]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/drm_edid.c
drm/edid: Populate picture aspect ratio for CEA modes
[thirdparty/kernel/stable.git] / drivers / gpu / drm / drm_edid.c
1 /*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37
38 #define version_greater(edid, maj, min) \
39 (((edid)->version > (maj)) || \
40 ((edid)->version == (maj) && (edid)->revision > (min)))
41
42 #define EDID_EST_TIMINGS 16
43 #define EDID_STD_TIMINGS 8
44 #define EDID_DETAILED_TIMINGS 4
45
46 /*
47 * EDID blocks out in the wild have a variety of bugs, try to collect
48 * them here (note that userspace may work around broken monitors first,
49 * but fixes should make their way here so that the kernel "just works"
50 * on as many displays as possible).
51 */
52
53 /* First detailed mode wrong, use largest 60Hz mode */
54 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
55 /* Reported 135MHz pixel clock is too high, needs adjustment */
56 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
57 /* Prefer the largest mode at 75 Hz */
58 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
59 /* Detail timing is in cm not mm */
60 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
61 /* Detailed timing descriptors have bogus size values, so just take the
62 * maximum size and use that.
63 */
64 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
65 /* Monitor forgot to set the first detailed is preferred bit. */
66 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
67 /* use +hsync +vsync for detailed mode */
68 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
69 /* Force reduced-blanking timings for detailed modes */
70 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
71 /* Force 8bpc */
72 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
73
74 struct detailed_mode_closure {
75 struct drm_connector *connector;
76 struct edid *edid;
77 bool preferred;
78 u32 quirks;
79 int modes;
80 };
81
82 #define LEVEL_DMT 0
83 #define LEVEL_GTF 1
84 #define LEVEL_GTF2 2
85 #define LEVEL_CVT 3
86
87 static struct edid_quirk {
88 char vendor[4];
89 int product_id;
90 u32 quirks;
91 } edid_quirk_list[] = {
92 /* Acer AL1706 */
93 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 /* Acer F51 */
95 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 /* Unknown Acer */
97 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98
99 /* Belinea 10 15 55 */
100 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
101 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
102
103 /* Envision Peripherals, Inc. EN-7100e */
104 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
105 /* Envision EN2028 */
106 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
107
108 /* Funai Electronics PM36B */
109 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
110 EDID_QUIRK_DETAILED_IN_CM },
111
112 /* LG Philips LCD LP154W01-A5 */
113 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
114 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
115
116 /* Philips 107p5 CRT */
117 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
118
119 /* Proview AY765C */
120 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
121
122 /* Samsung SyncMaster 205BW. Note: irony */
123 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
124 /* Samsung SyncMaster 22[5-6]BW */
125 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
126 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
127
128 /* ViewSonic VA2026w */
129 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
130
131 /* Medion MD 30217 PG */
132 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
133
134 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
135 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
136 };
137
138 /*
139 * Autogenerated from the DMT spec.
140 * This table is copied from xfree86/modes/xf86EdidModes.c.
141 */
142 static const struct drm_display_mode drm_dmt_modes[] = {
143 /* 640x350@85Hz */
144 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
145 736, 832, 0, 350, 382, 385, 445, 0,
146 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
147 /* 640x400@85Hz */
148 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
149 736, 832, 0, 400, 401, 404, 445, 0,
150 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
151 /* 720x400@85Hz */
152 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
153 828, 936, 0, 400, 401, 404, 446, 0,
154 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
155 /* 640x480@60Hz */
156 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
157 752, 800, 0, 480, 489, 492, 525, 0,
158 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
159 /* 640x480@72Hz */
160 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
161 704, 832, 0, 480, 489, 492, 520, 0,
162 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
163 /* 640x480@75Hz */
164 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
165 720, 840, 0, 480, 481, 484, 500, 0,
166 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
167 /* 640x480@85Hz */
168 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
169 752, 832, 0, 480, 481, 484, 509, 0,
170 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
171 /* 800x600@56Hz */
172 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
173 896, 1024, 0, 600, 601, 603, 625, 0,
174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
175 /* 800x600@60Hz */
176 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
177 968, 1056, 0, 600, 601, 605, 628, 0,
178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
179 /* 800x600@72Hz */
180 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
181 976, 1040, 0, 600, 637, 643, 666, 0,
182 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
183 /* 800x600@75Hz */
184 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
185 896, 1056, 0, 600, 601, 604, 625, 0,
186 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
187 /* 800x600@85Hz */
188 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
189 896, 1048, 0, 600, 601, 604, 631, 0,
190 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
191 /* 800x600@120Hz RB */
192 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
193 880, 960, 0, 600, 603, 607, 636, 0,
194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
195 /* 848x480@60Hz */
196 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
197 976, 1088, 0, 480, 486, 494, 517, 0,
198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
199 /* 1024x768@43Hz, interlace */
200 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
201 1208, 1264, 0, 768, 768, 772, 817, 0,
202 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
203 DRM_MODE_FLAG_INTERLACE) },
204 /* 1024x768@60Hz */
205 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
206 1184, 1344, 0, 768, 771, 777, 806, 0,
207 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
208 /* 1024x768@70Hz */
209 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
210 1184, 1328, 0, 768, 771, 777, 806, 0,
211 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
212 /* 1024x768@75Hz */
213 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
214 1136, 1312, 0, 768, 769, 772, 800, 0,
215 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
216 /* 1024x768@85Hz */
217 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
218 1168, 1376, 0, 768, 769, 772, 808, 0,
219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
220 /* 1024x768@120Hz RB */
221 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
222 1104, 1184, 0, 768, 771, 775, 813, 0,
223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
224 /* 1152x864@75Hz */
225 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
226 1344, 1600, 0, 864, 865, 868, 900, 0,
227 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
228 /* 1280x768@60Hz RB */
229 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
230 1360, 1440, 0, 768, 771, 778, 790, 0,
231 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
232 /* 1280x768@60Hz */
233 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
234 1472, 1664, 0, 768, 771, 778, 798, 0,
235 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
236 /* 1280x768@75Hz */
237 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
238 1488, 1696, 0, 768, 771, 778, 805, 0,
239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
240 /* 1280x768@85Hz */
241 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
242 1496, 1712, 0, 768, 771, 778, 809, 0,
243 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
244 /* 1280x768@120Hz RB */
245 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
246 1360, 1440, 0, 768, 771, 778, 813, 0,
247 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 /* 1280x800@60Hz RB */
249 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
250 1360, 1440, 0, 800, 803, 809, 823, 0,
251 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
252 /* 1280x800@60Hz */
253 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
254 1480, 1680, 0, 800, 803, 809, 831, 0,
255 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
256 /* 1280x800@75Hz */
257 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
258 1488, 1696, 0, 800, 803, 809, 838, 0,
259 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
260 /* 1280x800@85Hz */
261 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
262 1496, 1712, 0, 800, 803, 809, 843, 0,
263 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
264 /* 1280x800@120Hz RB */
265 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
266 1360, 1440, 0, 800, 803, 809, 847, 0,
267 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 /* 1280x960@60Hz */
269 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
270 1488, 1800, 0, 960, 961, 964, 1000, 0,
271 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
272 /* 1280x960@85Hz */
273 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
274 1504, 1728, 0, 960, 961, 964, 1011, 0,
275 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 /* 1280x960@120Hz RB */
277 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
278 1360, 1440, 0, 960, 963, 967, 1017, 0,
279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
280 /* 1280x1024@60Hz */
281 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
282 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 /* 1280x1024@75Hz */
285 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
286 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 /* 1280x1024@85Hz */
289 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
290 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 /* 1280x1024@120Hz RB */
293 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
294 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 /* 1360x768@60Hz */
297 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
298 1536, 1792, 0, 768, 771, 777, 795, 0,
299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 /* 1360x768@120Hz RB */
301 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
302 1440, 1520, 0, 768, 771, 776, 813, 0,
303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
304 /* 1400x1050@60Hz RB */
305 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
306 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
307 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
308 /* 1400x1050@60Hz */
309 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
310 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
312 /* 1400x1050@75Hz */
313 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
314 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
316 /* 1400x1050@85Hz */
317 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
318 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
319 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 /* 1400x1050@120Hz RB */
321 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
322 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
324 /* 1440x900@60Hz RB */
325 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
326 1520, 1600, 0, 900, 903, 909, 926, 0,
327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 /* 1440x900@60Hz */
329 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
330 1672, 1904, 0, 900, 903, 909, 934, 0,
331 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 /* 1440x900@75Hz */
333 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
334 1688, 1936, 0, 900, 903, 909, 942, 0,
335 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 /* 1440x900@85Hz */
337 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
338 1696, 1952, 0, 900, 903, 909, 948, 0,
339 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 /* 1440x900@120Hz RB */
341 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
342 1520, 1600, 0, 900, 903, 909, 953, 0,
343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
344 /* 1600x1200@60Hz */
345 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
346 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
347 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 /* 1600x1200@65Hz */
349 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
350 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
351 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 /* 1600x1200@70Hz */
353 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
354 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 /* 1600x1200@75Hz */
357 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
358 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
360 /* 1600x1200@85Hz */
361 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
362 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 /* 1600x1200@120Hz RB */
365 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
366 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
367 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
368 /* 1680x1050@60Hz RB */
369 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
370 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
371 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
372 /* 1680x1050@60Hz */
373 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
374 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
375 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
376 /* 1680x1050@75Hz */
377 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
378 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
379 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 /* 1680x1050@85Hz */
381 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
382 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
383 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 /* 1680x1050@120Hz RB */
385 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
386 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 /* 1792x1344@60Hz */
389 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
390 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
391 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 /* 1792x1344@75Hz */
393 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
394 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
395 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 /* 1792x1344@120Hz RB */
397 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
398 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
400 /* 1856x1392@60Hz */
401 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
402 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
403 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
404 /* 1856x1392@75Hz */
405 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
406 2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
407 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 /* 1856x1392@120Hz RB */
409 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
410 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 /* 1920x1200@60Hz RB */
413 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
414 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
416 /* 1920x1200@60Hz */
417 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
418 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
419 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 /* 1920x1200@75Hz */
421 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
422 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
423 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
424 /* 1920x1200@85Hz */
425 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
426 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 /* 1920x1200@120Hz RB */
429 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
430 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
432 /* 1920x1440@60Hz */
433 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
434 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 /* 1920x1440@75Hz */
437 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
438 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
439 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
440 /* 1920x1440@120Hz RB */
441 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
442 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 /* 2560x1600@60Hz RB */
445 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
446 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
448 /* 2560x1600@60Hz */
449 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
450 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 /* 2560x1600@75HZ */
453 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
454 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 /* 2560x1600@85HZ */
457 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
458 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
459 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
460 /* 2560x1600@120Hz RB */
461 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
462 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
464 };
465
466 /*
467 * These more or less come from the DMT spec. The 720x400 modes are
468 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
469 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
470 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
471 * mode.
472 *
473 * The DMT modes have been fact-checked; the rest are mild guesses.
474 */
475 static const struct drm_display_mode edid_est_modes[] = {
476 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
477 968, 1056, 0, 600, 601, 605, 628, 0,
478 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
479 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
480 896, 1024, 0, 600, 601, 603, 625, 0,
481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
482 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
483 720, 840, 0, 480, 481, 484, 500, 0,
484 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
485 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
486 704, 832, 0, 480, 489, 491, 520, 0,
487 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
488 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
489 768, 864, 0, 480, 483, 486, 525, 0,
490 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
491 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
492 752, 800, 0, 480, 490, 492, 525, 0,
493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
494 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
495 846, 900, 0, 400, 421, 423, 449, 0,
496 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
497 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
498 846, 900, 0, 400, 412, 414, 449, 0,
499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
500 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
501 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
503 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
504 1136, 1312, 0, 768, 769, 772, 800, 0,
505 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
506 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
507 1184, 1328, 0, 768, 771, 777, 806, 0,
508 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
509 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
510 1184, 1344, 0, 768, 771, 777, 806, 0,
511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
512 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
513 1208, 1264, 0, 768, 768, 776, 817, 0,
514 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
515 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
516 928, 1152, 0, 624, 625, 628, 667, 0,
517 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
518 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
519 896, 1056, 0, 600, 601, 604, 625, 0,
520 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
521 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
522 976, 1040, 0, 600, 637, 643, 666, 0,
523 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
524 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
525 1344, 1600, 0, 864, 865, 868, 900, 0,
526 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
527 };
528
529 struct minimode {
530 short w;
531 short h;
532 short r;
533 short rb;
534 };
535
536 static const struct minimode est3_modes[] = {
537 /* byte 6 */
538 { 640, 350, 85, 0 },
539 { 640, 400, 85, 0 },
540 { 720, 400, 85, 0 },
541 { 640, 480, 85, 0 },
542 { 848, 480, 60, 0 },
543 { 800, 600, 85, 0 },
544 { 1024, 768, 85, 0 },
545 { 1152, 864, 75, 0 },
546 /* byte 7 */
547 { 1280, 768, 60, 1 },
548 { 1280, 768, 60, 0 },
549 { 1280, 768, 75, 0 },
550 { 1280, 768, 85, 0 },
551 { 1280, 960, 60, 0 },
552 { 1280, 960, 85, 0 },
553 { 1280, 1024, 60, 0 },
554 { 1280, 1024, 85, 0 },
555 /* byte 8 */
556 { 1360, 768, 60, 0 },
557 { 1440, 900, 60, 1 },
558 { 1440, 900, 60, 0 },
559 { 1440, 900, 75, 0 },
560 { 1440, 900, 85, 0 },
561 { 1400, 1050, 60, 1 },
562 { 1400, 1050, 60, 0 },
563 { 1400, 1050, 75, 0 },
564 /* byte 9 */
565 { 1400, 1050, 85, 0 },
566 { 1680, 1050, 60, 1 },
567 { 1680, 1050, 60, 0 },
568 { 1680, 1050, 75, 0 },
569 { 1680, 1050, 85, 0 },
570 { 1600, 1200, 60, 0 },
571 { 1600, 1200, 65, 0 },
572 { 1600, 1200, 70, 0 },
573 /* byte 10 */
574 { 1600, 1200, 75, 0 },
575 { 1600, 1200, 85, 0 },
576 { 1792, 1344, 60, 0 },
577 { 1792, 1344, 75, 0 },
578 { 1856, 1392, 60, 0 },
579 { 1856, 1392, 75, 0 },
580 { 1920, 1200, 60, 1 },
581 { 1920, 1200, 60, 0 },
582 /* byte 11 */
583 { 1920, 1200, 75, 0 },
584 { 1920, 1200, 85, 0 },
585 { 1920, 1440, 60, 0 },
586 { 1920, 1440, 75, 0 },
587 };
588
589 static const struct minimode extra_modes[] = {
590 { 1024, 576, 60, 0 },
591 { 1366, 768, 60, 0 },
592 { 1600, 900, 60, 0 },
593 { 1680, 945, 60, 0 },
594 { 1920, 1080, 60, 0 },
595 { 2048, 1152, 60, 0 },
596 { 2048, 1536, 60, 0 },
597 };
598
599 /*
600 * Probably taken from CEA-861 spec.
601 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
602 */
603 static const struct drm_display_mode edid_cea_modes[] = {
604 /* 1 - 640x480@60Hz */
605 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
606 752, 800, 0, 480, 490, 492, 525, 0,
607 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
608 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
609 /* 2 - 720x480@60Hz */
610 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
611 798, 858, 0, 480, 489, 495, 525, 0,
612 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
613 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
614 /* 3 - 720x480@60Hz */
615 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
616 798, 858, 0, 480, 489, 495, 525, 0,
617 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
618 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
619 /* 4 - 1280x720@60Hz */
620 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
621 1430, 1650, 0, 720, 725, 730, 750, 0,
622 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
623 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
624 /* 5 - 1920x1080i@60Hz */
625 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
626 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
627 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
628 DRM_MODE_FLAG_INTERLACE),
629 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
630 /* 6 - 1440x480i@60Hz */
631 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
632 1602, 1716, 0, 480, 488, 494, 525, 0,
633 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
634 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
635 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
636 /* 7 - 1440x480i@60Hz */
637 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
638 1602, 1716, 0, 480, 488, 494, 525, 0,
639 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
640 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
641 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
642 /* 8 - 1440x240@60Hz */
643 { DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
644 1602, 1716, 0, 240, 244, 247, 262, 0,
645 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
646 DRM_MODE_FLAG_DBLCLK),
647 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
648 /* 9 - 1440x240@60Hz */
649 { DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
650 1602, 1716, 0, 240, 244, 247, 262, 0,
651 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
652 DRM_MODE_FLAG_DBLCLK),
653 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
654 /* 10 - 2880x480i@60Hz */
655 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
656 3204, 3432, 0, 480, 488, 494, 525, 0,
657 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
658 DRM_MODE_FLAG_INTERLACE),
659 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
660 /* 11 - 2880x480i@60Hz */
661 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
662 3204, 3432, 0, 480, 488, 494, 525, 0,
663 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
664 DRM_MODE_FLAG_INTERLACE),
665 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
666 /* 12 - 2880x240@60Hz */
667 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
668 3204, 3432, 0, 240, 244, 247, 262, 0,
669 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
670 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
671 /* 13 - 2880x240@60Hz */
672 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
673 3204, 3432, 0, 240, 244, 247, 262, 0,
674 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
675 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
676 /* 14 - 1440x480@60Hz */
677 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
678 1596, 1716, 0, 480, 489, 495, 525, 0,
679 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
680 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
681 /* 15 - 1440x480@60Hz */
682 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
683 1596, 1716, 0, 480, 489, 495, 525, 0,
684 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
685 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
686 /* 16 - 1920x1080@60Hz */
687 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
688 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
689 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
690 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
691 /* 17 - 720x576@50Hz */
692 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
693 796, 864, 0, 576, 581, 586, 625, 0,
694 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
695 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
696 /* 18 - 720x576@50Hz */
697 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
698 796, 864, 0, 576, 581, 586, 625, 0,
699 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
700 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
701 /* 19 - 1280x720@50Hz */
702 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
703 1760, 1980, 0, 720, 725, 730, 750, 0,
704 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
705 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
706 /* 20 - 1920x1080i@50Hz */
707 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
708 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
709 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
710 DRM_MODE_FLAG_INTERLACE),
711 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
712 /* 21 - 1440x576i@50Hz */
713 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
714 1590, 1728, 0, 576, 580, 586, 625, 0,
715 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
716 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
717 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
718 /* 22 - 1440x576i@50Hz */
719 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
720 1590, 1728, 0, 576, 580, 586, 625, 0,
721 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
722 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
723 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
724 /* 23 - 1440x288@50Hz */
725 { DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
726 1590, 1728, 0, 288, 290, 293, 312, 0,
727 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
728 DRM_MODE_FLAG_DBLCLK),
729 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
730 /* 24 - 1440x288@50Hz */
731 { DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
732 1590, 1728, 0, 288, 290, 293, 312, 0,
733 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
734 DRM_MODE_FLAG_DBLCLK),
735 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
736 /* 25 - 2880x576i@50Hz */
737 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
738 3180, 3456, 0, 576, 580, 586, 625, 0,
739 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
740 DRM_MODE_FLAG_INTERLACE),
741 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
742 /* 26 - 2880x576i@50Hz */
743 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
744 3180, 3456, 0, 576, 580, 586, 625, 0,
745 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
746 DRM_MODE_FLAG_INTERLACE),
747 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
748 /* 27 - 2880x288@50Hz */
749 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
750 3180, 3456, 0, 288, 290, 293, 312, 0,
751 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
752 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
753 /* 28 - 2880x288@50Hz */
754 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
755 3180, 3456, 0, 288, 290, 293, 312, 0,
756 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
757 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
758 /* 29 - 1440x576@50Hz */
759 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
760 1592, 1728, 0, 576, 581, 586, 625, 0,
761 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
762 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
763 /* 30 - 1440x576@50Hz */
764 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
765 1592, 1728, 0, 576, 581, 586, 625, 0,
766 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
767 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
768 /* 31 - 1920x1080@50Hz */
769 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
770 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
771 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
772 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 /* 32 - 1920x1080@24Hz */
774 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
775 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
776 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
777 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
778 /* 33 - 1920x1080@25Hz */
779 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
780 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
781 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
782 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
783 /* 34 - 1920x1080@30Hz */
784 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
785 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
786 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
787 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
788 /* 35 - 2880x480@60Hz */
789 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
790 3192, 3432, 0, 480, 489, 495, 525, 0,
791 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
792 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
793 /* 36 - 2880x480@60Hz */
794 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
795 3192, 3432, 0, 480, 489, 495, 525, 0,
796 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
797 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
798 /* 37 - 2880x576@50Hz */
799 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
800 3184, 3456, 0, 576, 581, 586, 625, 0,
801 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
802 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
803 /* 38 - 2880x576@50Hz */
804 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
805 3184, 3456, 0, 576, 581, 586, 625, 0,
806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
808 /* 39 - 1920x1080i@50Hz */
809 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
810 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
811 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
812 DRM_MODE_FLAG_INTERLACE),
813 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
814 /* 40 - 1920x1080i@100Hz */
815 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
816 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
817 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
818 DRM_MODE_FLAG_INTERLACE),
819 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
820 /* 41 - 1280x720@100Hz */
821 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
822 1760, 1980, 0, 720, 725, 730, 750, 0,
823 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
824 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
825 /* 42 - 720x576@100Hz */
826 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
827 796, 864, 0, 576, 581, 586, 625, 0,
828 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
829 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
830 /* 43 - 720x576@100Hz */
831 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
832 796, 864, 0, 576, 581, 586, 625, 0,
833 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
834 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
835 /* 44 - 1440x576i@100Hz */
836 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
837 1590, 1728, 0, 576, 580, 586, 625, 0,
838 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
839 DRM_MODE_FLAG_DBLCLK),
840 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
841 /* 45 - 1440x576i@100Hz */
842 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
843 1590, 1728, 0, 576, 580, 586, 625, 0,
844 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
845 DRM_MODE_FLAG_DBLCLK),
846 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
847 /* 46 - 1920x1080i@120Hz */
848 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
849 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
850 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
851 DRM_MODE_FLAG_INTERLACE),
852 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
853 /* 47 - 1280x720@120Hz */
854 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
855 1430, 1650, 0, 720, 725, 730, 750, 0,
856 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
857 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 /* 48 - 720x480@120Hz */
859 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
860 798, 858, 0, 480, 489, 495, 525, 0,
861 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
862 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
863 /* 49 - 720x480@120Hz */
864 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
865 798, 858, 0, 480, 489, 495, 525, 0,
866 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
868 /* 50 - 1440x480i@120Hz */
869 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
870 1602, 1716, 0, 480, 488, 494, 525, 0,
871 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
872 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
873 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
874 /* 51 - 1440x480i@120Hz */
875 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
876 1602, 1716, 0, 480, 488, 494, 525, 0,
877 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
878 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
879 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
880 /* 52 - 720x576@200Hz */
881 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
882 796, 864, 0, 576, 581, 586, 625, 0,
883 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
884 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
885 /* 53 - 720x576@200Hz */
886 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
887 796, 864, 0, 576, 581, 586, 625, 0,
888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
890 /* 54 - 1440x576i@200Hz */
891 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
892 1590, 1728, 0, 576, 580, 586, 625, 0,
893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
894 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
895 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
896 /* 55 - 1440x576i@200Hz */
897 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
898 1590, 1728, 0, 576, 580, 586, 625, 0,
899 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
900 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
901 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
902 /* 56 - 720x480@240Hz */
903 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
904 798, 858, 0, 480, 489, 495, 525, 0,
905 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
906 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
907 /* 57 - 720x480@240Hz */
908 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
909 798, 858, 0, 480, 489, 495, 525, 0,
910 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
911 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
912 /* 58 - 1440x480i@240 */
913 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
914 1602, 1716, 0, 480, 488, 494, 525, 0,
915 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
916 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
917 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
918 /* 59 - 1440x480i@240 */
919 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
920 1602, 1716, 0, 480, 488, 494, 525, 0,
921 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
922 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
923 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
924 /* 60 - 1280x720@24Hz */
925 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
926 3080, 3300, 0, 720, 725, 730, 750, 0,
927 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 /* 61 - 1280x720@25Hz */
930 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
931 3740, 3960, 0, 720, 725, 730, 750, 0,
932 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
934 /* 62 - 1280x720@30Hz */
935 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
936 3080, 3300, 0, 720, 725, 730, 750, 0,
937 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 /* 63 - 1920x1080@120Hz */
940 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
941 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
942 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 /* 64 - 1920x1080@100Hz */
945 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
946 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
947 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
948 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
949 };
950
951 /*
952 * HDMI 1.4 4k modes.
953 */
954 static const struct drm_display_mode edid_4k_modes[] = {
955 /* 1 - 3840x2160@30Hz */
956 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
957 3840, 4016, 4104, 4400, 0,
958 2160, 2168, 2178, 2250, 0,
959 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
960 .vrefresh = 30, },
961 /* 2 - 3840x2160@25Hz */
962 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
963 3840, 4896, 4984, 5280, 0,
964 2160, 2168, 2178, 2250, 0,
965 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
966 .vrefresh = 25, },
967 /* 3 - 3840x2160@24Hz */
968 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
969 3840, 5116, 5204, 5500, 0,
970 2160, 2168, 2178, 2250, 0,
971 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
972 .vrefresh = 24, },
973 /* 4 - 4096x2160@24Hz (SMPTE) */
974 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
975 4096, 5116, 5204, 5500, 0,
976 2160, 2168, 2178, 2250, 0,
977 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
978 .vrefresh = 24, },
979 };
980
981 /*** DDC fetch and block validation ***/
982
983 static const u8 edid_header[] = {
984 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
985 };
986
987 /*
988 * Sanity check the header of the base EDID block. Return 8 if the header
989 * is perfect, down to 0 if it's totally wrong.
990 */
991 int drm_edid_header_is_valid(const u8 *raw_edid)
992 {
993 int i, score = 0;
994
995 for (i = 0; i < sizeof(edid_header); i++)
996 if (raw_edid[i] == edid_header[i])
997 score++;
998
999 return score;
1000 }
1001 EXPORT_SYMBOL(drm_edid_header_is_valid);
1002
1003 static int edid_fixup __read_mostly = 6;
1004 module_param_named(edid_fixup, edid_fixup, int, 0400);
1005 MODULE_PARM_DESC(edid_fixup,
1006 "Minimum number of valid EDID header bytes (0-8, default 6)");
1007
1008 /*
1009 * Sanity check the EDID block (base or extension). Return 0 if the block
1010 * doesn't check out, or 1 if it's valid.
1011 */
1012 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
1013 {
1014 int i;
1015 u8 csum = 0;
1016 struct edid *edid = (struct edid *)raw_edid;
1017
1018 if (WARN_ON(!raw_edid))
1019 return false;
1020
1021 if (edid_fixup > 8 || edid_fixup < 0)
1022 edid_fixup = 6;
1023
1024 if (block == 0) {
1025 int score = drm_edid_header_is_valid(raw_edid);
1026 if (score == 8) ;
1027 else if (score >= edid_fixup) {
1028 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1029 memcpy(raw_edid, edid_header, sizeof(edid_header));
1030 } else {
1031 goto bad;
1032 }
1033 }
1034
1035 for (i = 0; i < EDID_LENGTH; i++)
1036 csum += raw_edid[i];
1037 if (csum) {
1038 if (print_bad_edid) {
1039 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1040 }
1041
1042 /* allow CEA to slide through, switches mangle this */
1043 if (raw_edid[0] != 0x02)
1044 goto bad;
1045 }
1046
1047 /* per-block-type checks */
1048 switch (raw_edid[0]) {
1049 case 0: /* base */
1050 if (edid->version != 1) {
1051 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1052 goto bad;
1053 }
1054
1055 if (edid->revision > 4)
1056 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1057 break;
1058
1059 default:
1060 break;
1061 }
1062
1063 return true;
1064
1065 bad:
1066 if (print_bad_edid) {
1067 printk(KERN_ERR "Raw EDID:\n");
1068 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1069 raw_edid, EDID_LENGTH, false);
1070 }
1071 return false;
1072 }
1073 EXPORT_SYMBOL(drm_edid_block_valid);
1074
1075 /**
1076 * drm_edid_is_valid - sanity check EDID data
1077 * @edid: EDID data
1078 *
1079 * Sanity-check an entire EDID record (including extensions)
1080 */
1081 bool drm_edid_is_valid(struct edid *edid)
1082 {
1083 int i;
1084 u8 *raw = (u8 *)edid;
1085
1086 if (!edid)
1087 return false;
1088
1089 for (i = 0; i <= edid->extensions; i++)
1090 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1091 return false;
1092
1093 return true;
1094 }
1095 EXPORT_SYMBOL(drm_edid_is_valid);
1096
1097 #define DDC_SEGMENT_ADDR 0x30
1098 /**
1099 * Get EDID information via I2C.
1100 *
1101 * \param adapter : i2c device adaptor
1102 * \param buf : EDID data buffer to be filled
1103 * \param len : EDID data buffer length
1104 * \return 0 on success or -1 on failure.
1105 *
1106 * Try to fetch EDID information by calling i2c driver function.
1107 */
1108 static int
1109 drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1110 int block, int len)
1111 {
1112 unsigned char start = block * EDID_LENGTH;
1113 unsigned char segment = block >> 1;
1114 unsigned char xfers = segment ? 3 : 2;
1115 int ret, retries = 5;
1116
1117 /* The core i2c driver will automatically retry the transfer if the
1118 * adapter reports EAGAIN. However, we find that bit-banging transfers
1119 * are susceptible to errors under a heavily loaded machine and
1120 * generate spurious NAKs and timeouts. Retrying the transfer
1121 * of the individual block a few times seems to overcome this.
1122 */
1123 do {
1124 struct i2c_msg msgs[] = {
1125 {
1126 .addr = DDC_SEGMENT_ADDR,
1127 .flags = 0,
1128 .len = 1,
1129 .buf = &segment,
1130 }, {
1131 .addr = DDC_ADDR,
1132 .flags = 0,
1133 .len = 1,
1134 .buf = &start,
1135 }, {
1136 .addr = DDC_ADDR,
1137 .flags = I2C_M_RD,
1138 .len = len,
1139 .buf = buf,
1140 }
1141 };
1142
1143 /*
1144 * Avoid sending the segment addr to not upset non-compliant ddc
1145 * monitors.
1146 */
1147 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1148
1149 if (ret == -ENXIO) {
1150 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1151 adapter->name);
1152 break;
1153 }
1154 } while (ret != xfers && --retries);
1155
1156 return ret == xfers ? 0 : -1;
1157 }
1158
1159 static bool drm_edid_is_zero(u8 *in_edid, int length)
1160 {
1161 if (memchr_inv(in_edid, 0, length))
1162 return false;
1163
1164 return true;
1165 }
1166
1167 static u8 *
1168 drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1169 {
1170 int i, j = 0, valid_extensions = 0;
1171 u8 *block, *new;
1172 bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1173
1174 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1175 return NULL;
1176
1177 /* base block fetch */
1178 for (i = 0; i < 4; i++) {
1179 if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1180 goto out;
1181 if (drm_edid_block_valid(block, 0, print_bad_edid))
1182 break;
1183 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1184 connector->null_edid_counter++;
1185 goto carp;
1186 }
1187 }
1188 if (i == 4)
1189 goto carp;
1190
1191 /* if there's no extensions, we're done */
1192 if (block[0x7e] == 0)
1193 return block;
1194
1195 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1196 if (!new)
1197 goto out;
1198 block = new;
1199
1200 for (j = 1; j <= block[0x7e]; j++) {
1201 for (i = 0; i < 4; i++) {
1202 if (drm_do_probe_ddc_edid(adapter,
1203 block + (valid_extensions + 1) * EDID_LENGTH,
1204 j, EDID_LENGTH))
1205 goto out;
1206 if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1207 valid_extensions++;
1208 break;
1209 }
1210 }
1211
1212 if (i == 4 && print_bad_edid) {
1213 dev_warn(connector->dev->dev,
1214 "%s: Ignoring invalid EDID block %d.\n",
1215 drm_get_connector_name(connector), j);
1216
1217 connector->bad_edid_counter++;
1218 }
1219 }
1220
1221 if (valid_extensions != block[0x7e]) {
1222 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1223 block[0x7e] = valid_extensions;
1224 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1225 if (!new)
1226 goto out;
1227 block = new;
1228 }
1229
1230 return block;
1231
1232 carp:
1233 if (print_bad_edid) {
1234 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1235 drm_get_connector_name(connector), j);
1236 }
1237 connector->bad_edid_counter++;
1238
1239 out:
1240 kfree(block);
1241 return NULL;
1242 }
1243
1244 /**
1245 * Probe DDC presence.
1246 *
1247 * \param adapter : i2c device adaptor
1248 * \return 1 on success
1249 */
1250 bool
1251 drm_probe_ddc(struct i2c_adapter *adapter)
1252 {
1253 unsigned char out;
1254
1255 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1256 }
1257 EXPORT_SYMBOL(drm_probe_ddc);
1258
1259 /**
1260 * drm_get_edid - get EDID data, if available
1261 * @connector: connector we're probing
1262 * @adapter: i2c adapter to use for DDC
1263 *
1264 * Poke the given i2c channel to grab EDID data if possible. If found,
1265 * attach it to the connector.
1266 *
1267 * Return edid data or NULL if we couldn't find any.
1268 */
1269 struct edid *drm_get_edid(struct drm_connector *connector,
1270 struct i2c_adapter *adapter)
1271 {
1272 struct edid *edid = NULL;
1273
1274 if (drm_probe_ddc(adapter))
1275 edid = (struct edid *)drm_do_get_edid(connector, adapter);
1276
1277 return edid;
1278 }
1279 EXPORT_SYMBOL(drm_get_edid);
1280
1281 /**
1282 * drm_edid_duplicate - duplicate an EDID and the extensions
1283 * @edid: EDID to duplicate
1284 *
1285 * Return duplicate edid or NULL on allocation failure.
1286 */
1287 struct edid *drm_edid_duplicate(const struct edid *edid)
1288 {
1289 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1290 }
1291 EXPORT_SYMBOL(drm_edid_duplicate);
1292
1293 /*** EDID parsing ***/
1294
1295 /**
1296 * edid_vendor - match a string against EDID's obfuscated vendor field
1297 * @edid: EDID to match
1298 * @vendor: vendor string
1299 *
1300 * Returns true if @vendor is in @edid, false otherwise
1301 */
1302 static bool edid_vendor(struct edid *edid, char *vendor)
1303 {
1304 char edid_vendor[3];
1305
1306 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1307 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1308 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1309 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1310
1311 return !strncmp(edid_vendor, vendor, 3);
1312 }
1313
1314 /**
1315 * edid_get_quirks - return quirk flags for a given EDID
1316 * @edid: EDID to process
1317 *
1318 * This tells subsequent routines what fixes they need to apply.
1319 */
1320 static u32 edid_get_quirks(struct edid *edid)
1321 {
1322 struct edid_quirk *quirk;
1323 int i;
1324
1325 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1326 quirk = &edid_quirk_list[i];
1327
1328 if (edid_vendor(edid, quirk->vendor) &&
1329 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1330 return quirk->quirks;
1331 }
1332
1333 return 0;
1334 }
1335
1336 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1337 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1338
1339 /**
1340 * edid_fixup_preferred - set preferred modes based on quirk list
1341 * @connector: has mode list to fix up
1342 * @quirks: quirks list
1343 *
1344 * Walk the mode list for @connector, clearing the preferred status
1345 * on existing modes and setting it anew for the right mode ala @quirks.
1346 */
1347 static void edid_fixup_preferred(struct drm_connector *connector,
1348 u32 quirks)
1349 {
1350 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1351 int target_refresh = 0;
1352 int cur_vrefresh, preferred_vrefresh;
1353
1354 if (list_empty(&connector->probed_modes))
1355 return;
1356
1357 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1358 target_refresh = 60;
1359 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1360 target_refresh = 75;
1361
1362 preferred_mode = list_first_entry(&connector->probed_modes,
1363 struct drm_display_mode, head);
1364
1365 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1366 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1367
1368 if (cur_mode == preferred_mode)
1369 continue;
1370
1371 /* Largest mode is preferred */
1372 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1373 preferred_mode = cur_mode;
1374
1375 cur_vrefresh = cur_mode->vrefresh ?
1376 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1377 preferred_vrefresh = preferred_mode->vrefresh ?
1378 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1379 /* At a given size, try to get closest to target refresh */
1380 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1381 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1382 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1383 preferred_mode = cur_mode;
1384 }
1385 }
1386
1387 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1388 }
1389
1390 static bool
1391 mode_is_rb(const struct drm_display_mode *mode)
1392 {
1393 return (mode->htotal - mode->hdisplay == 160) &&
1394 (mode->hsync_end - mode->hdisplay == 80) &&
1395 (mode->hsync_end - mode->hsync_start == 32) &&
1396 (mode->vsync_start - mode->vdisplay == 3);
1397 }
1398
1399 /*
1400 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1401 * @dev: Device to duplicate against
1402 * @hsize: Mode width
1403 * @vsize: Mode height
1404 * @fresh: Mode refresh rate
1405 * @rb: Mode reduced-blanking-ness
1406 *
1407 * Walk the DMT mode list looking for a match for the given parameters.
1408 * Return a newly allocated copy of the mode, or NULL if not found.
1409 */
1410 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1411 int hsize, int vsize, int fresh,
1412 bool rb)
1413 {
1414 int i;
1415
1416 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1417 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1418 if (hsize != ptr->hdisplay)
1419 continue;
1420 if (vsize != ptr->vdisplay)
1421 continue;
1422 if (fresh != drm_mode_vrefresh(ptr))
1423 continue;
1424 if (rb != mode_is_rb(ptr))
1425 continue;
1426
1427 return drm_mode_duplicate(dev, ptr);
1428 }
1429
1430 return NULL;
1431 }
1432 EXPORT_SYMBOL(drm_mode_find_dmt);
1433
1434 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1435
1436 static void
1437 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1438 {
1439 int i, n = 0;
1440 u8 d = ext[0x02];
1441 u8 *det_base = ext + d;
1442
1443 n = (127 - d) / 18;
1444 for (i = 0; i < n; i++)
1445 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1446 }
1447
1448 static void
1449 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1450 {
1451 unsigned int i, n = min((int)ext[0x02], 6);
1452 u8 *det_base = ext + 5;
1453
1454 if (ext[0x01] != 1)
1455 return; /* unknown version */
1456
1457 for (i = 0; i < n; i++)
1458 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1459 }
1460
1461 static void
1462 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1463 {
1464 int i;
1465 struct edid *edid = (struct edid *)raw_edid;
1466
1467 if (edid == NULL)
1468 return;
1469
1470 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1471 cb(&(edid->detailed_timings[i]), closure);
1472
1473 for (i = 1; i <= raw_edid[0x7e]; i++) {
1474 u8 *ext = raw_edid + (i * EDID_LENGTH);
1475 switch (*ext) {
1476 case CEA_EXT:
1477 cea_for_each_detailed_block(ext, cb, closure);
1478 break;
1479 case VTB_EXT:
1480 vtb_for_each_detailed_block(ext, cb, closure);
1481 break;
1482 default:
1483 break;
1484 }
1485 }
1486 }
1487
1488 static void
1489 is_rb(struct detailed_timing *t, void *data)
1490 {
1491 u8 *r = (u8 *)t;
1492 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1493 if (r[15] & 0x10)
1494 *(bool *)data = true;
1495 }
1496
1497 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1498 static bool
1499 drm_monitor_supports_rb(struct edid *edid)
1500 {
1501 if (edid->revision >= 4) {
1502 bool ret = false;
1503 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1504 return ret;
1505 }
1506
1507 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1508 }
1509
1510 static void
1511 find_gtf2(struct detailed_timing *t, void *data)
1512 {
1513 u8 *r = (u8 *)t;
1514 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1515 *(u8 **)data = r;
1516 }
1517
1518 /* Secondary GTF curve kicks in above some break frequency */
1519 static int
1520 drm_gtf2_hbreak(struct edid *edid)
1521 {
1522 u8 *r = NULL;
1523 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1524 return r ? (r[12] * 2) : 0;
1525 }
1526
1527 static int
1528 drm_gtf2_2c(struct edid *edid)
1529 {
1530 u8 *r = NULL;
1531 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1532 return r ? r[13] : 0;
1533 }
1534
1535 static int
1536 drm_gtf2_m(struct edid *edid)
1537 {
1538 u8 *r = NULL;
1539 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1540 return r ? (r[15] << 8) + r[14] : 0;
1541 }
1542
1543 static int
1544 drm_gtf2_k(struct edid *edid)
1545 {
1546 u8 *r = NULL;
1547 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1548 return r ? r[16] : 0;
1549 }
1550
1551 static int
1552 drm_gtf2_2j(struct edid *edid)
1553 {
1554 u8 *r = NULL;
1555 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1556 return r ? r[17] : 0;
1557 }
1558
1559 /**
1560 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1561 * @edid: EDID block to scan
1562 */
1563 static int standard_timing_level(struct edid *edid)
1564 {
1565 if (edid->revision >= 2) {
1566 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1567 return LEVEL_CVT;
1568 if (drm_gtf2_hbreak(edid))
1569 return LEVEL_GTF2;
1570 return LEVEL_GTF;
1571 }
1572 return LEVEL_DMT;
1573 }
1574
1575 /*
1576 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1577 * monitors fill with ascii space (0x20) instead.
1578 */
1579 static int
1580 bad_std_timing(u8 a, u8 b)
1581 {
1582 return (a == 0x00 && b == 0x00) ||
1583 (a == 0x01 && b == 0x01) ||
1584 (a == 0x20 && b == 0x20);
1585 }
1586
1587 /**
1588 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1589 * @t: standard timing params
1590 * @timing_level: standard timing level
1591 *
1592 * Take the standard timing params (in this case width, aspect, and refresh)
1593 * and convert them into a real mode using CVT/GTF/DMT.
1594 */
1595 static struct drm_display_mode *
1596 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1597 struct std_timing *t, int revision)
1598 {
1599 struct drm_device *dev = connector->dev;
1600 struct drm_display_mode *m, *mode = NULL;
1601 int hsize, vsize;
1602 int vrefresh_rate;
1603 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1604 >> EDID_TIMING_ASPECT_SHIFT;
1605 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1606 >> EDID_TIMING_VFREQ_SHIFT;
1607 int timing_level = standard_timing_level(edid);
1608
1609 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1610 return NULL;
1611
1612 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1613 hsize = t->hsize * 8 + 248;
1614 /* vrefresh_rate = vfreq + 60 */
1615 vrefresh_rate = vfreq + 60;
1616 /* the vdisplay is calculated based on the aspect ratio */
1617 if (aspect_ratio == 0) {
1618 if (revision < 3)
1619 vsize = hsize;
1620 else
1621 vsize = (hsize * 10) / 16;
1622 } else if (aspect_ratio == 1)
1623 vsize = (hsize * 3) / 4;
1624 else if (aspect_ratio == 2)
1625 vsize = (hsize * 4) / 5;
1626 else
1627 vsize = (hsize * 9) / 16;
1628
1629 /* HDTV hack, part 1 */
1630 if (vrefresh_rate == 60 &&
1631 ((hsize == 1360 && vsize == 765) ||
1632 (hsize == 1368 && vsize == 769))) {
1633 hsize = 1366;
1634 vsize = 768;
1635 }
1636
1637 /*
1638 * If this connector already has a mode for this size and refresh
1639 * rate (because it came from detailed or CVT info), use that
1640 * instead. This way we don't have to guess at interlace or
1641 * reduced blanking.
1642 */
1643 list_for_each_entry(m, &connector->probed_modes, head)
1644 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1645 drm_mode_vrefresh(m) == vrefresh_rate)
1646 return NULL;
1647
1648 /* HDTV hack, part 2 */
1649 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1650 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1651 false);
1652 mode->hdisplay = 1366;
1653 mode->hsync_start = mode->hsync_start - 1;
1654 mode->hsync_end = mode->hsync_end - 1;
1655 return mode;
1656 }
1657
1658 /* check whether it can be found in default mode table */
1659 if (drm_monitor_supports_rb(edid)) {
1660 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1661 true);
1662 if (mode)
1663 return mode;
1664 }
1665 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1666 if (mode)
1667 return mode;
1668
1669 /* okay, generate it */
1670 switch (timing_level) {
1671 case LEVEL_DMT:
1672 break;
1673 case LEVEL_GTF:
1674 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1675 break;
1676 case LEVEL_GTF2:
1677 /*
1678 * This is potentially wrong if there's ever a monitor with
1679 * more than one ranges section, each claiming a different
1680 * secondary GTF curve. Please don't do that.
1681 */
1682 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1683 if (!mode)
1684 return NULL;
1685 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1686 drm_mode_destroy(dev, mode);
1687 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1688 vrefresh_rate, 0, 0,
1689 drm_gtf2_m(edid),
1690 drm_gtf2_2c(edid),
1691 drm_gtf2_k(edid),
1692 drm_gtf2_2j(edid));
1693 }
1694 break;
1695 case LEVEL_CVT:
1696 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1697 false);
1698 break;
1699 }
1700 return mode;
1701 }
1702
1703 /*
1704 * EDID is delightfully ambiguous about how interlaced modes are to be
1705 * encoded. Our internal representation is of frame height, but some
1706 * HDTV detailed timings are encoded as field height.
1707 *
1708 * The format list here is from CEA, in frame size. Technically we
1709 * should be checking refresh rate too. Whatever.
1710 */
1711 static void
1712 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1713 struct detailed_pixel_timing *pt)
1714 {
1715 int i;
1716 static const struct {
1717 int w, h;
1718 } cea_interlaced[] = {
1719 { 1920, 1080 },
1720 { 720, 480 },
1721 { 1440, 480 },
1722 { 2880, 480 },
1723 { 720, 576 },
1724 { 1440, 576 },
1725 { 2880, 576 },
1726 };
1727
1728 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1729 return;
1730
1731 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1732 if ((mode->hdisplay == cea_interlaced[i].w) &&
1733 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1734 mode->vdisplay *= 2;
1735 mode->vsync_start *= 2;
1736 mode->vsync_end *= 2;
1737 mode->vtotal *= 2;
1738 mode->vtotal |= 1;
1739 }
1740 }
1741
1742 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1743 }
1744
1745 /**
1746 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1747 * @dev: DRM device (needed to create new mode)
1748 * @edid: EDID block
1749 * @timing: EDID detailed timing info
1750 * @quirks: quirks to apply
1751 *
1752 * An EDID detailed timing block contains enough info for us to create and
1753 * return a new struct drm_display_mode.
1754 */
1755 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1756 struct edid *edid,
1757 struct detailed_timing *timing,
1758 u32 quirks)
1759 {
1760 struct drm_display_mode *mode;
1761 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1762 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1763 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1764 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1765 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1766 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1767 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1768 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1769 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1770
1771 /* ignore tiny modes */
1772 if (hactive < 64 || vactive < 64)
1773 return NULL;
1774
1775 if (pt->misc & DRM_EDID_PT_STEREO) {
1776 DRM_DEBUG_KMS("stereo mode not supported\n");
1777 return NULL;
1778 }
1779 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1780 DRM_DEBUG_KMS("composite sync not supported\n");
1781 }
1782
1783 /* it is incorrect if hsync/vsync width is zero */
1784 if (!hsync_pulse_width || !vsync_pulse_width) {
1785 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1786 "Wrong Hsync/Vsync pulse width\n");
1787 return NULL;
1788 }
1789
1790 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1791 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1792 if (!mode)
1793 return NULL;
1794
1795 goto set_size;
1796 }
1797
1798 mode = drm_mode_create(dev);
1799 if (!mode)
1800 return NULL;
1801
1802 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1803 timing->pixel_clock = cpu_to_le16(1088);
1804
1805 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1806
1807 mode->hdisplay = hactive;
1808 mode->hsync_start = mode->hdisplay + hsync_offset;
1809 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1810 mode->htotal = mode->hdisplay + hblank;
1811
1812 mode->vdisplay = vactive;
1813 mode->vsync_start = mode->vdisplay + vsync_offset;
1814 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1815 mode->vtotal = mode->vdisplay + vblank;
1816
1817 /* Some EDIDs have bogus h/vtotal values */
1818 if (mode->hsync_end > mode->htotal)
1819 mode->htotal = mode->hsync_end + 1;
1820 if (mode->vsync_end > mode->vtotal)
1821 mode->vtotal = mode->vsync_end + 1;
1822
1823 drm_mode_do_interlace_quirk(mode, pt);
1824
1825 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1826 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1827 }
1828
1829 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1830 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1831 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1832 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1833
1834 set_size:
1835 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1836 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1837
1838 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1839 mode->width_mm *= 10;
1840 mode->height_mm *= 10;
1841 }
1842
1843 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1844 mode->width_mm = edid->width_cm * 10;
1845 mode->height_mm = edid->height_cm * 10;
1846 }
1847
1848 mode->type = DRM_MODE_TYPE_DRIVER;
1849 mode->vrefresh = drm_mode_vrefresh(mode);
1850 drm_mode_set_name(mode);
1851
1852 return mode;
1853 }
1854
1855 static bool
1856 mode_in_hsync_range(const struct drm_display_mode *mode,
1857 struct edid *edid, u8 *t)
1858 {
1859 int hsync, hmin, hmax;
1860
1861 hmin = t[7];
1862 if (edid->revision >= 4)
1863 hmin += ((t[4] & 0x04) ? 255 : 0);
1864 hmax = t[8];
1865 if (edid->revision >= 4)
1866 hmax += ((t[4] & 0x08) ? 255 : 0);
1867 hsync = drm_mode_hsync(mode);
1868
1869 return (hsync <= hmax && hsync >= hmin);
1870 }
1871
1872 static bool
1873 mode_in_vsync_range(const struct drm_display_mode *mode,
1874 struct edid *edid, u8 *t)
1875 {
1876 int vsync, vmin, vmax;
1877
1878 vmin = t[5];
1879 if (edid->revision >= 4)
1880 vmin += ((t[4] & 0x01) ? 255 : 0);
1881 vmax = t[6];
1882 if (edid->revision >= 4)
1883 vmax += ((t[4] & 0x02) ? 255 : 0);
1884 vsync = drm_mode_vrefresh(mode);
1885
1886 return (vsync <= vmax && vsync >= vmin);
1887 }
1888
1889 static u32
1890 range_pixel_clock(struct edid *edid, u8 *t)
1891 {
1892 /* unspecified */
1893 if (t[9] == 0 || t[9] == 255)
1894 return 0;
1895
1896 /* 1.4 with CVT support gives us real precision, yay */
1897 if (edid->revision >= 4 && t[10] == 0x04)
1898 return (t[9] * 10000) - ((t[12] >> 2) * 250);
1899
1900 /* 1.3 is pathetic, so fuzz up a bit */
1901 return t[9] * 10000 + 5001;
1902 }
1903
1904 static bool
1905 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1906 struct detailed_timing *timing)
1907 {
1908 u32 max_clock;
1909 u8 *t = (u8 *)timing;
1910
1911 if (!mode_in_hsync_range(mode, edid, t))
1912 return false;
1913
1914 if (!mode_in_vsync_range(mode, edid, t))
1915 return false;
1916
1917 if ((max_clock = range_pixel_clock(edid, t)))
1918 if (mode->clock > max_clock)
1919 return false;
1920
1921 /* 1.4 max horizontal check */
1922 if (edid->revision >= 4 && t[10] == 0x04)
1923 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1924 return false;
1925
1926 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1927 return false;
1928
1929 return true;
1930 }
1931
1932 static bool valid_inferred_mode(const struct drm_connector *connector,
1933 const struct drm_display_mode *mode)
1934 {
1935 struct drm_display_mode *m;
1936 bool ok = false;
1937
1938 list_for_each_entry(m, &connector->probed_modes, head) {
1939 if (mode->hdisplay == m->hdisplay &&
1940 mode->vdisplay == m->vdisplay &&
1941 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1942 return false; /* duplicated */
1943 if (mode->hdisplay <= m->hdisplay &&
1944 mode->vdisplay <= m->vdisplay)
1945 ok = true;
1946 }
1947 return ok;
1948 }
1949
1950 static int
1951 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1952 struct detailed_timing *timing)
1953 {
1954 int i, modes = 0;
1955 struct drm_display_mode *newmode;
1956 struct drm_device *dev = connector->dev;
1957
1958 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1959 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1960 valid_inferred_mode(connector, drm_dmt_modes + i)) {
1961 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1962 if (newmode) {
1963 drm_mode_probed_add(connector, newmode);
1964 modes++;
1965 }
1966 }
1967 }
1968
1969 return modes;
1970 }
1971
1972 /* fix up 1366x768 mode from 1368x768;
1973 * GFT/CVT can't express 1366 width which isn't dividable by 8
1974 */
1975 static void fixup_mode_1366x768(struct drm_display_mode *mode)
1976 {
1977 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1978 mode->hdisplay = 1366;
1979 mode->hsync_start--;
1980 mode->hsync_end--;
1981 drm_mode_set_name(mode);
1982 }
1983 }
1984
1985 static int
1986 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1987 struct detailed_timing *timing)
1988 {
1989 int i, modes = 0;
1990 struct drm_display_mode *newmode;
1991 struct drm_device *dev = connector->dev;
1992
1993 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
1994 const struct minimode *m = &extra_modes[i];
1995 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
1996 if (!newmode)
1997 return modes;
1998
1999 fixup_mode_1366x768(newmode);
2000 if (!mode_in_range(newmode, edid, timing) ||
2001 !valid_inferred_mode(connector, newmode)) {
2002 drm_mode_destroy(dev, newmode);
2003 continue;
2004 }
2005
2006 drm_mode_probed_add(connector, newmode);
2007 modes++;
2008 }
2009
2010 return modes;
2011 }
2012
2013 static int
2014 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2015 struct detailed_timing *timing)
2016 {
2017 int i, modes = 0;
2018 struct drm_display_mode *newmode;
2019 struct drm_device *dev = connector->dev;
2020 bool rb = drm_monitor_supports_rb(edid);
2021
2022 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2023 const struct minimode *m = &extra_modes[i];
2024 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2025 if (!newmode)
2026 return modes;
2027
2028 fixup_mode_1366x768(newmode);
2029 if (!mode_in_range(newmode, edid, timing) ||
2030 !valid_inferred_mode(connector, newmode)) {
2031 drm_mode_destroy(dev, newmode);
2032 continue;
2033 }
2034
2035 drm_mode_probed_add(connector, newmode);
2036 modes++;
2037 }
2038
2039 return modes;
2040 }
2041
2042 static void
2043 do_inferred_modes(struct detailed_timing *timing, void *c)
2044 {
2045 struct detailed_mode_closure *closure = c;
2046 struct detailed_non_pixel *data = &timing->data.other_data;
2047 struct detailed_data_monitor_range *range = &data->data.range;
2048
2049 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2050 return;
2051
2052 closure->modes += drm_dmt_modes_for_range(closure->connector,
2053 closure->edid,
2054 timing);
2055
2056 if (!version_greater(closure->edid, 1, 1))
2057 return; /* GTF not defined yet */
2058
2059 switch (range->flags) {
2060 case 0x02: /* secondary gtf, XXX could do more */
2061 case 0x00: /* default gtf */
2062 closure->modes += drm_gtf_modes_for_range(closure->connector,
2063 closure->edid,
2064 timing);
2065 break;
2066 case 0x04: /* cvt, only in 1.4+ */
2067 if (!version_greater(closure->edid, 1, 3))
2068 break;
2069
2070 closure->modes += drm_cvt_modes_for_range(closure->connector,
2071 closure->edid,
2072 timing);
2073 break;
2074 case 0x01: /* just the ranges, no formula */
2075 default:
2076 break;
2077 }
2078 }
2079
2080 static int
2081 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2082 {
2083 struct detailed_mode_closure closure = {
2084 connector, edid, 0, 0, 0
2085 };
2086
2087 if (version_greater(edid, 1, 0))
2088 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2089 &closure);
2090
2091 return closure.modes;
2092 }
2093
2094 static int
2095 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2096 {
2097 int i, j, m, modes = 0;
2098 struct drm_display_mode *mode;
2099 u8 *est = ((u8 *)timing) + 5;
2100
2101 for (i = 0; i < 6; i++) {
2102 for (j = 7; j >= 0; j--) {
2103 m = (i * 8) + (7 - j);
2104 if (m >= ARRAY_SIZE(est3_modes))
2105 break;
2106 if (est[i] & (1 << j)) {
2107 mode = drm_mode_find_dmt(connector->dev,
2108 est3_modes[m].w,
2109 est3_modes[m].h,
2110 est3_modes[m].r,
2111 est3_modes[m].rb);
2112 if (mode) {
2113 drm_mode_probed_add(connector, mode);
2114 modes++;
2115 }
2116 }
2117 }
2118 }
2119
2120 return modes;
2121 }
2122
2123 static void
2124 do_established_modes(struct detailed_timing *timing, void *c)
2125 {
2126 struct detailed_mode_closure *closure = c;
2127 struct detailed_non_pixel *data = &timing->data.other_data;
2128
2129 if (data->type == EDID_DETAIL_EST_TIMINGS)
2130 closure->modes += drm_est3_modes(closure->connector, timing);
2131 }
2132
2133 /**
2134 * add_established_modes - get est. modes from EDID and add them
2135 * @edid: EDID block to scan
2136 *
2137 * Each EDID block contains a bitmap of the supported "established modes" list
2138 * (defined above). Tease them out and add them to the global modes list.
2139 */
2140 static int
2141 add_established_modes(struct drm_connector *connector, struct edid *edid)
2142 {
2143 struct drm_device *dev = connector->dev;
2144 unsigned long est_bits = edid->established_timings.t1 |
2145 (edid->established_timings.t2 << 8) |
2146 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2147 int i, modes = 0;
2148 struct detailed_mode_closure closure = {
2149 connector, edid, 0, 0, 0
2150 };
2151
2152 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2153 if (est_bits & (1<<i)) {
2154 struct drm_display_mode *newmode;
2155 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2156 if (newmode) {
2157 drm_mode_probed_add(connector, newmode);
2158 modes++;
2159 }
2160 }
2161 }
2162
2163 if (version_greater(edid, 1, 0))
2164 drm_for_each_detailed_block((u8 *)edid,
2165 do_established_modes, &closure);
2166
2167 return modes + closure.modes;
2168 }
2169
2170 static void
2171 do_standard_modes(struct detailed_timing *timing, void *c)
2172 {
2173 struct detailed_mode_closure *closure = c;
2174 struct detailed_non_pixel *data = &timing->data.other_data;
2175 struct drm_connector *connector = closure->connector;
2176 struct edid *edid = closure->edid;
2177
2178 if (data->type == EDID_DETAIL_STD_MODES) {
2179 int i;
2180 for (i = 0; i < 6; i++) {
2181 struct std_timing *std;
2182 struct drm_display_mode *newmode;
2183
2184 std = &data->data.timings[i];
2185 newmode = drm_mode_std(connector, edid, std,
2186 edid->revision);
2187 if (newmode) {
2188 drm_mode_probed_add(connector, newmode);
2189 closure->modes++;
2190 }
2191 }
2192 }
2193 }
2194
2195 /**
2196 * add_standard_modes - get std. modes from EDID and add them
2197 * @edid: EDID block to scan
2198 *
2199 * Standard modes can be calculated using the appropriate standard (DMT,
2200 * GTF or CVT. Grab them from @edid and add them to the list.
2201 */
2202 static int
2203 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2204 {
2205 int i, modes = 0;
2206 struct detailed_mode_closure closure = {
2207 connector, edid, 0, 0, 0
2208 };
2209
2210 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2211 struct drm_display_mode *newmode;
2212
2213 newmode = drm_mode_std(connector, edid,
2214 &edid->standard_timings[i],
2215 edid->revision);
2216 if (newmode) {
2217 drm_mode_probed_add(connector, newmode);
2218 modes++;
2219 }
2220 }
2221
2222 if (version_greater(edid, 1, 0))
2223 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2224 &closure);
2225
2226 /* XXX should also look for standard codes in VTB blocks */
2227
2228 return modes + closure.modes;
2229 }
2230
2231 static int drm_cvt_modes(struct drm_connector *connector,
2232 struct detailed_timing *timing)
2233 {
2234 int i, j, modes = 0;
2235 struct drm_display_mode *newmode;
2236 struct drm_device *dev = connector->dev;
2237 struct cvt_timing *cvt;
2238 const int rates[] = { 60, 85, 75, 60, 50 };
2239 const u8 empty[3] = { 0, 0, 0 };
2240
2241 for (i = 0; i < 4; i++) {
2242 int uninitialized_var(width), height;
2243 cvt = &(timing->data.other_data.data.cvt[i]);
2244
2245 if (!memcmp(cvt->code, empty, 3))
2246 continue;
2247
2248 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2249 switch (cvt->code[1] & 0x0c) {
2250 case 0x00:
2251 width = height * 4 / 3;
2252 break;
2253 case 0x04:
2254 width = height * 16 / 9;
2255 break;
2256 case 0x08:
2257 width = height * 16 / 10;
2258 break;
2259 case 0x0c:
2260 width = height * 15 / 9;
2261 break;
2262 }
2263
2264 for (j = 1; j < 5; j++) {
2265 if (cvt->code[2] & (1 << j)) {
2266 newmode = drm_cvt_mode(dev, width, height,
2267 rates[j], j == 0,
2268 false, false);
2269 if (newmode) {
2270 drm_mode_probed_add(connector, newmode);
2271 modes++;
2272 }
2273 }
2274 }
2275 }
2276
2277 return modes;
2278 }
2279
2280 static void
2281 do_cvt_mode(struct detailed_timing *timing, void *c)
2282 {
2283 struct detailed_mode_closure *closure = c;
2284 struct detailed_non_pixel *data = &timing->data.other_data;
2285
2286 if (data->type == EDID_DETAIL_CVT_3BYTE)
2287 closure->modes += drm_cvt_modes(closure->connector, timing);
2288 }
2289
2290 static int
2291 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2292 {
2293 struct detailed_mode_closure closure = {
2294 connector, edid, 0, 0, 0
2295 };
2296
2297 if (version_greater(edid, 1, 2))
2298 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2299
2300 /* XXX should also look for CVT codes in VTB blocks */
2301
2302 return closure.modes;
2303 }
2304
2305 static void
2306 do_detailed_mode(struct detailed_timing *timing, void *c)
2307 {
2308 struct detailed_mode_closure *closure = c;
2309 struct drm_display_mode *newmode;
2310
2311 if (timing->pixel_clock) {
2312 newmode = drm_mode_detailed(closure->connector->dev,
2313 closure->edid, timing,
2314 closure->quirks);
2315 if (!newmode)
2316 return;
2317
2318 if (closure->preferred)
2319 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2320
2321 drm_mode_probed_add(closure->connector, newmode);
2322 closure->modes++;
2323 closure->preferred = 0;
2324 }
2325 }
2326
2327 /*
2328 * add_detailed_modes - Add modes from detailed timings
2329 * @connector: attached connector
2330 * @edid: EDID block to scan
2331 * @quirks: quirks to apply
2332 */
2333 static int
2334 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2335 u32 quirks)
2336 {
2337 struct detailed_mode_closure closure = {
2338 connector,
2339 edid,
2340 1,
2341 quirks,
2342 0
2343 };
2344
2345 if (closure.preferred && !version_greater(edid, 1, 3))
2346 closure.preferred =
2347 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2348
2349 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2350
2351 return closure.modes;
2352 }
2353
2354 #define AUDIO_BLOCK 0x01
2355 #define VIDEO_BLOCK 0x02
2356 #define VENDOR_BLOCK 0x03
2357 #define SPEAKER_BLOCK 0x04
2358 #define VIDEO_CAPABILITY_BLOCK 0x07
2359 #define EDID_BASIC_AUDIO (1 << 6)
2360 #define EDID_CEA_YCRCB444 (1 << 5)
2361 #define EDID_CEA_YCRCB422 (1 << 4)
2362 #define EDID_CEA_VCDB_QS (1 << 6)
2363
2364 /*
2365 * Search EDID for CEA extension block.
2366 */
2367 static u8 *drm_find_cea_extension(struct edid *edid)
2368 {
2369 u8 *edid_ext = NULL;
2370 int i;
2371
2372 /* No EDID or EDID extensions */
2373 if (edid == NULL || edid->extensions == 0)
2374 return NULL;
2375
2376 /* Find CEA extension */
2377 for (i = 0; i < edid->extensions; i++) {
2378 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2379 if (edid_ext[0] == CEA_EXT)
2380 break;
2381 }
2382
2383 if (i == edid->extensions)
2384 return NULL;
2385
2386 return edid_ext;
2387 }
2388
2389 /*
2390 * Calculate the alternate clock for the CEA mode
2391 * (60Hz vs. 59.94Hz etc.)
2392 */
2393 static unsigned int
2394 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2395 {
2396 unsigned int clock = cea_mode->clock;
2397
2398 if (cea_mode->vrefresh % 6 != 0)
2399 return clock;
2400
2401 /*
2402 * edid_cea_modes contains the 59.94Hz
2403 * variant for 240 and 480 line modes,
2404 * and the 60Hz variant otherwise.
2405 */
2406 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2407 clock = clock * 1001 / 1000;
2408 else
2409 clock = DIV_ROUND_UP(clock * 1000, 1001);
2410
2411 return clock;
2412 }
2413
2414 /**
2415 * drm_match_cea_mode - look for a CEA mode matching given mode
2416 * @to_match: display mode
2417 *
2418 * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2419 * mode.
2420 */
2421 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2422 {
2423 u8 mode;
2424
2425 if (!to_match->clock)
2426 return 0;
2427
2428 for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2429 const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2430 unsigned int clock1, clock2;
2431
2432 /* Check both 60Hz and 59.94Hz */
2433 clock1 = cea_mode->clock;
2434 clock2 = cea_mode_alternate_clock(cea_mode);
2435
2436 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2437 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2438 drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2439 return mode + 1;
2440 }
2441 return 0;
2442 }
2443 EXPORT_SYMBOL(drm_match_cea_mode);
2444
2445 /*
2446 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2447 * specific block).
2448 *
2449 * It's almost like cea_mode_alternate_clock(), we just need to add an
2450 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2451 * one.
2452 */
2453 static unsigned int
2454 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2455 {
2456 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2457 return hdmi_mode->clock;
2458
2459 return cea_mode_alternate_clock(hdmi_mode);
2460 }
2461
2462 /*
2463 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2464 * @to_match: display mode
2465 *
2466 * An HDMI mode is one defined in the HDMI vendor specific block.
2467 *
2468 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2469 */
2470 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2471 {
2472 u8 mode;
2473
2474 if (!to_match->clock)
2475 return 0;
2476
2477 for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2478 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2479 unsigned int clock1, clock2;
2480
2481 /* Make sure to also match alternate clocks */
2482 clock1 = hdmi_mode->clock;
2483 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2484
2485 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2486 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2487 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2488 return mode + 1;
2489 }
2490 return 0;
2491 }
2492
2493 static int
2494 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2495 {
2496 struct drm_device *dev = connector->dev;
2497 struct drm_display_mode *mode, *tmp;
2498 LIST_HEAD(list);
2499 int modes = 0;
2500
2501 /* Don't add CEA modes if the CEA extension block is missing */
2502 if (!drm_find_cea_extension(edid))
2503 return 0;
2504
2505 /*
2506 * Go through all probed modes and create a new mode
2507 * with the alternate clock for certain CEA modes.
2508 */
2509 list_for_each_entry(mode, &connector->probed_modes, head) {
2510 const struct drm_display_mode *cea_mode = NULL;
2511 struct drm_display_mode *newmode;
2512 u8 mode_idx = drm_match_cea_mode(mode) - 1;
2513 unsigned int clock1, clock2;
2514
2515 if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2516 cea_mode = &edid_cea_modes[mode_idx];
2517 clock2 = cea_mode_alternate_clock(cea_mode);
2518 } else {
2519 mode_idx = drm_match_hdmi_mode(mode) - 1;
2520 if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2521 cea_mode = &edid_4k_modes[mode_idx];
2522 clock2 = hdmi_mode_alternate_clock(cea_mode);
2523 }
2524 }
2525
2526 if (!cea_mode)
2527 continue;
2528
2529 clock1 = cea_mode->clock;
2530
2531 if (clock1 == clock2)
2532 continue;
2533
2534 if (mode->clock != clock1 && mode->clock != clock2)
2535 continue;
2536
2537 newmode = drm_mode_duplicate(dev, cea_mode);
2538 if (!newmode)
2539 continue;
2540
2541 /* Carry over the stereo flags */
2542 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2543
2544 /*
2545 * The current mode could be either variant. Make
2546 * sure to pick the "other" clock for the new mode.
2547 */
2548 if (mode->clock != clock1)
2549 newmode->clock = clock1;
2550 else
2551 newmode->clock = clock2;
2552
2553 list_add_tail(&newmode->head, &list);
2554 }
2555
2556 list_for_each_entry_safe(mode, tmp, &list, head) {
2557 list_del(&mode->head);
2558 drm_mode_probed_add(connector, mode);
2559 modes++;
2560 }
2561
2562 return modes;
2563 }
2564
2565 static struct drm_display_mode *
2566 drm_display_mode_from_vic_index(struct drm_connector *connector,
2567 const u8 *video_db, u8 video_len,
2568 u8 video_index)
2569 {
2570 struct drm_device *dev = connector->dev;
2571 struct drm_display_mode *newmode;
2572 u8 cea_mode;
2573
2574 if (video_db == NULL || video_index >= video_len)
2575 return NULL;
2576
2577 /* CEA modes are numbered 1..127 */
2578 cea_mode = (video_db[video_index] & 127) - 1;
2579 if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2580 return NULL;
2581
2582 newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2583 newmode->vrefresh = 0;
2584
2585 return newmode;
2586 }
2587
2588 static int
2589 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2590 {
2591 int i, modes = 0;
2592
2593 for (i = 0; i < len; i++) {
2594 struct drm_display_mode *mode;
2595 mode = drm_display_mode_from_vic_index(connector, db, len, i);
2596 if (mode) {
2597 drm_mode_probed_add(connector, mode);
2598 modes++;
2599 }
2600 }
2601
2602 return modes;
2603 }
2604
2605 struct stereo_mandatory_mode {
2606 int width, height, vrefresh;
2607 unsigned int flags;
2608 };
2609
2610 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2611 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2612 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2613 { 1920, 1080, 50,
2614 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2615 { 1920, 1080, 60,
2616 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2617 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2618 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2619 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2620 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2621 };
2622
2623 static bool
2624 stereo_match_mandatory(const struct drm_display_mode *mode,
2625 const struct stereo_mandatory_mode *stereo_mode)
2626 {
2627 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2628
2629 return mode->hdisplay == stereo_mode->width &&
2630 mode->vdisplay == stereo_mode->height &&
2631 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2632 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2633 }
2634
2635 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2636 {
2637 struct drm_device *dev = connector->dev;
2638 const struct drm_display_mode *mode;
2639 struct list_head stereo_modes;
2640 int modes = 0, i;
2641
2642 INIT_LIST_HEAD(&stereo_modes);
2643
2644 list_for_each_entry(mode, &connector->probed_modes, head) {
2645 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2646 const struct stereo_mandatory_mode *mandatory;
2647 struct drm_display_mode *new_mode;
2648
2649 if (!stereo_match_mandatory(mode,
2650 &stereo_mandatory_modes[i]))
2651 continue;
2652
2653 mandatory = &stereo_mandatory_modes[i];
2654 new_mode = drm_mode_duplicate(dev, mode);
2655 if (!new_mode)
2656 continue;
2657
2658 new_mode->flags |= mandatory->flags;
2659 list_add_tail(&new_mode->head, &stereo_modes);
2660 modes++;
2661 }
2662 }
2663
2664 list_splice_tail(&stereo_modes, &connector->probed_modes);
2665
2666 return modes;
2667 }
2668
2669 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2670 {
2671 struct drm_device *dev = connector->dev;
2672 struct drm_display_mode *newmode;
2673
2674 vic--; /* VICs start at 1 */
2675 if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2676 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2677 return 0;
2678 }
2679
2680 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2681 if (!newmode)
2682 return 0;
2683
2684 drm_mode_probed_add(connector, newmode);
2685
2686 return 1;
2687 }
2688
2689 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2690 const u8 *video_db, u8 video_len, u8 video_index)
2691 {
2692 struct drm_display_mode *newmode;
2693 int modes = 0;
2694
2695 if (structure & (1 << 0)) {
2696 newmode = drm_display_mode_from_vic_index(connector, video_db,
2697 video_len,
2698 video_index);
2699 if (newmode) {
2700 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2701 drm_mode_probed_add(connector, newmode);
2702 modes++;
2703 }
2704 }
2705 if (structure & (1 << 6)) {
2706 newmode = drm_display_mode_from_vic_index(connector, video_db,
2707 video_len,
2708 video_index);
2709 if (newmode) {
2710 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2711 drm_mode_probed_add(connector, newmode);
2712 modes++;
2713 }
2714 }
2715 if (structure & (1 << 8)) {
2716 newmode = drm_display_mode_from_vic_index(connector, video_db,
2717 video_len,
2718 video_index);
2719 if (newmode) {
2720 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2721 drm_mode_probed_add(connector, newmode);
2722 modes++;
2723 }
2724 }
2725
2726 return modes;
2727 }
2728
2729 /*
2730 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2731 * @connector: connector corresponding to the HDMI sink
2732 * @db: start of the CEA vendor specific block
2733 * @len: length of the CEA block payload, ie. one can access up to db[len]
2734 *
2735 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2736 * also adds the stereo 3d modes when applicable.
2737 */
2738 static int
2739 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2740 const u8 *video_db, u8 video_len)
2741 {
2742 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2743 u8 vic_len, hdmi_3d_len = 0;
2744 u16 mask;
2745 u16 structure_all;
2746
2747 if (len < 8)
2748 goto out;
2749
2750 /* no HDMI_Video_Present */
2751 if (!(db[8] & (1 << 5)))
2752 goto out;
2753
2754 /* Latency_Fields_Present */
2755 if (db[8] & (1 << 7))
2756 offset += 2;
2757
2758 /* I_Latency_Fields_Present */
2759 if (db[8] & (1 << 6))
2760 offset += 2;
2761
2762 /* the declared length is not long enough for the 2 first bytes
2763 * of additional video format capabilities */
2764 if (len < (8 + offset + 2))
2765 goto out;
2766
2767 /* 3D_Present */
2768 offset++;
2769 if (db[8 + offset] & (1 << 7)) {
2770 modes += add_hdmi_mandatory_stereo_modes(connector);
2771
2772 /* 3D_Multi_present */
2773 multi_present = (db[8 + offset] & 0x60) >> 5;
2774 }
2775
2776 offset++;
2777 vic_len = db[8 + offset] >> 5;
2778 hdmi_3d_len = db[8 + offset] & 0x1f;
2779
2780 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2781 u8 vic;
2782
2783 vic = db[9 + offset + i];
2784 modes += add_hdmi_mode(connector, vic);
2785 }
2786 offset += 1 + vic_len;
2787
2788 if (multi_present == 1)
2789 multi_len = 2;
2790 else if (multi_present == 2)
2791 multi_len = 4;
2792 else
2793 multi_len = 0;
2794
2795 if (len < (8 + offset + hdmi_3d_len - 1))
2796 goto out;
2797
2798 if (hdmi_3d_len < multi_len)
2799 goto out;
2800
2801 if (multi_present == 1 || multi_present == 2) {
2802 /* 3D_Structure_ALL */
2803 structure_all = (db[8 + offset] << 8) | db[9 + offset];
2804
2805 /* check if 3D_MASK is present */
2806 if (multi_present == 2)
2807 mask = (db[10 + offset] << 8) | db[11 + offset];
2808 else
2809 mask = 0xffff;
2810
2811 for (i = 0; i < 16; i++) {
2812 if (mask & (1 << i))
2813 modes += add_3d_struct_modes(connector,
2814 structure_all,
2815 video_db,
2816 video_len, i);
2817 }
2818 }
2819
2820 offset += multi_len;
2821
2822 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2823 int vic_index;
2824 struct drm_display_mode *newmode = NULL;
2825 unsigned int newflag = 0;
2826 bool detail_present;
2827
2828 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2829
2830 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2831 break;
2832
2833 /* 2D_VIC_order_X */
2834 vic_index = db[8 + offset + i] >> 4;
2835
2836 /* 3D_Structure_X */
2837 switch (db[8 + offset + i] & 0x0f) {
2838 case 0:
2839 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2840 break;
2841 case 6:
2842 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2843 break;
2844 case 8:
2845 /* 3D_Detail_X */
2846 if ((db[9 + offset + i] >> 4) == 1)
2847 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2848 break;
2849 }
2850
2851 if (newflag != 0) {
2852 newmode = drm_display_mode_from_vic_index(connector,
2853 video_db,
2854 video_len,
2855 vic_index);
2856
2857 if (newmode) {
2858 newmode->flags |= newflag;
2859 drm_mode_probed_add(connector, newmode);
2860 modes++;
2861 }
2862 }
2863
2864 if (detail_present)
2865 i++;
2866 }
2867
2868 out:
2869 return modes;
2870 }
2871
2872 static int
2873 cea_db_payload_len(const u8 *db)
2874 {
2875 return db[0] & 0x1f;
2876 }
2877
2878 static int
2879 cea_db_tag(const u8 *db)
2880 {
2881 return db[0] >> 5;
2882 }
2883
2884 static int
2885 cea_revision(const u8 *cea)
2886 {
2887 return cea[1];
2888 }
2889
2890 static int
2891 cea_db_offsets(const u8 *cea, int *start, int *end)
2892 {
2893 /* Data block offset in CEA extension block */
2894 *start = 4;
2895 *end = cea[2];
2896 if (*end == 0)
2897 *end = 127;
2898 if (*end < 4 || *end > 127)
2899 return -ERANGE;
2900 return 0;
2901 }
2902
2903 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2904 {
2905 int hdmi_id;
2906
2907 if (cea_db_tag(db) != VENDOR_BLOCK)
2908 return false;
2909
2910 if (cea_db_payload_len(db) < 5)
2911 return false;
2912
2913 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2914
2915 return hdmi_id == HDMI_IEEE_OUI;
2916 }
2917
2918 #define for_each_cea_db(cea, i, start, end) \
2919 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2920
2921 static int
2922 add_cea_modes(struct drm_connector *connector, struct edid *edid)
2923 {
2924 const u8 *cea = drm_find_cea_extension(edid);
2925 const u8 *db, *hdmi = NULL, *video = NULL;
2926 u8 dbl, hdmi_len, video_len = 0;
2927 int modes = 0;
2928
2929 if (cea && cea_revision(cea) >= 3) {
2930 int i, start, end;
2931
2932 if (cea_db_offsets(cea, &start, &end))
2933 return 0;
2934
2935 for_each_cea_db(cea, i, start, end) {
2936 db = &cea[i];
2937 dbl = cea_db_payload_len(db);
2938
2939 if (cea_db_tag(db) == VIDEO_BLOCK) {
2940 video = db + 1;
2941 video_len = dbl;
2942 modes += do_cea_modes(connector, video, dbl);
2943 }
2944 else if (cea_db_is_hdmi_vsdb(db)) {
2945 hdmi = db;
2946 hdmi_len = dbl;
2947 }
2948 }
2949 }
2950
2951 /*
2952 * We parse the HDMI VSDB after having added the cea modes as we will
2953 * be patching their flags when the sink supports stereo 3D.
2954 */
2955 if (hdmi)
2956 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
2957 video_len);
2958
2959 return modes;
2960 }
2961
2962 static void
2963 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2964 {
2965 u8 len = cea_db_payload_len(db);
2966
2967 if (len >= 6) {
2968 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
2969 connector->dvi_dual = db[6] & 1;
2970 }
2971 if (len >= 7)
2972 connector->max_tmds_clock = db[7] * 5;
2973 if (len >= 8) {
2974 connector->latency_present[0] = db[8] >> 7;
2975 connector->latency_present[1] = (db[8] >> 6) & 1;
2976 }
2977 if (len >= 9)
2978 connector->video_latency[0] = db[9];
2979 if (len >= 10)
2980 connector->audio_latency[0] = db[10];
2981 if (len >= 11)
2982 connector->video_latency[1] = db[11];
2983 if (len >= 12)
2984 connector->audio_latency[1] = db[12];
2985
2986 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
2987 "max TMDS clock %d, "
2988 "latency present %d %d, "
2989 "video latency %d %d, "
2990 "audio latency %d %d\n",
2991 connector->dvi_dual,
2992 connector->max_tmds_clock,
2993 (int) connector->latency_present[0],
2994 (int) connector->latency_present[1],
2995 connector->video_latency[0],
2996 connector->video_latency[1],
2997 connector->audio_latency[0],
2998 connector->audio_latency[1]);
2999 }
3000
3001 static void
3002 monitor_name(struct detailed_timing *t, void *data)
3003 {
3004 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3005 *(u8 **)data = t->data.other_data.data.str.str;
3006 }
3007
3008 /**
3009 * drm_edid_to_eld - build ELD from EDID
3010 * @connector: connector corresponding to the HDMI/DP sink
3011 * @edid: EDID to parse
3012 *
3013 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
3014 * Some ELD fields are left to the graphics driver caller:
3015 * - Conn_Type
3016 * - HDCP
3017 * - Port_ID
3018 */
3019 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3020 {
3021 uint8_t *eld = connector->eld;
3022 u8 *cea;
3023 u8 *name;
3024 u8 *db;
3025 int sad_count = 0;
3026 int mnl;
3027 int dbl;
3028
3029 memset(eld, 0, sizeof(connector->eld));
3030
3031 cea = drm_find_cea_extension(edid);
3032 if (!cea) {
3033 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3034 return;
3035 }
3036
3037 name = NULL;
3038 drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3039 for (mnl = 0; name && mnl < 13; mnl++) {
3040 if (name[mnl] == 0x0a)
3041 break;
3042 eld[20 + mnl] = name[mnl];
3043 }
3044 eld[4] = (cea[1] << 5) | mnl;
3045 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3046
3047 eld[0] = 2 << 3; /* ELD version: 2 */
3048
3049 eld[16] = edid->mfg_id[0];
3050 eld[17] = edid->mfg_id[1];
3051 eld[18] = edid->prod_code[0];
3052 eld[19] = edid->prod_code[1];
3053
3054 if (cea_revision(cea) >= 3) {
3055 int i, start, end;
3056
3057 if (cea_db_offsets(cea, &start, &end)) {
3058 start = 0;
3059 end = 0;
3060 }
3061
3062 for_each_cea_db(cea, i, start, end) {
3063 db = &cea[i];
3064 dbl = cea_db_payload_len(db);
3065
3066 switch (cea_db_tag(db)) {
3067 case AUDIO_BLOCK:
3068 /* Audio Data Block, contains SADs */
3069 sad_count = dbl / 3;
3070 if (dbl >= 1)
3071 memcpy(eld + 20 + mnl, &db[1], dbl);
3072 break;
3073 case SPEAKER_BLOCK:
3074 /* Speaker Allocation Data Block */
3075 if (dbl >= 1)
3076 eld[7] = db[1];
3077 break;
3078 case VENDOR_BLOCK:
3079 /* HDMI Vendor-Specific Data Block */
3080 if (cea_db_is_hdmi_vsdb(db))
3081 parse_hdmi_vsdb(connector, db);
3082 break;
3083 default:
3084 break;
3085 }
3086 }
3087 }
3088 eld[5] |= sad_count << 4;
3089 eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
3090
3091 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
3092 }
3093 EXPORT_SYMBOL(drm_edid_to_eld);
3094
3095 /**
3096 * drm_edid_to_sad - extracts SADs from EDID
3097 * @edid: EDID to parse
3098 * @sads: pointer that will be set to the extracted SADs
3099 *
3100 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3101 * Note: returned pointer needs to be kfreed
3102 *
3103 * Return number of found SADs or negative number on error.
3104 */
3105 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3106 {
3107 int count = 0;
3108 int i, start, end, dbl;
3109 u8 *cea;
3110
3111 cea = drm_find_cea_extension(edid);
3112 if (!cea) {
3113 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3114 return -ENOENT;
3115 }
3116
3117 if (cea_revision(cea) < 3) {
3118 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3119 return -ENOTSUPP;
3120 }
3121
3122 if (cea_db_offsets(cea, &start, &end)) {
3123 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3124 return -EPROTO;
3125 }
3126
3127 for_each_cea_db(cea, i, start, end) {
3128 u8 *db = &cea[i];
3129
3130 if (cea_db_tag(db) == AUDIO_BLOCK) {
3131 int j;
3132 dbl = cea_db_payload_len(db);
3133
3134 count = dbl / 3; /* SAD is 3B */
3135 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3136 if (!*sads)
3137 return -ENOMEM;
3138 for (j = 0; j < count; j++) {
3139 u8 *sad = &db[1 + j * 3];
3140
3141 (*sads)[j].format = (sad[0] & 0x78) >> 3;
3142 (*sads)[j].channels = sad[0] & 0x7;
3143 (*sads)[j].freq = sad[1] & 0x7F;
3144 (*sads)[j].byte2 = sad[2];
3145 }
3146 break;
3147 }
3148 }
3149
3150 return count;
3151 }
3152 EXPORT_SYMBOL(drm_edid_to_sad);
3153
3154 /**
3155 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3156 * @edid: EDID to parse
3157 * @sadb: pointer to the speaker block
3158 *
3159 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3160 * Note: returned pointer needs to be kfreed
3161 *
3162 * Return number of found Speaker Allocation Blocks or negative number on error.
3163 */
3164 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3165 {
3166 int count = 0;
3167 int i, start, end, dbl;
3168 const u8 *cea;
3169
3170 cea = drm_find_cea_extension(edid);
3171 if (!cea) {
3172 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3173 return -ENOENT;
3174 }
3175
3176 if (cea_revision(cea) < 3) {
3177 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3178 return -ENOTSUPP;
3179 }
3180
3181 if (cea_db_offsets(cea, &start, &end)) {
3182 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3183 return -EPROTO;
3184 }
3185
3186 for_each_cea_db(cea, i, start, end) {
3187 const u8 *db = &cea[i];
3188
3189 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3190 dbl = cea_db_payload_len(db);
3191
3192 /* Speaker Allocation Data Block */
3193 if (dbl == 3) {
3194 *sadb = kmalloc(dbl, GFP_KERNEL);
3195 if (!*sadb)
3196 return -ENOMEM;
3197 memcpy(*sadb, &db[1], dbl);
3198 count = dbl;
3199 break;
3200 }
3201 }
3202 }
3203
3204 return count;
3205 }
3206 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3207
3208 /**
3209 * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
3210 * @connector: connector associated with the HDMI/DP sink
3211 * @mode: the display mode
3212 */
3213 int drm_av_sync_delay(struct drm_connector *connector,
3214 struct drm_display_mode *mode)
3215 {
3216 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3217 int a, v;
3218
3219 if (!connector->latency_present[0])
3220 return 0;
3221 if (!connector->latency_present[1])
3222 i = 0;
3223
3224 a = connector->audio_latency[i];
3225 v = connector->video_latency[i];
3226
3227 /*
3228 * HDMI/DP sink doesn't support audio or video?
3229 */
3230 if (a == 255 || v == 255)
3231 return 0;
3232
3233 /*
3234 * Convert raw EDID values to millisecond.
3235 * Treat unknown latency as 0ms.
3236 */
3237 if (a)
3238 a = min(2 * (a - 1), 500);
3239 if (v)
3240 v = min(2 * (v - 1), 500);
3241
3242 return max(v - a, 0);
3243 }
3244 EXPORT_SYMBOL(drm_av_sync_delay);
3245
3246 /**
3247 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3248 * @encoder: the encoder just changed display mode
3249 * @mode: the adjusted display mode
3250 *
3251 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3252 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3253 */
3254 struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3255 struct drm_display_mode *mode)
3256 {
3257 struct drm_connector *connector;
3258 struct drm_device *dev = encoder->dev;
3259
3260 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
3261 if (connector->encoder == encoder && connector->eld[0])
3262 return connector;
3263
3264 return NULL;
3265 }
3266 EXPORT_SYMBOL(drm_select_eld);
3267
3268 /**
3269 * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3270 * @edid: monitor EDID information
3271 *
3272 * Parse the CEA extension according to CEA-861-B.
3273 * Return true if HDMI, false if not or unknown.
3274 */
3275 bool drm_detect_hdmi_monitor(struct edid *edid)
3276 {
3277 u8 *edid_ext;
3278 int i;
3279 int start_offset, end_offset;
3280
3281 edid_ext = drm_find_cea_extension(edid);
3282 if (!edid_ext)
3283 return false;
3284
3285 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3286 return false;
3287
3288 /*
3289 * Because HDMI identifier is in Vendor Specific Block,
3290 * search it from all data blocks of CEA extension.
3291 */
3292 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3293 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3294 return true;
3295 }
3296
3297 return false;
3298 }
3299 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3300
3301 /**
3302 * drm_detect_monitor_audio - check monitor audio capability
3303 *
3304 * Monitor should have CEA extension block.
3305 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3306 * audio' only. If there is any audio extension block and supported
3307 * audio format, assume at least 'basic audio' support, even if 'basic
3308 * audio' is not defined in EDID.
3309 *
3310 */
3311 bool drm_detect_monitor_audio(struct edid *edid)
3312 {
3313 u8 *edid_ext;
3314 int i, j;
3315 bool has_audio = false;
3316 int start_offset, end_offset;
3317
3318 edid_ext = drm_find_cea_extension(edid);
3319 if (!edid_ext)
3320 goto end;
3321
3322 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3323
3324 if (has_audio) {
3325 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3326 goto end;
3327 }
3328
3329 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3330 goto end;
3331
3332 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3333 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3334 has_audio = true;
3335 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3336 DRM_DEBUG_KMS("CEA audio format %d\n",
3337 (edid_ext[i + j] >> 3) & 0xf);
3338 goto end;
3339 }
3340 }
3341 end:
3342 return has_audio;
3343 }
3344 EXPORT_SYMBOL(drm_detect_monitor_audio);
3345
3346 /**
3347 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3348 *
3349 * Check whether the monitor reports the RGB quantization range selection
3350 * as supported. The AVI infoframe can then be used to inform the monitor
3351 * which quantization range (full or limited) is used.
3352 */
3353 bool drm_rgb_quant_range_selectable(struct edid *edid)
3354 {
3355 u8 *edid_ext;
3356 int i, start, end;
3357
3358 edid_ext = drm_find_cea_extension(edid);
3359 if (!edid_ext)
3360 return false;
3361
3362 if (cea_db_offsets(edid_ext, &start, &end))
3363 return false;
3364
3365 for_each_cea_db(edid_ext, i, start, end) {
3366 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3367 cea_db_payload_len(&edid_ext[i]) == 2) {
3368 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3369 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3370 }
3371 }
3372
3373 return false;
3374 }
3375 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3376
3377 /**
3378 * drm_add_display_info - pull display info out if present
3379 * @edid: EDID data
3380 * @info: display info (attached to connector)
3381 *
3382 * Grab any available display info and stuff it into the drm_display_info
3383 * structure that's part of the connector. Useful for tracking bpp and
3384 * color spaces.
3385 */
3386 static void drm_add_display_info(struct edid *edid,
3387 struct drm_display_info *info)
3388 {
3389 u8 *edid_ext;
3390
3391 info->width_mm = edid->width_cm * 10;
3392 info->height_mm = edid->height_cm * 10;
3393
3394 /* driver figures it out in this case */
3395 info->bpc = 0;
3396 info->color_formats = 0;
3397
3398 if (edid->revision < 3)
3399 return;
3400
3401 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3402 return;
3403
3404 /* Get data from CEA blocks if present */
3405 edid_ext = drm_find_cea_extension(edid);
3406 if (edid_ext) {
3407 info->cea_rev = edid_ext[1];
3408
3409 /* The existence of a CEA block should imply RGB support */
3410 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3411 if (edid_ext[3] & EDID_CEA_YCRCB444)
3412 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3413 if (edid_ext[3] & EDID_CEA_YCRCB422)
3414 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3415 }
3416
3417 /* Only defined for 1.4 with digital displays */
3418 if (edid->revision < 4)
3419 return;
3420
3421 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3422 case DRM_EDID_DIGITAL_DEPTH_6:
3423 info->bpc = 6;
3424 break;
3425 case DRM_EDID_DIGITAL_DEPTH_8:
3426 info->bpc = 8;
3427 break;
3428 case DRM_EDID_DIGITAL_DEPTH_10:
3429 info->bpc = 10;
3430 break;
3431 case DRM_EDID_DIGITAL_DEPTH_12:
3432 info->bpc = 12;
3433 break;
3434 case DRM_EDID_DIGITAL_DEPTH_14:
3435 info->bpc = 14;
3436 break;
3437 case DRM_EDID_DIGITAL_DEPTH_16:
3438 info->bpc = 16;
3439 break;
3440 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3441 default:
3442 info->bpc = 0;
3443 break;
3444 }
3445
3446 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3447 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3448 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3449 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3450 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3451 }
3452
3453 /**
3454 * drm_add_edid_modes - add modes from EDID data, if available
3455 * @connector: connector we're probing
3456 * @edid: edid data
3457 *
3458 * Add the specified modes to the connector's mode list.
3459 *
3460 * Return number of modes added or 0 if we couldn't find any.
3461 */
3462 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3463 {
3464 int num_modes = 0;
3465 u32 quirks;
3466
3467 if (edid == NULL) {
3468 return 0;
3469 }
3470 if (!drm_edid_is_valid(edid)) {
3471 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3472 drm_get_connector_name(connector));
3473 return 0;
3474 }
3475
3476 quirks = edid_get_quirks(edid);
3477
3478 /*
3479 * EDID spec says modes should be preferred in this order:
3480 * - preferred detailed mode
3481 * - other detailed modes from base block
3482 * - detailed modes from extension blocks
3483 * - CVT 3-byte code modes
3484 * - standard timing codes
3485 * - established timing codes
3486 * - modes inferred from GTF or CVT range information
3487 *
3488 * We get this pretty much right.
3489 *
3490 * XXX order for additional mode types in extension blocks?
3491 */
3492 num_modes += add_detailed_modes(connector, edid, quirks);
3493 num_modes += add_cvt_modes(connector, edid);
3494 num_modes += add_standard_modes(connector, edid);
3495 num_modes += add_established_modes(connector, edid);
3496 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3497 num_modes += add_inferred_modes(connector, edid);
3498 num_modes += add_cea_modes(connector, edid);
3499 num_modes += add_alternate_cea_modes(connector, edid);
3500
3501 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3502 edid_fixup_preferred(connector, quirks);
3503
3504 drm_add_display_info(edid, &connector->display_info);
3505
3506 if (quirks & EDID_QUIRK_FORCE_8BPC)
3507 connector->display_info.bpc = 8;
3508
3509 return num_modes;
3510 }
3511 EXPORT_SYMBOL(drm_add_edid_modes);
3512
3513 /**
3514 * drm_add_modes_noedid - add modes for the connectors without EDID
3515 * @connector: connector we're probing
3516 * @hdisplay: the horizontal display limit
3517 * @vdisplay: the vertical display limit
3518 *
3519 * Add the specified modes to the connector's mode list. Only when the
3520 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3521 *
3522 * Return number of modes added or 0 if we couldn't find any.
3523 */
3524 int drm_add_modes_noedid(struct drm_connector *connector,
3525 int hdisplay, int vdisplay)
3526 {
3527 int i, count, num_modes = 0;
3528 struct drm_display_mode *mode;
3529 struct drm_device *dev = connector->dev;
3530
3531 count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3532 if (hdisplay < 0)
3533 hdisplay = 0;
3534 if (vdisplay < 0)
3535 vdisplay = 0;
3536
3537 for (i = 0; i < count; i++) {
3538 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3539 if (hdisplay && vdisplay) {
3540 /*
3541 * Only when two are valid, they will be used to check
3542 * whether the mode should be added to the mode list of
3543 * the connector.
3544 */
3545 if (ptr->hdisplay > hdisplay ||
3546 ptr->vdisplay > vdisplay)
3547 continue;
3548 }
3549 if (drm_mode_vrefresh(ptr) > 61)
3550 continue;
3551 mode = drm_mode_duplicate(dev, ptr);
3552 if (mode) {
3553 drm_mode_probed_add(connector, mode);
3554 num_modes++;
3555 }
3556 }
3557 return num_modes;
3558 }
3559 EXPORT_SYMBOL(drm_add_modes_noedid);
3560
3561 void drm_set_preferred_mode(struct drm_connector *connector,
3562 int hpref, int vpref)
3563 {
3564 struct drm_display_mode *mode;
3565
3566 list_for_each_entry(mode, &connector->probed_modes, head) {
3567 if (drm_mode_width(mode) == hpref &&
3568 drm_mode_height(mode) == vpref)
3569 mode->type |= DRM_MODE_TYPE_PREFERRED;
3570 }
3571 }
3572 EXPORT_SYMBOL(drm_set_preferred_mode);
3573
3574 /**
3575 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3576 * data from a DRM display mode
3577 * @frame: HDMI AVI infoframe
3578 * @mode: DRM display mode
3579 *
3580 * Returns 0 on success or a negative error code on failure.
3581 */
3582 int
3583 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3584 const struct drm_display_mode *mode)
3585 {
3586 int err;
3587
3588 if (!frame || !mode)
3589 return -EINVAL;
3590
3591 err = hdmi_avi_infoframe_init(frame);
3592 if (err < 0)
3593 return err;
3594
3595 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3596 frame->pixel_repeat = 1;
3597
3598 frame->video_code = drm_match_cea_mode(mode);
3599
3600 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3601 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3602
3603 return 0;
3604 }
3605 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3606
3607 static enum hdmi_3d_structure
3608 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3609 {
3610 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3611
3612 switch (layout) {
3613 case DRM_MODE_FLAG_3D_FRAME_PACKING:
3614 return HDMI_3D_STRUCTURE_FRAME_PACKING;
3615 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3616 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3617 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3618 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3619 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3620 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3621 case DRM_MODE_FLAG_3D_L_DEPTH:
3622 return HDMI_3D_STRUCTURE_L_DEPTH;
3623 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3624 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3625 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3626 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3627 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3628 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3629 default:
3630 return HDMI_3D_STRUCTURE_INVALID;
3631 }
3632 }
3633
3634 /**
3635 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3636 * data from a DRM display mode
3637 * @frame: HDMI vendor infoframe
3638 * @mode: DRM display mode
3639 *
3640 * Note that there's is a need to send HDMI vendor infoframes only when using a
3641 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3642 * function will return -EINVAL, error that can be safely ignored.
3643 *
3644 * Returns 0 on success or a negative error code on failure.
3645 */
3646 int
3647 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3648 const struct drm_display_mode *mode)
3649 {
3650 int err;
3651 u32 s3d_flags;
3652 u8 vic;
3653
3654 if (!frame || !mode)
3655 return -EINVAL;
3656
3657 vic = drm_match_hdmi_mode(mode);
3658 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
3659
3660 if (!vic && !s3d_flags)
3661 return -EINVAL;
3662
3663 if (vic && s3d_flags)
3664 return -EINVAL;
3665
3666 err = hdmi_vendor_infoframe_init(frame);
3667 if (err < 0)
3668 return err;
3669
3670 if (vic)
3671 frame->vic = vic;
3672 else
3673 frame->s3d_struct = s3d_structure_from_display_mode(mode);
3674
3675 return 0;
3676 }
3677 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);