]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/exynos/exynos_mixer.c
Merge tag 'drm-misc-next-2020-06-19' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/linux.git] / drivers / gpu / drm / exynos / exynos_mixer.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2011 Samsung Electronics Co.Ltd
4 * Authors:
5 * Seung-Woo Kim <sw0312.kim@samsung.com>
6 * Inki Dae <inki.dae@samsung.com>
7 * Joonyoung Shim <jy0922.shim@samsung.com>
8 *
9 * Based on drivers/media/video/s5p-tv/mixer_reg.c
10 */
11
12 #include <linux/clk.h>
13 #include <linux/component.h>
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/ktime.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/spinlock.h>
26 #include <linux/wait.h>
27
28 #include <drm/drm_fourcc.h>
29 #include <drm/drm_vblank.h>
30 #include <drm/exynos_drm.h>
31
32 #include "exynos_drm_crtc.h"
33 #include "exynos_drm_drv.h"
34 #include "exynos_drm_fb.h"
35 #include "exynos_drm_plane.h"
36 #include "regs-mixer.h"
37 #include "regs-vp.h"
38
39 #define MIXER_WIN_NR 3
40 #define VP_DEFAULT_WIN 2
41
42 /*
43 * Mixer color space conversion coefficient triplet.
44 * Used for CSC from RGB to YCbCr.
45 * Each coefficient is a 10-bit fixed point number with
46 * sign and no integer part, i.e.
47 * [0:8] = fractional part (representing a value y = x / 2^9)
48 * [9] = sign
49 * Negative values are encoded with two's complement.
50 */
51 #define MXR_CSC_C(x) ((int)((x) * 512.0) & 0x3ff)
52 #define MXR_CSC_CT(a0, a1, a2) \
53 ((MXR_CSC_C(a0) << 20) | (MXR_CSC_C(a1) << 10) | (MXR_CSC_C(a2) << 0))
54
55 /* YCbCr value, used for mixer background color configuration. */
56 #define MXR_YCBCR_VAL(y, cb, cr) (((y) << 16) | ((cb) << 8) | ((cr) << 0))
57
58 /* The pixelformats that are natively supported by the mixer. */
59 #define MXR_FORMAT_RGB565 4
60 #define MXR_FORMAT_ARGB1555 5
61 #define MXR_FORMAT_ARGB4444 6
62 #define MXR_FORMAT_ARGB8888 7
63
64 enum mixer_version_id {
65 MXR_VER_0_0_0_16,
66 MXR_VER_16_0_33_0,
67 MXR_VER_128_0_0_184,
68 };
69
70 enum mixer_flag_bits {
71 MXR_BIT_POWERED,
72 MXR_BIT_VSYNC,
73 MXR_BIT_INTERLACE,
74 MXR_BIT_VP_ENABLED,
75 MXR_BIT_HAS_SCLK,
76 };
77
78 static const uint32_t mixer_formats[] = {
79 DRM_FORMAT_XRGB4444,
80 DRM_FORMAT_ARGB4444,
81 DRM_FORMAT_XRGB1555,
82 DRM_FORMAT_ARGB1555,
83 DRM_FORMAT_RGB565,
84 DRM_FORMAT_XRGB8888,
85 DRM_FORMAT_ARGB8888,
86 };
87
88 static const uint32_t vp_formats[] = {
89 DRM_FORMAT_NV12,
90 DRM_FORMAT_NV21,
91 };
92
93 struct mixer_context {
94 struct platform_device *pdev;
95 struct device *dev;
96 struct drm_device *drm_dev;
97 void *dma_priv;
98 struct exynos_drm_crtc *crtc;
99 struct exynos_drm_plane planes[MIXER_WIN_NR];
100 unsigned long flags;
101
102 int irq;
103 void __iomem *mixer_regs;
104 void __iomem *vp_regs;
105 spinlock_t reg_slock;
106 struct clk *mixer;
107 struct clk *vp;
108 struct clk *hdmi;
109 struct clk *sclk_mixer;
110 struct clk *sclk_hdmi;
111 struct clk *mout_mixer;
112 enum mixer_version_id mxr_ver;
113 int scan_value;
114 };
115
116 struct mixer_drv_data {
117 enum mixer_version_id version;
118 bool is_vp_enabled;
119 bool has_sclk;
120 };
121
122 static const struct exynos_drm_plane_config plane_configs[MIXER_WIN_NR] = {
123 {
124 .zpos = 0,
125 .type = DRM_PLANE_TYPE_PRIMARY,
126 .pixel_formats = mixer_formats,
127 .num_pixel_formats = ARRAY_SIZE(mixer_formats),
128 .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE |
129 EXYNOS_DRM_PLANE_CAP_ZPOS |
130 EXYNOS_DRM_PLANE_CAP_PIX_BLEND |
131 EXYNOS_DRM_PLANE_CAP_WIN_BLEND,
132 }, {
133 .zpos = 1,
134 .type = DRM_PLANE_TYPE_CURSOR,
135 .pixel_formats = mixer_formats,
136 .num_pixel_formats = ARRAY_SIZE(mixer_formats),
137 .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE |
138 EXYNOS_DRM_PLANE_CAP_ZPOS |
139 EXYNOS_DRM_PLANE_CAP_PIX_BLEND |
140 EXYNOS_DRM_PLANE_CAP_WIN_BLEND,
141 }, {
142 .zpos = 2,
143 .type = DRM_PLANE_TYPE_OVERLAY,
144 .pixel_formats = vp_formats,
145 .num_pixel_formats = ARRAY_SIZE(vp_formats),
146 .capabilities = EXYNOS_DRM_PLANE_CAP_SCALE |
147 EXYNOS_DRM_PLANE_CAP_ZPOS |
148 EXYNOS_DRM_PLANE_CAP_TILE |
149 EXYNOS_DRM_PLANE_CAP_WIN_BLEND,
150 },
151 };
152
153 static const u8 filter_y_horiz_tap8[] = {
154 0, -1, -1, -1, -1, -1, -1, -1,
155 -1, -1, -1, -1, -1, 0, 0, 0,
156 0, 2, 4, 5, 6, 6, 6, 6,
157 6, 5, 5, 4, 3, 2, 1, 1,
158 0, -6, -12, -16, -18, -20, -21, -20,
159 -20, -18, -16, -13, -10, -8, -5, -2,
160 127, 126, 125, 121, 114, 107, 99, 89,
161 79, 68, 57, 46, 35, 25, 16, 8,
162 };
163
164 static const u8 filter_y_vert_tap4[] = {
165 0, -3, -6, -8, -8, -8, -8, -7,
166 -6, -5, -4, -3, -2, -1, -1, 0,
167 127, 126, 124, 118, 111, 102, 92, 81,
168 70, 59, 48, 37, 27, 19, 11, 5,
169 0, 5, 11, 19, 27, 37, 48, 59,
170 70, 81, 92, 102, 111, 118, 124, 126,
171 0, 0, -1, -1, -2, -3, -4, -5,
172 -6, -7, -8, -8, -8, -8, -6, -3,
173 };
174
175 static const u8 filter_cr_horiz_tap4[] = {
176 0, -3, -6, -8, -8, -8, -8, -7,
177 -6, -5, -4, -3, -2, -1, -1, 0,
178 127, 126, 124, 118, 111, 102, 92, 81,
179 70, 59, 48, 37, 27, 19, 11, 5,
180 };
181
182 static inline u32 vp_reg_read(struct mixer_context *ctx, u32 reg_id)
183 {
184 return readl(ctx->vp_regs + reg_id);
185 }
186
187 static inline void vp_reg_write(struct mixer_context *ctx, u32 reg_id,
188 u32 val)
189 {
190 writel(val, ctx->vp_regs + reg_id);
191 }
192
193 static inline void vp_reg_writemask(struct mixer_context *ctx, u32 reg_id,
194 u32 val, u32 mask)
195 {
196 u32 old = vp_reg_read(ctx, reg_id);
197
198 val = (val & mask) | (old & ~mask);
199 writel(val, ctx->vp_regs + reg_id);
200 }
201
202 static inline u32 mixer_reg_read(struct mixer_context *ctx, u32 reg_id)
203 {
204 return readl(ctx->mixer_regs + reg_id);
205 }
206
207 static inline void mixer_reg_write(struct mixer_context *ctx, u32 reg_id,
208 u32 val)
209 {
210 writel(val, ctx->mixer_regs + reg_id);
211 }
212
213 static inline void mixer_reg_writemask(struct mixer_context *ctx,
214 u32 reg_id, u32 val, u32 mask)
215 {
216 u32 old = mixer_reg_read(ctx, reg_id);
217
218 val = (val & mask) | (old & ~mask);
219 writel(val, ctx->mixer_regs + reg_id);
220 }
221
222 static void mixer_regs_dump(struct mixer_context *ctx)
223 {
224 #define DUMPREG(reg_id) \
225 do { \
226 DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \
227 (u32)readl(ctx->mixer_regs + reg_id)); \
228 } while (0)
229
230 DUMPREG(MXR_STATUS);
231 DUMPREG(MXR_CFG);
232 DUMPREG(MXR_INT_EN);
233 DUMPREG(MXR_INT_STATUS);
234
235 DUMPREG(MXR_LAYER_CFG);
236 DUMPREG(MXR_VIDEO_CFG);
237
238 DUMPREG(MXR_GRAPHIC0_CFG);
239 DUMPREG(MXR_GRAPHIC0_BASE);
240 DUMPREG(MXR_GRAPHIC0_SPAN);
241 DUMPREG(MXR_GRAPHIC0_WH);
242 DUMPREG(MXR_GRAPHIC0_SXY);
243 DUMPREG(MXR_GRAPHIC0_DXY);
244
245 DUMPREG(MXR_GRAPHIC1_CFG);
246 DUMPREG(MXR_GRAPHIC1_BASE);
247 DUMPREG(MXR_GRAPHIC1_SPAN);
248 DUMPREG(MXR_GRAPHIC1_WH);
249 DUMPREG(MXR_GRAPHIC1_SXY);
250 DUMPREG(MXR_GRAPHIC1_DXY);
251 #undef DUMPREG
252 }
253
254 static void vp_regs_dump(struct mixer_context *ctx)
255 {
256 #define DUMPREG(reg_id) \
257 do { \
258 DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \
259 (u32) readl(ctx->vp_regs + reg_id)); \
260 } while (0)
261
262 DUMPREG(VP_ENABLE);
263 DUMPREG(VP_SRESET);
264 DUMPREG(VP_SHADOW_UPDATE);
265 DUMPREG(VP_FIELD_ID);
266 DUMPREG(VP_MODE);
267 DUMPREG(VP_IMG_SIZE_Y);
268 DUMPREG(VP_IMG_SIZE_C);
269 DUMPREG(VP_PER_RATE_CTRL);
270 DUMPREG(VP_TOP_Y_PTR);
271 DUMPREG(VP_BOT_Y_PTR);
272 DUMPREG(VP_TOP_C_PTR);
273 DUMPREG(VP_BOT_C_PTR);
274 DUMPREG(VP_ENDIAN_MODE);
275 DUMPREG(VP_SRC_H_POSITION);
276 DUMPREG(VP_SRC_V_POSITION);
277 DUMPREG(VP_SRC_WIDTH);
278 DUMPREG(VP_SRC_HEIGHT);
279 DUMPREG(VP_DST_H_POSITION);
280 DUMPREG(VP_DST_V_POSITION);
281 DUMPREG(VP_DST_WIDTH);
282 DUMPREG(VP_DST_HEIGHT);
283 DUMPREG(VP_H_RATIO);
284 DUMPREG(VP_V_RATIO);
285
286 #undef DUMPREG
287 }
288
289 static inline void vp_filter_set(struct mixer_context *ctx,
290 int reg_id, const u8 *data, unsigned int size)
291 {
292 /* assure 4-byte align */
293 BUG_ON(size & 3);
294 for (; size; size -= 4, reg_id += 4, data += 4) {
295 u32 val = (data[0] << 24) | (data[1] << 16) |
296 (data[2] << 8) | data[3];
297 vp_reg_write(ctx, reg_id, val);
298 }
299 }
300
301 static void vp_default_filter(struct mixer_context *ctx)
302 {
303 vp_filter_set(ctx, VP_POLY8_Y0_LL,
304 filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8));
305 vp_filter_set(ctx, VP_POLY4_Y0_LL,
306 filter_y_vert_tap4, sizeof(filter_y_vert_tap4));
307 vp_filter_set(ctx, VP_POLY4_C0_LL,
308 filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4));
309 }
310
311 static void mixer_cfg_gfx_blend(struct mixer_context *ctx, unsigned int win,
312 unsigned int pixel_alpha, unsigned int alpha)
313 {
314 u32 win_alpha = alpha >> 8;
315 u32 val;
316
317 val = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */
318 switch (pixel_alpha) {
319 case DRM_MODE_BLEND_PIXEL_NONE:
320 break;
321 case DRM_MODE_BLEND_COVERAGE:
322 val |= MXR_GRP_CFG_PIXEL_BLEND_EN;
323 break;
324 case DRM_MODE_BLEND_PREMULTI:
325 default:
326 val |= MXR_GRP_CFG_BLEND_PRE_MUL;
327 val |= MXR_GRP_CFG_PIXEL_BLEND_EN;
328 break;
329 }
330
331 if (alpha != DRM_BLEND_ALPHA_OPAQUE) {
332 val |= MXR_GRP_CFG_WIN_BLEND_EN;
333 val |= win_alpha;
334 }
335 mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win),
336 val, MXR_GRP_CFG_MISC_MASK);
337 }
338
339 static void mixer_cfg_vp_blend(struct mixer_context *ctx, unsigned int alpha)
340 {
341 u32 win_alpha = alpha >> 8;
342 u32 val = 0;
343
344 if (alpha != DRM_BLEND_ALPHA_OPAQUE) {
345 val |= MXR_VID_CFG_BLEND_EN;
346 val |= win_alpha;
347 }
348 mixer_reg_write(ctx, MXR_VIDEO_CFG, val);
349 }
350
351 static bool mixer_is_synced(struct mixer_context *ctx)
352 {
353 u32 base, shadow;
354
355 if (ctx->mxr_ver == MXR_VER_16_0_33_0 ||
356 ctx->mxr_ver == MXR_VER_128_0_0_184)
357 return !(mixer_reg_read(ctx, MXR_CFG) &
358 MXR_CFG_LAYER_UPDATE_COUNT_MASK);
359
360 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags) &&
361 vp_reg_read(ctx, VP_SHADOW_UPDATE))
362 return false;
363
364 base = mixer_reg_read(ctx, MXR_CFG);
365 shadow = mixer_reg_read(ctx, MXR_CFG_S);
366 if (base != shadow)
367 return false;
368
369 base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(0));
370 shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(0));
371 if (base != shadow)
372 return false;
373
374 base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(1));
375 shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(1));
376 if (base != shadow)
377 return false;
378
379 return true;
380 }
381
382 static int mixer_wait_for_sync(struct mixer_context *ctx)
383 {
384 ktime_t timeout = ktime_add_us(ktime_get(), 100000);
385
386 while (!mixer_is_synced(ctx)) {
387 usleep_range(1000, 2000);
388 if (ktime_compare(ktime_get(), timeout) > 0)
389 return -ETIMEDOUT;
390 }
391 return 0;
392 }
393
394 static void mixer_disable_sync(struct mixer_context *ctx)
395 {
396 mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_SYNC_ENABLE);
397 }
398
399 static void mixer_enable_sync(struct mixer_context *ctx)
400 {
401 if (ctx->mxr_ver == MXR_VER_16_0_33_0 ||
402 ctx->mxr_ver == MXR_VER_128_0_0_184)
403 mixer_reg_writemask(ctx, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE);
404 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SYNC_ENABLE);
405 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags))
406 vp_reg_write(ctx, VP_SHADOW_UPDATE, VP_SHADOW_UPDATE_ENABLE);
407 }
408
409 static void mixer_cfg_scan(struct mixer_context *ctx, int width, int height)
410 {
411 u32 val;
412
413 /* choosing between interlace and progressive mode */
414 val = test_bit(MXR_BIT_INTERLACE, &ctx->flags) ?
415 MXR_CFG_SCAN_INTERLACE : MXR_CFG_SCAN_PROGRESSIVE;
416
417 if (ctx->mxr_ver == MXR_VER_128_0_0_184)
418 mixer_reg_write(ctx, MXR_RESOLUTION,
419 MXR_MXR_RES_HEIGHT(height) | MXR_MXR_RES_WIDTH(width));
420 else
421 val |= ctx->scan_value;
422
423 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_SCAN_MASK);
424 }
425
426 static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, struct drm_display_mode *mode)
427 {
428 enum hdmi_quantization_range range = drm_default_rgb_quant_range(mode);
429 u32 val;
430
431 if (mode->vdisplay < 720) {
432 val = MXR_CFG_RGB601;
433 } else {
434 val = MXR_CFG_RGB709;
435
436 /* Configure the BT.709 CSC matrix for full range RGB. */
437 mixer_reg_write(ctx, MXR_CM_COEFF_Y,
438 MXR_CSC_CT( 0.184, 0.614, 0.063) |
439 MXR_CM_COEFF_RGB_FULL);
440 mixer_reg_write(ctx, MXR_CM_COEFF_CB,
441 MXR_CSC_CT(-0.102, -0.338, 0.440));
442 mixer_reg_write(ctx, MXR_CM_COEFF_CR,
443 MXR_CSC_CT( 0.440, -0.399, -0.040));
444 }
445
446 if (range == HDMI_QUANTIZATION_RANGE_FULL)
447 val |= MXR_CFG_QUANT_RANGE_FULL;
448 else
449 val |= MXR_CFG_QUANT_RANGE_LIMITED;
450
451 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK);
452 }
453
454 static void mixer_cfg_layer(struct mixer_context *ctx, unsigned int win,
455 unsigned int priority, bool enable)
456 {
457 u32 val = enable ? ~0 : 0;
458
459 switch (win) {
460 case 0:
461 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP0_ENABLE);
462 mixer_reg_writemask(ctx, MXR_LAYER_CFG,
463 MXR_LAYER_CFG_GRP0_VAL(priority),
464 MXR_LAYER_CFG_GRP0_MASK);
465 break;
466 case 1:
467 mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP1_ENABLE);
468 mixer_reg_writemask(ctx, MXR_LAYER_CFG,
469 MXR_LAYER_CFG_GRP1_VAL(priority),
470 MXR_LAYER_CFG_GRP1_MASK);
471
472 break;
473 case VP_DEFAULT_WIN:
474 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
475 vp_reg_writemask(ctx, VP_ENABLE, val, VP_ENABLE_ON);
476 mixer_reg_writemask(ctx, MXR_CFG, val,
477 MXR_CFG_VP_ENABLE);
478 mixer_reg_writemask(ctx, MXR_LAYER_CFG,
479 MXR_LAYER_CFG_VP_VAL(priority),
480 MXR_LAYER_CFG_VP_MASK);
481 }
482 break;
483 }
484 }
485
486 static void mixer_run(struct mixer_context *ctx)
487 {
488 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_REG_RUN);
489 }
490
491 static void mixer_stop(struct mixer_context *ctx)
492 {
493 int timeout = 20;
494
495 mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_REG_RUN);
496
497 while (!(mixer_reg_read(ctx, MXR_STATUS) & MXR_STATUS_REG_IDLE) &&
498 --timeout)
499 usleep_range(10000, 12000);
500 }
501
502 static void mixer_commit(struct mixer_context *ctx)
503 {
504 struct drm_display_mode *mode = &ctx->crtc->base.state->adjusted_mode;
505
506 mixer_cfg_scan(ctx, mode->hdisplay, mode->vdisplay);
507 mixer_cfg_rgb_fmt(ctx, mode);
508 mixer_run(ctx);
509 }
510
511 static void vp_video_buffer(struct mixer_context *ctx,
512 struct exynos_drm_plane *plane)
513 {
514 struct exynos_drm_plane_state *state =
515 to_exynos_plane_state(plane->base.state);
516 struct drm_framebuffer *fb = state->base.fb;
517 unsigned int priority = state->base.normalized_zpos + 1;
518 unsigned long flags;
519 dma_addr_t luma_addr[2], chroma_addr[2];
520 bool is_tiled, is_nv21;
521 u32 val;
522
523 is_nv21 = (fb->format->format == DRM_FORMAT_NV21);
524 is_tiled = (fb->modifier == DRM_FORMAT_MOD_SAMSUNG_64_32_TILE);
525
526 luma_addr[0] = exynos_drm_fb_dma_addr(fb, 0);
527 chroma_addr[0] = exynos_drm_fb_dma_addr(fb, 1);
528
529 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
530 if (is_tiled) {
531 luma_addr[1] = luma_addr[0] + 0x40;
532 chroma_addr[1] = chroma_addr[0] + 0x40;
533 } else {
534 luma_addr[1] = luma_addr[0] + fb->pitches[0];
535 chroma_addr[1] = chroma_addr[0] + fb->pitches[1];
536 }
537 } else {
538 luma_addr[1] = 0;
539 chroma_addr[1] = 0;
540 }
541
542 spin_lock_irqsave(&ctx->reg_slock, flags);
543
544 /* interlace or progressive scan mode */
545 val = (test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? ~0 : 0);
546 vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_LINE_SKIP);
547
548 /* setup format */
549 val = (is_nv21 ? VP_MODE_NV21 : VP_MODE_NV12);
550 val |= (is_tiled ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR);
551 vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_FMT_MASK);
552
553 /* setting size of input image */
554 vp_reg_write(ctx, VP_IMG_SIZE_Y, VP_IMG_HSIZE(fb->pitches[0]) |
555 VP_IMG_VSIZE(fb->height));
556 /* chroma plane for NV12/NV21 is half the height of the luma plane */
557 vp_reg_write(ctx, VP_IMG_SIZE_C, VP_IMG_HSIZE(fb->pitches[1]) |
558 VP_IMG_VSIZE(fb->height / 2));
559
560 vp_reg_write(ctx, VP_SRC_WIDTH, state->src.w);
561 vp_reg_write(ctx, VP_SRC_H_POSITION,
562 VP_SRC_H_POSITION_VAL(state->src.x));
563 vp_reg_write(ctx, VP_DST_WIDTH, state->crtc.w);
564 vp_reg_write(ctx, VP_DST_H_POSITION, state->crtc.x);
565
566 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
567 vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h / 2);
568 vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y / 2);
569 vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h / 2);
570 vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y / 2);
571 } else {
572 vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h);
573 vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y);
574 vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h);
575 vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y);
576 }
577
578 vp_reg_write(ctx, VP_H_RATIO, state->h_ratio);
579 vp_reg_write(ctx, VP_V_RATIO, state->v_ratio);
580
581 vp_reg_write(ctx, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE);
582
583 /* set buffer address to vp */
584 vp_reg_write(ctx, VP_TOP_Y_PTR, luma_addr[0]);
585 vp_reg_write(ctx, VP_BOT_Y_PTR, luma_addr[1]);
586 vp_reg_write(ctx, VP_TOP_C_PTR, chroma_addr[0]);
587 vp_reg_write(ctx, VP_BOT_C_PTR, chroma_addr[1]);
588
589 mixer_cfg_layer(ctx, plane->index, priority, true);
590 mixer_cfg_vp_blend(ctx, state->base.alpha);
591
592 spin_unlock_irqrestore(&ctx->reg_slock, flags);
593
594 mixer_regs_dump(ctx);
595 vp_regs_dump(ctx);
596 }
597
598 static void mixer_graph_buffer(struct mixer_context *ctx,
599 struct exynos_drm_plane *plane)
600 {
601 struct exynos_drm_plane_state *state =
602 to_exynos_plane_state(plane->base.state);
603 struct drm_framebuffer *fb = state->base.fb;
604 unsigned int priority = state->base.normalized_zpos + 1;
605 unsigned long flags;
606 unsigned int win = plane->index;
607 unsigned int x_ratio = 0, y_ratio = 0;
608 unsigned int dst_x_offset, dst_y_offset;
609 unsigned int pixel_alpha;
610 dma_addr_t dma_addr;
611 unsigned int fmt;
612 u32 val;
613
614 if (fb->format->has_alpha)
615 pixel_alpha = state->base.pixel_blend_mode;
616 else
617 pixel_alpha = DRM_MODE_BLEND_PIXEL_NONE;
618
619 switch (fb->format->format) {
620 case DRM_FORMAT_XRGB4444:
621 case DRM_FORMAT_ARGB4444:
622 fmt = MXR_FORMAT_ARGB4444;
623 break;
624
625 case DRM_FORMAT_XRGB1555:
626 case DRM_FORMAT_ARGB1555:
627 fmt = MXR_FORMAT_ARGB1555;
628 break;
629
630 case DRM_FORMAT_RGB565:
631 fmt = MXR_FORMAT_RGB565;
632 break;
633
634 case DRM_FORMAT_XRGB8888:
635 case DRM_FORMAT_ARGB8888:
636 default:
637 fmt = MXR_FORMAT_ARGB8888;
638 break;
639 }
640
641 /* ratio is already checked by common plane code */
642 x_ratio = state->h_ratio == (1 << 15);
643 y_ratio = state->v_ratio == (1 << 15);
644
645 dst_x_offset = state->crtc.x;
646 dst_y_offset = state->crtc.y;
647
648 /* translate dma address base s.t. the source image offset is zero */
649 dma_addr = exynos_drm_fb_dma_addr(fb, 0)
650 + (state->src.x * fb->format->cpp[0])
651 + (state->src.y * fb->pitches[0]);
652
653 spin_lock_irqsave(&ctx->reg_slock, flags);
654
655 /* setup format */
656 mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win),
657 MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK);
658
659 /* setup geometry */
660 mixer_reg_write(ctx, MXR_GRAPHIC_SPAN(win),
661 fb->pitches[0] / fb->format->cpp[0]);
662
663 val = MXR_GRP_WH_WIDTH(state->src.w);
664 val |= MXR_GRP_WH_HEIGHT(state->src.h);
665 val |= MXR_GRP_WH_H_SCALE(x_ratio);
666 val |= MXR_GRP_WH_V_SCALE(y_ratio);
667 mixer_reg_write(ctx, MXR_GRAPHIC_WH(win), val);
668
669 /* setup offsets in display image */
670 val = MXR_GRP_DXY_DX(dst_x_offset);
671 val |= MXR_GRP_DXY_DY(dst_y_offset);
672 mixer_reg_write(ctx, MXR_GRAPHIC_DXY(win), val);
673
674 /* set buffer address to mixer */
675 mixer_reg_write(ctx, MXR_GRAPHIC_BASE(win), dma_addr);
676
677 mixer_cfg_layer(ctx, win, priority, true);
678 mixer_cfg_gfx_blend(ctx, win, pixel_alpha, state->base.alpha);
679
680 spin_unlock_irqrestore(&ctx->reg_slock, flags);
681
682 mixer_regs_dump(ctx);
683 }
684
685 static void vp_win_reset(struct mixer_context *ctx)
686 {
687 unsigned int tries = 100;
688
689 vp_reg_write(ctx, VP_SRESET, VP_SRESET_PROCESSING);
690 while (--tries) {
691 /* waiting until VP_SRESET_PROCESSING is 0 */
692 if (~vp_reg_read(ctx, VP_SRESET) & VP_SRESET_PROCESSING)
693 break;
694 mdelay(10);
695 }
696 WARN(tries == 0, "failed to reset Video Processor\n");
697 }
698
699 static void mixer_win_reset(struct mixer_context *ctx)
700 {
701 unsigned long flags;
702
703 spin_lock_irqsave(&ctx->reg_slock, flags);
704
705 mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK);
706
707 /* set output in RGB888 mode */
708 mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK);
709
710 /* 16 beat burst in DMA */
711 mixer_reg_writemask(ctx, MXR_STATUS, MXR_STATUS_16_BURST,
712 MXR_STATUS_BURST_MASK);
713
714 /* reset default layer priority */
715 mixer_reg_write(ctx, MXR_LAYER_CFG, 0);
716
717 /* set all background colors to RGB (0,0,0) */
718 mixer_reg_write(ctx, MXR_BG_COLOR0, MXR_YCBCR_VAL(0, 128, 128));
719 mixer_reg_write(ctx, MXR_BG_COLOR1, MXR_YCBCR_VAL(0, 128, 128));
720 mixer_reg_write(ctx, MXR_BG_COLOR2, MXR_YCBCR_VAL(0, 128, 128));
721
722 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
723 /* configuration of Video Processor Registers */
724 vp_win_reset(ctx);
725 vp_default_filter(ctx);
726 }
727
728 /* disable all layers */
729 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE);
730 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE);
731 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags))
732 mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_VP_ENABLE);
733
734 /* set all source image offsets to zero */
735 mixer_reg_write(ctx, MXR_GRAPHIC_SXY(0), 0);
736 mixer_reg_write(ctx, MXR_GRAPHIC_SXY(1), 0);
737
738 spin_unlock_irqrestore(&ctx->reg_slock, flags);
739 }
740
741 static irqreturn_t mixer_irq_handler(int irq, void *arg)
742 {
743 struct mixer_context *ctx = arg;
744 u32 val;
745
746 spin_lock(&ctx->reg_slock);
747
748 /* read interrupt status for handling and clearing flags for VSYNC */
749 val = mixer_reg_read(ctx, MXR_INT_STATUS);
750
751 /* handling VSYNC */
752 if (val & MXR_INT_STATUS_VSYNC) {
753 /* vsync interrupt use different bit for read and clear */
754 val |= MXR_INT_CLEAR_VSYNC;
755 val &= ~MXR_INT_STATUS_VSYNC;
756
757 /* interlace scan need to check shadow register */
758 if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)
759 && !mixer_is_synced(ctx))
760 goto out;
761
762 drm_crtc_handle_vblank(&ctx->crtc->base);
763 }
764
765 out:
766 /* clear interrupts */
767 mixer_reg_write(ctx, MXR_INT_STATUS, val);
768
769 spin_unlock(&ctx->reg_slock);
770
771 return IRQ_HANDLED;
772 }
773
774 static int mixer_resources_init(struct mixer_context *mixer_ctx)
775 {
776 struct device *dev = &mixer_ctx->pdev->dev;
777 struct resource *res;
778 int ret;
779
780 spin_lock_init(&mixer_ctx->reg_slock);
781
782 mixer_ctx->mixer = devm_clk_get(dev, "mixer");
783 if (IS_ERR(mixer_ctx->mixer)) {
784 dev_err(dev, "failed to get clock 'mixer'\n");
785 return -ENODEV;
786 }
787
788 mixer_ctx->hdmi = devm_clk_get(dev, "hdmi");
789 if (IS_ERR(mixer_ctx->hdmi)) {
790 dev_err(dev, "failed to get clock 'hdmi'\n");
791 return PTR_ERR(mixer_ctx->hdmi);
792 }
793
794 mixer_ctx->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi");
795 if (IS_ERR(mixer_ctx->sclk_hdmi)) {
796 dev_err(dev, "failed to get clock 'sclk_hdmi'\n");
797 return -ENODEV;
798 }
799 res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 0);
800 if (res == NULL) {
801 dev_err(dev, "get memory resource failed.\n");
802 return -ENXIO;
803 }
804
805 mixer_ctx->mixer_regs = devm_ioremap(dev, res->start,
806 resource_size(res));
807 if (mixer_ctx->mixer_regs == NULL) {
808 dev_err(dev, "register mapping failed.\n");
809 return -ENXIO;
810 }
811
812 res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_IRQ, 0);
813 if (res == NULL) {
814 dev_err(dev, "get interrupt resource failed.\n");
815 return -ENXIO;
816 }
817
818 ret = devm_request_irq(dev, res->start, mixer_irq_handler,
819 0, "drm_mixer", mixer_ctx);
820 if (ret) {
821 dev_err(dev, "request interrupt failed.\n");
822 return ret;
823 }
824 mixer_ctx->irq = res->start;
825
826 return 0;
827 }
828
829 static int vp_resources_init(struct mixer_context *mixer_ctx)
830 {
831 struct device *dev = &mixer_ctx->pdev->dev;
832 struct resource *res;
833
834 mixer_ctx->vp = devm_clk_get(dev, "vp");
835 if (IS_ERR(mixer_ctx->vp)) {
836 dev_err(dev, "failed to get clock 'vp'\n");
837 return -ENODEV;
838 }
839
840 if (test_bit(MXR_BIT_HAS_SCLK, &mixer_ctx->flags)) {
841 mixer_ctx->sclk_mixer = devm_clk_get(dev, "sclk_mixer");
842 if (IS_ERR(mixer_ctx->sclk_mixer)) {
843 dev_err(dev, "failed to get clock 'sclk_mixer'\n");
844 return -ENODEV;
845 }
846 mixer_ctx->mout_mixer = devm_clk_get(dev, "mout_mixer");
847 if (IS_ERR(mixer_ctx->mout_mixer)) {
848 dev_err(dev, "failed to get clock 'mout_mixer'\n");
849 return -ENODEV;
850 }
851
852 if (mixer_ctx->sclk_hdmi && mixer_ctx->mout_mixer)
853 clk_set_parent(mixer_ctx->mout_mixer,
854 mixer_ctx->sclk_hdmi);
855 }
856
857 res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 1);
858 if (res == NULL) {
859 dev_err(dev, "get memory resource failed.\n");
860 return -ENXIO;
861 }
862
863 mixer_ctx->vp_regs = devm_ioremap(dev, res->start,
864 resource_size(res));
865 if (mixer_ctx->vp_regs == NULL) {
866 dev_err(dev, "register mapping failed.\n");
867 return -ENXIO;
868 }
869
870 return 0;
871 }
872
873 static int mixer_initialize(struct mixer_context *mixer_ctx,
874 struct drm_device *drm_dev)
875 {
876 int ret;
877
878 mixer_ctx->drm_dev = drm_dev;
879
880 /* acquire resources: regs, irqs, clocks */
881 ret = mixer_resources_init(mixer_ctx);
882 if (ret) {
883 DRM_DEV_ERROR(mixer_ctx->dev,
884 "mixer_resources_init failed ret=%d\n", ret);
885 return ret;
886 }
887
888 if (test_bit(MXR_BIT_VP_ENABLED, &mixer_ctx->flags)) {
889 /* acquire vp resources: regs, irqs, clocks */
890 ret = vp_resources_init(mixer_ctx);
891 if (ret) {
892 DRM_DEV_ERROR(mixer_ctx->dev,
893 "vp_resources_init failed ret=%d\n", ret);
894 return ret;
895 }
896 }
897
898 return exynos_drm_register_dma(drm_dev, mixer_ctx->dev,
899 &mixer_ctx->dma_priv);
900 }
901
902 static void mixer_ctx_remove(struct mixer_context *mixer_ctx)
903 {
904 exynos_drm_unregister_dma(mixer_ctx->drm_dev, mixer_ctx->dev,
905 &mixer_ctx->dma_priv);
906 }
907
908 static int mixer_enable_vblank(struct exynos_drm_crtc *crtc)
909 {
910 struct mixer_context *mixer_ctx = crtc->ctx;
911
912 __set_bit(MXR_BIT_VSYNC, &mixer_ctx->flags);
913 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
914 return 0;
915
916 /* enable vsync interrupt */
917 mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC);
918 mixer_reg_writemask(mixer_ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC);
919
920 return 0;
921 }
922
923 static void mixer_disable_vblank(struct exynos_drm_crtc *crtc)
924 {
925 struct mixer_context *mixer_ctx = crtc->ctx;
926
927 __clear_bit(MXR_BIT_VSYNC, &mixer_ctx->flags);
928
929 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
930 return;
931
932 /* disable vsync interrupt */
933 mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC);
934 mixer_reg_writemask(mixer_ctx, MXR_INT_EN, 0, MXR_INT_EN_VSYNC);
935 }
936
937 static void mixer_atomic_begin(struct exynos_drm_crtc *crtc)
938 {
939 struct mixer_context *ctx = crtc->ctx;
940
941 if (!test_bit(MXR_BIT_POWERED, &ctx->flags))
942 return;
943
944 if (mixer_wait_for_sync(ctx))
945 dev_err(ctx->dev, "timeout waiting for VSYNC\n");
946 mixer_disable_sync(ctx);
947 }
948
949 static void mixer_update_plane(struct exynos_drm_crtc *crtc,
950 struct exynos_drm_plane *plane)
951 {
952 struct mixer_context *mixer_ctx = crtc->ctx;
953
954 DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index);
955
956 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
957 return;
958
959 if (plane->index == VP_DEFAULT_WIN)
960 vp_video_buffer(mixer_ctx, plane);
961 else
962 mixer_graph_buffer(mixer_ctx, plane);
963 }
964
965 static void mixer_disable_plane(struct exynos_drm_crtc *crtc,
966 struct exynos_drm_plane *plane)
967 {
968 struct mixer_context *mixer_ctx = crtc->ctx;
969 unsigned long flags;
970
971 DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index);
972
973 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
974 return;
975
976 spin_lock_irqsave(&mixer_ctx->reg_slock, flags);
977 mixer_cfg_layer(mixer_ctx, plane->index, 0, false);
978 spin_unlock_irqrestore(&mixer_ctx->reg_slock, flags);
979 }
980
981 static void mixer_atomic_flush(struct exynos_drm_crtc *crtc)
982 {
983 struct mixer_context *mixer_ctx = crtc->ctx;
984
985 if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
986 return;
987
988 mixer_enable_sync(mixer_ctx);
989 exynos_crtc_handle_event(crtc);
990 }
991
992 static void mixer_atomic_enable(struct exynos_drm_crtc *crtc)
993 {
994 struct mixer_context *ctx = crtc->ctx;
995
996 if (test_bit(MXR_BIT_POWERED, &ctx->flags))
997 return;
998
999 pm_runtime_get_sync(ctx->dev);
1000
1001 exynos_drm_pipe_clk_enable(crtc, true);
1002
1003 mixer_disable_sync(ctx);
1004
1005 mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SOFT_RESET);
1006
1007 if (test_bit(MXR_BIT_VSYNC, &ctx->flags)) {
1008 mixer_reg_writemask(ctx, MXR_INT_STATUS, ~0,
1009 MXR_INT_CLEAR_VSYNC);
1010 mixer_reg_writemask(ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC);
1011 }
1012 mixer_win_reset(ctx);
1013
1014 mixer_commit(ctx);
1015
1016 mixer_enable_sync(ctx);
1017
1018 set_bit(MXR_BIT_POWERED, &ctx->flags);
1019 }
1020
1021 static void mixer_atomic_disable(struct exynos_drm_crtc *crtc)
1022 {
1023 struct mixer_context *ctx = crtc->ctx;
1024 int i;
1025
1026 if (!test_bit(MXR_BIT_POWERED, &ctx->flags))
1027 return;
1028
1029 mixer_stop(ctx);
1030 mixer_regs_dump(ctx);
1031
1032 for (i = 0; i < MIXER_WIN_NR; i++)
1033 mixer_disable_plane(crtc, &ctx->planes[i]);
1034
1035 exynos_drm_pipe_clk_enable(crtc, false);
1036
1037 pm_runtime_put(ctx->dev);
1038
1039 clear_bit(MXR_BIT_POWERED, &ctx->flags);
1040 }
1041
1042 static int mixer_mode_valid(struct exynos_drm_crtc *crtc,
1043 const struct drm_display_mode *mode)
1044 {
1045 struct mixer_context *ctx = crtc->ctx;
1046 u32 w = mode->hdisplay, h = mode->vdisplay;
1047
1048 DRM_DEV_DEBUG_KMS(ctx->dev, "xres=%d, yres=%d, refresh=%d, intl=%d\n",
1049 w, h, drm_mode_vrefresh(mode),
1050 !!(mode->flags & DRM_MODE_FLAG_INTERLACE));
1051
1052 if (ctx->mxr_ver == MXR_VER_128_0_0_184)
1053 return MODE_OK;
1054
1055 if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) ||
1056 (w >= 1024 && w <= 1280 && h >= 576 && h <= 720) ||
1057 (w >= 1664 && w <= 1920 && h >= 936 && h <= 1080))
1058 return MODE_OK;
1059
1060 if ((w == 1024 && h == 768) ||
1061 (w == 1366 && h == 768) ||
1062 (w == 1280 && h == 1024))
1063 return MODE_OK;
1064
1065 return MODE_BAD;
1066 }
1067
1068 static bool mixer_mode_fixup(struct exynos_drm_crtc *crtc,
1069 const struct drm_display_mode *mode,
1070 struct drm_display_mode *adjusted_mode)
1071 {
1072 struct mixer_context *ctx = crtc->ctx;
1073 int width = mode->hdisplay, height = mode->vdisplay, i;
1074
1075 static const struct {
1076 int hdisplay, vdisplay, htotal, vtotal, scan_val;
1077 } modes[] = {
1078 { 720, 480, 858, 525, MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD },
1079 { 720, 576, 864, 625, MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD },
1080 { 1280, 720, 1650, 750, MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD },
1081 { 1920, 1080, 2200, 1125, MXR_CFG_SCAN_HD_1080 |
1082 MXR_CFG_SCAN_HD }
1083 };
1084
1085 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1086 __set_bit(MXR_BIT_INTERLACE, &ctx->flags);
1087 else
1088 __clear_bit(MXR_BIT_INTERLACE, &ctx->flags);
1089
1090 if (ctx->mxr_ver == MXR_VER_128_0_0_184)
1091 return true;
1092
1093 for (i = 0; i < ARRAY_SIZE(modes); ++i)
1094 if (width <= modes[i].hdisplay && height <= modes[i].vdisplay) {
1095 ctx->scan_value = modes[i].scan_val;
1096 if (width < modes[i].hdisplay ||
1097 height < modes[i].vdisplay) {
1098 adjusted_mode->hdisplay = modes[i].hdisplay;
1099 adjusted_mode->hsync_start = modes[i].hdisplay;
1100 adjusted_mode->hsync_end = modes[i].htotal;
1101 adjusted_mode->htotal = modes[i].htotal;
1102 adjusted_mode->vdisplay = modes[i].vdisplay;
1103 adjusted_mode->vsync_start = modes[i].vdisplay;
1104 adjusted_mode->vsync_end = modes[i].vtotal;
1105 adjusted_mode->vtotal = modes[i].vtotal;
1106 }
1107
1108 return true;
1109 }
1110
1111 return false;
1112 }
1113
1114 static const struct exynos_drm_crtc_ops mixer_crtc_ops = {
1115 .atomic_enable = mixer_atomic_enable,
1116 .atomic_disable = mixer_atomic_disable,
1117 .enable_vblank = mixer_enable_vblank,
1118 .disable_vblank = mixer_disable_vblank,
1119 .atomic_begin = mixer_atomic_begin,
1120 .update_plane = mixer_update_plane,
1121 .disable_plane = mixer_disable_plane,
1122 .atomic_flush = mixer_atomic_flush,
1123 .mode_valid = mixer_mode_valid,
1124 .mode_fixup = mixer_mode_fixup,
1125 };
1126
1127 static const struct mixer_drv_data exynos5420_mxr_drv_data = {
1128 .version = MXR_VER_128_0_0_184,
1129 .is_vp_enabled = 0,
1130 };
1131
1132 static const struct mixer_drv_data exynos5250_mxr_drv_data = {
1133 .version = MXR_VER_16_0_33_0,
1134 .is_vp_enabled = 0,
1135 };
1136
1137 static const struct mixer_drv_data exynos4212_mxr_drv_data = {
1138 .version = MXR_VER_0_0_0_16,
1139 .is_vp_enabled = 1,
1140 };
1141
1142 static const struct mixer_drv_data exynos4210_mxr_drv_data = {
1143 .version = MXR_VER_0_0_0_16,
1144 .is_vp_enabled = 1,
1145 .has_sclk = 1,
1146 };
1147
1148 static const struct of_device_id mixer_match_types[] = {
1149 {
1150 .compatible = "samsung,exynos4210-mixer",
1151 .data = &exynos4210_mxr_drv_data,
1152 }, {
1153 .compatible = "samsung,exynos4212-mixer",
1154 .data = &exynos4212_mxr_drv_data,
1155 }, {
1156 .compatible = "samsung,exynos5-mixer",
1157 .data = &exynos5250_mxr_drv_data,
1158 }, {
1159 .compatible = "samsung,exynos5250-mixer",
1160 .data = &exynos5250_mxr_drv_data,
1161 }, {
1162 .compatible = "samsung,exynos5420-mixer",
1163 .data = &exynos5420_mxr_drv_data,
1164 }, {
1165 /* end node */
1166 }
1167 };
1168 MODULE_DEVICE_TABLE(of, mixer_match_types);
1169
1170 static int mixer_bind(struct device *dev, struct device *manager, void *data)
1171 {
1172 struct mixer_context *ctx = dev_get_drvdata(dev);
1173 struct drm_device *drm_dev = data;
1174 struct exynos_drm_plane *exynos_plane;
1175 unsigned int i;
1176 int ret;
1177
1178 ret = mixer_initialize(ctx, drm_dev);
1179 if (ret)
1180 return ret;
1181
1182 for (i = 0; i < MIXER_WIN_NR; i++) {
1183 if (i == VP_DEFAULT_WIN && !test_bit(MXR_BIT_VP_ENABLED,
1184 &ctx->flags))
1185 continue;
1186
1187 ret = exynos_plane_init(drm_dev, &ctx->planes[i], i,
1188 &plane_configs[i]);
1189 if (ret)
1190 return ret;
1191 }
1192
1193 exynos_plane = &ctx->planes[DEFAULT_WIN];
1194 ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base,
1195 EXYNOS_DISPLAY_TYPE_HDMI, &mixer_crtc_ops, ctx);
1196 if (IS_ERR(ctx->crtc)) {
1197 mixer_ctx_remove(ctx);
1198 ret = PTR_ERR(ctx->crtc);
1199 goto free_ctx;
1200 }
1201
1202 return 0;
1203
1204 free_ctx:
1205 devm_kfree(dev, ctx);
1206 return ret;
1207 }
1208
1209 static void mixer_unbind(struct device *dev, struct device *master, void *data)
1210 {
1211 struct mixer_context *ctx = dev_get_drvdata(dev);
1212
1213 mixer_ctx_remove(ctx);
1214 }
1215
1216 static const struct component_ops mixer_component_ops = {
1217 .bind = mixer_bind,
1218 .unbind = mixer_unbind,
1219 };
1220
1221 static int mixer_probe(struct platform_device *pdev)
1222 {
1223 struct device *dev = &pdev->dev;
1224 const struct mixer_drv_data *drv;
1225 struct mixer_context *ctx;
1226 int ret;
1227
1228 ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1229 if (!ctx) {
1230 DRM_DEV_ERROR(dev, "failed to alloc mixer context.\n");
1231 return -ENOMEM;
1232 }
1233
1234 drv = of_device_get_match_data(dev);
1235
1236 ctx->pdev = pdev;
1237 ctx->dev = dev;
1238 ctx->mxr_ver = drv->version;
1239
1240 if (drv->is_vp_enabled)
1241 __set_bit(MXR_BIT_VP_ENABLED, &ctx->flags);
1242 if (drv->has_sclk)
1243 __set_bit(MXR_BIT_HAS_SCLK, &ctx->flags);
1244
1245 platform_set_drvdata(pdev, ctx);
1246
1247 pm_runtime_enable(dev);
1248
1249 ret = component_add(&pdev->dev, &mixer_component_ops);
1250 if (ret)
1251 pm_runtime_disable(dev);
1252
1253 return ret;
1254 }
1255
1256 static int mixer_remove(struct platform_device *pdev)
1257 {
1258 pm_runtime_disable(&pdev->dev);
1259
1260 component_del(&pdev->dev, &mixer_component_ops);
1261
1262 return 0;
1263 }
1264
1265 static int __maybe_unused exynos_mixer_suspend(struct device *dev)
1266 {
1267 struct mixer_context *ctx = dev_get_drvdata(dev);
1268
1269 clk_disable_unprepare(ctx->hdmi);
1270 clk_disable_unprepare(ctx->mixer);
1271 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
1272 clk_disable_unprepare(ctx->vp);
1273 if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags))
1274 clk_disable_unprepare(ctx->sclk_mixer);
1275 }
1276
1277 return 0;
1278 }
1279
1280 static int __maybe_unused exynos_mixer_resume(struct device *dev)
1281 {
1282 struct mixer_context *ctx = dev_get_drvdata(dev);
1283 int ret;
1284
1285 ret = clk_prepare_enable(ctx->mixer);
1286 if (ret < 0) {
1287 DRM_DEV_ERROR(ctx->dev,
1288 "Failed to prepare_enable the mixer clk [%d]\n",
1289 ret);
1290 return ret;
1291 }
1292 ret = clk_prepare_enable(ctx->hdmi);
1293 if (ret < 0) {
1294 DRM_DEV_ERROR(dev,
1295 "Failed to prepare_enable the hdmi clk [%d]\n",
1296 ret);
1297 return ret;
1298 }
1299 if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
1300 ret = clk_prepare_enable(ctx->vp);
1301 if (ret < 0) {
1302 DRM_DEV_ERROR(dev,
1303 "Failed to prepare_enable the vp clk [%d]\n",
1304 ret);
1305 return ret;
1306 }
1307 if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) {
1308 ret = clk_prepare_enable(ctx->sclk_mixer);
1309 if (ret < 0) {
1310 DRM_DEV_ERROR(dev,
1311 "Failed to prepare_enable the " \
1312 "sclk_mixer clk [%d]\n",
1313 ret);
1314 return ret;
1315 }
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
1322 static const struct dev_pm_ops exynos_mixer_pm_ops = {
1323 SET_RUNTIME_PM_OPS(exynos_mixer_suspend, exynos_mixer_resume, NULL)
1324 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1325 pm_runtime_force_resume)
1326 };
1327
1328 struct platform_driver mixer_driver = {
1329 .driver = {
1330 .name = "exynos-mixer",
1331 .owner = THIS_MODULE,
1332 .pm = &exynos_mixer_pm_ops,
1333 .of_match_table = mixer_match_types,
1334 },
1335 .probe = mixer_probe,
1336 .remove = mixer_remove,
1337 };