]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/processpptables.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / processpptables.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "pp_debug.h"
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <drm/amdgpu_drm.h>
28 #include "processpptables.h"
29 #include <atom-types.h>
30 #include <atombios.h>
31 #include "pptable.h"
32 #include "power_state.h"
33 #include "hwmgr.h"
34 #include "hardwaremanager.h"
35
36
37 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
38 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
39 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
40 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
41 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
42 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
43 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24
44 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26
45
46 #define NUM_BITS_CLOCK_INFO_ARRAY_INDEX 6
47
48 static uint16_t get_vce_table_offset(struct pp_hwmgr *hwmgr,
49 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
50 {
51 uint16_t vce_table_offset = 0;
52
53 if (le16_to_cpu(powerplay_table->usTableSize) >=
54 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
55 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
56 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
57
58 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
59 const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
60 (const ATOM_PPLIB_EXTENDEDHEADER *)
61 (((unsigned long)powerplay_table3) +
62 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
63 if (le16_to_cpu(extended_header->usSize) >=
64 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2)
65 vce_table_offset = le16_to_cpu(extended_header->usVCETableOffset);
66 }
67 }
68
69 return vce_table_offset;
70 }
71
72 static uint16_t get_vce_clock_info_array_offset(struct pp_hwmgr *hwmgr,
73 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
74 {
75 uint16_t table_offset = get_vce_table_offset(hwmgr,
76 powerplay_table);
77
78 if (table_offset > 0)
79 return table_offset + 1;
80
81 return 0;
82 }
83
84 static uint16_t get_vce_clock_info_array_size(struct pp_hwmgr *hwmgr,
85 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
86 {
87 uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr,
88 powerplay_table);
89 uint16_t table_size = 0;
90
91 if (table_offset > 0) {
92 const VCEClockInfoArray *p = (const VCEClockInfoArray *)
93 (((unsigned long) powerplay_table) + table_offset);
94 table_size = sizeof(uint8_t) + p->ucNumEntries * sizeof(VCEClockInfo);
95 }
96
97 return table_size;
98 }
99
100 static uint16_t get_vce_clock_voltage_limit_table_offset(struct pp_hwmgr *hwmgr,
101 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
102 {
103 uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr,
104 powerplay_table);
105
106 if (table_offset > 0)
107 return table_offset + get_vce_clock_info_array_size(hwmgr,
108 powerplay_table);
109
110 return 0;
111 }
112
113 static uint16_t get_vce_clock_voltage_limit_table_size(struct pp_hwmgr *hwmgr,
114 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
115 {
116 uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
117 uint16_t table_size = 0;
118
119 if (table_offset > 0) {
120 const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *ptable =
121 (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)(((unsigned long) powerplay_table) + table_offset);
122
123 table_size = sizeof(uint8_t) + ptable->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record);
124 }
125 return table_size;
126 }
127
128 static uint16_t get_vce_state_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
129 {
130 uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
131
132 if (table_offset > 0)
133 return table_offset + get_vce_clock_voltage_limit_table_size(hwmgr, powerplay_table);
134
135 return 0;
136 }
137
138 static const ATOM_PPLIB_VCE_State_Table *get_vce_state_table(
139 struct pp_hwmgr *hwmgr,
140 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
141 {
142 uint16_t table_offset = get_vce_state_table_offset(hwmgr, powerplay_table);
143
144 if (table_offset > 0)
145 return (const ATOM_PPLIB_VCE_State_Table *)(((unsigned long) powerplay_table) + table_offset);
146
147 return NULL;
148 }
149
150 static uint16_t get_uvd_table_offset(struct pp_hwmgr *hwmgr,
151 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
152 {
153 uint16_t uvd_table_offset = 0;
154
155 if (le16_to_cpu(powerplay_table->usTableSize) >=
156 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
157 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
158 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
159 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
160 const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
161 (const ATOM_PPLIB_EXTENDEDHEADER *)
162 (((unsigned long)powerplay_table3) +
163 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
164 if (le16_to_cpu(extended_header->usSize) >=
165 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3)
166 uvd_table_offset = le16_to_cpu(extended_header->usUVDTableOffset);
167 }
168 }
169 return uvd_table_offset;
170 }
171
172 static uint16_t get_uvd_clock_info_array_offset(struct pp_hwmgr *hwmgr,
173 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
174 {
175 uint16_t table_offset = get_uvd_table_offset(hwmgr,
176 powerplay_table);
177
178 if (table_offset > 0)
179 return table_offset + 1;
180 return 0;
181 }
182
183 static uint16_t get_uvd_clock_info_array_size(struct pp_hwmgr *hwmgr,
184 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
185 {
186 uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr,
187 powerplay_table);
188 uint16_t table_size = 0;
189
190 if (table_offset > 0) {
191 const UVDClockInfoArray *p = (const UVDClockInfoArray *)
192 (((unsigned long) powerplay_table)
193 + table_offset);
194 table_size = sizeof(UCHAR) +
195 p->ucNumEntries * sizeof(UVDClockInfo);
196 }
197
198 return table_size;
199 }
200
201 static uint16_t get_uvd_clock_voltage_limit_table_offset(
202 struct pp_hwmgr *hwmgr,
203 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
204 {
205 uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr,
206 powerplay_table);
207
208 if (table_offset > 0)
209 return table_offset +
210 get_uvd_clock_info_array_size(hwmgr, powerplay_table);
211
212 return 0;
213 }
214
215 static uint16_t get_samu_table_offset(struct pp_hwmgr *hwmgr,
216 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
217 {
218 uint16_t samu_table_offset = 0;
219
220 if (le16_to_cpu(powerplay_table->usTableSize) >=
221 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
222 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
223 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
224 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
225 const ATOM_PPLIB_EXTENDEDHEADER *extended_header =
226 (const ATOM_PPLIB_EXTENDEDHEADER *)
227 (((unsigned long)powerplay_table3) +
228 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
229 if (le16_to_cpu(extended_header->usSize) >=
230 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4)
231 samu_table_offset = le16_to_cpu(extended_header->usSAMUTableOffset);
232 }
233 }
234
235 return samu_table_offset;
236 }
237
238 static uint16_t get_samu_clock_voltage_limit_table_offset(
239 struct pp_hwmgr *hwmgr,
240 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
241 {
242 uint16_t table_offset = get_samu_table_offset(hwmgr,
243 powerplay_table);
244
245 if (table_offset > 0)
246 return table_offset + 1;
247
248 return 0;
249 }
250
251 static uint16_t get_acp_table_offset(struct pp_hwmgr *hwmgr,
252 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
253 {
254 uint16_t acp_table_offset = 0;
255
256 if (le16_to_cpu(powerplay_table->usTableSize) >=
257 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
258 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
259 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
260 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
261 const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
262 (const ATOM_PPLIB_EXTENDEDHEADER *)
263 (((unsigned long)powerplay_table3) +
264 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
265 if (le16_to_cpu(pExtendedHeader->usSize) >=
266 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6)
267 acp_table_offset = le16_to_cpu(pExtendedHeader->usACPTableOffset);
268 }
269 }
270
271 return acp_table_offset;
272 }
273
274 static uint16_t get_acp_clock_voltage_limit_table_offset(
275 struct pp_hwmgr *hwmgr,
276 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
277 {
278 uint16_t tableOffset = get_acp_table_offset(hwmgr, powerplay_table);
279
280 if (tableOffset > 0)
281 return tableOffset + 1;
282
283 return 0;
284 }
285
286 static uint16_t get_cacp_tdp_table_offset(
287 struct pp_hwmgr *hwmgr,
288 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
289 {
290 uint16_t cacTdpTableOffset = 0;
291
292 if (le16_to_cpu(powerplay_table->usTableSize) >=
293 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
294 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
295 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
296 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
297 const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
298 (const ATOM_PPLIB_EXTENDEDHEADER *)
299 (((unsigned long)powerplay_table3) +
300 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
301 if (le16_to_cpu(pExtendedHeader->usSize) >=
302 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7)
303 cacTdpTableOffset = le16_to_cpu(pExtendedHeader->usPowerTuneTableOffset);
304 }
305 }
306
307 return cacTdpTableOffset;
308 }
309
310 static int get_cac_tdp_table(struct pp_hwmgr *hwmgr,
311 struct phm_cac_tdp_table **ptable,
312 const ATOM_PowerTune_Table *table,
313 uint16_t us_maximum_power_delivery_limit)
314 {
315 unsigned long table_size;
316 struct phm_cac_tdp_table *tdp_table;
317
318 table_size = sizeof(unsigned long) + sizeof(struct phm_cac_tdp_table);
319
320 tdp_table = kzalloc(table_size, GFP_KERNEL);
321 if (NULL == tdp_table)
322 return -ENOMEM;
323
324 tdp_table->usTDP = le16_to_cpu(table->usTDP);
325 tdp_table->usConfigurableTDP = le16_to_cpu(table->usConfigurableTDP);
326 tdp_table->usTDC = le16_to_cpu(table->usTDC);
327 tdp_table->usBatteryPowerLimit = le16_to_cpu(table->usBatteryPowerLimit);
328 tdp_table->usSmallPowerLimit = le16_to_cpu(table->usSmallPowerLimit);
329 tdp_table->usLowCACLeakage = le16_to_cpu(table->usLowCACLeakage);
330 tdp_table->usHighCACLeakage = le16_to_cpu(table->usHighCACLeakage);
331 tdp_table->usMaximumPowerDeliveryLimit = us_maximum_power_delivery_limit;
332
333 *ptable = tdp_table;
334
335 return 0;
336 }
337
338 static uint16_t get_sclk_vdd_gfx_table_offset(struct pp_hwmgr *hwmgr,
339 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
340 {
341 uint16_t sclk_vdd_gfx_table_offset = 0;
342
343 if (le16_to_cpu(powerplay_table->usTableSize) >=
344 sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) {
345 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 =
346 (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
347 if (powerplay_table3->usExtendendedHeaderOffset > 0) {
348 const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader =
349 (const ATOM_PPLIB_EXTENDEDHEADER *)
350 (((unsigned long)powerplay_table3) +
351 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
352 if (le16_to_cpu(pExtendedHeader->usSize) >=
353 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8)
354 sclk_vdd_gfx_table_offset =
355 le16_to_cpu(pExtendedHeader->usSclkVddgfxTableOffset);
356 }
357 }
358
359 return sclk_vdd_gfx_table_offset;
360 }
361
362 static uint16_t get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(
363 struct pp_hwmgr *hwmgr,
364 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
365 {
366 uint16_t tableOffset = get_sclk_vdd_gfx_table_offset(hwmgr, powerplay_table);
367
368 if (tableOffset > 0)
369 return tableOffset;
370
371 return 0;
372 }
373
374
375 static int get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
376 struct phm_clock_voltage_dependency_table **ptable,
377 const ATOM_PPLIB_Clock_Voltage_Dependency_Table *table)
378 {
379
380 unsigned long table_size, i;
381 struct phm_clock_voltage_dependency_table *dep_table;
382
383 table_size = sizeof(unsigned long) +
384 sizeof(struct phm_clock_voltage_dependency_table)
385 * table->ucNumEntries;
386
387 dep_table = kzalloc(table_size, GFP_KERNEL);
388 if (NULL == dep_table)
389 return -ENOMEM;
390
391 dep_table->count = (unsigned long)table->ucNumEntries;
392
393 for (i = 0; i < dep_table->count; i++) {
394 dep_table->entries[i].clk =
395 ((unsigned long)table->entries[i].ucClockHigh << 16) |
396 le16_to_cpu(table->entries[i].usClockLow);
397 dep_table->entries[i].v =
398 (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
399 }
400
401 *ptable = dep_table;
402
403 return 0;
404 }
405
406 static int get_valid_clk(struct pp_hwmgr *hwmgr,
407 struct phm_clock_array **ptable,
408 const struct phm_clock_voltage_dependency_table *table)
409 {
410 unsigned long table_size, i;
411 struct phm_clock_array *clock_table;
412
413 table_size = sizeof(unsigned long) + sizeof(unsigned long) * table->count;
414 clock_table = kzalloc(table_size, GFP_KERNEL);
415 if (NULL == clock_table)
416 return -ENOMEM;
417
418 clock_table->count = (unsigned long)table->count;
419
420 for (i = 0; i < clock_table->count; i++)
421 clock_table->values[i] = (unsigned long)table->entries[i].clk;
422
423 *ptable = clock_table;
424
425 return 0;
426 }
427
428 static int get_clock_voltage_limit(struct pp_hwmgr *hwmgr,
429 struct phm_clock_and_voltage_limits *limits,
430 const ATOM_PPLIB_Clock_Voltage_Limit_Table *table)
431 {
432 limits->sclk = ((unsigned long)table->entries[0].ucSclkHigh << 16) |
433 le16_to_cpu(table->entries[0].usSclkLow);
434 limits->mclk = ((unsigned long)table->entries[0].ucMclkHigh << 16) |
435 le16_to_cpu(table->entries[0].usMclkLow);
436 limits->vddc = (unsigned long)le16_to_cpu(table->entries[0].usVddc);
437 limits->vddci = (unsigned long)le16_to_cpu(table->entries[0].usVddci);
438
439 return 0;
440 }
441
442
443 static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable,
444 enum phm_platform_caps cap)
445 {
446 if (enable)
447 phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
448 else
449 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
450 }
451
452 static int set_platform_caps(struct pp_hwmgr *hwmgr,
453 unsigned long powerplay_caps)
454 {
455 set_hw_cap(
456 hwmgr,
457 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_POWERPLAY),
458 PHM_PlatformCaps_PowerPlaySupport
459 );
460
461 set_hw_cap(
462 hwmgr,
463 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
464 PHM_PlatformCaps_BiosPowerSourceControl
465 );
466
467 set_hw_cap(
468 hwmgr,
469 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s),
470 PHM_PlatformCaps_EnableASPML0s
471 );
472
473 set_hw_cap(
474 hwmgr,
475 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1),
476 PHM_PlatformCaps_EnableASPML1
477 );
478
479 set_hw_cap(
480 hwmgr,
481 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS),
482 PHM_PlatformCaps_EnableBackbias
483 );
484
485 set_hw_cap(
486 hwmgr,
487 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC),
488 PHM_PlatformCaps_AutomaticDCTransition
489 );
490
491 set_hw_cap(
492 hwmgr,
493 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY),
494 PHM_PlatformCaps_GeminiPrimary
495 );
496
497 set_hw_cap(
498 hwmgr,
499 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC),
500 PHM_PlatformCaps_StepVddc
501 );
502
503 set_hw_cap(
504 hwmgr,
505 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VOLTAGECONTROL),
506 PHM_PlatformCaps_EnableVoltageControl
507 );
508
509 set_hw_cap(
510 hwmgr,
511 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL),
512 PHM_PlatformCaps_EnableSideportControl
513 );
514
515 set_hw_cap(
516 hwmgr,
517 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1),
518 PHM_PlatformCaps_TurnOffPll_ASPML1
519 );
520
521 set_hw_cap(
522 hwmgr,
523 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HTLINKCONTROL),
524 PHM_PlatformCaps_EnableHTLinkControl
525 );
526
527 set_hw_cap(
528 hwmgr,
529 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL),
530 PHM_PlatformCaps_EnableMVDDControl
531 );
532
533 set_hw_cap(
534 hwmgr,
535 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL),
536 PHM_PlatformCaps_ControlVDDCI
537 );
538
539 set_hw_cap(
540 hwmgr,
541 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT),
542 PHM_PlatformCaps_RegulatorHot
543 );
544
545 set_hw_cap(
546 hwmgr,
547 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GOTO_BOOT_ON_ALERT),
548 PHM_PlatformCaps_BootStateOnAlert
549 );
550
551 set_hw_cap(
552 hwmgr,
553 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DONT_WAIT_FOR_VBLANK_ON_ALERT),
554 PHM_PlatformCaps_DontWaitForVBlankOnAlert
555 );
556
557 set_hw_cap(
558 hwmgr,
559 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACO),
560 PHM_PlatformCaps_BACO
561 );
562
563 set_hw_cap(
564 hwmgr,
565 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_NEW_CAC_VOLTAGE),
566 PHM_PlatformCaps_NewCACVoltage
567 );
568
569 set_hw_cap(
570 hwmgr,
571 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REVERT_GPIO5_POLARITY),
572 PHM_PlatformCaps_RevertGPIO5Polarity
573 );
574
575 set_hw_cap(
576 hwmgr,
577 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17),
578 PHM_PlatformCaps_Thermal2GPIO17
579 );
580
581 set_hw_cap(
582 hwmgr,
583 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VRHOT_GPIO_CONFIGURABLE),
584 PHM_PlatformCaps_VRHotGPIOConfigurable
585 );
586
587 set_hw_cap(
588 hwmgr,
589 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TEMP_INVERSION),
590 PHM_PlatformCaps_TempInversion
591 );
592
593 set_hw_cap(
594 hwmgr,
595 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_EVV),
596 PHM_PlatformCaps_EVV
597 );
598
599 set_hw_cap(
600 hwmgr,
601 0 != (powerplay_caps & ATOM_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
602 PHM_PlatformCaps_CombinePCCWithThermalSignal
603 );
604
605 set_hw_cap(
606 hwmgr,
607 0 != (powerplay_caps & ATOM_PP_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
608 PHM_PlatformCaps_LoadPostProductionFirmware
609 );
610
611 set_hw_cap(
612 hwmgr,
613 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DISABLE_USING_ACTUAL_TEMPERATURE_FOR_POWER_CALC),
614 PHM_PlatformCaps_DisableUsingActualTemperatureForPowerCalc
615 );
616
617 return 0;
618 }
619
620 static PP_StateClassificationFlags make_classification_flags(
621 struct pp_hwmgr *hwmgr,
622 USHORT classification,
623 USHORT classification2)
624 {
625 PP_StateClassificationFlags result = 0;
626
627 if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
628 result |= PP_StateClassificationFlag_Boot;
629
630 if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
631 result |= PP_StateClassificationFlag_Thermal;
632
633 if (classification &
634 ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
635 result |= PP_StateClassificationFlag_LimitedPowerSource;
636
637 if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
638 result |= PP_StateClassificationFlag_Rest;
639
640 if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
641 result |= PP_StateClassificationFlag_Forced;
642
643 if (classification & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
644 result |= PP_StateClassificationFlag_3DPerformance;
645
646
647 if (classification & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
648 result |= PP_StateClassificationFlag_ACOverdriveTemplate;
649
650 if (classification & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
651 result |= PP_StateClassificationFlag_Uvd;
652
653 if (classification & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
654 result |= PP_StateClassificationFlag_UvdHD;
655
656 if (classification & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
657 result |= PP_StateClassificationFlag_UvdSD;
658
659 if (classification & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
660 result |= PP_StateClassificationFlag_HD2;
661
662 if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
663 result |= PP_StateClassificationFlag_ACPI;
664
665 if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
666 result |= PP_StateClassificationFlag_LimitedPowerSource_2;
667
668
669 if (classification2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
670 result |= PP_StateClassificationFlag_ULV;
671
672 if (classification2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
673 result |= PP_StateClassificationFlag_UvdMVC;
674
675 return result;
676 }
677
678 static int init_non_clock_fields(struct pp_hwmgr *hwmgr,
679 struct pp_power_state *ps,
680 uint8_t version,
681 const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info) {
682 unsigned long rrr_index;
683 unsigned long tmp;
684
685 ps->classification.ui_label = (le16_to_cpu(pnon_clock_info->usClassification) &
686 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
687 ps->classification.flags = make_classification_flags(hwmgr,
688 le16_to_cpu(pnon_clock_info->usClassification),
689 le16_to_cpu(pnon_clock_info->usClassification2));
690
691 ps->classification.temporary_state = false;
692 ps->classification.to_be_deleted = false;
693 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
694 ATOM_PPLIB_SINGLE_DISPLAY_ONLY;
695
696 ps->validation.singleDisplayOnly = (0 != tmp);
697
698 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
699 ATOM_PPLIB_DISALLOW_ON_DC;
700
701 ps->validation.disallowOnDC = (0 != tmp);
702
703 ps->pcie.lanes = ((le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
704 ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >>
705 ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1;
706
707 ps->pcie.lanes = 0;
708
709 ps->display.disableFrameModulation = false;
710
711 rrr_index = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
712 ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK) >>
713 ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT;
714
715 if (rrr_index != ATOM_PPLIB_LIMITED_REFRESHRATE_UNLIMITED) {
716 static const uint8_t look_up[(ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK >> ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT) + 1] = \
717 { 0, 50, 0 };
718
719 ps->display.refreshrateSource = PP_RefreshrateSource_Explicit;
720 ps->display.explicitRefreshrate = look_up[rrr_index];
721 ps->display.limitRefreshrate = true;
722
723 if (ps->display.explicitRefreshrate == 0)
724 ps->display.limitRefreshrate = false;
725 } else
726 ps->display.limitRefreshrate = false;
727
728 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
729 ATOM_PPLIB_ENABLE_VARIBRIGHT;
730
731 ps->display.enableVariBright = (0 != tmp);
732
733 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
734 ATOM_PPLIB_SWSTATE_MEMORY_DLL_OFF;
735
736 ps->memory.dllOff = (0 != tmp);
737
738 ps->memory.m3arb = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
739 ATOM_PPLIB_M3ARB_MASK) >> ATOM_PPLIB_M3ARB_SHIFT;
740
741 ps->temperatures.min = PP_TEMPERATURE_UNITS_PER_CENTIGRADES *
742 pnon_clock_info->ucMinTemperature;
743
744 ps->temperatures.max = PP_TEMPERATURE_UNITS_PER_CENTIGRADES *
745 pnon_clock_info->ucMaxTemperature;
746
747 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
748 ATOM_PPLIB_SOFTWARE_DISABLE_LOADBALANCING;
749
750 ps->software.disableLoadBalancing = tmp;
751
752 tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) &
753 ATOM_PPLIB_SOFTWARE_ENABLE_SLEEP_FOR_TIMESTAMPS;
754
755 ps->software.enableSleepForTimestamps = (0 != tmp);
756
757 ps->validation.supportedPowerLevels = pnon_clock_info->ucRequiredPower;
758
759 if (ATOM_PPLIB_NONCLOCKINFO_VER1 < version) {
760 ps->uvd_clocks.VCLK = le32_to_cpu(pnon_clock_info->ulVCLK);
761 ps->uvd_clocks.DCLK = le32_to_cpu(pnon_clock_info->ulDCLK);
762 } else {
763 ps->uvd_clocks.VCLK = 0;
764 ps->uvd_clocks.DCLK = 0;
765 }
766
767 return 0;
768 }
769
770 static ULONG size_of_entry_v2(ULONG num_dpm_levels)
771 {
772 return (sizeof(UCHAR) + sizeof(UCHAR) +
773 (num_dpm_levels * sizeof(UCHAR)));
774 }
775
776 static const ATOM_PPLIB_STATE_V2 *get_state_entry_v2(
777 const StateArray * pstate_arrays,
778 ULONG entry_index)
779 {
780 ULONG i;
781 const ATOM_PPLIB_STATE_V2 *pstate;
782
783 pstate = pstate_arrays->states;
784 if (entry_index <= pstate_arrays->ucNumEntries) {
785 for (i = 0; i < entry_index; i++)
786 pstate = (ATOM_PPLIB_STATE_V2 *)(
787 (unsigned long)pstate +
788 size_of_entry_v2(pstate->ucNumDPMLevels));
789 }
790 return pstate;
791 }
792
793 static const unsigned char soft_dummy_pp_table[] = {
794 0xe1, 0x01, 0x06, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x00, 0x4a, 0x00, 0x6c, 0x00, 0x00,
795 0x00, 0x00, 0x00, 0x42, 0x00, 0x02, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00,
796 0x00, 0x4e, 0x00, 0x88, 0x00, 0x00, 0x9e, 0x00, 0x17, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00,
797 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
798 0x00, 0x00, 0x02, 0x02, 0x00, 0x00, 0x01, 0x01, 0x01, 0x00, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00,
799 0x07, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
800 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x18, 0x05, 0x00,
801 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
802 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
803 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00,
804 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe1, 0x00, 0x43, 0x01, 0x00, 0x00, 0x00, 0x00,
805 0x8e, 0x01, 0x00, 0x00, 0xb8, 0x01, 0x00, 0x00, 0x08, 0x30, 0x75, 0x00, 0x80, 0x00, 0xa0, 0x8c,
806 0x00, 0x7e, 0x00, 0x71, 0xa5, 0x00, 0x7c, 0x00, 0xe5, 0xc8, 0x00, 0x70, 0x00, 0x91, 0xf4, 0x00,
807 0x64, 0x00, 0x40, 0x19, 0x01, 0x5a, 0x00, 0x0e, 0x28, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a,
808 0x00, 0x00, 0x09, 0x30, 0x75, 0x00, 0x30, 0x75, 0x00, 0x40, 0x9c, 0x00, 0x40, 0x9c, 0x00, 0x59,
809 0xd8, 0x00, 0x59, 0xd8, 0x00, 0x91, 0xf4, 0x00, 0x91, 0xf4, 0x00, 0x0e, 0x28, 0x01, 0x0e, 0x28,
810 0x01, 0x90, 0x5f, 0x01, 0x90, 0x5f, 0x01, 0x00, 0x77, 0x01, 0x00, 0x77, 0x01, 0xca, 0x91, 0x01,
811 0xca, 0x91, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x80, 0x00, 0x00, 0x7e, 0x00, 0x01,
812 0x7c, 0x00, 0x02, 0x70, 0x00, 0x03, 0x64, 0x00, 0x04, 0x5a, 0x00, 0x05, 0x52, 0x00, 0x06, 0x4a,
813 0x00, 0x07, 0x08, 0x08, 0x00, 0x08, 0x00, 0x01, 0x02, 0x02, 0x02, 0x01, 0x02, 0x02, 0x02, 0x03,
814 0x02, 0x04, 0x02, 0x00, 0x08, 0x40, 0x9c, 0x00, 0x30, 0x75, 0x00, 0x74, 0xb5, 0x00, 0xa0, 0x8c,
815 0x00, 0x60, 0xea, 0x00, 0x74, 0xb5, 0x00, 0x0e, 0x28, 0x01, 0x60, 0xea, 0x00, 0x90, 0x5f, 0x01,
816 0x40, 0x19, 0x01, 0xb2, 0xb0, 0x01, 0x90, 0x5f, 0x01, 0xc0, 0xd4, 0x01, 0x00, 0x77, 0x01, 0x5e,
817 0xff, 0x01, 0xca, 0x91, 0x01, 0x08, 0x80, 0x00, 0x00, 0x7e, 0x00, 0x01, 0x7c, 0x00, 0x02, 0x70,
818 0x00, 0x03, 0x64, 0x00, 0x04, 0x5a, 0x00, 0x05, 0x52, 0x00, 0x06, 0x4a, 0x00, 0x07, 0x00, 0x08,
819 0x80, 0x00, 0x30, 0x75, 0x00, 0x7e, 0x00, 0x40, 0x9c, 0x00, 0x7c, 0x00, 0x59, 0xd8, 0x00, 0x70,
820 0x00, 0xdc, 0x0b, 0x01, 0x64, 0x00, 0x80, 0x38, 0x01, 0x5a, 0x00, 0x80, 0x38, 0x01, 0x52, 0x00,
821 0x80, 0x38, 0x01, 0x4a, 0x00, 0x80, 0x38, 0x01, 0x08, 0x30, 0x75, 0x00, 0x80, 0x00, 0xa0, 0x8c,
822 0x00, 0x7e, 0x00, 0x71, 0xa5, 0x00, 0x7c, 0x00, 0xe5, 0xc8, 0x00, 0x74, 0x00, 0x91, 0xf4, 0x00,
823 0x66, 0x00, 0x40, 0x19, 0x01, 0x58, 0x00, 0x0e, 0x28, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a,
824 0x00
825 };
826
827 static const ATOM_PPLIB_POWERPLAYTABLE *get_powerplay_table(
828 struct pp_hwmgr *hwmgr)
829 {
830 const void *table_addr = hwmgr->soft_pp_table;
831 uint8_t frev, crev;
832 uint16_t size;
833
834 if (!table_addr) {
835 if (hwmgr->chip_id == CHIP_RAVEN) {
836 table_addr = &soft_dummy_pp_table[0];
837 hwmgr->soft_pp_table = &soft_dummy_pp_table[0];
838 hwmgr->soft_pp_table_size = sizeof(soft_dummy_pp_table);
839 } else {
840 table_addr = smu_atom_get_data_table(hwmgr->adev,
841 GetIndexIntoMasterTable(DATA, PowerPlayInfo),
842 &size, &frev, &crev);
843 hwmgr->soft_pp_table = table_addr;
844 hwmgr->soft_pp_table_size = size;
845 }
846 }
847
848 return (const ATOM_PPLIB_POWERPLAYTABLE *)table_addr;
849 }
850
851 int pp_tables_get_response_times(struct pp_hwmgr *hwmgr,
852 uint32_t *vol_rep_time, uint32_t *bb_rep_time)
853 {
854 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_tab = get_powerplay_table(hwmgr);
855
856 PP_ASSERT_WITH_CODE(NULL != powerplay_tab,
857 "Missing PowerPlay Table!", return -EINVAL);
858
859 *vol_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usVoltageTime);
860 *bb_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usBackbiasTime);
861
862 return 0;
863 }
864
865 int pp_tables_get_num_of_entries(struct pp_hwmgr *hwmgr,
866 unsigned long *num_of_entries)
867 {
868 const StateArray *pstate_arrays;
869 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
870
871 if (powerplay_table == NULL)
872 return -1;
873
874 if (powerplay_table->sHeader.ucTableFormatRevision >= 6) {
875 pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) +
876 le16_to_cpu(powerplay_table->usStateArrayOffset));
877
878 *num_of_entries = (unsigned long)(pstate_arrays->ucNumEntries);
879 } else
880 *num_of_entries = (unsigned long)(powerplay_table->ucNumStates);
881
882 return 0;
883 }
884
885 int pp_tables_get_entry(struct pp_hwmgr *hwmgr,
886 unsigned long entry_index,
887 struct pp_power_state *ps,
888 pp_tables_hw_clock_info_callback func)
889 {
890 int i;
891 const StateArray *pstate_arrays;
892 const ATOM_PPLIB_STATE_V2 *pstate_entry_v2;
893 const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info;
894 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
895 int result = 0;
896 int res = 0;
897
898 const ClockInfoArray *pclock_arrays;
899
900 const NonClockInfoArray *pnon_clock_arrays;
901
902 const ATOM_PPLIB_STATE *pstate_entry;
903
904 if (powerplay_table == NULL)
905 return -1;
906
907 ps->classification.bios_index = entry_index;
908
909 if (powerplay_table->sHeader.ucTableFormatRevision >= 6) {
910 pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) +
911 le16_to_cpu(powerplay_table->usStateArrayOffset));
912
913 if (entry_index > pstate_arrays->ucNumEntries)
914 return -1;
915
916 pstate_entry_v2 = get_state_entry_v2(pstate_arrays, entry_index);
917 pclock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) +
918 le16_to_cpu(powerplay_table->usClockInfoArrayOffset));
919
920 pnon_clock_arrays = (NonClockInfoArray *)(((unsigned long)powerplay_table) +
921 le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset));
922
923 pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)(pnon_clock_arrays->nonClockInfo) +
924 (pstate_entry_v2->nonClockInfoIndex * pnon_clock_arrays->ucEntrySize));
925
926 result = init_non_clock_fields(hwmgr, ps, pnon_clock_arrays->ucEntrySize, pnon_clock_info);
927
928 for (i = 0; i < pstate_entry_v2->ucNumDPMLevels; i++) {
929 const void *pclock_info = (const void *)(
930 (unsigned long)(pclock_arrays->clockInfo) +
931 (pstate_entry_v2->clockInfoIndex[i] * pclock_arrays->ucEntrySize));
932 res = func(hwmgr, &ps->hardware, i, pclock_info);
933 if ((0 == result) && (0 != res))
934 result = res;
935 }
936 } else {
937 if (entry_index > powerplay_table->ucNumStates)
938 return -1;
939
940 pstate_entry = (ATOM_PPLIB_STATE *)((unsigned long)powerplay_table +
941 le16_to_cpu(powerplay_table->usStateArrayOffset) +
942 entry_index * powerplay_table->ucStateEntrySize);
943
944 pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)powerplay_table +
945 le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset) +
946 pstate_entry->ucNonClockStateIndex *
947 powerplay_table->ucNonClockSize);
948
949 result = init_non_clock_fields(hwmgr, ps,
950 powerplay_table->ucNonClockSize,
951 pnon_clock_info);
952
953 for (i = 0; i < powerplay_table->ucStateEntrySize-1; i++) {
954 const void *pclock_info = (const void *)((unsigned long)powerplay_table +
955 le16_to_cpu(powerplay_table->usClockInfoArrayOffset) +
956 pstate_entry->ucClockStateIndices[i] *
957 powerplay_table->ucClockInfoSize);
958
959 int res = func(hwmgr, &ps->hardware, i, pclock_info);
960
961 if ((0 == result) && (0 != res))
962 result = res;
963 }
964 }
965
966 if ((0 == result) && (0 != (ps->classification.flags & PP_StateClassificationFlag_Boot))) {
967 if (hwmgr->chip_family < AMDGPU_FAMILY_RV)
968 result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(ps->hardware));
969 }
970
971 return result;
972 }
973
974 static int init_powerplay_tables(
975 struct pp_hwmgr *hwmgr,
976 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table
977 )
978 {
979 return 0;
980 }
981
982
983 static int init_thermal_controller(
984 struct pp_hwmgr *hwmgr,
985 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
986 {
987 return 0;
988 }
989
990 static int init_overdrive_limits_V1_4(struct pp_hwmgr *hwmgr,
991 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table,
992 const ATOM_FIRMWARE_INFO_V1_4 *fw_info)
993 {
994 hwmgr->platform_descriptor.overdriveLimit.engineClock =
995 le32_to_cpu(fw_info->ulASICMaxEngineClock);
996
997 hwmgr->platform_descriptor.overdriveLimit.memoryClock =
998 le32_to_cpu(fw_info->ulASICMaxMemoryClock);
999
1000 hwmgr->platform_descriptor.maxOverdriveVDDC =
1001 le32_to_cpu(fw_info->ul3DAccelerationEngineClock) & 0x7FF;
1002
1003 hwmgr->platform_descriptor.minOverdriveVDDC =
1004 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
1005
1006 hwmgr->platform_descriptor.maxOverdriveVDDC =
1007 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
1008
1009 hwmgr->platform_descriptor.overdriveVDDCStep = 0;
1010 return 0;
1011 }
1012
1013 static int init_overdrive_limits_V2_1(struct pp_hwmgr *hwmgr,
1014 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table,
1015 const ATOM_FIRMWARE_INFO_V2_1 *fw_info)
1016 {
1017 const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3;
1018 const ATOM_PPLIB_EXTENDEDHEADER *header;
1019
1020 if (le16_to_cpu(powerplay_table->usTableSize) <
1021 sizeof(ATOM_PPLIB_POWERPLAYTABLE3))
1022 return 0;
1023
1024 powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table;
1025
1026 if (0 == powerplay_table3->usExtendendedHeaderOffset)
1027 return 0;
1028
1029 header = (ATOM_PPLIB_EXTENDEDHEADER *)(((unsigned long) powerplay_table) +
1030 le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset));
1031
1032 hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(header->ulMaxEngineClock);
1033 hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(header->ulMaxMemoryClock);
1034
1035
1036 hwmgr->platform_descriptor.minOverdriveVDDC = 0;
1037 hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
1038 hwmgr->platform_descriptor.overdriveVDDCStep = 0;
1039
1040 return 0;
1041 }
1042
1043 static int init_overdrive_limits(struct pp_hwmgr *hwmgr,
1044 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
1045 {
1046 int result = 0;
1047 uint8_t frev, crev;
1048 uint16_t size;
1049
1050 const ATOM_COMMON_TABLE_HEADER *fw_info = NULL;
1051
1052 hwmgr->platform_descriptor.overdriveLimit.engineClock = 0;
1053 hwmgr->platform_descriptor.overdriveLimit.memoryClock = 0;
1054 hwmgr->platform_descriptor.minOverdriveVDDC = 0;
1055 hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
1056 hwmgr->platform_descriptor.overdriveVDDCStep = 0;
1057
1058 if (hwmgr->chip_id == CHIP_RAVEN)
1059 return 0;
1060
1061 /* We assume here that fw_info is unchanged if this call fails.*/
1062 fw_info = smu_atom_get_data_table(hwmgr->adev,
1063 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1064 &size, &frev, &crev);
1065
1066 if ((fw_info->ucTableFormatRevision == 1)
1067 && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V1_4)))
1068 result = init_overdrive_limits_V1_4(hwmgr,
1069 powerplay_table,
1070 (const ATOM_FIRMWARE_INFO_V1_4 *)fw_info);
1071
1072 else if ((fw_info->ucTableFormatRevision == 2)
1073 && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1)))
1074 result = init_overdrive_limits_V2_1(hwmgr,
1075 powerplay_table,
1076 (const ATOM_FIRMWARE_INFO_V2_1 *)fw_info);
1077
1078 return result;
1079 }
1080
1081 static int get_uvd_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
1082 struct phm_uvd_clock_voltage_dependency_table **ptable,
1083 const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *table,
1084 const UVDClockInfoArray *array)
1085 {
1086 unsigned long table_size, i;
1087 struct phm_uvd_clock_voltage_dependency_table *uvd_table;
1088
1089 table_size = sizeof(unsigned long) +
1090 sizeof(struct phm_uvd_clock_voltage_dependency_table) *
1091 table->numEntries;
1092
1093 uvd_table = kzalloc(table_size, GFP_KERNEL);
1094 if (NULL == uvd_table)
1095 return -ENOMEM;
1096
1097 uvd_table->count = table->numEntries;
1098
1099 for (i = 0; i < table->numEntries; i++) {
1100 const UVDClockInfo *entry =
1101 &array->entries[table->entries[i].ucUVDClockInfoIndex];
1102 uvd_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
1103 uvd_table->entries[i].vclk = ((unsigned long)entry->ucVClkHigh << 16)
1104 | le16_to_cpu(entry->usVClkLow);
1105 uvd_table->entries[i].dclk = ((unsigned long)entry->ucDClkHigh << 16)
1106 | le16_to_cpu(entry->usDClkLow);
1107 }
1108
1109 *ptable = uvd_table;
1110
1111 return 0;
1112 }
1113
1114 static int get_vce_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
1115 struct phm_vce_clock_voltage_dependency_table **ptable,
1116 const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table,
1117 const VCEClockInfoArray *array)
1118 {
1119 unsigned long table_size, i;
1120 struct phm_vce_clock_voltage_dependency_table *vce_table = NULL;
1121
1122 table_size = sizeof(unsigned long) +
1123 sizeof(struct phm_vce_clock_voltage_dependency_table)
1124 * table->numEntries;
1125
1126 vce_table = kzalloc(table_size, GFP_KERNEL);
1127 if (NULL == vce_table)
1128 return -ENOMEM;
1129
1130 vce_table->count = table->numEntries;
1131 for (i = 0; i < table->numEntries; i++) {
1132 const VCEClockInfo *entry = &array->entries[table->entries[i].ucVCEClockInfoIndex];
1133
1134 vce_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
1135 vce_table->entries[i].evclk = ((unsigned long)entry->ucEVClkHigh << 16)
1136 | le16_to_cpu(entry->usEVClkLow);
1137 vce_table->entries[i].ecclk = ((unsigned long)entry->ucECClkHigh << 16)
1138 | le16_to_cpu(entry->usECClkLow);
1139 }
1140
1141 *ptable = vce_table;
1142
1143 return 0;
1144 }
1145
1146 static int get_samu_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
1147 struct phm_samu_clock_voltage_dependency_table **ptable,
1148 const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *table)
1149 {
1150 unsigned long table_size, i;
1151 struct phm_samu_clock_voltage_dependency_table *samu_table;
1152
1153 table_size = sizeof(unsigned long) +
1154 sizeof(struct phm_samu_clock_voltage_dependency_table) *
1155 table->numEntries;
1156
1157 samu_table = kzalloc(table_size, GFP_KERNEL);
1158 if (NULL == samu_table)
1159 return -ENOMEM;
1160
1161 samu_table->count = table->numEntries;
1162
1163 for (i = 0; i < table->numEntries; i++) {
1164 samu_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
1165 samu_table->entries[i].samclk = ((unsigned long)table->entries[i].ucSAMClockHigh << 16)
1166 | le16_to_cpu(table->entries[i].usSAMClockLow);
1167 }
1168
1169 *ptable = samu_table;
1170
1171 return 0;
1172 }
1173
1174 static int get_acp_clock_voltage_limit_table(struct pp_hwmgr *hwmgr,
1175 struct phm_acp_clock_voltage_dependency_table **ptable,
1176 const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *table)
1177 {
1178 unsigned table_size, i;
1179 struct phm_acp_clock_voltage_dependency_table *acp_table;
1180
1181 table_size = sizeof(unsigned long) +
1182 sizeof(struct phm_acp_clock_voltage_dependency_table) *
1183 table->numEntries;
1184
1185 acp_table = kzalloc(table_size, GFP_KERNEL);
1186 if (NULL == acp_table)
1187 return -ENOMEM;
1188
1189 acp_table->count = (unsigned long)table->numEntries;
1190
1191 for (i = 0; i < table->numEntries; i++) {
1192 acp_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage);
1193 acp_table->entries[i].acpclk = ((unsigned long)table->entries[i].ucACPClockHigh << 16)
1194 | le16_to_cpu(table->entries[i].usACPClockLow);
1195 }
1196
1197 *ptable = acp_table;
1198
1199 return 0;
1200 }
1201
1202 static int init_clock_voltage_dependency(struct pp_hwmgr *hwmgr,
1203 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
1204 {
1205 ATOM_PPLIB_Clock_Voltage_Dependency_Table *table;
1206 ATOM_PPLIB_Clock_Voltage_Limit_Table *limit_table;
1207 int result = 0;
1208
1209 uint16_t vce_clock_info_array_offset;
1210 uint16_t uvd_clock_info_array_offset;
1211 uint16_t table_offset;
1212
1213 hwmgr->dyn_state.vddc_dependency_on_sclk = NULL;
1214 hwmgr->dyn_state.vddci_dependency_on_mclk = NULL;
1215 hwmgr->dyn_state.vddc_dependency_on_mclk = NULL;
1216 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
1217 hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL;
1218 hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL;
1219 hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL;
1220 hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL;
1221 hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL;
1222 hwmgr->dyn_state.ppm_parameter_table = NULL;
1223 hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL;
1224
1225 vce_clock_info_array_offset = get_vce_clock_info_array_offset(
1226 hwmgr, powerplay_table);
1227 table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr,
1228 powerplay_table);
1229 if (vce_clock_info_array_offset > 0 && table_offset > 0) {
1230 const VCEClockInfoArray *array = (const VCEClockInfoArray *)
1231 (((unsigned long) powerplay_table) +
1232 vce_clock_info_array_offset);
1233 const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table =
1234 (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
1235 (((unsigned long) powerplay_table) + table_offset);
1236 result = get_vce_clock_voltage_limit_table(hwmgr,
1237 &hwmgr->dyn_state.vce_clock_voltage_dependency_table,
1238 table, array);
1239 }
1240
1241 uvd_clock_info_array_offset = get_uvd_clock_info_array_offset(hwmgr, powerplay_table);
1242 table_offset = get_uvd_clock_voltage_limit_table_offset(hwmgr, powerplay_table);
1243
1244 if (uvd_clock_info_array_offset > 0 && table_offset > 0) {
1245 const UVDClockInfoArray *array = (const UVDClockInfoArray *)
1246 (((unsigned long) powerplay_table) +
1247 uvd_clock_info_array_offset);
1248 const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *ptable =
1249 (const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
1250 (((unsigned long) powerplay_table) + table_offset);
1251 result = get_uvd_clock_voltage_limit_table(hwmgr,
1252 &hwmgr->dyn_state.uvd_clock_voltage_dependency_table, ptable, array);
1253 }
1254
1255 table_offset = get_samu_clock_voltage_limit_table_offset(hwmgr,
1256 powerplay_table);
1257
1258 if (table_offset > 0) {
1259 const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *ptable =
1260 (const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
1261 (((unsigned long) powerplay_table) + table_offset);
1262 result = get_samu_clock_voltage_limit_table(hwmgr,
1263 &hwmgr->dyn_state.samu_clock_voltage_dependency_table, ptable);
1264 }
1265
1266 table_offset = get_acp_clock_voltage_limit_table_offset(hwmgr,
1267 powerplay_table);
1268
1269 if (table_offset > 0) {
1270 const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *ptable =
1271 (const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
1272 (((unsigned long) powerplay_table) + table_offset);
1273 result = get_acp_clock_voltage_limit_table(hwmgr,
1274 &hwmgr->dyn_state.acp_clock_voltage_dependency_table, ptable);
1275 }
1276
1277 table_offset = get_cacp_tdp_table_offset(hwmgr, powerplay_table);
1278 if (table_offset > 0) {
1279 UCHAR rev_id = *(UCHAR *)(((unsigned long)powerplay_table) + table_offset);
1280
1281 if (rev_id > 0) {
1282 const ATOM_PPLIB_POWERTUNE_Table_V1 *tune_table =
1283 (const ATOM_PPLIB_POWERTUNE_Table_V1 *)
1284 (((unsigned long) powerplay_table) + table_offset);
1285 result = get_cac_tdp_table(hwmgr, &hwmgr->dyn_state.cac_dtp_table,
1286 &tune_table->power_tune_table,
1287 le16_to_cpu(tune_table->usMaximumPowerDeliveryLimit));
1288 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
1289 le16_to_cpu(tune_table->usTjMax);
1290 } else {
1291 const ATOM_PPLIB_POWERTUNE_Table *tune_table =
1292 (const ATOM_PPLIB_POWERTUNE_Table *)
1293 (((unsigned long) powerplay_table) + table_offset);
1294 result = get_cac_tdp_table(hwmgr,
1295 &hwmgr->dyn_state.cac_dtp_table,
1296 &tune_table->power_tune_table, 255);
1297 }
1298 }
1299
1300 if (le16_to_cpu(powerplay_table->usTableSize) >=
1301 sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) {
1302 const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 =
1303 (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table;
1304 if (0 != powerplay_table4->usVddcDependencyOnSCLKOffset) {
1305 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1306 (((unsigned long) powerplay_table4) +
1307 le16_to_cpu(powerplay_table4->usVddcDependencyOnSCLKOffset));
1308 result = get_clock_voltage_dependency_table(hwmgr,
1309 &hwmgr->dyn_state.vddc_dependency_on_sclk, table);
1310 }
1311
1312 if (result == 0 && (0 != powerplay_table4->usVddciDependencyOnMCLKOffset)) {
1313 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1314 (((unsigned long) powerplay_table4) +
1315 le16_to_cpu(powerplay_table4->usVddciDependencyOnMCLKOffset));
1316 result = get_clock_voltage_dependency_table(hwmgr,
1317 &hwmgr->dyn_state.vddci_dependency_on_mclk, table);
1318 }
1319
1320 if (result == 0 && (0 != powerplay_table4->usVddcDependencyOnMCLKOffset)) {
1321 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1322 (((unsigned long) powerplay_table4) +
1323 le16_to_cpu(powerplay_table4->usVddcDependencyOnMCLKOffset));
1324 result = get_clock_voltage_dependency_table(hwmgr,
1325 &hwmgr->dyn_state.vddc_dependency_on_mclk, table);
1326 }
1327
1328 if (result == 0 && (0 != powerplay_table4->usMaxClockVoltageOnDCOffset)) {
1329 limit_table = (ATOM_PPLIB_Clock_Voltage_Limit_Table *)
1330 (((unsigned long) powerplay_table4) +
1331 le16_to_cpu(powerplay_table4->usMaxClockVoltageOnDCOffset));
1332 result = get_clock_voltage_limit(hwmgr,
1333 &hwmgr->dyn_state.max_clock_voltage_on_dc, limit_table);
1334 }
1335
1336 if (result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) &&
1337 (0 != hwmgr->dyn_state.vddc_dependency_on_mclk->count))
1338 result = get_valid_clk(hwmgr, &hwmgr->dyn_state.valid_mclk_values,
1339 hwmgr->dyn_state.vddc_dependency_on_mclk);
1340
1341 if(result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_sclk) &&
1342 (0 != hwmgr->dyn_state.vddc_dependency_on_sclk->count))
1343 result = get_valid_clk(hwmgr,
1344 &hwmgr->dyn_state.valid_sclk_values,
1345 hwmgr->dyn_state.vddc_dependency_on_sclk);
1346
1347 if (result == 0 && (0 != powerplay_table4->usMvddDependencyOnMCLKOffset)) {
1348 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1349 (((unsigned long) powerplay_table4) +
1350 le16_to_cpu(powerplay_table4->usMvddDependencyOnMCLKOffset));
1351 result = get_clock_voltage_dependency_table(hwmgr,
1352 &hwmgr->dyn_state.mvdd_dependency_on_mclk, table);
1353 }
1354 }
1355
1356 table_offset = get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(hwmgr,
1357 powerplay_table);
1358
1359 if (table_offset > 0) {
1360 table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
1361 (((unsigned long) powerplay_table) + table_offset);
1362 result = get_clock_voltage_dependency_table(hwmgr,
1363 &hwmgr->dyn_state.vdd_gfx_dependency_on_sclk, table);
1364 }
1365
1366 return result;
1367 }
1368
1369 static int get_cac_leakage_table(struct pp_hwmgr *hwmgr,
1370 struct phm_cac_leakage_table **ptable,
1371 const ATOM_PPLIB_CAC_Leakage_Table *table)
1372 {
1373 struct phm_cac_leakage_table *cac_leakage_table;
1374 unsigned long table_size, i;
1375
1376 if (hwmgr == NULL || table == NULL || ptable == NULL)
1377 return -EINVAL;
1378
1379 table_size = sizeof(ULONG) +
1380 (sizeof(struct phm_cac_leakage_table) * table->ucNumEntries);
1381
1382 cac_leakage_table = kzalloc(table_size, GFP_KERNEL);
1383
1384 if (cac_leakage_table == NULL)
1385 return -ENOMEM;
1386
1387 cac_leakage_table->count = (ULONG)table->ucNumEntries;
1388
1389 for (i = 0; i < cac_leakage_table->count; i++) {
1390 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1391 PHM_PlatformCaps_EVV)) {
1392 cac_leakage_table->entries[i].Vddc1 = le16_to_cpu(table->entries[i].usVddc1);
1393 cac_leakage_table->entries[i].Vddc2 = le16_to_cpu(table->entries[i].usVddc2);
1394 cac_leakage_table->entries[i].Vddc3 = le16_to_cpu(table->entries[i].usVddc3);
1395 } else {
1396 cac_leakage_table->entries[i].Vddc = le16_to_cpu(table->entries[i].usVddc);
1397 cac_leakage_table->entries[i].Leakage = le32_to_cpu(table->entries[i].ulLeakageValue);
1398 }
1399 }
1400
1401 *ptable = cac_leakage_table;
1402
1403 return 0;
1404 }
1405
1406 static int get_platform_power_management_table(struct pp_hwmgr *hwmgr,
1407 ATOM_PPLIB_PPM_Table *atom_ppm_table)
1408 {
1409 struct phm_ppm_table *ptr = kzalloc(sizeof(struct phm_ppm_table), GFP_KERNEL);
1410
1411 if (NULL == ptr)
1412 return -ENOMEM;
1413
1414 ptr->ppm_design = atom_ppm_table->ucPpmDesign;
1415 ptr->cpu_core_number = le16_to_cpu(atom_ppm_table->usCpuCoreNumber);
1416 ptr->platform_tdp = le32_to_cpu(atom_ppm_table->ulPlatformTDP);
1417 ptr->small_ac_platform_tdp = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDP);
1418 ptr->platform_tdc = le32_to_cpu(atom_ppm_table->ulPlatformTDC);
1419 ptr->small_ac_platform_tdc = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDC);
1420 ptr->apu_tdp = le32_to_cpu(atom_ppm_table->ulApuTDP);
1421 ptr->dgpu_tdp = le32_to_cpu(atom_ppm_table->ulDGpuTDP);
1422 ptr->dgpu_ulv_power = le32_to_cpu(atom_ppm_table->ulDGpuUlvPower);
1423 ptr->tj_max = le32_to_cpu(atom_ppm_table->ulTjmax);
1424 hwmgr->dyn_state.ppm_parameter_table = ptr;
1425
1426 return 0;
1427 }
1428
1429 static int init_dpm2_parameters(struct pp_hwmgr *hwmgr,
1430 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
1431 {
1432 int result = 0;
1433
1434 if (le16_to_cpu(powerplay_table->usTableSize) >=
1435 sizeof(ATOM_PPLIB_POWERPLAYTABLE5)) {
1436 const ATOM_PPLIB_POWERPLAYTABLE5 *ptable5 =
1437 (const ATOM_PPLIB_POWERPLAYTABLE5 *)powerplay_table;
1438 const ATOM_PPLIB_POWERPLAYTABLE4 *ptable4 =
1439 (const ATOM_PPLIB_POWERPLAYTABLE4 *)
1440 (&ptable5->basicTable4);
1441 const ATOM_PPLIB_POWERPLAYTABLE3 *ptable3 =
1442 (const ATOM_PPLIB_POWERPLAYTABLE3 *)
1443 (&ptable4->basicTable3);
1444 const ATOM_PPLIB_EXTENDEDHEADER *extended_header;
1445 uint16_t table_offset;
1446 ATOM_PPLIB_PPM_Table *atom_ppm_table;
1447
1448 hwmgr->platform_descriptor.TDPLimit = le32_to_cpu(ptable5->ulTDPLimit);
1449 hwmgr->platform_descriptor.nearTDPLimit = le32_to_cpu(ptable5->ulNearTDPLimit);
1450
1451 hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(ptable5->usTDPODLimit);
1452 hwmgr->platform_descriptor.TDPAdjustment = 0;
1453
1454 hwmgr->platform_descriptor.VidAdjustment = 0;
1455 hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
1456 hwmgr->platform_descriptor.VidMinLimit = 0;
1457 hwmgr->platform_descriptor.VidMaxLimit = 1500000;
1458 hwmgr->platform_descriptor.VidStep = 6250;
1459
1460 hwmgr->platform_descriptor.nearTDPLimitAdjusted = le32_to_cpu(ptable5->ulNearTDPLimit);
1461
1462 if (hwmgr->platform_descriptor.TDPODLimit != 0)
1463 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1464 PHM_PlatformCaps_PowerControl);
1465
1466 hwmgr->platform_descriptor.SQRampingThreshold = le32_to_cpu(ptable5->ulSQRampingThreshold);
1467
1468 hwmgr->platform_descriptor.CACLeakage = le32_to_cpu(ptable5->ulCACLeakage);
1469
1470 hwmgr->dyn_state.cac_leakage_table = NULL;
1471
1472 if (0 != ptable5->usCACLeakageTableOffset) {
1473 const ATOM_PPLIB_CAC_Leakage_Table *pCAC_leakage_table =
1474 (ATOM_PPLIB_CAC_Leakage_Table *)(((unsigned long)ptable5) +
1475 le16_to_cpu(ptable5->usCACLeakageTableOffset));
1476 result = get_cac_leakage_table(hwmgr,
1477 &hwmgr->dyn_state.cac_leakage_table, pCAC_leakage_table);
1478 }
1479
1480 hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(ptable5->usLoadLineSlope);
1481
1482 hwmgr->dyn_state.ppm_parameter_table = NULL;
1483
1484 if (0 != ptable3->usExtendendedHeaderOffset) {
1485 extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *)
1486 (((unsigned long)powerplay_table) +
1487 le16_to_cpu(ptable3->usExtendendedHeaderOffset));
1488 if ((extended_header->usPPMTableOffset > 0) &&
1489 le16_to_cpu(extended_header->usSize) >=
1490 SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) {
1491 table_offset = le16_to_cpu(extended_header->usPPMTableOffset);
1492 atom_ppm_table = (ATOM_PPLIB_PPM_Table *)
1493 (((unsigned long)powerplay_table) + table_offset);
1494 if (0 == get_platform_power_management_table(hwmgr, atom_ppm_table))
1495 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1496 PHM_PlatformCaps_EnablePlatformPowerManagement);
1497 }
1498 }
1499 }
1500 return result;
1501 }
1502
1503 static int init_phase_shedding_table(struct pp_hwmgr *hwmgr,
1504 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table)
1505 {
1506 if (le16_to_cpu(powerplay_table->usTableSize) >=
1507 sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) {
1508 const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 =
1509 (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table;
1510
1511 if (0 != powerplay_table4->usVddcPhaseShedLimitsTableOffset) {
1512 const ATOM_PPLIB_PhaseSheddingLimits_Table *ptable =
1513 (ATOM_PPLIB_PhaseSheddingLimits_Table *)
1514 (((unsigned long)powerplay_table4) +
1515 le16_to_cpu(powerplay_table4->usVddcPhaseShedLimitsTableOffset));
1516 struct phm_phase_shedding_limits_table *table;
1517 unsigned long size, i;
1518
1519
1520 size = sizeof(unsigned long) +
1521 (sizeof(struct phm_phase_shedding_limits_table) *
1522 ptable->ucNumEntries);
1523
1524 table = kzalloc(size, GFP_KERNEL);
1525
1526 if (table == NULL)
1527 return -ENOMEM;
1528
1529 table->count = (unsigned long)ptable->ucNumEntries;
1530
1531 for (i = 0; i < table->count; i++) {
1532 table->entries[i].Voltage = (unsigned long)le16_to_cpu(ptable->entries[i].usVoltage);
1533 table->entries[i].Sclk = ((unsigned long)ptable->entries[i].ucSclkHigh << 16)
1534 | le16_to_cpu(ptable->entries[i].usSclkLow);
1535 table->entries[i].Mclk = ((unsigned long)ptable->entries[i].ucMclkHigh << 16)
1536 | le16_to_cpu(ptable->entries[i].usMclkLow);
1537 }
1538 hwmgr->dyn_state.vddc_phase_shed_limits_table = table;
1539 }
1540 }
1541
1542 return 0;
1543 }
1544
1545 static int get_number_of_vce_state_table_entries(
1546 struct pp_hwmgr *hwmgr)
1547 {
1548 const ATOM_PPLIB_POWERPLAYTABLE *table =
1549 get_powerplay_table(hwmgr);
1550 const ATOM_PPLIB_VCE_State_Table *vce_table =
1551 get_vce_state_table(hwmgr, table);
1552
1553 if (vce_table)
1554 return vce_table->numEntries;
1555
1556 return 0;
1557 }
1558
1559 static int get_vce_state_table_entry(struct pp_hwmgr *hwmgr,
1560 unsigned long i,
1561 struct amd_vce_state *vce_state,
1562 void **clock_info,
1563 unsigned long *flag)
1564 {
1565 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr);
1566
1567 const ATOM_PPLIB_VCE_State_Table *vce_state_table = get_vce_state_table(hwmgr, powerplay_table);
1568
1569 unsigned short vce_clock_info_array_offset = get_vce_clock_info_array_offset(hwmgr, powerplay_table);
1570
1571 const VCEClockInfoArray *vce_clock_info_array = (const VCEClockInfoArray *)(((unsigned long) powerplay_table) + vce_clock_info_array_offset);
1572
1573 const ClockInfoArray *clock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) +
1574 le16_to_cpu(powerplay_table->usClockInfoArrayOffset));
1575
1576 const ATOM_PPLIB_VCE_State_Record *record = &vce_state_table->entries[i];
1577
1578 const VCEClockInfo *vce_clock_info = &vce_clock_info_array->entries[record->ucVCEClockInfoIndex];
1579
1580 unsigned long clockInfoIndex = record->ucClockInfoIndex & 0x3F;
1581
1582 *flag = (record->ucClockInfoIndex >> NUM_BITS_CLOCK_INFO_ARRAY_INDEX);
1583
1584 vce_state->evclk = ((uint32_t)vce_clock_info->ucEVClkHigh << 16) | le16_to_cpu(vce_clock_info->usEVClkLow);
1585 vce_state->ecclk = ((uint32_t)vce_clock_info->ucECClkHigh << 16) | le16_to_cpu(vce_clock_info->usECClkLow);
1586
1587 *clock_info = (void *)((unsigned long)(clock_arrays->clockInfo) + (clockInfoIndex * clock_arrays->ucEntrySize));
1588
1589 return 0;
1590 }
1591
1592
1593 static int pp_tables_initialize(struct pp_hwmgr *hwmgr)
1594 {
1595 int result;
1596 const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table;
1597
1598 if (hwmgr->chip_id == CHIP_RAVEN)
1599 return 0;
1600
1601 hwmgr->need_pp_table_upload = true;
1602
1603 powerplay_table = get_powerplay_table(hwmgr);
1604
1605 result = init_powerplay_tables(hwmgr, powerplay_table);
1606
1607 PP_ASSERT_WITH_CODE((result == 0),
1608 "init_powerplay_tables failed", return result);
1609
1610 result = set_platform_caps(hwmgr,
1611 le32_to_cpu(powerplay_table->ulPlatformCaps));
1612
1613 PP_ASSERT_WITH_CODE((result == 0),
1614 "set_platform_caps failed", return result);
1615
1616 result = init_thermal_controller(hwmgr, powerplay_table);
1617
1618 PP_ASSERT_WITH_CODE((result == 0),
1619 "init_thermal_controller failed", return result);
1620
1621 result = init_overdrive_limits(hwmgr, powerplay_table);
1622
1623 PP_ASSERT_WITH_CODE((result == 0),
1624 "init_overdrive_limits failed", return result);
1625
1626 result = init_clock_voltage_dependency(hwmgr,
1627 powerplay_table);
1628
1629 PP_ASSERT_WITH_CODE((result == 0),
1630 "init_clock_voltage_dependency failed", return result);
1631
1632 result = init_dpm2_parameters(hwmgr, powerplay_table);
1633
1634 PP_ASSERT_WITH_CODE((result == 0),
1635 "init_dpm2_parameters failed", return result);
1636
1637 result = init_phase_shedding_table(hwmgr, powerplay_table);
1638
1639 PP_ASSERT_WITH_CODE((result == 0),
1640 "init_phase_shedding_table failed", return result);
1641
1642 return result;
1643 }
1644
1645 static int pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
1646 {
1647 if (hwmgr->chip_id == CHIP_RAVEN)
1648 return 0;
1649
1650 kfree(hwmgr->dyn_state.vddc_dependency_on_sclk);
1651 hwmgr->dyn_state.vddc_dependency_on_sclk = NULL;
1652
1653 kfree(hwmgr->dyn_state.vddci_dependency_on_mclk);
1654 hwmgr->dyn_state.vddci_dependency_on_mclk = NULL;
1655
1656 kfree(hwmgr->dyn_state.vddc_dependency_on_mclk);
1657 hwmgr->dyn_state.vddc_dependency_on_mclk = NULL;
1658
1659 kfree(hwmgr->dyn_state.mvdd_dependency_on_mclk);
1660 hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL;
1661
1662 kfree(hwmgr->dyn_state.valid_mclk_values);
1663 hwmgr->dyn_state.valid_mclk_values = NULL;
1664
1665 kfree(hwmgr->dyn_state.valid_sclk_values);
1666 hwmgr->dyn_state.valid_sclk_values = NULL;
1667
1668 kfree(hwmgr->dyn_state.cac_leakage_table);
1669 hwmgr->dyn_state.cac_leakage_table = NULL;
1670
1671 kfree(hwmgr->dyn_state.vddc_phase_shed_limits_table);
1672 hwmgr->dyn_state.vddc_phase_shed_limits_table = NULL;
1673
1674 kfree(hwmgr->dyn_state.vce_clock_voltage_dependency_table);
1675 hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL;
1676
1677 kfree(hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
1678 hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL;
1679
1680 kfree(hwmgr->dyn_state.samu_clock_voltage_dependency_table);
1681 hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL;
1682
1683 kfree(hwmgr->dyn_state.acp_clock_voltage_dependency_table);
1684 hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL;
1685
1686 kfree(hwmgr->dyn_state.cac_dtp_table);
1687 hwmgr->dyn_state.cac_dtp_table = NULL;
1688
1689 kfree(hwmgr->dyn_state.ppm_parameter_table);
1690 hwmgr->dyn_state.ppm_parameter_table = NULL;
1691
1692 kfree(hwmgr->dyn_state.vdd_gfx_dependency_on_sclk);
1693 hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL;
1694
1695 return 0;
1696 }
1697
1698 const struct pp_table_func pptable_funcs = {
1699 .pptable_init = pp_tables_initialize,
1700 .pptable_fini = pp_tables_uninitialize,
1701 .pptable_get_number_of_vce_state_table_entries =
1702 get_number_of_vce_state_table_entries,
1703 .pptable_get_vce_state_table_entry =
1704 get_vce_state_table_entry,
1705 };
1706