]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/drm_dp_mst_topology.c
Merge tag 'drm-misc-fixes-2020-02-07' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/linux.git] / drivers / gpu / drm / drm_dp_mst_topology.c
1 /*
2 * Copyright © 2014 Red Hat
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/i2c.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/seq_file.h>
30
31 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
32 #include <linux/stacktrace.h>
33 #include <linux/sort.h>
34 #include <linux/timekeeping.h>
35 #include <linux/math64.h>
36 #endif
37
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_dp_mst_helper.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_print.h>
43 #include <drm/drm_probe_helper.h>
44
45 #include "drm_crtc_helper_internal.h"
46 #include "drm_dp_mst_topology_internal.h"
47
48 /**
49 * DOC: dp mst helper
50 *
51 * These functions contain parts of the DisplayPort 1.2a MultiStream Transport
52 * protocol. The helpers contain a topology manager and bandwidth manager.
53 * The helpers encapsulate the sending and received of sideband msgs.
54 */
55 struct drm_dp_pending_up_req {
56 struct drm_dp_sideband_msg_hdr hdr;
57 struct drm_dp_sideband_msg_req_body msg;
58 struct list_head next;
59 };
60
61 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
62 char *buf);
63
64 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port);
65
66 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
67 int id,
68 struct drm_dp_payload *payload);
69
70 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
71 struct drm_dp_mst_port *port,
72 int offset, int size, u8 *bytes);
73 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
74 struct drm_dp_mst_port *port,
75 int offset, int size, u8 *bytes);
76
77 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
78 struct drm_dp_mst_branch *mstb);
79
80 static void
81 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
82 struct drm_dp_mst_branch *mstb);
83
84 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
85 struct drm_dp_mst_branch *mstb,
86 struct drm_dp_mst_port *port);
87 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
88 u8 *guid);
89
90 static int drm_dp_mst_register_i2c_bus(struct drm_dp_aux *aux);
91 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_aux *aux);
92 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr);
93
94 #define DBG_PREFIX "[dp_mst]"
95
96 #define DP_STR(x) [DP_ ## x] = #x
97
98 static const char *drm_dp_mst_req_type_str(u8 req_type)
99 {
100 static const char * const req_type_str[] = {
101 DP_STR(GET_MSG_TRANSACTION_VERSION),
102 DP_STR(LINK_ADDRESS),
103 DP_STR(CONNECTION_STATUS_NOTIFY),
104 DP_STR(ENUM_PATH_RESOURCES),
105 DP_STR(ALLOCATE_PAYLOAD),
106 DP_STR(QUERY_PAYLOAD),
107 DP_STR(RESOURCE_STATUS_NOTIFY),
108 DP_STR(CLEAR_PAYLOAD_ID_TABLE),
109 DP_STR(REMOTE_DPCD_READ),
110 DP_STR(REMOTE_DPCD_WRITE),
111 DP_STR(REMOTE_I2C_READ),
112 DP_STR(REMOTE_I2C_WRITE),
113 DP_STR(POWER_UP_PHY),
114 DP_STR(POWER_DOWN_PHY),
115 DP_STR(SINK_EVENT_NOTIFY),
116 DP_STR(QUERY_STREAM_ENC_STATUS),
117 };
118
119 if (req_type >= ARRAY_SIZE(req_type_str) ||
120 !req_type_str[req_type])
121 return "unknown";
122
123 return req_type_str[req_type];
124 }
125
126 #undef DP_STR
127 #define DP_STR(x) [DP_NAK_ ## x] = #x
128
129 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason)
130 {
131 static const char * const nak_reason_str[] = {
132 DP_STR(WRITE_FAILURE),
133 DP_STR(INVALID_READ),
134 DP_STR(CRC_FAILURE),
135 DP_STR(BAD_PARAM),
136 DP_STR(DEFER),
137 DP_STR(LINK_FAILURE),
138 DP_STR(NO_RESOURCES),
139 DP_STR(DPCD_FAIL),
140 DP_STR(I2C_NAK),
141 DP_STR(ALLOCATE_FAIL),
142 };
143
144 if (nak_reason >= ARRAY_SIZE(nak_reason_str) ||
145 !nak_reason_str[nak_reason])
146 return "unknown";
147
148 return nak_reason_str[nak_reason];
149 }
150
151 #undef DP_STR
152 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x
153
154 static const char *drm_dp_mst_sideband_tx_state_str(int state)
155 {
156 static const char * const sideband_reason_str[] = {
157 DP_STR(QUEUED),
158 DP_STR(START_SEND),
159 DP_STR(SENT),
160 DP_STR(RX),
161 DP_STR(TIMEOUT),
162 };
163
164 if (state >= ARRAY_SIZE(sideband_reason_str) ||
165 !sideband_reason_str[state])
166 return "unknown";
167
168 return sideband_reason_str[state];
169 }
170
171 static int
172 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len)
173 {
174 int i;
175 u8 unpacked_rad[16];
176
177 for (i = 0; i < lct; i++) {
178 if (i % 2)
179 unpacked_rad[i] = rad[i / 2] >> 4;
180 else
181 unpacked_rad[i] = rad[i / 2] & BIT_MASK(4);
182 }
183
184 /* TODO: Eventually add something to printk so we can format the rad
185 * like this: 1.2.3
186 */
187 return snprintf(out, len, "%*phC", lct, unpacked_rad);
188 }
189
190 /* sideband msg handling */
191 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles)
192 {
193 u8 bitmask = 0x80;
194 u8 bitshift = 7;
195 u8 array_index = 0;
196 int number_of_bits = num_nibbles * 4;
197 u8 remainder = 0;
198
199 while (number_of_bits != 0) {
200 number_of_bits--;
201 remainder <<= 1;
202 remainder |= (data[array_index] & bitmask) >> bitshift;
203 bitmask >>= 1;
204 bitshift--;
205 if (bitmask == 0) {
206 bitmask = 0x80;
207 bitshift = 7;
208 array_index++;
209 }
210 if ((remainder & 0x10) == 0x10)
211 remainder ^= 0x13;
212 }
213
214 number_of_bits = 4;
215 while (number_of_bits != 0) {
216 number_of_bits--;
217 remainder <<= 1;
218 if ((remainder & 0x10) != 0)
219 remainder ^= 0x13;
220 }
221
222 return remainder;
223 }
224
225 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes)
226 {
227 u8 bitmask = 0x80;
228 u8 bitshift = 7;
229 u8 array_index = 0;
230 int number_of_bits = number_of_bytes * 8;
231 u16 remainder = 0;
232
233 while (number_of_bits != 0) {
234 number_of_bits--;
235 remainder <<= 1;
236 remainder |= (data[array_index] & bitmask) >> bitshift;
237 bitmask >>= 1;
238 bitshift--;
239 if (bitmask == 0) {
240 bitmask = 0x80;
241 bitshift = 7;
242 array_index++;
243 }
244 if ((remainder & 0x100) == 0x100)
245 remainder ^= 0xd5;
246 }
247
248 number_of_bits = 8;
249 while (number_of_bits != 0) {
250 number_of_bits--;
251 remainder <<= 1;
252 if ((remainder & 0x100) != 0)
253 remainder ^= 0xd5;
254 }
255
256 return remainder & 0xff;
257 }
258 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr)
259 {
260 u8 size = 3;
261 size += (hdr->lct / 2);
262 return size;
263 }
264
265 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
266 u8 *buf, int *len)
267 {
268 int idx = 0;
269 int i;
270 u8 crc4;
271 buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf);
272 for (i = 0; i < (hdr->lct / 2); i++)
273 buf[idx++] = hdr->rad[i];
274 buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) |
275 (hdr->msg_len & 0x3f);
276 buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4);
277
278 crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1);
279 buf[idx - 1] |= (crc4 & 0xf);
280
281 *len = idx;
282 }
283
284 static bool drm_dp_decode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
285 u8 *buf, int buflen, u8 *hdrlen)
286 {
287 u8 crc4;
288 u8 len;
289 int i;
290 u8 idx;
291 if (buf[0] == 0)
292 return false;
293 len = 3;
294 len += ((buf[0] & 0xf0) >> 4) / 2;
295 if (len > buflen)
296 return false;
297 crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1);
298
299 if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) {
300 DRM_DEBUG_KMS("crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]);
301 return false;
302 }
303
304 hdr->lct = (buf[0] & 0xf0) >> 4;
305 hdr->lcr = (buf[0] & 0xf);
306 idx = 1;
307 for (i = 0; i < (hdr->lct / 2); i++)
308 hdr->rad[i] = buf[idx++];
309 hdr->broadcast = (buf[idx] >> 7) & 0x1;
310 hdr->path_msg = (buf[idx] >> 6) & 0x1;
311 hdr->msg_len = buf[idx] & 0x3f;
312 idx++;
313 hdr->somt = (buf[idx] >> 7) & 0x1;
314 hdr->eomt = (buf[idx] >> 6) & 0x1;
315 hdr->seqno = (buf[idx] >> 4) & 0x1;
316 idx++;
317 *hdrlen = idx;
318 return true;
319 }
320
321 void
322 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req,
323 struct drm_dp_sideband_msg_tx *raw)
324 {
325 int idx = 0;
326 int i;
327 u8 *buf = raw->msg;
328 buf[idx++] = req->req_type & 0x7f;
329
330 switch (req->req_type) {
331 case DP_ENUM_PATH_RESOURCES:
332 case DP_POWER_DOWN_PHY:
333 case DP_POWER_UP_PHY:
334 buf[idx] = (req->u.port_num.port_number & 0xf) << 4;
335 idx++;
336 break;
337 case DP_ALLOCATE_PAYLOAD:
338 buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 |
339 (req->u.allocate_payload.number_sdp_streams & 0xf);
340 idx++;
341 buf[idx] = (req->u.allocate_payload.vcpi & 0x7f);
342 idx++;
343 buf[idx] = (req->u.allocate_payload.pbn >> 8);
344 idx++;
345 buf[idx] = (req->u.allocate_payload.pbn & 0xff);
346 idx++;
347 for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) {
348 buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) |
349 (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf);
350 idx++;
351 }
352 if (req->u.allocate_payload.number_sdp_streams & 1) {
353 i = req->u.allocate_payload.number_sdp_streams - 1;
354 buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4;
355 idx++;
356 }
357 break;
358 case DP_QUERY_PAYLOAD:
359 buf[idx] = (req->u.query_payload.port_number & 0xf) << 4;
360 idx++;
361 buf[idx] = (req->u.query_payload.vcpi & 0x7f);
362 idx++;
363 break;
364 case DP_REMOTE_DPCD_READ:
365 buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4;
366 buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf;
367 idx++;
368 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8;
369 idx++;
370 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff);
371 idx++;
372 buf[idx] = (req->u.dpcd_read.num_bytes);
373 idx++;
374 break;
375
376 case DP_REMOTE_DPCD_WRITE:
377 buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4;
378 buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf;
379 idx++;
380 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8;
381 idx++;
382 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff);
383 idx++;
384 buf[idx] = (req->u.dpcd_write.num_bytes);
385 idx++;
386 memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes);
387 idx += req->u.dpcd_write.num_bytes;
388 break;
389 case DP_REMOTE_I2C_READ:
390 buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4;
391 buf[idx] |= (req->u.i2c_read.num_transactions & 0x3);
392 idx++;
393 for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) {
394 buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f;
395 idx++;
396 buf[idx] = req->u.i2c_read.transactions[i].num_bytes;
397 idx++;
398 memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes);
399 idx += req->u.i2c_read.transactions[i].num_bytes;
400
401 buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4;
402 buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf);
403 idx++;
404 }
405 buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f;
406 idx++;
407 buf[idx] = (req->u.i2c_read.num_bytes_read);
408 idx++;
409 break;
410
411 case DP_REMOTE_I2C_WRITE:
412 buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4;
413 idx++;
414 buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f;
415 idx++;
416 buf[idx] = (req->u.i2c_write.num_bytes);
417 idx++;
418 memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes);
419 idx += req->u.i2c_write.num_bytes;
420 break;
421 }
422 raw->cur_len = idx;
423 }
424 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req);
425
426 /* Decode a sideband request we've encoded, mainly used for debugging */
427 int
428 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw,
429 struct drm_dp_sideband_msg_req_body *req)
430 {
431 const u8 *buf = raw->msg;
432 int i, idx = 0;
433
434 req->req_type = buf[idx++] & 0x7f;
435 switch (req->req_type) {
436 case DP_ENUM_PATH_RESOURCES:
437 case DP_POWER_DOWN_PHY:
438 case DP_POWER_UP_PHY:
439 req->u.port_num.port_number = (buf[idx] >> 4) & 0xf;
440 break;
441 case DP_ALLOCATE_PAYLOAD:
442 {
443 struct drm_dp_allocate_payload *a =
444 &req->u.allocate_payload;
445
446 a->number_sdp_streams = buf[idx] & 0xf;
447 a->port_number = (buf[idx] >> 4) & 0xf;
448
449 WARN_ON(buf[++idx] & 0x80);
450 a->vcpi = buf[idx] & 0x7f;
451
452 a->pbn = buf[++idx] << 8;
453 a->pbn |= buf[++idx];
454
455 idx++;
456 for (i = 0; i < a->number_sdp_streams; i++) {
457 a->sdp_stream_sink[i] =
458 (buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf;
459 }
460 }
461 break;
462 case DP_QUERY_PAYLOAD:
463 req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf;
464 WARN_ON(buf[++idx] & 0x80);
465 req->u.query_payload.vcpi = buf[idx] & 0x7f;
466 break;
467 case DP_REMOTE_DPCD_READ:
468 {
469 struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read;
470
471 r->port_number = (buf[idx] >> 4) & 0xf;
472
473 r->dpcd_address = (buf[idx] << 16) & 0xf0000;
474 r->dpcd_address |= (buf[++idx] << 8) & 0xff00;
475 r->dpcd_address |= buf[++idx] & 0xff;
476
477 r->num_bytes = buf[++idx];
478 }
479 break;
480 case DP_REMOTE_DPCD_WRITE:
481 {
482 struct drm_dp_remote_dpcd_write *w =
483 &req->u.dpcd_write;
484
485 w->port_number = (buf[idx] >> 4) & 0xf;
486
487 w->dpcd_address = (buf[idx] << 16) & 0xf0000;
488 w->dpcd_address |= (buf[++idx] << 8) & 0xff00;
489 w->dpcd_address |= buf[++idx] & 0xff;
490
491 w->num_bytes = buf[++idx];
492
493 w->bytes = kmemdup(&buf[++idx], w->num_bytes,
494 GFP_KERNEL);
495 if (!w->bytes)
496 return -ENOMEM;
497 }
498 break;
499 case DP_REMOTE_I2C_READ:
500 {
501 struct drm_dp_remote_i2c_read *r = &req->u.i2c_read;
502 struct drm_dp_remote_i2c_read_tx *tx;
503 bool failed = false;
504
505 r->num_transactions = buf[idx] & 0x3;
506 r->port_number = (buf[idx] >> 4) & 0xf;
507 for (i = 0; i < r->num_transactions; i++) {
508 tx = &r->transactions[i];
509
510 tx->i2c_dev_id = buf[++idx] & 0x7f;
511 tx->num_bytes = buf[++idx];
512 tx->bytes = kmemdup(&buf[++idx],
513 tx->num_bytes,
514 GFP_KERNEL);
515 if (!tx->bytes) {
516 failed = true;
517 break;
518 }
519 idx += tx->num_bytes;
520 tx->no_stop_bit = (buf[idx] >> 5) & 0x1;
521 tx->i2c_transaction_delay = buf[idx] & 0xf;
522 }
523
524 if (failed) {
525 for (i = 0; i < r->num_transactions; i++) {
526 tx = &r->transactions[i];
527 kfree(tx->bytes);
528 }
529 return -ENOMEM;
530 }
531
532 r->read_i2c_device_id = buf[++idx] & 0x7f;
533 r->num_bytes_read = buf[++idx];
534 }
535 break;
536 case DP_REMOTE_I2C_WRITE:
537 {
538 struct drm_dp_remote_i2c_write *w = &req->u.i2c_write;
539
540 w->port_number = (buf[idx] >> 4) & 0xf;
541 w->write_i2c_device_id = buf[++idx] & 0x7f;
542 w->num_bytes = buf[++idx];
543 w->bytes = kmemdup(&buf[++idx], w->num_bytes,
544 GFP_KERNEL);
545 if (!w->bytes)
546 return -ENOMEM;
547 }
548 break;
549 }
550
551 return 0;
552 }
553 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req);
554
555 void
556 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req,
557 int indent, struct drm_printer *printer)
558 {
559 int i;
560
561 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__)
562 if (req->req_type == DP_LINK_ADDRESS) {
563 /* No contents to print */
564 P("type=%s\n", drm_dp_mst_req_type_str(req->req_type));
565 return;
566 }
567
568 P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type));
569 indent++;
570
571 switch (req->req_type) {
572 case DP_ENUM_PATH_RESOURCES:
573 case DP_POWER_DOWN_PHY:
574 case DP_POWER_UP_PHY:
575 P("port=%d\n", req->u.port_num.port_number);
576 break;
577 case DP_ALLOCATE_PAYLOAD:
578 P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n",
579 req->u.allocate_payload.port_number,
580 req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn,
581 req->u.allocate_payload.number_sdp_streams,
582 req->u.allocate_payload.number_sdp_streams,
583 req->u.allocate_payload.sdp_stream_sink);
584 break;
585 case DP_QUERY_PAYLOAD:
586 P("port=%d vcpi=%d\n",
587 req->u.query_payload.port_number,
588 req->u.query_payload.vcpi);
589 break;
590 case DP_REMOTE_DPCD_READ:
591 P("port=%d dpcd_addr=%05x len=%d\n",
592 req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address,
593 req->u.dpcd_read.num_bytes);
594 break;
595 case DP_REMOTE_DPCD_WRITE:
596 P("port=%d addr=%05x len=%d: %*ph\n",
597 req->u.dpcd_write.port_number,
598 req->u.dpcd_write.dpcd_address,
599 req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes,
600 req->u.dpcd_write.bytes);
601 break;
602 case DP_REMOTE_I2C_READ:
603 P("port=%d num_tx=%d id=%d size=%d:\n",
604 req->u.i2c_read.port_number,
605 req->u.i2c_read.num_transactions,
606 req->u.i2c_read.read_i2c_device_id,
607 req->u.i2c_read.num_bytes_read);
608
609 indent++;
610 for (i = 0; i < req->u.i2c_read.num_transactions; i++) {
611 const struct drm_dp_remote_i2c_read_tx *rtx =
612 &req->u.i2c_read.transactions[i];
613
614 P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n",
615 i, rtx->i2c_dev_id, rtx->num_bytes,
616 rtx->no_stop_bit, rtx->i2c_transaction_delay,
617 rtx->num_bytes, rtx->bytes);
618 }
619 break;
620 case DP_REMOTE_I2C_WRITE:
621 P("port=%d id=%d size=%d: %*ph\n",
622 req->u.i2c_write.port_number,
623 req->u.i2c_write.write_i2c_device_id,
624 req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes,
625 req->u.i2c_write.bytes);
626 break;
627 default:
628 P("???\n");
629 break;
630 }
631 #undef P
632 }
633 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body);
634
635 static inline void
636 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p,
637 const struct drm_dp_sideband_msg_tx *txmsg)
638 {
639 struct drm_dp_sideband_msg_req_body req;
640 char buf[64];
641 int ret;
642 int i;
643
644 drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf,
645 sizeof(buf));
646 drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n",
647 txmsg->cur_offset, txmsg->cur_len, txmsg->seqno,
648 drm_dp_mst_sideband_tx_state_str(txmsg->state),
649 txmsg->path_msg, buf);
650
651 ret = drm_dp_decode_sideband_req(txmsg, &req);
652 if (ret) {
653 drm_printf(p, "<failed to decode sideband req: %d>\n", ret);
654 return;
655 }
656 drm_dp_dump_sideband_msg_req_body(&req, 1, p);
657
658 switch (req.req_type) {
659 case DP_REMOTE_DPCD_WRITE:
660 kfree(req.u.dpcd_write.bytes);
661 break;
662 case DP_REMOTE_I2C_READ:
663 for (i = 0; i < req.u.i2c_read.num_transactions; i++)
664 kfree(req.u.i2c_read.transactions[i].bytes);
665 break;
666 case DP_REMOTE_I2C_WRITE:
667 kfree(req.u.i2c_write.bytes);
668 break;
669 }
670 }
671
672 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len)
673 {
674 u8 crc4;
675 crc4 = drm_dp_msg_data_crc4(msg, len);
676 msg[len] = crc4;
677 }
678
679 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep,
680 struct drm_dp_sideband_msg_tx *raw)
681 {
682 int idx = 0;
683 u8 *buf = raw->msg;
684
685 buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f);
686
687 raw->cur_len = idx;
688 }
689
690 /* this adds a chunk of msg to the builder to get the final msg */
691 static bool drm_dp_sideband_msg_build(struct drm_dp_sideband_msg_rx *msg,
692 u8 *replybuf, u8 replybuflen, bool hdr)
693 {
694 int ret;
695 u8 crc4;
696
697 if (hdr) {
698 u8 hdrlen;
699 struct drm_dp_sideband_msg_hdr recv_hdr;
700 ret = drm_dp_decode_sideband_msg_hdr(&recv_hdr, replybuf, replybuflen, &hdrlen);
701 if (ret == false) {
702 print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 1, replybuf, replybuflen, false);
703 return false;
704 }
705
706 /*
707 * ignore out-of-order messages or messages that are part of a
708 * failed transaction
709 */
710 if (!recv_hdr.somt && !msg->have_somt)
711 return false;
712
713 /* get length contained in this portion */
714 msg->curchunk_len = recv_hdr.msg_len;
715 msg->curchunk_hdrlen = hdrlen;
716
717 /* we have already gotten an somt - don't bother parsing */
718 if (recv_hdr.somt && msg->have_somt)
719 return false;
720
721 if (recv_hdr.somt) {
722 memcpy(&msg->initial_hdr, &recv_hdr, sizeof(struct drm_dp_sideband_msg_hdr));
723 msg->have_somt = true;
724 }
725 if (recv_hdr.eomt)
726 msg->have_eomt = true;
727
728 /* copy the bytes for the remainder of this header chunk */
729 msg->curchunk_idx = min(msg->curchunk_len, (u8)(replybuflen - hdrlen));
730 memcpy(&msg->chunk[0], replybuf + hdrlen, msg->curchunk_idx);
731 } else {
732 memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen);
733 msg->curchunk_idx += replybuflen;
734 }
735
736 if (msg->curchunk_idx >= msg->curchunk_len) {
737 /* do CRC */
738 crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1);
739 /* copy chunk into bigger msg */
740 memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1);
741 msg->curlen += msg->curchunk_len - 1;
742 }
743 return true;
744 }
745
746 static bool drm_dp_sideband_parse_link_address(struct drm_dp_sideband_msg_rx *raw,
747 struct drm_dp_sideband_msg_reply_body *repmsg)
748 {
749 int idx = 1;
750 int i;
751 memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16);
752 idx += 16;
753 repmsg->u.link_addr.nports = raw->msg[idx] & 0xf;
754 idx++;
755 if (idx > raw->curlen)
756 goto fail_len;
757 for (i = 0; i < repmsg->u.link_addr.nports; i++) {
758 if (raw->msg[idx] & 0x80)
759 repmsg->u.link_addr.ports[i].input_port = 1;
760
761 repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7;
762 repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf);
763
764 idx++;
765 if (idx > raw->curlen)
766 goto fail_len;
767 repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1;
768 repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1;
769 if (repmsg->u.link_addr.ports[i].input_port == 0)
770 repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
771 idx++;
772 if (idx > raw->curlen)
773 goto fail_len;
774 if (repmsg->u.link_addr.ports[i].input_port == 0) {
775 repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]);
776 idx++;
777 if (idx > raw->curlen)
778 goto fail_len;
779 memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16);
780 idx += 16;
781 if (idx > raw->curlen)
782 goto fail_len;
783 repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf;
784 repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf);
785 idx++;
786
787 }
788 if (idx > raw->curlen)
789 goto fail_len;
790 }
791
792 return true;
793 fail_len:
794 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
795 return false;
796 }
797
798 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw,
799 struct drm_dp_sideband_msg_reply_body *repmsg)
800 {
801 int idx = 1;
802 repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf;
803 idx++;
804 if (idx > raw->curlen)
805 goto fail_len;
806 repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx];
807 idx++;
808 if (idx > raw->curlen)
809 goto fail_len;
810
811 memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes);
812 return true;
813 fail_len:
814 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
815 return false;
816 }
817
818 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw,
819 struct drm_dp_sideband_msg_reply_body *repmsg)
820 {
821 int idx = 1;
822 repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf;
823 idx++;
824 if (idx > raw->curlen)
825 goto fail_len;
826 return true;
827 fail_len:
828 DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen);
829 return false;
830 }
831
832 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw,
833 struct drm_dp_sideband_msg_reply_body *repmsg)
834 {
835 int idx = 1;
836
837 repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf);
838 idx++;
839 if (idx > raw->curlen)
840 goto fail_len;
841 repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx];
842 idx++;
843 /* TODO check */
844 memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes);
845 return true;
846 fail_len:
847 DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen);
848 return false;
849 }
850
851 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw,
852 struct drm_dp_sideband_msg_reply_body *repmsg)
853 {
854 int idx = 1;
855 repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf;
856 repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1;
857 idx++;
858 if (idx > raw->curlen)
859 goto fail_len;
860 repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
861 idx += 2;
862 if (idx > raw->curlen)
863 goto fail_len;
864 repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
865 idx += 2;
866 if (idx > raw->curlen)
867 goto fail_len;
868 return true;
869 fail_len:
870 DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen);
871 return false;
872 }
873
874 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw,
875 struct drm_dp_sideband_msg_reply_body *repmsg)
876 {
877 int idx = 1;
878 repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
879 idx++;
880 if (idx > raw->curlen)
881 goto fail_len;
882 repmsg->u.allocate_payload.vcpi = raw->msg[idx];
883 idx++;
884 if (idx > raw->curlen)
885 goto fail_len;
886 repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
887 idx += 2;
888 if (idx > raw->curlen)
889 goto fail_len;
890 return true;
891 fail_len:
892 DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen);
893 return false;
894 }
895
896 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw,
897 struct drm_dp_sideband_msg_reply_body *repmsg)
898 {
899 int idx = 1;
900 repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
901 idx++;
902 if (idx > raw->curlen)
903 goto fail_len;
904 repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
905 idx += 2;
906 if (idx > raw->curlen)
907 goto fail_len;
908 return true;
909 fail_len:
910 DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen);
911 return false;
912 }
913
914 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw,
915 struct drm_dp_sideband_msg_reply_body *repmsg)
916 {
917 int idx = 1;
918
919 repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf;
920 idx++;
921 if (idx > raw->curlen) {
922 DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n",
923 idx, raw->curlen);
924 return false;
925 }
926 return true;
927 }
928
929 static bool drm_dp_sideband_parse_reply(struct drm_dp_sideband_msg_rx *raw,
930 struct drm_dp_sideband_msg_reply_body *msg)
931 {
932 memset(msg, 0, sizeof(*msg));
933 msg->reply_type = (raw->msg[0] & 0x80) >> 7;
934 msg->req_type = (raw->msg[0] & 0x7f);
935
936 if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) {
937 memcpy(msg->u.nak.guid, &raw->msg[1], 16);
938 msg->u.nak.reason = raw->msg[17];
939 msg->u.nak.nak_data = raw->msg[18];
940 return false;
941 }
942
943 switch (msg->req_type) {
944 case DP_LINK_ADDRESS:
945 return drm_dp_sideband_parse_link_address(raw, msg);
946 case DP_QUERY_PAYLOAD:
947 return drm_dp_sideband_parse_query_payload_ack(raw, msg);
948 case DP_REMOTE_DPCD_READ:
949 return drm_dp_sideband_parse_remote_dpcd_read(raw, msg);
950 case DP_REMOTE_DPCD_WRITE:
951 return drm_dp_sideband_parse_remote_dpcd_write(raw, msg);
952 case DP_REMOTE_I2C_READ:
953 return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg);
954 case DP_ENUM_PATH_RESOURCES:
955 return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg);
956 case DP_ALLOCATE_PAYLOAD:
957 return drm_dp_sideband_parse_allocate_payload_ack(raw, msg);
958 case DP_POWER_DOWN_PHY:
959 case DP_POWER_UP_PHY:
960 return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg);
961 case DP_CLEAR_PAYLOAD_ID_TABLE:
962 return true; /* since there's nothing to parse */
963 default:
964 DRM_ERROR("Got unknown reply 0x%02x (%s)\n", msg->req_type,
965 drm_dp_mst_req_type_str(msg->req_type));
966 return false;
967 }
968 }
969
970 static bool drm_dp_sideband_parse_connection_status_notify(struct drm_dp_sideband_msg_rx *raw,
971 struct drm_dp_sideband_msg_req_body *msg)
972 {
973 int idx = 1;
974
975 msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
976 idx++;
977 if (idx > raw->curlen)
978 goto fail_len;
979
980 memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16);
981 idx += 16;
982 if (idx > raw->curlen)
983 goto fail_len;
984
985 msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1;
986 msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
987 msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1;
988 msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1;
989 msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7);
990 idx++;
991 return true;
992 fail_len:
993 DRM_DEBUG_KMS("connection status reply parse length fail %d %d\n", idx, raw->curlen);
994 return false;
995 }
996
997 static bool drm_dp_sideband_parse_resource_status_notify(struct drm_dp_sideband_msg_rx *raw,
998 struct drm_dp_sideband_msg_req_body *msg)
999 {
1000 int idx = 1;
1001
1002 msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
1003 idx++;
1004 if (idx > raw->curlen)
1005 goto fail_len;
1006
1007 memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16);
1008 idx += 16;
1009 if (idx > raw->curlen)
1010 goto fail_len;
1011
1012 msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
1013 idx++;
1014 return true;
1015 fail_len:
1016 DRM_DEBUG_KMS("resource status reply parse length fail %d %d\n", idx, raw->curlen);
1017 return false;
1018 }
1019
1020 static bool drm_dp_sideband_parse_req(struct drm_dp_sideband_msg_rx *raw,
1021 struct drm_dp_sideband_msg_req_body *msg)
1022 {
1023 memset(msg, 0, sizeof(*msg));
1024 msg->req_type = (raw->msg[0] & 0x7f);
1025
1026 switch (msg->req_type) {
1027 case DP_CONNECTION_STATUS_NOTIFY:
1028 return drm_dp_sideband_parse_connection_status_notify(raw, msg);
1029 case DP_RESOURCE_STATUS_NOTIFY:
1030 return drm_dp_sideband_parse_resource_status_notify(raw, msg);
1031 default:
1032 DRM_ERROR("Got unknown request 0x%02x (%s)\n", msg->req_type,
1033 drm_dp_mst_req_type_str(msg->req_type));
1034 return false;
1035 }
1036 }
1037
1038 static int build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, u8 port_num, u32 offset, u8 num_bytes, u8 *bytes)
1039 {
1040 struct drm_dp_sideband_msg_req_body req;
1041
1042 req.req_type = DP_REMOTE_DPCD_WRITE;
1043 req.u.dpcd_write.port_number = port_num;
1044 req.u.dpcd_write.dpcd_address = offset;
1045 req.u.dpcd_write.num_bytes = num_bytes;
1046 req.u.dpcd_write.bytes = bytes;
1047 drm_dp_encode_sideband_req(&req, msg);
1048
1049 return 0;
1050 }
1051
1052 static int build_link_address(struct drm_dp_sideband_msg_tx *msg)
1053 {
1054 struct drm_dp_sideband_msg_req_body req;
1055
1056 req.req_type = DP_LINK_ADDRESS;
1057 drm_dp_encode_sideband_req(&req, msg);
1058 return 0;
1059 }
1060
1061 static int build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg)
1062 {
1063 struct drm_dp_sideband_msg_req_body req;
1064
1065 req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE;
1066 drm_dp_encode_sideband_req(&req, msg);
1067 return 0;
1068 }
1069
1070 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, int port_num)
1071 {
1072 struct drm_dp_sideband_msg_req_body req;
1073
1074 req.req_type = DP_ENUM_PATH_RESOURCES;
1075 req.u.port_num.port_number = port_num;
1076 drm_dp_encode_sideband_req(&req, msg);
1077 msg->path_msg = true;
1078 return 0;
1079 }
1080
1081 static int build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, int port_num,
1082 u8 vcpi, uint16_t pbn,
1083 u8 number_sdp_streams,
1084 u8 *sdp_stream_sink)
1085 {
1086 struct drm_dp_sideband_msg_req_body req;
1087 memset(&req, 0, sizeof(req));
1088 req.req_type = DP_ALLOCATE_PAYLOAD;
1089 req.u.allocate_payload.port_number = port_num;
1090 req.u.allocate_payload.vcpi = vcpi;
1091 req.u.allocate_payload.pbn = pbn;
1092 req.u.allocate_payload.number_sdp_streams = number_sdp_streams;
1093 memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink,
1094 number_sdp_streams);
1095 drm_dp_encode_sideband_req(&req, msg);
1096 msg->path_msg = true;
1097 return 0;
1098 }
1099
1100 static int build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg,
1101 int port_num, bool power_up)
1102 {
1103 struct drm_dp_sideband_msg_req_body req;
1104
1105 if (power_up)
1106 req.req_type = DP_POWER_UP_PHY;
1107 else
1108 req.req_type = DP_POWER_DOWN_PHY;
1109
1110 req.u.port_num.port_number = port_num;
1111 drm_dp_encode_sideband_req(&req, msg);
1112 msg->path_msg = true;
1113 return 0;
1114 }
1115
1116 static int drm_dp_mst_assign_payload_id(struct drm_dp_mst_topology_mgr *mgr,
1117 struct drm_dp_vcpi *vcpi)
1118 {
1119 int ret, vcpi_ret;
1120
1121 mutex_lock(&mgr->payload_lock);
1122 ret = find_first_zero_bit(&mgr->payload_mask, mgr->max_payloads + 1);
1123 if (ret > mgr->max_payloads) {
1124 ret = -EINVAL;
1125 DRM_DEBUG_KMS("out of payload ids %d\n", ret);
1126 goto out_unlock;
1127 }
1128
1129 vcpi_ret = find_first_zero_bit(&mgr->vcpi_mask, mgr->max_payloads + 1);
1130 if (vcpi_ret > mgr->max_payloads) {
1131 ret = -EINVAL;
1132 DRM_DEBUG_KMS("out of vcpi ids %d\n", ret);
1133 goto out_unlock;
1134 }
1135
1136 set_bit(ret, &mgr->payload_mask);
1137 set_bit(vcpi_ret, &mgr->vcpi_mask);
1138 vcpi->vcpi = vcpi_ret + 1;
1139 mgr->proposed_vcpis[ret - 1] = vcpi;
1140 out_unlock:
1141 mutex_unlock(&mgr->payload_lock);
1142 return ret;
1143 }
1144
1145 static void drm_dp_mst_put_payload_id(struct drm_dp_mst_topology_mgr *mgr,
1146 int vcpi)
1147 {
1148 int i;
1149 if (vcpi == 0)
1150 return;
1151
1152 mutex_lock(&mgr->payload_lock);
1153 DRM_DEBUG_KMS("putting payload %d\n", vcpi);
1154 clear_bit(vcpi - 1, &mgr->vcpi_mask);
1155
1156 for (i = 0; i < mgr->max_payloads; i++) {
1157 if (mgr->proposed_vcpis[i] &&
1158 mgr->proposed_vcpis[i]->vcpi == vcpi) {
1159 mgr->proposed_vcpis[i] = NULL;
1160 clear_bit(i + 1, &mgr->payload_mask);
1161 }
1162 }
1163 mutex_unlock(&mgr->payload_lock);
1164 }
1165
1166 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr,
1167 struct drm_dp_sideband_msg_tx *txmsg)
1168 {
1169 unsigned int state;
1170
1171 /*
1172 * All updates to txmsg->state are protected by mgr->qlock, and the two
1173 * cases we check here are terminal states. For those the barriers
1174 * provided by the wake_up/wait_event pair are enough.
1175 */
1176 state = READ_ONCE(txmsg->state);
1177 return (state == DRM_DP_SIDEBAND_TX_RX ||
1178 state == DRM_DP_SIDEBAND_TX_TIMEOUT);
1179 }
1180
1181 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb,
1182 struct drm_dp_sideband_msg_tx *txmsg)
1183 {
1184 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1185 int ret;
1186
1187 ret = wait_event_timeout(mgr->tx_waitq,
1188 check_txmsg_state(mgr, txmsg),
1189 (4 * HZ));
1190 mutex_lock(&mstb->mgr->qlock);
1191 if (ret > 0) {
1192 if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) {
1193 ret = -EIO;
1194 goto out;
1195 }
1196 } else {
1197 DRM_DEBUG_KMS("timedout msg send %p %d %d\n", txmsg, txmsg->state, txmsg->seqno);
1198
1199 /* dump some state */
1200 ret = -EIO;
1201
1202 /* remove from q */
1203 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED ||
1204 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND) {
1205 list_del(&txmsg->next);
1206 }
1207
1208 if (txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND ||
1209 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) {
1210 mstb->tx_slots[txmsg->seqno] = NULL;
1211 }
1212 mgr->is_waiting_for_dwn_reply = false;
1213
1214 }
1215 out:
1216 if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) {
1217 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1218
1219 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
1220 }
1221 mutex_unlock(&mgr->qlock);
1222
1223 drm_dp_mst_kick_tx(mgr);
1224 return ret;
1225 }
1226
1227 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad)
1228 {
1229 struct drm_dp_mst_branch *mstb;
1230
1231 mstb = kzalloc(sizeof(*mstb), GFP_KERNEL);
1232 if (!mstb)
1233 return NULL;
1234
1235 mstb->lct = lct;
1236 if (lct > 1)
1237 memcpy(mstb->rad, rad, lct / 2);
1238 INIT_LIST_HEAD(&mstb->ports);
1239 kref_init(&mstb->topology_kref);
1240 kref_init(&mstb->malloc_kref);
1241 return mstb;
1242 }
1243
1244 static void drm_dp_free_mst_branch_device(struct kref *kref)
1245 {
1246 struct drm_dp_mst_branch *mstb =
1247 container_of(kref, struct drm_dp_mst_branch, malloc_kref);
1248
1249 if (mstb->port_parent)
1250 drm_dp_mst_put_port_malloc(mstb->port_parent);
1251
1252 kfree(mstb);
1253 }
1254
1255 /**
1256 * DOC: Branch device and port refcounting
1257 *
1258 * Topology refcount overview
1259 * ~~~~~~~~~~~~~~~~~~~~~~~~~~
1260 *
1261 * The refcounting schemes for &struct drm_dp_mst_branch and &struct
1262 * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have
1263 * two different kinds of refcounts: topology refcounts, and malloc refcounts.
1264 *
1265 * Topology refcounts are not exposed to drivers, and are handled internally
1266 * by the DP MST helpers. The helpers use them in order to prevent the
1267 * in-memory topology state from being changed in the middle of critical
1268 * operations like changing the internal state of payload allocations. This
1269 * means each branch and port will be considered to be connected to the rest
1270 * of the topology until its topology refcount reaches zero. Additionally,
1271 * for ports this means that their associated &struct drm_connector will stay
1272 * registered with userspace until the port's refcount reaches 0.
1273 *
1274 * Malloc refcount overview
1275 * ~~~~~~~~~~~~~~~~~~~~~~~~
1276 *
1277 * Malloc references are used to keep a &struct drm_dp_mst_port or &struct
1278 * drm_dp_mst_branch allocated even after all of its topology references have
1279 * been dropped, so that the driver or MST helpers can safely access each
1280 * branch's last known state before it was disconnected from the topology.
1281 * When the malloc refcount of a port or branch reaches 0, the memory
1282 * allocation containing the &struct drm_dp_mst_branch or &struct
1283 * drm_dp_mst_port respectively will be freed.
1284 *
1285 * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed
1286 * to drivers. As of writing this documentation, there are no drivers that
1287 * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST
1288 * helpers. Exposing this API to drivers in a race-free manner would take more
1289 * tweaking of the refcounting scheme, however patches are welcome provided
1290 * there is a legitimate driver usecase for this.
1291 *
1292 * Refcount relationships in a topology
1293 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1294 *
1295 * Let's take a look at why the relationship between topology and malloc
1296 * refcounts is designed the way it is.
1297 *
1298 * .. kernel-figure:: dp-mst/topology-figure-1.dot
1299 *
1300 * An example of topology and malloc refs in a DP MST topology with two
1301 * active payloads. Topology refcount increments are indicated by solid
1302 * lines, and malloc refcount increments are indicated by dashed lines.
1303 * Each starts from the branch which incremented the refcount, and ends at
1304 * the branch to which the refcount belongs to, i.e. the arrow points the
1305 * same way as the C pointers used to reference a structure.
1306 *
1307 * As you can see in the above figure, every branch increments the topology
1308 * refcount of its children, and increments the malloc refcount of its
1309 * parent. Additionally, every payload increments the malloc refcount of its
1310 * assigned port by 1.
1311 *
1312 * So, what would happen if MSTB #3 from the above figure was unplugged from
1313 * the system, but the driver hadn't yet removed payload #2 from port #3? The
1314 * topology would start to look like the figure below.
1315 *
1316 * .. kernel-figure:: dp-mst/topology-figure-2.dot
1317 *
1318 * Ports and branch devices which have been released from memory are
1319 * colored grey, and references which have been removed are colored red.
1320 *
1321 * Whenever a port or branch device's topology refcount reaches zero, it will
1322 * decrement the topology refcounts of all its children, the malloc refcount
1323 * of its parent, and finally its own malloc refcount. For MSTB #4 and port
1324 * #4, this means they both have been disconnected from the topology and freed
1325 * from memory. But, because payload #2 is still holding a reference to port
1326 * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port
1327 * is still accessible from memory. This also means port #3 has not yet
1328 * decremented the malloc refcount of MSTB #3, so its &struct
1329 * drm_dp_mst_branch will also stay allocated in memory until port #3's
1330 * malloc refcount reaches 0.
1331 *
1332 * This relationship is necessary because in order to release payload #2, we
1333 * need to be able to figure out the last relative of port #3 that's still
1334 * connected to the topology. In this case, we would travel up the topology as
1335 * shown below.
1336 *
1337 * .. kernel-figure:: dp-mst/topology-figure-3.dot
1338 *
1339 * And finally, remove payload #2 by communicating with port #2 through
1340 * sideband transactions.
1341 */
1342
1343 /**
1344 * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch
1345 * device
1346 * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of
1347 *
1348 * Increments &drm_dp_mst_branch.malloc_kref. When
1349 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1350 * will be released and @mstb may no longer be used.
1351 *
1352 * See also: drm_dp_mst_put_mstb_malloc()
1353 */
1354 static void
1355 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb)
1356 {
1357 kref_get(&mstb->malloc_kref);
1358 DRM_DEBUG("mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref));
1359 }
1360
1361 /**
1362 * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch
1363 * device
1364 * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of
1365 *
1366 * Decrements &drm_dp_mst_branch.malloc_kref. When
1367 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1368 * will be released and @mstb may no longer be used.
1369 *
1370 * See also: drm_dp_mst_get_mstb_malloc()
1371 */
1372 static void
1373 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb)
1374 {
1375 DRM_DEBUG("mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1);
1376 kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device);
1377 }
1378
1379 static void drm_dp_free_mst_port(struct kref *kref)
1380 {
1381 struct drm_dp_mst_port *port =
1382 container_of(kref, struct drm_dp_mst_port, malloc_kref);
1383
1384 drm_dp_mst_put_mstb_malloc(port->parent);
1385 kfree(port);
1386 }
1387
1388 /**
1389 * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port
1390 * @port: The &struct drm_dp_mst_port to increment the malloc refcount of
1391 *
1392 * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1393 * reaches 0, the memory allocation for @port will be released and @port may
1394 * no longer be used.
1395 *
1396 * Because @port could potentially be freed at any time by the DP MST helpers
1397 * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this
1398 * function, drivers that which to make use of &struct drm_dp_mst_port should
1399 * ensure that they grab at least one main malloc reference to their MST ports
1400 * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before
1401 * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0.
1402 *
1403 * See also: drm_dp_mst_put_port_malloc()
1404 */
1405 void
1406 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port)
1407 {
1408 kref_get(&port->malloc_kref);
1409 DRM_DEBUG("port %p (%d)\n", port, kref_read(&port->malloc_kref));
1410 }
1411 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc);
1412
1413 /**
1414 * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port
1415 * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of
1416 *
1417 * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1418 * reaches 0, the memory allocation for @port will be released and @port may
1419 * no longer be used.
1420 *
1421 * See also: drm_dp_mst_get_port_malloc()
1422 */
1423 void
1424 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port)
1425 {
1426 DRM_DEBUG("port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1);
1427 kref_put(&port->malloc_kref, drm_dp_free_mst_port);
1428 }
1429 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc);
1430
1431 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
1432
1433 #define STACK_DEPTH 8
1434
1435 static noinline void
1436 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr,
1437 struct drm_dp_mst_topology_ref_history *history,
1438 enum drm_dp_mst_topology_ref_type type)
1439 {
1440 struct drm_dp_mst_topology_ref_entry *entry = NULL;
1441 depot_stack_handle_t backtrace;
1442 ulong stack_entries[STACK_DEPTH];
1443 uint n;
1444 int i;
1445
1446 n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1);
1447 backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL);
1448 if (!backtrace)
1449 return;
1450
1451 /* Try to find an existing entry for this backtrace */
1452 for (i = 0; i < history->len; i++) {
1453 if (history->entries[i].backtrace == backtrace) {
1454 entry = &history->entries[i];
1455 break;
1456 }
1457 }
1458
1459 /* Otherwise add one */
1460 if (!entry) {
1461 struct drm_dp_mst_topology_ref_entry *new;
1462 int new_len = history->len + 1;
1463
1464 new = krealloc(history->entries, sizeof(*new) * new_len,
1465 GFP_KERNEL);
1466 if (!new)
1467 return;
1468
1469 entry = &new[history->len];
1470 history->len = new_len;
1471 history->entries = new;
1472
1473 entry->backtrace = backtrace;
1474 entry->type = type;
1475 entry->count = 0;
1476 }
1477 entry->count++;
1478 entry->ts_nsec = ktime_get_ns();
1479 }
1480
1481 static int
1482 topology_ref_history_cmp(const void *a, const void *b)
1483 {
1484 const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b;
1485
1486 if (entry_a->ts_nsec > entry_b->ts_nsec)
1487 return 1;
1488 else if (entry_a->ts_nsec < entry_b->ts_nsec)
1489 return -1;
1490 else
1491 return 0;
1492 }
1493
1494 static inline const char *
1495 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type)
1496 {
1497 if (type == DRM_DP_MST_TOPOLOGY_REF_GET)
1498 return "get";
1499 else
1500 return "put";
1501 }
1502
1503 static void
1504 __dump_topology_ref_history(struct drm_dp_mst_topology_ref_history *history,
1505 void *ptr, const char *type_str)
1506 {
1507 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1508 char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
1509 int i;
1510
1511 if (!buf)
1512 return;
1513
1514 if (!history->len)
1515 goto out;
1516
1517 /* First, sort the list so that it goes from oldest to newest
1518 * reference entry
1519 */
1520 sort(history->entries, history->len, sizeof(*history->entries),
1521 topology_ref_history_cmp, NULL);
1522
1523 drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n",
1524 type_str, ptr);
1525
1526 for (i = 0; i < history->len; i++) {
1527 const struct drm_dp_mst_topology_ref_entry *entry =
1528 &history->entries[i];
1529 ulong *entries;
1530 uint nr_entries;
1531 u64 ts_nsec = entry->ts_nsec;
1532 u32 rem_nsec = do_div(ts_nsec, 1000000000);
1533
1534 nr_entries = stack_depot_fetch(entry->backtrace, &entries);
1535 stack_trace_snprint(buf, PAGE_SIZE, entries, nr_entries, 4);
1536
1537 drm_printf(&p, " %d %ss (last at %5llu.%06u):\n%s",
1538 entry->count,
1539 topology_ref_type_to_str(entry->type),
1540 ts_nsec, rem_nsec / 1000, buf);
1541 }
1542
1543 /* Now free the history, since this is the only time we expose it */
1544 kfree(history->entries);
1545 out:
1546 kfree(buf);
1547 }
1548
1549 static __always_inline void
1550 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb)
1551 {
1552 __dump_topology_ref_history(&mstb->topology_ref_history, mstb,
1553 "MSTB");
1554 }
1555
1556 static __always_inline void
1557 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port)
1558 {
1559 __dump_topology_ref_history(&port->topology_ref_history, port,
1560 "Port");
1561 }
1562
1563 static __always_inline void
1564 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb,
1565 enum drm_dp_mst_topology_ref_type type)
1566 {
1567 __topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type);
1568 }
1569
1570 static __always_inline void
1571 save_port_topology_ref(struct drm_dp_mst_port *port,
1572 enum drm_dp_mst_topology_ref_type type)
1573 {
1574 __topology_ref_save(port->mgr, &port->topology_ref_history, type);
1575 }
1576
1577 static inline void
1578 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr)
1579 {
1580 mutex_lock(&mgr->topology_ref_history_lock);
1581 }
1582
1583 static inline void
1584 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr)
1585 {
1586 mutex_unlock(&mgr->topology_ref_history_lock);
1587 }
1588 #else
1589 static inline void
1590 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {}
1591 static inline void
1592 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {}
1593 static inline void
1594 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {}
1595 static inline void
1596 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {}
1597 #define save_mstb_topology_ref(mstb, type)
1598 #define save_port_topology_ref(port, type)
1599 #endif
1600
1601 static void drm_dp_destroy_mst_branch_device(struct kref *kref)
1602 {
1603 struct drm_dp_mst_branch *mstb =
1604 container_of(kref, struct drm_dp_mst_branch, topology_kref);
1605 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1606
1607 drm_dp_mst_dump_mstb_topology_history(mstb);
1608
1609 INIT_LIST_HEAD(&mstb->destroy_next);
1610
1611 /*
1612 * This can get called under mgr->mutex, so we need to perform the
1613 * actual destruction of the mstb in another worker
1614 */
1615 mutex_lock(&mgr->delayed_destroy_lock);
1616 list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list);
1617 mutex_unlock(&mgr->delayed_destroy_lock);
1618 schedule_work(&mgr->delayed_destroy_work);
1619 }
1620
1621 /**
1622 * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a
1623 * branch device unless it's zero
1624 * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of
1625 *
1626 * Attempts to grab a topology reference to @mstb, if it hasn't yet been
1627 * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has
1628 * reached 0). Holding a topology reference implies that a malloc reference
1629 * will be held to @mstb as long as the user holds the topology reference.
1630 *
1631 * Care should be taken to ensure that the user has at least one malloc
1632 * reference to @mstb. If you already have a topology reference to @mstb, you
1633 * should use drm_dp_mst_topology_get_mstb() instead.
1634 *
1635 * See also:
1636 * drm_dp_mst_topology_get_mstb()
1637 * drm_dp_mst_topology_put_mstb()
1638 *
1639 * Returns:
1640 * * 1: A topology reference was grabbed successfully
1641 * * 0: @port is no longer in the topology, no reference was grabbed
1642 */
1643 static int __must_check
1644 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb)
1645 {
1646 int ret;
1647
1648 topology_ref_history_lock(mstb->mgr);
1649 ret = kref_get_unless_zero(&mstb->topology_kref);
1650 if (ret) {
1651 DRM_DEBUG("mstb %p (%d)\n",
1652 mstb, kref_read(&mstb->topology_kref));
1653 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1654 }
1655
1656 topology_ref_history_unlock(mstb->mgr);
1657
1658 return ret;
1659 }
1660
1661 /**
1662 * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a
1663 * branch device
1664 * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of
1665 *
1666 * Increments &drm_dp_mst_branch.topology_refcount without checking whether or
1667 * not it's already reached 0. This is only valid to use in scenarios where
1668 * you are already guaranteed to have at least one active topology reference
1669 * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used.
1670 *
1671 * See also:
1672 * drm_dp_mst_topology_try_get_mstb()
1673 * drm_dp_mst_topology_put_mstb()
1674 */
1675 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb)
1676 {
1677 topology_ref_history_lock(mstb->mgr);
1678
1679 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1680 WARN_ON(kref_read(&mstb->topology_kref) == 0);
1681 kref_get(&mstb->topology_kref);
1682 DRM_DEBUG("mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref));
1683
1684 topology_ref_history_unlock(mstb->mgr);
1685 }
1686
1687 /**
1688 * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch
1689 * device
1690 * @mstb: The &struct drm_dp_mst_branch to release the topology reference from
1691 *
1692 * Releases a topology reference from @mstb by decrementing
1693 * &drm_dp_mst_branch.topology_kref.
1694 *
1695 * See also:
1696 * drm_dp_mst_topology_try_get_mstb()
1697 * drm_dp_mst_topology_get_mstb()
1698 */
1699 static void
1700 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb)
1701 {
1702 topology_ref_history_lock(mstb->mgr);
1703
1704 DRM_DEBUG("mstb %p (%d)\n",
1705 mstb, kref_read(&mstb->topology_kref) - 1);
1706 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT);
1707
1708 topology_ref_history_unlock(mstb->mgr);
1709 kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device);
1710 }
1711
1712 static void drm_dp_destroy_port(struct kref *kref)
1713 {
1714 struct drm_dp_mst_port *port =
1715 container_of(kref, struct drm_dp_mst_port, topology_kref);
1716 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
1717
1718 drm_dp_mst_dump_port_topology_history(port);
1719
1720 /* There's nothing that needs locking to destroy an input port yet */
1721 if (port->input) {
1722 drm_dp_mst_put_port_malloc(port);
1723 return;
1724 }
1725
1726 kfree(port->cached_edid);
1727
1728 /*
1729 * we can't destroy the connector here, as we might be holding the
1730 * mode_config.mutex from an EDID retrieval
1731 */
1732 mutex_lock(&mgr->delayed_destroy_lock);
1733 list_add(&port->next, &mgr->destroy_port_list);
1734 mutex_unlock(&mgr->delayed_destroy_lock);
1735 schedule_work(&mgr->delayed_destroy_work);
1736 }
1737
1738 /**
1739 * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a
1740 * port unless it's zero
1741 * @port: &struct drm_dp_mst_port to increment the topology refcount of
1742 *
1743 * Attempts to grab a topology reference to @port, if it hasn't yet been
1744 * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached
1745 * 0). Holding a topology reference implies that a malloc reference will be
1746 * held to @port as long as the user holds the topology reference.
1747 *
1748 * Care should be taken to ensure that the user has at least one malloc
1749 * reference to @port. If you already have a topology reference to @port, you
1750 * should use drm_dp_mst_topology_get_port() instead.
1751 *
1752 * See also:
1753 * drm_dp_mst_topology_get_port()
1754 * drm_dp_mst_topology_put_port()
1755 *
1756 * Returns:
1757 * * 1: A topology reference was grabbed successfully
1758 * * 0: @port is no longer in the topology, no reference was grabbed
1759 */
1760 static int __must_check
1761 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port)
1762 {
1763 int ret;
1764
1765 topology_ref_history_lock(port->mgr);
1766 ret = kref_get_unless_zero(&port->topology_kref);
1767 if (ret) {
1768 DRM_DEBUG("port %p (%d)\n",
1769 port, kref_read(&port->topology_kref));
1770 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1771 }
1772
1773 topology_ref_history_unlock(port->mgr);
1774 return ret;
1775 }
1776
1777 /**
1778 * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port
1779 * @port: The &struct drm_dp_mst_port to increment the topology refcount of
1780 *
1781 * Increments &drm_dp_mst_port.topology_refcount without checking whether or
1782 * not it's already reached 0. This is only valid to use in scenarios where
1783 * you are already guaranteed to have at least one active topology reference
1784 * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used.
1785 *
1786 * See also:
1787 * drm_dp_mst_topology_try_get_port()
1788 * drm_dp_mst_topology_put_port()
1789 */
1790 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port)
1791 {
1792 topology_ref_history_lock(port->mgr);
1793
1794 WARN_ON(kref_read(&port->topology_kref) == 0);
1795 kref_get(&port->topology_kref);
1796 DRM_DEBUG("port %p (%d)\n", port, kref_read(&port->topology_kref));
1797 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1798
1799 topology_ref_history_unlock(port->mgr);
1800 }
1801
1802 /**
1803 * drm_dp_mst_topology_put_port() - release a topology reference to a port
1804 * @port: The &struct drm_dp_mst_port to release the topology reference from
1805 *
1806 * Releases a topology reference from @port by decrementing
1807 * &drm_dp_mst_port.topology_kref.
1808 *
1809 * See also:
1810 * drm_dp_mst_topology_try_get_port()
1811 * drm_dp_mst_topology_get_port()
1812 */
1813 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port)
1814 {
1815 topology_ref_history_lock(port->mgr);
1816
1817 DRM_DEBUG("port %p (%d)\n",
1818 port, kref_read(&port->topology_kref) - 1);
1819 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT);
1820
1821 topology_ref_history_unlock(port->mgr);
1822 kref_put(&port->topology_kref, drm_dp_destroy_port);
1823 }
1824
1825 static struct drm_dp_mst_branch *
1826 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb,
1827 struct drm_dp_mst_branch *to_find)
1828 {
1829 struct drm_dp_mst_port *port;
1830 struct drm_dp_mst_branch *rmstb;
1831
1832 if (to_find == mstb)
1833 return mstb;
1834
1835 list_for_each_entry(port, &mstb->ports, next) {
1836 if (port->mstb) {
1837 rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1838 port->mstb, to_find);
1839 if (rmstb)
1840 return rmstb;
1841 }
1842 }
1843 return NULL;
1844 }
1845
1846 static struct drm_dp_mst_branch *
1847 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr,
1848 struct drm_dp_mst_branch *mstb)
1849 {
1850 struct drm_dp_mst_branch *rmstb = NULL;
1851
1852 mutex_lock(&mgr->lock);
1853 if (mgr->mst_primary) {
1854 rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1855 mgr->mst_primary, mstb);
1856
1857 if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb))
1858 rmstb = NULL;
1859 }
1860 mutex_unlock(&mgr->lock);
1861 return rmstb;
1862 }
1863
1864 static struct drm_dp_mst_port *
1865 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb,
1866 struct drm_dp_mst_port *to_find)
1867 {
1868 struct drm_dp_mst_port *port, *mport;
1869
1870 list_for_each_entry(port, &mstb->ports, next) {
1871 if (port == to_find)
1872 return port;
1873
1874 if (port->mstb) {
1875 mport = drm_dp_mst_topology_get_port_validated_locked(
1876 port->mstb, to_find);
1877 if (mport)
1878 return mport;
1879 }
1880 }
1881 return NULL;
1882 }
1883
1884 static struct drm_dp_mst_port *
1885 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr,
1886 struct drm_dp_mst_port *port)
1887 {
1888 struct drm_dp_mst_port *rport = NULL;
1889
1890 mutex_lock(&mgr->lock);
1891 if (mgr->mst_primary) {
1892 rport = drm_dp_mst_topology_get_port_validated_locked(
1893 mgr->mst_primary, port);
1894
1895 if (rport && !drm_dp_mst_topology_try_get_port(rport))
1896 rport = NULL;
1897 }
1898 mutex_unlock(&mgr->lock);
1899 return rport;
1900 }
1901
1902 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num)
1903 {
1904 struct drm_dp_mst_port *port;
1905 int ret;
1906
1907 list_for_each_entry(port, &mstb->ports, next) {
1908 if (port->port_num == port_num) {
1909 ret = drm_dp_mst_topology_try_get_port(port);
1910 return ret ? port : NULL;
1911 }
1912 }
1913
1914 return NULL;
1915 }
1916
1917 /*
1918 * calculate a new RAD for this MST branch device
1919 * if parent has an LCT of 2 then it has 1 nibble of RAD,
1920 * if parent has an LCT of 3 then it has 2 nibbles of RAD,
1921 */
1922 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port,
1923 u8 *rad)
1924 {
1925 int parent_lct = port->parent->lct;
1926 int shift = 4;
1927 int idx = (parent_lct - 1) / 2;
1928 if (parent_lct > 1) {
1929 memcpy(rad, port->parent->rad, idx + 1);
1930 shift = (parent_lct % 2) ? 4 : 0;
1931 } else
1932 rad[0] = 0;
1933
1934 rad[idx] |= port->port_num << shift;
1935 return parent_lct + 1;
1936 }
1937
1938 static bool drm_dp_mst_is_dp_mst_end_device(u8 pdt, bool mcs)
1939 {
1940 switch (pdt) {
1941 case DP_PEER_DEVICE_DP_LEGACY_CONV:
1942 case DP_PEER_DEVICE_SST_SINK:
1943 return true;
1944 case DP_PEER_DEVICE_MST_BRANCHING:
1945 /* For sst branch device */
1946 if (!mcs)
1947 return true;
1948
1949 return false;
1950 }
1951 return true;
1952 }
1953
1954 static int
1955 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt,
1956 bool new_mcs)
1957 {
1958 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
1959 struct drm_dp_mst_branch *mstb;
1960 u8 rad[8], lct;
1961 int ret = 0;
1962
1963 if (port->pdt == new_pdt && port->mcs == new_mcs)
1964 return 0;
1965
1966 /* Teardown the old pdt, if there is one */
1967 if (port->pdt != DP_PEER_DEVICE_NONE) {
1968 if (drm_dp_mst_is_dp_mst_end_device(port->pdt, port->mcs)) {
1969 /*
1970 * If the new PDT would also have an i2c bus,
1971 * don't bother with reregistering it
1972 */
1973 if (new_pdt != DP_PEER_DEVICE_NONE &&
1974 drm_dp_mst_is_dp_mst_end_device(new_pdt, new_mcs)) {
1975 port->pdt = new_pdt;
1976 port->mcs = new_mcs;
1977 return 0;
1978 }
1979
1980 /* remove i2c over sideband */
1981 drm_dp_mst_unregister_i2c_bus(&port->aux);
1982 } else {
1983 mutex_lock(&mgr->lock);
1984 drm_dp_mst_topology_put_mstb(port->mstb);
1985 port->mstb = NULL;
1986 mutex_unlock(&mgr->lock);
1987 }
1988 }
1989
1990 port->pdt = new_pdt;
1991 port->mcs = new_mcs;
1992
1993 if (port->pdt != DP_PEER_DEVICE_NONE) {
1994 if (drm_dp_mst_is_dp_mst_end_device(port->pdt, port->mcs)) {
1995 /* add i2c over sideband */
1996 ret = drm_dp_mst_register_i2c_bus(&port->aux);
1997 } else {
1998 lct = drm_dp_calculate_rad(port, rad);
1999 mstb = drm_dp_add_mst_branch_device(lct, rad);
2000 if (!mstb) {
2001 ret = -ENOMEM;
2002 DRM_ERROR("Failed to create MSTB for port %p",
2003 port);
2004 goto out;
2005 }
2006
2007 mutex_lock(&mgr->lock);
2008 port->mstb = mstb;
2009 mstb->mgr = port->mgr;
2010 mstb->port_parent = port;
2011
2012 /*
2013 * Make sure this port's memory allocation stays
2014 * around until its child MSTB releases it
2015 */
2016 drm_dp_mst_get_port_malloc(port);
2017 mutex_unlock(&mgr->lock);
2018
2019 /* And make sure we send a link address for this */
2020 ret = 1;
2021 }
2022 }
2023
2024 out:
2025 if (ret < 0)
2026 port->pdt = DP_PEER_DEVICE_NONE;
2027 return ret;
2028 }
2029
2030 /**
2031 * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband
2032 * @aux: Fake sideband AUX CH
2033 * @offset: address of the (first) register to read
2034 * @buffer: buffer to store the register values
2035 * @size: number of bytes in @buffer
2036 *
2037 * Performs the same functionality for remote devices via
2038 * sideband messaging as drm_dp_dpcd_read() does for local
2039 * devices via actual AUX CH.
2040 *
2041 * Return: Number of bytes read, or negative error code on failure.
2042 */
2043 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux,
2044 unsigned int offset, void *buffer, size_t size)
2045 {
2046 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2047 aux);
2048
2049 return drm_dp_send_dpcd_read(port->mgr, port,
2050 offset, size, buffer);
2051 }
2052
2053 /**
2054 * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband
2055 * @aux: Fake sideband AUX CH
2056 * @offset: address of the (first) register to write
2057 * @buffer: buffer containing the values to write
2058 * @size: number of bytes in @buffer
2059 *
2060 * Performs the same functionality for remote devices via
2061 * sideband messaging as drm_dp_dpcd_write() does for local
2062 * devices via actual AUX CH.
2063 *
2064 * Return: 0 on success, negative error code on failure.
2065 */
2066 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux,
2067 unsigned int offset, void *buffer, size_t size)
2068 {
2069 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2070 aux);
2071
2072 return drm_dp_send_dpcd_write(port->mgr, port,
2073 offset, size, buffer);
2074 }
2075
2076 static void drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid)
2077 {
2078 int ret;
2079
2080 memcpy(mstb->guid, guid, 16);
2081
2082 if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) {
2083 if (mstb->port_parent) {
2084 ret = drm_dp_send_dpcd_write(
2085 mstb->mgr,
2086 mstb->port_parent,
2087 DP_GUID,
2088 16,
2089 mstb->guid);
2090 } else {
2091
2092 ret = drm_dp_dpcd_write(
2093 mstb->mgr->aux,
2094 DP_GUID,
2095 mstb->guid,
2096 16);
2097 }
2098 }
2099 }
2100
2101 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb,
2102 int pnum,
2103 char *proppath,
2104 size_t proppath_size)
2105 {
2106 int i;
2107 char temp[8];
2108 snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id);
2109 for (i = 0; i < (mstb->lct - 1); i++) {
2110 int shift = (i % 2) ? 0 : 4;
2111 int port_num = (mstb->rad[i / 2] >> shift) & 0xf;
2112 snprintf(temp, sizeof(temp), "-%d", port_num);
2113 strlcat(proppath, temp, proppath_size);
2114 }
2115 snprintf(temp, sizeof(temp), "-%d", pnum);
2116 strlcat(proppath, temp, proppath_size);
2117 }
2118
2119 /**
2120 * drm_dp_mst_connector_late_register() - Late MST connector registration
2121 * @connector: The MST connector
2122 * @port: The MST port for this connector
2123 *
2124 * Helper to register the remote aux device for this MST port. Drivers should
2125 * call this from their mst connector's late_register hook to enable MST aux
2126 * devices.
2127 *
2128 * Return: 0 on success, negative error code on failure.
2129 */
2130 int drm_dp_mst_connector_late_register(struct drm_connector *connector,
2131 struct drm_dp_mst_port *port)
2132 {
2133 DRM_DEBUG_KMS("registering %s remote bus for %s\n",
2134 port->aux.name, connector->kdev->kobj.name);
2135
2136 port->aux.dev = connector->kdev;
2137 return drm_dp_aux_register_devnode(&port->aux);
2138 }
2139 EXPORT_SYMBOL(drm_dp_mst_connector_late_register);
2140
2141 /**
2142 * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration
2143 * @connector: The MST connector
2144 * @port: The MST port for this connector
2145 *
2146 * Helper to unregister the remote aux device for this MST port, registered by
2147 * drm_dp_mst_connector_late_register(). Drivers should call this from their mst
2148 * connector's early_unregister hook.
2149 */
2150 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector,
2151 struct drm_dp_mst_port *port)
2152 {
2153 DRM_DEBUG_KMS("unregistering %s remote bus for %s\n",
2154 port->aux.name, connector->kdev->kobj.name);
2155 drm_dp_aux_unregister_devnode(&port->aux);
2156 }
2157 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister);
2158
2159 static void
2160 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb,
2161 struct drm_dp_mst_port *port)
2162 {
2163 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
2164 char proppath[255];
2165 int ret;
2166
2167 build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath));
2168 port->connector = mgr->cbs->add_connector(mgr, port, proppath);
2169 if (!port->connector) {
2170 ret = -ENOMEM;
2171 goto error;
2172 }
2173
2174 if (port->pdt != DP_PEER_DEVICE_NONE &&
2175 drm_dp_mst_is_dp_mst_end_device(port->pdt, port->mcs)) {
2176 port->cached_edid = drm_get_edid(port->connector,
2177 &port->aux.ddc);
2178 drm_connector_set_tile_property(port->connector);
2179 }
2180
2181 mgr->cbs->register_connector(port->connector);
2182 return;
2183
2184 error:
2185 DRM_ERROR("Failed to create connector for port %p: %d\n", port, ret);
2186 }
2187
2188 /*
2189 * Drop a topology reference, and unlink the port from the in-memory topology
2190 * layout
2191 */
2192 static void
2193 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr,
2194 struct drm_dp_mst_port *port)
2195 {
2196 mutex_lock(&mgr->lock);
2197 port->parent->num_ports--;
2198 list_del(&port->next);
2199 mutex_unlock(&mgr->lock);
2200 drm_dp_mst_topology_put_port(port);
2201 }
2202
2203 static struct drm_dp_mst_port *
2204 drm_dp_mst_add_port(struct drm_device *dev,
2205 struct drm_dp_mst_topology_mgr *mgr,
2206 struct drm_dp_mst_branch *mstb, u8 port_number)
2207 {
2208 struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL);
2209
2210 if (!port)
2211 return NULL;
2212
2213 kref_init(&port->topology_kref);
2214 kref_init(&port->malloc_kref);
2215 port->parent = mstb;
2216 port->port_num = port_number;
2217 port->mgr = mgr;
2218 port->aux.name = "DPMST";
2219 port->aux.dev = dev->dev;
2220 port->aux.is_remote = true;
2221
2222 /* initialize the MST downstream port's AUX crc work queue */
2223 drm_dp_remote_aux_init(&port->aux);
2224
2225 /*
2226 * Make sure the memory allocation for our parent branch stays
2227 * around until our own memory allocation is released
2228 */
2229 drm_dp_mst_get_mstb_malloc(mstb);
2230
2231 return port;
2232 }
2233
2234 static int
2235 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb,
2236 struct drm_device *dev,
2237 struct drm_dp_link_addr_reply_port *port_msg)
2238 {
2239 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2240 struct drm_dp_mst_port *port;
2241 int old_ddps = 0, ret;
2242 u8 new_pdt = DP_PEER_DEVICE_NONE;
2243 bool new_mcs = 0;
2244 bool created = false, send_link_addr = false, changed = false;
2245
2246 port = drm_dp_get_port(mstb, port_msg->port_number);
2247 if (!port) {
2248 port = drm_dp_mst_add_port(dev, mgr, mstb,
2249 port_msg->port_number);
2250 if (!port)
2251 return -ENOMEM;
2252 created = true;
2253 changed = true;
2254 } else if (!port->input && port_msg->input_port && port->connector) {
2255 /* Since port->connector can't be changed here, we create a
2256 * new port if input_port changes from 0 to 1
2257 */
2258 drm_dp_mst_topology_unlink_port(mgr, port);
2259 drm_dp_mst_topology_put_port(port);
2260 port = drm_dp_mst_add_port(dev, mgr, mstb,
2261 port_msg->port_number);
2262 if (!port)
2263 return -ENOMEM;
2264 changed = true;
2265 created = true;
2266 } else if (port->input && !port_msg->input_port) {
2267 changed = true;
2268 } else if (port->connector) {
2269 /* We're updating a port that's exposed to userspace, so do it
2270 * under lock
2271 */
2272 drm_modeset_lock(&mgr->base.lock, NULL);
2273
2274 old_ddps = port->ddps;
2275 changed = port->ddps != port_msg->ddps ||
2276 (port->ddps &&
2277 (port->ldps != port_msg->legacy_device_plug_status ||
2278 port->dpcd_rev != port_msg->dpcd_revision ||
2279 port->mcs != port_msg->mcs ||
2280 port->pdt != port_msg->peer_device_type ||
2281 port->num_sdp_stream_sinks !=
2282 port_msg->num_sdp_stream_sinks));
2283 }
2284
2285 port->input = port_msg->input_port;
2286 if (!port->input)
2287 new_pdt = port_msg->peer_device_type;
2288 new_mcs = port_msg->mcs;
2289 port->ddps = port_msg->ddps;
2290 port->ldps = port_msg->legacy_device_plug_status;
2291 port->dpcd_rev = port_msg->dpcd_revision;
2292 port->num_sdp_streams = port_msg->num_sdp_streams;
2293 port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks;
2294
2295 /* manage mstb port lists with mgr lock - take a reference
2296 for this list */
2297 if (created) {
2298 mutex_lock(&mgr->lock);
2299 drm_dp_mst_topology_get_port(port);
2300 list_add(&port->next, &mstb->ports);
2301 mstb->num_ports++;
2302 mutex_unlock(&mgr->lock);
2303 }
2304
2305 if (old_ddps != port->ddps) {
2306 if (port->ddps) {
2307 if (!port->input) {
2308 drm_dp_send_enum_path_resources(mgr, mstb,
2309 port);
2310 }
2311 } else {
2312 port->available_pbn = 0;
2313 }
2314 }
2315
2316 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2317 if (ret == 1) {
2318 send_link_addr = true;
2319 } else if (ret < 0) {
2320 DRM_ERROR("Failed to change PDT on port %p: %d\n",
2321 port, ret);
2322 goto fail;
2323 }
2324
2325 /*
2326 * If this port wasn't just created, then we're reprobing because
2327 * we're coming out of suspend. In this case, always resend the link
2328 * address if there's an MSTB on this port
2329 */
2330 if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
2331 port->mcs)
2332 send_link_addr = true;
2333
2334 if (port->connector)
2335 drm_modeset_unlock(&mgr->base.lock);
2336 else if (!port->input)
2337 drm_dp_mst_port_add_connector(mstb, port);
2338
2339 if (send_link_addr && port->mstb) {
2340 ret = drm_dp_send_link_address(mgr, port->mstb);
2341 if (ret == 1) /* MSTB below us changed */
2342 changed = true;
2343 else if (ret < 0)
2344 goto fail_put;
2345 }
2346
2347 /* put reference to this port */
2348 drm_dp_mst_topology_put_port(port);
2349 return changed;
2350
2351 fail:
2352 drm_dp_mst_topology_unlink_port(mgr, port);
2353 if (port->connector)
2354 drm_modeset_unlock(&mgr->base.lock);
2355 fail_put:
2356 drm_dp_mst_topology_put_port(port);
2357 return ret;
2358 }
2359
2360 static void
2361 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb,
2362 struct drm_dp_connection_status_notify *conn_stat)
2363 {
2364 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2365 struct drm_dp_mst_port *port;
2366 int old_ddps, old_input, ret, i;
2367 u8 new_pdt;
2368 bool new_mcs;
2369 bool dowork = false, create_connector = false;
2370
2371 port = drm_dp_get_port(mstb, conn_stat->port_number);
2372 if (!port)
2373 return;
2374
2375 if (port->connector) {
2376 if (!port->input && conn_stat->input_port) {
2377 /*
2378 * We can't remove a connector from an already exposed
2379 * port, so just throw the port out and make sure we
2380 * reprobe the link address of it's parent MSTB
2381 */
2382 drm_dp_mst_topology_unlink_port(mgr, port);
2383 mstb->link_address_sent = false;
2384 dowork = true;
2385 goto out;
2386 }
2387
2388 /* Locking is only needed if the port's exposed to userspace */
2389 drm_modeset_lock(&mgr->base.lock, NULL);
2390 } else if (port->input && !conn_stat->input_port) {
2391 create_connector = true;
2392 /* Reprobe link address so we get num_sdp_streams */
2393 mstb->link_address_sent = false;
2394 dowork = true;
2395 }
2396
2397 old_ddps = port->ddps;
2398 old_input = port->input;
2399 port->input = conn_stat->input_port;
2400 port->ldps = conn_stat->legacy_device_plug_status;
2401 port->ddps = conn_stat->displayport_device_plug_status;
2402
2403 if (old_ddps != port->ddps) {
2404 if (port->ddps) {
2405 dowork = true;
2406 } else {
2407 port->available_pbn = 0;
2408 }
2409 }
2410
2411 new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type;
2412 new_mcs = conn_stat->message_capability_status;
2413 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2414 if (ret == 1) {
2415 dowork = true;
2416 } else if (ret < 0) {
2417 DRM_ERROR("Failed to change PDT for port %p: %d\n",
2418 port, ret);
2419 dowork = false;
2420 }
2421
2422 if (!old_input && old_ddps != port->ddps && !port->ddps) {
2423 for (i = 0; i < mgr->max_payloads; i++) {
2424 struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
2425 struct drm_dp_mst_port *port_validated;
2426
2427 if (!vcpi)
2428 continue;
2429
2430 port_validated =
2431 container_of(vcpi, struct drm_dp_mst_port, vcpi);
2432 port_validated =
2433 drm_dp_mst_topology_get_port_validated(mgr, port_validated);
2434 if (!port_validated) {
2435 mutex_lock(&mgr->payload_lock);
2436 vcpi->num_slots = 0;
2437 mutex_unlock(&mgr->payload_lock);
2438 } else {
2439 drm_dp_mst_topology_put_port(port_validated);
2440 }
2441 }
2442 }
2443
2444 if (port->connector)
2445 drm_modeset_unlock(&mgr->base.lock);
2446 else if (create_connector)
2447 drm_dp_mst_port_add_connector(mstb, port);
2448
2449 out:
2450 drm_dp_mst_topology_put_port(port);
2451 if (dowork)
2452 queue_work(system_long_wq, &mstb->mgr->work);
2453 }
2454
2455 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr,
2456 u8 lct, u8 *rad)
2457 {
2458 struct drm_dp_mst_branch *mstb;
2459 struct drm_dp_mst_port *port;
2460 int i, ret;
2461 /* find the port by iterating down */
2462
2463 mutex_lock(&mgr->lock);
2464 mstb = mgr->mst_primary;
2465
2466 if (!mstb)
2467 goto out;
2468
2469 for (i = 0; i < lct - 1; i++) {
2470 int shift = (i % 2) ? 0 : 4;
2471 int port_num = (rad[i / 2] >> shift) & 0xf;
2472
2473 list_for_each_entry(port, &mstb->ports, next) {
2474 if (port->port_num == port_num) {
2475 mstb = port->mstb;
2476 if (!mstb) {
2477 DRM_ERROR("failed to lookup MSTB with lct %d, rad %02x\n", lct, rad[0]);
2478 goto out;
2479 }
2480
2481 break;
2482 }
2483 }
2484 }
2485 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2486 if (!ret)
2487 mstb = NULL;
2488 out:
2489 mutex_unlock(&mgr->lock);
2490 return mstb;
2491 }
2492
2493 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper(
2494 struct drm_dp_mst_branch *mstb,
2495 const uint8_t *guid)
2496 {
2497 struct drm_dp_mst_branch *found_mstb;
2498 struct drm_dp_mst_port *port;
2499
2500 if (memcmp(mstb->guid, guid, 16) == 0)
2501 return mstb;
2502
2503
2504 list_for_each_entry(port, &mstb->ports, next) {
2505 if (!port->mstb)
2506 continue;
2507
2508 found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid);
2509
2510 if (found_mstb)
2511 return found_mstb;
2512 }
2513
2514 return NULL;
2515 }
2516
2517 static struct drm_dp_mst_branch *
2518 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr,
2519 const uint8_t *guid)
2520 {
2521 struct drm_dp_mst_branch *mstb;
2522 int ret;
2523
2524 /* find the port by iterating down */
2525 mutex_lock(&mgr->lock);
2526
2527 mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid);
2528 if (mstb) {
2529 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2530 if (!ret)
2531 mstb = NULL;
2532 }
2533
2534 mutex_unlock(&mgr->lock);
2535 return mstb;
2536 }
2537
2538 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2539 struct drm_dp_mst_branch *mstb)
2540 {
2541 struct drm_dp_mst_port *port;
2542 int ret;
2543 bool changed = false;
2544
2545 if (!mstb->link_address_sent) {
2546 ret = drm_dp_send_link_address(mgr, mstb);
2547 if (ret == 1)
2548 changed = true;
2549 else if (ret < 0)
2550 return ret;
2551 }
2552
2553 list_for_each_entry(port, &mstb->ports, next) {
2554 struct drm_dp_mst_branch *mstb_child = NULL;
2555
2556 if (port->input || !port->ddps)
2557 continue;
2558
2559 if (!port->available_pbn) {
2560 drm_modeset_lock(&mgr->base.lock, NULL);
2561 drm_dp_send_enum_path_resources(mgr, mstb, port);
2562 drm_modeset_unlock(&mgr->base.lock);
2563 changed = true;
2564 }
2565
2566 if (port->mstb)
2567 mstb_child = drm_dp_mst_topology_get_mstb_validated(
2568 mgr, port->mstb);
2569
2570 if (mstb_child) {
2571 ret = drm_dp_check_and_send_link_address(mgr,
2572 mstb_child);
2573 drm_dp_mst_topology_put_mstb(mstb_child);
2574 if (ret == 1)
2575 changed = true;
2576 else if (ret < 0)
2577 return ret;
2578 }
2579 }
2580
2581 return changed;
2582 }
2583
2584 static void drm_dp_mst_link_probe_work(struct work_struct *work)
2585 {
2586 struct drm_dp_mst_topology_mgr *mgr =
2587 container_of(work, struct drm_dp_mst_topology_mgr, work);
2588 struct drm_device *dev = mgr->dev;
2589 struct drm_dp_mst_branch *mstb;
2590 int ret;
2591 bool clear_payload_id_table;
2592
2593 mutex_lock(&mgr->probe_lock);
2594
2595 mutex_lock(&mgr->lock);
2596 clear_payload_id_table = !mgr->payload_id_table_cleared;
2597 mgr->payload_id_table_cleared = true;
2598
2599 mstb = mgr->mst_primary;
2600 if (mstb) {
2601 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2602 if (!ret)
2603 mstb = NULL;
2604 }
2605 mutex_unlock(&mgr->lock);
2606 if (!mstb) {
2607 mutex_unlock(&mgr->probe_lock);
2608 return;
2609 }
2610
2611 /*
2612 * Certain branch devices seem to incorrectly report an available_pbn
2613 * of 0 on downstream sinks, even after clearing the
2614 * DP_PAYLOAD_ALLOCATE_* registers in
2615 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C
2616 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make
2617 * things work again.
2618 */
2619 if (clear_payload_id_table) {
2620 DRM_DEBUG_KMS("Clearing payload ID table\n");
2621 drm_dp_send_clear_payload_id_table(mgr, mstb);
2622 }
2623
2624 ret = drm_dp_check_and_send_link_address(mgr, mstb);
2625 drm_dp_mst_topology_put_mstb(mstb);
2626
2627 mutex_unlock(&mgr->probe_lock);
2628 if (ret)
2629 drm_kms_helper_hotplug_event(dev);
2630 }
2631
2632 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
2633 u8 *guid)
2634 {
2635 u64 salt;
2636
2637 if (memchr_inv(guid, 0, 16))
2638 return true;
2639
2640 salt = get_jiffies_64();
2641
2642 memcpy(&guid[0], &salt, sizeof(u64));
2643 memcpy(&guid[8], &salt, sizeof(u64));
2644
2645 return false;
2646 }
2647
2648 static int build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, u8 port_num, u32 offset, u8 num_bytes)
2649 {
2650 struct drm_dp_sideband_msg_req_body req;
2651
2652 req.req_type = DP_REMOTE_DPCD_READ;
2653 req.u.dpcd_read.port_number = port_num;
2654 req.u.dpcd_read.dpcd_address = offset;
2655 req.u.dpcd_read.num_bytes = num_bytes;
2656 drm_dp_encode_sideband_req(&req, msg);
2657
2658 return 0;
2659 }
2660
2661 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr,
2662 bool up, u8 *msg, int len)
2663 {
2664 int ret;
2665 int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE;
2666 int tosend, total, offset;
2667 int retries = 0;
2668
2669 retry:
2670 total = len;
2671 offset = 0;
2672 do {
2673 tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total);
2674
2675 ret = drm_dp_dpcd_write(mgr->aux, regbase + offset,
2676 &msg[offset],
2677 tosend);
2678 if (ret != tosend) {
2679 if (ret == -EIO && retries < 5) {
2680 retries++;
2681 goto retry;
2682 }
2683 DRM_DEBUG_KMS("failed to dpcd write %d %d\n", tosend, ret);
2684
2685 return -EIO;
2686 }
2687 offset += tosend;
2688 total -= tosend;
2689 } while (total > 0);
2690 return 0;
2691 }
2692
2693 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr,
2694 struct drm_dp_sideband_msg_tx *txmsg)
2695 {
2696 struct drm_dp_mst_branch *mstb = txmsg->dst;
2697 u8 req_type;
2698
2699 /* both msg slots are full */
2700 if (txmsg->seqno == -1) {
2701 if (mstb->tx_slots[0] && mstb->tx_slots[1]) {
2702 DRM_DEBUG_KMS("%s: failed to find slot\n", __func__);
2703 return -EAGAIN;
2704 }
2705 if (mstb->tx_slots[0] == NULL && mstb->tx_slots[1] == NULL) {
2706 txmsg->seqno = mstb->last_seqno;
2707 mstb->last_seqno ^= 1;
2708 } else if (mstb->tx_slots[0] == NULL)
2709 txmsg->seqno = 0;
2710 else
2711 txmsg->seqno = 1;
2712 mstb->tx_slots[txmsg->seqno] = txmsg;
2713 }
2714
2715 req_type = txmsg->msg[0] & 0x7f;
2716 if (req_type == DP_CONNECTION_STATUS_NOTIFY ||
2717 req_type == DP_RESOURCE_STATUS_NOTIFY)
2718 hdr->broadcast = 1;
2719 else
2720 hdr->broadcast = 0;
2721 hdr->path_msg = txmsg->path_msg;
2722 hdr->lct = mstb->lct;
2723 hdr->lcr = mstb->lct - 1;
2724 if (mstb->lct > 1)
2725 memcpy(hdr->rad, mstb->rad, mstb->lct / 2);
2726 hdr->seqno = txmsg->seqno;
2727 return 0;
2728 }
2729 /*
2730 * process a single block of the next message in the sideband queue
2731 */
2732 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
2733 struct drm_dp_sideband_msg_tx *txmsg,
2734 bool up)
2735 {
2736 u8 chunk[48];
2737 struct drm_dp_sideband_msg_hdr hdr;
2738 int len, space, idx, tosend;
2739 int ret;
2740
2741 memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr));
2742
2743 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) {
2744 txmsg->seqno = -1;
2745 txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND;
2746 }
2747
2748 /* make hdr from dst mst - for replies use seqno
2749 otherwise assign one */
2750 ret = set_hdr_from_dst_qlock(&hdr, txmsg);
2751 if (ret < 0)
2752 return ret;
2753
2754 /* amount left to send in this message */
2755 len = txmsg->cur_len - txmsg->cur_offset;
2756
2757 /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */
2758 space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr);
2759
2760 tosend = min(len, space);
2761 if (len == txmsg->cur_len)
2762 hdr.somt = 1;
2763 if (space >= len)
2764 hdr.eomt = 1;
2765
2766
2767 hdr.msg_len = tosend + 1;
2768 drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx);
2769 memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend);
2770 /* add crc at end */
2771 drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend);
2772 idx += tosend + 1;
2773
2774 ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx);
2775 if (unlikely(ret) && drm_debug_enabled(DRM_UT_DP)) {
2776 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2777
2778 drm_printf(&p, "sideband msg failed to send\n");
2779 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2780 return ret;
2781 }
2782
2783 txmsg->cur_offset += tosend;
2784 if (txmsg->cur_offset == txmsg->cur_len) {
2785 txmsg->state = DRM_DP_SIDEBAND_TX_SENT;
2786 return 1;
2787 }
2788 return 0;
2789 }
2790
2791 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr)
2792 {
2793 struct drm_dp_sideband_msg_tx *txmsg;
2794 int ret;
2795
2796 WARN_ON(!mutex_is_locked(&mgr->qlock));
2797
2798 /* construct a chunk from the first msg in the tx_msg queue */
2799 if (list_empty(&mgr->tx_msg_downq))
2800 return;
2801
2802 txmsg = list_first_entry(&mgr->tx_msg_downq, struct drm_dp_sideband_msg_tx, next);
2803 ret = process_single_tx_qlock(mgr, txmsg, false);
2804 if (ret == 1) {
2805 /* txmsg is sent it should be in the slots now */
2806 mgr->is_waiting_for_dwn_reply = true;
2807 list_del(&txmsg->next);
2808 } else if (ret) {
2809 DRM_DEBUG_KMS("failed to send msg in q %d\n", ret);
2810 mgr->is_waiting_for_dwn_reply = false;
2811 list_del(&txmsg->next);
2812 if (txmsg->seqno != -1)
2813 txmsg->dst->tx_slots[txmsg->seqno] = NULL;
2814 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
2815 wake_up_all(&mgr->tx_waitq);
2816 }
2817 }
2818
2819 /* called holding qlock */
2820 static void process_single_up_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
2821 struct drm_dp_sideband_msg_tx *txmsg)
2822 {
2823 int ret;
2824
2825 /* construct a chunk from the first msg in the tx_msg queue */
2826 ret = process_single_tx_qlock(mgr, txmsg, true);
2827
2828 if (ret != 1)
2829 DRM_DEBUG_KMS("failed to send msg in q %d\n", ret);
2830
2831 if (txmsg->seqno != -1) {
2832 WARN_ON((unsigned int)txmsg->seqno >
2833 ARRAY_SIZE(txmsg->dst->tx_slots));
2834 txmsg->dst->tx_slots[txmsg->seqno] = NULL;
2835 }
2836 }
2837
2838 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr,
2839 struct drm_dp_sideband_msg_tx *txmsg)
2840 {
2841 mutex_lock(&mgr->qlock);
2842 list_add_tail(&txmsg->next, &mgr->tx_msg_downq);
2843
2844 if (drm_debug_enabled(DRM_UT_DP)) {
2845 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2846
2847 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2848 }
2849
2850 if (list_is_singular(&mgr->tx_msg_downq) &&
2851 !mgr->is_waiting_for_dwn_reply)
2852 process_single_down_tx_qlock(mgr);
2853 mutex_unlock(&mgr->qlock);
2854 }
2855
2856 static void
2857 drm_dp_dump_link_address(struct drm_dp_link_address_ack_reply *reply)
2858 {
2859 struct drm_dp_link_addr_reply_port *port_reply;
2860 int i;
2861
2862 for (i = 0; i < reply->nports; i++) {
2863 port_reply = &reply->ports[i];
2864 DRM_DEBUG_KMS("port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n",
2865 i,
2866 port_reply->input_port,
2867 port_reply->peer_device_type,
2868 port_reply->port_number,
2869 port_reply->dpcd_revision,
2870 port_reply->mcs,
2871 port_reply->ddps,
2872 port_reply->legacy_device_plug_status,
2873 port_reply->num_sdp_streams,
2874 port_reply->num_sdp_stream_sinks);
2875 }
2876 }
2877
2878 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2879 struct drm_dp_mst_branch *mstb)
2880 {
2881 struct drm_dp_sideband_msg_tx *txmsg;
2882 struct drm_dp_link_address_ack_reply *reply;
2883 struct drm_dp_mst_port *port, *tmp;
2884 int i, len, ret, port_mask = 0;
2885 bool changed = false;
2886
2887 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2888 if (!txmsg)
2889 return -ENOMEM;
2890
2891 txmsg->dst = mstb;
2892 len = build_link_address(txmsg);
2893
2894 mstb->link_address_sent = true;
2895 drm_dp_queue_down_tx(mgr, txmsg);
2896
2897 /* FIXME: Actually do some real error handling here */
2898 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
2899 if (ret <= 0) {
2900 DRM_ERROR("Sending link address failed with %d\n", ret);
2901 goto out;
2902 }
2903 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
2904 DRM_ERROR("link address NAK received\n");
2905 ret = -EIO;
2906 goto out;
2907 }
2908
2909 reply = &txmsg->reply.u.link_addr;
2910 DRM_DEBUG_KMS("link address reply: %d\n", reply->nports);
2911 drm_dp_dump_link_address(reply);
2912
2913 drm_dp_check_mstb_guid(mstb, reply->guid);
2914
2915 for (i = 0; i < reply->nports; i++) {
2916 port_mask |= BIT(reply->ports[i].port_number);
2917 ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev,
2918 &reply->ports[i]);
2919 if (ret == 1)
2920 changed = true;
2921 else if (ret < 0)
2922 goto out;
2923 }
2924
2925 /* Prune any ports that are currently a part of mstb in our in-memory
2926 * topology, but were not seen in this link address. Usually this
2927 * means that they were removed while the topology was out of sync,
2928 * e.g. during suspend/resume
2929 */
2930 mutex_lock(&mgr->lock);
2931 list_for_each_entry_safe(port, tmp, &mstb->ports, next) {
2932 if (port_mask & BIT(port->port_num))
2933 continue;
2934
2935 DRM_DEBUG_KMS("port %d was not in link address, removing\n",
2936 port->port_num);
2937 list_del(&port->next);
2938 drm_dp_mst_topology_put_port(port);
2939 changed = true;
2940 }
2941 mutex_unlock(&mgr->lock);
2942
2943 out:
2944 if (ret <= 0)
2945 mstb->link_address_sent = false;
2946 kfree(txmsg);
2947 return ret < 0 ? ret : changed;
2948 }
2949
2950 void drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
2951 struct drm_dp_mst_branch *mstb)
2952 {
2953 struct drm_dp_sideband_msg_tx *txmsg;
2954 int len, ret;
2955
2956 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2957 if (!txmsg)
2958 return;
2959
2960 txmsg->dst = mstb;
2961 len = build_clear_payload_id_table(txmsg);
2962
2963 drm_dp_queue_down_tx(mgr, txmsg);
2964
2965 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
2966 if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
2967 DRM_DEBUG_KMS("clear payload table id nak received\n");
2968
2969 kfree(txmsg);
2970 }
2971
2972 static int
2973 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
2974 struct drm_dp_mst_branch *mstb,
2975 struct drm_dp_mst_port *port)
2976 {
2977 struct drm_dp_enum_path_resources_ack_reply *path_res;
2978 struct drm_dp_sideband_msg_tx *txmsg;
2979 int len;
2980 int ret;
2981
2982 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2983 if (!txmsg)
2984 return -ENOMEM;
2985
2986 txmsg->dst = mstb;
2987 len = build_enum_path_resources(txmsg, port->port_num);
2988
2989 drm_dp_queue_down_tx(mgr, txmsg);
2990
2991 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
2992 if (ret > 0) {
2993 path_res = &txmsg->reply.u.path_resources;
2994
2995 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
2996 DRM_DEBUG_KMS("enum path resources nak received\n");
2997 } else {
2998 if (port->port_num != path_res->port_number)
2999 DRM_ERROR("got incorrect port in response\n");
3000
3001 DRM_DEBUG_KMS("enum path resources %d: %d %d\n",
3002 path_res->port_number,
3003 path_res->full_payload_bw_number,
3004 path_res->avail_payload_bw_number);
3005 port->available_pbn =
3006 path_res->avail_payload_bw_number;
3007 port->fec_capable = path_res->fec_capable;
3008 }
3009 }
3010
3011 kfree(txmsg);
3012 return 0;
3013 }
3014
3015 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb)
3016 {
3017 if (!mstb->port_parent)
3018 return NULL;
3019
3020 if (mstb->port_parent->mstb != mstb)
3021 return mstb->port_parent;
3022
3023 return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent);
3024 }
3025
3026 /*
3027 * Searches upwards in the topology starting from mstb to try to find the
3028 * closest available parent of mstb that's still connected to the rest of the
3029 * topology. This can be used in order to perform operations like releasing
3030 * payloads, where the branch device which owned the payload may no longer be
3031 * around and thus would require that the payload on the last living relative
3032 * be freed instead.
3033 */
3034 static struct drm_dp_mst_branch *
3035 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr,
3036 struct drm_dp_mst_branch *mstb,
3037 int *port_num)
3038 {
3039 struct drm_dp_mst_branch *rmstb = NULL;
3040 struct drm_dp_mst_port *found_port;
3041
3042 mutex_lock(&mgr->lock);
3043 if (!mgr->mst_primary)
3044 goto out;
3045
3046 do {
3047 found_port = drm_dp_get_last_connected_port_to_mstb(mstb);
3048 if (!found_port)
3049 break;
3050
3051 if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) {
3052 rmstb = found_port->parent;
3053 *port_num = found_port->port_num;
3054 } else {
3055 /* Search again, starting from this parent */
3056 mstb = found_port->parent;
3057 }
3058 } while (!rmstb);
3059 out:
3060 mutex_unlock(&mgr->lock);
3061 return rmstb;
3062 }
3063
3064 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr,
3065 struct drm_dp_mst_port *port,
3066 int id,
3067 int pbn)
3068 {
3069 struct drm_dp_sideband_msg_tx *txmsg;
3070 struct drm_dp_mst_branch *mstb;
3071 int len, ret, port_num;
3072 u8 sinks[DRM_DP_MAX_SDP_STREAMS];
3073 int i;
3074
3075 port_num = port->port_num;
3076 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3077 if (!mstb) {
3078 mstb = drm_dp_get_last_connected_port_and_mstb(mgr,
3079 port->parent,
3080 &port_num);
3081
3082 if (!mstb)
3083 return -EINVAL;
3084 }
3085
3086 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3087 if (!txmsg) {
3088 ret = -ENOMEM;
3089 goto fail_put;
3090 }
3091
3092 for (i = 0; i < port->num_sdp_streams; i++)
3093 sinks[i] = i;
3094
3095 txmsg->dst = mstb;
3096 len = build_allocate_payload(txmsg, port_num,
3097 id,
3098 pbn, port->num_sdp_streams, sinks);
3099
3100 drm_dp_queue_down_tx(mgr, txmsg);
3101
3102 /*
3103 * FIXME: there is a small chance that between getting the last
3104 * connected mstb and sending the payload message, the last connected
3105 * mstb could also be removed from the topology. In the future, this
3106 * needs to be fixed by restarting the
3107 * drm_dp_get_last_connected_port_and_mstb() search in the event of a
3108 * timeout if the topology is still connected to the system.
3109 */
3110 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3111 if (ret > 0) {
3112 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3113 ret = -EINVAL;
3114 else
3115 ret = 0;
3116 }
3117 kfree(txmsg);
3118 fail_put:
3119 drm_dp_mst_topology_put_mstb(mstb);
3120 return ret;
3121 }
3122
3123 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr,
3124 struct drm_dp_mst_port *port, bool power_up)
3125 {
3126 struct drm_dp_sideband_msg_tx *txmsg;
3127 int len, ret;
3128
3129 port = drm_dp_mst_topology_get_port_validated(mgr, port);
3130 if (!port)
3131 return -EINVAL;
3132
3133 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3134 if (!txmsg) {
3135 drm_dp_mst_topology_put_port(port);
3136 return -ENOMEM;
3137 }
3138
3139 txmsg->dst = port->parent;
3140 len = build_power_updown_phy(txmsg, port->port_num, power_up);
3141 drm_dp_queue_down_tx(mgr, txmsg);
3142
3143 ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg);
3144 if (ret > 0) {
3145 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3146 ret = -EINVAL;
3147 else
3148 ret = 0;
3149 }
3150 kfree(txmsg);
3151 drm_dp_mst_topology_put_port(port);
3152
3153 return ret;
3154 }
3155 EXPORT_SYMBOL(drm_dp_send_power_updown_phy);
3156
3157 static int drm_dp_create_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
3158 int id,
3159 struct drm_dp_payload *payload)
3160 {
3161 int ret;
3162
3163 ret = drm_dp_dpcd_write_payload(mgr, id, payload);
3164 if (ret < 0) {
3165 payload->payload_state = 0;
3166 return ret;
3167 }
3168 payload->payload_state = DP_PAYLOAD_LOCAL;
3169 return 0;
3170 }
3171
3172 static int drm_dp_create_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
3173 struct drm_dp_mst_port *port,
3174 int id,
3175 struct drm_dp_payload *payload)
3176 {
3177 int ret;
3178 ret = drm_dp_payload_send_msg(mgr, port, id, port->vcpi.pbn);
3179 if (ret < 0)
3180 return ret;
3181 payload->payload_state = DP_PAYLOAD_REMOTE;
3182 return ret;
3183 }
3184
3185 static int drm_dp_destroy_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
3186 struct drm_dp_mst_port *port,
3187 int id,
3188 struct drm_dp_payload *payload)
3189 {
3190 DRM_DEBUG_KMS("\n");
3191 /* it's okay for these to fail */
3192 if (port) {
3193 drm_dp_payload_send_msg(mgr, port, id, 0);
3194 }
3195
3196 drm_dp_dpcd_write_payload(mgr, id, payload);
3197 payload->payload_state = DP_PAYLOAD_DELETE_LOCAL;
3198 return 0;
3199 }
3200
3201 static int drm_dp_destroy_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
3202 int id,
3203 struct drm_dp_payload *payload)
3204 {
3205 payload->payload_state = 0;
3206 return 0;
3207 }
3208
3209 /**
3210 * drm_dp_update_payload_part1() - Execute payload update part 1
3211 * @mgr: manager to use.
3212 *
3213 * This iterates over all proposed virtual channels, and tries to
3214 * allocate space in the link for them. For 0->slots transitions,
3215 * this step just writes the VCPI to the MST device. For slots->0
3216 * transitions, this writes the updated VCPIs and removes the
3217 * remote VC payloads.
3218 *
3219 * after calling this the driver should generate ACT and payload
3220 * packets.
3221 */
3222 int drm_dp_update_payload_part1(struct drm_dp_mst_topology_mgr *mgr)
3223 {
3224 struct drm_dp_payload req_payload;
3225 struct drm_dp_mst_port *port;
3226 int i, j;
3227 int cur_slots = 1;
3228
3229 mutex_lock(&mgr->payload_lock);
3230 for (i = 0; i < mgr->max_payloads; i++) {
3231 struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
3232 struct drm_dp_payload *payload = &mgr->payloads[i];
3233 bool put_port = false;
3234
3235 /* solve the current payloads - compare to the hw ones
3236 - update the hw view */
3237 req_payload.start_slot = cur_slots;
3238 if (vcpi) {
3239 port = container_of(vcpi, struct drm_dp_mst_port,
3240 vcpi);
3241
3242 /* Validated ports don't matter if we're releasing
3243 * VCPI
3244 */
3245 if (vcpi->num_slots) {
3246 port = drm_dp_mst_topology_get_port_validated(
3247 mgr, port);
3248 if (!port) {
3249 mutex_unlock(&mgr->payload_lock);
3250 return -EINVAL;
3251 }
3252 put_port = true;
3253 }
3254
3255 req_payload.num_slots = vcpi->num_slots;
3256 req_payload.vcpi = vcpi->vcpi;
3257 } else {
3258 port = NULL;
3259 req_payload.num_slots = 0;
3260 }
3261
3262 payload->start_slot = req_payload.start_slot;
3263 /* work out what is required to happen with this payload */
3264 if (payload->num_slots != req_payload.num_slots) {
3265
3266 /* need to push an update for this payload */
3267 if (req_payload.num_slots) {
3268 drm_dp_create_payload_step1(mgr, vcpi->vcpi,
3269 &req_payload);
3270 payload->num_slots = req_payload.num_slots;
3271 payload->vcpi = req_payload.vcpi;
3272
3273 } else if (payload->num_slots) {
3274 payload->num_slots = 0;
3275 drm_dp_destroy_payload_step1(mgr, port,
3276 payload->vcpi,
3277 payload);
3278 req_payload.payload_state =
3279 payload->payload_state;
3280 payload->start_slot = 0;
3281 }
3282 payload->payload_state = req_payload.payload_state;
3283 }
3284 cur_slots += req_payload.num_slots;
3285
3286 if (put_port)
3287 drm_dp_mst_topology_put_port(port);
3288 }
3289
3290 for (i = 0; i < mgr->max_payloads; /* do nothing */) {
3291 if (mgr->payloads[i].payload_state != DP_PAYLOAD_DELETE_LOCAL) {
3292 i++;
3293 continue;
3294 }
3295
3296 DRM_DEBUG_KMS("removing payload %d\n", i);
3297 for (j = i; j < mgr->max_payloads - 1; j++) {
3298 mgr->payloads[j] = mgr->payloads[j + 1];
3299 mgr->proposed_vcpis[j] = mgr->proposed_vcpis[j + 1];
3300
3301 if (mgr->proposed_vcpis[j] &&
3302 mgr->proposed_vcpis[j]->num_slots) {
3303 set_bit(j + 1, &mgr->payload_mask);
3304 } else {
3305 clear_bit(j + 1, &mgr->payload_mask);
3306 }
3307 }
3308
3309 memset(&mgr->payloads[mgr->max_payloads - 1], 0,
3310 sizeof(struct drm_dp_payload));
3311 mgr->proposed_vcpis[mgr->max_payloads - 1] = NULL;
3312 clear_bit(mgr->max_payloads, &mgr->payload_mask);
3313 }
3314 mutex_unlock(&mgr->payload_lock);
3315
3316 return 0;
3317 }
3318 EXPORT_SYMBOL(drm_dp_update_payload_part1);
3319
3320 /**
3321 * drm_dp_update_payload_part2() - Execute payload update part 2
3322 * @mgr: manager to use.
3323 *
3324 * This iterates over all proposed virtual channels, and tries to
3325 * allocate space in the link for them. For 0->slots transitions,
3326 * this step writes the remote VC payload commands. For slots->0
3327 * this just resets some internal state.
3328 */
3329 int drm_dp_update_payload_part2(struct drm_dp_mst_topology_mgr *mgr)
3330 {
3331 struct drm_dp_mst_port *port;
3332 int i;
3333 int ret = 0;
3334 mutex_lock(&mgr->payload_lock);
3335 for (i = 0; i < mgr->max_payloads; i++) {
3336
3337 if (!mgr->proposed_vcpis[i])
3338 continue;
3339
3340 port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
3341
3342 DRM_DEBUG_KMS("payload %d %d\n", i, mgr->payloads[i].payload_state);
3343 if (mgr->payloads[i].payload_state == DP_PAYLOAD_LOCAL) {
3344 ret = drm_dp_create_payload_step2(mgr, port, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
3345 } else if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) {
3346 ret = drm_dp_destroy_payload_step2(mgr, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
3347 }
3348 if (ret) {
3349 mutex_unlock(&mgr->payload_lock);
3350 return ret;
3351 }
3352 }
3353 mutex_unlock(&mgr->payload_lock);
3354 return 0;
3355 }
3356 EXPORT_SYMBOL(drm_dp_update_payload_part2);
3357
3358 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
3359 struct drm_dp_mst_port *port,
3360 int offset, int size, u8 *bytes)
3361 {
3362 int len;
3363 int ret = 0;
3364 struct drm_dp_sideband_msg_tx *txmsg;
3365 struct drm_dp_mst_branch *mstb;
3366
3367 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3368 if (!mstb)
3369 return -EINVAL;
3370
3371 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3372 if (!txmsg) {
3373 ret = -ENOMEM;
3374 goto fail_put;
3375 }
3376
3377 len = build_dpcd_read(txmsg, port->port_num, offset, size);
3378 txmsg->dst = port->parent;
3379
3380 drm_dp_queue_down_tx(mgr, txmsg);
3381
3382 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3383 if (ret < 0)
3384 goto fail_free;
3385
3386 /* DPCD read should never be NACKed */
3387 if (txmsg->reply.reply_type == 1) {
3388 DRM_ERROR("mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n",
3389 mstb, port->port_num, offset, size);
3390 ret = -EIO;
3391 goto fail_free;
3392 }
3393
3394 if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) {
3395 ret = -EPROTO;
3396 goto fail_free;
3397 }
3398
3399 ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes,
3400 size);
3401 memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret);
3402
3403 fail_free:
3404 kfree(txmsg);
3405 fail_put:
3406 drm_dp_mst_topology_put_mstb(mstb);
3407
3408 return ret;
3409 }
3410
3411 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
3412 struct drm_dp_mst_port *port,
3413 int offset, int size, u8 *bytes)
3414 {
3415 int len;
3416 int ret;
3417 struct drm_dp_sideband_msg_tx *txmsg;
3418 struct drm_dp_mst_branch *mstb;
3419
3420 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3421 if (!mstb)
3422 return -EINVAL;
3423
3424 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3425 if (!txmsg) {
3426 ret = -ENOMEM;
3427 goto fail_put;
3428 }
3429
3430 len = build_dpcd_write(txmsg, port->port_num, offset, size, bytes);
3431 txmsg->dst = mstb;
3432
3433 drm_dp_queue_down_tx(mgr, txmsg);
3434
3435 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3436 if (ret > 0) {
3437 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3438 ret = -EIO;
3439 else
3440 ret = 0;
3441 }
3442 kfree(txmsg);
3443 fail_put:
3444 drm_dp_mst_topology_put_mstb(mstb);
3445 return ret;
3446 }
3447
3448 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type)
3449 {
3450 struct drm_dp_sideband_msg_reply_body reply;
3451
3452 reply.reply_type = DP_SIDEBAND_REPLY_ACK;
3453 reply.req_type = req_type;
3454 drm_dp_encode_sideband_reply(&reply, msg);
3455 return 0;
3456 }
3457
3458 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr,
3459 struct drm_dp_mst_branch *mstb,
3460 int req_type, int seqno, bool broadcast)
3461 {
3462 struct drm_dp_sideband_msg_tx *txmsg;
3463
3464 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3465 if (!txmsg)
3466 return -ENOMEM;
3467
3468 txmsg->dst = mstb;
3469 txmsg->seqno = seqno;
3470 drm_dp_encode_up_ack_reply(txmsg, req_type);
3471
3472 mutex_lock(&mgr->qlock);
3473
3474 process_single_up_tx_qlock(mgr, txmsg);
3475
3476 mutex_unlock(&mgr->qlock);
3477
3478 kfree(txmsg);
3479 return 0;
3480 }
3481
3482 static int drm_dp_get_vc_payload_bw(u8 dp_link_bw, u8 dp_link_count)
3483 {
3484 if (dp_link_bw == 0 || dp_link_count == 0)
3485 DRM_DEBUG_KMS("invalid link bandwidth in DPCD: %x (link count: %d)\n",
3486 dp_link_bw, dp_link_count);
3487
3488 return dp_link_bw * dp_link_count / 2;
3489 }
3490
3491 /**
3492 * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager
3493 * @mgr: manager to set state for
3494 * @mst_state: true to enable MST on this connector - false to disable.
3495 *
3496 * This is called by the driver when it detects an MST capable device plugged
3497 * into a DP MST capable port, or when a DP MST capable device is unplugged.
3498 */
3499 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state)
3500 {
3501 int ret = 0;
3502 int i = 0;
3503 struct drm_dp_mst_branch *mstb = NULL;
3504
3505 mutex_lock(&mgr->lock);
3506 if (mst_state == mgr->mst_state)
3507 goto out_unlock;
3508
3509 mgr->mst_state = mst_state;
3510 /* set the device into MST mode */
3511 if (mst_state) {
3512 WARN_ON(mgr->mst_primary);
3513
3514 /* get dpcd info */
3515 ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd, DP_RECEIVER_CAP_SIZE);
3516 if (ret != DP_RECEIVER_CAP_SIZE) {
3517 DRM_DEBUG_KMS("failed to read DPCD\n");
3518 goto out_unlock;
3519 }
3520
3521 mgr->pbn_div = drm_dp_get_vc_payload_bw(mgr->dpcd[1],
3522 mgr->dpcd[2] & DP_MAX_LANE_COUNT_MASK);
3523 if (mgr->pbn_div == 0) {
3524 ret = -EINVAL;
3525 goto out_unlock;
3526 }
3527
3528 /* add initial branch device at LCT 1 */
3529 mstb = drm_dp_add_mst_branch_device(1, NULL);
3530 if (mstb == NULL) {
3531 ret = -ENOMEM;
3532 goto out_unlock;
3533 }
3534 mstb->mgr = mgr;
3535
3536 /* give this the main reference */
3537 mgr->mst_primary = mstb;
3538 drm_dp_mst_topology_get_mstb(mgr->mst_primary);
3539
3540 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3541 DP_MST_EN | DP_UP_REQ_EN | DP_UPSTREAM_IS_SRC);
3542 if (ret < 0) {
3543 goto out_unlock;
3544 }
3545
3546 {
3547 struct drm_dp_payload reset_pay;
3548 reset_pay.start_slot = 0;
3549 reset_pay.num_slots = 0x3f;
3550 drm_dp_dpcd_write_payload(mgr, 0, &reset_pay);
3551 }
3552
3553 queue_work(system_long_wq, &mgr->work);
3554
3555 ret = 0;
3556 } else {
3557 /* disable MST on the device */
3558 mstb = mgr->mst_primary;
3559 mgr->mst_primary = NULL;
3560 /* this can fail if the device is gone */
3561 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0);
3562 ret = 0;
3563 mutex_lock(&mgr->payload_lock);
3564 memset(mgr->payloads, 0, mgr->max_payloads * sizeof(struct drm_dp_payload));
3565 mgr->payload_mask = 0;
3566 set_bit(0, &mgr->payload_mask);
3567 for (i = 0; i < mgr->max_payloads; i++) {
3568 struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
3569
3570 if (vcpi) {
3571 vcpi->vcpi = 0;
3572 vcpi->num_slots = 0;
3573 }
3574 mgr->proposed_vcpis[i] = NULL;
3575 }
3576 mgr->vcpi_mask = 0;
3577 mutex_unlock(&mgr->payload_lock);
3578
3579 mgr->payload_id_table_cleared = false;
3580 }
3581
3582 out_unlock:
3583 mutex_unlock(&mgr->lock);
3584 if (mstb)
3585 drm_dp_mst_topology_put_mstb(mstb);
3586 return ret;
3587
3588 }
3589 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst);
3590
3591 static void
3592 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb)
3593 {
3594 struct drm_dp_mst_port *port;
3595
3596 /* The link address will need to be re-sent on resume */
3597 mstb->link_address_sent = false;
3598
3599 list_for_each_entry(port, &mstb->ports, next) {
3600 /* The PBN for each port will also need to be re-probed */
3601 port->available_pbn = 0;
3602
3603 if (port->mstb)
3604 drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb);
3605 }
3606 }
3607
3608 /**
3609 * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager
3610 * @mgr: manager to suspend
3611 *
3612 * This function tells the MST device that we can't handle UP messages
3613 * anymore. This should stop it from sending any since we are suspended.
3614 */
3615 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr)
3616 {
3617 mutex_lock(&mgr->lock);
3618 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3619 DP_MST_EN | DP_UPSTREAM_IS_SRC);
3620 mutex_unlock(&mgr->lock);
3621 flush_work(&mgr->up_req_work);
3622 flush_work(&mgr->work);
3623 flush_work(&mgr->delayed_destroy_work);
3624
3625 mutex_lock(&mgr->lock);
3626 if (mgr->mst_state && mgr->mst_primary)
3627 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary);
3628 mutex_unlock(&mgr->lock);
3629 }
3630 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend);
3631
3632 /**
3633 * drm_dp_mst_topology_mgr_resume() - resume the MST manager
3634 * @mgr: manager to resume
3635 * @sync: whether or not to perform topology reprobing synchronously
3636 *
3637 * This will fetch DPCD and see if the device is still there,
3638 * if it is, it will rewrite the MSTM control bits, and return.
3639 *
3640 * If the device fails this returns -1, and the driver should do
3641 * a full MST reprobe, in case we were undocked.
3642 *
3643 * During system resume (where it is assumed that the driver will be calling
3644 * drm_atomic_helper_resume()) this function should be called beforehand with
3645 * @sync set to true. In contexts like runtime resume where the driver is not
3646 * expected to be calling drm_atomic_helper_resume(), this function should be
3647 * called with @sync set to false in order to avoid deadlocking.
3648 *
3649 * Returns: -1 if the MST topology was removed while we were suspended, 0
3650 * otherwise.
3651 */
3652 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr,
3653 bool sync)
3654 {
3655 int ret;
3656 u8 guid[16];
3657
3658 mutex_lock(&mgr->lock);
3659 if (!mgr->mst_primary)
3660 goto out_fail;
3661
3662 ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd,
3663 DP_RECEIVER_CAP_SIZE);
3664 if (ret != DP_RECEIVER_CAP_SIZE) {
3665 DRM_DEBUG_KMS("dpcd read failed - undocked during suspend?\n");
3666 goto out_fail;
3667 }
3668
3669 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3670 DP_MST_EN |
3671 DP_UP_REQ_EN |
3672 DP_UPSTREAM_IS_SRC);
3673 if (ret < 0) {
3674 DRM_DEBUG_KMS("mst write failed - undocked during suspend?\n");
3675 goto out_fail;
3676 }
3677
3678 /* Some hubs forget their guids after they resume */
3679 ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16);
3680 if (ret != 16) {
3681 DRM_DEBUG_KMS("dpcd read failed - undocked during suspend?\n");
3682 goto out_fail;
3683 }
3684 drm_dp_check_mstb_guid(mgr->mst_primary, guid);
3685
3686 /*
3687 * For the final step of resuming the topology, we need to bring the
3688 * state of our in-memory topology back into sync with reality. So,
3689 * restart the probing process as if we're probing a new hub
3690 */
3691 queue_work(system_long_wq, &mgr->work);
3692 mutex_unlock(&mgr->lock);
3693
3694 if (sync) {
3695 DRM_DEBUG_KMS("Waiting for link probe work to finish re-syncing topology...\n");
3696 flush_work(&mgr->work);
3697 }
3698
3699 return 0;
3700
3701 out_fail:
3702 mutex_unlock(&mgr->lock);
3703 return -1;
3704 }
3705 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume);
3706
3707 static bool drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up)
3708 {
3709 int len;
3710 u8 replyblock[32];
3711 int replylen, origlen, curreply;
3712 int ret;
3713 struct drm_dp_sideband_msg_rx *msg;
3714 int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : DP_SIDEBAND_MSG_DOWN_REP_BASE;
3715 msg = up ? &mgr->up_req_recv : &mgr->down_rep_recv;
3716
3717 len = min(mgr->max_dpcd_transaction_bytes, 16);
3718 ret = drm_dp_dpcd_read(mgr->aux, basereg,
3719 replyblock, len);
3720 if (ret != len) {
3721 DRM_DEBUG_KMS("failed to read DPCD down rep %d %d\n", len, ret);
3722 return false;
3723 }
3724 ret = drm_dp_sideband_msg_build(msg, replyblock, len, true);
3725 if (!ret) {
3726 DRM_DEBUG_KMS("sideband msg build failed %d\n", replyblock[0]);
3727 return false;
3728 }
3729 replylen = msg->curchunk_len + msg->curchunk_hdrlen;
3730
3731 origlen = replylen;
3732 replylen -= len;
3733 curreply = len;
3734 while (replylen > 0) {
3735 len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16);
3736 ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply,
3737 replyblock, len);
3738 if (ret != len) {
3739 DRM_DEBUG_KMS("failed to read a chunk (len %d, ret %d)\n",
3740 len, ret);
3741 return false;
3742 }
3743
3744 ret = drm_dp_sideband_msg_build(msg, replyblock, len, false);
3745 if (!ret) {
3746 DRM_DEBUG_KMS("failed to build sideband msg\n");
3747 return false;
3748 }
3749
3750 curreply += len;
3751 replylen -= len;
3752 }
3753 return true;
3754 }
3755
3756 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr)
3757 {
3758 struct drm_dp_sideband_msg_tx *txmsg;
3759 struct drm_dp_mst_branch *mstb;
3760 struct drm_dp_sideband_msg_hdr *hdr = &mgr->down_rep_recv.initial_hdr;
3761 int slot = -1;
3762
3763 if (!drm_dp_get_one_sb_msg(mgr, false))
3764 goto clear_down_rep_recv;
3765
3766 if (!mgr->down_rep_recv.have_eomt)
3767 return 0;
3768
3769 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad);
3770 if (!mstb) {
3771 DRM_DEBUG_KMS("Got MST reply from unknown device %d\n",
3772 hdr->lct);
3773 goto clear_down_rep_recv;
3774 }
3775
3776 /* find the message */
3777 slot = hdr->seqno;
3778 mutex_lock(&mgr->qlock);
3779 txmsg = mstb->tx_slots[slot];
3780 /* remove from slots */
3781 mutex_unlock(&mgr->qlock);
3782
3783 if (!txmsg) {
3784 DRM_DEBUG_KMS("Got MST reply with no msg %p %d %d %02x %02x\n",
3785 mstb, hdr->seqno, hdr->lct, hdr->rad[0],
3786 mgr->down_rep_recv.msg[0]);
3787 goto no_msg;
3788 }
3789
3790 drm_dp_sideband_parse_reply(&mgr->down_rep_recv, &txmsg->reply);
3791
3792 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3793 DRM_DEBUG_KMS("Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n",
3794 txmsg->reply.req_type,
3795 drm_dp_mst_req_type_str(txmsg->reply.req_type),
3796 txmsg->reply.u.nak.reason,
3797 drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason),
3798 txmsg->reply.u.nak.nak_data);
3799
3800 memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
3801 drm_dp_mst_topology_put_mstb(mstb);
3802
3803 mutex_lock(&mgr->qlock);
3804 txmsg->state = DRM_DP_SIDEBAND_TX_RX;
3805 mstb->tx_slots[slot] = NULL;
3806 mgr->is_waiting_for_dwn_reply = false;
3807 mutex_unlock(&mgr->qlock);
3808
3809 wake_up_all(&mgr->tx_waitq);
3810
3811 return 0;
3812
3813 no_msg:
3814 drm_dp_mst_topology_put_mstb(mstb);
3815 clear_down_rep_recv:
3816 mutex_lock(&mgr->qlock);
3817 mgr->is_waiting_for_dwn_reply = false;
3818 mutex_unlock(&mgr->qlock);
3819 memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
3820
3821 return 0;
3822 }
3823
3824 static inline bool
3825 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr,
3826 struct drm_dp_pending_up_req *up_req)
3827 {
3828 struct drm_dp_mst_branch *mstb = NULL;
3829 struct drm_dp_sideband_msg_req_body *msg = &up_req->msg;
3830 struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr;
3831 bool hotplug = false;
3832
3833 if (hdr->broadcast) {
3834 const u8 *guid = NULL;
3835
3836 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY)
3837 guid = msg->u.conn_stat.guid;
3838 else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY)
3839 guid = msg->u.resource_stat.guid;
3840
3841 if (guid)
3842 mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid);
3843 } else {
3844 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad);
3845 }
3846
3847 if (!mstb) {
3848 DRM_DEBUG_KMS("Got MST reply from unknown device %d\n",
3849 hdr->lct);
3850 return false;
3851 }
3852
3853 /* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */
3854 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) {
3855 drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat);
3856 hotplug = true;
3857 }
3858
3859 drm_dp_mst_topology_put_mstb(mstb);
3860 return hotplug;
3861 }
3862
3863 static void drm_dp_mst_up_req_work(struct work_struct *work)
3864 {
3865 struct drm_dp_mst_topology_mgr *mgr =
3866 container_of(work, struct drm_dp_mst_topology_mgr,
3867 up_req_work);
3868 struct drm_dp_pending_up_req *up_req;
3869 bool send_hotplug = false;
3870
3871 mutex_lock(&mgr->probe_lock);
3872 while (true) {
3873 mutex_lock(&mgr->up_req_lock);
3874 up_req = list_first_entry_or_null(&mgr->up_req_list,
3875 struct drm_dp_pending_up_req,
3876 next);
3877 if (up_req)
3878 list_del(&up_req->next);
3879 mutex_unlock(&mgr->up_req_lock);
3880
3881 if (!up_req)
3882 break;
3883
3884 send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req);
3885 kfree(up_req);
3886 }
3887 mutex_unlock(&mgr->probe_lock);
3888
3889 if (send_hotplug)
3890 drm_kms_helper_hotplug_event(mgr->dev);
3891 }
3892
3893 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr)
3894 {
3895 struct drm_dp_sideband_msg_hdr *hdr = &mgr->up_req_recv.initial_hdr;
3896 struct drm_dp_pending_up_req *up_req;
3897 bool seqno;
3898
3899 if (!drm_dp_get_one_sb_msg(mgr, true))
3900 goto out;
3901
3902 if (!mgr->up_req_recv.have_eomt)
3903 return 0;
3904
3905 up_req = kzalloc(sizeof(*up_req), GFP_KERNEL);
3906 if (!up_req) {
3907 DRM_ERROR("Not enough memory to process MST up req\n");
3908 return -ENOMEM;
3909 }
3910 INIT_LIST_HEAD(&up_req->next);
3911
3912 seqno = hdr->seqno;
3913 drm_dp_sideband_parse_req(&mgr->up_req_recv, &up_req->msg);
3914
3915 if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY &&
3916 up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) {
3917 DRM_DEBUG_KMS("Received unknown up req type, ignoring: %x\n",
3918 up_req->msg.req_type);
3919 kfree(up_req);
3920 goto out;
3921 }
3922
3923 drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type,
3924 seqno, false);
3925
3926 if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) {
3927 const struct drm_dp_connection_status_notify *conn_stat =
3928 &up_req->msg.u.conn_stat;
3929
3930 DRM_DEBUG_KMS("Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n",
3931 conn_stat->port_number,
3932 conn_stat->legacy_device_plug_status,
3933 conn_stat->displayport_device_plug_status,
3934 conn_stat->message_capability_status,
3935 conn_stat->input_port,
3936 conn_stat->peer_device_type);
3937 } else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) {
3938 const struct drm_dp_resource_status_notify *res_stat =
3939 &up_req->msg.u.resource_stat;
3940
3941 DRM_DEBUG_KMS("Got RSN: pn: %d avail_pbn %d\n",
3942 res_stat->port_number,
3943 res_stat->available_pbn);
3944 }
3945
3946 up_req->hdr = *hdr;
3947 mutex_lock(&mgr->up_req_lock);
3948 list_add_tail(&up_req->next, &mgr->up_req_list);
3949 mutex_unlock(&mgr->up_req_lock);
3950 queue_work(system_long_wq, &mgr->up_req_work);
3951
3952 out:
3953 memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
3954 return 0;
3955 }
3956
3957 /**
3958 * drm_dp_mst_hpd_irq() - MST hotplug IRQ notify
3959 * @mgr: manager to notify irq for.
3960 * @esi: 4 bytes from SINK_COUNT_ESI
3961 * @handled: whether the hpd interrupt was consumed or not
3962 *
3963 * This should be called from the driver when it detects a short IRQ,
3964 * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The
3965 * topology manager will process the sideband messages received as a result
3966 * of this.
3967 */
3968 int drm_dp_mst_hpd_irq(struct drm_dp_mst_topology_mgr *mgr, u8 *esi, bool *handled)
3969 {
3970 int ret = 0;
3971 int sc;
3972 *handled = false;
3973 sc = esi[0] & 0x3f;
3974
3975 if (sc != mgr->sink_count) {
3976 mgr->sink_count = sc;
3977 *handled = true;
3978 }
3979
3980 if (esi[1] & DP_DOWN_REP_MSG_RDY) {
3981 ret = drm_dp_mst_handle_down_rep(mgr);
3982 *handled = true;
3983 }
3984
3985 if (esi[1] & DP_UP_REQ_MSG_RDY) {
3986 ret |= drm_dp_mst_handle_up_req(mgr);
3987 *handled = true;
3988 }
3989
3990 drm_dp_mst_kick_tx(mgr);
3991 return ret;
3992 }
3993 EXPORT_SYMBOL(drm_dp_mst_hpd_irq);
3994
3995 /**
3996 * drm_dp_mst_detect_port() - get connection status for an MST port
3997 * @connector: DRM connector for this port
3998 * @ctx: The acquisition context to use for grabbing locks
3999 * @mgr: manager for this port
4000 * @port: pointer to a port
4001 *
4002 * This returns the current connection state for a port.
4003 */
4004 int
4005 drm_dp_mst_detect_port(struct drm_connector *connector,
4006 struct drm_modeset_acquire_ctx *ctx,
4007 struct drm_dp_mst_topology_mgr *mgr,
4008 struct drm_dp_mst_port *port)
4009 {
4010 int ret;
4011
4012 /* we need to search for the port in the mgr in case it's gone */
4013 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4014 if (!port)
4015 return connector_status_disconnected;
4016
4017 ret = drm_modeset_lock(&mgr->base.lock, ctx);
4018 if (ret)
4019 goto out;
4020
4021 ret = connector_status_disconnected;
4022
4023 if (!port->ddps)
4024 goto out;
4025
4026 switch (port->pdt) {
4027 case DP_PEER_DEVICE_NONE:
4028 case DP_PEER_DEVICE_MST_BRANCHING:
4029 if (!port->mcs)
4030 ret = connector_status_connected;
4031 break;
4032
4033 case DP_PEER_DEVICE_SST_SINK:
4034 ret = connector_status_connected;
4035 /* for logical ports - cache the EDID */
4036 if (port->port_num >= 8 && !port->cached_edid) {
4037 port->cached_edid = drm_get_edid(connector, &port->aux.ddc);
4038 }
4039 break;
4040 case DP_PEER_DEVICE_DP_LEGACY_CONV:
4041 if (port->ldps)
4042 ret = connector_status_connected;
4043 break;
4044 }
4045 out:
4046 drm_dp_mst_topology_put_port(port);
4047 return ret;
4048 }
4049 EXPORT_SYMBOL(drm_dp_mst_detect_port);
4050
4051 /**
4052 * drm_dp_mst_port_has_audio() - Check whether port has audio capability or not
4053 * @mgr: manager for this port
4054 * @port: unverified pointer to a port.
4055 *
4056 * This returns whether the port supports audio or not.
4057 */
4058 bool drm_dp_mst_port_has_audio(struct drm_dp_mst_topology_mgr *mgr,
4059 struct drm_dp_mst_port *port)
4060 {
4061 bool ret = false;
4062
4063 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4064 if (!port)
4065 return ret;
4066 ret = port->has_audio;
4067 drm_dp_mst_topology_put_port(port);
4068 return ret;
4069 }
4070 EXPORT_SYMBOL(drm_dp_mst_port_has_audio);
4071
4072 /**
4073 * drm_dp_mst_get_edid() - get EDID for an MST port
4074 * @connector: toplevel connector to get EDID for
4075 * @mgr: manager for this port
4076 * @port: unverified pointer to a port.
4077 *
4078 * This returns an EDID for the port connected to a connector,
4079 * It validates the pointer still exists so the caller doesn't require a
4080 * reference.
4081 */
4082 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4083 {
4084 struct edid *edid = NULL;
4085
4086 /* we need to search for the port in the mgr in case it's gone */
4087 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4088 if (!port)
4089 return NULL;
4090
4091 if (port->cached_edid)
4092 edid = drm_edid_duplicate(port->cached_edid);
4093 else {
4094 edid = drm_get_edid(connector, &port->aux.ddc);
4095 }
4096 port->has_audio = drm_detect_monitor_audio(edid);
4097 drm_dp_mst_topology_put_port(port);
4098 return edid;
4099 }
4100 EXPORT_SYMBOL(drm_dp_mst_get_edid);
4101
4102 /**
4103 * drm_dp_find_vcpi_slots() - Find VCPI slots for this PBN value
4104 * @mgr: manager to use
4105 * @pbn: payload bandwidth to convert into slots.
4106 *
4107 * Calculate the number of VCPI slots that will be required for the given PBN
4108 * value. This function is deprecated, and should not be used in atomic
4109 * drivers.
4110 *
4111 * RETURNS:
4112 * The total slots required for this port, or error.
4113 */
4114 int drm_dp_find_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr,
4115 int pbn)
4116 {
4117 int num_slots;
4118
4119 num_slots = DIV_ROUND_UP(pbn, mgr->pbn_div);
4120
4121 /* max. time slots - one slot for MTP header */
4122 if (num_slots > 63)
4123 return -ENOSPC;
4124 return num_slots;
4125 }
4126 EXPORT_SYMBOL(drm_dp_find_vcpi_slots);
4127
4128 static int drm_dp_init_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4129 struct drm_dp_vcpi *vcpi, int pbn, int slots)
4130 {
4131 int ret;
4132
4133 /* max. time slots - one slot for MTP header */
4134 if (slots > 63)
4135 return -ENOSPC;
4136
4137 vcpi->pbn = pbn;
4138 vcpi->aligned_pbn = slots * mgr->pbn_div;
4139 vcpi->num_slots = slots;
4140
4141 ret = drm_dp_mst_assign_payload_id(mgr, vcpi);
4142 if (ret < 0)
4143 return ret;
4144 return 0;
4145 }
4146
4147 /**
4148 * drm_dp_atomic_find_vcpi_slots() - Find and add VCPI slots to the state
4149 * @state: global atomic state
4150 * @mgr: MST topology manager for the port
4151 * @port: port to find vcpi slots for
4152 * @pbn: bandwidth required for the mode in PBN
4153 * @pbn_div: divider for DSC mode that takes FEC into account
4154 *
4155 * Allocates VCPI slots to @port, replacing any previous VCPI allocations it
4156 * may have had. Any atomic drivers which support MST must call this function
4157 * in their &drm_encoder_helper_funcs.atomic_check() callback to change the
4158 * current VCPI allocation for the new state, but only when
4159 * &drm_crtc_state.mode_changed or &drm_crtc_state.connectors_changed is set
4160 * to ensure compatibility with userspace applications that still use the
4161 * legacy modesetting UAPI.
4162 *
4163 * Allocations set by this function are not checked against the bandwidth
4164 * restraints of @mgr until the driver calls drm_dp_mst_atomic_check().
4165 *
4166 * Additionally, it is OK to call this function multiple times on the same
4167 * @port as needed. It is not OK however, to call this function and
4168 * drm_dp_atomic_release_vcpi_slots() in the same atomic check phase.
4169 *
4170 * See also:
4171 * drm_dp_atomic_release_vcpi_slots()
4172 * drm_dp_mst_atomic_check()
4173 *
4174 * Returns:
4175 * Total slots in the atomic state assigned for this port, or a negative error
4176 * code if the port no longer exists
4177 */
4178 int drm_dp_atomic_find_vcpi_slots(struct drm_atomic_state *state,
4179 struct drm_dp_mst_topology_mgr *mgr,
4180 struct drm_dp_mst_port *port, int pbn,
4181 int pbn_div)
4182 {
4183 struct drm_dp_mst_topology_state *topology_state;
4184 struct drm_dp_vcpi_allocation *pos, *vcpi = NULL;
4185 int prev_slots, prev_bw, req_slots;
4186
4187 topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4188 if (IS_ERR(topology_state))
4189 return PTR_ERR(topology_state);
4190
4191 /* Find the current allocation for this port, if any */
4192 list_for_each_entry(pos, &topology_state->vcpis, next) {
4193 if (pos->port == port) {
4194 vcpi = pos;
4195 prev_slots = vcpi->vcpi;
4196 prev_bw = vcpi->pbn;
4197
4198 /*
4199 * This should never happen, unless the driver tries
4200 * releasing and allocating the same VCPI allocation,
4201 * which is an error
4202 */
4203 if (WARN_ON(!prev_slots)) {
4204 DRM_ERROR("cannot allocate and release VCPI on [MST PORT:%p] in the same state\n",
4205 port);
4206 return -EINVAL;
4207 }
4208
4209 break;
4210 }
4211 }
4212 if (!vcpi) {
4213 prev_slots = 0;
4214 prev_bw = 0;
4215 }
4216
4217 if (pbn_div <= 0)
4218 pbn_div = mgr->pbn_div;
4219
4220 req_slots = DIV_ROUND_UP(pbn, pbn_div);
4221
4222 DRM_DEBUG_ATOMIC("[CONNECTOR:%d:%s] [MST PORT:%p] VCPI %d -> %d\n",
4223 port->connector->base.id, port->connector->name,
4224 port, prev_slots, req_slots);
4225 DRM_DEBUG_ATOMIC("[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n",
4226 port->connector->base.id, port->connector->name,
4227 port, prev_bw, pbn);
4228
4229 /* Add the new allocation to the state */
4230 if (!vcpi) {
4231 vcpi = kzalloc(sizeof(*vcpi), GFP_KERNEL);
4232 if (!vcpi)
4233 return -ENOMEM;
4234
4235 drm_dp_mst_get_port_malloc(port);
4236 vcpi->port = port;
4237 list_add(&vcpi->next, &topology_state->vcpis);
4238 }
4239 vcpi->vcpi = req_slots;
4240 vcpi->pbn = pbn;
4241
4242 return req_slots;
4243 }
4244 EXPORT_SYMBOL(drm_dp_atomic_find_vcpi_slots);
4245
4246 /**
4247 * drm_dp_atomic_release_vcpi_slots() - Release allocated vcpi slots
4248 * @state: global atomic state
4249 * @mgr: MST topology manager for the port
4250 * @port: The port to release the VCPI slots from
4251 *
4252 * Releases any VCPI slots that have been allocated to a port in the atomic
4253 * state. Any atomic drivers which support MST must call this function in
4254 * their &drm_connector_helper_funcs.atomic_check() callback when the
4255 * connector will no longer have VCPI allocated (e.g. because its CRTC was
4256 * removed) when it had VCPI allocated in the previous atomic state.
4257 *
4258 * It is OK to call this even if @port has been removed from the system.
4259 * Additionally, it is OK to call this function multiple times on the same
4260 * @port as needed. It is not OK however, to call this function and
4261 * drm_dp_atomic_find_vcpi_slots() on the same @port in a single atomic check
4262 * phase.
4263 *
4264 * See also:
4265 * drm_dp_atomic_find_vcpi_slots()
4266 * drm_dp_mst_atomic_check()
4267 *
4268 * Returns:
4269 * 0 if all slots for this port were added back to
4270 * &drm_dp_mst_topology_state.avail_slots or negative error code
4271 */
4272 int drm_dp_atomic_release_vcpi_slots(struct drm_atomic_state *state,
4273 struct drm_dp_mst_topology_mgr *mgr,
4274 struct drm_dp_mst_port *port)
4275 {
4276 struct drm_dp_mst_topology_state *topology_state;
4277 struct drm_dp_vcpi_allocation *pos;
4278 bool found = false;
4279
4280 topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4281 if (IS_ERR(topology_state))
4282 return PTR_ERR(topology_state);
4283
4284 list_for_each_entry(pos, &topology_state->vcpis, next) {
4285 if (pos->port == port) {
4286 found = true;
4287 break;
4288 }
4289 }
4290 if (WARN_ON(!found)) {
4291 DRM_ERROR("no VCPI for [MST PORT:%p] found in mst state %p\n",
4292 port, &topology_state->base);
4293 return -EINVAL;
4294 }
4295
4296 DRM_DEBUG_ATOMIC("[MST PORT:%p] VCPI %d -> 0\n", port, pos->vcpi);
4297 if (pos->vcpi) {
4298 drm_dp_mst_put_port_malloc(port);
4299 pos->vcpi = 0;
4300 }
4301
4302 return 0;
4303 }
4304 EXPORT_SYMBOL(drm_dp_atomic_release_vcpi_slots);
4305
4306 /**
4307 * drm_dp_mst_allocate_vcpi() - Allocate a virtual channel
4308 * @mgr: manager for this port
4309 * @port: port to allocate a virtual channel for.
4310 * @pbn: payload bandwidth number to request
4311 * @slots: returned number of slots for this PBN.
4312 */
4313 bool drm_dp_mst_allocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4314 struct drm_dp_mst_port *port, int pbn, int slots)
4315 {
4316 int ret;
4317
4318 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4319 if (!port)
4320 return false;
4321
4322 if (slots < 0)
4323 return false;
4324
4325 if (port->vcpi.vcpi > 0) {
4326 DRM_DEBUG_KMS("payload: vcpi %d already allocated for pbn %d - requested pbn %d\n",
4327 port->vcpi.vcpi, port->vcpi.pbn, pbn);
4328 if (pbn == port->vcpi.pbn) {
4329 drm_dp_mst_topology_put_port(port);
4330 return true;
4331 }
4332 }
4333
4334 ret = drm_dp_init_vcpi(mgr, &port->vcpi, pbn, slots);
4335 if (ret) {
4336 DRM_DEBUG_KMS("failed to init vcpi slots=%d max=63 ret=%d\n",
4337 DIV_ROUND_UP(pbn, mgr->pbn_div), ret);
4338 goto out;
4339 }
4340 DRM_DEBUG_KMS("initing vcpi for pbn=%d slots=%d\n",
4341 pbn, port->vcpi.num_slots);
4342
4343 /* Keep port allocated until its payload has been removed */
4344 drm_dp_mst_get_port_malloc(port);
4345 drm_dp_mst_topology_put_port(port);
4346 return true;
4347 out:
4348 return false;
4349 }
4350 EXPORT_SYMBOL(drm_dp_mst_allocate_vcpi);
4351
4352 int drm_dp_mst_get_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4353 {
4354 int slots = 0;
4355 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4356 if (!port)
4357 return slots;
4358
4359 slots = port->vcpi.num_slots;
4360 drm_dp_mst_topology_put_port(port);
4361 return slots;
4362 }
4363 EXPORT_SYMBOL(drm_dp_mst_get_vcpi_slots);
4364
4365 /**
4366 * drm_dp_mst_reset_vcpi_slots() - Reset number of slots to 0 for VCPI
4367 * @mgr: manager for this port
4368 * @port: unverified pointer to a port.
4369 *
4370 * This just resets the number of slots for the ports VCPI for later programming.
4371 */
4372 void drm_dp_mst_reset_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4373 {
4374 /*
4375 * A port with VCPI will remain allocated until its VCPI is
4376 * released, no verified ref needed
4377 */
4378
4379 port->vcpi.num_slots = 0;
4380 }
4381 EXPORT_SYMBOL(drm_dp_mst_reset_vcpi_slots);
4382
4383 /**
4384 * drm_dp_mst_deallocate_vcpi() - deallocate a VCPI
4385 * @mgr: manager for this port
4386 * @port: port to deallocate vcpi for
4387 *
4388 * This can be called unconditionally, regardless of whether
4389 * drm_dp_mst_allocate_vcpi() succeeded or not.
4390 */
4391 void drm_dp_mst_deallocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4392 struct drm_dp_mst_port *port)
4393 {
4394 if (!port->vcpi.vcpi)
4395 return;
4396
4397 drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi);
4398 port->vcpi.num_slots = 0;
4399 port->vcpi.pbn = 0;
4400 port->vcpi.aligned_pbn = 0;
4401 port->vcpi.vcpi = 0;
4402 drm_dp_mst_put_port_malloc(port);
4403 }
4404 EXPORT_SYMBOL(drm_dp_mst_deallocate_vcpi);
4405
4406 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
4407 int id, struct drm_dp_payload *payload)
4408 {
4409 u8 payload_alloc[3], status;
4410 int ret;
4411 int retries = 0;
4412
4413 drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
4414 DP_PAYLOAD_TABLE_UPDATED);
4415
4416 payload_alloc[0] = id;
4417 payload_alloc[1] = payload->start_slot;
4418 payload_alloc[2] = payload->num_slots;
4419
4420 ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
4421 if (ret != 3) {
4422 DRM_DEBUG_KMS("failed to write payload allocation %d\n", ret);
4423 goto fail;
4424 }
4425
4426 retry:
4427 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4428 if (ret < 0) {
4429 DRM_DEBUG_KMS("failed to read payload table status %d\n", ret);
4430 goto fail;
4431 }
4432
4433 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
4434 retries++;
4435 if (retries < 20) {
4436 usleep_range(10000, 20000);
4437 goto retry;
4438 }
4439 DRM_DEBUG_KMS("status not set after read payload table status %d\n", status);
4440 ret = -EINVAL;
4441 goto fail;
4442 }
4443 ret = 0;
4444 fail:
4445 return ret;
4446 }
4447
4448
4449 /**
4450 * drm_dp_check_act_status() - Check ACT handled status.
4451 * @mgr: manager to use
4452 *
4453 * Check the payload status bits in the DPCD for ACT handled completion.
4454 */
4455 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr)
4456 {
4457 u8 status;
4458 int ret;
4459 int count = 0;
4460
4461 do {
4462 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4463
4464 if (ret < 0) {
4465 DRM_DEBUG_KMS("failed to read payload table status %d\n", ret);
4466 goto fail;
4467 }
4468
4469 if (status & DP_PAYLOAD_ACT_HANDLED)
4470 break;
4471 count++;
4472 udelay(100);
4473
4474 } while (count < 30);
4475
4476 if (!(status & DP_PAYLOAD_ACT_HANDLED)) {
4477 DRM_DEBUG_KMS("failed to get ACT bit %d after %d retries\n", status, count);
4478 ret = -EINVAL;
4479 goto fail;
4480 }
4481 return 0;
4482 fail:
4483 return ret;
4484 }
4485 EXPORT_SYMBOL(drm_dp_check_act_status);
4486
4487 /**
4488 * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode.
4489 * @clock: dot clock for the mode
4490 * @bpp: bpp for the mode.
4491 * @dsc: DSC mode. If true, bpp has units of 1/16 of a bit per pixel
4492 *
4493 * This uses the formula in the spec to calculate the PBN value for a mode.
4494 */
4495 int drm_dp_calc_pbn_mode(int clock, int bpp, bool dsc)
4496 {
4497 /*
4498 * margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006
4499 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on
4500 * common multiplier to render an integer PBN for all link rate/lane
4501 * counts combinations
4502 * calculate
4503 * peak_kbps *= (1006/1000)
4504 * peak_kbps *= (64/54)
4505 * peak_kbps *= 8 convert to bytes
4506 *
4507 * If the bpp is in units of 1/16, further divide by 16. Put this
4508 * factor in the numerator rather than the denominator to avoid
4509 * integer overflow
4510 */
4511
4512 if (dsc)
4513 return DIV_ROUND_UP_ULL(mul_u32_u32(clock * (bpp / 16), 64 * 1006),
4514 8 * 54 * 1000 * 1000);
4515
4516 return DIV_ROUND_UP_ULL(mul_u32_u32(clock * bpp, 64 * 1006),
4517 8 * 54 * 1000 * 1000);
4518 }
4519 EXPORT_SYMBOL(drm_dp_calc_pbn_mode);
4520
4521 /* we want to kick the TX after we've ack the up/down IRQs. */
4522 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr)
4523 {
4524 queue_work(system_long_wq, &mgr->tx_work);
4525 }
4526
4527 static void drm_dp_mst_dump_mstb(struct seq_file *m,
4528 struct drm_dp_mst_branch *mstb)
4529 {
4530 struct drm_dp_mst_port *port;
4531 int tabs = mstb->lct;
4532 char prefix[10];
4533 int i;
4534
4535 for (i = 0; i < tabs; i++)
4536 prefix[i] = '\t';
4537 prefix[i] = '\0';
4538
4539 seq_printf(m, "%smst: %p, %d\n", prefix, mstb, mstb->num_ports);
4540 list_for_each_entry(port, &mstb->ports, next) {
4541 seq_printf(m, "%sport: %d: input: %d: pdt: %d, ddps: %d ldps: %d, sdp: %d/%d, %p, conn: %p\n", prefix, port->port_num, port->input, port->pdt, port->ddps, port->ldps, port->num_sdp_streams, port->num_sdp_stream_sinks, port, port->connector);
4542 if (port->mstb)
4543 drm_dp_mst_dump_mstb(m, port->mstb);
4544 }
4545 }
4546
4547 #define DP_PAYLOAD_TABLE_SIZE 64
4548
4549 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
4550 char *buf)
4551 {
4552 int i;
4553
4554 for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) {
4555 if (drm_dp_dpcd_read(mgr->aux,
4556 DP_PAYLOAD_TABLE_UPDATE_STATUS + i,
4557 &buf[i], 16) != 16)
4558 return false;
4559 }
4560 return true;
4561 }
4562
4563 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr,
4564 struct drm_dp_mst_port *port, char *name,
4565 int namelen)
4566 {
4567 struct edid *mst_edid;
4568
4569 mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port);
4570 drm_edid_get_monitor_name(mst_edid, name, namelen);
4571 }
4572
4573 /**
4574 * drm_dp_mst_dump_topology(): dump topology to seq file.
4575 * @m: seq_file to dump output to
4576 * @mgr: manager to dump current topology for.
4577 *
4578 * helper to dump MST topology to a seq file for debugfs.
4579 */
4580 void drm_dp_mst_dump_topology(struct seq_file *m,
4581 struct drm_dp_mst_topology_mgr *mgr)
4582 {
4583 int i;
4584 struct drm_dp_mst_port *port;
4585
4586 mutex_lock(&mgr->lock);
4587 if (mgr->mst_primary)
4588 drm_dp_mst_dump_mstb(m, mgr->mst_primary);
4589
4590 /* dump VCPIs */
4591 mutex_unlock(&mgr->lock);
4592
4593 mutex_lock(&mgr->payload_lock);
4594 seq_printf(m, "vcpi: %lx %lx %d\n", mgr->payload_mask, mgr->vcpi_mask,
4595 mgr->max_payloads);
4596
4597 for (i = 0; i < mgr->max_payloads; i++) {
4598 if (mgr->proposed_vcpis[i]) {
4599 char name[14];
4600
4601 port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
4602 fetch_monitor_name(mgr, port, name, sizeof(name));
4603 seq_printf(m, "vcpi %d: %d %d %d sink name: %s\n", i,
4604 port->port_num, port->vcpi.vcpi,
4605 port->vcpi.num_slots,
4606 (*name != 0) ? name : "Unknown");
4607 } else
4608 seq_printf(m, "vcpi %d:unused\n", i);
4609 }
4610 for (i = 0; i < mgr->max_payloads; i++) {
4611 seq_printf(m, "payload %d: %d, %d, %d\n",
4612 i,
4613 mgr->payloads[i].payload_state,
4614 mgr->payloads[i].start_slot,
4615 mgr->payloads[i].num_slots);
4616
4617
4618 }
4619 mutex_unlock(&mgr->payload_lock);
4620
4621 mutex_lock(&mgr->lock);
4622 if (mgr->mst_primary) {
4623 u8 buf[DP_PAYLOAD_TABLE_SIZE];
4624 int ret;
4625
4626 ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, buf, DP_RECEIVER_CAP_SIZE);
4627 seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf);
4628 ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2);
4629 seq_printf(m, "faux/mst: %*ph\n", 2, buf);
4630 ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1);
4631 seq_printf(m, "mst ctrl: %*ph\n", 1, buf);
4632
4633 /* dump the standard OUI branch header */
4634 ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE);
4635 seq_printf(m, "branch oui: %*phN devid: ", 3, buf);
4636 for (i = 0x3; i < 0x8 && buf[i]; i++)
4637 seq_printf(m, "%c", buf[i]);
4638 seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n",
4639 buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]);
4640 if (dump_dp_payload_table(mgr, buf))
4641 seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf);
4642 }
4643
4644 mutex_unlock(&mgr->lock);
4645
4646 }
4647 EXPORT_SYMBOL(drm_dp_mst_dump_topology);
4648
4649 static void drm_dp_tx_work(struct work_struct *work)
4650 {
4651 struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work);
4652
4653 mutex_lock(&mgr->qlock);
4654 if (!list_empty(&mgr->tx_msg_downq) && !mgr->is_waiting_for_dwn_reply)
4655 process_single_down_tx_qlock(mgr);
4656 mutex_unlock(&mgr->qlock);
4657 }
4658
4659 static inline void
4660 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port)
4661 {
4662 if (port->connector)
4663 port->mgr->cbs->destroy_connector(port->mgr, port->connector);
4664
4665 drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs);
4666 drm_dp_mst_put_port_malloc(port);
4667 }
4668
4669 static inline void
4670 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb)
4671 {
4672 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
4673 struct drm_dp_mst_port *port, *tmp;
4674 bool wake_tx = false;
4675
4676 mutex_lock(&mgr->lock);
4677 list_for_each_entry_safe(port, tmp, &mstb->ports, next) {
4678 list_del(&port->next);
4679 drm_dp_mst_topology_put_port(port);
4680 }
4681 mutex_unlock(&mgr->lock);
4682
4683 /* drop any tx slots msg */
4684 mutex_lock(&mstb->mgr->qlock);
4685 if (mstb->tx_slots[0]) {
4686 mstb->tx_slots[0]->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
4687 mstb->tx_slots[0] = NULL;
4688 wake_tx = true;
4689 }
4690 if (mstb->tx_slots[1]) {
4691 mstb->tx_slots[1]->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
4692 mstb->tx_slots[1] = NULL;
4693 wake_tx = true;
4694 }
4695 mutex_unlock(&mstb->mgr->qlock);
4696
4697 if (wake_tx)
4698 wake_up_all(&mstb->mgr->tx_waitq);
4699
4700 drm_dp_mst_put_mstb_malloc(mstb);
4701 }
4702
4703 static void drm_dp_delayed_destroy_work(struct work_struct *work)
4704 {
4705 struct drm_dp_mst_topology_mgr *mgr =
4706 container_of(work, struct drm_dp_mst_topology_mgr,
4707 delayed_destroy_work);
4708 bool send_hotplug = false, go_again;
4709
4710 /*
4711 * Not a regular list traverse as we have to drop the destroy
4712 * connector lock before destroying the mstb/port, to avoid AB->BA
4713 * ordering between this lock and the config mutex.
4714 */
4715 do {
4716 go_again = false;
4717
4718 for (;;) {
4719 struct drm_dp_mst_branch *mstb;
4720
4721 mutex_lock(&mgr->delayed_destroy_lock);
4722 mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list,
4723 struct drm_dp_mst_branch,
4724 destroy_next);
4725 if (mstb)
4726 list_del(&mstb->destroy_next);
4727 mutex_unlock(&mgr->delayed_destroy_lock);
4728
4729 if (!mstb)
4730 break;
4731
4732 drm_dp_delayed_destroy_mstb(mstb);
4733 go_again = true;
4734 }
4735
4736 for (;;) {
4737 struct drm_dp_mst_port *port;
4738
4739 mutex_lock(&mgr->delayed_destroy_lock);
4740 port = list_first_entry_or_null(&mgr->destroy_port_list,
4741 struct drm_dp_mst_port,
4742 next);
4743 if (port)
4744 list_del(&port->next);
4745 mutex_unlock(&mgr->delayed_destroy_lock);
4746
4747 if (!port)
4748 break;
4749
4750 drm_dp_delayed_destroy_port(port);
4751 send_hotplug = true;
4752 go_again = true;
4753 }
4754 } while (go_again);
4755
4756 if (send_hotplug)
4757 drm_kms_helper_hotplug_event(mgr->dev);
4758 }
4759
4760 static struct drm_private_state *
4761 drm_dp_mst_duplicate_state(struct drm_private_obj *obj)
4762 {
4763 struct drm_dp_mst_topology_state *state, *old_state =
4764 to_dp_mst_topology_state(obj->state);
4765 struct drm_dp_vcpi_allocation *pos, *vcpi;
4766
4767 state = kmemdup(old_state, sizeof(*state), GFP_KERNEL);
4768 if (!state)
4769 return NULL;
4770
4771 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
4772
4773 INIT_LIST_HEAD(&state->vcpis);
4774
4775 list_for_each_entry(pos, &old_state->vcpis, next) {
4776 /* Prune leftover freed VCPI allocations */
4777 if (!pos->vcpi)
4778 continue;
4779
4780 vcpi = kmemdup(pos, sizeof(*vcpi), GFP_KERNEL);
4781 if (!vcpi)
4782 goto fail;
4783
4784 drm_dp_mst_get_port_malloc(vcpi->port);
4785 list_add(&vcpi->next, &state->vcpis);
4786 }
4787
4788 return &state->base;
4789
4790 fail:
4791 list_for_each_entry_safe(pos, vcpi, &state->vcpis, next) {
4792 drm_dp_mst_put_port_malloc(pos->port);
4793 kfree(pos);
4794 }
4795 kfree(state);
4796
4797 return NULL;
4798 }
4799
4800 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj,
4801 struct drm_private_state *state)
4802 {
4803 struct drm_dp_mst_topology_state *mst_state =
4804 to_dp_mst_topology_state(state);
4805 struct drm_dp_vcpi_allocation *pos, *tmp;
4806
4807 list_for_each_entry_safe(pos, tmp, &mst_state->vcpis, next) {
4808 /* We only keep references to ports with non-zero VCPIs */
4809 if (pos->vcpi)
4810 drm_dp_mst_put_port_malloc(pos->port);
4811 kfree(pos);
4812 }
4813
4814 kfree(mst_state);
4815 }
4816
4817 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port,
4818 struct drm_dp_mst_branch *branch)
4819 {
4820 while (port->parent) {
4821 if (port->parent == branch)
4822 return true;
4823
4824 if (port->parent->port_parent)
4825 port = port->parent->port_parent;
4826 else
4827 break;
4828 }
4829 return false;
4830 }
4831
4832 static inline
4833 int drm_dp_mst_atomic_check_bw_limit(struct drm_dp_mst_branch *branch,
4834 struct drm_dp_mst_topology_state *mst_state)
4835 {
4836 struct drm_dp_mst_port *port;
4837 struct drm_dp_vcpi_allocation *vcpi;
4838 int pbn_limit = 0, pbn_used = 0;
4839
4840 list_for_each_entry(port, &branch->ports, next) {
4841 if (port->mstb)
4842 if (drm_dp_mst_atomic_check_bw_limit(port->mstb, mst_state))
4843 return -ENOSPC;
4844
4845 if (port->available_pbn > 0)
4846 pbn_limit = port->available_pbn;
4847 }
4848 DRM_DEBUG_ATOMIC("[MST BRANCH:%p] branch has %d PBN available\n",
4849 branch, pbn_limit);
4850
4851 list_for_each_entry(vcpi, &mst_state->vcpis, next) {
4852 if (!vcpi->pbn)
4853 continue;
4854
4855 if (drm_dp_mst_port_downstream_of_branch(vcpi->port, branch))
4856 pbn_used += vcpi->pbn;
4857 }
4858 DRM_DEBUG_ATOMIC("[MST BRANCH:%p] branch used %d PBN\n",
4859 branch, pbn_used);
4860
4861 if (pbn_used > pbn_limit) {
4862 DRM_DEBUG_ATOMIC("[MST BRANCH:%p] No available bandwidth\n",
4863 branch);
4864 return -ENOSPC;
4865 }
4866 return 0;
4867 }
4868
4869 static inline int
4870 drm_dp_mst_atomic_check_vcpi_alloc_limit(struct drm_dp_mst_topology_mgr *mgr,
4871 struct drm_dp_mst_topology_state *mst_state)
4872 {
4873 struct drm_dp_vcpi_allocation *vcpi;
4874 int avail_slots = 63, payload_count = 0;
4875
4876 list_for_each_entry(vcpi, &mst_state->vcpis, next) {
4877 /* Releasing VCPI is always OK-even if the port is gone */
4878 if (!vcpi->vcpi) {
4879 DRM_DEBUG_ATOMIC("[MST PORT:%p] releases all VCPI slots\n",
4880 vcpi->port);
4881 continue;
4882 }
4883
4884 DRM_DEBUG_ATOMIC("[MST PORT:%p] requires %d vcpi slots\n",
4885 vcpi->port, vcpi->vcpi);
4886
4887 avail_slots -= vcpi->vcpi;
4888 if (avail_slots < 0) {
4889 DRM_DEBUG_ATOMIC("[MST PORT:%p] not enough VCPI slots in mst state %p (avail=%d)\n",
4890 vcpi->port, mst_state,
4891 avail_slots + vcpi->vcpi);
4892 return -ENOSPC;
4893 }
4894
4895 if (++payload_count > mgr->max_payloads) {
4896 DRM_DEBUG_ATOMIC("[MST MGR:%p] state %p has too many payloads (max=%d)\n",
4897 mgr, mst_state, mgr->max_payloads);
4898 return -EINVAL;
4899 }
4900 }
4901 DRM_DEBUG_ATOMIC("[MST MGR:%p] mst state %p VCPI avail=%d used=%d\n",
4902 mgr, mst_state, avail_slots,
4903 63 - avail_slots);
4904
4905 return 0;
4906 }
4907
4908 /**
4909 * drm_dp_mst_add_affected_dsc_crtcs
4910 * @state: Pointer to the new struct drm_dp_mst_topology_state
4911 * @mgr: MST topology manager
4912 *
4913 * Whenever there is a change in mst topology
4914 * DSC configuration would have to be recalculated
4915 * therefore we need to trigger modeset on all affected
4916 * CRTCs in that topology
4917 *
4918 * See also:
4919 * drm_dp_mst_atomic_enable_dsc()
4920 */
4921 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr)
4922 {
4923 struct drm_dp_mst_topology_state *mst_state;
4924 struct drm_dp_vcpi_allocation *pos;
4925 struct drm_connector *connector;
4926 struct drm_connector_state *conn_state;
4927 struct drm_crtc *crtc;
4928 struct drm_crtc_state *crtc_state;
4929
4930 mst_state = drm_atomic_get_mst_topology_state(state, mgr);
4931
4932 if (IS_ERR(mst_state))
4933 return -EINVAL;
4934
4935 list_for_each_entry(pos, &mst_state->vcpis, next) {
4936
4937 connector = pos->port->connector;
4938
4939 if (!connector)
4940 return -EINVAL;
4941
4942 conn_state = drm_atomic_get_connector_state(state, connector);
4943
4944 if (IS_ERR(conn_state))
4945 return PTR_ERR(conn_state);
4946
4947 crtc = conn_state->crtc;
4948
4949 if (WARN_ON(!crtc))
4950 return -EINVAL;
4951
4952 if (!drm_dp_mst_dsc_aux_for_port(pos->port))
4953 continue;
4954
4955 crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc);
4956
4957 if (IS_ERR(crtc_state))
4958 return PTR_ERR(crtc_state);
4959
4960 DRM_DEBUG_ATOMIC("[MST MGR:%p] Setting mode_changed flag on CRTC %p\n",
4961 mgr, crtc);
4962
4963 crtc_state->mode_changed = true;
4964 }
4965 return 0;
4966 }
4967 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs);
4968
4969 /**
4970 * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off
4971 * @state: Pointer to the new drm_atomic_state
4972 * @port: Pointer to the affected MST Port
4973 * @pbn: Newly recalculated bw required for link with DSC enabled
4974 * @pbn_div: Divider to calculate correct number of pbn per slot
4975 * @enable: Boolean flag to enable or disable DSC on the port
4976 *
4977 * This function enables DSC on the given Port
4978 * by recalculating its vcpi from pbn provided
4979 * and sets dsc_enable flag to keep track of which
4980 * ports have DSC enabled
4981 *
4982 */
4983 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state,
4984 struct drm_dp_mst_port *port,
4985 int pbn, int pbn_div,
4986 bool enable)
4987 {
4988 struct drm_dp_mst_topology_state *mst_state;
4989 struct drm_dp_vcpi_allocation *pos;
4990 bool found = false;
4991 int vcpi = 0;
4992
4993 mst_state = drm_atomic_get_mst_topology_state(state, port->mgr);
4994
4995 if (IS_ERR(mst_state))
4996 return PTR_ERR(mst_state);
4997
4998 list_for_each_entry(pos, &mst_state->vcpis, next) {
4999 if (pos->port == port) {
5000 found = true;
5001 break;
5002 }
5003 }
5004
5005 if (!found) {
5006 DRM_DEBUG_ATOMIC("[MST PORT:%p] Couldn't find VCPI allocation in mst state %p\n",
5007 port, mst_state);
5008 return -EINVAL;
5009 }
5010
5011 if (pos->dsc_enabled == enable) {
5012 DRM_DEBUG_ATOMIC("[MST PORT:%p] DSC flag is already set to %d, returning %d VCPI slots\n",
5013 port, enable, pos->vcpi);
5014 vcpi = pos->vcpi;
5015 }
5016
5017 if (enable) {
5018 vcpi = drm_dp_atomic_find_vcpi_slots(state, port->mgr, port, pbn, pbn_div);
5019 DRM_DEBUG_ATOMIC("[MST PORT:%p] Enabling DSC flag, reallocating %d VCPI slots on the port\n",
5020 port, vcpi);
5021 if (vcpi < 0)
5022 return -EINVAL;
5023 }
5024
5025 pos->dsc_enabled = enable;
5026
5027 return vcpi;
5028 }
5029 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc);
5030 /**
5031 * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an
5032 * atomic update is valid
5033 * @state: Pointer to the new &struct drm_dp_mst_topology_state
5034 *
5035 * Checks the given topology state for an atomic update to ensure that it's
5036 * valid. This includes checking whether there's enough bandwidth to support
5037 * the new VCPI allocations in the atomic update.
5038 *
5039 * Any atomic drivers supporting DP MST must make sure to call this after
5040 * checking the rest of their state in their
5041 * &drm_mode_config_funcs.atomic_check() callback.
5042 *
5043 * See also:
5044 * drm_dp_atomic_find_vcpi_slots()
5045 * drm_dp_atomic_release_vcpi_slots()
5046 *
5047 * Returns:
5048 *
5049 * 0 if the new state is valid, negative error code otherwise.
5050 */
5051 int drm_dp_mst_atomic_check(struct drm_atomic_state *state)
5052 {
5053 struct drm_dp_mst_topology_mgr *mgr;
5054 struct drm_dp_mst_topology_state *mst_state;
5055 int i, ret = 0;
5056
5057 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
5058 if (!mgr->mst_state)
5059 continue;
5060
5061 ret = drm_dp_mst_atomic_check_vcpi_alloc_limit(mgr, mst_state);
5062 if (ret)
5063 break;
5064 ret = drm_dp_mst_atomic_check_bw_limit(mgr->mst_primary, mst_state);
5065 if (ret)
5066 break;
5067 }
5068
5069 return ret;
5070 }
5071 EXPORT_SYMBOL(drm_dp_mst_atomic_check);
5072
5073 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = {
5074 .atomic_duplicate_state = drm_dp_mst_duplicate_state,
5075 .atomic_destroy_state = drm_dp_mst_destroy_state,
5076 };
5077 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs);
5078
5079 /**
5080 * drm_atomic_get_mst_topology_state: get MST topology state
5081 *
5082 * @state: global atomic state
5083 * @mgr: MST topology manager, also the private object in this case
5084 *
5085 * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic
5086 * state vtable so that the private object state returned is that of a MST
5087 * topology object. Also, drm_atomic_get_private_obj_state() expects the caller
5088 * to care of the locking, so warn if don't hold the connection_mutex.
5089 *
5090 * RETURNS:
5091 *
5092 * The MST topology state or error pointer.
5093 */
5094 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state,
5095 struct drm_dp_mst_topology_mgr *mgr)
5096 {
5097 return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base));
5098 }
5099 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state);
5100
5101 /**
5102 * drm_dp_mst_topology_mgr_init - initialise a topology manager
5103 * @mgr: manager struct to initialise
5104 * @dev: device providing this structure - for i2c addition.
5105 * @aux: DP helper aux channel to talk to this device
5106 * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit
5107 * @max_payloads: maximum number of payloads this GPU can source
5108 * @conn_base_id: the connector object ID the MST device is connected to.
5109 *
5110 * Return 0 for success, or negative error code on failure
5111 */
5112 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr,
5113 struct drm_device *dev, struct drm_dp_aux *aux,
5114 int max_dpcd_transaction_bytes,
5115 int max_payloads, int conn_base_id)
5116 {
5117 struct drm_dp_mst_topology_state *mst_state;
5118
5119 mutex_init(&mgr->lock);
5120 mutex_init(&mgr->qlock);
5121 mutex_init(&mgr->payload_lock);
5122 mutex_init(&mgr->delayed_destroy_lock);
5123 mutex_init(&mgr->up_req_lock);
5124 mutex_init(&mgr->probe_lock);
5125 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5126 mutex_init(&mgr->topology_ref_history_lock);
5127 #endif
5128 INIT_LIST_HEAD(&mgr->tx_msg_downq);
5129 INIT_LIST_HEAD(&mgr->destroy_port_list);
5130 INIT_LIST_HEAD(&mgr->destroy_branch_device_list);
5131 INIT_LIST_HEAD(&mgr->up_req_list);
5132 INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work);
5133 INIT_WORK(&mgr->tx_work, drm_dp_tx_work);
5134 INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work);
5135 INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work);
5136 init_waitqueue_head(&mgr->tx_waitq);
5137 mgr->dev = dev;
5138 mgr->aux = aux;
5139 mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes;
5140 mgr->max_payloads = max_payloads;
5141 mgr->conn_base_id = conn_base_id;
5142 if (max_payloads + 1 > sizeof(mgr->payload_mask) * 8 ||
5143 max_payloads + 1 > sizeof(mgr->vcpi_mask) * 8)
5144 return -EINVAL;
5145 mgr->payloads = kcalloc(max_payloads, sizeof(struct drm_dp_payload), GFP_KERNEL);
5146 if (!mgr->payloads)
5147 return -ENOMEM;
5148 mgr->proposed_vcpis = kcalloc(max_payloads, sizeof(struct drm_dp_vcpi *), GFP_KERNEL);
5149 if (!mgr->proposed_vcpis)
5150 return -ENOMEM;
5151 set_bit(0, &mgr->payload_mask);
5152
5153 mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL);
5154 if (mst_state == NULL)
5155 return -ENOMEM;
5156
5157 mst_state->mgr = mgr;
5158 INIT_LIST_HEAD(&mst_state->vcpis);
5159
5160 drm_atomic_private_obj_init(dev, &mgr->base,
5161 &mst_state->base,
5162 &drm_dp_mst_topology_state_funcs);
5163
5164 return 0;
5165 }
5166 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init);
5167
5168 /**
5169 * drm_dp_mst_topology_mgr_destroy() - destroy topology manager.
5170 * @mgr: manager to destroy
5171 */
5172 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr)
5173 {
5174 drm_dp_mst_topology_mgr_set_mst(mgr, false);
5175 flush_work(&mgr->work);
5176 cancel_work_sync(&mgr->delayed_destroy_work);
5177 mutex_lock(&mgr->payload_lock);
5178 kfree(mgr->payloads);
5179 mgr->payloads = NULL;
5180 kfree(mgr->proposed_vcpis);
5181 mgr->proposed_vcpis = NULL;
5182 mutex_unlock(&mgr->payload_lock);
5183 mgr->dev = NULL;
5184 mgr->aux = NULL;
5185 drm_atomic_private_obj_fini(&mgr->base);
5186 mgr->funcs = NULL;
5187
5188 mutex_destroy(&mgr->delayed_destroy_lock);
5189 mutex_destroy(&mgr->payload_lock);
5190 mutex_destroy(&mgr->qlock);
5191 mutex_destroy(&mgr->lock);
5192 mutex_destroy(&mgr->up_req_lock);
5193 mutex_destroy(&mgr->probe_lock);
5194 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5195 mutex_destroy(&mgr->topology_ref_history_lock);
5196 #endif
5197 }
5198 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy);
5199
5200 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num)
5201 {
5202 int i;
5203
5204 if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS)
5205 return false;
5206
5207 for (i = 0; i < num - 1; i++) {
5208 if (msgs[i].flags & I2C_M_RD ||
5209 msgs[i].len > 0xff)
5210 return false;
5211 }
5212
5213 return msgs[num - 1].flags & I2C_M_RD &&
5214 msgs[num - 1].len <= 0xff;
5215 }
5216
5217 /* I2C device */
5218 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
5219 int num)
5220 {
5221 struct drm_dp_aux *aux = adapter->algo_data;
5222 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, aux);
5223 struct drm_dp_mst_branch *mstb;
5224 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5225 unsigned int i;
5226 struct drm_dp_sideband_msg_req_body msg;
5227 struct drm_dp_sideband_msg_tx *txmsg = NULL;
5228 int ret;
5229
5230 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
5231 if (!mstb)
5232 return -EREMOTEIO;
5233
5234 if (!remote_i2c_read_ok(msgs, num)) {
5235 DRM_DEBUG_KMS("Unsupported I2C transaction for MST device\n");
5236 ret = -EIO;
5237 goto out;
5238 }
5239
5240 memset(&msg, 0, sizeof(msg));
5241 msg.req_type = DP_REMOTE_I2C_READ;
5242 msg.u.i2c_read.num_transactions = num - 1;
5243 msg.u.i2c_read.port_number = port->port_num;
5244 for (i = 0; i < num - 1; i++) {
5245 msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr;
5246 msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len;
5247 msg.u.i2c_read.transactions[i].bytes = msgs[i].buf;
5248 msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP);
5249 }
5250 msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr;
5251 msg.u.i2c_read.num_bytes_read = msgs[num - 1].len;
5252
5253 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
5254 if (!txmsg) {
5255 ret = -ENOMEM;
5256 goto out;
5257 }
5258
5259 txmsg->dst = mstb;
5260 drm_dp_encode_sideband_req(&msg, txmsg);
5261
5262 drm_dp_queue_down_tx(mgr, txmsg);
5263
5264 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
5265 if (ret > 0) {
5266
5267 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
5268 ret = -EREMOTEIO;
5269 goto out;
5270 }
5271 if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) {
5272 ret = -EIO;
5273 goto out;
5274 }
5275 memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len);
5276 ret = num;
5277 }
5278 out:
5279 kfree(txmsg);
5280 drm_dp_mst_topology_put_mstb(mstb);
5281 return ret;
5282 }
5283
5284 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter)
5285 {
5286 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
5287 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
5288 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
5289 I2C_FUNC_10BIT_ADDR;
5290 }
5291
5292 static const struct i2c_algorithm drm_dp_mst_i2c_algo = {
5293 .functionality = drm_dp_mst_i2c_functionality,
5294 .master_xfer = drm_dp_mst_i2c_xfer,
5295 };
5296
5297 /**
5298 * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX
5299 * @aux: DisplayPort AUX channel
5300 *
5301 * Returns 0 on success or a negative error code on failure.
5302 */
5303 static int drm_dp_mst_register_i2c_bus(struct drm_dp_aux *aux)
5304 {
5305 aux->ddc.algo = &drm_dp_mst_i2c_algo;
5306 aux->ddc.algo_data = aux;
5307 aux->ddc.retries = 3;
5308
5309 aux->ddc.class = I2C_CLASS_DDC;
5310 aux->ddc.owner = THIS_MODULE;
5311 aux->ddc.dev.parent = aux->dev;
5312 aux->ddc.dev.of_node = aux->dev->of_node;
5313
5314 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
5315 sizeof(aux->ddc.name));
5316
5317 return i2c_add_adapter(&aux->ddc);
5318 }
5319
5320 /**
5321 * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter
5322 * @aux: DisplayPort AUX channel
5323 */
5324 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_aux *aux)
5325 {
5326 i2c_del_adapter(&aux->ddc);
5327 }
5328
5329 /**
5330 * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device
5331 * @port: The port to check
5332 *
5333 * A single physical MST hub object can be represented in the topology
5334 * by multiple branches, with virtual ports between those branches.
5335 *
5336 * As of DP1.4, An MST hub with internal (virtual) ports must expose
5337 * certain DPCD registers over those ports. See sections 2.6.1.1.1
5338 * and 2.6.1.1.2 of Display Port specification v1.4 for details.
5339 *
5340 * May acquire mgr->lock
5341 *
5342 * Returns:
5343 * true if the port is a virtual DP peer device, false otherwise
5344 */
5345 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port)
5346 {
5347 struct drm_dp_mst_port *downstream_port;
5348
5349 if (!port || port->dpcd_rev < DP_DPCD_REV_14)
5350 return false;
5351
5352 /* Virtual DP Sink (Internal Display Panel) */
5353 if (port->port_num >= 8)
5354 return true;
5355
5356 /* DP-to-HDMI Protocol Converter */
5357 if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV &&
5358 !port->mcs &&
5359 port->ldps)
5360 return true;
5361
5362 /* DP-to-DP */
5363 mutex_lock(&port->mgr->lock);
5364 if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
5365 port->mstb &&
5366 port->mstb->num_ports == 2) {
5367 list_for_each_entry(downstream_port, &port->mstb->ports, next) {
5368 if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK &&
5369 !downstream_port->input) {
5370 mutex_unlock(&port->mgr->lock);
5371 return true;
5372 }
5373 }
5374 }
5375 mutex_unlock(&port->mgr->lock);
5376
5377 return false;
5378 }
5379
5380 /**
5381 * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC
5382 * @port: The port to check. A leaf of the MST tree with an attached display.
5383 *
5384 * Depending on the situation, DSC may be enabled via the endpoint aux,
5385 * the immediately upstream aux, or the connector's physical aux.
5386 *
5387 * This is both the correct aux to read DSC_CAPABILITY and the
5388 * correct aux to write DSC_ENABLED.
5389 *
5390 * This operation can be expensive (up to four aux reads), so
5391 * the caller should cache the return.
5392 *
5393 * Returns:
5394 * NULL if DSC cannot be enabled on this port, otherwise the aux device
5395 */
5396 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port)
5397 {
5398 struct drm_dp_mst_port *immediate_upstream_port;
5399 struct drm_dp_mst_port *fec_port;
5400 struct drm_dp_desc desc = { 0 };
5401 u8 endpoint_fec;
5402 u8 endpoint_dsc;
5403
5404 if (!port)
5405 return NULL;
5406
5407 if (port->parent->port_parent)
5408 immediate_upstream_port = port->parent->port_parent;
5409 else
5410 immediate_upstream_port = NULL;
5411
5412 fec_port = immediate_upstream_port;
5413 while (fec_port) {
5414 /*
5415 * Each physical link (i.e. not a virtual port) between the
5416 * output and the primary device must support FEC
5417 */
5418 if (!drm_dp_mst_is_virtual_dpcd(fec_port) &&
5419 !fec_port->fec_capable)
5420 return NULL;
5421
5422 fec_port = fec_port->parent->port_parent;
5423 }
5424
5425 /* DP-to-DP peer device */
5426 if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) {
5427 u8 upstream_dsc;
5428
5429 if (drm_dp_dpcd_read(&port->aux,
5430 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
5431 return NULL;
5432 if (drm_dp_dpcd_read(&port->aux,
5433 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
5434 return NULL;
5435 if (drm_dp_dpcd_read(&immediate_upstream_port->aux,
5436 DP_DSC_SUPPORT, &upstream_dsc, 1) != 1)
5437 return NULL;
5438
5439 /* Enpoint decompression with DP-to-DP peer device */
5440 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
5441 (endpoint_fec & DP_FEC_CAPABLE) &&
5442 (upstream_dsc & 0x2) /* DSC passthrough */)
5443 return &port->aux;
5444
5445 /* Virtual DPCD decompression with DP-to-DP peer device */
5446 return &immediate_upstream_port->aux;
5447 }
5448
5449 /* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */
5450 if (drm_dp_mst_is_virtual_dpcd(port))
5451 return &port->aux;
5452
5453 /*
5454 * Synaptics quirk
5455 * Applies to ports for which:
5456 * - Physical aux has Synaptics OUI
5457 * - DPv1.4 or higher
5458 * - Port is on primary branch device
5459 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG)
5460 */
5461 if (drm_dp_read_desc(port->mgr->aux, &desc, true))
5462 return NULL;
5463
5464 if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) &&
5465 port->mgr->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14 &&
5466 port->parent == port->mgr->mst_primary) {
5467 u8 downstreamport;
5468
5469 if (drm_dp_dpcd_read(&port->aux, DP_DOWNSTREAMPORT_PRESENT,
5470 &downstreamport, 1) < 0)
5471 return NULL;
5472
5473 if ((downstreamport & DP_DWN_STRM_PORT_PRESENT) &&
5474 ((downstreamport & DP_DWN_STRM_PORT_TYPE_MASK)
5475 != DP_DWN_STRM_PORT_TYPE_ANALOG))
5476 return port->mgr->aux;
5477 }
5478
5479 /*
5480 * The check below verifies if the MST sink
5481 * connected to the GPU is capable of DSC -
5482 * therefore the endpoint needs to be
5483 * both DSC and FEC capable.
5484 */
5485 if (drm_dp_dpcd_read(&port->aux,
5486 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
5487 return NULL;
5488 if (drm_dp_dpcd_read(&port->aux,
5489 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
5490 return NULL;
5491 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
5492 (endpoint_fec & DP_FEC_CAPABLE))
5493 return &port->aux;
5494
5495 return NULL;
5496 }
5497 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port);