) >=
353 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8)
354 sclk_vdd_gfx_table_offset =
355 le16_to_cpu(pExtendedHeader->usSclkVddgfxTableOffset);
356 }
357 }
358
359 return sclk_vdd_gfx_table_offset;
360 }
361
362 static uint16_t get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(
363 struct pp_hwmgr *hwmgr,
364 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
365 {
366 uint16_t tableOffset = get_sclk_vdd_gfx_table_offset(hwmgr, powerplay_table);
367
368 if (tableOffset > 0)
369 return tableOffset;
370
371 return 0;
372 }
373
374
375 static int get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
376 struct phm_clock_voltage_dependency_table **ptable,
377 const ATOM_PPLIB_Clock_Voltage_Dependency_Table *table)
378 {
379
380 unsigned long table_size, i;
381 struct phm_clock_voltage_dependency_table *dep_table;
382
383 table_size = sizeof(unsigned long) +
384 sizeof(struct phm_clock_voltage_dependency_table)
385 * table->ucNumEntries;
386
387 dep_table = kzalloc(table_size, GFP_KERNEL);
388 if (NULL == dep_table)
389 return -ENOMEM;
390
391 dep_table->count = (unsigned long)table->ucNumEntries;
392
393 for (i = 0; i < dep_table->count; i++) {
394 dep_table->entries[i].clk =
395 ((unsigned long)table->entries[i].ucClockHigh << 16) |
396 le16_to_cpu(table->entries[i].usClockLow);
397 dep_table->entries[i].v =
398 (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
399 }
400
401 *ptable = dep_table;
402
403 return 0;
404 }
405
406 static int get_valid_clk(struct pp_hwmgr *hwmgr,
407 struct phm_clock_array **ptable,
408 const struct phm_clock_voltage_dependency_table *table)
409 {
410 unsigned long table_size, i;
411 struct phm_clock_array *clock_table;
412
413 table_size = sizeof(unsigned long) + sizeof(unsigned long) * table->count;
414 clock_table = kzalloc(table_size, GFP_KERNEL);
415 if (NULL == clock_table)
416 return -ENOMEM;
417
418 clock_table->count = (unsigned long)table->count;
419
420 for (i = 0; i < clock_table->count; i++)
421 clock_table->values[i] = (unsigned long)table->entries[i].clk;
422
423 *ptable = clock_table;
424
425 return 0;
426 }
427
428 static int get_clock_voltage_limit(struct pp_hwmgr *hwmgr,
429 struct phm_clock_and_voltage_limits *limits,
430 const ATOM_PPLIB_Clock_Voltage_Limit_Table *table)
431 {
432 limits->sclk = ((unsigned long)table->entries[0].ucSclkHigh << 16) |
433 le16_to_cpu(table->entries[0].usSclkLow);
434 limits->mclk = ((unsigned long)table->entries[0].ucMclkHigh << 16) |
435 le16_to_cpu(table->entries[0].usMclkLow);
436 limits->vddc = (unsigned long)le16_to_cpu(table->entries[0].usVddc);
437 limits->vddci = (unsigned long)le16_to_cpu(table->entries[0].usVddci);
438
439 return 0;
440 }
441
442
443 static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable,
444 enum phm_platform_caps cap)
445 {
446 if (enable)
447 phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
448 else
449 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
450 }
451
452 static int set_platform_caps(struct pp_hwmgr *hwmgr,
453 unsigned long powerplay_caps)
454 {
455 set_hw_cap(
456 hwmgr,
457 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_POWERPLAY),
458 PHM_PlatformCaps_PowerPlaySupport
459 );
460
461 set_hw_cap(
462 hwmgr,
463 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
464 PHM_PlatformCaps_BiosPowerSourceControl
465 );
466
467 set_hw_cap(
468 hwmgr,
469 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s),
470 PHM_PlatformCaps_EnableASPML0s
471 );
472
473 set_hw_cap(
474 hwmgr,
475 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1),
476 PHM_PlatformCaps_EnableASPML1
477 );
478
479 set_hw_cap(
480 hwmgr,
481 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS),
482 PHM_PlatformCaps_EnableBackbias
483 );
484
485 set_hw_cap(
486 hwmgr,
487 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC),
488 PHM_PlatformCaps_AutomaticDCTransition
489 );
490
491 set_hw_cap(
492 hwmgr,
493 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY),
494 PHM_PlatformCaps_GeminiPrimary
495 );
496
497 set_hw_cap(
498 hwmgr,
499 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC),
500 PHM_PlatformCaps_StepVddc
501 );
502
503 set_hw_cap(
504 hwmgr,
505 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VOLTAGECONTROL),
506 PHM_PlatformCaps_EnableVoltageControl
507 );
508
509 set_hw_cap(
510 hwmgr,
511 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL),
512 PHM_PlatformCaps_EnableSideportControl
513 );
514
515 set_hw_cap(
516 hwmgr,
517 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1),
518 PHM_PlatformCaps_TurnOffPll_ASPML1
519 );
520
521 set_hw_cap(
522 hwmgr,
523 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HTLINKCONTROL),
524 PHM_PlatformCaps_EnableHTLinkControl
525 );
526
527 set_hw_cap(
528 hwmgr,
529 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL),
530 PHM_PlatformCaps_EnableMVDDControl
531 );
532
533 set_hw_cap(
534 hwmgr,
535 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL),
536 PHM_PlatformCaps_ControlVDDCI
537 );
538
539 set_hw_cap(
540 hwmgr,
541 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT),
542 PHM_PlatformCaps_RegulatorHot
543 );
544
545 set_hw_cap(
546 hwmgr,
547 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GOTO_BOOT_ON_ALERT),
548 PHM_PlatformCaps_BootStateOnAlert
549 );
550
551 set_hw_cap(
552 hwmgr,
553 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DONT_WAIT_FOR_VBLANK_ON_ALERT),
554 PHM_PlatformCaps_DontWaitForVBlankOnAlert
555 );
556
557 set_hw_cap(
558 hwmgr,
559 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACO),
560 PHM_PlatformCaps_BACO
561 );
562
563 set_hw_cap(
564 hwmgr,
565 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_NEW_CAC_VOLTAGE),
566 PHM_PlatformCaps_NewCACVoltage
567 );
568
569 set_hw_cap(
570 hwmgr,
571 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REVERT_GPIO5_POLARITY),
572 PHM_PlatformCaps_RevertGPIO5Polarity
573 );
574
575 set_hw_cap(
576 hwmgr,
577 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17),
578 PHM_PlatformCaps_Thermal2GPIO17
579 );
580
581 set_hw_cap(
582 hwmgr,
583 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VRHOT_GPIO_CONFIGURABLE),
584 PHM_PlatformCaps_VRHotGPIOConfigurable
585 );
586
587 set_hw_cap(
588 hwmgr,
589 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TEMP_INVERSION),
590 PHM_PlatformCaps_TempInversion
591 );
592
593 set_hw_cap(
594 hwmgr,
595 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_EVV),
596 PHM_PlatformCaps_EVV
597 );
598
599 set_hw_cap(
600 hwmgr,
601 0 != (powerplay_caps & ATOM_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
602 PHM_PlatformCaps_CombinePCCWithThermalSignal
603 );
604
605 set_hw_cap(
606 hwmgr,
607 0 != (powerplay_caps & ATOM_PP_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
608 PHM_PlatformCaps_LoadPostProductionFirmware
609 );
610
611 set_hw_cap(
612 hwmgr,
613 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DISABLE_USING_ACTUAL_TEMPERATURE_FOR_POWER_CALC),
614 PHM_PlatformCaps_DisableUsingActualTemperatureForPowerCalc
615 );
616
617 return 0;
618 }
619
620 static PP_StateClassificationFlags make_classification_flags(
621 struct pp_hwmgr *hwmgr,
622 USHORT classification,
623 USHORT classification2)
624 {
625 PP_StateClassificationFlags result = 0;
626
627 if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
628 result |= PP_StateClassificationFlag_Boot;
629
630 if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
631 result |= PP_StateClassificationFlag_Thermal;
632
633 if (classification &
634 ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
635 result |= PP_StateClassificationFlag_LimitedPowerSource;
636
637 if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
638 result |= PP_StateClassificationFlag_Rest;
639
640 if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
641 result |= PP_StateClassificationFlag_Forced;
642
643 if (classification & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
644 result |= PP_StateClassificationFlag_3DPerformance;
645
646
647 if (classification & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
648 result |= PP_StateClassificationFlag_ACOverdriveTemplate;
649
650 if (classification & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
651 result |= PP_StateClassificationFlag_Uvd;
652
653 if (classification & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
654 result |= PP_StateClassificationFlag_UvdHD;
655
656 if (classification & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
657 result |= PP_StateClassificationFlag_UvdSD;
658
659 if (classification & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
660 result |= PP_StateClassificationFlag_HD2;
661
662 if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
663 result |= PP_StateClassificationFlag_ACPI;
664
665 if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
666 result |= PP_StateClassificationFlag_LimitedPowerSource_2;
667
668
669 if (classification2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
670 result |= PP_StateClassificationFlag_ULV;
671
672 if (classification2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
673 result |= PP_StateClassificationFlag_UvdMVC;
674
675 return result;
676 }
677
678 static int init_non_clock_fields(struct pp_hwmgr *hwmgr,
679 struct pp_power_state *ps,
680 uint8_t version,
681 const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info) {
682 unsigned long rrr_index;
683 unsigned long tmp;
684
685 ps->classification.ui_label = (le16_to_cpu(pnon_clock_info->usClassification) &
686 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
687 ps->classification.flags = make_classification_flags(hwmgr,
688 le16_to_cpu(pnon_clock_info->usClassification),
689 le16_to_cpu(pnon_clock_info->usClassification2));
690
691 ps->classification.temporary_state = false;
692 ps->classification.to_be_deleted = false;
693 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
694 ATOM_PPLIB_SINGLE_DISPLAY_ONLY;
695
696 ps->validation.singleDisplayOnly = (0 != tmp);
697
698 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
699 ATOM_PPLIB_DISALLOW_ON_DC;
700
701 ps->validation.disallowOnDC = (0 != tmp);
702
703 ps->pcie.lanes = ((le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
704 ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >>
705 ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1;
706
707 ps->pcie.lanes = 0;
708
709 ps->display.disableFrameModulation = false;
710
711 rrr_index = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
712 ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK) >>
713 ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT;
714
715 if (rrr_index != ATOM_PPLIB_LIMITED_REFRESHRATE_UNLIMITED) {
716 static const uint8_t look_up[(ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK >> ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT) + 1] = \
717 { 0, 50, 0 };
718
719 ps->display.refreshrateSource = PP_RefreshrateSource_Explicit;
720 ps->display.explicitRefreshrate = look_up[rrr_index];
721 ps->display.limitRefreshrate = true;
722
723 if (ps->display.explicitRefreshrate == 0)
724 ps->display.limitRefreshrate = false;
725 } else
726 ps->display.limitRefreshrate = false;
727
728 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
729 ATOM_PPLIB_ENABLE_VARIBRIGHT;
730
731 ps->display.enableVariBright = (0 != tmp);
732
733 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
734 ATOM_PPLIB_SWSTATE_MEMORY_DLL_OFF;
735
736 ps->memory.dllOff = (0 != tmp);
737
738 ps->memory.m3arb = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
739 ATOM_PPLIB_M3ARB_MASK) >> ATOM_PPLIB_M3ARB_SHIFT;
740
741 ps->temperatures.min = PP_TEMPERATURE_UNITS_PER_CENTIGRADES *
742 pnon_clock_info->ucMinTemperature;
743
744 ps->temperatures.max = PP_TEMPERATURE_UNITS_PER_CENTIGRADES *
745 pnon_clock_info->ucMaxTemperature;
746
747 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
748 ATOM_PPLIB_SOFTWARE_DISABLE_LOADBALANCING;
749
750 ps->software.disableLoadBalancing = tmp;
751
752 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
753 ATOM_PPLIB_SOFTWARE_ENABLE_SLEEP_FOR_TIMESTAMPS;
754
755 ps->software.enableSleepForTimestamps = (0 != tmp);
756
757 ps->validation.supportedPowerLevels = pnon_clock_info->ucRequiredPower;
758
759 if (ATOM_PPLIB_NONCLOCKINFO_VER1 < version) {
760 ps->uvd_clocks.VCLK = le32_to_cpu(pnon_clock_info->ulVCLK);
761 ps->uvd_clocks.DCLK = le32_to_cpu(pnon_clock_info->ulDCLK);
762 } else {
763 ps->uvd_clocks.VCLK = 0;
764 ps->uvd_clocks.DCLK = 0;
765 }
766
767 return 0;
768 }
769
770 static ULONG size_of_entry_v2(ULONG num_dpm_levels)
771 {
772 return (sizeof(UCHAR) + sizeof(UCHAR) +
773 (num_dpm_levels * sizeof(UCHAR)));
774 }
775
776 static const ATOM_PPLIB_STATE_V2 *get_state_entry_v2(
777 const StateArray * pstate_arrays,
778 ULONG entry_index)
779 {
780 ULONG i;
781 const ATOM_PPLIB_STATE_V2 *pstate;
782
783 pstate = pstate_arrays->states;
784 if (entry_index <= pstate_arrays->ucNumEntries) {
785 for (i = 0; i < entry_index; i++)
786 pstate = (ATOM_PPLIB_STATE_V2 *)(
787 (unsigned long)pstate +
788 size_of_entry_v2(pstate->ucNumDPMLevels));
789 }
790 return pstate;
791 }
792
793 static const unsigned char soft_dummy_pp_table[] = {
794 0xe1, 0x01, 0x06, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x00, 0x4a, 0x00, 0x6c, 0x00, 0x00,
795 0x00, 0x00, 0x00, 0x42, 0x00, 0x02, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00,
796 0x00, 0x4e, 0x00, 0x88, 0x00, 0x00, 0x9e, 0x00, 0x17, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00,
797 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
798 0x00, 0x00, 0x02, 0x02, 0x00, 0x00, 0x01, 0x01, 0x01, 0x00, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00,
799 0x07, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
800 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x18, 0x05, 0x00,
801 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
802 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
803 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00,
804 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe1, 0x00, 0x43, 0x01, 0x00, 0x00, 0x00, 0x00,
805 0x8e, 0x01, 0x00, 0x00, 0xb8, 0x01, 0x00, 0x00, 0x08, 0x30, 0x75, 0x00, 0x80, 0x00, 0xa0, 0x8c,
806 0x00, 0x7e, 0x00, 0x71, 0xa5, 0x00, 0x7c, 0x00, 0xe5, 0xc8, 0x00, 0x70, 0x00, 0x91, 0xf4, 0x00,
807 0x64, 0x00, 0x40, 0x19, 0x01, 0x5a, 0x00, 0x0e, 0x28, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a,
808 0x00, 0x00, 0x09, 0x30, 0x75, 0x00, 0x30, 0x75, 0x00, 0x40, 0x9c, 0x00, 0x40, 0x9c, 0x00, 0x59,
809 0xd8, 0x00, 0x59, 0xd8, 0x00, 0x91, 0xf4, 0x00, 0x91, 0xf4, 0x00, 0x0e, 0x28, 0x01, 0x0e, 0x28,
810 0x01, 0x90, 0x5f, 0x01, 0x90, 0x5f, 0x01, 0x00, 0x77, 0x01, 0x00, 0x77, 0x01, 0xca, 0x91, 0x01,
811 0xca, 0x91, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x80, 0x00, 0x00, 0x7e, 0x00, 0x01,
812 0x7c, 0x00, 0x02, 0x70, 0x00, 0x03, 0x64, 0x00, 0x04, 0x5a, 0x00, 0x05, 0x52, 0x00, 0x06, 0x4a,
813 0x00, 0x07, 0x08, 0x08, 0x00, 0x08, 0x00, 0x01, 0x02, 0x02, 0x02, 0x01, 0x02, 0x02, 0x02, 0x03,
814 0x02, 0x04, 0x02, 0x00, 0x08, 0x40, 0x9c, 0x00, 0x30, 0x75, 0x00, 0x74, 0xb5, 0x00, 0xa0, 0x8c,
815 0x00, 0x60, 0xea, 0x00, 0x74, 0xb5, 0x00, 0x0e, 0x28, 0x01, 0x60, 0xea, 0x00, 0x90, 0x5f, 0x01,
816 0x40, 0x19, 0x01, 0xb2, 0xb0, 0x01, 0x90, 0x5f, 0x01, 0xc0, 0xd4, 0x01, 0x00, 0x77, 0x01, 0x5e,
817 0xff, 0x01, 0xca, 0x91, 0x01, 0x08, 0x80, 0x00, 0x00, 0x7e, 0x00, 0x01, 0x7c, 0x00, 0x02, 0x70,
818 0x00, 0x03, 0x64, 0x00, 0x04, 0x5a, 0x00, 0x05, 0x52, 0x00, 0x06, 0x4a, 0x00, 0x07, 0x00, 0x08,
819 0x80, 0x00, 0x30, 0x75, 0x00, 0x7e, 0x00, 0x40, 0x9c, 0x00, 0x7c, 0x00, 0x59, 0xd8, 0x00, 0x70,
820 0x00, 0xdc, 0x0b, 0x01, 0x64, 0x00, 0x80, 0x38, 0x01, 0x5a, 0x00, 0x80, 0x38, 0x01, 0x52, 0x00,
821 0x80, 0x38, 0x01, 0x4a, 0x00, 0x80, 0x38, 0x01, 0x08, 0x30, 0x75, 0x00, 0x80, 0x00, 0xa0, 0x8c,
822 0x00, 0x7e, 0x00, 0x71, 0xa5, 0x00, 0x7c, 0x00, 0xe5, 0xc8, 0x00, 0x74, 0x00, 0x91, 0xf4, 0x00,
823 0x66, 0x00, 0x40, 0x19, 0x01, 0x58, 0x00, 0x0e, 0x28, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a,
824 0x00
825 };
826
827 static const ATOM_PPLIB_POWERPLAYTABLE *get_powerplay_table(
828 struct pp_hwmgr *hwmgr)
829 {
830 const void *table_addr = hwmgr->soft_pp_table;
831 uint8_t frev, crev;
832 uint16_t size;
833
834 if (!table_addr) {
835 if (hwmgr->chip_id == CHIP_RAVEN) {
836 table_addr = &soft_dummy_pp_table[0];
837 hwmgr->soft_pp_table = &soft_dummy_pp_table[0];
838 hwmgr->soft_pp_table_size = sizeof(soft_dummy_pp_table);
839 } else {
840 table_addr = smu_atom_get_data_table(hwmgr->adev,
841 GetIndexIntoMasterTable(DATA, PowerPlayInfo),
842 &size, &frev, &crev);
843 hwmgr->soft_pp_table = table_addr;
844 hwmgr->soft_pp_table_size = size;
845 }
846 }
847
848 return (const ATOM_PPLIB_POWERPLAYTABLE *)table_addr;
849 }
850
851 int pp_tables_get_response_times(struct pp_hwmgr *hwmgr,
852 uint32_t *vol_rep_time, uint32_t *bb_rep_time)
853 {
854 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_tab = get_powerplay_table(hwmgr);
855
856 PP_ASSERT_WITH_CODE(NULL != powerplay_tab,
857 "Missing PowerPlay Table!", return -EINVAL);
858
859 *vol_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usVoltageTime);
860 *bb_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usBackbiasTime);
861
862 return 0;
863 }
864
865 int pp_tables_get_num_of_entries(struct pp_hwmgr *hwmgr,
866 unsigned long *num_of_entries)
867 {
868 const StateArray *pstate_arrays;
869 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
870
871 if (powerplay_table == NULL)
872 return -1;
873
874 if (powerplay_table->sHeader.ucTableFormatRevision >= 6) {
875 pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) +
876 le16_to_cpu(powerplay_table->usStateArrayOffset));
877
878 *num_of_entries = (unsigned long)(pstate_arrays->ucNumEntries);
879 } else
880 *num_of_entries = (unsigned long)(powerplay_table->ucNumStates);
881
882 return 0;
883 }
884
885 int pp_tables_get_entry(struct pp_hwmgr *hwmgr,
886 unsigned long entry_index,
887 struct pp_power_state *ps,
888 pp_tables_hw_clock_info_callback func)
889 {
890 int i;
891 const StateArray *pstate_arrays;
892 const ATOM_PPLIB_STATE_V2 *pstate_entry_v2;
893 const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info;
894 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
895 int result = 0;
896 int res = 0;
897
898 const ClockInfoArray *pclock_arrays;
899
900 const NonClockInfoArray *pnon_clock_arrays;
901
902 const ATOM_PPLIB_STATE *pstate_entry;
903
904 if (powerplay_table == NULL)
905 return -1;
906
907 ps->classification.bios_index = entry_index;
908
909 if (powerplay_table->sHeader.ucTableFormatRevision >= 6) {
910 pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) +
911 le16_to_cpu(powerplay_table->usStateArrayOffset));
912
913 if (entry_index > pstate_arrays->ucNumEntries)
914 return -1;
915
916 pstate_entry_v2 = get_state_entry_v2(pstate_arrays, entry_index);
917 pclock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) +
918 le16_to_cpu(powerplay_table->usClockInfoArrayOffset));
919
920 pnon_clock_arrays = (NonClockInfoArray *)(((unsigned long)powerplay_table) +
921 le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset));
922
923 pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)(pnon_clock_arrays->nonClockInfo) +
924 (pstate_entry_v2->nonClockInfoIndex * pnon_clock_arrays->ucEntrySize));
925
926 result = init_non_clock_fields(hwmgr, ps, pnon_clock_arrays->ucEntrySize, pnon_clock_info);
927
928 for (i = 0; i < pstate_entry_v2->ucNumDPMLevels; i++) {
929 const void *pclock_info = (const void *)(
930 (unsigned long)(pclock_arrays->clockInfo) +
931 (pstate_entry_v2->clockInfoIndex[i] * pclock_arrays->ucEntrySize));
932 res = func(hwmgr, &ps->hardware, i, pclock_info);
933 if ((0 == result) && (0 != res))
934 result = res;
935 }
936 } else {
937 if (entry_index > powerplay_table->ucNumStates)
938 return -1;
939
940 pstate_entry = (ATOM_PPLIB_STATE *)((unsigned long)powerplay_table +
941 le16_to_cpu(powerplay_table->usStateArrayOffset) +
942 entry_index * powerplay_table->ucStateEntrySize);
943
944 pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)powerplay_table +
945 le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset) +
946 pstate_entry->ucNonClockStateIndex *
947 powerplay_table->ucNonClockSize);
948
949 result = init_non_clock_fields(hwmgr, ps,
950 powerplay_table->ucNonClockSize,
951 pnon_clock_info);
952
953 for (i = 0; i < powerplay_table->ucStateEntrySize-1; i++) {
954 const void *pclock_info = (const void *)((unsigned long)powerplay_table +
955 le16_to_cpu(powerplay_table->usClockInfoArrayOffset) +
956 pstate_entry->ucClockStateIndices[i] *
957 powerplay_table->ucClockInfoSize);
958
959 int res = func(hwmgr, &ps->hardware, i, pclock_info);
960
961 if ((0 == result) && (0 != res))
962 result = res;
963 }
964 }
965
966 if ((0 == result) && (0 != (ps->classification.flags & PP_StateClassificationFlag_Boot))) {
967 if (hwmgr->chip_family < AMDGPU_FAMILY_RV)
968 result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(ps->hardware));
969 }
970
971 return result;
972 }
973
974 static int init_powerplay_tables(
975 struct pp_hwmgr *hwmgr,
976 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table
977 )
978 {
979 return 0;
980 }
981
982
983 static int init_thermal_controller(
984 struct pp_hwmgr *hwmgr,
985 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
986 {
987 hwmgr->thermal_controller.ucType =
988 powerplay_table->sThermalController.ucType;
989 hwmgr->thermal_controller.ucI2cLine =
990 powerplay_table->sThermalController.ucI2cLine;
991 hwmgr->thermal_controller.ucI2cAddress =
992 powerplay_table->sThermalController.ucI2cAddress;
993
994 hwmgr->thermal_controller.fanInfo.bNoFan =
995 (0 != (powerplay_table->sThermalController.ucFanParameters &
996 ATOM_PP_FANPARAMETERS_NOFAN));
997
998 hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
999 powerplay_table->sThermalController.ucFanParameters &
1000 ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
1001
1002 hwmgr->thermal_controller.fanInfo.ulMinRPM
1003 = powerplay_table->sThermalController.ucFanMinRPM * 100UL;
1004 hwmgr->thermal_controller.fanInfo.ulMaxRPM
1005 = powerplay_table->sThermalController.ucFanMaxRPM * 100UL;
1006
1007 set_hw_cap(hwmgr,
1008 ATOM_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
1009 PHM_PlatformCaps_ThermalController);
1010
1011 hwmgr->thermal_controller.use_hw_fan_control = 1;
1012
1013 return 0;
1014 }
1015
1016 static int init_overdrive_limits_V1_4(struct pp_hwmgr *hwmgr,
1017 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table,
1018 const ATOM_FIRMWARE_INFO_V1_4 *fw_info)
1019 {
1020 hwmgr->platform_descriptor.overdriveLimit.engineClock =
1021 le32_to_cpu(fw_info->ulASICMaxEngineClock);
1022
1023 hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1024 le32_to_cpu(fw_info->ulASICMaxMemoryClock);
1025
1026 hwmgr->platform_descriptor.maxOverdriveVDDC =
1027 le32_to_cpu(fw_info->ul3DAccelerationEngineClock) & 0x7FF;
1028
1029 hwmgr->platform_descriptor.minOverdriveVDDC =
1030 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
1031
1032 hwmgr->platform_descriptor.maxOverdriveVDDC =
1033 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
1034
1035 hwmgr->platform_descriptor.overdriveVDDCStep = 0;
1036 return 0;
1037 }
1038
1039 static int init_overdrive_limits_V2_1(struct pp_hwmgr *hwmgr,
1040 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table,
1041 const ATOM_FIRMWARE_INFO_V2_1 *fw_info)
1042 {
1043 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3;
1044 const ATOM_PPLIB_EXTENDEDHEADER *header;
1045
1046 if (le16_to_cpu(powerplay_table->usTableSize) <
1047 sizeof(ATOM_PPLIB_POWERPLAYTABLE3))
1048 return 0;
1049
1050 powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
1051
1052 if (0 == powerplay_table3->usExtendendedHeaderOffset)
1053 return 0;
1054
1055 header = (ATOM_PPLIB_EXTENDEDHEADER *)(((unsigned long) powerplay_table) +
1056 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
1057
1058 hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(header->ulMaxEngineClock);
1059 hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(header->ulMaxMemoryClock);
1060
1061
1062 hwmgr->platform_descriptor.minOverdriveVDDC = 0;
1063 hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
1064 hwmgr->platform_descriptor.overdriveVDDCStep = 0;
1065
1066 return 0;
1067 }
1068
1069 static int init_overdrive_limits(struct pp_hwmgr *hwmgr,
1070 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
1071 {
1072 int result = 0;
1073 uint8_t frev, crev;
1074 uint16_t size;
1075
1076 const ATOM_COMMON_TABLE_HEADER *fw_info = NULL;
1077
1078 hwmgr->platform_descriptor.overdriveLimit.engineClock = 0;
1079 hwmgr->platform_descriptor.overdriveLimit.memoryClock = 0;
1080 hwmgr->platform_descriptor.minOverdriveVDDC = 0;
1081 hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
1082 hwmgr->platform_descriptor.overdriveVDDCStep = 0;
1083
1084 if (hwmgr->chip_id == CHIP_RAVEN)
1085 return 0;
1086
1087 /* We assume here that fw_info is unchanged if this call fails.*/
1088 fw_info = smu_atom_get_data_table(hwmgr->adev,
1089 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1090 &size, &frev, &crev);
1091
1092 if ((fw_info->ucTableFormatRevision == 1)
1093 && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V1_4)))
1094 result = init_overdrive_limits_V1_4(hwmgr,
1095 powerplay_table,
1096 (const ATOM_FIRMWARE_INFO_V1_4 *)fw_info);
1097
1098 else if ((fw_info->ucTableFormatRevision == 2)
1099 && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1)))
1100 result = init_overdrive_limits_V2_1(hwmgr,
1101 powerplay_table,
1102 (const ATOM_FIRMWARE_INFO_V2_1 *)fw_info);
1103
1104 return result;
1105 }
1106
1107 static int get_uvd_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
1108 struct phm_uvd_clock_voltage_dependency_table **ptable,
1109 const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *table,
1110 const UVDClockInfoArray *array)
1111 {
1112 unsigned long table_size, i;
1113 struct phm_uvd_clock_voltage_dependency_table *uvd_table;
1114
1115 table_size = sizeof(unsigned long) +
1116 sizeof(struct phm_uvd_clock_voltage_dependency_table) *
1117 table->numEntries;
1118
1119 uvd_table = kzalloc(table_size, GFP_KERNEL);
1120 if (NULL == uvd_table)
1121 return -ENOMEM;
1122
1123 uvd_table->count = table->numEntries;
1124
1125 for (i = 0; i < table->numEntries; i++) {
1126 const UVDClockInfo *entry =
1127 &array->entries[table->entries[i].ucUVDClockInfoIndex];
1128 uvd_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
1129 uvd_table->entries[i].vclk = ((unsigned long)entry->ucVClkHigh << 16)
1130 | le16_to_cpu(entry->usVClkLow);
1131 uvd_table->entries[i].dclk = ((unsigned long)entry->ucDClkHigh << 16)
1132 | le16_to_cpu(entry->usDClkLow);
1133 }
1134
1135 *ptable = uvd_table;
1136
1137 return 0;
1138 }
1139
1140 static int get_vce_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
1141 struct phm_vce_clock_voltage_dependency_table **ptable,
1142 const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table,
1143 const VCEClockInfoArray *array)
1144 {
1145 unsigned long table_size, i;
1146 struct phm_vce_clock_voltage_dependency_table *vce_table = NULL;
1147
1148 table_size = sizeof(unsigned long) +
1149 sizeof(struct phm_vce_clock_voltage_dependency_table)
1150 * table->numEntries;
1151
1152 vce_table = kzalloc(table_size, GFP_KERNEL);
1153 if (NULL == vce_table)
1154 return -ENOMEM;
1155
1156 vce_table->count = table->numEntries;
1157 for (i = 0; i < table->numEntries; i++) {
1158 const VCEClockInfo *entry = &array->entries[table->entries[i].ucVCEClockInfoIndex];
1159
1160 vce_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
1161 vce_table->entries[i].evclk = ((unsigned long)entry->ucEVClkHigh << 16)
1162 | le16_to_cpu(entry->usEVClkLow);
1163 vce_table->entries[i].ecclk = ((unsigned long)entry->ucECClkHigh << 16)
1164 | le16_to_cpu(entry->usECClkLow);
1165 }
1166
1167 *ptable = vce_table;
1168
1169 return 0;
1170 }
1171
1172 static int get_samu_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
1173 struct phm_samu_clock_voltage_dependency_table **ptable,
1174 const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *table)
1175 {
1176 unsigned long table_size, i;
1177 struct phm_samu_clock_voltage_dependency_table *samu_table;
1178
1179 table_size = sizeof(unsigned long) +
1180 sizeof(struct phm_samu_clock_voltage_dependency_table) *
1181 table->numEntries;
1182
1183 samu_table = kzalloc(table_size, GFP_KERNEL);
1184 if (NULL == samu_table)
1185 return -ENOMEM;
1186
1187 samu_table->count = table->numEntries;
1188
1189 for (i = 0; i < table->numEntries; i++) {
1190 samu_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
1191 samu_table->entries[i].samclk = ((unsigned long)table->entries[i].ucSAMClockHigh << 16)
1192 | le16_to_cpu(table->entries[i].usSAMClockLow);
1193 }
1194
1195 *ptable = samu_table;
1196
1197 return 0;
1198 }
1199
1200 static int get_acp_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
1201 struct phm_acp_clock_voltage_dependency_table **ptable,
1202 const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *table)
1203 {
1204 unsigned table_size, i;
1205 struct phm_acp_clock_voltage_dependency_table *acp_table;
1206
1207 table_size = sizeof(unsigned long) +
1208 sizeof(struct phm_acp_clock_voltage_dependency_table) *
1209 table->numEntries;
1210
1211 acp_table = kzalloc(table_size, GFP_KERNEL);
1212 if (NULL == acp_table)
1213 return -ENOMEM;
1214
1215 acp_table->count = (unsigned long)table->numEntries;
1216
1217 for (i = 0; i < table->numEntries; i++) {
1218 acp_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
1219 acp_table->entries[i].acpclk = ((unsigned long)table->entries[i].ucACPClockHigh << 16)
1220 | le16_to_cpu(table->entries[i].usACPClockLow);
1221 }
1222
1223 *ptable = acp_table;
1224
1225 return 0;
1226 }
1227
1228 static int init_clock_voltage_dependency(struct pp_hwmgr *hwmgr,
1229 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
1230 {
1231 ATOM_PPLIB_Clock_Voltage_Dependency_Table *table;
1232 ATOM_PPLIB_Clock_Voltage_Limit_Table *limit_table;
1233 int result = 0;
1234
1235 uint16_t vce_clock_info_array_offset;
1236 uint16_t uvd_clock_info_array_offset;
1237 uint16_t table_offset;
1238
1239 hwmgr->dyn_state.vddc_dependency_on_sclk = NULL;
1240 hwmgr->dyn_state.vddci_dependency_on_mclk = NULL;
1241 hwmgr->dyn_state.vddc_dependency_on_mclk = NULL;
1242 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
1243 hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL;
1244 hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL;
1245 hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL;
1246 hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL;
1247 hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL;
1248 hwmgr->dyn_state.ppm_parameter_table = NULL;
1249 hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL;
1250
1251 vce_clock_info_array_offset = get_vce_clock_info_array_offset(
1252 hwmgr, powerplay_table);
1253 table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr,
1254 powerplay_table);
1255 if (vce_clock_info_array_offset > 0 && table_offset > 0) {
1256 const VCEClockInfoArray *array = (const VCEClockInfoArray *)
1257 (((unsigned long) powerplay_table) +
1258 vce_clock_info_array_offset);
1259 const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table =
1260 (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
1261 (((unsigned long) powerplay_table) + table_offset);
1262 result = get_vce_clock_voltage_limit_table(hwmgr,
1263 &hwmgr->dyn_state.vce_clock_voltage_dependency_table,
1264 table, array);
1265 }
1266
1267 uvd_clock_info_array_offset = get_uvd_clock_info_array_offset(hwmgr, powerplay_table);
1268 table_offset = get_uvd_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
1269
1270 if (uvd_clock_info_array_offset > 0 && table_offset > 0) {
1271 const UVDClockInfoArray *array = (const UVDClockInfoArray *)
1272 (((unsigned long) powerplay_table) +
1273 uvd_clock_info_array_offset);
1274 const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *ptable =
1275 (const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
1276 (((unsigned long) powerplay_table) + table_offset);
1277 result = get_uvd_clock_voltage_limit_table(hwmgr,
1278 &hwmgr->dyn_state.uvd_clock_voltage_dependency_table, ptable, array);
1279 }
1280
1281 table_offset = get_samu_clock_voltage_limit_table_offset(hwmgr,
1282 powerplay_table);
1283
1284 if (table_offset > 0) {
1285 const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *ptable =
1286 (const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
1287 (((unsigned long) powerplay_table) + table_offset);
1288 result = get_samu_clock_voltage_limit_table(hwmgr,
1289 &hwmgr->dyn_state.samu_clock_voltage_dependency_table, ptable);
1290 }
1291
1292 table_offset = get_acp_clock_voltage_limit_table_offset(hwmgr,
1293 powerplay_table);
1294
1295 if (table_offset > 0) {
1296 const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *ptable =
1297 (const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
1298 (((unsigned long) powerplay_table) + table_offset);
1299 result = get_acp_clock_voltage_limit_table(hwmgr,
1300 &hwmgr->dyn_state.acp_clock_voltage_dependency_table, ptable);
1301 }
1302
1303 table_offset = get_cacp_tdp_table_offset(hwmgr, powerplay_table);
1304 if (table_offset > 0) {
1305 UCHAR rev_id = *(UCHAR *)(((unsigned long)powerplay_table) + table_offset);
1306
1307 if (rev_id > 0) {
1308 const ATOM_PPLIB_POWERTUNE_Table_V1 *tune_table =
1309 (const ATOM_PPLIB_POWERTUNE_Table_V1 *)
1310 (((unsigned long) powerplay_table) + table_offset);
1311 result = get_cac_tdp_table(hwmgr, &hwmgr->dyn_state.cac_dtp_table,
1312 &tune_table->power_tune_table,
1313 le16_to_cpu(tune_table->usMaximumPowerDeliveryLimit));
1314 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
1315 le16_to_cpu(tune_table->usTjMax);
1316 } else {
1317 const ATOM_PPLIB_POWERTUNE_Table *tune_table =
1318 (const ATOM_PPLIB_POWERTUNE_Table *)
1319 (((unsigned long) powerplay_table) + table_offset);
1320 result = get_cac_tdp_table(hwmgr,
1321 &hwmgr->dyn_state.cac_dtp_table,
1322 &tune_table->power_tune_table, 255);
1323 }
1324 }
1325
1326 if (le16_to_cpu(powerplay_table->usTableSize) >=
1327 sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) {
1328 const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 =
1329 (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table;
1330 if (0 != powerplay_table4->usVddcDependencyOnSCLKOffset) {
1331 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1332 (((unsigned long) powerplay_table4) +
1333 le16_to_cpu(powerplay_table4->usVddcDependencyOnSCLKOffset));
1334 result = get_clock_voltage_dependency_table(hwmgr,
1335 &hwmgr->dyn_state.vddc_dependency_on_sclk, table);
1336 }
1337
1338 if (result == 0 && (0 != powerplay_table4->usVddciDependencyOnMCLKOffset)) {
1339 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1340 (((unsigned long) powerplay_table4) +
1341 le16_to_cpu(powerplay_table4->usVddciDependencyOnMCLKOffset));
1342 result = get_clock_voltage_dependency_table(hwmgr,
1343 &hwmgr->dyn_state.vddci_dependency_on_mclk, table);
1344 }
1345
1346 if (result == 0 && (0 != powerplay_table4->usVddcDependencyOnMCLKOffset)) {
1347 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1348 (((unsigned long) powerplay_table4) +
1349 le16_to_cpu(powerplay_table4->usVddcDependencyOnMCLKOffset));
1350 result = get_clock_voltage_dependency_table(hwmgr,
1351 &hwmgr->dyn_state.vddc_dependency_on_mclk, table);
1352 }
1353
1354 if (result == 0 && (0 != powerplay_table4->usMaxClockVoltageOnDCOffset)) {
1355 limit_table = (ATOM_PPLIB_Clock_Voltage_Limit_Table *)
1356 (((unsigned long) powerplay_table4) +
1357 le16_to_cpu(powerplay_table4->usMaxClockVoltageOnDCOffset));
1358 result = get_clock_voltage_limit(hwmgr,
1359 &hwmgr->dyn_state.max_clock_voltage_on_dc, limit_table);
1360 }
1361
1362 if (result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) &&
1363 (0 != hwmgr->dyn_state.vddc_dependency_on_mclk->count))
1364 result = get_valid_clk(hwmgr, &hwmgr->dyn_state.valid_mclk_values,
1365 hwmgr->dyn_state.vddc_dependency_on_mclk);
1366
1367 if(result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_sclk) &&
1368 (0 != hwmgr->dyn_state.vddc_dependency_on_sclk->count))
1369 result = get_valid_clk(hwmgr,
1370 &hwmgr->dyn_state.valid_sclk_values,
1371 hwmgr->dyn_state.vddc_dependency_on_sclk);
1372
1373 if (result == 0 && (0 != powerplay_table4->usMvddDependencyOnMCLKOffset)) {
1374 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1375 (((unsigned long) powerplay_table4) +
1376 le16_to_cpu(powerplay_table4->usMvddDependencyOnMCLKOffset));
1377 result = get_clock_voltage_dependency_table(hwmgr,
1378 &hwmgr->dyn_state.mvdd_dependency_on_mclk, table);
1379 }
1380 }
1381
1382 table_offset = get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(hwmgr,
1383 powerplay_table);
1384
1385 if (table_offset > 0) {
1386 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1387 (((unsigned long) powerplay_table) + table_offset);
1388 result = get_clock_voltage_dependency_table(hwmgr,
1389 &hwmgr->dyn_state.vdd_gfx_dependency_on_sclk, table);
1390 }
1391
1392 return result;
1393 }
1394
1395 static int get_cac_leakage_table(struct pp_hwmgr *hwmgr,
1396 struct phm_cac_leakage_table **ptable,
1397 const ATOM_PPLIB_CAC_Leakage_Table *table)
1398 {
1399 struct phm_cac_leakage_table *cac_leakage_table;
1400 unsigned long table_size, i;
1401
1402 if (hwmgr == NULL || table == NULL || ptable == NULL)
1403 return -EINVAL;
1404
1405 table_size = sizeof(ULONG) +
1406 (sizeof(struct phm_cac_leakage_table) * table->ucNumEntries);
1407
1408 cac_leakage_table = kzalloc(table_size, GFP_KERNEL);
1409
1410 if (cac_leakage_table == NULL)
1411 return -ENOMEM;
1412
1413 cac_leakage_table->count = (ULONG)table->ucNumEntries;
1414
1415 for (i = 0; i < cac_leakage_table->count; i++) {
1416 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1417 PHM_PlatformCaps_EVV)) {
1418 cac_leakage_table->entries[i].Vddc1 = le16_to_cpu(table->entries[i].usVddc1);
1419 cac_leakage_table->entries[i].Vddc2 = le16_to_cpu(table->entries[i].usVddc2);
1420 cac_leakage_table->entries[i].Vddc3 = le16_to_cpu(table->entries[i].usVddc3);
1421 } else {
1422 cac_leakage_table->entries[i].Vddc = le16_to_cpu(table->entries[i].usVddc);
1423 cac_leakage_table->entries[i].Leakage = le32_to_cpu(table->entries[i].ulLeakageValue);
1424 }
1425 }
1426
1427 *ptable = cac_leakage_table;
1428
1429 return 0;
1430 }
1431
1432 static int get_platform_power_management_table(struct pp_hwmgr *hwmgr,
1433 ATOM_PPLIB_PPM_Table *atom_ppm_table)
1434 {
1435 struct phm_ppm_table *ptr = kzalloc(sizeof(struct phm_ppm_table), GFP_KERNEL);
1436
1437 if (NULL == ptr)
1438 return -ENOMEM;
1439
1440 ptr->ppm_design = atom_ppm_table->ucPpmDesign;
1441 ptr->cpu_core_number = le16_to_cpu(atom_ppm_table->usCpuCoreNumber);
1442 ptr->platform_tdp = le32_to_cpu(atom_ppm_table->ulPlatformTDP);
1443 ptr->small_ac_platform_tdp = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDP);
1444 ptr->platform_tdc = le32_to_cpu(atom_ppm_table->ulPlatformTDC);
1445 ptr->small_ac_platform_tdc = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDC);
1446 ptr->apu_tdp = le32_to_cpu(atom_ppm_table->ulApuTDP);
1447 ptr->dgpu_tdp = le32_to_cpu(atom_ppm_table->ulDGpuTDP);
1448 ptr->dgpu_ulv_power = le32_to_cpu(atom_ppm_table->ulDGpuUlvPower);
1449 ptr->tj_max = le32_to_cpu(atom_ppm_table->ulTjmax);
1450 hwmgr->dyn_state.ppm_parameter_table = ptr;
1451
1452 return 0;
1453 }
1454
1455 static int init_dpm2_parameters(struct pp_hwmgr *hwmgr,
1456 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
1457 {
1458 int result = 0;
1459
1460 if (le16_to_cpu(powerplay_table->usTableSize) >=
1461 sizeof(ATOM_PPLIB_POWERPLAYTABLE5)) {
1462 const ATOM_PPLIB_POWERPLAYTABLE5 *ptable5 =
1463 (const ATOM_PPLIB_POWERPLAYTABLE5 *)powerplay_table;
1464 const ATOM_PPLIB_POWERPLAYTABLE4 *ptable4 =
1465 (const ATOM_PPLIB_POWERPLAYTABLE4 *)
1466 (&ptable5->basicTable4);
1467 const ATOM_PPLIB_POWERPLAYTABLE3 *ptable3 =
1468 (const ATOM_PPLIB_POWERPLAYTABLE3 *)
1469 (&ptable4->basicTable3);
1470 const ATOM_PPLIB_EXTENDEDHEADER *extended_header;
1471 uint16_t table_offset;
1472 ATOM_PPLIB_PPM_Table *atom_ppm_table;
1473
1474 hwmgr->platform_descriptor.TDPLimit = le32_to_cpu(ptable5->ulTDPLimit);
1475 hwmgr->platform_descriptor.nearTDPLimit = le32_to_cpu(ptable5->ulNearTDPLimit);
1476
1477 hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(ptable5->usTDPODLimit);
1478 hwmgr->platform_descriptor.TDPAdjustment = 0;
1479
1480 hwmgr->platform_descriptor.VidAdjustment = 0;
1481 hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
1482 hwmgr->platform_descriptor.VidMinLimit = 0;
1483 hwmgr->platform_descriptor.VidMaxLimit = 1500000;
1484 hwmgr->platform_descriptor.VidStep = 6250;
1485
1486 hwmgr->platform_descriptor.nearTDPLimitAdjusted = le32_to_cpu(ptable5->ulNearTDPLimit);
1487
1488 if (hwmgr->platform_descriptor.TDPODLimit != 0)
1489 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1490 PHM_PlatformCaps_PowerControl);
1491
1492 hwmgr->platform_descriptor.SQRampingThreshold = le32_to_cpu(ptable5->ulSQRampingThreshold);
1493
1494 hwmgr->platform_descriptor.CACLeakage = le32_to_cpu(ptable5->ulCACLeakage);
1495
1496 hwmgr->dyn_state.cac_leakage_table = NULL;
1497
1498 if (0 != ptable5->usCACLeakageTableOffset) {
1499 const ATOM_PPLIB_CAC_Leakage_Table *pCAC_leakage_table =
1500 (ATOM_PPLIB_CAC_Leakage_Table *)(((unsigned long)ptable5) +
1501 le16_to_cpu(ptable5->usCACLeakageTableOffset));
1502 result = get_cac_leakage_table(hwmgr,
1503 &hwmgr->dyn_state.cac_leakage_table, pCAC_leakage_table);
1504 }
1505
1506 hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(ptable5->usLoadLineSlope);
1507
1508 hwmgr->dyn_state.ppm_parameter_table = NULL;
1509
1510 if (0 != ptable3->usExtendendedHeaderOffset) {
1511 extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *)
1512 (((unsigned long)powerplay_table) +
1513 le16_to_cpu(ptable3->usExtendendedHeaderOffset));
1514 if ((extended_header->usPPMTableOffset > 0) &&
1515 le16_to_cpu(extended_header->usSize) >=
1516 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) {
1517 table_offset = le16_to_cpu(extended_header->usPPMTableOffset);
1518 atom_ppm_table = (ATOM_PPLIB_PPM_Table *)
1519 (((unsigned long)powerplay_table) + table_offset);
1520 if (0 == get_platform_power_management_table(hwmgr, atom_ppm_table))
1521 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1522 PHM_PlatformCaps_EnablePlatformPowerManagement);
1523 }
1524 }
1525 }
1526 return result;
1527 }
1528
1529 static int init_phase_shedding_table(struct pp_hwmgr *hwmgr,
1530 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
1531 {
1532 if (le16_to_cpu(powerplay_table->usTableSize) >=
1533 sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) {
1534 const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 =
1535 (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table;
1536
1537 if (0 != powerplay_table4->usVddcPhaseShedLimitsTableOffset) {
1538 const ATOM_PPLIB_PhaseSheddingLimits_Table *ptable =
1539 (ATOM_PPLIB_PhaseSheddingLimits_Table *)
1540 (((unsigned long)powerplay_table4) +
1541 le16_to_cpu(powerplay_table4->usVddcPhaseShedLimitsTableOffset));
1542 struct phm_phase_shedding_limits_table *table;
1543 unsigned long size, i;
1544
1545
1546 size = sizeof(unsigned long) +
1547 (sizeof(struct phm_phase_shedding_limits_table) *
1548 ptable->ucNumEntries);
1549
1550 table = kzalloc(size, GFP_KERNEL);
1551
1552 if (table == NULL)
1553 return -ENOMEM;
1554
1555 table->count = (unsigned long)ptable->ucNumEntries;
1556
1557 for (i = 0; i < table->count; i++) {
1558 table->entries[i].Voltage = (unsigned long)le16_to_cpu(ptable->entries[i].usVoltage);
1559 table->entries[i].Sclk = ((unsigned long)ptable->entries[i].ucSclkHigh << 16)
1560 | le16_to_cpu(ptable->entries[i].usSclkLow);
1561 table->entries[i].Mclk = ((unsigned long)ptable->entries[i].ucMclkHigh << 16)
1562 | le16_to_cpu(ptable->entries[i].usMclkLow);
1563 }
1564 hwmgr->dyn_state.vddc_phase_shed_limits_table = table;
1565 }
1566 }
1567
1568 return 0;
1569 }
1570
1571 static int get_number_of_vce_state_table_entries(
1572 struct pp_hwmgr *hwmgr)
1573 {
1574 const ATOM_PPLIB_POWERPLAYTABLE *table =
1575 get_powerplay_table(hwmgr);
1576 const ATOM_PPLIB_VCE_State_Table *vce_table =
1577 get_vce_state_table(hwmgr, table);
1578
1579 if (vce_table)
1580 return vce_table->numEntries;
1581
1582 return 0;
1583 }
1584
1585 static int get_vce_state_table_entry(struct pp_hwmgr *hwmgr,
1586 unsigned long i,
1587 struct amd_vce_state *vce_state,
1588 void **clock_info,
1589 unsigned long *flag)
1590 {
1591 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
1592
1593 const ATOM_PPLIB_VCE_State_Table *vce_state_table = get_vce_state_table(hwmgr, powerplay_table);
1594
1595 unsigned short vce_clock_info_array_offset = get_vce_clock_info_array_offset(hwmgr, powerplay_table);
1596
1597 const VCEClockInfoArray *vce_clock_info_array = (const VCEClockInfoArray *)(((unsigned long) powerplay_table) + vce_clock_info_array_offset);
1598
1599 const ClockInfoArray *clock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) +
1600 le16_to_cpu(powerplay_table->usClockInfoArrayOffset));
1601
1602 const ATOM_PPLIB_VCE_State_Record *record = &vce_state_table->entries[i];
1603
1604 const VCEClockInfo *vce_clock_info = &vce_clock_info_array->entries[record->ucVCEClockInfoIndex];
1605
1606 unsigned long clockInfoIndex = record->ucClockInfoIndex & 0x3F;
1607
1608 *flag = (record->ucClockInfoIndex >> NUM_BITS_CLOCK_INFO_ARRAY_INDEX);
1609
1610 vce_state->evclk = ((uint32_t)vce_clock_info->ucEVClkHigh << 16) | le16_to_cpu(vce_clock_info->usEVClkLow);
1611 vce_state->ecclk = ((uint32_t)vce_clock_info->ucECClkHigh << 16) | le16_to_cpu(vce_clock_info->usECClkLow);
1612
1613 *clock_info = (void *)((unsigned long)(clock_arrays->clockInfo) + (clockInfoIndex * clock_arrays->ucEntrySize));
1614
1615 return 0;
1616 }
1617
1618
1619 static int pp_tables_initialize(struct pp_hwmgr *hwmgr)
1620 {
1621 int result;
1622 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table;
1623
1624 if (hwmgr->chip_id == CHIP_RAVEN)
1625 return 0;
1626
1627 hwmgr->need_pp_table_upload = true;
1628
1629 powerplay_table = get_powerplay_table(hwmgr);
1630
1631 result = init_powerplay_tables(hwmgr, powerplay_table);
1632
1633 PP_ASSERT_WITH_CODE((result == 0),
1634 "init_powerplay_tables failed", return result);
1635
1636 result = set_platform_caps(hwmgr,
1637 le32_to_cpu(powerplay_table->ulPlatformCaps));
1638
1639 PP_ASSERT_WITH_CODE((result == 0),
1640 "set_platform_caps failed", return result);
1641
1642 result = init_thermal_controller(hwmgr, powerplay_table);
1643
1644 PP_ASSERT_WITH_CODE((result == 0),
1645 "init_thermal_controller failed", return result);
1646
1647 result = init_overdrive_limits(hwmgr, powerplay_table);
1648
1649 PP_ASSERT_WITH_CODE((result == 0),
1650 "init_overdrive_limits failed", return result);
1651
1652 result = init_clock_voltage_dependency(hwmgr,
1653 powerplay_table);
1654
1655 PP_ASSERT_WITH_CODE((result == 0),
1656 "init_clock_voltage_dependency failed", return result);
1657
1658 result = init_dpm2_parameters(hwmgr, powerplay_table);
1659
1660 PP_ASSERT_WITH_CODE((result == 0),
1661 "init_dpm2_parameters failed", return result);
1662
1663 result = init_phase_shedding_table(hwmgr, powerplay_table);
1664
1665 PP_ASSERT_WITH_CODE((result == 0),
1666 "init_phase_shedding_table failed", return result);
1667
1668 return result;
1669 }
1670
1671 static int pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
1672 {
1673 if (hwmgr->chip_id == CHIP_RAVEN)
1674 return 0;
1675
1676 kfree(hwmgr->dyn_state.vddc_dependency_on_sclk);
1677 hwmgr->dyn_state.vddc_dependency_on_sclk = NULL;
1678
1679 kfree(hwmgr->dyn_state.vddci_dependency_on_mclk);
1680 hwmgr->dyn_state.vddci_dependency_on_mclk = NULL;
1681
1682 kfree(hwmgr->dyn_state.vddc_dependency_on_mclk);
1683 hwmgr->dyn_state.vddc_dependency_on_mclk = NULL;
1684
1685 kfree(hwmgr->dyn_state.mvdd_dependency_on_mclk);
1686 hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL;
1687
1688 kfree(hwmgr->dyn_state.valid_mclk_values);
1689 hwmgr->dyn_state.valid_mclk_values = NULL;
1690
1691 kfree(hwmgr->dyn_state.valid_sclk_values);
1692 hwmgr->dyn_state.valid_sclk_values = NULL;
1693
1694 kfree(hwmgr->dyn_state.cac_leakage_table);
1695 hwmgr->dyn_state.cac_leakage_table = NULL;
1696
1697 kfree(hwmgr->dyn_state.vddc_phase_shed_limits_table);
1698 hwmgr->dyn_state.vddc_phase_shed_limits_table = NULL;
1699
1700 kfree(hwmgr->dyn_state.vce_clock_voltage_dependency_table);
1701 hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL;
1702
1703 kfree(hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
1704 hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL;
1705
1706 kfree(hwmgr->dyn_state.samu_clock_voltage_dependency_table);
1707 hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL;
1708
1709 kfree(hwmgr->dyn_state.acp_clock_voltage_dependency_table);
1710 hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL;
1711
1712 kfree(hwmgr->dyn_state.cac_dtp_table);
1713 hwmgr->dyn_state.cac_dtp_table = NULL;
1714
1715 kfree(hwmgr->dyn_state.ppm_parameter_table);
1716 hwmgr->dyn_state.ppm_parameter_table = NULL;
1717
1718 kfree(hwmgr->dyn_state.vdd_gfx_dependency_on_sclk);
1719 hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL;
1720
1721 return 0;
1722 }
1723
1724 const struct pp_table_func pptable_funcs = {
1725 .pptable_init = pp_tables_initialize,
1726 .pptable_fini = pp_tables_uninitialize,
1727 .pptable_get_number_of_vce_state_table_entries =
1728 get_number_of_vce_state_table_entries,
1729 .pptable_get_vce_state_table_entry =
1730 get_vce_state_table_entry,
1731 };
1732