]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/gpu/drm/bridge/ti-sn65dsi83.c
Merge tag 'drm-misc-fixes-2022-05-26' of git://anongit.freedesktop.org/drm/drm-misc...
[people/ms/linux.git] / drivers / gpu / drm / bridge / ti-sn65dsi83.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * TI SN65DSI83,84,85 driver
4 *
5 * Currently supported:
6 * - SN65DSI83
7 * = 1x Single-link DSI ~ 1x Single-link LVDS
8 * - Supported
9 * - Single-link LVDS mode tested
10 * - SN65DSI84
11 * = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS
12 * - Supported
13 * - Dual-link LVDS mode tested
14 * - 2x Single-link LVDS mode unsupported
15 * (should be easy to add by someone who has the HW)
16 * - SN65DSI85
17 * = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS
18 * - Unsupported
19 * (should be easy to add by someone who has the HW)
20 *
21 * Copyright (C) 2021 Marek Vasut <marex@denx.de>
22 *
23 * Based on previous work of:
24 * Valentin Raevsky <valentin@compulab.co.il>
25 * Philippe Schenker <philippe.schenker@toradex.com>
26 */
27
28 #include <linux/bits.h>
29 #include <linux/clk.h>
30 #include <linux/gpio/consumer.h>
31 #include <linux/i2c.h>
32 #include <linux/module.h>
33 #include <linux/of_device.h>
34 #include <linux/of_graph.h>
35 #include <linux/regmap.h>
36 #include <linux/regulator/consumer.h>
37
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_bridge.h>
40 #include <drm/drm_mipi_dsi.h>
41 #include <drm/drm_of.h>
42 #include <drm/drm_panel.h>
43 #include <drm/drm_print.h>
44 #include <drm/drm_probe_helper.h>
45
46 /* ID registers */
47 #define REG_ID(n) (0x00 + (n))
48 /* Reset and clock registers */
49 #define REG_RC_RESET 0x09
50 #define REG_RC_RESET_SOFT_RESET BIT(0)
51 #define REG_RC_LVDS_PLL 0x0a
52 #define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7)
53 #define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1)
54 #define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0)
55 #define REG_RC_DSI_CLK 0x0b
56 #define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3)
57 #define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3)
58 #define REG_RC_PLL_EN 0x0d
59 #define REG_RC_PLL_EN_PLL_EN BIT(0)
60 /* DSI registers */
61 #define REG_DSI_LANE 0x10
62 #define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */
63 #define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */
64 #define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */
65 #define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5)
66 #define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3)
67 #define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1)
68 #define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0)
69 #define REG_DSI_EQ 0x11
70 #define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6)
71 #define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2)
72 #define REG_DSI_CLK 0x12
73 #define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff)
74 /* LVDS registers */
75 #define REG_LVDS_FMT 0x18
76 #define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7)
77 #define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6)
78 #define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5)
79 #define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */
80 #define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3)
81 #define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2)
82 #define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1)
83 #define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0)
84 #define REG_LVDS_VCOM 0x19
85 #define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6)
86 #define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4)
87 #define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2)
88 #define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3)
89 #define REG_LVDS_LANE 0x1a
90 #define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6)
91 #define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5)
92 #define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4)
93 #define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1)
94 #define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0)
95 #define REG_LVDS_CM 0x1b
96 #define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4)
97 #define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3)
98 /* Video registers */
99 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20
100 #define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21
101 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24
102 #define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25
103 #define REG_VID_CHA_SYNC_DELAY_LOW 0x28
104 #define REG_VID_CHA_SYNC_DELAY_HIGH 0x29
105 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c
106 #define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d
107 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30
108 #define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31
109 #define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34
110 #define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36
111 #define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38
112 #define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a
113 #define REG_VID_CHA_TEST_PATTERN 0x3c
114 /* IRQ registers */
115 #define REG_IRQ_GLOBAL 0xe0
116 #define REG_IRQ_GLOBAL_IRQ_EN BIT(0)
117 #define REG_IRQ_EN 0xe1
118 #define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7)
119 #define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6)
120 #define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5)
121 #define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4)
122 #define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3)
123 #define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2)
124 #define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0)
125 #define REG_IRQ_STAT 0xe5
126 #define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7)
127 #define REG_IRQ_STAT_CHA_CRC_ERR BIT(6)
128 #define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5)
129 #define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4)
130 #define REG_IRQ_STAT_CHA_LLP_ERR BIT(3)
131 #define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2)
132 #define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0)
133
134 enum sn65dsi83_model {
135 MODEL_SN65DSI83,
136 MODEL_SN65DSI84,
137 };
138
139 struct sn65dsi83 {
140 struct drm_bridge bridge;
141 struct device *dev;
142 struct regmap *regmap;
143 struct device_node *host_node;
144 struct mipi_dsi_device *dsi;
145 struct drm_bridge *panel_bridge;
146 struct gpio_desc *enable_gpio;
147 struct regulator *vcc;
148 int dsi_lanes;
149 bool lvds_dual_link;
150 bool lvds_dual_link_even_odd_swap;
151 };
152
153 static const struct regmap_range sn65dsi83_readable_ranges[] = {
154 regmap_reg_range(REG_ID(0), REG_ID(8)),
155 regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK),
156 regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
157 regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
158 regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
159 regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
160 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
161 regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
162 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
163 regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
164 REG_VID_CHA_SYNC_DELAY_HIGH),
165 regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
166 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
167 regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
168 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
169 regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
170 REG_VID_CHA_HORIZONTAL_BACK_PORCH),
171 regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
172 REG_VID_CHA_VERTICAL_BACK_PORCH),
173 regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
174 REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
175 regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
176 REG_VID_CHA_VERTICAL_FRONT_PORCH),
177 regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
178 regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
179 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
180 };
181
182 static const struct regmap_access_table sn65dsi83_readable_table = {
183 .yes_ranges = sn65dsi83_readable_ranges,
184 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges),
185 };
186
187 static const struct regmap_range sn65dsi83_writeable_ranges[] = {
188 regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK),
189 regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
190 regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
191 regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
192 regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
193 REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
194 regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
195 REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
196 regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
197 REG_VID_CHA_SYNC_DELAY_HIGH),
198 regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
199 REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
200 regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
201 REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
202 regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
203 REG_VID_CHA_HORIZONTAL_BACK_PORCH),
204 regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
205 REG_VID_CHA_VERTICAL_BACK_PORCH),
206 regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
207 REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
208 regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
209 REG_VID_CHA_VERTICAL_FRONT_PORCH),
210 regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
211 regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
212 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
213 };
214
215 static const struct regmap_access_table sn65dsi83_writeable_table = {
216 .yes_ranges = sn65dsi83_writeable_ranges,
217 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges),
218 };
219
220 static const struct regmap_range sn65dsi83_volatile_ranges[] = {
221 regmap_reg_range(REG_RC_RESET, REG_RC_RESET),
222 regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL),
223 regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
224 };
225
226 static const struct regmap_access_table sn65dsi83_volatile_table = {
227 .yes_ranges = sn65dsi83_volatile_ranges,
228 .n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges),
229 };
230
231 static const struct regmap_config sn65dsi83_regmap_config = {
232 .reg_bits = 8,
233 .val_bits = 8,
234 .rd_table = &sn65dsi83_readable_table,
235 .wr_table = &sn65dsi83_writeable_table,
236 .volatile_table = &sn65dsi83_volatile_table,
237 .cache_type = REGCACHE_RBTREE,
238 .max_register = REG_IRQ_STAT,
239 };
240
241 static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge)
242 {
243 return container_of(bridge, struct sn65dsi83, bridge);
244 }
245
246 static int sn65dsi83_attach(struct drm_bridge *bridge,
247 enum drm_bridge_attach_flags flags)
248 {
249 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
250
251 return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
252 &ctx->bridge, flags);
253 }
254
255 static void sn65dsi83_detach(struct drm_bridge *bridge)
256 {
257 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
258
259 if (!ctx->dsi)
260 return;
261
262 ctx->dsi = NULL;
263 }
264
265 static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx,
266 const struct drm_display_mode *mode)
267 {
268 /*
269 * The encoding of the LVDS_CLK_RANGE is as follows:
270 * 000 - 25 MHz <= LVDS_CLK < 37.5 MHz
271 * 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz
272 * 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz
273 * 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz
274 * 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz
275 * 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz
276 * which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that
277 * the ends of the ranges are clamped to the supported range. Since
278 * sn65dsi83_mode_valid() already filters the valid modes and limits
279 * the clock to 25..154 MHz, the range calculation can be simplified
280 * as follows:
281 */
282 int mode_clock = mode->clock;
283
284 if (ctx->lvds_dual_link)
285 mode_clock /= 2;
286
287 return (mode_clock - 12500) / 25000;
288 }
289
290 static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx,
291 const struct drm_display_mode *mode)
292 {
293 /*
294 * The encoding of the CHA_DSI_CLK_RANGE is as follows:
295 * 0x00 through 0x07 - Reserved
296 * 0x08 - 40 <= DSI_CLK < 45 MHz
297 * 0x09 - 45 <= DSI_CLK < 50 MHz
298 * ...
299 * 0x63 - 495 <= DSI_CLK < 500 MHz
300 * 0x64 - 500 MHz
301 * 0x65 through 0xFF - Reserved
302 * which is DSI clock in 5 MHz steps, clamped to 40..500 MHz.
303 * The DSI clock are calculated as:
304 * DSI_CLK = mode clock * bpp / dsi_data_lanes / 2
305 * the 2 is there because the bus is DDR.
306 */
307 return DIV_ROUND_UP(clamp((unsigned int)mode->clock *
308 mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) /
309 ctx->dsi_lanes / 2, 40000U, 500000U), 5000U);
310 }
311
312 static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx)
313 {
314 /* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */
315 unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format);
316
317 dsi_div /= ctx->dsi_lanes;
318
319 if (!ctx->lvds_dual_link)
320 dsi_div /= 2;
321
322 return dsi_div - 1;
323 }
324
325 static void sn65dsi83_atomic_enable(struct drm_bridge *bridge,
326 struct drm_bridge_state *old_bridge_state)
327 {
328 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
329 struct drm_atomic_state *state = old_bridge_state->base.state;
330 const struct drm_bridge_state *bridge_state;
331 const struct drm_crtc_state *crtc_state;
332 const struct drm_display_mode *mode;
333 struct drm_connector *connector;
334 struct drm_crtc *crtc;
335 bool lvds_format_24bpp;
336 bool lvds_format_jeida;
337 unsigned int pval;
338 __le16 le16val;
339 u16 val;
340 int ret;
341
342 ret = regulator_enable(ctx->vcc);
343 if (ret) {
344 dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret);
345 return;
346 }
347
348 /* Deassert reset */
349 gpiod_set_value(ctx->enable_gpio, 1);
350 usleep_range(1000, 1100);
351
352 /* Get the LVDS format from the bridge state. */
353 bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
354
355 switch (bridge_state->output_bus_cfg.format) {
356 case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
357 lvds_format_24bpp = false;
358 lvds_format_jeida = true;
359 break;
360 case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
361 lvds_format_24bpp = true;
362 lvds_format_jeida = true;
363 break;
364 case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
365 lvds_format_24bpp = true;
366 lvds_format_jeida = false;
367 break;
368 default:
369 /*
370 * Some bridges still don't set the correct
371 * LVDS bus pixel format, use SPWG24 default
372 * format until those are fixed.
373 */
374 lvds_format_24bpp = true;
375 lvds_format_jeida = false;
376 dev_warn(ctx->dev,
377 "Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
378 bridge_state->output_bus_cfg.format);
379 break;
380 }
381
382 /*
383 * Retrieve the CRTC adjusted mode. This requires a little dance to go
384 * from the bridge to the encoder, to the connector and to the CRTC.
385 */
386 connector = drm_atomic_get_new_connector_for_encoder(state,
387 bridge->encoder);
388 crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
389 crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
390 mode = &crtc_state->adjusted_mode;
391
392 /* Clear reset, disable PLL */
393 regmap_write(ctx->regmap, REG_RC_RESET, 0x00);
394 regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
395
396 /* Reference clock derived from DSI link clock. */
397 regmap_write(ctx->regmap, REG_RC_LVDS_PLL,
398 REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) |
399 REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY);
400 regmap_write(ctx->regmap, REG_DSI_CLK,
401 REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode)));
402 regmap_write(ctx->regmap, REG_RC_DSI_CLK,
403 REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx)));
404
405 /* Set number of DSI lanes and LVDS link config. */
406 regmap_write(ctx->regmap, REG_DSI_LANE,
407 REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE |
408 REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi_lanes - 1)) |
409 /* CHB is DSI85-only, set to default on DSI83/DSI84 */
410 REG_DSI_LANE_CHB_DSI_LANES(3));
411 /* No equalization. */
412 regmap_write(ctx->regmap, REG_DSI_EQ, 0x00);
413
414 /* Set up sync signal polarity. */
415 val = (mode->flags & DRM_MODE_FLAG_NHSYNC ?
416 REG_LVDS_FMT_HS_NEG_POLARITY : 0) |
417 (mode->flags & DRM_MODE_FLAG_NVSYNC ?
418 REG_LVDS_FMT_VS_NEG_POLARITY : 0);
419
420 /* Set up bits-per-pixel, 18bpp or 24bpp. */
421 if (lvds_format_24bpp) {
422 val |= REG_LVDS_FMT_CHA_24BPP_MODE;
423 if (ctx->lvds_dual_link)
424 val |= REG_LVDS_FMT_CHB_24BPP_MODE;
425 }
426
427 /* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */
428 if (lvds_format_jeida) {
429 val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1;
430 if (ctx->lvds_dual_link)
431 val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1;
432 }
433
434 /* Set up LVDS output config (DSI84,DSI85) */
435 if (!ctx->lvds_dual_link)
436 val |= REG_LVDS_FMT_LVDS_LINK_CFG;
437
438 regmap_write(ctx->regmap, REG_LVDS_FMT, val);
439 regmap_write(ctx->regmap, REG_LVDS_VCOM, 0x05);
440 regmap_write(ctx->regmap, REG_LVDS_LANE,
441 (ctx->lvds_dual_link_even_odd_swap ?
442 REG_LVDS_LANE_EVEN_ODD_SWAP : 0) |
443 REG_LVDS_LANE_CHA_LVDS_TERM |
444 REG_LVDS_LANE_CHB_LVDS_TERM);
445 regmap_write(ctx->regmap, REG_LVDS_CM, 0x00);
446
447 le16val = cpu_to_le16(mode->hdisplay);
448 regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
449 &le16val, 2);
450 le16val = cpu_to_le16(mode->vdisplay);
451 regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
452 &le16val, 2);
453 /* 32 + 1 pixel clock to ensure proper operation */
454 le16val = cpu_to_le16(32 + 1);
455 regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2);
456 le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start);
457 regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
458 &le16val, 2);
459 le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start);
460 regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
461 &le16val, 2);
462 regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH,
463 mode->htotal - mode->hsync_end);
464 regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH,
465 mode->vtotal - mode->vsync_end);
466 regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
467 mode->hsync_start - mode->hdisplay);
468 regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH,
469 mode->vsync_start - mode->vdisplay);
470 regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00);
471
472 /* Enable PLL */
473 regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN);
474 usleep_range(3000, 4000);
475 ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval,
476 pval & REG_RC_LVDS_PLL_PLL_EN_STAT,
477 1000, 100000);
478 if (ret) {
479 dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret);
480 /* On failure, disable PLL again and exit. */
481 regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
482 return;
483 }
484
485 /* Trigger reset after CSR register update. */
486 regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET);
487
488 /* Clear all errors that got asserted during initialization. */
489 regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
490 regmap_write(ctx->regmap, REG_IRQ_STAT, pval);
491
492 usleep_range(10000, 12000);
493 regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
494 if (pval)
495 dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval);
496 }
497
498 static void sn65dsi83_atomic_disable(struct drm_bridge *bridge,
499 struct drm_bridge_state *old_bridge_state)
500 {
501 struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
502 int ret;
503
504 /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
505 gpiod_set_value(ctx->enable_gpio, 0);
506 usleep_range(10000, 11000);
507
508 ret = regulator_disable(ctx->vcc);
509 if (ret)
510 dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret);
511
512 regcache_mark_dirty(ctx->regmap);
513 }
514
515 static enum drm_mode_status
516 sn65dsi83_mode_valid(struct drm_bridge *bridge,
517 const struct drm_display_info *info,
518 const struct drm_display_mode *mode)
519 {
520 /* LVDS output clock range 25..154 MHz */
521 if (mode->clock < 25000)
522 return MODE_CLOCK_LOW;
523 if (mode->clock > 154000)
524 return MODE_CLOCK_HIGH;
525
526 return MODE_OK;
527 }
528
529 #define MAX_INPUT_SEL_FORMATS 1
530
531 static u32 *
532 sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
533 struct drm_bridge_state *bridge_state,
534 struct drm_crtc_state *crtc_state,
535 struct drm_connector_state *conn_state,
536 u32 output_fmt,
537 unsigned int *num_input_fmts)
538 {
539 u32 *input_fmts;
540
541 *num_input_fmts = 0;
542
543 input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
544 GFP_KERNEL);
545 if (!input_fmts)
546 return NULL;
547
548 /* This is the DSI-end bus format */
549 input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
550 *num_input_fmts = 1;
551
552 return input_fmts;
553 }
554
555 static const struct drm_bridge_funcs sn65dsi83_funcs = {
556 .attach = sn65dsi83_attach,
557 .detach = sn65dsi83_detach,
558 .atomic_enable = sn65dsi83_atomic_enable,
559 .atomic_disable = sn65dsi83_atomic_disable,
560 .mode_valid = sn65dsi83_mode_valid,
561
562 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
563 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
564 .atomic_reset = drm_atomic_helper_bridge_reset,
565 .atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts,
566 };
567
568 static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model)
569 {
570 struct drm_bridge *panel_bridge;
571 struct device *dev = ctx->dev;
572 struct device_node *endpoint;
573 int ret;
574
575 endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, 0);
576 ctx->dsi_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
577 ctx->host_node = of_graph_get_remote_port_parent(endpoint);
578 of_node_put(endpoint);
579
580 if (ctx->dsi_lanes <= 0 || ctx->dsi_lanes > 4) {
581 ret = -EINVAL;
582 goto err_put_node;
583 }
584 if (!ctx->host_node) {
585 ret = -ENODEV;
586 goto err_put_node;
587 }
588
589 ctx->lvds_dual_link = false;
590 ctx->lvds_dual_link_even_odd_swap = false;
591 if (model != MODEL_SN65DSI83) {
592 struct device_node *port2, *port3;
593 int dual_link;
594
595 port2 = of_graph_get_port_by_id(dev->of_node, 2);
596 port3 = of_graph_get_port_by_id(dev->of_node, 3);
597 dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
598 of_node_put(port2);
599 of_node_put(port3);
600
601 if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
602 ctx->lvds_dual_link = true;
603 /* Odd pixels to LVDS Channel A, even pixels to B */
604 ctx->lvds_dual_link_even_odd_swap = false;
605 } else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
606 ctx->lvds_dual_link = true;
607 /* Even pixels to LVDS Channel A, odd pixels to B */
608 ctx->lvds_dual_link_even_odd_swap = true;
609 }
610 }
611
612 panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0);
613 if (IS_ERR(panel_bridge)) {
614 ret = PTR_ERR(panel_bridge);
615 goto err_put_node;
616 }
617
618 ctx->panel_bridge = panel_bridge;
619
620 ctx->vcc = devm_regulator_get(dev, "vcc");
621 if (IS_ERR(ctx->vcc))
622 return dev_err_probe(dev, PTR_ERR(ctx->vcc),
623 "Failed to get supply 'vcc'\n");
624
625 return 0;
626
627 err_put_node:
628 of_node_put(ctx->host_node);
629 return ret;
630 }
631
632 static int sn65dsi83_host_attach(struct sn65dsi83 *ctx)
633 {
634 struct device *dev = ctx->dev;
635 struct mipi_dsi_device *dsi;
636 struct mipi_dsi_host *host;
637 const struct mipi_dsi_device_info info = {
638 .type = "sn65dsi83",
639 .channel = 0,
640 .node = NULL,
641 };
642 int ret;
643
644 host = of_find_mipi_dsi_host_by_node(ctx->host_node);
645 if (!host) {
646 dev_err(dev, "failed to find dsi host\n");
647 return -EPROBE_DEFER;
648 }
649
650 dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
651 if (IS_ERR(dsi))
652 return dev_err_probe(dev, PTR_ERR(dsi),
653 "failed to create dsi device\n");
654
655 ctx->dsi = dsi;
656
657 dsi->lanes = ctx->dsi_lanes;
658 dsi->format = MIPI_DSI_FMT_RGB888;
659 dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST;
660
661 ret = devm_mipi_dsi_attach(dev, dsi);
662 if (ret < 0) {
663 dev_err(dev, "failed to attach dsi to host: %d\n", ret);
664 return ret;
665 }
666
667 return 0;
668 }
669
670 static int sn65dsi83_probe(struct i2c_client *client,
671 const struct i2c_device_id *id)
672 {
673 struct device *dev = &client->dev;
674 enum sn65dsi83_model model;
675 struct sn65dsi83 *ctx;
676 int ret;
677
678 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
679 if (!ctx)
680 return -ENOMEM;
681
682 ctx->dev = dev;
683
684 if (dev->of_node) {
685 model = (enum sn65dsi83_model)(uintptr_t)
686 of_device_get_match_data(dev);
687 } else {
688 model = id->driver_data;
689 }
690
691 /* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
692 ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable",
693 GPIOD_OUT_LOW);
694 if (IS_ERR(ctx->enable_gpio))
695 return PTR_ERR(ctx->enable_gpio);
696
697 usleep_range(10000, 11000);
698
699 ret = sn65dsi83_parse_dt(ctx, model);
700 if (ret)
701 return ret;
702
703 ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config);
704 if (IS_ERR(ctx->regmap)) {
705 ret = PTR_ERR(ctx->regmap);
706 goto err_put_node;
707 }
708
709 dev_set_drvdata(dev, ctx);
710 i2c_set_clientdata(client, ctx);
711
712 ctx->bridge.funcs = &sn65dsi83_funcs;
713 ctx->bridge.of_node = dev->of_node;
714 drm_bridge_add(&ctx->bridge);
715
716 ret = sn65dsi83_host_attach(ctx);
717 if (ret)
718 goto err_remove_bridge;
719
720 return 0;
721
722 err_remove_bridge:
723 drm_bridge_remove(&ctx->bridge);
724 err_put_node:
725 of_node_put(ctx->host_node);
726 return ret;
727 }
728
729 static int sn65dsi83_remove(struct i2c_client *client)
730 {
731 struct sn65dsi83 *ctx = i2c_get_clientdata(client);
732
733 drm_bridge_remove(&ctx->bridge);
734 of_node_put(ctx->host_node);
735
736 return 0;
737 }
738
739 static struct i2c_device_id sn65dsi83_id[] = {
740 { "ti,sn65dsi83", MODEL_SN65DSI83 },
741 { "ti,sn65dsi84", MODEL_SN65DSI84 },
742 {},
743 };
744 MODULE_DEVICE_TABLE(i2c, sn65dsi83_id);
745
746 static const struct of_device_id sn65dsi83_match_table[] = {
747 { .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 },
748 { .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 },
749 {},
750 };
751 MODULE_DEVICE_TABLE(of, sn65dsi83_match_table);
752
753 static struct i2c_driver sn65dsi83_driver = {
754 .probe = sn65dsi83_probe,
755 .remove = sn65dsi83_remove,
756 .id_table = sn65dsi83_id,
757 .driver = {
758 .name = "sn65dsi83",
759 .of_match_table = sn65dsi83_match_table,
760 },
761 };
762 module_i2c_driver(sn65dsi83_driver);
763
764 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
765 MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver");
766 MODULE_LICENSE("GPL v2");