]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/display/drm_dp_mst_topology.c
Merge tag 'drm-misc-next-2022-06-17' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/linux.git] / drivers / gpu / drm / display / drm_dp_mst_topology.c
1 /*
2 * Copyright © 2014 Red Hat
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/bitfield.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/random.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/iopoll.h>
33
34 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
35 #include <linux/stacktrace.h>
36 #include <linux/sort.h>
37 #include <linux/timekeeping.h>
38 #include <linux/math64.h>
39 #endif
40
41 #include <drm/display/drm_dp_mst_helper.h>
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_drv.h>
45 #include <drm/drm_print.h>
46 #include <drm/drm_probe_helper.h>
47
48 #include "drm_dp_helper_internal.h"
49 #include "drm_dp_mst_topology_internal.h"
50
51 /**
52 * DOC: dp mst helper
53 *
54 * These functions contain parts of the DisplayPort 1.2a MultiStream Transport
55 * protocol. The helpers contain a topology manager and bandwidth manager.
56 * The helpers encapsulate the sending and received of sideband msgs.
57 */
58 struct drm_dp_pending_up_req {
59 struct drm_dp_sideband_msg_hdr hdr;
60 struct drm_dp_sideband_msg_req_body msg;
61 struct list_head next;
62 };
63
64 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
65 char *buf);
66
67 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port);
68
69 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
70 int id,
71 struct drm_dp_payload *payload);
72
73 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
74 struct drm_dp_mst_port *port,
75 int offset, int size, u8 *bytes);
76 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
77 struct drm_dp_mst_port *port,
78 int offset, int size, u8 *bytes);
79
80 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
81 struct drm_dp_mst_branch *mstb);
82
83 static void
84 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
85 struct drm_dp_mst_branch *mstb);
86
87 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
88 struct drm_dp_mst_branch *mstb,
89 struct drm_dp_mst_port *port);
90 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
91 u8 *guid);
92
93 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port);
94 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port);
95 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr);
96
97 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port,
98 struct drm_dp_mst_branch *branch);
99
100 #define DBG_PREFIX "[dp_mst]"
101
102 #define DP_STR(x) [DP_ ## x] = #x
103
104 static const char *drm_dp_mst_req_type_str(u8 req_type)
105 {
106 static const char * const req_type_str[] = {
107 DP_STR(GET_MSG_TRANSACTION_VERSION),
108 DP_STR(LINK_ADDRESS),
109 DP_STR(CONNECTION_STATUS_NOTIFY),
110 DP_STR(ENUM_PATH_RESOURCES),
111 DP_STR(ALLOCATE_PAYLOAD),
112 DP_STR(QUERY_PAYLOAD),
113 DP_STR(RESOURCE_STATUS_NOTIFY),
114 DP_STR(CLEAR_PAYLOAD_ID_TABLE),
115 DP_STR(REMOTE_DPCD_READ),
116 DP_STR(REMOTE_DPCD_WRITE),
117 DP_STR(REMOTE_I2C_READ),
118 DP_STR(REMOTE_I2C_WRITE),
119 DP_STR(POWER_UP_PHY),
120 DP_STR(POWER_DOWN_PHY),
121 DP_STR(SINK_EVENT_NOTIFY),
122 DP_STR(QUERY_STREAM_ENC_STATUS),
123 };
124
125 if (req_type >= ARRAY_SIZE(req_type_str) ||
126 !req_type_str[req_type])
127 return "unknown";
128
129 return req_type_str[req_type];
130 }
131
132 #undef DP_STR
133 #define DP_STR(x) [DP_NAK_ ## x] = #x
134
135 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason)
136 {
137 static const char * const nak_reason_str[] = {
138 DP_STR(WRITE_FAILURE),
139 DP_STR(INVALID_READ),
140 DP_STR(CRC_FAILURE),
141 DP_STR(BAD_PARAM),
142 DP_STR(DEFER),
143 DP_STR(LINK_FAILURE),
144 DP_STR(NO_RESOURCES),
145 DP_STR(DPCD_FAIL),
146 DP_STR(I2C_NAK),
147 DP_STR(ALLOCATE_FAIL),
148 };
149
150 if (nak_reason >= ARRAY_SIZE(nak_reason_str) ||
151 !nak_reason_str[nak_reason])
152 return "unknown";
153
154 return nak_reason_str[nak_reason];
155 }
156
157 #undef DP_STR
158 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x
159
160 static const char *drm_dp_mst_sideband_tx_state_str(int state)
161 {
162 static const char * const sideband_reason_str[] = {
163 DP_STR(QUEUED),
164 DP_STR(START_SEND),
165 DP_STR(SENT),
166 DP_STR(RX),
167 DP_STR(TIMEOUT),
168 };
169
170 if (state >= ARRAY_SIZE(sideband_reason_str) ||
171 !sideband_reason_str[state])
172 return "unknown";
173
174 return sideband_reason_str[state];
175 }
176
177 static int
178 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len)
179 {
180 int i;
181 u8 unpacked_rad[16];
182
183 for (i = 0; i < lct; i++) {
184 if (i % 2)
185 unpacked_rad[i] = rad[i / 2] >> 4;
186 else
187 unpacked_rad[i] = rad[i / 2] & BIT_MASK(4);
188 }
189
190 /* TODO: Eventually add something to printk so we can format the rad
191 * like this: 1.2.3
192 */
193 return snprintf(out, len, "%*phC", lct, unpacked_rad);
194 }
195
196 /* sideband msg handling */
197 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles)
198 {
199 u8 bitmask = 0x80;
200 u8 bitshift = 7;
201 u8 array_index = 0;
202 int number_of_bits = num_nibbles * 4;
203 u8 remainder = 0;
204
205 while (number_of_bits != 0) {
206 number_of_bits--;
207 remainder <<= 1;
208 remainder |= (data[array_index] & bitmask) >> bitshift;
209 bitmask >>= 1;
210 bitshift--;
211 if (bitmask == 0) {
212 bitmask = 0x80;
213 bitshift = 7;
214 array_index++;
215 }
216 if ((remainder & 0x10) == 0x10)
217 remainder ^= 0x13;
218 }
219
220 number_of_bits = 4;
221 while (number_of_bits != 0) {
222 number_of_bits--;
223 remainder <<= 1;
224 if ((remainder & 0x10) != 0)
225 remainder ^= 0x13;
226 }
227
228 return remainder;
229 }
230
231 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes)
232 {
233 u8 bitmask = 0x80;
234 u8 bitshift = 7;
235 u8 array_index = 0;
236 int number_of_bits = number_of_bytes * 8;
237 u16 remainder = 0;
238
239 while (number_of_bits != 0) {
240 number_of_bits--;
241 remainder <<= 1;
242 remainder |= (data[array_index] & bitmask) >> bitshift;
243 bitmask >>= 1;
244 bitshift--;
245 if (bitmask == 0) {
246 bitmask = 0x80;
247 bitshift = 7;
248 array_index++;
249 }
250 if ((remainder & 0x100) == 0x100)
251 remainder ^= 0xd5;
252 }
253
254 number_of_bits = 8;
255 while (number_of_bits != 0) {
256 number_of_bits--;
257 remainder <<= 1;
258 if ((remainder & 0x100) != 0)
259 remainder ^= 0xd5;
260 }
261
262 return remainder & 0xff;
263 }
264 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr)
265 {
266 u8 size = 3;
267
268 size += (hdr->lct / 2);
269 return size;
270 }
271
272 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
273 u8 *buf, int *len)
274 {
275 int idx = 0;
276 int i;
277 u8 crc4;
278
279 buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf);
280 for (i = 0; i < (hdr->lct / 2); i++)
281 buf[idx++] = hdr->rad[i];
282 buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) |
283 (hdr->msg_len & 0x3f);
284 buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4);
285
286 crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1);
287 buf[idx - 1] |= (crc4 & 0xf);
288
289 *len = idx;
290 }
291
292 static bool drm_dp_decode_sideband_msg_hdr(const struct drm_dp_mst_topology_mgr *mgr,
293 struct drm_dp_sideband_msg_hdr *hdr,
294 u8 *buf, int buflen, u8 *hdrlen)
295 {
296 u8 crc4;
297 u8 len;
298 int i;
299 u8 idx;
300
301 if (buf[0] == 0)
302 return false;
303 len = 3;
304 len += ((buf[0] & 0xf0) >> 4) / 2;
305 if (len > buflen)
306 return false;
307 crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1);
308
309 if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) {
310 drm_dbg_kms(mgr->dev, "crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]);
311 return false;
312 }
313
314 hdr->lct = (buf[0] & 0xf0) >> 4;
315 hdr->lcr = (buf[0] & 0xf);
316 idx = 1;
317 for (i = 0; i < (hdr->lct / 2); i++)
318 hdr->rad[i] = buf[idx++];
319 hdr->broadcast = (buf[idx] >> 7) & 0x1;
320 hdr->path_msg = (buf[idx] >> 6) & 0x1;
321 hdr->msg_len = buf[idx] & 0x3f;
322 idx++;
323 hdr->somt = (buf[idx] >> 7) & 0x1;
324 hdr->eomt = (buf[idx] >> 6) & 0x1;
325 hdr->seqno = (buf[idx] >> 4) & 0x1;
326 idx++;
327 *hdrlen = idx;
328 return true;
329 }
330
331 void
332 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req,
333 struct drm_dp_sideband_msg_tx *raw)
334 {
335 int idx = 0;
336 int i;
337 u8 *buf = raw->msg;
338
339 buf[idx++] = req->req_type & 0x7f;
340
341 switch (req->req_type) {
342 case DP_ENUM_PATH_RESOURCES:
343 case DP_POWER_DOWN_PHY:
344 case DP_POWER_UP_PHY:
345 buf[idx] = (req->u.port_num.port_number & 0xf) << 4;
346 idx++;
347 break;
348 case DP_ALLOCATE_PAYLOAD:
349 buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 |
350 (req->u.allocate_payload.number_sdp_streams & 0xf);
351 idx++;
352 buf[idx] = (req->u.allocate_payload.vcpi & 0x7f);
353 idx++;
354 buf[idx] = (req->u.allocate_payload.pbn >> 8);
355 idx++;
356 buf[idx] = (req->u.allocate_payload.pbn & 0xff);
357 idx++;
358 for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) {
359 buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) |
360 (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf);
361 idx++;
362 }
363 if (req->u.allocate_payload.number_sdp_streams & 1) {
364 i = req->u.allocate_payload.number_sdp_streams - 1;
365 buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4;
366 idx++;
367 }
368 break;
369 case DP_QUERY_PAYLOAD:
370 buf[idx] = (req->u.query_payload.port_number & 0xf) << 4;
371 idx++;
372 buf[idx] = (req->u.query_payload.vcpi & 0x7f);
373 idx++;
374 break;
375 case DP_REMOTE_DPCD_READ:
376 buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4;
377 buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf;
378 idx++;
379 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8;
380 idx++;
381 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff);
382 idx++;
383 buf[idx] = (req->u.dpcd_read.num_bytes);
384 idx++;
385 break;
386
387 case DP_REMOTE_DPCD_WRITE:
388 buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4;
389 buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf;
390 idx++;
391 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8;
392 idx++;
393 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff);
394 idx++;
395 buf[idx] = (req->u.dpcd_write.num_bytes);
396 idx++;
397 memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes);
398 idx += req->u.dpcd_write.num_bytes;
399 break;
400 case DP_REMOTE_I2C_READ:
401 buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4;
402 buf[idx] |= (req->u.i2c_read.num_transactions & 0x3);
403 idx++;
404 for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) {
405 buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f;
406 idx++;
407 buf[idx] = req->u.i2c_read.transactions[i].num_bytes;
408 idx++;
409 memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes);
410 idx += req->u.i2c_read.transactions[i].num_bytes;
411
412 buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4;
413 buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf);
414 idx++;
415 }
416 buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f;
417 idx++;
418 buf[idx] = (req->u.i2c_read.num_bytes_read);
419 idx++;
420 break;
421
422 case DP_REMOTE_I2C_WRITE:
423 buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4;
424 idx++;
425 buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f;
426 idx++;
427 buf[idx] = (req->u.i2c_write.num_bytes);
428 idx++;
429 memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes);
430 idx += req->u.i2c_write.num_bytes;
431 break;
432 case DP_QUERY_STREAM_ENC_STATUS: {
433 const struct drm_dp_query_stream_enc_status *msg;
434
435 msg = &req->u.enc_status;
436 buf[idx] = msg->stream_id;
437 idx++;
438 memcpy(&buf[idx], msg->client_id, sizeof(msg->client_id));
439 idx += sizeof(msg->client_id);
440 buf[idx] = 0;
441 buf[idx] |= FIELD_PREP(GENMASK(1, 0), msg->stream_event);
442 buf[idx] |= msg->valid_stream_event ? BIT(2) : 0;
443 buf[idx] |= FIELD_PREP(GENMASK(4, 3), msg->stream_behavior);
444 buf[idx] |= msg->valid_stream_behavior ? BIT(5) : 0;
445 idx++;
446 }
447 break;
448 }
449 raw->cur_len = idx;
450 }
451 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req);
452
453 /* Decode a sideband request we've encoded, mainly used for debugging */
454 int
455 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw,
456 struct drm_dp_sideband_msg_req_body *req)
457 {
458 const u8 *buf = raw->msg;
459 int i, idx = 0;
460
461 req->req_type = buf[idx++] & 0x7f;
462 switch (req->req_type) {
463 case DP_ENUM_PATH_RESOURCES:
464 case DP_POWER_DOWN_PHY:
465 case DP_POWER_UP_PHY:
466 req->u.port_num.port_number = (buf[idx] >> 4) & 0xf;
467 break;
468 case DP_ALLOCATE_PAYLOAD:
469 {
470 struct drm_dp_allocate_payload *a =
471 &req->u.allocate_payload;
472
473 a->number_sdp_streams = buf[idx] & 0xf;
474 a->port_number = (buf[idx] >> 4) & 0xf;
475
476 WARN_ON(buf[++idx] & 0x80);
477 a->vcpi = buf[idx] & 0x7f;
478
479 a->pbn = buf[++idx] << 8;
480 a->pbn |= buf[++idx];
481
482 idx++;
483 for (i = 0; i < a->number_sdp_streams; i++) {
484 a->sdp_stream_sink[i] =
485 (buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf;
486 }
487 }
488 break;
489 case DP_QUERY_PAYLOAD:
490 req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf;
491 WARN_ON(buf[++idx] & 0x80);
492 req->u.query_payload.vcpi = buf[idx] & 0x7f;
493 break;
494 case DP_REMOTE_DPCD_READ:
495 {
496 struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read;
497
498 r->port_number = (buf[idx] >> 4) & 0xf;
499
500 r->dpcd_address = (buf[idx] << 16) & 0xf0000;
501 r->dpcd_address |= (buf[++idx] << 8) & 0xff00;
502 r->dpcd_address |= buf[++idx] & 0xff;
503
504 r->num_bytes = buf[++idx];
505 }
506 break;
507 case DP_REMOTE_DPCD_WRITE:
508 {
509 struct drm_dp_remote_dpcd_write *w =
510 &req->u.dpcd_write;
511
512 w->port_number = (buf[idx] >> 4) & 0xf;
513
514 w->dpcd_address = (buf[idx] << 16) & 0xf0000;
515 w->dpcd_address |= (buf[++idx] << 8) & 0xff00;
516 w->dpcd_address |= buf[++idx] & 0xff;
517
518 w->num_bytes = buf[++idx];
519
520 w->bytes = kmemdup(&buf[++idx], w->num_bytes,
521 GFP_KERNEL);
522 if (!w->bytes)
523 return -ENOMEM;
524 }
525 break;
526 case DP_REMOTE_I2C_READ:
527 {
528 struct drm_dp_remote_i2c_read *r = &req->u.i2c_read;
529 struct drm_dp_remote_i2c_read_tx *tx;
530 bool failed = false;
531
532 r->num_transactions = buf[idx] & 0x3;
533 r->port_number = (buf[idx] >> 4) & 0xf;
534 for (i = 0; i < r->num_transactions; i++) {
535 tx = &r->transactions[i];
536
537 tx->i2c_dev_id = buf[++idx] & 0x7f;
538 tx->num_bytes = buf[++idx];
539 tx->bytes = kmemdup(&buf[++idx],
540 tx->num_bytes,
541 GFP_KERNEL);
542 if (!tx->bytes) {
543 failed = true;
544 break;
545 }
546 idx += tx->num_bytes;
547 tx->no_stop_bit = (buf[idx] >> 5) & 0x1;
548 tx->i2c_transaction_delay = buf[idx] & 0xf;
549 }
550
551 if (failed) {
552 for (i = 0; i < r->num_transactions; i++) {
553 tx = &r->transactions[i];
554 kfree(tx->bytes);
555 }
556 return -ENOMEM;
557 }
558
559 r->read_i2c_device_id = buf[++idx] & 0x7f;
560 r->num_bytes_read = buf[++idx];
561 }
562 break;
563 case DP_REMOTE_I2C_WRITE:
564 {
565 struct drm_dp_remote_i2c_write *w = &req->u.i2c_write;
566
567 w->port_number = (buf[idx] >> 4) & 0xf;
568 w->write_i2c_device_id = buf[++idx] & 0x7f;
569 w->num_bytes = buf[++idx];
570 w->bytes = kmemdup(&buf[++idx], w->num_bytes,
571 GFP_KERNEL);
572 if (!w->bytes)
573 return -ENOMEM;
574 }
575 break;
576 case DP_QUERY_STREAM_ENC_STATUS:
577 req->u.enc_status.stream_id = buf[idx++];
578 for (i = 0; i < sizeof(req->u.enc_status.client_id); i++)
579 req->u.enc_status.client_id[i] = buf[idx++];
580
581 req->u.enc_status.stream_event = FIELD_GET(GENMASK(1, 0),
582 buf[idx]);
583 req->u.enc_status.valid_stream_event = FIELD_GET(BIT(2),
584 buf[idx]);
585 req->u.enc_status.stream_behavior = FIELD_GET(GENMASK(4, 3),
586 buf[idx]);
587 req->u.enc_status.valid_stream_behavior = FIELD_GET(BIT(5),
588 buf[idx]);
589 break;
590 }
591
592 return 0;
593 }
594 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req);
595
596 void
597 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req,
598 int indent, struct drm_printer *printer)
599 {
600 int i;
601
602 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__)
603 if (req->req_type == DP_LINK_ADDRESS) {
604 /* No contents to print */
605 P("type=%s\n", drm_dp_mst_req_type_str(req->req_type));
606 return;
607 }
608
609 P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type));
610 indent++;
611
612 switch (req->req_type) {
613 case DP_ENUM_PATH_RESOURCES:
614 case DP_POWER_DOWN_PHY:
615 case DP_POWER_UP_PHY:
616 P("port=%d\n", req->u.port_num.port_number);
617 break;
618 case DP_ALLOCATE_PAYLOAD:
619 P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n",
620 req->u.allocate_payload.port_number,
621 req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn,
622 req->u.allocate_payload.number_sdp_streams,
623 req->u.allocate_payload.number_sdp_streams,
624 req->u.allocate_payload.sdp_stream_sink);
625 break;
626 case DP_QUERY_PAYLOAD:
627 P("port=%d vcpi=%d\n",
628 req->u.query_payload.port_number,
629 req->u.query_payload.vcpi);
630 break;
631 case DP_REMOTE_DPCD_READ:
632 P("port=%d dpcd_addr=%05x len=%d\n",
633 req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address,
634 req->u.dpcd_read.num_bytes);
635 break;
636 case DP_REMOTE_DPCD_WRITE:
637 P("port=%d addr=%05x len=%d: %*ph\n",
638 req->u.dpcd_write.port_number,
639 req->u.dpcd_write.dpcd_address,
640 req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes,
641 req->u.dpcd_write.bytes);
642 break;
643 case DP_REMOTE_I2C_READ:
644 P("port=%d num_tx=%d id=%d size=%d:\n",
645 req->u.i2c_read.port_number,
646 req->u.i2c_read.num_transactions,
647 req->u.i2c_read.read_i2c_device_id,
648 req->u.i2c_read.num_bytes_read);
649
650 indent++;
651 for (i = 0; i < req->u.i2c_read.num_transactions; i++) {
652 const struct drm_dp_remote_i2c_read_tx *rtx =
653 &req->u.i2c_read.transactions[i];
654
655 P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n",
656 i, rtx->i2c_dev_id, rtx->num_bytes,
657 rtx->no_stop_bit, rtx->i2c_transaction_delay,
658 rtx->num_bytes, rtx->bytes);
659 }
660 break;
661 case DP_REMOTE_I2C_WRITE:
662 P("port=%d id=%d size=%d: %*ph\n",
663 req->u.i2c_write.port_number,
664 req->u.i2c_write.write_i2c_device_id,
665 req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes,
666 req->u.i2c_write.bytes);
667 break;
668 case DP_QUERY_STREAM_ENC_STATUS:
669 P("stream_id=%u client_id=%*ph stream_event=%x "
670 "valid_event=%d stream_behavior=%x valid_behavior=%d",
671 req->u.enc_status.stream_id,
672 (int)ARRAY_SIZE(req->u.enc_status.client_id),
673 req->u.enc_status.client_id, req->u.enc_status.stream_event,
674 req->u.enc_status.valid_stream_event,
675 req->u.enc_status.stream_behavior,
676 req->u.enc_status.valid_stream_behavior);
677 break;
678 default:
679 P("???\n");
680 break;
681 }
682 #undef P
683 }
684 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body);
685
686 static inline void
687 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p,
688 const struct drm_dp_sideband_msg_tx *txmsg)
689 {
690 struct drm_dp_sideband_msg_req_body req;
691 char buf[64];
692 int ret;
693 int i;
694
695 drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf,
696 sizeof(buf));
697 drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n",
698 txmsg->cur_offset, txmsg->cur_len, txmsg->seqno,
699 drm_dp_mst_sideband_tx_state_str(txmsg->state),
700 txmsg->path_msg, buf);
701
702 ret = drm_dp_decode_sideband_req(txmsg, &req);
703 if (ret) {
704 drm_printf(p, "<failed to decode sideband req: %d>\n", ret);
705 return;
706 }
707 drm_dp_dump_sideband_msg_req_body(&req, 1, p);
708
709 switch (req.req_type) {
710 case DP_REMOTE_DPCD_WRITE:
711 kfree(req.u.dpcd_write.bytes);
712 break;
713 case DP_REMOTE_I2C_READ:
714 for (i = 0; i < req.u.i2c_read.num_transactions; i++)
715 kfree(req.u.i2c_read.transactions[i].bytes);
716 break;
717 case DP_REMOTE_I2C_WRITE:
718 kfree(req.u.i2c_write.bytes);
719 break;
720 }
721 }
722
723 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len)
724 {
725 u8 crc4;
726
727 crc4 = drm_dp_msg_data_crc4(msg, len);
728 msg[len] = crc4;
729 }
730
731 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep,
732 struct drm_dp_sideband_msg_tx *raw)
733 {
734 int idx = 0;
735 u8 *buf = raw->msg;
736
737 buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f);
738
739 raw->cur_len = idx;
740 }
741
742 static int drm_dp_sideband_msg_set_header(struct drm_dp_sideband_msg_rx *msg,
743 struct drm_dp_sideband_msg_hdr *hdr,
744 u8 hdrlen)
745 {
746 /*
747 * ignore out-of-order messages or messages that are part of a
748 * failed transaction
749 */
750 if (!hdr->somt && !msg->have_somt)
751 return false;
752
753 /* get length contained in this portion */
754 msg->curchunk_idx = 0;
755 msg->curchunk_len = hdr->msg_len;
756 msg->curchunk_hdrlen = hdrlen;
757
758 /* we have already gotten an somt - don't bother parsing */
759 if (hdr->somt && msg->have_somt)
760 return false;
761
762 if (hdr->somt) {
763 memcpy(&msg->initial_hdr, hdr,
764 sizeof(struct drm_dp_sideband_msg_hdr));
765 msg->have_somt = true;
766 }
767 if (hdr->eomt)
768 msg->have_eomt = true;
769
770 return true;
771 }
772
773 /* this adds a chunk of msg to the builder to get the final msg */
774 static bool drm_dp_sideband_append_payload(struct drm_dp_sideband_msg_rx *msg,
775 u8 *replybuf, u8 replybuflen)
776 {
777 u8 crc4;
778
779 memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen);
780 msg->curchunk_idx += replybuflen;
781
782 if (msg->curchunk_idx >= msg->curchunk_len) {
783 /* do CRC */
784 crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1);
785 if (crc4 != msg->chunk[msg->curchunk_len - 1])
786 print_hex_dump(KERN_DEBUG, "wrong crc",
787 DUMP_PREFIX_NONE, 16, 1,
788 msg->chunk, msg->curchunk_len, false);
789 /* copy chunk into bigger msg */
790 memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1);
791 msg->curlen += msg->curchunk_len - 1;
792 }
793 return true;
794 }
795
796 static bool drm_dp_sideband_parse_link_address(const struct drm_dp_mst_topology_mgr *mgr,
797 struct drm_dp_sideband_msg_rx *raw,
798 struct drm_dp_sideband_msg_reply_body *repmsg)
799 {
800 int idx = 1;
801 int i;
802
803 memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16);
804 idx += 16;
805 repmsg->u.link_addr.nports = raw->msg[idx] & 0xf;
806 idx++;
807 if (idx > raw->curlen)
808 goto fail_len;
809 for (i = 0; i < repmsg->u.link_addr.nports; i++) {
810 if (raw->msg[idx] & 0x80)
811 repmsg->u.link_addr.ports[i].input_port = 1;
812
813 repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7;
814 repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf);
815
816 idx++;
817 if (idx > raw->curlen)
818 goto fail_len;
819 repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1;
820 repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1;
821 if (repmsg->u.link_addr.ports[i].input_port == 0)
822 repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
823 idx++;
824 if (idx > raw->curlen)
825 goto fail_len;
826 if (repmsg->u.link_addr.ports[i].input_port == 0) {
827 repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]);
828 idx++;
829 if (idx > raw->curlen)
830 goto fail_len;
831 memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16);
832 idx += 16;
833 if (idx > raw->curlen)
834 goto fail_len;
835 repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf;
836 repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf);
837 idx++;
838
839 }
840 if (idx > raw->curlen)
841 goto fail_len;
842 }
843
844 return true;
845 fail_len:
846 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
847 return false;
848 }
849
850 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw,
851 struct drm_dp_sideband_msg_reply_body *repmsg)
852 {
853 int idx = 1;
854
855 repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf;
856 idx++;
857 if (idx > raw->curlen)
858 goto fail_len;
859 repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx];
860 idx++;
861 if (idx > raw->curlen)
862 goto fail_len;
863
864 memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes);
865 return true;
866 fail_len:
867 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
868 return false;
869 }
870
871 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw,
872 struct drm_dp_sideband_msg_reply_body *repmsg)
873 {
874 int idx = 1;
875
876 repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf;
877 idx++;
878 if (idx > raw->curlen)
879 goto fail_len;
880 return true;
881 fail_len:
882 DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen);
883 return false;
884 }
885
886 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw,
887 struct drm_dp_sideband_msg_reply_body *repmsg)
888 {
889 int idx = 1;
890
891 repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf);
892 idx++;
893 if (idx > raw->curlen)
894 goto fail_len;
895 repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx];
896 idx++;
897 /* TODO check */
898 memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes);
899 return true;
900 fail_len:
901 DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen);
902 return false;
903 }
904
905 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw,
906 struct drm_dp_sideband_msg_reply_body *repmsg)
907 {
908 int idx = 1;
909
910 repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf;
911 repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1;
912 idx++;
913 if (idx > raw->curlen)
914 goto fail_len;
915 repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
916 idx += 2;
917 if (idx > raw->curlen)
918 goto fail_len;
919 repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
920 idx += 2;
921 if (idx > raw->curlen)
922 goto fail_len;
923 return true;
924 fail_len:
925 DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen);
926 return false;
927 }
928
929 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw,
930 struct drm_dp_sideband_msg_reply_body *repmsg)
931 {
932 int idx = 1;
933
934 repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
935 idx++;
936 if (idx > raw->curlen)
937 goto fail_len;
938 repmsg->u.allocate_payload.vcpi = raw->msg[idx];
939 idx++;
940 if (idx > raw->curlen)
941 goto fail_len;
942 repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
943 idx += 2;
944 if (idx > raw->curlen)
945 goto fail_len;
946 return true;
947 fail_len:
948 DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen);
949 return false;
950 }
951
952 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw,
953 struct drm_dp_sideband_msg_reply_body *repmsg)
954 {
955 int idx = 1;
956
957 repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
958 idx++;
959 if (idx > raw->curlen)
960 goto fail_len;
961 repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
962 idx += 2;
963 if (idx > raw->curlen)
964 goto fail_len;
965 return true;
966 fail_len:
967 DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen);
968 return false;
969 }
970
971 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw,
972 struct drm_dp_sideband_msg_reply_body *repmsg)
973 {
974 int idx = 1;
975
976 repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf;
977 idx++;
978 if (idx > raw->curlen) {
979 DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n",
980 idx, raw->curlen);
981 return false;
982 }
983 return true;
984 }
985
986 static bool
987 drm_dp_sideband_parse_query_stream_enc_status(
988 struct drm_dp_sideband_msg_rx *raw,
989 struct drm_dp_sideband_msg_reply_body *repmsg)
990 {
991 struct drm_dp_query_stream_enc_status_ack_reply *reply;
992
993 reply = &repmsg->u.enc_status;
994
995 reply->stream_id = raw->msg[3];
996
997 reply->reply_signed = raw->msg[2] & BIT(0);
998
999 /*
1000 * NOTE: It's my impression from reading the spec that the below parsing
1001 * is correct. However I noticed while testing with an HDCP 1.4 display
1002 * through an HDCP 2.2 hub that only bit 3 was set. In that case, I
1003 * would expect both bits to be set. So keep the parsing following the
1004 * spec, but beware reality might not match the spec (at least for some
1005 * configurations).
1006 */
1007 reply->hdcp_1x_device_present = raw->msg[2] & BIT(4);
1008 reply->hdcp_2x_device_present = raw->msg[2] & BIT(3);
1009
1010 reply->query_capable_device_present = raw->msg[2] & BIT(5);
1011 reply->legacy_device_present = raw->msg[2] & BIT(6);
1012 reply->unauthorizable_device_present = raw->msg[2] & BIT(7);
1013
1014 reply->auth_completed = !!(raw->msg[1] & BIT(3));
1015 reply->encryption_enabled = !!(raw->msg[1] & BIT(4));
1016 reply->repeater_present = !!(raw->msg[1] & BIT(5));
1017 reply->state = (raw->msg[1] & GENMASK(7, 6)) >> 6;
1018
1019 return true;
1020 }
1021
1022 static bool drm_dp_sideband_parse_reply(const struct drm_dp_mst_topology_mgr *mgr,
1023 struct drm_dp_sideband_msg_rx *raw,
1024 struct drm_dp_sideband_msg_reply_body *msg)
1025 {
1026 memset(msg, 0, sizeof(*msg));
1027 msg->reply_type = (raw->msg[0] & 0x80) >> 7;
1028 msg->req_type = (raw->msg[0] & 0x7f);
1029
1030 if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) {
1031 memcpy(msg->u.nak.guid, &raw->msg[1], 16);
1032 msg->u.nak.reason = raw->msg[17];
1033 msg->u.nak.nak_data = raw->msg[18];
1034 return false;
1035 }
1036
1037 switch (msg->req_type) {
1038 case DP_LINK_ADDRESS:
1039 return drm_dp_sideband_parse_link_address(mgr, raw, msg);
1040 case DP_QUERY_PAYLOAD:
1041 return drm_dp_sideband_parse_query_payload_ack(raw, msg);
1042 case DP_REMOTE_DPCD_READ:
1043 return drm_dp_sideband_parse_remote_dpcd_read(raw, msg);
1044 case DP_REMOTE_DPCD_WRITE:
1045 return drm_dp_sideband_parse_remote_dpcd_write(raw, msg);
1046 case DP_REMOTE_I2C_READ:
1047 return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg);
1048 case DP_REMOTE_I2C_WRITE:
1049 return true; /* since there's nothing to parse */
1050 case DP_ENUM_PATH_RESOURCES:
1051 return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg);
1052 case DP_ALLOCATE_PAYLOAD:
1053 return drm_dp_sideband_parse_allocate_payload_ack(raw, msg);
1054 case DP_POWER_DOWN_PHY:
1055 case DP_POWER_UP_PHY:
1056 return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg);
1057 case DP_CLEAR_PAYLOAD_ID_TABLE:
1058 return true; /* since there's nothing to parse */
1059 case DP_QUERY_STREAM_ENC_STATUS:
1060 return drm_dp_sideband_parse_query_stream_enc_status(raw, msg);
1061 default:
1062 drm_err(mgr->dev, "Got unknown reply 0x%02x (%s)\n",
1063 msg->req_type, drm_dp_mst_req_type_str(msg->req_type));
1064 return false;
1065 }
1066 }
1067
1068 static bool
1069 drm_dp_sideband_parse_connection_status_notify(const struct drm_dp_mst_topology_mgr *mgr,
1070 struct drm_dp_sideband_msg_rx *raw,
1071 struct drm_dp_sideband_msg_req_body *msg)
1072 {
1073 int idx = 1;
1074
1075 msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
1076 idx++;
1077 if (idx > raw->curlen)
1078 goto fail_len;
1079
1080 memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16);
1081 idx += 16;
1082 if (idx > raw->curlen)
1083 goto fail_len;
1084
1085 msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1;
1086 msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
1087 msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1;
1088 msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1;
1089 msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7);
1090 idx++;
1091 return true;
1092 fail_len:
1093 drm_dbg_kms(mgr->dev, "connection status reply parse length fail %d %d\n",
1094 idx, raw->curlen);
1095 return false;
1096 }
1097
1098 static bool drm_dp_sideband_parse_resource_status_notify(const struct drm_dp_mst_topology_mgr *mgr,
1099 struct drm_dp_sideband_msg_rx *raw,
1100 struct drm_dp_sideband_msg_req_body *msg)
1101 {
1102 int idx = 1;
1103
1104 msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
1105 idx++;
1106 if (idx > raw->curlen)
1107 goto fail_len;
1108
1109 memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16);
1110 idx += 16;
1111 if (idx > raw->curlen)
1112 goto fail_len;
1113
1114 msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
1115 idx++;
1116 return true;
1117 fail_len:
1118 drm_dbg_kms(mgr->dev, "resource status reply parse length fail %d %d\n", idx, raw->curlen);
1119 return false;
1120 }
1121
1122 static bool drm_dp_sideband_parse_req(const struct drm_dp_mst_topology_mgr *mgr,
1123 struct drm_dp_sideband_msg_rx *raw,
1124 struct drm_dp_sideband_msg_req_body *msg)
1125 {
1126 memset(msg, 0, sizeof(*msg));
1127 msg->req_type = (raw->msg[0] & 0x7f);
1128
1129 switch (msg->req_type) {
1130 case DP_CONNECTION_STATUS_NOTIFY:
1131 return drm_dp_sideband_parse_connection_status_notify(mgr, raw, msg);
1132 case DP_RESOURCE_STATUS_NOTIFY:
1133 return drm_dp_sideband_parse_resource_status_notify(mgr, raw, msg);
1134 default:
1135 drm_err(mgr->dev, "Got unknown request 0x%02x (%s)\n",
1136 msg->req_type, drm_dp_mst_req_type_str(msg->req_type));
1137 return false;
1138 }
1139 }
1140
1141 static void build_dpcd_write(struct drm_dp_sideband_msg_tx *msg,
1142 u8 port_num, u32 offset, u8 num_bytes, u8 *bytes)
1143 {
1144 struct drm_dp_sideband_msg_req_body req;
1145
1146 req.req_type = DP_REMOTE_DPCD_WRITE;
1147 req.u.dpcd_write.port_number = port_num;
1148 req.u.dpcd_write.dpcd_address = offset;
1149 req.u.dpcd_write.num_bytes = num_bytes;
1150 req.u.dpcd_write.bytes = bytes;
1151 drm_dp_encode_sideband_req(&req, msg);
1152 }
1153
1154 static void build_link_address(struct drm_dp_sideband_msg_tx *msg)
1155 {
1156 struct drm_dp_sideband_msg_req_body req;
1157
1158 req.req_type = DP_LINK_ADDRESS;
1159 drm_dp_encode_sideband_req(&req, msg);
1160 }
1161
1162 static void build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg)
1163 {
1164 struct drm_dp_sideband_msg_req_body req;
1165
1166 req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE;
1167 drm_dp_encode_sideband_req(&req, msg);
1168 msg->path_msg = true;
1169 }
1170
1171 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg,
1172 int port_num)
1173 {
1174 struct drm_dp_sideband_msg_req_body req;
1175
1176 req.req_type = DP_ENUM_PATH_RESOURCES;
1177 req.u.port_num.port_number = port_num;
1178 drm_dp_encode_sideband_req(&req, msg);
1179 msg->path_msg = true;
1180 return 0;
1181 }
1182
1183 static void build_allocate_payload(struct drm_dp_sideband_msg_tx *msg,
1184 int port_num,
1185 u8 vcpi, uint16_t pbn,
1186 u8 number_sdp_streams,
1187 u8 *sdp_stream_sink)
1188 {
1189 struct drm_dp_sideband_msg_req_body req;
1190
1191 memset(&req, 0, sizeof(req));
1192 req.req_type = DP_ALLOCATE_PAYLOAD;
1193 req.u.allocate_payload.port_number = port_num;
1194 req.u.allocate_payload.vcpi = vcpi;
1195 req.u.allocate_payload.pbn = pbn;
1196 req.u.allocate_payload.number_sdp_streams = number_sdp_streams;
1197 memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink,
1198 number_sdp_streams);
1199 drm_dp_encode_sideband_req(&req, msg);
1200 msg->path_msg = true;
1201 }
1202
1203 static void build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg,
1204 int port_num, bool power_up)
1205 {
1206 struct drm_dp_sideband_msg_req_body req;
1207
1208 if (power_up)
1209 req.req_type = DP_POWER_UP_PHY;
1210 else
1211 req.req_type = DP_POWER_DOWN_PHY;
1212
1213 req.u.port_num.port_number = port_num;
1214 drm_dp_encode_sideband_req(&req, msg);
1215 msg->path_msg = true;
1216 }
1217
1218 static int
1219 build_query_stream_enc_status(struct drm_dp_sideband_msg_tx *msg, u8 stream_id,
1220 u8 *q_id)
1221 {
1222 struct drm_dp_sideband_msg_req_body req;
1223
1224 req.req_type = DP_QUERY_STREAM_ENC_STATUS;
1225 req.u.enc_status.stream_id = stream_id;
1226 memcpy(req.u.enc_status.client_id, q_id,
1227 sizeof(req.u.enc_status.client_id));
1228 req.u.enc_status.stream_event = 0;
1229 req.u.enc_status.valid_stream_event = false;
1230 req.u.enc_status.stream_behavior = 0;
1231 req.u.enc_status.valid_stream_behavior = false;
1232
1233 drm_dp_encode_sideband_req(&req, msg);
1234 return 0;
1235 }
1236
1237 static int drm_dp_mst_assign_payload_id(struct drm_dp_mst_topology_mgr *mgr,
1238 struct drm_dp_vcpi *vcpi)
1239 {
1240 int ret, vcpi_ret;
1241
1242 mutex_lock(&mgr->payload_lock);
1243 ret = find_first_zero_bit(&mgr->payload_mask, mgr->max_payloads + 1);
1244 if (ret > mgr->max_payloads) {
1245 ret = -EINVAL;
1246 drm_dbg_kms(mgr->dev, "out of payload ids %d\n", ret);
1247 goto out_unlock;
1248 }
1249
1250 vcpi_ret = find_first_zero_bit(&mgr->vcpi_mask, mgr->max_payloads + 1);
1251 if (vcpi_ret > mgr->max_payloads) {
1252 ret = -EINVAL;
1253 drm_dbg_kms(mgr->dev, "out of vcpi ids %d\n", ret);
1254 goto out_unlock;
1255 }
1256
1257 set_bit(ret, &mgr->payload_mask);
1258 set_bit(vcpi_ret, &mgr->vcpi_mask);
1259 vcpi->vcpi = vcpi_ret + 1;
1260 mgr->proposed_vcpis[ret - 1] = vcpi;
1261 out_unlock:
1262 mutex_unlock(&mgr->payload_lock);
1263 return ret;
1264 }
1265
1266 static void drm_dp_mst_put_payload_id(struct drm_dp_mst_topology_mgr *mgr,
1267 int vcpi)
1268 {
1269 int i;
1270
1271 if (vcpi == 0)
1272 return;
1273
1274 mutex_lock(&mgr->payload_lock);
1275 drm_dbg_kms(mgr->dev, "putting payload %d\n", vcpi);
1276 clear_bit(vcpi - 1, &mgr->vcpi_mask);
1277
1278 for (i = 0; i < mgr->max_payloads; i++) {
1279 if (mgr->proposed_vcpis[i] &&
1280 mgr->proposed_vcpis[i]->vcpi == vcpi) {
1281 mgr->proposed_vcpis[i] = NULL;
1282 clear_bit(i + 1, &mgr->payload_mask);
1283 }
1284 }
1285 mutex_unlock(&mgr->payload_lock);
1286 }
1287
1288 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr,
1289 struct drm_dp_sideband_msg_tx *txmsg)
1290 {
1291 unsigned int state;
1292
1293 /*
1294 * All updates to txmsg->state are protected by mgr->qlock, and the two
1295 * cases we check here are terminal states. For those the barriers
1296 * provided by the wake_up/wait_event pair are enough.
1297 */
1298 state = READ_ONCE(txmsg->state);
1299 return (state == DRM_DP_SIDEBAND_TX_RX ||
1300 state == DRM_DP_SIDEBAND_TX_TIMEOUT);
1301 }
1302
1303 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb,
1304 struct drm_dp_sideband_msg_tx *txmsg)
1305 {
1306 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1307 unsigned long wait_timeout = msecs_to_jiffies(4000);
1308 unsigned long wait_expires = jiffies + wait_timeout;
1309 int ret;
1310
1311 for (;;) {
1312 /*
1313 * If the driver provides a way for this, change to
1314 * poll-waiting for the MST reply interrupt if we didn't receive
1315 * it for 50 msec. This would cater for cases where the HPD
1316 * pulse signal got lost somewhere, even though the sink raised
1317 * the corresponding MST interrupt correctly. One example is the
1318 * Club 3D CAC-1557 TypeC -> DP adapter which for some reason
1319 * filters out short pulses with a duration less than ~540 usec.
1320 *
1321 * The poll period is 50 msec to avoid missing an interrupt
1322 * after the sink has cleared it (after a 110msec timeout
1323 * since it raised the interrupt).
1324 */
1325 ret = wait_event_timeout(mgr->tx_waitq,
1326 check_txmsg_state(mgr, txmsg),
1327 mgr->cbs->poll_hpd_irq ?
1328 msecs_to_jiffies(50) :
1329 wait_timeout);
1330
1331 if (ret || !mgr->cbs->poll_hpd_irq ||
1332 time_after(jiffies, wait_expires))
1333 break;
1334
1335 mgr->cbs->poll_hpd_irq(mgr);
1336 }
1337
1338 mutex_lock(&mgr->qlock);
1339 if (ret > 0) {
1340 if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) {
1341 ret = -EIO;
1342 goto out;
1343 }
1344 } else {
1345 drm_dbg_kms(mgr->dev, "timedout msg send %p %d %d\n",
1346 txmsg, txmsg->state, txmsg->seqno);
1347
1348 /* dump some state */
1349 ret = -EIO;
1350
1351 /* remove from q */
1352 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED ||
1353 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND ||
1354 txmsg->state == DRM_DP_SIDEBAND_TX_SENT)
1355 list_del(&txmsg->next);
1356 }
1357 out:
1358 if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) {
1359 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1360
1361 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
1362 }
1363 mutex_unlock(&mgr->qlock);
1364
1365 drm_dp_mst_kick_tx(mgr);
1366 return ret;
1367 }
1368
1369 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad)
1370 {
1371 struct drm_dp_mst_branch *mstb;
1372
1373 mstb = kzalloc(sizeof(*mstb), GFP_KERNEL);
1374 if (!mstb)
1375 return NULL;
1376
1377 mstb->lct = lct;
1378 if (lct > 1)
1379 memcpy(mstb->rad, rad, lct / 2);
1380 INIT_LIST_HEAD(&mstb->ports);
1381 kref_init(&mstb->topology_kref);
1382 kref_init(&mstb->malloc_kref);
1383 return mstb;
1384 }
1385
1386 static void drm_dp_free_mst_branch_device(struct kref *kref)
1387 {
1388 struct drm_dp_mst_branch *mstb =
1389 container_of(kref, struct drm_dp_mst_branch, malloc_kref);
1390
1391 if (mstb->port_parent)
1392 drm_dp_mst_put_port_malloc(mstb->port_parent);
1393
1394 kfree(mstb);
1395 }
1396
1397 /**
1398 * DOC: Branch device and port refcounting
1399 *
1400 * Topology refcount overview
1401 * ~~~~~~~~~~~~~~~~~~~~~~~~~~
1402 *
1403 * The refcounting schemes for &struct drm_dp_mst_branch and &struct
1404 * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have
1405 * two different kinds of refcounts: topology refcounts, and malloc refcounts.
1406 *
1407 * Topology refcounts are not exposed to drivers, and are handled internally
1408 * by the DP MST helpers. The helpers use them in order to prevent the
1409 * in-memory topology state from being changed in the middle of critical
1410 * operations like changing the internal state of payload allocations. This
1411 * means each branch and port will be considered to be connected to the rest
1412 * of the topology until its topology refcount reaches zero. Additionally,
1413 * for ports this means that their associated &struct drm_connector will stay
1414 * registered with userspace until the port's refcount reaches 0.
1415 *
1416 * Malloc refcount overview
1417 * ~~~~~~~~~~~~~~~~~~~~~~~~
1418 *
1419 * Malloc references are used to keep a &struct drm_dp_mst_port or &struct
1420 * drm_dp_mst_branch allocated even after all of its topology references have
1421 * been dropped, so that the driver or MST helpers can safely access each
1422 * branch's last known state before it was disconnected from the topology.
1423 * When the malloc refcount of a port or branch reaches 0, the memory
1424 * allocation containing the &struct drm_dp_mst_branch or &struct
1425 * drm_dp_mst_port respectively will be freed.
1426 *
1427 * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed
1428 * to drivers. As of writing this documentation, there are no drivers that
1429 * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST
1430 * helpers. Exposing this API to drivers in a race-free manner would take more
1431 * tweaking of the refcounting scheme, however patches are welcome provided
1432 * there is a legitimate driver usecase for this.
1433 *
1434 * Refcount relationships in a topology
1435 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1436 *
1437 * Let's take a look at why the relationship between topology and malloc
1438 * refcounts is designed the way it is.
1439 *
1440 * .. kernel-figure:: dp-mst/topology-figure-1.dot
1441 *
1442 * An example of topology and malloc refs in a DP MST topology with two
1443 * active payloads. Topology refcount increments are indicated by solid
1444 * lines, and malloc refcount increments are indicated by dashed lines.
1445 * Each starts from the branch which incremented the refcount, and ends at
1446 * the branch to which the refcount belongs to, i.e. the arrow points the
1447 * same way as the C pointers used to reference a structure.
1448 *
1449 * As you can see in the above figure, every branch increments the topology
1450 * refcount of its children, and increments the malloc refcount of its
1451 * parent. Additionally, every payload increments the malloc refcount of its
1452 * assigned port by 1.
1453 *
1454 * So, what would happen if MSTB #3 from the above figure was unplugged from
1455 * the system, but the driver hadn't yet removed payload #2 from port #3? The
1456 * topology would start to look like the figure below.
1457 *
1458 * .. kernel-figure:: dp-mst/topology-figure-2.dot
1459 *
1460 * Ports and branch devices which have been released from memory are
1461 * colored grey, and references which have been removed are colored red.
1462 *
1463 * Whenever a port or branch device's topology refcount reaches zero, it will
1464 * decrement the topology refcounts of all its children, the malloc refcount
1465 * of its parent, and finally its own malloc refcount. For MSTB #4 and port
1466 * #4, this means they both have been disconnected from the topology and freed
1467 * from memory. But, because payload #2 is still holding a reference to port
1468 * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port
1469 * is still accessible from memory. This also means port #3 has not yet
1470 * decremented the malloc refcount of MSTB #3, so its &struct
1471 * drm_dp_mst_branch will also stay allocated in memory until port #3's
1472 * malloc refcount reaches 0.
1473 *
1474 * This relationship is necessary because in order to release payload #2, we
1475 * need to be able to figure out the last relative of port #3 that's still
1476 * connected to the topology. In this case, we would travel up the topology as
1477 * shown below.
1478 *
1479 * .. kernel-figure:: dp-mst/topology-figure-3.dot
1480 *
1481 * And finally, remove payload #2 by communicating with port #2 through
1482 * sideband transactions.
1483 */
1484
1485 /**
1486 * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch
1487 * device
1488 * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of
1489 *
1490 * Increments &drm_dp_mst_branch.malloc_kref. When
1491 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1492 * will be released and @mstb may no longer be used.
1493 *
1494 * See also: drm_dp_mst_put_mstb_malloc()
1495 */
1496 static void
1497 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb)
1498 {
1499 kref_get(&mstb->malloc_kref);
1500 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref));
1501 }
1502
1503 /**
1504 * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch
1505 * device
1506 * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of
1507 *
1508 * Decrements &drm_dp_mst_branch.malloc_kref. When
1509 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1510 * will be released and @mstb may no longer be used.
1511 *
1512 * See also: drm_dp_mst_get_mstb_malloc()
1513 */
1514 static void
1515 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb)
1516 {
1517 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1);
1518 kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device);
1519 }
1520
1521 static void drm_dp_free_mst_port(struct kref *kref)
1522 {
1523 struct drm_dp_mst_port *port =
1524 container_of(kref, struct drm_dp_mst_port, malloc_kref);
1525
1526 drm_dp_mst_put_mstb_malloc(port->parent);
1527 kfree(port);
1528 }
1529
1530 /**
1531 * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port
1532 * @port: The &struct drm_dp_mst_port to increment the malloc refcount of
1533 *
1534 * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1535 * reaches 0, the memory allocation for @port will be released and @port may
1536 * no longer be used.
1537 *
1538 * Because @port could potentially be freed at any time by the DP MST helpers
1539 * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this
1540 * function, drivers that which to make use of &struct drm_dp_mst_port should
1541 * ensure that they grab at least one main malloc reference to their MST ports
1542 * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before
1543 * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0.
1544 *
1545 * See also: drm_dp_mst_put_port_malloc()
1546 */
1547 void
1548 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port)
1549 {
1550 kref_get(&port->malloc_kref);
1551 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref));
1552 }
1553 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc);
1554
1555 /**
1556 * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port
1557 * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of
1558 *
1559 * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1560 * reaches 0, the memory allocation for @port will be released and @port may
1561 * no longer be used.
1562 *
1563 * See also: drm_dp_mst_get_port_malloc()
1564 */
1565 void
1566 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port)
1567 {
1568 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1);
1569 kref_put(&port->malloc_kref, drm_dp_free_mst_port);
1570 }
1571 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc);
1572
1573 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
1574
1575 #define STACK_DEPTH 8
1576
1577 static noinline void
1578 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr,
1579 struct drm_dp_mst_topology_ref_history *history,
1580 enum drm_dp_mst_topology_ref_type type)
1581 {
1582 struct drm_dp_mst_topology_ref_entry *entry = NULL;
1583 depot_stack_handle_t backtrace;
1584 ulong stack_entries[STACK_DEPTH];
1585 uint n;
1586 int i;
1587
1588 n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1);
1589 backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL);
1590 if (!backtrace)
1591 return;
1592
1593 /* Try to find an existing entry for this backtrace */
1594 for (i = 0; i < history->len; i++) {
1595 if (history->entries[i].backtrace == backtrace) {
1596 entry = &history->entries[i];
1597 break;
1598 }
1599 }
1600
1601 /* Otherwise add one */
1602 if (!entry) {
1603 struct drm_dp_mst_topology_ref_entry *new;
1604 int new_len = history->len + 1;
1605
1606 new = krealloc(history->entries, sizeof(*new) * new_len,
1607 GFP_KERNEL);
1608 if (!new)
1609 return;
1610
1611 entry = &new[history->len];
1612 history->len = new_len;
1613 history->entries = new;
1614
1615 entry->backtrace = backtrace;
1616 entry->type = type;
1617 entry->count = 0;
1618 }
1619 entry->count++;
1620 entry->ts_nsec = ktime_get_ns();
1621 }
1622
1623 static int
1624 topology_ref_history_cmp(const void *a, const void *b)
1625 {
1626 const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b;
1627
1628 if (entry_a->ts_nsec > entry_b->ts_nsec)
1629 return 1;
1630 else if (entry_a->ts_nsec < entry_b->ts_nsec)
1631 return -1;
1632 else
1633 return 0;
1634 }
1635
1636 static inline const char *
1637 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type)
1638 {
1639 if (type == DRM_DP_MST_TOPOLOGY_REF_GET)
1640 return "get";
1641 else
1642 return "put";
1643 }
1644
1645 static void
1646 __dump_topology_ref_history(struct drm_dp_mst_topology_ref_history *history,
1647 void *ptr, const char *type_str)
1648 {
1649 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1650 char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
1651 int i;
1652
1653 if (!buf)
1654 return;
1655
1656 if (!history->len)
1657 goto out;
1658
1659 /* First, sort the list so that it goes from oldest to newest
1660 * reference entry
1661 */
1662 sort(history->entries, history->len, sizeof(*history->entries),
1663 topology_ref_history_cmp, NULL);
1664
1665 drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n",
1666 type_str, ptr);
1667
1668 for (i = 0; i < history->len; i++) {
1669 const struct drm_dp_mst_topology_ref_entry *entry =
1670 &history->entries[i];
1671 u64 ts_nsec = entry->ts_nsec;
1672 u32 rem_nsec = do_div(ts_nsec, 1000000000);
1673
1674 stack_depot_snprint(entry->backtrace, buf, PAGE_SIZE, 4);
1675
1676 drm_printf(&p, " %d %ss (last at %5llu.%06u):\n%s",
1677 entry->count,
1678 topology_ref_type_to_str(entry->type),
1679 ts_nsec, rem_nsec / 1000, buf);
1680 }
1681
1682 /* Now free the history, since this is the only time we expose it */
1683 kfree(history->entries);
1684 out:
1685 kfree(buf);
1686 }
1687
1688 static __always_inline void
1689 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb)
1690 {
1691 __dump_topology_ref_history(&mstb->topology_ref_history, mstb,
1692 "MSTB");
1693 }
1694
1695 static __always_inline void
1696 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port)
1697 {
1698 __dump_topology_ref_history(&port->topology_ref_history, port,
1699 "Port");
1700 }
1701
1702 static __always_inline void
1703 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb,
1704 enum drm_dp_mst_topology_ref_type type)
1705 {
1706 __topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type);
1707 }
1708
1709 static __always_inline void
1710 save_port_topology_ref(struct drm_dp_mst_port *port,
1711 enum drm_dp_mst_topology_ref_type type)
1712 {
1713 __topology_ref_save(port->mgr, &port->topology_ref_history, type);
1714 }
1715
1716 static inline void
1717 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr)
1718 {
1719 mutex_lock(&mgr->topology_ref_history_lock);
1720 }
1721
1722 static inline void
1723 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr)
1724 {
1725 mutex_unlock(&mgr->topology_ref_history_lock);
1726 }
1727 #else
1728 static inline void
1729 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {}
1730 static inline void
1731 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {}
1732 static inline void
1733 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {}
1734 static inline void
1735 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {}
1736 #define save_mstb_topology_ref(mstb, type)
1737 #define save_port_topology_ref(port, type)
1738 #endif
1739
1740 static void drm_dp_destroy_mst_branch_device(struct kref *kref)
1741 {
1742 struct drm_dp_mst_branch *mstb =
1743 container_of(kref, struct drm_dp_mst_branch, topology_kref);
1744 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1745
1746 drm_dp_mst_dump_mstb_topology_history(mstb);
1747
1748 INIT_LIST_HEAD(&mstb->destroy_next);
1749
1750 /*
1751 * This can get called under mgr->mutex, so we need to perform the
1752 * actual destruction of the mstb in another worker
1753 */
1754 mutex_lock(&mgr->delayed_destroy_lock);
1755 list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list);
1756 mutex_unlock(&mgr->delayed_destroy_lock);
1757 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work);
1758 }
1759
1760 /**
1761 * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a
1762 * branch device unless it's zero
1763 * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of
1764 *
1765 * Attempts to grab a topology reference to @mstb, if it hasn't yet been
1766 * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has
1767 * reached 0). Holding a topology reference implies that a malloc reference
1768 * will be held to @mstb as long as the user holds the topology reference.
1769 *
1770 * Care should be taken to ensure that the user has at least one malloc
1771 * reference to @mstb. If you already have a topology reference to @mstb, you
1772 * should use drm_dp_mst_topology_get_mstb() instead.
1773 *
1774 * See also:
1775 * drm_dp_mst_topology_get_mstb()
1776 * drm_dp_mst_topology_put_mstb()
1777 *
1778 * Returns:
1779 * * 1: A topology reference was grabbed successfully
1780 * * 0: @port is no longer in the topology, no reference was grabbed
1781 */
1782 static int __must_check
1783 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb)
1784 {
1785 int ret;
1786
1787 topology_ref_history_lock(mstb->mgr);
1788 ret = kref_get_unless_zero(&mstb->topology_kref);
1789 if (ret) {
1790 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref));
1791 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1792 }
1793
1794 topology_ref_history_unlock(mstb->mgr);
1795
1796 return ret;
1797 }
1798
1799 /**
1800 * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a
1801 * branch device
1802 * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of
1803 *
1804 * Increments &drm_dp_mst_branch.topology_refcount without checking whether or
1805 * not it's already reached 0. This is only valid to use in scenarios where
1806 * you are already guaranteed to have at least one active topology reference
1807 * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used.
1808 *
1809 * See also:
1810 * drm_dp_mst_topology_try_get_mstb()
1811 * drm_dp_mst_topology_put_mstb()
1812 */
1813 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb)
1814 {
1815 topology_ref_history_lock(mstb->mgr);
1816
1817 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1818 WARN_ON(kref_read(&mstb->topology_kref) == 0);
1819 kref_get(&mstb->topology_kref);
1820 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref));
1821
1822 topology_ref_history_unlock(mstb->mgr);
1823 }
1824
1825 /**
1826 * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch
1827 * device
1828 * @mstb: The &struct drm_dp_mst_branch to release the topology reference from
1829 *
1830 * Releases a topology reference from @mstb by decrementing
1831 * &drm_dp_mst_branch.topology_kref.
1832 *
1833 * See also:
1834 * drm_dp_mst_topology_try_get_mstb()
1835 * drm_dp_mst_topology_get_mstb()
1836 */
1837 static void
1838 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb)
1839 {
1840 topology_ref_history_lock(mstb->mgr);
1841
1842 drm_dbg(mstb->mgr->dev, "mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref) - 1);
1843 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT);
1844
1845 topology_ref_history_unlock(mstb->mgr);
1846 kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device);
1847 }
1848
1849 static void drm_dp_destroy_port(struct kref *kref)
1850 {
1851 struct drm_dp_mst_port *port =
1852 container_of(kref, struct drm_dp_mst_port, topology_kref);
1853 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
1854
1855 drm_dp_mst_dump_port_topology_history(port);
1856
1857 /* There's nothing that needs locking to destroy an input port yet */
1858 if (port->input) {
1859 drm_dp_mst_put_port_malloc(port);
1860 return;
1861 }
1862
1863 kfree(port->cached_edid);
1864
1865 /*
1866 * we can't destroy the connector here, as we might be holding the
1867 * mode_config.mutex from an EDID retrieval
1868 */
1869 mutex_lock(&mgr->delayed_destroy_lock);
1870 list_add(&port->next, &mgr->destroy_port_list);
1871 mutex_unlock(&mgr->delayed_destroy_lock);
1872 queue_work(mgr->delayed_destroy_wq, &mgr->delayed_destroy_work);
1873 }
1874
1875 /**
1876 * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a
1877 * port unless it's zero
1878 * @port: &struct drm_dp_mst_port to increment the topology refcount of
1879 *
1880 * Attempts to grab a topology reference to @port, if it hasn't yet been
1881 * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached
1882 * 0). Holding a topology reference implies that a malloc reference will be
1883 * held to @port as long as the user holds the topology reference.
1884 *
1885 * Care should be taken to ensure that the user has at least one malloc
1886 * reference to @port. If you already have a topology reference to @port, you
1887 * should use drm_dp_mst_topology_get_port() instead.
1888 *
1889 * See also:
1890 * drm_dp_mst_topology_get_port()
1891 * drm_dp_mst_topology_put_port()
1892 *
1893 * Returns:
1894 * * 1: A topology reference was grabbed successfully
1895 * * 0: @port is no longer in the topology, no reference was grabbed
1896 */
1897 static int __must_check
1898 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port)
1899 {
1900 int ret;
1901
1902 topology_ref_history_lock(port->mgr);
1903 ret = kref_get_unless_zero(&port->topology_kref);
1904 if (ret) {
1905 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref));
1906 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1907 }
1908
1909 topology_ref_history_unlock(port->mgr);
1910 return ret;
1911 }
1912
1913 /**
1914 * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port
1915 * @port: The &struct drm_dp_mst_port to increment the topology refcount of
1916 *
1917 * Increments &drm_dp_mst_port.topology_refcount without checking whether or
1918 * not it's already reached 0. This is only valid to use in scenarios where
1919 * you are already guaranteed to have at least one active topology reference
1920 * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used.
1921 *
1922 * See also:
1923 * drm_dp_mst_topology_try_get_port()
1924 * drm_dp_mst_topology_put_port()
1925 */
1926 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port)
1927 {
1928 topology_ref_history_lock(port->mgr);
1929
1930 WARN_ON(kref_read(&port->topology_kref) == 0);
1931 kref_get(&port->topology_kref);
1932 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref));
1933 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1934
1935 topology_ref_history_unlock(port->mgr);
1936 }
1937
1938 /**
1939 * drm_dp_mst_topology_put_port() - release a topology reference to a port
1940 * @port: The &struct drm_dp_mst_port to release the topology reference from
1941 *
1942 * Releases a topology reference from @port by decrementing
1943 * &drm_dp_mst_port.topology_kref.
1944 *
1945 * See also:
1946 * drm_dp_mst_topology_try_get_port()
1947 * drm_dp_mst_topology_get_port()
1948 */
1949 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port)
1950 {
1951 topology_ref_history_lock(port->mgr);
1952
1953 drm_dbg(port->mgr->dev, "port %p (%d)\n", port, kref_read(&port->topology_kref) - 1);
1954 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT);
1955
1956 topology_ref_history_unlock(port->mgr);
1957 kref_put(&port->topology_kref, drm_dp_destroy_port);
1958 }
1959
1960 static struct drm_dp_mst_branch *
1961 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb,
1962 struct drm_dp_mst_branch *to_find)
1963 {
1964 struct drm_dp_mst_port *port;
1965 struct drm_dp_mst_branch *rmstb;
1966
1967 if (to_find == mstb)
1968 return mstb;
1969
1970 list_for_each_entry(port, &mstb->ports, next) {
1971 if (port->mstb) {
1972 rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1973 port->mstb, to_find);
1974 if (rmstb)
1975 return rmstb;
1976 }
1977 }
1978 return NULL;
1979 }
1980
1981 static struct drm_dp_mst_branch *
1982 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr,
1983 struct drm_dp_mst_branch *mstb)
1984 {
1985 struct drm_dp_mst_branch *rmstb = NULL;
1986
1987 mutex_lock(&mgr->lock);
1988 if (mgr->mst_primary) {
1989 rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1990 mgr->mst_primary, mstb);
1991
1992 if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb))
1993 rmstb = NULL;
1994 }
1995 mutex_unlock(&mgr->lock);
1996 return rmstb;
1997 }
1998
1999 static struct drm_dp_mst_port *
2000 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb,
2001 struct drm_dp_mst_port *to_find)
2002 {
2003 struct drm_dp_mst_port *port, *mport;
2004
2005 list_for_each_entry(port, &mstb->ports, next) {
2006 if (port == to_find)
2007 return port;
2008
2009 if (port->mstb) {
2010 mport = drm_dp_mst_topology_get_port_validated_locked(
2011 port->mstb, to_find);
2012 if (mport)
2013 return mport;
2014 }
2015 }
2016 return NULL;
2017 }
2018
2019 static struct drm_dp_mst_port *
2020 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr,
2021 struct drm_dp_mst_port *port)
2022 {
2023 struct drm_dp_mst_port *rport = NULL;
2024
2025 mutex_lock(&mgr->lock);
2026 if (mgr->mst_primary) {
2027 rport = drm_dp_mst_topology_get_port_validated_locked(
2028 mgr->mst_primary, port);
2029
2030 if (rport && !drm_dp_mst_topology_try_get_port(rport))
2031 rport = NULL;
2032 }
2033 mutex_unlock(&mgr->lock);
2034 return rport;
2035 }
2036
2037 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num)
2038 {
2039 struct drm_dp_mst_port *port;
2040 int ret;
2041
2042 list_for_each_entry(port, &mstb->ports, next) {
2043 if (port->port_num == port_num) {
2044 ret = drm_dp_mst_topology_try_get_port(port);
2045 return ret ? port : NULL;
2046 }
2047 }
2048
2049 return NULL;
2050 }
2051
2052 /*
2053 * calculate a new RAD for this MST branch device
2054 * if parent has an LCT of 2 then it has 1 nibble of RAD,
2055 * if parent has an LCT of 3 then it has 2 nibbles of RAD,
2056 */
2057 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port,
2058 u8 *rad)
2059 {
2060 int parent_lct = port->parent->lct;
2061 int shift = 4;
2062 int idx = (parent_lct - 1) / 2;
2063
2064 if (parent_lct > 1) {
2065 memcpy(rad, port->parent->rad, idx + 1);
2066 shift = (parent_lct % 2) ? 4 : 0;
2067 } else
2068 rad[0] = 0;
2069
2070 rad[idx] |= port->port_num << shift;
2071 return parent_lct + 1;
2072 }
2073
2074 static bool drm_dp_mst_is_end_device(u8 pdt, bool mcs)
2075 {
2076 switch (pdt) {
2077 case DP_PEER_DEVICE_DP_LEGACY_CONV:
2078 case DP_PEER_DEVICE_SST_SINK:
2079 return true;
2080 case DP_PEER_DEVICE_MST_BRANCHING:
2081 /* For sst branch device */
2082 if (!mcs)
2083 return true;
2084
2085 return false;
2086 }
2087 return true;
2088 }
2089
2090 static int
2091 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt,
2092 bool new_mcs)
2093 {
2094 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
2095 struct drm_dp_mst_branch *mstb;
2096 u8 rad[8], lct;
2097 int ret = 0;
2098
2099 if (port->pdt == new_pdt && port->mcs == new_mcs)
2100 return 0;
2101
2102 /* Teardown the old pdt, if there is one */
2103 if (port->pdt != DP_PEER_DEVICE_NONE) {
2104 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
2105 /*
2106 * If the new PDT would also have an i2c bus,
2107 * don't bother with reregistering it
2108 */
2109 if (new_pdt != DP_PEER_DEVICE_NONE &&
2110 drm_dp_mst_is_end_device(new_pdt, new_mcs)) {
2111 port->pdt = new_pdt;
2112 port->mcs = new_mcs;
2113 return 0;
2114 }
2115
2116 /* remove i2c over sideband */
2117 drm_dp_mst_unregister_i2c_bus(port);
2118 } else {
2119 mutex_lock(&mgr->lock);
2120 drm_dp_mst_topology_put_mstb(port->mstb);
2121 port->mstb = NULL;
2122 mutex_unlock(&mgr->lock);
2123 }
2124 }
2125
2126 port->pdt = new_pdt;
2127 port->mcs = new_mcs;
2128
2129 if (port->pdt != DP_PEER_DEVICE_NONE) {
2130 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
2131 /* add i2c over sideband */
2132 ret = drm_dp_mst_register_i2c_bus(port);
2133 } else {
2134 lct = drm_dp_calculate_rad(port, rad);
2135 mstb = drm_dp_add_mst_branch_device(lct, rad);
2136 if (!mstb) {
2137 ret = -ENOMEM;
2138 drm_err(mgr->dev, "Failed to create MSTB for port %p", port);
2139 goto out;
2140 }
2141
2142 mutex_lock(&mgr->lock);
2143 port->mstb = mstb;
2144 mstb->mgr = port->mgr;
2145 mstb->port_parent = port;
2146
2147 /*
2148 * Make sure this port's memory allocation stays
2149 * around until its child MSTB releases it
2150 */
2151 drm_dp_mst_get_port_malloc(port);
2152 mutex_unlock(&mgr->lock);
2153
2154 /* And make sure we send a link address for this */
2155 ret = 1;
2156 }
2157 }
2158
2159 out:
2160 if (ret < 0)
2161 port->pdt = DP_PEER_DEVICE_NONE;
2162 return ret;
2163 }
2164
2165 /**
2166 * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband
2167 * @aux: Fake sideband AUX CH
2168 * @offset: address of the (first) register to read
2169 * @buffer: buffer to store the register values
2170 * @size: number of bytes in @buffer
2171 *
2172 * Performs the same functionality for remote devices via
2173 * sideband messaging as drm_dp_dpcd_read() does for local
2174 * devices via actual AUX CH.
2175 *
2176 * Return: Number of bytes read, or negative error code on failure.
2177 */
2178 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux,
2179 unsigned int offset, void *buffer, size_t size)
2180 {
2181 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2182 aux);
2183
2184 return drm_dp_send_dpcd_read(port->mgr, port,
2185 offset, size, buffer);
2186 }
2187
2188 /**
2189 * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband
2190 * @aux: Fake sideband AUX CH
2191 * @offset: address of the (first) register to write
2192 * @buffer: buffer containing the values to write
2193 * @size: number of bytes in @buffer
2194 *
2195 * Performs the same functionality for remote devices via
2196 * sideband messaging as drm_dp_dpcd_write() does for local
2197 * devices via actual AUX CH.
2198 *
2199 * Return: number of bytes written on success, negative error code on failure.
2200 */
2201 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux,
2202 unsigned int offset, void *buffer, size_t size)
2203 {
2204 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2205 aux);
2206
2207 return drm_dp_send_dpcd_write(port->mgr, port,
2208 offset, size, buffer);
2209 }
2210
2211 static int drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid)
2212 {
2213 int ret = 0;
2214
2215 memcpy(mstb->guid, guid, 16);
2216
2217 if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) {
2218 if (mstb->port_parent) {
2219 ret = drm_dp_send_dpcd_write(mstb->mgr,
2220 mstb->port_parent,
2221 DP_GUID, 16, mstb->guid);
2222 } else {
2223 ret = drm_dp_dpcd_write(mstb->mgr->aux,
2224 DP_GUID, mstb->guid, 16);
2225 }
2226 }
2227
2228 if (ret < 16 && ret > 0)
2229 return -EPROTO;
2230
2231 return ret == 16 ? 0 : ret;
2232 }
2233
2234 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb,
2235 int pnum,
2236 char *proppath,
2237 size_t proppath_size)
2238 {
2239 int i;
2240 char temp[8];
2241
2242 snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id);
2243 for (i = 0; i < (mstb->lct - 1); i++) {
2244 int shift = (i % 2) ? 0 : 4;
2245 int port_num = (mstb->rad[i / 2] >> shift) & 0xf;
2246
2247 snprintf(temp, sizeof(temp), "-%d", port_num);
2248 strlcat(proppath, temp, proppath_size);
2249 }
2250 snprintf(temp, sizeof(temp), "-%d", pnum);
2251 strlcat(proppath, temp, proppath_size);
2252 }
2253
2254 /**
2255 * drm_dp_mst_connector_late_register() - Late MST connector registration
2256 * @connector: The MST connector
2257 * @port: The MST port for this connector
2258 *
2259 * Helper to register the remote aux device for this MST port. Drivers should
2260 * call this from their mst connector's late_register hook to enable MST aux
2261 * devices.
2262 *
2263 * Return: 0 on success, negative error code on failure.
2264 */
2265 int drm_dp_mst_connector_late_register(struct drm_connector *connector,
2266 struct drm_dp_mst_port *port)
2267 {
2268 drm_dbg_kms(port->mgr->dev, "registering %s remote bus for %s\n",
2269 port->aux.name, connector->kdev->kobj.name);
2270
2271 port->aux.dev = connector->kdev;
2272 return drm_dp_aux_register_devnode(&port->aux);
2273 }
2274 EXPORT_SYMBOL(drm_dp_mst_connector_late_register);
2275
2276 /**
2277 * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration
2278 * @connector: The MST connector
2279 * @port: The MST port for this connector
2280 *
2281 * Helper to unregister the remote aux device for this MST port, registered by
2282 * drm_dp_mst_connector_late_register(). Drivers should call this from their mst
2283 * connector's early_unregister hook.
2284 */
2285 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector,
2286 struct drm_dp_mst_port *port)
2287 {
2288 drm_dbg_kms(port->mgr->dev, "unregistering %s remote bus for %s\n",
2289 port->aux.name, connector->kdev->kobj.name);
2290 drm_dp_aux_unregister_devnode(&port->aux);
2291 }
2292 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister);
2293
2294 static void
2295 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb,
2296 struct drm_dp_mst_port *port)
2297 {
2298 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
2299 char proppath[255];
2300 int ret;
2301
2302 build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath));
2303 port->connector = mgr->cbs->add_connector(mgr, port, proppath);
2304 if (!port->connector) {
2305 ret = -ENOMEM;
2306 goto error;
2307 }
2308
2309 if (port->pdt != DP_PEER_DEVICE_NONE &&
2310 drm_dp_mst_is_end_device(port->pdt, port->mcs) &&
2311 port->port_num >= DP_MST_LOGICAL_PORT_0)
2312 port->cached_edid = drm_get_edid(port->connector,
2313 &port->aux.ddc);
2314
2315 drm_connector_register(port->connector);
2316 return;
2317
2318 error:
2319 drm_err(mgr->dev, "Failed to create connector for port %p: %d\n", port, ret);
2320 }
2321
2322 /*
2323 * Drop a topology reference, and unlink the port from the in-memory topology
2324 * layout
2325 */
2326 static void
2327 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr,
2328 struct drm_dp_mst_port *port)
2329 {
2330 mutex_lock(&mgr->lock);
2331 port->parent->num_ports--;
2332 list_del(&port->next);
2333 mutex_unlock(&mgr->lock);
2334 drm_dp_mst_topology_put_port(port);
2335 }
2336
2337 static struct drm_dp_mst_port *
2338 drm_dp_mst_add_port(struct drm_device *dev,
2339 struct drm_dp_mst_topology_mgr *mgr,
2340 struct drm_dp_mst_branch *mstb, u8 port_number)
2341 {
2342 struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL);
2343
2344 if (!port)
2345 return NULL;
2346
2347 kref_init(&port->topology_kref);
2348 kref_init(&port->malloc_kref);
2349 port->parent = mstb;
2350 port->port_num = port_number;
2351 port->mgr = mgr;
2352 port->aux.name = "DPMST";
2353 port->aux.dev = dev->dev;
2354 port->aux.is_remote = true;
2355
2356 /* initialize the MST downstream port's AUX crc work queue */
2357 port->aux.drm_dev = dev;
2358 drm_dp_remote_aux_init(&port->aux);
2359
2360 /*
2361 * Make sure the memory allocation for our parent branch stays
2362 * around until our own memory allocation is released
2363 */
2364 drm_dp_mst_get_mstb_malloc(mstb);
2365
2366 return port;
2367 }
2368
2369 static int
2370 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb,
2371 struct drm_device *dev,
2372 struct drm_dp_link_addr_reply_port *port_msg)
2373 {
2374 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2375 struct drm_dp_mst_port *port;
2376 int old_ddps = 0, ret;
2377 u8 new_pdt = DP_PEER_DEVICE_NONE;
2378 bool new_mcs = 0;
2379 bool created = false, send_link_addr = false, changed = false;
2380
2381 port = drm_dp_get_port(mstb, port_msg->port_number);
2382 if (!port) {
2383 port = drm_dp_mst_add_port(dev, mgr, mstb,
2384 port_msg->port_number);
2385 if (!port)
2386 return -ENOMEM;
2387 created = true;
2388 changed = true;
2389 } else if (!port->input && port_msg->input_port && port->connector) {
2390 /* Since port->connector can't be changed here, we create a
2391 * new port if input_port changes from 0 to 1
2392 */
2393 drm_dp_mst_topology_unlink_port(mgr, port);
2394 drm_dp_mst_topology_put_port(port);
2395 port = drm_dp_mst_add_port(dev, mgr, mstb,
2396 port_msg->port_number);
2397 if (!port)
2398 return -ENOMEM;
2399 changed = true;
2400 created = true;
2401 } else if (port->input && !port_msg->input_port) {
2402 changed = true;
2403 } else if (port->connector) {
2404 /* We're updating a port that's exposed to userspace, so do it
2405 * under lock
2406 */
2407 drm_modeset_lock(&mgr->base.lock, NULL);
2408
2409 old_ddps = port->ddps;
2410 changed = port->ddps != port_msg->ddps ||
2411 (port->ddps &&
2412 (port->ldps != port_msg->legacy_device_plug_status ||
2413 port->dpcd_rev != port_msg->dpcd_revision ||
2414 port->mcs != port_msg->mcs ||
2415 port->pdt != port_msg->peer_device_type ||
2416 port->num_sdp_stream_sinks !=
2417 port_msg->num_sdp_stream_sinks));
2418 }
2419
2420 port->input = port_msg->input_port;
2421 if (!port->input)
2422 new_pdt = port_msg->peer_device_type;
2423 new_mcs = port_msg->mcs;
2424 port->ddps = port_msg->ddps;
2425 port->ldps = port_msg->legacy_device_plug_status;
2426 port->dpcd_rev = port_msg->dpcd_revision;
2427 port->num_sdp_streams = port_msg->num_sdp_streams;
2428 port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks;
2429
2430 /* manage mstb port lists with mgr lock - take a reference
2431 for this list */
2432 if (created) {
2433 mutex_lock(&mgr->lock);
2434 drm_dp_mst_topology_get_port(port);
2435 list_add(&port->next, &mstb->ports);
2436 mstb->num_ports++;
2437 mutex_unlock(&mgr->lock);
2438 }
2439
2440 /*
2441 * Reprobe PBN caps on both hotplug, and when re-probing the link
2442 * for our parent mstb
2443 */
2444 if (old_ddps != port->ddps || !created) {
2445 if (port->ddps && !port->input) {
2446 ret = drm_dp_send_enum_path_resources(mgr, mstb,
2447 port);
2448 if (ret == 1)
2449 changed = true;
2450 } else {
2451 port->full_pbn = 0;
2452 }
2453 }
2454
2455 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2456 if (ret == 1) {
2457 send_link_addr = true;
2458 } else if (ret < 0) {
2459 drm_err(dev, "Failed to change PDT on port %p: %d\n", port, ret);
2460 goto fail;
2461 }
2462
2463 /*
2464 * If this port wasn't just created, then we're reprobing because
2465 * we're coming out of suspend. In this case, always resend the link
2466 * address if there's an MSTB on this port
2467 */
2468 if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
2469 port->mcs)
2470 send_link_addr = true;
2471
2472 if (port->connector)
2473 drm_modeset_unlock(&mgr->base.lock);
2474 else if (!port->input)
2475 drm_dp_mst_port_add_connector(mstb, port);
2476
2477 if (send_link_addr && port->mstb) {
2478 ret = drm_dp_send_link_address(mgr, port->mstb);
2479 if (ret == 1) /* MSTB below us changed */
2480 changed = true;
2481 else if (ret < 0)
2482 goto fail_put;
2483 }
2484
2485 /* put reference to this port */
2486 drm_dp_mst_topology_put_port(port);
2487 return changed;
2488
2489 fail:
2490 drm_dp_mst_topology_unlink_port(mgr, port);
2491 if (port->connector)
2492 drm_modeset_unlock(&mgr->base.lock);
2493 fail_put:
2494 drm_dp_mst_topology_put_port(port);
2495 return ret;
2496 }
2497
2498 static void
2499 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb,
2500 struct drm_dp_connection_status_notify *conn_stat)
2501 {
2502 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2503 struct drm_dp_mst_port *port;
2504 int old_ddps, ret;
2505 u8 new_pdt;
2506 bool new_mcs;
2507 bool dowork = false, create_connector = false;
2508
2509 port = drm_dp_get_port(mstb, conn_stat->port_number);
2510 if (!port)
2511 return;
2512
2513 if (port->connector) {
2514 if (!port->input && conn_stat->input_port) {
2515 /*
2516 * We can't remove a connector from an already exposed
2517 * port, so just throw the port out and make sure we
2518 * reprobe the link address of it's parent MSTB
2519 */
2520 drm_dp_mst_topology_unlink_port(mgr, port);
2521 mstb->link_address_sent = false;
2522 dowork = true;
2523 goto out;
2524 }
2525
2526 /* Locking is only needed if the port's exposed to userspace */
2527 drm_modeset_lock(&mgr->base.lock, NULL);
2528 } else if (port->input && !conn_stat->input_port) {
2529 create_connector = true;
2530 /* Reprobe link address so we get num_sdp_streams */
2531 mstb->link_address_sent = false;
2532 dowork = true;
2533 }
2534
2535 old_ddps = port->ddps;
2536 port->input = conn_stat->input_port;
2537 port->ldps = conn_stat->legacy_device_plug_status;
2538 port->ddps = conn_stat->displayport_device_plug_status;
2539
2540 if (old_ddps != port->ddps) {
2541 if (port->ddps && !port->input)
2542 drm_dp_send_enum_path_resources(mgr, mstb, port);
2543 else
2544 port->full_pbn = 0;
2545 }
2546
2547 new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type;
2548 new_mcs = conn_stat->message_capability_status;
2549 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2550 if (ret == 1) {
2551 dowork = true;
2552 } else if (ret < 0) {
2553 drm_err(mgr->dev, "Failed to change PDT for port %p: %d\n", port, ret);
2554 dowork = false;
2555 }
2556
2557 if (port->connector)
2558 drm_modeset_unlock(&mgr->base.lock);
2559 else if (create_connector)
2560 drm_dp_mst_port_add_connector(mstb, port);
2561
2562 out:
2563 drm_dp_mst_topology_put_port(port);
2564 if (dowork)
2565 queue_work(system_long_wq, &mstb->mgr->work);
2566 }
2567
2568 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr,
2569 u8 lct, u8 *rad)
2570 {
2571 struct drm_dp_mst_branch *mstb;
2572 struct drm_dp_mst_port *port;
2573 int i, ret;
2574 /* find the port by iterating down */
2575
2576 mutex_lock(&mgr->lock);
2577 mstb = mgr->mst_primary;
2578
2579 if (!mstb)
2580 goto out;
2581
2582 for (i = 0; i < lct - 1; i++) {
2583 int shift = (i % 2) ? 0 : 4;
2584 int port_num = (rad[i / 2] >> shift) & 0xf;
2585
2586 list_for_each_entry(port, &mstb->ports, next) {
2587 if (port->port_num == port_num) {
2588 mstb = port->mstb;
2589 if (!mstb) {
2590 drm_err(mgr->dev,
2591 "failed to lookup MSTB with lct %d, rad %02x\n",
2592 lct, rad[0]);
2593 goto out;
2594 }
2595
2596 break;
2597 }
2598 }
2599 }
2600 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2601 if (!ret)
2602 mstb = NULL;
2603 out:
2604 mutex_unlock(&mgr->lock);
2605 return mstb;
2606 }
2607
2608 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper(
2609 struct drm_dp_mst_branch *mstb,
2610 const uint8_t *guid)
2611 {
2612 struct drm_dp_mst_branch *found_mstb;
2613 struct drm_dp_mst_port *port;
2614
2615 if (memcmp(mstb->guid, guid, 16) == 0)
2616 return mstb;
2617
2618
2619 list_for_each_entry(port, &mstb->ports, next) {
2620 if (!port->mstb)
2621 continue;
2622
2623 found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid);
2624
2625 if (found_mstb)
2626 return found_mstb;
2627 }
2628
2629 return NULL;
2630 }
2631
2632 static struct drm_dp_mst_branch *
2633 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr,
2634 const uint8_t *guid)
2635 {
2636 struct drm_dp_mst_branch *mstb;
2637 int ret;
2638
2639 /* find the port by iterating down */
2640 mutex_lock(&mgr->lock);
2641
2642 mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid);
2643 if (mstb) {
2644 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2645 if (!ret)
2646 mstb = NULL;
2647 }
2648
2649 mutex_unlock(&mgr->lock);
2650 return mstb;
2651 }
2652
2653 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2654 struct drm_dp_mst_branch *mstb)
2655 {
2656 struct drm_dp_mst_port *port;
2657 int ret;
2658 bool changed = false;
2659
2660 if (!mstb->link_address_sent) {
2661 ret = drm_dp_send_link_address(mgr, mstb);
2662 if (ret == 1)
2663 changed = true;
2664 else if (ret < 0)
2665 return ret;
2666 }
2667
2668 list_for_each_entry(port, &mstb->ports, next) {
2669 struct drm_dp_mst_branch *mstb_child = NULL;
2670
2671 if (port->input || !port->ddps)
2672 continue;
2673
2674 if (port->mstb)
2675 mstb_child = drm_dp_mst_topology_get_mstb_validated(
2676 mgr, port->mstb);
2677
2678 if (mstb_child) {
2679 ret = drm_dp_check_and_send_link_address(mgr,
2680 mstb_child);
2681 drm_dp_mst_topology_put_mstb(mstb_child);
2682 if (ret == 1)
2683 changed = true;
2684 else if (ret < 0)
2685 return ret;
2686 }
2687 }
2688
2689 return changed;
2690 }
2691
2692 static void drm_dp_mst_link_probe_work(struct work_struct *work)
2693 {
2694 struct drm_dp_mst_topology_mgr *mgr =
2695 container_of(work, struct drm_dp_mst_topology_mgr, work);
2696 struct drm_device *dev = mgr->dev;
2697 struct drm_dp_mst_branch *mstb;
2698 int ret;
2699 bool clear_payload_id_table;
2700
2701 mutex_lock(&mgr->probe_lock);
2702
2703 mutex_lock(&mgr->lock);
2704 clear_payload_id_table = !mgr->payload_id_table_cleared;
2705 mgr->payload_id_table_cleared = true;
2706
2707 mstb = mgr->mst_primary;
2708 if (mstb) {
2709 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2710 if (!ret)
2711 mstb = NULL;
2712 }
2713 mutex_unlock(&mgr->lock);
2714 if (!mstb) {
2715 mutex_unlock(&mgr->probe_lock);
2716 return;
2717 }
2718
2719 /*
2720 * Certain branch devices seem to incorrectly report an available_pbn
2721 * of 0 on downstream sinks, even after clearing the
2722 * DP_PAYLOAD_ALLOCATE_* registers in
2723 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C
2724 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make
2725 * things work again.
2726 */
2727 if (clear_payload_id_table) {
2728 drm_dbg_kms(dev, "Clearing payload ID table\n");
2729 drm_dp_send_clear_payload_id_table(mgr, mstb);
2730 }
2731
2732 ret = drm_dp_check_and_send_link_address(mgr, mstb);
2733 drm_dp_mst_topology_put_mstb(mstb);
2734
2735 mutex_unlock(&mgr->probe_lock);
2736 if (ret > 0)
2737 drm_kms_helper_hotplug_event(dev);
2738 }
2739
2740 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
2741 u8 *guid)
2742 {
2743 u64 salt;
2744
2745 if (memchr_inv(guid, 0, 16))
2746 return true;
2747
2748 salt = get_jiffies_64();
2749
2750 memcpy(&guid[0], &salt, sizeof(u64));
2751 memcpy(&guid[8], &salt, sizeof(u64));
2752
2753 return false;
2754 }
2755
2756 static void build_dpcd_read(struct drm_dp_sideband_msg_tx *msg,
2757 u8 port_num, u32 offset, u8 num_bytes)
2758 {
2759 struct drm_dp_sideband_msg_req_body req;
2760
2761 req.req_type = DP_REMOTE_DPCD_READ;
2762 req.u.dpcd_read.port_number = port_num;
2763 req.u.dpcd_read.dpcd_address = offset;
2764 req.u.dpcd_read.num_bytes = num_bytes;
2765 drm_dp_encode_sideband_req(&req, msg);
2766 }
2767
2768 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr,
2769 bool up, u8 *msg, int len)
2770 {
2771 int ret;
2772 int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE;
2773 int tosend, total, offset;
2774 int retries = 0;
2775
2776 retry:
2777 total = len;
2778 offset = 0;
2779 do {
2780 tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total);
2781
2782 ret = drm_dp_dpcd_write(mgr->aux, regbase + offset,
2783 &msg[offset],
2784 tosend);
2785 if (ret != tosend) {
2786 if (ret == -EIO && retries < 5) {
2787 retries++;
2788 goto retry;
2789 }
2790 drm_dbg_kms(mgr->dev, "failed to dpcd write %d %d\n", tosend, ret);
2791
2792 return -EIO;
2793 }
2794 offset += tosend;
2795 total -= tosend;
2796 } while (total > 0);
2797 return 0;
2798 }
2799
2800 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr,
2801 struct drm_dp_sideband_msg_tx *txmsg)
2802 {
2803 struct drm_dp_mst_branch *mstb = txmsg->dst;
2804 u8 req_type;
2805
2806 req_type = txmsg->msg[0] & 0x7f;
2807 if (req_type == DP_CONNECTION_STATUS_NOTIFY ||
2808 req_type == DP_RESOURCE_STATUS_NOTIFY ||
2809 req_type == DP_CLEAR_PAYLOAD_ID_TABLE)
2810 hdr->broadcast = 1;
2811 else
2812 hdr->broadcast = 0;
2813 hdr->path_msg = txmsg->path_msg;
2814 if (hdr->broadcast) {
2815 hdr->lct = 1;
2816 hdr->lcr = 6;
2817 } else {
2818 hdr->lct = mstb->lct;
2819 hdr->lcr = mstb->lct - 1;
2820 }
2821
2822 memcpy(hdr->rad, mstb->rad, hdr->lct / 2);
2823
2824 return 0;
2825 }
2826 /*
2827 * process a single block of the next message in the sideband queue
2828 */
2829 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
2830 struct drm_dp_sideband_msg_tx *txmsg,
2831 bool up)
2832 {
2833 u8 chunk[48];
2834 struct drm_dp_sideband_msg_hdr hdr;
2835 int len, space, idx, tosend;
2836 int ret;
2837
2838 if (txmsg->state == DRM_DP_SIDEBAND_TX_SENT)
2839 return 0;
2840
2841 memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr));
2842
2843 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED)
2844 txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND;
2845
2846 /* make hdr from dst mst */
2847 ret = set_hdr_from_dst_qlock(&hdr, txmsg);
2848 if (ret < 0)
2849 return ret;
2850
2851 /* amount left to send in this message */
2852 len = txmsg->cur_len - txmsg->cur_offset;
2853
2854 /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */
2855 space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr);
2856
2857 tosend = min(len, space);
2858 if (len == txmsg->cur_len)
2859 hdr.somt = 1;
2860 if (space >= len)
2861 hdr.eomt = 1;
2862
2863
2864 hdr.msg_len = tosend + 1;
2865 drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx);
2866 memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend);
2867 /* add crc at end */
2868 drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend);
2869 idx += tosend + 1;
2870
2871 ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx);
2872 if (ret) {
2873 if (drm_debug_enabled(DRM_UT_DP)) {
2874 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2875
2876 drm_printf(&p, "sideband msg failed to send\n");
2877 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2878 }
2879 return ret;
2880 }
2881
2882 txmsg->cur_offset += tosend;
2883 if (txmsg->cur_offset == txmsg->cur_len) {
2884 txmsg->state = DRM_DP_SIDEBAND_TX_SENT;
2885 return 1;
2886 }
2887 return 0;
2888 }
2889
2890 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr)
2891 {
2892 struct drm_dp_sideband_msg_tx *txmsg;
2893 int ret;
2894
2895 WARN_ON(!mutex_is_locked(&mgr->qlock));
2896
2897 /* construct a chunk from the first msg in the tx_msg queue */
2898 if (list_empty(&mgr->tx_msg_downq))
2899 return;
2900
2901 txmsg = list_first_entry(&mgr->tx_msg_downq,
2902 struct drm_dp_sideband_msg_tx, next);
2903 ret = process_single_tx_qlock(mgr, txmsg, false);
2904 if (ret < 0) {
2905 drm_dbg_kms(mgr->dev, "failed to send msg in q %d\n", ret);
2906 list_del(&txmsg->next);
2907 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
2908 wake_up_all(&mgr->tx_waitq);
2909 }
2910 }
2911
2912 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr,
2913 struct drm_dp_sideband_msg_tx *txmsg)
2914 {
2915 mutex_lock(&mgr->qlock);
2916 list_add_tail(&txmsg->next, &mgr->tx_msg_downq);
2917
2918 if (drm_debug_enabled(DRM_UT_DP)) {
2919 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2920
2921 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2922 }
2923
2924 if (list_is_singular(&mgr->tx_msg_downq))
2925 process_single_down_tx_qlock(mgr);
2926 mutex_unlock(&mgr->qlock);
2927 }
2928
2929 static void
2930 drm_dp_dump_link_address(const struct drm_dp_mst_topology_mgr *mgr,
2931 struct drm_dp_link_address_ack_reply *reply)
2932 {
2933 struct drm_dp_link_addr_reply_port *port_reply;
2934 int i;
2935
2936 for (i = 0; i < reply->nports; i++) {
2937 port_reply = &reply->ports[i];
2938 drm_dbg_kms(mgr->dev,
2939 "port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n",
2940 i,
2941 port_reply->input_port,
2942 port_reply->peer_device_type,
2943 port_reply->port_number,
2944 port_reply->dpcd_revision,
2945 port_reply->mcs,
2946 port_reply->ddps,
2947 port_reply->legacy_device_plug_status,
2948 port_reply->num_sdp_streams,
2949 port_reply->num_sdp_stream_sinks);
2950 }
2951 }
2952
2953 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2954 struct drm_dp_mst_branch *mstb)
2955 {
2956 struct drm_dp_sideband_msg_tx *txmsg;
2957 struct drm_dp_link_address_ack_reply *reply;
2958 struct drm_dp_mst_port *port, *tmp;
2959 int i, ret, port_mask = 0;
2960 bool changed = false;
2961
2962 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2963 if (!txmsg)
2964 return -ENOMEM;
2965
2966 txmsg->dst = mstb;
2967 build_link_address(txmsg);
2968
2969 mstb->link_address_sent = true;
2970 drm_dp_queue_down_tx(mgr, txmsg);
2971
2972 /* FIXME: Actually do some real error handling here */
2973 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
2974 if (ret <= 0) {
2975 drm_err(mgr->dev, "Sending link address failed with %d\n", ret);
2976 goto out;
2977 }
2978 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
2979 drm_err(mgr->dev, "link address NAK received\n");
2980 ret = -EIO;
2981 goto out;
2982 }
2983
2984 reply = &txmsg->reply.u.link_addr;
2985 drm_dbg_kms(mgr->dev, "link address reply: %d\n", reply->nports);
2986 drm_dp_dump_link_address(mgr, reply);
2987
2988 ret = drm_dp_check_mstb_guid(mstb, reply->guid);
2989 if (ret) {
2990 char buf[64];
2991
2992 drm_dp_mst_rad_to_str(mstb->rad, mstb->lct, buf, sizeof(buf));
2993 drm_err(mgr->dev, "GUID check on %s failed: %d\n", buf, ret);
2994 goto out;
2995 }
2996
2997 for (i = 0; i < reply->nports; i++) {
2998 port_mask |= BIT(reply->ports[i].port_number);
2999 ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev,
3000 &reply->ports[i]);
3001 if (ret == 1)
3002 changed = true;
3003 else if (ret < 0)
3004 goto out;
3005 }
3006
3007 /* Prune any ports that are currently a part of mstb in our in-memory
3008 * topology, but were not seen in this link address. Usually this
3009 * means that they were removed while the topology was out of sync,
3010 * e.g. during suspend/resume
3011 */
3012 mutex_lock(&mgr->lock);
3013 list_for_each_entry_safe(port, tmp, &mstb->ports, next) {
3014 if (port_mask & BIT(port->port_num))
3015 continue;
3016
3017 drm_dbg_kms(mgr->dev, "port %d was not in link address, removing\n",
3018 port->port_num);
3019 list_del(&port->next);
3020 drm_dp_mst_topology_put_port(port);
3021 changed = true;
3022 }
3023 mutex_unlock(&mgr->lock);
3024
3025 out:
3026 if (ret <= 0)
3027 mstb->link_address_sent = false;
3028 kfree(txmsg);
3029 return ret < 0 ? ret : changed;
3030 }
3031
3032 static void
3033 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
3034 struct drm_dp_mst_branch *mstb)
3035 {
3036 struct drm_dp_sideband_msg_tx *txmsg;
3037 int ret;
3038
3039 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3040 if (!txmsg)
3041 return;
3042
3043 txmsg->dst = mstb;
3044 build_clear_payload_id_table(txmsg);
3045
3046 drm_dp_queue_down_tx(mgr, txmsg);
3047
3048 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3049 if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3050 drm_dbg_kms(mgr->dev, "clear payload table id nak received\n");
3051
3052 kfree(txmsg);
3053 }
3054
3055 static int
3056 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
3057 struct drm_dp_mst_branch *mstb,
3058 struct drm_dp_mst_port *port)
3059 {
3060 struct drm_dp_enum_path_resources_ack_reply *path_res;
3061 struct drm_dp_sideband_msg_tx *txmsg;
3062 int ret;
3063
3064 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3065 if (!txmsg)
3066 return -ENOMEM;
3067
3068 txmsg->dst = mstb;
3069 build_enum_path_resources(txmsg, port->port_num);
3070
3071 drm_dp_queue_down_tx(mgr, txmsg);
3072
3073 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3074 if (ret > 0) {
3075 ret = 0;
3076 path_res = &txmsg->reply.u.path_resources;
3077
3078 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
3079 drm_dbg_kms(mgr->dev, "enum path resources nak received\n");
3080 } else {
3081 if (port->port_num != path_res->port_number)
3082 DRM_ERROR("got incorrect port in response\n");
3083
3084 drm_dbg_kms(mgr->dev, "enum path resources %d: %d %d\n",
3085 path_res->port_number,
3086 path_res->full_payload_bw_number,
3087 path_res->avail_payload_bw_number);
3088
3089 /*
3090 * If something changed, make sure we send a
3091 * hotplug
3092 */
3093 if (port->full_pbn != path_res->full_payload_bw_number ||
3094 port->fec_capable != path_res->fec_capable)
3095 ret = 1;
3096
3097 port->full_pbn = path_res->full_payload_bw_number;
3098 port->fec_capable = path_res->fec_capable;
3099 }
3100 }
3101
3102 kfree(txmsg);
3103 return ret;
3104 }
3105
3106 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb)
3107 {
3108 if (!mstb->port_parent)
3109 return NULL;
3110
3111 if (mstb->port_parent->mstb != mstb)
3112 return mstb->port_parent;
3113
3114 return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent);
3115 }
3116
3117 /*
3118 * Searches upwards in the topology starting from mstb to try to find the
3119 * closest available parent of mstb that's still connected to the rest of the
3120 * topology. This can be used in order to perform operations like releasing
3121 * payloads, where the branch device which owned the payload may no longer be
3122 * around and thus would require that the payload on the last living relative
3123 * be freed instead.
3124 */
3125 static struct drm_dp_mst_branch *
3126 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr,
3127 struct drm_dp_mst_branch *mstb,
3128 int *port_num)
3129 {
3130 struct drm_dp_mst_branch *rmstb = NULL;
3131 struct drm_dp_mst_port *found_port;
3132
3133 mutex_lock(&mgr->lock);
3134 if (!mgr->mst_primary)
3135 goto out;
3136
3137 do {
3138 found_port = drm_dp_get_last_connected_port_to_mstb(mstb);
3139 if (!found_port)
3140 break;
3141
3142 if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) {
3143 rmstb = found_port->parent;
3144 *port_num = found_port->port_num;
3145 } else {
3146 /* Search again, starting from this parent */
3147 mstb = found_port->parent;
3148 }
3149 } while (!rmstb);
3150 out:
3151 mutex_unlock(&mgr->lock);
3152 return rmstb;
3153 }
3154
3155 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr,
3156 struct drm_dp_mst_port *port,
3157 int id,
3158 int pbn)
3159 {
3160 struct drm_dp_sideband_msg_tx *txmsg;
3161 struct drm_dp_mst_branch *mstb;
3162 int ret, port_num;
3163 u8 sinks[DRM_DP_MAX_SDP_STREAMS];
3164 int i;
3165
3166 port_num = port->port_num;
3167 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3168 if (!mstb) {
3169 mstb = drm_dp_get_last_connected_port_and_mstb(mgr,
3170 port->parent,
3171 &port_num);
3172
3173 if (!mstb)
3174 return -EINVAL;
3175 }
3176
3177 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3178 if (!txmsg) {
3179 ret = -ENOMEM;
3180 goto fail_put;
3181 }
3182
3183 for (i = 0; i < port->num_sdp_streams; i++)
3184 sinks[i] = i;
3185
3186 txmsg->dst = mstb;
3187 build_allocate_payload(txmsg, port_num,
3188 id,
3189 pbn, port->num_sdp_streams, sinks);
3190
3191 drm_dp_queue_down_tx(mgr, txmsg);
3192
3193 /*
3194 * FIXME: there is a small chance that between getting the last
3195 * connected mstb and sending the payload message, the last connected
3196 * mstb could also be removed from the topology. In the future, this
3197 * needs to be fixed by restarting the
3198 * drm_dp_get_last_connected_port_and_mstb() search in the event of a
3199 * timeout if the topology is still connected to the system.
3200 */
3201 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3202 if (ret > 0) {
3203 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3204 ret = -EINVAL;
3205 else
3206 ret = 0;
3207 }
3208 kfree(txmsg);
3209 fail_put:
3210 drm_dp_mst_topology_put_mstb(mstb);
3211 return ret;
3212 }
3213
3214 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr,
3215 struct drm_dp_mst_port *port, bool power_up)
3216 {
3217 struct drm_dp_sideband_msg_tx *txmsg;
3218 int ret;
3219
3220 port = drm_dp_mst_topology_get_port_validated(mgr, port);
3221 if (!port)
3222 return -EINVAL;
3223
3224 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3225 if (!txmsg) {
3226 drm_dp_mst_topology_put_port(port);
3227 return -ENOMEM;
3228 }
3229
3230 txmsg->dst = port->parent;
3231 build_power_updown_phy(txmsg, port->port_num, power_up);
3232 drm_dp_queue_down_tx(mgr, txmsg);
3233
3234 ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg);
3235 if (ret > 0) {
3236 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3237 ret = -EINVAL;
3238 else
3239 ret = 0;
3240 }
3241 kfree(txmsg);
3242 drm_dp_mst_topology_put_port(port);
3243
3244 return ret;
3245 }
3246 EXPORT_SYMBOL(drm_dp_send_power_updown_phy);
3247
3248 int drm_dp_send_query_stream_enc_status(struct drm_dp_mst_topology_mgr *mgr,
3249 struct drm_dp_mst_port *port,
3250 struct drm_dp_query_stream_enc_status_ack_reply *status)
3251 {
3252 struct drm_dp_sideband_msg_tx *txmsg;
3253 u8 nonce[7];
3254 int ret;
3255
3256 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3257 if (!txmsg)
3258 return -ENOMEM;
3259
3260 port = drm_dp_mst_topology_get_port_validated(mgr, port);
3261 if (!port) {
3262 ret = -EINVAL;
3263 goto out_get_port;
3264 }
3265
3266 get_random_bytes(nonce, sizeof(nonce));
3267
3268 /*
3269 * "Source device targets the QUERY_STREAM_ENCRYPTION_STATUS message
3270 * transaction at the MST Branch device directly connected to the
3271 * Source"
3272 */
3273 txmsg->dst = mgr->mst_primary;
3274
3275 build_query_stream_enc_status(txmsg, port->vcpi.vcpi, nonce);
3276
3277 drm_dp_queue_down_tx(mgr, txmsg);
3278
3279 ret = drm_dp_mst_wait_tx_reply(mgr->mst_primary, txmsg);
3280 if (ret < 0) {
3281 goto out;
3282 } else if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
3283 drm_dbg_kms(mgr->dev, "query encryption status nak received\n");
3284 ret = -ENXIO;
3285 goto out;
3286 }
3287
3288 ret = 0;
3289 memcpy(status, &txmsg->reply.u.enc_status, sizeof(*status));
3290
3291 out:
3292 drm_dp_mst_topology_put_port(port);
3293 out_get_port:
3294 kfree(txmsg);
3295 return ret;
3296 }
3297 EXPORT_SYMBOL(drm_dp_send_query_stream_enc_status);
3298
3299 static int drm_dp_create_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
3300 int id,
3301 struct drm_dp_payload *payload)
3302 {
3303 int ret;
3304
3305 ret = drm_dp_dpcd_write_payload(mgr, id, payload);
3306 if (ret < 0) {
3307 payload->payload_state = 0;
3308 return ret;
3309 }
3310 payload->payload_state = DP_PAYLOAD_LOCAL;
3311 return 0;
3312 }
3313
3314 static int drm_dp_create_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
3315 struct drm_dp_mst_port *port,
3316 int id,
3317 struct drm_dp_payload *payload)
3318 {
3319 int ret;
3320
3321 ret = drm_dp_payload_send_msg(mgr, port, id, port->vcpi.pbn);
3322 if (ret < 0)
3323 return ret;
3324 payload->payload_state = DP_PAYLOAD_REMOTE;
3325 return ret;
3326 }
3327
3328 static int drm_dp_destroy_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
3329 struct drm_dp_mst_port *port,
3330 int id,
3331 struct drm_dp_payload *payload)
3332 {
3333 drm_dbg_kms(mgr->dev, "\n");
3334 /* it's okay for these to fail */
3335 if (port) {
3336 drm_dp_payload_send_msg(mgr, port, id, 0);
3337 }
3338
3339 drm_dp_dpcd_write_payload(mgr, id, payload);
3340 payload->payload_state = DP_PAYLOAD_DELETE_LOCAL;
3341 return 0;
3342 }
3343
3344 static int drm_dp_destroy_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
3345 int id,
3346 struct drm_dp_payload *payload)
3347 {
3348 payload->payload_state = 0;
3349 return 0;
3350 }
3351
3352 /**
3353 * drm_dp_update_payload_part1() - Execute payload update part 1
3354 * @mgr: manager to use.
3355 * @start_slot: this is the cur slot
3356 *
3357 * NOTE: start_slot is a temporary workaround for non-atomic drivers,
3358 * this will be removed when non-atomic mst helpers are moved out of the helper
3359 *
3360 * This iterates over all proposed virtual channels, and tries to
3361 * allocate space in the link for them. For 0->slots transitions,
3362 * this step just writes the VCPI to the MST device. For slots->0
3363 * transitions, this writes the updated VCPIs and removes the
3364 * remote VC payloads.
3365 *
3366 * after calling this the driver should generate ACT and payload
3367 * packets.
3368 */
3369 int drm_dp_update_payload_part1(struct drm_dp_mst_topology_mgr *mgr, int start_slot)
3370 {
3371 struct drm_dp_payload req_payload;
3372 struct drm_dp_mst_port *port;
3373 int i, j;
3374 int cur_slots = start_slot;
3375 bool skip;
3376
3377 mutex_lock(&mgr->payload_lock);
3378 for (i = 0; i < mgr->max_payloads; i++) {
3379 struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
3380 struct drm_dp_payload *payload = &mgr->payloads[i];
3381 bool put_port = false;
3382
3383 /* solve the current payloads - compare to the hw ones
3384 - update the hw view */
3385 req_payload.start_slot = cur_slots;
3386 if (vcpi) {
3387 port = container_of(vcpi, struct drm_dp_mst_port,
3388 vcpi);
3389
3390 mutex_lock(&mgr->lock);
3391 skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary);
3392 mutex_unlock(&mgr->lock);
3393
3394 if (skip) {
3395 drm_dbg_kms(mgr->dev,
3396 "Virtual channel %d is not in current topology\n",
3397 i);
3398 continue;
3399 }
3400 /* Validated ports don't matter if we're releasing
3401 * VCPI
3402 */
3403 if (vcpi->num_slots) {
3404 port = drm_dp_mst_topology_get_port_validated(
3405 mgr, port);
3406 if (!port) {
3407 if (vcpi->num_slots == payload->num_slots) {
3408 cur_slots += vcpi->num_slots;
3409 payload->start_slot = req_payload.start_slot;
3410 continue;
3411 } else {
3412 drm_dbg_kms(mgr->dev,
3413 "Fail:set payload to invalid sink");
3414 mutex_unlock(&mgr->payload_lock);
3415 return -EINVAL;
3416 }
3417 }
3418 put_port = true;
3419 }
3420
3421 req_payload.num_slots = vcpi->num_slots;
3422 req_payload.vcpi = vcpi->vcpi;
3423 } else {
3424 port = NULL;
3425 req_payload.num_slots = 0;
3426 }
3427
3428 payload->start_slot = req_payload.start_slot;
3429 /* work out what is required to happen with this payload */
3430 if (payload->num_slots != req_payload.num_slots) {
3431
3432 /* need to push an update for this payload */
3433 if (req_payload.num_slots) {
3434 drm_dp_create_payload_step1(mgr, vcpi->vcpi,
3435 &req_payload);
3436 payload->num_slots = req_payload.num_slots;
3437 payload->vcpi = req_payload.vcpi;
3438
3439 } else if (payload->num_slots) {
3440 payload->num_slots = 0;
3441 drm_dp_destroy_payload_step1(mgr, port,
3442 payload->vcpi,
3443 payload);
3444 req_payload.payload_state =
3445 payload->payload_state;
3446 payload->start_slot = 0;
3447 }
3448 payload->payload_state = req_payload.payload_state;
3449 }
3450 cur_slots += req_payload.num_slots;
3451
3452 if (put_port)
3453 drm_dp_mst_topology_put_port(port);
3454 }
3455
3456 for (i = 0; i < mgr->max_payloads; /* do nothing */) {
3457 if (mgr->payloads[i].payload_state != DP_PAYLOAD_DELETE_LOCAL) {
3458 i++;
3459 continue;
3460 }
3461
3462 drm_dbg_kms(mgr->dev, "removing payload %d\n", i);
3463 for (j = i; j < mgr->max_payloads - 1; j++) {
3464 mgr->payloads[j] = mgr->payloads[j + 1];
3465 mgr->proposed_vcpis[j] = mgr->proposed_vcpis[j + 1];
3466
3467 if (mgr->proposed_vcpis[j] &&
3468 mgr->proposed_vcpis[j]->num_slots) {
3469 set_bit(j + 1, &mgr->payload_mask);
3470 } else {
3471 clear_bit(j + 1, &mgr->payload_mask);
3472 }
3473 }
3474
3475 memset(&mgr->payloads[mgr->max_payloads - 1], 0,
3476 sizeof(struct drm_dp_payload));
3477 mgr->proposed_vcpis[mgr->max_payloads - 1] = NULL;
3478 clear_bit(mgr->max_payloads, &mgr->payload_mask);
3479 }
3480 mutex_unlock(&mgr->payload_lock);
3481
3482 return 0;
3483 }
3484 EXPORT_SYMBOL(drm_dp_update_payload_part1);
3485
3486 /**
3487 * drm_dp_update_payload_part2() - Execute payload update part 2
3488 * @mgr: manager to use.
3489 *
3490 * This iterates over all proposed virtual channels, and tries to
3491 * allocate space in the link for them. For 0->slots transitions,
3492 * this step writes the remote VC payload commands. For slots->0
3493 * this just resets some internal state.
3494 */
3495 int drm_dp_update_payload_part2(struct drm_dp_mst_topology_mgr *mgr)
3496 {
3497 struct drm_dp_mst_port *port;
3498 int i;
3499 int ret = 0;
3500 bool skip;
3501
3502 mutex_lock(&mgr->payload_lock);
3503 for (i = 0; i < mgr->max_payloads; i++) {
3504
3505 if (!mgr->proposed_vcpis[i])
3506 continue;
3507
3508 port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
3509
3510 mutex_lock(&mgr->lock);
3511 skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary);
3512 mutex_unlock(&mgr->lock);
3513
3514 if (skip)
3515 continue;
3516
3517 drm_dbg_kms(mgr->dev, "payload %d %d\n", i, mgr->payloads[i].payload_state);
3518 if (mgr->payloads[i].payload_state == DP_PAYLOAD_LOCAL) {
3519 ret = drm_dp_create_payload_step2(mgr, port, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
3520 } else if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) {
3521 ret = drm_dp_destroy_payload_step2(mgr, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
3522 }
3523 if (ret) {
3524 mutex_unlock(&mgr->payload_lock);
3525 return ret;
3526 }
3527 }
3528 mutex_unlock(&mgr->payload_lock);
3529 return 0;
3530 }
3531 EXPORT_SYMBOL(drm_dp_update_payload_part2);
3532
3533 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
3534 struct drm_dp_mst_port *port,
3535 int offset, int size, u8 *bytes)
3536 {
3537 int ret = 0;
3538 struct drm_dp_sideband_msg_tx *txmsg;
3539 struct drm_dp_mst_branch *mstb;
3540
3541 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3542 if (!mstb)
3543 return -EINVAL;
3544
3545 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3546 if (!txmsg) {
3547 ret = -ENOMEM;
3548 goto fail_put;
3549 }
3550
3551 build_dpcd_read(txmsg, port->port_num, offset, size);
3552 txmsg->dst = port->parent;
3553
3554 drm_dp_queue_down_tx(mgr, txmsg);
3555
3556 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3557 if (ret < 0)
3558 goto fail_free;
3559
3560 if (txmsg->reply.reply_type == 1) {
3561 drm_dbg_kms(mgr->dev, "mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n",
3562 mstb, port->port_num, offset, size);
3563 ret = -EIO;
3564 goto fail_free;
3565 }
3566
3567 if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) {
3568 ret = -EPROTO;
3569 goto fail_free;
3570 }
3571
3572 ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes,
3573 size);
3574 memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret);
3575
3576 fail_free:
3577 kfree(txmsg);
3578 fail_put:
3579 drm_dp_mst_topology_put_mstb(mstb);
3580
3581 return ret;
3582 }
3583
3584 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
3585 struct drm_dp_mst_port *port,
3586 int offset, int size, u8 *bytes)
3587 {
3588 int ret;
3589 struct drm_dp_sideband_msg_tx *txmsg;
3590 struct drm_dp_mst_branch *mstb;
3591
3592 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3593 if (!mstb)
3594 return -EINVAL;
3595
3596 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3597 if (!txmsg) {
3598 ret = -ENOMEM;
3599 goto fail_put;
3600 }
3601
3602 build_dpcd_write(txmsg, port->port_num, offset, size, bytes);
3603 txmsg->dst = mstb;
3604
3605 drm_dp_queue_down_tx(mgr, txmsg);
3606
3607 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3608 if (ret > 0) {
3609 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3610 ret = -EIO;
3611 else
3612 ret = size;
3613 }
3614
3615 kfree(txmsg);
3616 fail_put:
3617 drm_dp_mst_topology_put_mstb(mstb);
3618 return ret;
3619 }
3620
3621 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type)
3622 {
3623 struct drm_dp_sideband_msg_reply_body reply;
3624
3625 reply.reply_type = DP_SIDEBAND_REPLY_ACK;
3626 reply.req_type = req_type;
3627 drm_dp_encode_sideband_reply(&reply, msg);
3628 return 0;
3629 }
3630
3631 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr,
3632 struct drm_dp_mst_branch *mstb,
3633 int req_type, bool broadcast)
3634 {
3635 struct drm_dp_sideband_msg_tx *txmsg;
3636
3637 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3638 if (!txmsg)
3639 return -ENOMEM;
3640
3641 txmsg->dst = mstb;
3642 drm_dp_encode_up_ack_reply(txmsg, req_type);
3643
3644 mutex_lock(&mgr->qlock);
3645 /* construct a chunk from the first msg in the tx_msg queue */
3646 process_single_tx_qlock(mgr, txmsg, true);
3647 mutex_unlock(&mgr->qlock);
3648
3649 kfree(txmsg);
3650 return 0;
3651 }
3652
3653 /**
3654 * drm_dp_get_vc_payload_bw - get the VC payload BW for an MST link
3655 * @mgr: The &drm_dp_mst_topology_mgr to use
3656 * @link_rate: link rate in 10kbits/s units
3657 * @link_lane_count: lane count
3658 *
3659 * Calculate the total bandwidth of a MultiStream Transport link. The returned
3660 * value is in units of PBNs/(timeslots/1 MTP). This value can be used to
3661 * convert the number of PBNs required for a given stream to the number of
3662 * timeslots this stream requires in each MTP.
3663 */
3664 int drm_dp_get_vc_payload_bw(const struct drm_dp_mst_topology_mgr *mgr,
3665 int link_rate, int link_lane_count)
3666 {
3667 if (link_rate == 0 || link_lane_count == 0)
3668 drm_dbg_kms(mgr->dev, "invalid link rate/lane count: (%d / %d)\n",
3669 link_rate, link_lane_count);
3670
3671 /* See DP v2.0 2.6.4.2, VCPayload_Bandwidth_for_OneTimeSlotPer_MTP_Allocation */
3672 return link_rate * link_lane_count / 54000;
3673 }
3674 EXPORT_SYMBOL(drm_dp_get_vc_payload_bw);
3675
3676 /**
3677 * drm_dp_read_mst_cap() - check whether or not a sink supports MST
3678 * @aux: The DP AUX channel to use
3679 * @dpcd: A cached copy of the DPCD capabilities for this sink
3680 *
3681 * Returns: %True if the sink supports MST, %false otherwise
3682 */
3683 bool drm_dp_read_mst_cap(struct drm_dp_aux *aux,
3684 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3685 {
3686 u8 mstm_cap;
3687
3688 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_12)
3689 return false;
3690
3691 if (drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &mstm_cap) != 1)
3692 return false;
3693
3694 return mstm_cap & DP_MST_CAP;
3695 }
3696 EXPORT_SYMBOL(drm_dp_read_mst_cap);
3697
3698 /**
3699 * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager
3700 * @mgr: manager to set state for
3701 * @mst_state: true to enable MST on this connector - false to disable.
3702 *
3703 * This is called by the driver when it detects an MST capable device plugged
3704 * into a DP MST capable port, or when a DP MST capable device is unplugged.
3705 */
3706 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state)
3707 {
3708 int ret = 0;
3709 struct drm_dp_mst_branch *mstb = NULL;
3710
3711 mutex_lock(&mgr->payload_lock);
3712 mutex_lock(&mgr->lock);
3713 if (mst_state == mgr->mst_state)
3714 goto out_unlock;
3715
3716 mgr->mst_state = mst_state;
3717 /* set the device into MST mode */
3718 if (mst_state) {
3719 struct drm_dp_payload reset_pay;
3720 int lane_count;
3721 int link_rate;
3722
3723 WARN_ON(mgr->mst_primary);
3724
3725 /* get dpcd info */
3726 ret = drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd);
3727 if (ret < 0) {
3728 drm_dbg_kms(mgr->dev, "%s: failed to read DPCD, ret %d\n",
3729 mgr->aux->name, ret);
3730 goto out_unlock;
3731 }
3732
3733 lane_count = min_t(int, mgr->dpcd[2] & DP_MAX_LANE_COUNT_MASK, mgr->max_lane_count);
3734 link_rate = min_t(int, drm_dp_bw_code_to_link_rate(mgr->dpcd[1]), mgr->max_link_rate);
3735 mgr->pbn_div = drm_dp_get_vc_payload_bw(mgr,
3736 link_rate,
3737 lane_count);
3738 if (mgr->pbn_div == 0) {
3739 ret = -EINVAL;
3740 goto out_unlock;
3741 }
3742
3743 /* add initial branch device at LCT 1 */
3744 mstb = drm_dp_add_mst_branch_device(1, NULL);
3745 if (mstb == NULL) {
3746 ret = -ENOMEM;
3747 goto out_unlock;
3748 }
3749 mstb->mgr = mgr;
3750
3751 /* give this the main reference */
3752 mgr->mst_primary = mstb;
3753 drm_dp_mst_topology_get_mstb(mgr->mst_primary);
3754
3755 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3756 DP_MST_EN |
3757 DP_UP_REQ_EN |
3758 DP_UPSTREAM_IS_SRC);
3759 if (ret < 0)
3760 goto out_unlock;
3761
3762 reset_pay.start_slot = 0;
3763 reset_pay.num_slots = 0x3f;
3764 drm_dp_dpcd_write_payload(mgr, 0, &reset_pay);
3765
3766 queue_work(system_long_wq, &mgr->work);
3767
3768 ret = 0;
3769 } else {
3770 /* disable MST on the device */
3771 mstb = mgr->mst_primary;
3772 mgr->mst_primary = NULL;
3773 /* this can fail if the device is gone */
3774 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0);
3775 ret = 0;
3776 memset(mgr->payloads, 0,
3777 mgr->max_payloads * sizeof(mgr->payloads[0]));
3778 memset(mgr->proposed_vcpis, 0,
3779 mgr->max_payloads * sizeof(mgr->proposed_vcpis[0]));
3780 mgr->payload_mask = 0;
3781 set_bit(0, &mgr->payload_mask);
3782 mgr->vcpi_mask = 0;
3783 mgr->payload_id_table_cleared = false;
3784 }
3785
3786 out_unlock:
3787 mutex_unlock(&mgr->lock);
3788 mutex_unlock(&mgr->payload_lock);
3789 if (mstb)
3790 drm_dp_mst_topology_put_mstb(mstb);
3791 return ret;
3792
3793 }
3794 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst);
3795
3796 static void
3797 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb)
3798 {
3799 struct drm_dp_mst_port *port;
3800
3801 /* The link address will need to be re-sent on resume */
3802 mstb->link_address_sent = false;
3803
3804 list_for_each_entry(port, &mstb->ports, next)
3805 if (port->mstb)
3806 drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb);
3807 }
3808
3809 /**
3810 * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager
3811 * @mgr: manager to suspend
3812 *
3813 * This function tells the MST device that we can't handle UP messages
3814 * anymore. This should stop it from sending any since we are suspended.
3815 */
3816 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr)
3817 {
3818 mutex_lock(&mgr->lock);
3819 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3820 DP_MST_EN | DP_UPSTREAM_IS_SRC);
3821 mutex_unlock(&mgr->lock);
3822 flush_work(&mgr->up_req_work);
3823 flush_work(&mgr->work);
3824 flush_work(&mgr->delayed_destroy_work);
3825
3826 mutex_lock(&mgr->lock);
3827 if (mgr->mst_state && mgr->mst_primary)
3828 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary);
3829 mutex_unlock(&mgr->lock);
3830 }
3831 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend);
3832
3833 /**
3834 * drm_dp_mst_topology_mgr_resume() - resume the MST manager
3835 * @mgr: manager to resume
3836 * @sync: whether or not to perform topology reprobing synchronously
3837 *
3838 * This will fetch DPCD and see if the device is still there,
3839 * if it is, it will rewrite the MSTM control bits, and return.
3840 *
3841 * If the device fails this returns -1, and the driver should do
3842 * a full MST reprobe, in case we were undocked.
3843 *
3844 * During system resume (where it is assumed that the driver will be calling
3845 * drm_atomic_helper_resume()) this function should be called beforehand with
3846 * @sync set to true. In contexts like runtime resume where the driver is not
3847 * expected to be calling drm_atomic_helper_resume(), this function should be
3848 * called with @sync set to false in order to avoid deadlocking.
3849 *
3850 * Returns: -1 if the MST topology was removed while we were suspended, 0
3851 * otherwise.
3852 */
3853 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr,
3854 bool sync)
3855 {
3856 int ret;
3857 u8 guid[16];
3858
3859 mutex_lock(&mgr->lock);
3860 if (!mgr->mst_primary)
3861 goto out_fail;
3862
3863 if (drm_dp_read_dpcd_caps(mgr->aux, mgr->dpcd) < 0) {
3864 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n");
3865 goto out_fail;
3866 }
3867
3868 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3869 DP_MST_EN |
3870 DP_UP_REQ_EN |
3871 DP_UPSTREAM_IS_SRC);
3872 if (ret < 0) {
3873 drm_dbg_kms(mgr->dev, "mst write failed - undocked during suspend?\n");
3874 goto out_fail;
3875 }
3876
3877 /* Some hubs forget their guids after they resume */
3878 ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16);
3879 if (ret != 16) {
3880 drm_dbg_kms(mgr->dev, "dpcd read failed - undocked during suspend?\n");
3881 goto out_fail;
3882 }
3883
3884 ret = drm_dp_check_mstb_guid(mgr->mst_primary, guid);
3885 if (ret) {
3886 drm_dbg_kms(mgr->dev, "check mstb failed - undocked during suspend?\n");
3887 goto out_fail;
3888 }
3889
3890 /*
3891 * For the final step of resuming the topology, we need to bring the
3892 * state of our in-memory topology back into sync with reality. So,
3893 * restart the probing process as if we're probing a new hub
3894 */
3895 queue_work(system_long_wq, &mgr->work);
3896 mutex_unlock(&mgr->lock);
3897
3898 if (sync) {
3899 drm_dbg_kms(mgr->dev,
3900 "Waiting for link probe work to finish re-syncing topology...\n");
3901 flush_work(&mgr->work);
3902 }
3903
3904 return 0;
3905
3906 out_fail:
3907 mutex_unlock(&mgr->lock);
3908 return -1;
3909 }
3910 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume);
3911
3912 static bool
3913 drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up,
3914 struct drm_dp_mst_branch **mstb)
3915 {
3916 int len;
3917 u8 replyblock[32];
3918 int replylen, curreply;
3919 int ret;
3920 u8 hdrlen;
3921 struct drm_dp_sideband_msg_hdr hdr;
3922 struct drm_dp_sideband_msg_rx *msg =
3923 up ? &mgr->up_req_recv : &mgr->down_rep_recv;
3924 int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE :
3925 DP_SIDEBAND_MSG_DOWN_REP_BASE;
3926
3927 if (!up)
3928 *mstb = NULL;
3929
3930 len = min(mgr->max_dpcd_transaction_bytes, 16);
3931 ret = drm_dp_dpcd_read(mgr->aux, basereg, replyblock, len);
3932 if (ret != len) {
3933 drm_dbg_kms(mgr->dev, "failed to read DPCD down rep %d %d\n", len, ret);
3934 return false;
3935 }
3936
3937 ret = drm_dp_decode_sideband_msg_hdr(mgr, &hdr, replyblock, len, &hdrlen);
3938 if (ret == false) {
3939 print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16,
3940 1, replyblock, len, false);
3941 drm_dbg_kms(mgr->dev, "ERROR: failed header\n");
3942 return false;
3943 }
3944
3945 if (!up) {
3946 /* Caller is responsible for giving back this reference */
3947 *mstb = drm_dp_get_mst_branch_device(mgr, hdr.lct, hdr.rad);
3948 if (!*mstb) {
3949 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr.lct);
3950 return false;
3951 }
3952 }
3953
3954 if (!drm_dp_sideband_msg_set_header(msg, &hdr, hdrlen)) {
3955 drm_dbg_kms(mgr->dev, "sideband msg set header failed %d\n", replyblock[0]);
3956 return false;
3957 }
3958
3959 replylen = min(msg->curchunk_len, (u8)(len - hdrlen));
3960 ret = drm_dp_sideband_append_payload(msg, replyblock + hdrlen, replylen);
3961 if (!ret) {
3962 drm_dbg_kms(mgr->dev, "sideband msg build failed %d\n", replyblock[0]);
3963 return false;
3964 }
3965
3966 replylen = msg->curchunk_len + msg->curchunk_hdrlen - len;
3967 curreply = len;
3968 while (replylen > 0) {
3969 len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16);
3970 ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply,
3971 replyblock, len);
3972 if (ret != len) {
3973 drm_dbg_kms(mgr->dev, "failed to read a chunk (len %d, ret %d)\n",
3974 len, ret);
3975 return false;
3976 }
3977
3978 ret = drm_dp_sideband_append_payload(msg, replyblock, len);
3979 if (!ret) {
3980 drm_dbg_kms(mgr->dev, "failed to build sideband msg\n");
3981 return false;
3982 }
3983
3984 curreply += len;
3985 replylen -= len;
3986 }
3987 return true;
3988 }
3989
3990 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr)
3991 {
3992 struct drm_dp_sideband_msg_tx *txmsg;
3993 struct drm_dp_mst_branch *mstb = NULL;
3994 struct drm_dp_sideband_msg_rx *msg = &mgr->down_rep_recv;
3995
3996 if (!drm_dp_get_one_sb_msg(mgr, false, &mstb))
3997 goto out;
3998
3999 /* Multi-packet message transmission, don't clear the reply */
4000 if (!msg->have_eomt)
4001 goto out;
4002
4003 /* find the message */
4004 mutex_lock(&mgr->qlock);
4005 txmsg = list_first_entry_or_null(&mgr->tx_msg_downq,
4006 struct drm_dp_sideband_msg_tx, next);
4007 mutex_unlock(&mgr->qlock);
4008
4009 /* Were we actually expecting a response, and from this mstb? */
4010 if (!txmsg || txmsg->dst != mstb) {
4011 struct drm_dp_sideband_msg_hdr *hdr;
4012
4013 hdr = &msg->initial_hdr;
4014 drm_dbg_kms(mgr->dev, "Got MST reply with no msg %p %d %d %02x %02x\n",
4015 mstb, hdr->seqno, hdr->lct, hdr->rad[0], msg->msg[0]);
4016 goto out_clear_reply;
4017 }
4018
4019 drm_dp_sideband_parse_reply(mgr, msg, &txmsg->reply);
4020
4021 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
4022 drm_dbg_kms(mgr->dev,
4023 "Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n",
4024 txmsg->reply.req_type,
4025 drm_dp_mst_req_type_str(txmsg->reply.req_type),
4026 txmsg->reply.u.nak.reason,
4027 drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason),
4028 txmsg->reply.u.nak.nak_data);
4029 }
4030
4031 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx));
4032 drm_dp_mst_topology_put_mstb(mstb);
4033
4034 mutex_lock(&mgr->qlock);
4035 txmsg->state = DRM_DP_SIDEBAND_TX_RX;
4036 list_del(&txmsg->next);
4037 mutex_unlock(&mgr->qlock);
4038
4039 wake_up_all(&mgr->tx_waitq);
4040
4041 return 0;
4042
4043 out_clear_reply:
4044 memset(msg, 0, sizeof(struct drm_dp_sideband_msg_rx));
4045 out:
4046 if (mstb)
4047 drm_dp_mst_topology_put_mstb(mstb);
4048
4049 return 0;
4050 }
4051
4052 static inline bool
4053 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr,
4054 struct drm_dp_pending_up_req *up_req)
4055 {
4056 struct drm_dp_mst_branch *mstb = NULL;
4057 struct drm_dp_sideband_msg_req_body *msg = &up_req->msg;
4058 struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr;
4059 bool hotplug = false;
4060
4061 if (hdr->broadcast) {
4062 const u8 *guid = NULL;
4063
4064 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY)
4065 guid = msg->u.conn_stat.guid;
4066 else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY)
4067 guid = msg->u.resource_stat.guid;
4068
4069 if (guid)
4070 mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid);
4071 } else {
4072 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad);
4073 }
4074
4075 if (!mstb) {
4076 drm_dbg_kms(mgr->dev, "Got MST reply from unknown device %d\n", hdr->lct);
4077 return false;
4078 }
4079
4080 /* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */
4081 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) {
4082 drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat);
4083 hotplug = true;
4084 }
4085
4086 drm_dp_mst_topology_put_mstb(mstb);
4087 return hotplug;
4088 }
4089
4090 static void drm_dp_mst_up_req_work(struct work_struct *work)
4091 {
4092 struct drm_dp_mst_topology_mgr *mgr =
4093 container_of(work, struct drm_dp_mst_topology_mgr,
4094 up_req_work);
4095 struct drm_dp_pending_up_req *up_req;
4096 bool send_hotplug = false;
4097
4098 mutex_lock(&mgr->probe_lock);
4099 while (true) {
4100 mutex_lock(&mgr->up_req_lock);
4101 up_req = list_first_entry_or_null(&mgr->up_req_list,
4102 struct drm_dp_pending_up_req,
4103 next);
4104 if (up_req)
4105 list_del(&up_req->next);
4106 mutex_unlock(&mgr->up_req_lock);
4107
4108 if (!up_req)
4109 break;
4110
4111 send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req);
4112 kfree(up_req);
4113 }
4114 mutex_unlock(&mgr->probe_lock);
4115
4116 if (send_hotplug)
4117 drm_kms_helper_hotplug_event(mgr->dev);
4118 }
4119
4120 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr)
4121 {
4122 struct drm_dp_pending_up_req *up_req;
4123
4124 if (!drm_dp_get_one_sb_msg(mgr, true, NULL))
4125 goto out;
4126
4127 if (!mgr->up_req_recv.have_eomt)
4128 return 0;
4129
4130 up_req = kzalloc(sizeof(*up_req), GFP_KERNEL);
4131 if (!up_req)
4132 return -ENOMEM;
4133
4134 INIT_LIST_HEAD(&up_req->next);
4135
4136 drm_dp_sideband_parse_req(mgr, &mgr->up_req_recv, &up_req->msg);
4137
4138 if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY &&
4139 up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) {
4140 drm_dbg_kms(mgr->dev, "Received unknown up req type, ignoring: %x\n",
4141 up_req->msg.req_type);
4142 kfree(up_req);
4143 goto out;
4144 }
4145
4146 drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type,
4147 false);
4148
4149 if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) {
4150 const struct drm_dp_connection_status_notify *conn_stat =
4151 &up_req->msg.u.conn_stat;
4152
4153 drm_dbg_kms(mgr->dev, "Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n",
4154 conn_stat->port_number,
4155 conn_stat->legacy_device_plug_status,
4156 conn_stat->displayport_device_plug_status,
4157 conn_stat->message_capability_status,
4158 conn_stat->input_port,
4159 conn_stat->peer_device_type);
4160 } else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) {
4161 const struct drm_dp_resource_status_notify *res_stat =
4162 &up_req->msg.u.resource_stat;
4163
4164 drm_dbg_kms(mgr->dev, "Got RSN: pn: %d avail_pbn %d\n",
4165 res_stat->port_number,
4166 res_stat->available_pbn);
4167 }
4168
4169 up_req->hdr = mgr->up_req_recv.initial_hdr;
4170 mutex_lock(&mgr->up_req_lock);
4171 list_add_tail(&up_req->next, &mgr->up_req_list);
4172 mutex_unlock(&mgr->up_req_lock);
4173 queue_work(system_long_wq, &mgr->up_req_work);
4174
4175 out:
4176 memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
4177 return 0;
4178 }
4179
4180 /**
4181 * drm_dp_mst_hpd_irq() - MST hotplug IRQ notify
4182 * @mgr: manager to notify irq for.
4183 * @esi: 4 bytes from SINK_COUNT_ESI
4184 * @handled: whether the hpd interrupt was consumed or not
4185 *
4186 * This should be called from the driver when it detects a short IRQ,
4187 * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The
4188 * topology manager will process the sideband messages received as a result
4189 * of this.
4190 */
4191 int drm_dp_mst_hpd_irq(struct drm_dp_mst_topology_mgr *mgr, u8 *esi, bool *handled)
4192 {
4193 int ret = 0;
4194 int sc;
4195 *handled = false;
4196 sc = DP_GET_SINK_COUNT(esi[0]);
4197
4198 if (sc != mgr->sink_count) {
4199 mgr->sink_count = sc;
4200 *handled = true;
4201 }
4202
4203 if (esi[1] & DP_DOWN_REP_MSG_RDY) {
4204 ret = drm_dp_mst_handle_down_rep(mgr);
4205 *handled = true;
4206 }
4207
4208 if (esi[1] & DP_UP_REQ_MSG_RDY) {
4209 ret |= drm_dp_mst_handle_up_req(mgr);
4210 *handled = true;
4211 }
4212
4213 drm_dp_mst_kick_tx(mgr);
4214 return ret;
4215 }
4216 EXPORT_SYMBOL(drm_dp_mst_hpd_irq);
4217
4218 /**
4219 * drm_dp_mst_detect_port() - get connection status for an MST port
4220 * @connector: DRM connector for this port
4221 * @ctx: The acquisition context to use for grabbing locks
4222 * @mgr: manager for this port
4223 * @port: pointer to a port
4224 *
4225 * This returns the current connection state for a port.
4226 */
4227 int
4228 drm_dp_mst_detect_port(struct drm_connector *connector,
4229 struct drm_modeset_acquire_ctx *ctx,
4230 struct drm_dp_mst_topology_mgr *mgr,
4231 struct drm_dp_mst_port *port)
4232 {
4233 int ret;
4234
4235 /* we need to search for the port in the mgr in case it's gone */
4236 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4237 if (!port)
4238 return connector_status_disconnected;
4239
4240 ret = drm_modeset_lock(&mgr->base.lock, ctx);
4241 if (ret)
4242 goto out;
4243
4244 ret = connector_status_disconnected;
4245
4246 if (!port->ddps)
4247 goto out;
4248
4249 switch (port->pdt) {
4250 case DP_PEER_DEVICE_NONE:
4251 break;
4252 case DP_PEER_DEVICE_MST_BRANCHING:
4253 if (!port->mcs)
4254 ret = connector_status_connected;
4255 break;
4256
4257 case DP_PEER_DEVICE_SST_SINK:
4258 ret = connector_status_connected;
4259 /* for logical ports - cache the EDID */
4260 if (port->port_num >= DP_MST_LOGICAL_PORT_0 && !port->cached_edid)
4261 port->cached_edid = drm_get_edid(connector, &port->aux.ddc);
4262 break;
4263 case DP_PEER_DEVICE_DP_LEGACY_CONV:
4264 if (port->ldps)
4265 ret = connector_status_connected;
4266 break;
4267 }
4268 out:
4269 drm_dp_mst_topology_put_port(port);
4270 return ret;
4271 }
4272 EXPORT_SYMBOL(drm_dp_mst_detect_port);
4273
4274 /**
4275 * drm_dp_mst_get_edid() - get EDID for an MST port
4276 * @connector: toplevel connector to get EDID for
4277 * @mgr: manager for this port
4278 * @port: unverified pointer to a port.
4279 *
4280 * This returns an EDID for the port connected to a connector,
4281 * It validates the pointer still exists so the caller doesn't require a
4282 * reference.
4283 */
4284 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4285 {
4286 struct edid *edid = NULL;
4287
4288 /* we need to search for the port in the mgr in case it's gone */
4289 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4290 if (!port)
4291 return NULL;
4292
4293 if (port->cached_edid)
4294 edid = drm_edid_duplicate(port->cached_edid);
4295 else {
4296 edid = drm_get_edid(connector, &port->aux.ddc);
4297 }
4298 port->has_audio = drm_detect_monitor_audio(edid);
4299 drm_dp_mst_topology_put_port(port);
4300 return edid;
4301 }
4302 EXPORT_SYMBOL(drm_dp_mst_get_edid);
4303
4304 /**
4305 * drm_dp_find_vcpi_slots() - Find VCPI slots for this PBN value
4306 * @mgr: manager to use
4307 * @pbn: payload bandwidth to convert into slots.
4308 *
4309 * Calculate the number of VCPI slots that will be required for the given PBN
4310 * value. This function is deprecated, and should not be used in atomic
4311 * drivers.
4312 *
4313 * RETURNS:
4314 * The total slots required for this port, or error.
4315 */
4316 int drm_dp_find_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr,
4317 int pbn)
4318 {
4319 int num_slots;
4320
4321 num_slots = DIV_ROUND_UP(pbn, mgr->pbn_div);
4322
4323 /* max. time slots - one slot for MTP header */
4324 if (num_slots > 63)
4325 return -ENOSPC;
4326 return num_slots;
4327 }
4328 EXPORT_SYMBOL(drm_dp_find_vcpi_slots);
4329
4330 static int drm_dp_init_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4331 struct drm_dp_vcpi *vcpi, int pbn, int slots)
4332 {
4333 int ret;
4334
4335 vcpi->pbn = pbn;
4336 vcpi->aligned_pbn = slots * mgr->pbn_div;
4337 vcpi->num_slots = slots;
4338
4339 ret = drm_dp_mst_assign_payload_id(mgr, vcpi);
4340 if (ret < 0)
4341 return ret;
4342 return 0;
4343 }
4344
4345 /**
4346 * drm_dp_atomic_find_vcpi_slots() - Find and add VCPI slots to the state
4347 * @state: global atomic state
4348 * @mgr: MST topology manager for the port
4349 * @port: port to find vcpi slots for
4350 * @pbn: bandwidth required for the mode in PBN
4351 * @pbn_div: divider for DSC mode that takes FEC into account
4352 *
4353 * Allocates VCPI slots to @port, replacing any previous VCPI allocations it
4354 * may have had. Any atomic drivers which support MST must call this function
4355 * in their &drm_encoder_helper_funcs.atomic_check() callback to change the
4356 * current VCPI allocation for the new state, but only when
4357 * &drm_crtc_state.mode_changed or &drm_crtc_state.connectors_changed is set
4358 * to ensure compatibility with userspace applications that still use the
4359 * legacy modesetting UAPI.
4360 *
4361 * Allocations set by this function are not checked against the bandwidth
4362 * restraints of @mgr until the driver calls drm_dp_mst_atomic_check().
4363 *
4364 * Additionally, it is OK to call this function multiple times on the same
4365 * @port as needed. It is not OK however, to call this function and
4366 * drm_dp_atomic_release_vcpi_slots() in the same atomic check phase.
4367 *
4368 * See also:
4369 * drm_dp_atomic_release_vcpi_slots()
4370 * drm_dp_mst_atomic_check()
4371 *
4372 * Returns:
4373 * Total slots in the atomic state assigned for this port, or a negative error
4374 * code if the port no longer exists
4375 */
4376 int drm_dp_atomic_find_vcpi_slots(struct drm_atomic_state *state,
4377 struct drm_dp_mst_topology_mgr *mgr,
4378 struct drm_dp_mst_port *port, int pbn,
4379 int pbn_div)
4380 {
4381 struct drm_dp_mst_topology_state *topology_state;
4382 struct drm_dp_vcpi_allocation *pos, *vcpi = NULL;
4383 int prev_slots, prev_bw, req_slots;
4384
4385 topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4386 if (IS_ERR(topology_state))
4387 return PTR_ERR(topology_state);
4388
4389 /* Find the current allocation for this port, if any */
4390 list_for_each_entry(pos, &topology_state->vcpis, next) {
4391 if (pos->port == port) {
4392 vcpi = pos;
4393 prev_slots = vcpi->vcpi;
4394 prev_bw = vcpi->pbn;
4395
4396 /*
4397 * This should never happen, unless the driver tries
4398 * releasing and allocating the same VCPI allocation,
4399 * which is an error
4400 */
4401 if (WARN_ON(!prev_slots)) {
4402 drm_err(mgr->dev,
4403 "cannot allocate and release VCPI on [MST PORT:%p] in the same state\n",
4404 port);
4405 return -EINVAL;
4406 }
4407
4408 break;
4409 }
4410 }
4411 if (!vcpi) {
4412 prev_slots = 0;
4413 prev_bw = 0;
4414 }
4415
4416 if (pbn_div <= 0)
4417 pbn_div = mgr->pbn_div;
4418
4419 req_slots = DIV_ROUND_UP(pbn, pbn_div);
4420
4421 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] VCPI %d -> %d\n",
4422 port->connector->base.id, port->connector->name,
4423 port, prev_slots, req_slots);
4424 drm_dbg_atomic(mgr->dev, "[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n",
4425 port->connector->base.id, port->connector->name,
4426 port, prev_bw, pbn);
4427
4428 /* Add the new allocation to the state */
4429 if (!vcpi) {
4430 vcpi = kzalloc(sizeof(*vcpi), GFP_KERNEL);
4431 if (!vcpi)
4432 return -ENOMEM;
4433
4434 drm_dp_mst_get_port_malloc(port);
4435 vcpi->port = port;
4436 list_add(&vcpi->next, &topology_state->vcpis);
4437 }
4438 vcpi->vcpi = req_slots;
4439 vcpi->pbn = pbn;
4440
4441 return req_slots;
4442 }
4443 EXPORT_SYMBOL(drm_dp_atomic_find_vcpi_slots);
4444
4445 /**
4446 * drm_dp_atomic_release_vcpi_slots() - Release allocated vcpi slots
4447 * @state: global atomic state
4448 * @mgr: MST topology manager for the port
4449 * @port: The port to release the VCPI slots from
4450 *
4451 * Releases any VCPI slots that have been allocated to a port in the atomic
4452 * state. Any atomic drivers which support MST must call this function in
4453 * their &drm_connector_helper_funcs.atomic_check() callback when the
4454 * connector will no longer have VCPI allocated (e.g. because its CRTC was
4455 * removed) when it had VCPI allocated in the previous atomic state.
4456 *
4457 * It is OK to call this even if @port has been removed from the system.
4458 * Additionally, it is OK to call this function multiple times on the same
4459 * @port as needed. It is not OK however, to call this function and
4460 * drm_dp_atomic_find_vcpi_slots() on the same @port in a single atomic check
4461 * phase.
4462 *
4463 * See also:
4464 * drm_dp_atomic_find_vcpi_slots()
4465 * drm_dp_mst_atomic_check()
4466 *
4467 * Returns:
4468 * 0 if all slots for this port were added back to
4469 * &drm_dp_mst_topology_state.avail_slots or negative error code
4470 */
4471 int drm_dp_atomic_release_vcpi_slots(struct drm_atomic_state *state,
4472 struct drm_dp_mst_topology_mgr *mgr,
4473 struct drm_dp_mst_port *port)
4474 {
4475 struct drm_dp_mst_topology_state *topology_state;
4476 struct drm_dp_vcpi_allocation *pos;
4477 bool found = false;
4478
4479 topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4480 if (IS_ERR(topology_state))
4481 return PTR_ERR(topology_state);
4482
4483 list_for_each_entry(pos, &topology_state->vcpis, next) {
4484 if (pos->port == port) {
4485 found = true;
4486 break;
4487 }
4488 }
4489 if (WARN_ON(!found)) {
4490 drm_err(mgr->dev, "no VCPI for [MST PORT:%p] found in mst state %p\n",
4491 port, &topology_state->base);
4492 return -EINVAL;
4493 }
4494
4495 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] VCPI %d -> 0\n", port, pos->vcpi);
4496 if (pos->vcpi) {
4497 drm_dp_mst_put_port_malloc(port);
4498 pos->vcpi = 0;
4499 pos->pbn = 0;
4500 }
4501
4502 return 0;
4503 }
4504 EXPORT_SYMBOL(drm_dp_atomic_release_vcpi_slots);
4505
4506 /**
4507 * drm_dp_mst_update_slots() - updates the slot info depending on the DP ecoding format
4508 * @mst_state: mst_state to update
4509 * @link_encoding_cap: the ecoding format on the link
4510 */
4511 void drm_dp_mst_update_slots(struct drm_dp_mst_topology_state *mst_state, uint8_t link_encoding_cap)
4512 {
4513 if (link_encoding_cap == DP_CAP_ANSI_128B132B) {
4514 mst_state->total_avail_slots = 64;
4515 mst_state->start_slot = 0;
4516 } else {
4517 mst_state->total_avail_slots = 63;
4518 mst_state->start_slot = 1;
4519 }
4520
4521 DRM_DEBUG_KMS("%s encoding format on mst_state 0x%p\n",
4522 (link_encoding_cap == DP_CAP_ANSI_128B132B) ? "128b/132b":"8b/10b",
4523 mst_state);
4524 }
4525 EXPORT_SYMBOL(drm_dp_mst_update_slots);
4526
4527 /**
4528 * drm_dp_mst_allocate_vcpi() - Allocate a virtual channel
4529 * @mgr: manager for this port
4530 * @port: port to allocate a virtual channel for.
4531 * @pbn: payload bandwidth number to request
4532 * @slots: returned number of slots for this PBN.
4533 */
4534 bool drm_dp_mst_allocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4535 struct drm_dp_mst_port *port, int pbn, int slots)
4536 {
4537 int ret;
4538
4539 if (slots < 0)
4540 return false;
4541
4542 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4543 if (!port)
4544 return false;
4545
4546 if (port->vcpi.vcpi > 0) {
4547 drm_dbg_kms(mgr->dev,
4548 "payload: vcpi %d already allocated for pbn %d - requested pbn %d\n",
4549 port->vcpi.vcpi, port->vcpi.pbn, pbn);
4550 if (pbn == port->vcpi.pbn) {
4551 drm_dp_mst_topology_put_port(port);
4552 return true;
4553 }
4554 }
4555
4556 ret = drm_dp_init_vcpi(mgr, &port->vcpi, pbn, slots);
4557 if (ret) {
4558 drm_dbg_kms(mgr->dev, "failed to init vcpi slots=%d ret=%d\n",
4559 DIV_ROUND_UP(pbn, mgr->pbn_div), ret);
4560 drm_dp_mst_topology_put_port(port);
4561 goto out;
4562 }
4563 drm_dbg_kms(mgr->dev, "initing vcpi for pbn=%d slots=%d\n", pbn, port->vcpi.num_slots);
4564
4565 /* Keep port allocated until its payload has been removed */
4566 drm_dp_mst_get_port_malloc(port);
4567 drm_dp_mst_topology_put_port(port);
4568 return true;
4569 out:
4570 return false;
4571 }
4572 EXPORT_SYMBOL(drm_dp_mst_allocate_vcpi);
4573
4574 int drm_dp_mst_get_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4575 {
4576 int slots = 0;
4577
4578 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4579 if (!port)
4580 return slots;
4581
4582 slots = port->vcpi.num_slots;
4583 drm_dp_mst_topology_put_port(port);
4584 return slots;
4585 }
4586 EXPORT_SYMBOL(drm_dp_mst_get_vcpi_slots);
4587
4588 /**
4589 * drm_dp_mst_reset_vcpi_slots() - Reset number of slots to 0 for VCPI
4590 * @mgr: manager for this port
4591 * @port: unverified pointer to a port.
4592 *
4593 * This just resets the number of slots for the ports VCPI for later programming.
4594 */
4595 void drm_dp_mst_reset_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4596 {
4597 /*
4598 * A port with VCPI will remain allocated until its VCPI is
4599 * released, no verified ref needed
4600 */
4601
4602 port->vcpi.num_slots = 0;
4603 }
4604 EXPORT_SYMBOL(drm_dp_mst_reset_vcpi_slots);
4605
4606 /**
4607 * drm_dp_mst_deallocate_vcpi() - deallocate a VCPI
4608 * @mgr: manager for this port
4609 * @port: port to deallocate vcpi for
4610 *
4611 * This can be called unconditionally, regardless of whether
4612 * drm_dp_mst_allocate_vcpi() succeeded or not.
4613 */
4614 void drm_dp_mst_deallocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4615 struct drm_dp_mst_port *port)
4616 {
4617 bool skip;
4618
4619 if (!port->vcpi.vcpi)
4620 return;
4621
4622 mutex_lock(&mgr->lock);
4623 skip = !drm_dp_mst_port_downstream_of_branch(port, mgr->mst_primary);
4624 mutex_unlock(&mgr->lock);
4625
4626 if (skip)
4627 return;
4628
4629 drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi);
4630 port->vcpi.num_slots = 0;
4631 port->vcpi.pbn = 0;
4632 port->vcpi.aligned_pbn = 0;
4633 port->vcpi.vcpi = 0;
4634 drm_dp_mst_put_port_malloc(port);
4635 }
4636 EXPORT_SYMBOL(drm_dp_mst_deallocate_vcpi);
4637
4638 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
4639 int id, struct drm_dp_payload *payload)
4640 {
4641 u8 payload_alloc[3], status;
4642 int ret;
4643 int retries = 0;
4644
4645 drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
4646 DP_PAYLOAD_TABLE_UPDATED);
4647
4648 payload_alloc[0] = id;
4649 payload_alloc[1] = payload->start_slot;
4650 payload_alloc[2] = payload->num_slots;
4651
4652 ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
4653 if (ret != 3) {
4654 drm_dbg_kms(mgr->dev, "failed to write payload allocation %d\n", ret);
4655 goto fail;
4656 }
4657
4658 retry:
4659 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4660 if (ret < 0) {
4661 drm_dbg_kms(mgr->dev, "failed to read payload table status %d\n", ret);
4662 goto fail;
4663 }
4664
4665 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
4666 retries++;
4667 if (retries < 20) {
4668 usleep_range(10000, 20000);
4669 goto retry;
4670 }
4671 drm_dbg_kms(mgr->dev, "status not set after read payload table status %d\n",
4672 status);
4673 ret = -EINVAL;
4674 goto fail;
4675 }
4676 ret = 0;
4677 fail:
4678 return ret;
4679 }
4680
4681 static int do_get_act_status(struct drm_dp_aux *aux)
4682 {
4683 int ret;
4684 u8 status;
4685
4686 ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4687 if (ret < 0)
4688 return ret;
4689
4690 return status;
4691 }
4692
4693 /**
4694 * drm_dp_check_act_status() - Polls for ACT handled status.
4695 * @mgr: manager to use
4696 *
4697 * Tries waiting for the MST hub to finish updating it's payload table by
4698 * polling for the ACT handled bit for up to 3 seconds (yes-some hubs really
4699 * take that long).
4700 *
4701 * Returns:
4702 * 0 if the ACT was handled in time, negative error code on failure.
4703 */
4704 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr)
4705 {
4706 /*
4707 * There doesn't seem to be any recommended retry count or timeout in
4708 * the MST specification. Since some hubs have been observed to take
4709 * over 1 second to update their payload allocations under certain
4710 * conditions, we use a rather large timeout value.
4711 */
4712 const int timeout_ms = 3000;
4713 int ret, status;
4714
4715 ret = readx_poll_timeout(do_get_act_status, mgr->aux, status,
4716 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
4717 200, timeout_ms * USEC_PER_MSEC);
4718 if (ret < 0 && status >= 0) {
4719 drm_err(mgr->dev, "Failed to get ACT after %dms, last status: %02x\n",
4720 timeout_ms, status);
4721 return -EINVAL;
4722 } else if (status < 0) {
4723 /*
4724 * Failure here isn't unexpected - the hub may have
4725 * just been unplugged
4726 */
4727 drm_dbg_kms(mgr->dev, "Failed to read payload table status: %d\n", status);
4728 return status;
4729 }
4730
4731 return 0;
4732 }
4733 EXPORT_SYMBOL(drm_dp_check_act_status);
4734
4735 /**
4736 * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode.
4737 * @clock: dot clock for the mode
4738 * @bpp: bpp for the mode.
4739 * @dsc: DSC mode. If true, bpp has units of 1/16 of a bit per pixel
4740 *
4741 * This uses the formula in the spec to calculate the PBN value for a mode.
4742 */
4743 int drm_dp_calc_pbn_mode(int clock, int bpp, bool dsc)
4744 {
4745 /*
4746 * margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006
4747 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on
4748 * common multiplier to render an integer PBN for all link rate/lane
4749 * counts combinations
4750 * calculate
4751 * peak_kbps *= (1006/1000)
4752 * peak_kbps *= (64/54)
4753 * peak_kbps *= 8 convert to bytes
4754 *
4755 * If the bpp is in units of 1/16, further divide by 16. Put this
4756 * factor in the numerator rather than the denominator to avoid
4757 * integer overflow
4758 */
4759
4760 if (dsc)
4761 return DIV_ROUND_UP_ULL(mul_u32_u32(clock * (bpp / 16), 64 * 1006),
4762 8 * 54 * 1000 * 1000);
4763
4764 return DIV_ROUND_UP_ULL(mul_u32_u32(clock * bpp, 64 * 1006),
4765 8 * 54 * 1000 * 1000);
4766 }
4767 EXPORT_SYMBOL(drm_dp_calc_pbn_mode);
4768
4769 /* we want to kick the TX after we've ack the up/down IRQs. */
4770 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr)
4771 {
4772 queue_work(system_long_wq, &mgr->tx_work);
4773 }
4774
4775 /*
4776 * Helper function for parsing DP device types into convenient strings
4777 * for use with dp_mst_topology
4778 */
4779 static const char *pdt_to_string(u8 pdt)
4780 {
4781 switch (pdt) {
4782 case DP_PEER_DEVICE_NONE:
4783 return "NONE";
4784 case DP_PEER_DEVICE_SOURCE_OR_SST:
4785 return "SOURCE OR SST";
4786 case DP_PEER_DEVICE_MST_BRANCHING:
4787 return "MST BRANCHING";
4788 case DP_PEER_DEVICE_SST_SINK:
4789 return "SST SINK";
4790 case DP_PEER_DEVICE_DP_LEGACY_CONV:
4791 return "DP LEGACY CONV";
4792 default:
4793 return "ERR";
4794 }
4795 }
4796
4797 static void drm_dp_mst_dump_mstb(struct seq_file *m,
4798 struct drm_dp_mst_branch *mstb)
4799 {
4800 struct drm_dp_mst_port *port;
4801 int tabs = mstb->lct;
4802 char prefix[10];
4803 int i;
4804
4805 for (i = 0; i < tabs; i++)
4806 prefix[i] = '\t';
4807 prefix[i] = '\0';
4808
4809 seq_printf(m, "%smstb - [%p]: num_ports: %d\n", prefix, mstb, mstb->num_ports);
4810 list_for_each_entry(port, &mstb->ports, next) {
4811 seq_printf(m, "%sport %d - [%p] (%s - %s): ddps: %d, ldps: %d, sdp: %d/%d, fec: %s, conn: %p\n",
4812 prefix,
4813 port->port_num,
4814 port,
4815 port->input ? "input" : "output",
4816 pdt_to_string(port->pdt),
4817 port->ddps,
4818 port->ldps,
4819 port->num_sdp_streams,
4820 port->num_sdp_stream_sinks,
4821 port->fec_capable ? "true" : "false",
4822 port->connector);
4823 if (port->mstb)
4824 drm_dp_mst_dump_mstb(m, port->mstb);
4825 }
4826 }
4827
4828 #define DP_PAYLOAD_TABLE_SIZE 64
4829
4830 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
4831 char *buf)
4832 {
4833 int i;
4834
4835 for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) {
4836 if (drm_dp_dpcd_read(mgr->aux,
4837 DP_PAYLOAD_TABLE_UPDATE_STATUS + i,
4838 &buf[i], 16) != 16)
4839 return false;
4840 }
4841 return true;
4842 }
4843
4844 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr,
4845 struct drm_dp_mst_port *port, char *name,
4846 int namelen)
4847 {
4848 struct edid *mst_edid;
4849
4850 mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port);
4851 drm_edid_get_monitor_name(mst_edid, name, namelen);
4852 kfree(mst_edid);
4853 }
4854
4855 /**
4856 * drm_dp_mst_dump_topology(): dump topology to seq file.
4857 * @m: seq_file to dump output to
4858 * @mgr: manager to dump current topology for.
4859 *
4860 * helper to dump MST topology to a seq file for debugfs.
4861 */
4862 void drm_dp_mst_dump_topology(struct seq_file *m,
4863 struct drm_dp_mst_topology_mgr *mgr)
4864 {
4865 int i;
4866 struct drm_dp_mst_port *port;
4867
4868 mutex_lock(&mgr->lock);
4869 if (mgr->mst_primary)
4870 drm_dp_mst_dump_mstb(m, mgr->mst_primary);
4871
4872 /* dump VCPIs */
4873 mutex_unlock(&mgr->lock);
4874
4875 mutex_lock(&mgr->payload_lock);
4876 seq_printf(m, "\n*** VCPI Info ***\n");
4877 seq_printf(m, "payload_mask: %lx, vcpi_mask: %lx, max_payloads: %d\n", mgr->payload_mask, mgr->vcpi_mask, mgr->max_payloads);
4878
4879 seq_printf(m, "\n| idx | port # | vcp_id | # slots | sink name |\n");
4880 for (i = 0; i < mgr->max_payloads; i++) {
4881 if (mgr->proposed_vcpis[i]) {
4882 char name[14];
4883
4884 port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
4885 fetch_monitor_name(mgr, port, name, sizeof(name));
4886 seq_printf(m, "%10d%10d%10d%10d%20s\n",
4887 i,
4888 port->port_num,
4889 port->vcpi.vcpi,
4890 port->vcpi.num_slots,
4891 (*name != 0) ? name : "Unknown");
4892 } else
4893 seq_printf(m, "%6d - Unused\n", i);
4894 }
4895 seq_printf(m, "\n*** Payload Info ***\n");
4896 seq_printf(m, "| idx | state | start slot | # slots |\n");
4897 for (i = 0; i < mgr->max_payloads; i++) {
4898 seq_printf(m, "%10d%10d%15d%10d\n",
4899 i,
4900 mgr->payloads[i].payload_state,
4901 mgr->payloads[i].start_slot,
4902 mgr->payloads[i].num_slots);
4903 }
4904 mutex_unlock(&mgr->payload_lock);
4905
4906 seq_printf(m, "\n*** DPCD Info ***\n");
4907 mutex_lock(&mgr->lock);
4908 if (mgr->mst_primary) {
4909 u8 buf[DP_PAYLOAD_TABLE_SIZE];
4910 int ret;
4911
4912 if (drm_dp_read_dpcd_caps(mgr->aux, buf) < 0) {
4913 seq_printf(m, "dpcd read failed\n");
4914 goto out;
4915 }
4916 seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf);
4917
4918 ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2);
4919 if (ret) {
4920 seq_printf(m, "faux/mst read failed\n");
4921 goto out;
4922 }
4923 seq_printf(m, "faux/mst: %*ph\n", 2, buf);
4924
4925 ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1);
4926 if (ret) {
4927 seq_printf(m, "mst ctrl read failed\n");
4928 goto out;
4929 }
4930 seq_printf(m, "mst ctrl: %*ph\n", 1, buf);
4931
4932 /* dump the standard OUI branch header */
4933 ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE);
4934 if (ret) {
4935 seq_printf(m, "branch oui read failed\n");
4936 goto out;
4937 }
4938 seq_printf(m, "branch oui: %*phN devid: ", 3, buf);
4939
4940 for (i = 0x3; i < 0x8 && buf[i]; i++)
4941 seq_printf(m, "%c", buf[i]);
4942 seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n",
4943 buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]);
4944 if (dump_dp_payload_table(mgr, buf))
4945 seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf);
4946 }
4947
4948 out:
4949 mutex_unlock(&mgr->lock);
4950
4951 }
4952 EXPORT_SYMBOL(drm_dp_mst_dump_topology);
4953
4954 static void drm_dp_tx_work(struct work_struct *work)
4955 {
4956 struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work);
4957
4958 mutex_lock(&mgr->qlock);
4959 if (!list_empty(&mgr->tx_msg_downq))
4960 process_single_down_tx_qlock(mgr);
4961 mutex_unlock(&mgr->qlock);
4962 }
4963
4964 static inline void
4965 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port)
4966 {
4967 drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs);
4968
4969 if (port->connector) {
4970 drm_connector_unregister(port->connector);
4971 drm_connector_put(port->connector);
4972 }
4973
4974 drm_dp_mst_put_port_malloc(port);
4975 }
4976
4977 static inline void
4978 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb)
4979 {
4980 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
4981 struct drm_dp_mst_port *port, *port_tmp;
4982 struct drm_dp_sideband_msg_tx *txmsg, *txmsg_tmp;
4983 bool wake_tx = false;
4984
4985 mutex_lock(&mgr->lock);
4986 list_for_each_entry_safe(port, port_tmp, &mstb->ports, next) {
4987 list_del(&port->next);
4988 drm_dp_mst_topology_put_port(port);
4989 }
4990 mutex_unlock(&mgr->lock);
4991
4992 /* drop any tx slot msg */
4993 mutex_lock(&mstb->mgr->qlock);
4994 list_for_each_entry_safe(txmsg, txmsg_tmp, &mgr->tx_msg_downq, next) {
4995 if (txmsg->dst != mstb)
4996 continue;
4997
4998 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
4999 list_del(&txmsg->next);
5000 wake_tx = true;
5001 }
5002 mutex_unlock(&mstb->mgr->qlock);
5003
5004 if (wake_tx)
5005 wake_up_all(&mstb->mgr->tx_waitq);
5006
5007 drm_dp_mst_put_mstb_malloc(mstb);
5008 }
5009
5010 static void drm_dp_delayed_destroy_work(struct work_struct *work)
5011 {
5012 struct drm_dp_mst_topology_mgr *mgr =
5013 container_of(work, struct drm_dp_mst_topology_mgr,
5014 delayed_destroy_work);
5015 bool send_hotplug = false, go_again;
5016
5017 /*
5018 * Not a regular list traverse as we have to drop the destroy
5019 * connector lock before destroying the mstb/port, to avoid AB->BA
5020 * ordering between this lock and the config mutex.
5021 */
5022 do {
5023 go_again = false;
5024
5025 for (;;) {
5026 struct drm_dp_mst_branch *mstb;
5027
5028 mutex_lock(&mgr->delayed_destroy_lock);
5029 mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list,
5030 struct drm_dp_mst_branch,
5031 destroy_next);
5032 if (mstb)
5033 list_del(&mstb->destroy_next);
5034 mutex_unlock(&mgr->delayed_destroy_lock);
5035
5036 if (!mstb)
5037 break;
5038
5039 drm_dp_delayed_destroy_mstb(mstb);
5040 go_again = true;
5041 }
5042
5043 for (;;) {
5044 struct drm_dp_mst_port *port;
5045
5046 mutex_lock(&mgr->delayed_destroy_lock);
5047 port = list_first_entry_or_null(&mgr->destroy_port_list,
5048 struct drm_dp_mst_port,
5049 next);
5050 if (port)
5051 list_del(&port->next);
5052 mutex_unlock(&mgr->delayed_destroy_lock);
5053
5054 if (!port)
5055 break;
5056
5057 drm_dp_delayed_destroy_port(port);
5058 send_hotplug = true;
5059 go_again = true;
5060 }
5061 } while (go_again);
5062
5063 if (send_hotplug)
5064 drm_kms_helper_hotplug_event(mgr->dev);
5065 }
5066
5067 static struct drm_private_state *
5068 drm_dp_mst_duplicate_state(struct drm_private_obj *obj)
5069 {
5070 struct drm_dp_mst_topology_state *state, *old_state =
5071 to_dp_mst_topology_state(obj->state);
5072 struct drm_dp_vcpi_allocation *pos, *vcpi;
5073
5074 state = kmemdup(old_state, sizeof(*state), GFP_KERNEL);
5075 if (!state)
5076 return NULL;
5077
5078 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
5079
5080 INIT_LIST_HEAD(&state->vcpis);
5081
5082 list_for_each_entry(pos, &old_state->vcpis, next) {
5083 /* Prune leftover freed VCPI allocations */
5084 if (!pos->vcpi)
5085 continue;
5086
5087 vcpi = kmemdup(pos, sizeof(*vcpi), GFP_KERNEL);
5088 if (!vcpi)
5089 goto fail;
5090
5091 drm_dp_mst_get_port_malloc(vcpi->port);
5092 list_add(&vcpi->next, &state->vcpis);
5093 }
5094
5095 return &state->base;
5096
5097 fail:
5098 list_for_each_entry_safe(pos, vcpi, &state->vcpis, next) {
5099 drm_dp_mst_put_port_malloc(pos->port);
5100 kfree(pos);
5101 }
5102 kfree(state);
5103
5104 return NULL;
5105 }
5106
5107 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj,
5108 struct drm_private_state *state)
5109 {
5110 struct drm_dp_mst_topology_state *mst_state =
5111 to_dp_mst_topology_state(state);
5112 struct drm_dp_vcpi_allocation *pos, *tmp;
5113
5114 list_for_each_entry_safe(pos, tmp, &mst_state->vcpis, next) {
5115 /* We only keep references to ports with non-zero VCPIs */
5116 if (pos->vcpi)
5117 drm_dp_mst_put_port_malloc(pos->port);
5118 kfree(pos);
5119 }
5120
5121 kfree(mst_state);
5122 }
5123
5124 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port,
5125 struct drm_dp_mst_branch *branch)
5126 {
5127 while (port->parent) {
5128 if (port->parent == branch)
5129 return true;
5130
5131 if (port->parent->port_parent)
5132 port = port->parent->port_parent;
5133 else
5134 break;
5135 }
5136 return false;
5137 }
5138
5139 static int
5140 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port,
5141 struct drm_dp_mst_topology_state *state);
5142
5143 static int
5144 drm_dp_mst_atomic_check_mstb_bw_limit(struct drm_dp_mst_branch *mstb,
5145 struct drm_dp_mst_topology_state *state)
5146 {
5147 struct drm_dp_vcpi_allocation *vcpi;
5148 struct drm_dp_mst_port *port;
5149 int pbn_used = 0, ret;
5150 bool found = false;
5151
5152 /* Check that we have at least one port in our state that's downstream
5153 * of this branch, otherwise we can skip this branch
5154 */
5155 list_for_each_entry(vcpi, &state->vcpis, next) {
5156 if (!vcpi->pbn ||
5157 !drm_dp_mst_port_downstream_of_branch(vcpi->port, mstb))
5158 continue;
5159
5160 found = true;
5161 break;
5162 }
5163 if (!found)
5164 return 0;
5165
5166 if (mstb->port_parent)
5167 drm_dbg_atomic(mstb->mgr->dev,
5168 "[MSTB:%p] [MST PORT:%p] Checking bandwidth limits on [MSTB:%p]\n",
5169 mstb->port_parent->parent, mstb->port_parent, mstb);
5170 else
5171 drm_dbg_atomic(mstb->mgr->dev, "[MSTB:%p] Checking bandwidth limits\n", mstb);
5172
5173 list_for_each_entry(port, &mstb->ports, next) {
5174 ret = drm_dp_mst_atomic_check_port_bw_limit(port, state);
5175 if (ret < 0)
5176 return ret;
5177
5178 pbn_used += ret;
5179 }
5180
5181 return pbn_used;
5182 }
5183
5184 static int
5185 drm_dp_mst_atomic_check_port_bw_limit(struct drm_dp_mst_port *port,
5186 struct drm_dp_mst_topology_state *state)
5187 {
5188 struct drm_dp_vcpi_allocation *vcpi;
5189 int pbn_used = 0;
5190
5191 if (port->pdt == DP_PEER_DEVICE_NONE)
5192 return 0;
5193
5194 if (drm_dp_mst_is_end_device(port->pdt, port->mcs)) {
5195 bool found = false;
5196
5197 list_for_each_entry(vcpi, &state->vcpis, next) {
5198 if (vcpi->port != port)
5199 continue;
5200 if (!vcpi->pbn)
5201 return 0;
5202
5203 found = true;
5204 break;
5205 }
5206 if (!found)
5207 return 0;
5208
5209 /*
5210 * This could happen if the sink deasserted its HPD line, but
5211 * the branch device still reports it as attached (PDT != NONE).
5212 */
5213 if (!port->full_pbn) {
5214 drm_dbg_atomic(port->mgr->dev,
5215 "[MSTB:%p] [MST PORT:%p] no BW available for the port\n",
5216 port->parent, port);
5217 return -EINVAL;
5218 }
5219
5220 pbn_used = vcpi->pbn;
5221 } else {
5222 pbn_used = drm_dp_mst_atomic_check_mstb_bw_limit(port->mstb,
5223 state);
5224 if (pbn_used <= 0)
5225 return pbn_used;
5226 }
5227
5228 if (pbn_used > port->full_pbn) {
5229 drm_dbg_atomic(port->mgr->dev,
5230 "[MSTB:%p] [MST PORT:%p] required PBN of %d exceeds port limit of %d\n",
5231 port->parent, port, pbn_used, port->full_pbn);
5232 return -ENOSPC;
5233 }
5234
5235 drm_dbg_atomic(port->mgr->dev, "[MSTB:%p] [MST PORT:%p] uses %d out of %d PBN\n",
5236 port->parent, port, pbn_used, port->full_pbn);
5237
5238 return pbn_used;
5239 }
5240
5241 static inline int
5242 drm_dp_mst_atomic_check_vcpi_alloc_limit(struct drm_dp_mst_topology_mgr *mgr,
5243 struct drm_dp_mst_topology_state *mst_state)
5244 {
5245 struct drm_dp_vcpi_allocation *vcpi;
5246 int avail_slots = mst_state->total_avail_slots, payload_count = 0;
5247
5248 list_for_each_entry(vcpi, &mst_state->vcpis, next) {
5249 /* Releasing VCPI is always OK-even if the port is gone */
5250 if (!vcpi->vcpi) {
5251 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] releases all VCPI slots\n",
5252 vcpi->port);
5253 continue;
5254 }
5255
5256 drm_dbg_atomic(mgr->dev, "[MST PORT:%p] requires %d vcpi slots\n",
5257 vcpi->port, vcpi->vcpi);
5258
5259 avail_slots -= vcpi->vcpi;
5260 if (avail_slots < 0) {
5261 drm_dbg_atomic(mgr->dev,
5262 "[MST PORT:%p] not enough VCPI slots in mst state %p (avail=%d)\n",
5263 vcpi->port, mst_state, avail_slots + vcpi->vcpi);
5264 return -ENOSPC;
5265 }
5266
5267 if (++payload_count > mgr->max_payloads) {
5268 drm_dbg_atomic(mgr->dev,
5269 "[MST MGR:%p] state %p has too many payloads (max=%d)\n",
5270 mgr, mst_state, mgr->max_payloads);
5271 return -EINVAL;
5272 }
5273 }
5274 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] mst state %p VCPI avail=%d used=%d\n",
5275 mgr, mst_state, avail_slots, mst_state->total_avail_slots - avail_slots);
5276
5277 return 0;
5278 }
5279
5280 /**
5281 * drm_dp_mst_add_affected_dsc_crtcs
5282 * @state: Pointer to the new struct drm_dp_mst_topology_state
5283 * @mgr: MST topology manager
5284 *
5285 * Whenever there is a change in mst topology
5286 * DSC configuration would have to be recalculated
5287 * therefore we need to trigger modeset on all affected
5288 * CRTCs in that topology
5289 *
5290 * See also:
5291 * drm_dp_mst_atomic_enable_dsc()
5292 */
5293 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr)
5294 {
5295 struct drm_dp_mst_topology_state *mst_state;
5296 struct drm_dp_vcpi_allocation *pos;
5297 struct drm_connector *connector;
5298 struct drm_connector_state *conn_state;
5299 struct drm_crtc *crtc;
5300 struct drm_crtc_state *crtc_state;
5301
5302 mst_state = drm_atomic_get_mst_topology_state(state, mgr);
5303
5304 if (IS_ERR(mst_state))
5305 return -EINVAL;
5306
5307 list_for_each_entry(pos, &mst_state->vcpis, next) {
5308
5309 connector = pos->port->connector;
5310
5311 if (!connector)
5312 return -EINVAL;
5313
5314 conn_state = drm_atomic_get_connector_state(state, connector);
5315
5316 if (IS_ERR(conn_state))
5317 return PTR_ERR(conn_state);
5318
5319 crtc = conn_state->crtc;
5320
5321 if (!crtc)
5322 continue;
5323
5324 if (!drm_dp_mst_dsc_aux_for_port(pos->port))
5325 continue;
5326
5327 crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc);
5328
5329 if (IS_ERR(crtc_state))
5330 return PTR_ERR(crtc_state);
5331
5332 drm_dbg_atomic(mgr->dev, "[MST MGR:%p] Setting mode_changed flag on CRTC %p\n",
5333 mgr, crtc);
5334
5335 crtc_state->mode_changed = true;
5336 }
5337 return 0;
5338 }
5339 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs);
5340
5341 /**
5342 * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off
5343 * @state: Pointer to the new drm_atomic_state
5344 * @port: Pointer to the affected MST Port
5345 * @pbn: Newly recalculated bw required for link with DSC enabled
5346 * @pbn_div: Divider to calculate correct number of pbn per slot
5347 * @enable: Boolean flag to enable or disable DSC on the port
5348 *
5349 * This function enables DSC on the given Port
5350 * by recalculating its vcpi from pbn provided
5351 * and sets dsc_enable flag to keep track of which
5352 * ports have DSC enabled
5353 *
5354 */
5355 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state,
5356 struct drm_dp_mst_port *port,
5357 int pbn, int pbn_div,
5358 bool enable)
5359 {
5360 struct drm_dp_mst_topology_state *mst_state;
5361 struct drm_dp_vcpi_allocation *pos;
5362 bool found = false;
5363 int vcpi = 0;
5364
5365 mst_state = drm_atomic_get_mst_topology_state(state, port->mgr);
5366
5367 if (IS_ERR(mst_state))
5368 return PTR_ERR(mst_state);
5369
5370 list_for_each_entry(pos, &mst_state->vcpis, next) {
5371 if (pos->port == port) {
5372 found = true;
5373 break;
5374 }
5375 }
5376
5377 if (!found) {
5378 drm_dbg_atomic(state->dev,
5379 "[MST PORT:%p] Couldn't find VCPI allocation in mst state %p\n",
5380 port, mst_state);
5381 return -EINVAL;
5382 }
5383
5384 if (pos->dsc_enabled == enable) {
5385 drm_dbg_atomic(state->dev,
5386 "[MST PORT:%p] DSC flag is already set to %d, returning %d VCPI slots\n",
5387 port, enable, pos->vcpi);
5388 vcpi = pos->vcpi;
5389 }
5390
5391 if (enable) {
5392 vcpi = drm_dp_atomic_find_vcpi_slots(state, port->mgr, port, pbn, pbn_div);
5393 drm_dbg_atomic(state->dev,
5394 "[MST PORT:%p] Enabling DSC flag, reallocating %d VCPI slots on the port\n",
5395 port, vcpi);
5396 if (vcpi < 0)
5397 return -EINVAL;
5398 }
5399
5400 pos->dsc_enabled = enable;
5401
5402 return vcpi;
5403 }
5404 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc);
5405 /**
5406 * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an
5407 * atomic update is valid
5408 * @state: Pointer to the new &struct drm_dp_mst_topology_state
5409 *
5410 * Checks the given topology state for an atomic update to ensure that it's
5411 * valid. This includes checking whether there's enough bandwidth to support
5412 * the new VCPI allocations in the atomic update.
5413 *
5414 * Any atomic drivers supporting DP MST must make sure to call this after
5415 * checking the rest of their state in their
5416 * &drm_mode_config_funcs.atomic_check() callback.
5417 *
5418 * See also:
5419 * drm_dp_atomic_find_vcpi_slots()
5420 * drm_dp_atomic_release_vcpi_slots()
5421 *
5422 * Returns:
5423 *
5424 * 0 if the new state is valid, negative error code otherwise.
5425 */
5426 int drm_dp_mst_atomic_check(struct drm_atomic_state *state)
5427 {
5428 struct drm_dp_mst_topology_mgr *mgr;
5429 struct drm_dp_mst_topology_state *mst_state;
5430 int i, ret = 0;
5431
5432 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
5433 if (!mgr->mst_state)
5434 continue;
5435
5436 ret = drm_dp_mst_atomic_check_vcpi_alloc_limit(mgr, mst_state);
5437 if (ret)
5438 break;
5439
5440 mutex_lock(&mgr->lock);
5441 ret = drm_dp_mst_atomic_check_mstb_bw_limit(mgr->mst_primary,
5442 mst_state);
5443 mutex_unlock(&mgr->lock);
5444 if (ret < 0)
5445 break;
5446 else
5447 ret = 0;
5448 }
5449
5450 return ret;
5451 }
5452 EXPORT_SYMBOL(drm_dp_mst_atomic_check);
5453
5454 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = {
5455 .atomic_duplicate_state = drm_dp_mst_duplicate_state,
5456 .atomic_destroy_state = drm_dp_mst_destroy_state,
5457 };
5458 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs);
5459
5460 /**
5461 * drm_atomic_get_mst_topology_state: get MST topology state
5462 *
5463 * @state: global atomic state
5464 * @mgr: MST topology manager, also the private object in this case
5465 *
5466 * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic
5467 * state vtable so that the private object state returned is that of a MST
5468 * topology object. Also, drm_atomic_get_private_obj_state() expects the caller
5469 * to care of the locking, so warn if don't hold the connection_mutex.
5470 *
5471 * RETURNS:
5472 *
5473 * The MST topology state or error pointer.
5474 */
5475 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state,
5476 struct drm_dp_mst_topology_mgr *mgr)
5477 {
5478 return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base));
5479 }
5480 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state);
5481
5482 /**
5483 * drm_dp_mst_topology_mgr_init - initialise a topology manager
5484 * @mgr: manager struct to initialise
5485 * @dev: device providing this structure - for i2c addition.
5486 * @aux: DP helper aux channel to talk to this device
5487 * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit
5488 * @max_payloads: maximum number of payloads this GPU can source
5489 * @max_lane_count: maximum number of lanes this GPU supports
5490 * @max_link_rate: maximum link rate per lane this GPU supports in kHz
5491 * @conn_base_id: the connector object ID the MST device is connected to.
5492 *
5493 * Return 0 for success, or negative error code on failure
5494 */
5495 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr,
5496 struct drm_device *dev, struct drm_dp_aux *aux,
5497 int max_dpcd_transaction_bytes, int max_payloads,
5498 int max_lane_count, int max_link_rate,
5499 int conn_base_id)
5500 {
5501 struct drm_dp_mst_topology_state *mst_state;
5502
5503 mutex_init(&mgr->lock);
5504 mutex_init(&mgr->qlock);
5505 mutex_init(&mgr->payload_lock);
5506 mutex_init(&mgr->delayed_destroy_lock);
5507 mutex_init(&mgr->up_req_lock);
5508 mutex_init(&mgr->probe_lock);
5509 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5510 mutex_init(&mgr->topology_ref_history_lock);
5511 stack_depot_init();
5512 #endif
5513 INIT_LIST_HEAD(&mgr->tx_msg_downq);
5514 INIT_LIST_HEAD(&mgr->destroy_port_list);
5515 INIT_LIST_HEAD(&mgr->destroy_branch_device_list);
5516 INIT_LIST_HEAD(&mgr->up_req_list);
5517
5518 /*
5519 * delayed_destroy_work will be queued on a dedicated WQ, so that any
5520 * requeuing will be also flushed when deiniting the topology manager.
5521 */
5522 mgr->delayed_destroy_wq = alloc_ordered_workqueue("drm_dp_mst_wq", 0);
5523 if (mgr->delayed_destroy_wq == NULL)
5524 return -ENOMEM;
5525
5526 INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work);
5527 INIT_WORK(&mgr->tx_work, drm_dp_tx_work);
5528 INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work);
5529 INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work);
5530 init_waitqueue_head(&mgr->tx_waitq);
5531 mgr->dev = dev;
5532 mgr->aux = aux;
5533 mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes;
5534 mgr->max_payloads = max_payloads;
5535 mgr->max_lane_count = max_lane_count;
5536 mgr->max_link_rate = max_link_rate;
5537 mgr->conn_base_id = conn_base_id;
5538 if (max_payloads + 1 > sizeof(mgr->payload_mask) * 8 ||
5539 max_payloads + 1 > sizeof(mgr->vcpi_mask) * 8)
5540 return -EINVAL;
5541 mgr->payloads = kcalloc(max_payloads, sizeof(struct drm_dp_payload), GFP_KERNEL);
5542 if (!mgr->payloads)
5543 return -ENOMEM;
5544 mgr->proposed_vcpis = kcalloc(max_payloads, sizeof(struct drm_dp_vcpi *), GFP_KERNEL);
5545 if (!mgr->proposed_vcpis)
5546 return -ENOMEM;
5547 set_bit(0, &mgr->payload_mask);
5548
5549 mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL);
5550 if (mst_state == NULL)
5551 return -ENOMEM;
5552
5553 mst_state->total_avail_slots = 63;
5554 mst_state->start_slot = 1;
5555
5556 mst_state->mgr = mgr;
5557 INIT_LIST_HEAD(&mst_state->vcpis);
5558
5559 drm_atomic_private_obj_init(dev, &mgr->base,
5560 &mst_state->base,
5561 &drm_dp_mst_topology_state_funcs);
5562
5563 return 0;
5564 }
5565 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init);
5566
5567 /**
5568 * drm_dp_mst_topology_mgr_destroy() - destroy topology manager.
5569 * @mgr: manager to destroy
5570 */
5571 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr)
5572 {
5573 drm_dp_mst_topology_mgr_set_mst(mgr, false);
5574 flush_work(&mgr->work);
5575 /* The following will also drain any requeued work on the WQ. */
5576 if (mgr->delayed_destroy_wq) {
5577 destroy_workqueue(mgr->delayed_destroy_wq);
5578 mgr->delayed_destroy_wq = NULL;
5579 }
5580 mutex_lock(&mgr->payload_lock);
5581 kfree(mgr->payloads);
5582 mgr->payloads = NULL;
5583 kfree(mgr->proposed_vcpis);
5584 mgr->proposed_vcpis = NULL;
5585 mutex_unlock(&mgr->payload_lock);
5586 mgr->dev = NULL;
5587 mgr->aux = NULL;
5588 drm_atomic_private_obj_fini(&mgr->base);
5589 mgr->funcs = NULL;
5590
5591 mutex_destroy(&mgr->delayed_destroy_lock);
5592 mutex_destroy(&mgr->payload_lock);
5593 mutex_destroy(&mgr->qlock);
5594 mutex_destroy(&mgr->lock);
5595 mutex_destroy(&mgr->up_req_lock);
5596 mutex_destroy(&mgr->probe_lock);
5597 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5598 mutex_destroy(&mgr->topology_ref_history_lock);
5599 #endif
5600 }
5601 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy);
5602
5603 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num)
5604 {
5605 int i;
5606
5607 if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS)
5608 return false;
5609
5610 for (i = 0; i < num - 1; i++) {
5611 if (msgs[i].flags & I2C_M_RD ||
5612 msgs[i].len > 0xff)
5613 return false;
5614 }
5615
5616 return msgs[num - 1].flags & I2C_M_RD &&
5617 msgs[num - 1].len <= 0xff;
5618 }
5619
5620 static bool remote_i2c_write_ok(const struct i2c_msg msgs[], int num)
5621 {
5622 int i;
5623
5624 for (i = 0; i < num - 1; i++) {
5625 if (msgs[i].flags & I2C_M_RD || !(msgs[i].flags & I2C_M_STOP) ||
5626 msgs[i].len > 0xff)
5627 return false;
5628 }
5629
5630 return !(msgs[num - 1].flags & I2C_M_RD) && msgs[num - 1].len <= 0xff;
5631 }
5632
5633 static int drm_dp_mst_i2c_read(struct drm_dp_mst_branch *mstb,
5634 struct drm_dp_mst_port *port,
5635 struct i2c_msg *msgs, int num)
5636 {
5637 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5638 unsigned int i;
5639 struct drm_dp_sideband_msg_req_body msg;
5640 struct drm_dp_sideband_msg_tx *txmsg = NULL;
5641 int ret;
5642
5643 memset(&msg, 0, sizeof(msg));
5644 msg.req_type = DP_REMOTE_I2C_READ;
5645 msg.u.i2c_read.num_transactions = num - 1;
5646 msg.u.i2c_read.port_number = port->port_num;
5647 for (i = 0; i < num - 1; i++) {
5648 msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr;
5649 msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len;
5650 msg.u.i2c_read.transactions[i].bytes = msgs[i].buf;
5651 msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP);
5652 }
5653 msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr;
5654 msg.u.i2c_read.num_bytes_read = msgs[num - 1].len;
5655
5656 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
5657 if (!txmsg) {
5658 ret = -ENOMEM;
5659 goto out;
5660 }
5661
5662 txmsg->dst = mstb;
5663 drm_dp_encode_sideband_req(&msg, txmsg);
5664
5665 drm_dp_queue_down_tx(mgr, txmsg);
5666
5667 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
5668 if (ret > 0) {
5669
5670 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
5671 ret = -EREMOTEIO;
5672 goto out;
5673 }
5674 if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) {
5675 ret = -EIO;
5676 goto out;
5677 }
5678 memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len);
5679 ret = num;
5680 }
5681 out:
5682 kfree(txmsg);
5683 return ret;
5684 }
5685
5686 static int drm_dp_mst_i2c_write(struct drm_dp_mst_branch *mstb,
5687 struct drm_dp_mst_port *port,
5688 struct i2c_msg *msgs, int num)
5689 {
5690 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5691 unsigned int i;
5692 struct drm_dp_sideband_msg_req_body msg;
5693 struct drm_dp_sideband_msg_tx *txmsg = NULL;
5694 int ret;
5695
5696 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
5697 if (!txmsg) {
5698 ret = -ENOMEM;
5699 goto out;
5700 }
5701 for (i = 0; i < num; i++) {
5702 memset(&msg, 0, sizeof(msg));
5703 msg.req_type = DP_REMOTE_I2C_WRITE;
5704 msg.u.i2c_write.port_number = port->port_num;
5705 msg.u.i2c_write.write_i2c_device_id = msgs[i].addr;
5706 msg.u.i2c_write.num_bytes = msgs[i].len;
5707 msg.u.i2c_write.bytes = msgs[i].buf;
5708
5709 memset(txmsg, 0, sizeof(*txmsg));
5710 txmsg->dst = mstb;
5711
5712 drm_dp_encode_sideband_req(&msg, txmsg);
5713 drm_dp_queue_down_tx(mgr, txmsg);
5714
5715 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
5716 if (ret > 0) {
5717 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
5718 ret = -EREMOTEIO;
5719 goto out;
5720 }
5721 } else {
5722 goto out;
5723 }
5724 }
5725 ret = num;
5726 out:
5727 kfree(txmsg);
5728 return ret;
5729 }
5730
5731 /* I2C device */
5732 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter,
5733 struct i2c_msg *msgs, int num)
5734 {
5735 struct drm_dp_aux *aux = adapter->algo_data;
5736 struct drm_dp_mst_port *port =
5737 container_of(aux, struct drm_dp_mst_port, aux);
5738 struct drm_dp_mst_branch *mstb;
5739 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5740 int ret;
5741
5742 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
5743 if (!mstb)
5744 return -EREMOTEIO;
5745
5746 if (remote_i2c_read_ok(msgs, num)) {
5747 ret = drm_dp_mst_i2c_read(mstb, port, msgs, num);
5748 } else if (remote_i2c_write_ok(msgs, num)) {
5749 ret = drm_dp_mst_i2c_write(mstb, port, msgs, num);
5750 } else {
5751 drm_dbg_kms(mgr->dev, "Unsupported I2C transaction for MST device\n");
5752 ret = -EIO;
5753 }
5754
5755 drm_dp_mst_topology_put_mstb(mstb);
5756 return ret;
5757 }
5758
5759 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter)
5760 {
5761 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
5762 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
5763 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
5764 I2C_FUNC_10BIT_ADDR;
5765 }
5766
5767 static const struct i2c_algorithm drm_dp_mst_i2c_algo = {
5768 .functionality = drm_dp_mst_i2c_functionality,
5769 .master_xfer = drm_dp_mst_i2c_xfer,
5770 };
5771
5772 /**
5773 * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX
5774 * @port: The port to add the I2C bus on
5775 *
5776 * Returns 0 on success or a negative error code on failure.
5777 */
5778 static int drm_dp_mst_register_i2c_bus(struct drm_dp_mst_port *port)
5779 {
5780 struct drm_dp_aux *aux = &port->aux;
5781 struct device *parent_dev = port->mgr->dev->dev;
5782
5783 aux->ddc.algo = &drm_dp_mst_i2c_algo;
5784 aux->ddc.algo_data = aux;
5785 aux->ddc.retries = 3;
5786
5787 aux->ddc.class = I2C_CLASS_DDC;
5788 aux->ddc.owner = THIS_MODULE;
5789 /* FIXME: set the kdev of the port's connector as parent */
5790 aux->ddc.dev.parent = parent_dev;
5791 aux->ddc.dev.of_node = parent_dev->of_node;
5792
5793 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(parent_dev),
5794 sizeof(aux->ddc.name));
5795
5796 return i2c_add_adapter(&aux->ddc);
5797 }
5798
5799 /**
5800 * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter
5801 * @port: The port to remove the I2C bus from
5802 */
5803 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_mst_port *port)
5804 {
5805 i2c_del_adapter(&port->aux.ddc);
5806 }
5807
5808 /**
5809 * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device
5810 * @port: The port to check
5811 *
5812 * A single physical MST hub object can be represented in the topology
5813 * by multiple branches, with virtual ports between those branches.
5814 *
5815 * As of DP1.4, An MST hub with internal (virtual) ports must expose
5816 * certain DPCD registers over those ports. See sections 2.6.1.1.1
5817 * and 2.6.1.1.2 of Display Port specification v1.4 for details.
5818 *
5819 * May acquire mgr->lock
5820 *
5821 * Returns:
5822 * true if the port is a virtual DP peer device, false otherwise
5823 */
5824 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port)
5825 {
5826 struct drm_dp_mst_port *downstream_port;
5827
5828 if (!port || port->dpcd_rev < DP_DPCD_REV_14)
5829 return false;
5830
5831 /* Virtual DP Sink (Internal Display Panel) */
5832 if (port->port_num >= 8)
5833 return true;
5834
5835 /* DP-to-HDMI Protocol Converter */
5836 if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV &&
5837 !port->mcs &&
5838 port->ldps)
5839 return true;
5840
5841 /* DP-to-DP */
5842 mutex_lock(&port->mgr->lock);
5843 if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
5844 port->mstb &&
5845 port->mstb->num_ports == 2) {
5846 list_for_each_entry(downstream_port, &port->mstb->ports, next) {
5847 if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK &&
5848 !downstream_port->input) {
5849 mutex_unlock(&port->mgr->lock);
5850 return true;
5851 }
5852 }
5853 }
5854 mutex_unlock(&port->mgr->lock);
5855
5856 return false;
5857 }
5858
5859 /**
5860 * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC
5861 * @port: The port to check. A leaf of the MST tree with an attached display.
5862 *
5863 * Depending on the situation, DSC may be enabled via the endpoint aux,
5864 * the immediately upstream aux, or the connector's physical aux.
5865 *
5866 * This is both the correct aux to read DSC_CAPABILITY and the
5867 * correct aux to write DSC_ENABLED.
5868 *
5869 * This operation can be expensive (up to four aux reads), so
5870 * the caller should cache the return.
5871 *
5872 * Returns:
5873 * NULL if DSC cannot be enabled on this port, otherwise the aux device
5874 */
5875 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port)
5876 {
5877 struct drm_dp_mst_port *immediate_upstream_port;
5878 struct drm_dp_mst_port *fec_port;
5879 struct drm_dp_desc desc = {};
5880 u8 endpoint_fec;
5881 u8 endpoint_dsc;
5882
5883 if (!port)
5884 return NULL;
5885
5886 if (port->parent->port_parent)
5887 immediate_upstream_port = port->parent->port_parent;
5888 else
5889 immediate_upstream_port = NULL;
5890
5891 fec_port = immediate_upstream_port;
5892 while (fec_port) {
5893 /*
5894 * Each physical link (i.e. not a virtual port) between the
5895 * output and the primary device must support FEC
5896 */
5897 if (!drm_dp_mst_is_virtual_dpcd(fec_port) &&
5898 !fec_port->fec_capable)
5899 return NULL;
5900
5901 fec_port = fec_port->parent->port_parent;
5902 }
5903
5904 /* DP-to-DP peer device */
5905 if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) {
5906 u8 upstream_dsc;
5907
5908 if (drm_dp_dpcd_read(&port->aux,
5909 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
5910 return NULL;
5911 if (drm_dp_dpcd_read(&port->aux,
5912 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
5913 return NULL;
5914 if (drm_dp_dpcd_read(&immediate_upstream_port->aux,
5915 DP_DSC_SUPPORT, &upstream_dsc, 1) != 1)
5916 return NULL;
5917
5918 /* Enpoint decompression with DP-to-DP peer device */
5919 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
5920 (endpoint_fec & DP_FEC_CAPABLE) &&
5921 (upstream_dsc & 0x2) /* DSC passthrough */)
5922 return &port->aux;
5923
5924 /* Virtual DPCD decompression with DP-to-DP peer device */
5925 return &immediate_upstream_port->aux;
5926 }
5927
5928 /* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */
5929 if (drm_dp_mst_is_virtual_dpcd(port))
5930 return &port->aux;
5931
5932 /*
5933 * Synaptics quirk
5934 * Applies to ports for which:
5935 * - Physical aux has Synaptics OUI
5936 * - DPv1.4 or higher
5937 * - Port is on primary branch device
5938 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG)
5939 */
5940 if (drm_dp_read_desc(port->mgr->aux, &desc, true))
5941 return NULL;
5942
5943 if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) &&
5944 port->mgr->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14 &&
5945 port->parent == port->mgr->mst_primary) {
5946 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
5947
5948 if (drm_dp_read_dpcd_caps(port->mgr->aux, dpcd_ext) < 0)
5949 return NULL;
5950
5951 if ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT) &&
5952 ((dpcd_ext[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK)
5953 != DP_DWN_STRM_PORT_TYPE_ANALOG))
5954 return port->mgr->aux;
5955 }
5956
5957 /*
5958 * The check below verifies if the MST sink
5959 * connected to the GPU is capable of DSC -
5960 * therefore the endpoint needs to be
5961 * both DSC and FEC capable.
5962 */
5963 if (drm_dp_dpcd_read(&port->aux,
5964 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
5965 return NULL;
5966 if (drm_dp_dpcd_read(&port->aux,
5967 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
5968 return NULL;
5969 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
5970 (endpoint_fec & DP_FEC_CAPABLE))
5971 return &port->aux;
5972
5973 return NULL;
5974 }
5975 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port);