]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/display/intel_cdclk.c
MAINTAINERS: Update drm.git URL
[thirdparty/linux.git] / drivers / gpu / drm / i915 / display / intel_cdclk.c
1 /*
2 * Copyright © 2006-2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/time.h>
25
26 #include "hsw_ips.h"
27 #include "i915_reg.h"
28 #include "intel_atomic.h"
29 #include "intel_atomic_plane.h"
30 #include "intel_audio.h"
31 #include "intel_bw.h"
32 #include "intel_cdclk.h"
33 #include "intel_crtc.h"
34 #include "intel_de.h"
35 #include "intel_dp.h"
36 #include "intel_display_types.h"
37 #include "intel_mchbar_regs.h"
38 #include "intel_pci_config.h"
39 #include "intel_pcode.h"
40 #include "intel_psr.h"
41 #include "intel_vdsc.h"
42 #include "vlv_sideband.h"
43
44 /**
45 * DOC: CDCLK / RAWCLK
46 *
47 * The display engine uses several different clocks to do its work. There
48 * are two main clocks involved that aren't directly related to the actual
49 * pixel clock or any symbol/bit clock of the actual output port. These
50 * are the core display clock (CDCLK) and RAWCLK.
51 *
52 * CDCLK clocks most of the display pipe logic, and thus its frequency
53 * must be high enough to support the rate at which pixels are flowing
54 * through the pipes. Downscaling must also be accounted as that increases
55 * the effective pixel rate.
56 *
57 * On several platforms the CDCLK frequency can be changed dynamically
58 * to minimize power consumption for a given display configuration.
59 * Typically changes to the CDCLK frequency require all the display pipes
60 * to be shut down while the frequency is being changed.
61 *
62 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
63 * DMC will not change the active CDCLK frequency however, so that part
64 * will still be performed by the driver directly.
65 *
66 * RAWCLK is a fixed frequency clock, often used by various auxiliary
67 * blocks such as AUX CH or backlight PWM. Hence the only thing we
68 * really need to know about RAWCLK is its frequency so that various
69 * dividers can be programmed correctly.
70 */
71
72 struct intel_cdclk_funcs {
73 void (*get_cdclk)(struct drm_i915_private *i915,
74 struct intel_cdclk_config *cdclk_config);
75 void (*set_cdclk)(struct drm_i915_private *i915,
76 const struct intel_cdclk_config *cdclk_config,
77 enum pipe pipe);
78 int (*modeset_calc_cdclk)(struct intel_cdclk_state *state);
79 u8 (*calc_voltage_level)(int cdclk);
80 };
81
82 void intel_cdclk_get_cdclk(struct drm_i915_private *dev_priv,
83 struct intel_cdclk_config *cdclk_config)
84 {
85 dev_priv->display.funcs.cdclk->get_cdclk(dev_priv, cdclk_config);
86 }
87
88 static void intel_cdclk_set_cdclk(struct drm_i915_private *dev_priv,
89 const struct intel_cdclk_config *cdclk_config,
90 enum pipe pipe)
91 {
92 dev_priv->display.funcs.cdclk->set_cdclk(dev_priv, cdclk_config, pipe);
93 }
94
95 static int intel_cdclk_modeset_calc_cdclk(struct drm_i915_private *dev_priv,
96 struct intel_cdclk_state *cdclk_config)
97 {
98 return dev_priv->display.funcs.cdclk->modeset_calc_cdclk(cdclk_config);
99 }
100
101 static u8 intel_cdclk_calc_voltage_level(struct drm_i915_private *dev_priv,
102 int cdclk)
103 {
104 return dev_priv->display.funcs.cdclk->calc_voltage_level(cdclk);
105 }
106
107 static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv,
108 struct intel_cdclk_config *cdclk_config)
109 {
110 cdclk_config->cdclk = 133333;
111 }
112
113 static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv,
114 struct intel_cdclk_config *cdclk_config)
115 {
116 cdclk_config->cdclk = 200000;
117 }
118
119 static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv,
120 struct intel_cdclk_config *cdclk_config)
121 {
122 cdclk_config->cdclk = 266667;
123 }
124
125 static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv,
126 struct intel_cdclk_config *cdclk_config)
127 {
128 cdclk_config->cdclk = 333333;
129 }
130
131 static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv,
132 struct intel_cdclk_config *cdclk_config)
133 {
134 cdclk_config->cdclk = 400000;
135 }
136
137 static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv,
138 struct intel_cdclk_config *cdclk_config)
139 {
140 cdclk_config->cdclk = 450000;
141 }
142
143 static void i85x_get_cdclk(struct drm_i915_private *dev_priv,
144 struct intel_cdclk_config *cdclk_config)
145 {
146 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
147 u16 hpllcc = 0;
148
149 /*
150 * 852GM/852GMV only supports 133 MHz and the HPLLCC
151 * encoding is different :(
152 * FIXME is this the right way to detect 852GM/852GMV?
153 */
154 if (pdev->revision == 0x1) {
155 cdclk_config->cdclk = 133333;
156 return;
157 }
158
159 pci_bus_read_config_word(pdev->bus,
160 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
161
162 /* Assume that the hardware is in the high speed state. This
163 * should be the default.
164 */
165 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
166 case GC_CLOCK_133_200:
167 case GC_CLOCK_133_200_2:
168 case GC_CLOCK_100_200:
169 cdclk_config->cdclk = 200000;
170 break;
171 case GC_CLOCK_166_250:
172 cdclk_config->cdclk = 250000;
173 break;
174 case GC_CLOCK_100_133:
175 cdclk_config->cdclk = 133333;
176 break;
177 case GC_CLOCK_133_266:
178 case GC_CLOCK_133_266_2:
179 case GC_CLOCK_166_266:
180 cdclk_config->cdclk = 266667;
181 break;
182 }
183 }
184
185 static void i915gm_get_cdclk(struct drm_i915_private *dev_priv,
186 struct intel_cdclk_config *cdclk_config)
187 {
188 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
189 u16 gcfgc = 0;
190
191 pci_read_config_word(pdev, GCFGC, &gcfgc);
192
193 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
194 cdclk_config->cdclk = 133333;
195 return;
196 }
197
198 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
199 case GC_DISPLAY_CLOCK_333_320_MHZ:
200 cdclk_config->cdclk = 333333;
201 break;
202 default:
203 case GC_DISPLAY_CLOCK_190_200_MHZ:
204 cdclk_config->cdclk = 190000;
205 break;
206 }
207 }
208
209 static void i945gm_get_cdclk(struct drm_i915_private *dev_priv,
210 struct intel_cdclk_config *cdclk_config)
211 {
212 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
213 u16 gcfgc = 0;
214
215 pci_read_config_word(pdev, GCFGC, &gcfgc);
216
217 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
218 cdclk_config->cdclk = 133333;
219 return;
220 }
221
222 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
223 case GC_DISPLAY_CLOCK_333_320_MHZ:
224 cdclk_config->cdclk = 320000;
225 break;
226 default:
227 case GC_DISPLAY_CLOCK_190_200_MHZ:
228 cdclk_config->cdclk = 200000;
229 break;
230 }
231 }
232
233 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
234 {
235 static const unsigned int blb_vco[8] = {
236 [0] = 3200000,
237 [1] = 4000000,
238 [2] = 5333333,
239 [3] = 4800000,
240 [4] = 6400000,
241 };
242 static const unsigned int pnv_vco[8] = {
243 [0] = 3200000,
244 [1] = 4000000,
245 [2] = 5333333,
246 [3] = 4800000,
247 [4] = 2666667,
248 };
249 static const unsigned int cl_vco[8] = {
250 [0] = 3200000,
251 [1] = 4000000,
252 [2] = 5333333,
253 [3] = 6400000,
254 [4] = 3333333,
255 [5] = 3566667,
256 [6] = 4266667,
257 };
258 static const unsigned int elk_vco[8] = {
259 [0] = 3200000,
260 [1] = 4000000,
261 [2] = 5333333,
262 [3] = 4800000,
263 };
264 static const unsigned int ctg_vco[8] = {
265 [0] = 3200000,
266 [1] = 4000000,
267 [2] = 5333333,
268 [3] = 6400000,
269 [4] = 2666667,
270 [5] = 4266667,
271 };
272 const unsigned int *vco_table;
273 unsigned int vco;
274 u8 tmp = 0;
275
276 /* FIXME other chipsets? */
277 if (IS_GM45(dev_priv))
278 vco_table = ctg_vco;
279 else if (IS_G45(dev_priv))
280 vco_table = elk_vco;
281 else if (IS_I965GM(dev_priv))
282 vco_table = cl_vco;
283 else if (IS_PINEVIEW(dev_priv))
284 vco_table = pnv_vco;
285 else if (IS_G33(dev_priv))
286 vco_table = blb_vco;
287 else
288 return 0;
289
290 tmp = intel_de_read(dev_priv,
291 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
292
293 vco = vco_table[tmp & 0x7];
294 if (vco == 0)
295 drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
296 tmp);
297 else
298 drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco);
299
300 return vco;
301 }
302
303 static void g33_get_cdclk(struct drm_i915_private *dev_priv,
304 struct intel_cdclk_config *cdclk_config)
305 {
306 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
307 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 };
308 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 };
309 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
310 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
311 const u8 *div_table;
312 unsigned int cdclk_sel;
313 u16 tmp = 0;
314
315 cdclk_config->vco = intel_hpll_vco(dev_priv);
316
317 pci_read_config_word(pdev, GCFGC, &tmp);
318
319 cdclk_sel = (tmp >> 4) & 0x7;
320
321 if (cdclk_sel >= ARRAY_SIZE(div_3200))
322 goto fail;
323
324 switch (cdclk_config->vco) {
325 case 3200000:
326 div_table = div_3200;
327 break;
328 case 4000000:
329 div_table = div_4000;
330 break;
331 case 4800000:
332 div_table = div_4800;
333 break;
334 case 5333333:
335 div_table = div_5333;
336 break;
337 default:
338 goto fail;
339 }
340
341 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
342 div_table[cdclk_sel]);
343 return;
344
345 fail:
346 drm_err(&dev_priv->drm,
347 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
348 cdclk_config->vco, tmp);
349 cdclk_config->cdclk = 190476;
350 }
351
352 static void pnv_get_cdclk(struct drm_i915_private *dev_priv,
353 struct intel_cdclk_config *cdclk_config)
354 {
355 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
356 u16 gcfgc = 0;
357
358 pci_read_config_word(pdev, GCFGC, &gcfgc);
359
360 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
361 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
362 cdclk_config->cdclk = 266667;
363 break;
364 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
365 cdclk_config->cdclk = 333333;
366 break;
367 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
368 cdclk_config->cdclk = 444444;
369 break;
370 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
371 cdclk_config->cdclk = 200000;
372 break;
373 default:
374 drm_err(&dev_priv->drm,
375 "Unknown pnv display core clock 0x%04x\n", gcfgc);
376 fallthrough;
377 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
378 cdclk_config->cdclk = 133333;
379 break;
380 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
381 cdclk_config->cdclk = 166667;
382 break;
383 }
384 }
385
386 static void i965gm_get_cdclk(struct drm_i915_private *dev_priv,
387 struct intel_cdclk_config *cdclk_config)
388 {
389 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
390 static const u8 div_3200[] = { 16, 10, 8 };
391 static const u8 div_4000[] = { 20, 12, 10 };
392 static const u8 div_5333[] = { 24, 16, 14 };
393 const u8 *div_table;
394 unsigned int cdclk_sel;
395 u16 tmp = 0;
396
397 cdclk_config->vco = intel_hpll_vco(dev_priv);
398
399 pci_read_config_word(pdev, GCFGC, &tmp);
400
401 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
402
403 if (cdclk_sel >= ARRAY_SIZE(div_3200))
404 goto fail;
405
406 switch (cdclk_config->vco) {
407 case 3200000:
408 div_table = div_3200;
409 break;
410 case 4000000:
411 div_table = div_4000;
412 break;
413 case 5333333:
414 div_table = div_5333;
415 break;
416 default:
417 goto fail;
418 }
419
420 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
421 div_table[cdclk_sel]);
422 return;
423
424 fail:
425 drm_err(&dev_priv->drm,
426 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
427 cdclk_config->vco, tmp);
428 cdclk_config->cdclk = 200000;
429 }
430
431 static void gm45_get_cdclk(struct drm_i915_private *dev_priv,
432 struct intel_cdclk_config *cdclk_config)
433 {
434 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
435 unsigned int cdclk_sel;
436 u16 tmp = 0;
437
438 cdclk_config->vco = intel_hpll_vco(dev_priv);
439
440 pci_read_config_word(pdev, GCFGC, &tmp);
441
442 cdclk_sel = (tmp >> 12) & 0x1;
443
444 switch (cdclk_config->vco) {
445 case 2666667:
446 case 4000000:
447 case 5333333:
448 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
449 break;
450 case 3200000:
451 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
452 break;
453 default:
454 drm_err(&dev_priv->drm,
455 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
456 cdclk_config->vco, tmp);
457 cdclk_config->cdclk = 222222;
458 break;
459 }
460 }
461
462 static void hsw_get_cdclk(struct drm_i915_private *dev_priv,
463 struct intel_cdclk_config *cdclk_config)
464 {
465 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
466 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
467
468 if (lcpll & LCPLL_CD_SOURCE_FCLK)
469 cdclk_config->cdclk = 800000;
470 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
471 cdclk_config->cdclk = 450000;
472 else if (freq == LCPLL_CLK_FREQ_450)
473 cdclk_config->cdclk = 450000;
474 else if (IS_HASWELL_ULT(dev_priv))
475 cdclk_config->cdclk = 337500;
476 else
477 cdclk_config->cdclk = 540000;
478 }
479
480 static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
481 {
482 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ?
483 333333 : 320000;
484
485 /*
486 * We seem to get an unstable or solid color picture at 200MHz.
487 * Not sure what's wrong. For now use 200MHz only when all pipes
488 * are off.
489 */
490 if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320)
491 return 400000;
492 else if (min_cdclk > 266667)
493 return freq_320;
494 else if (min_cdclk > 0)
495 return 266667;
496 else
497 return 200000;
498 }
499
500 static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk)
501 {
502 if (IS_VALLEYVIEW(dev_priv)) {
503 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
504 return 2;
505 else if (cdclk >= 266667)
506 return 1;
507 else
508 return 0;
509 } else {
510 /*
511 * Specs are full of misinformation, but testing on actual
512 * hardware has shown that we just need to write the desired
513 * CCK divider into the Punit register.
514 */
515 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
516 }
517 }
518
519 static void vlv_get_cdclk(struct drm_i915_private *dev_priv,
520 struct intel_cdclk_config *cdclk_config)
521 {
522 u32 val;
523
524 vlv_iosf_sb_get(dev_priv,
525 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
526
527 cdclk_config->vco = vlv_get_hpll_vco(dev_priv);
528 cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk",
529 CCK_DISPLAY_CLOCK_CONTROL,
530 cdclk_config->vco);
531
532 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
533
534 vlv_iosf_sb_put(dev_priv,
535 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
536
537 if (IS_VALLEYVIEW(dev_priv))
538 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
539 DSPFREQGUAR_SHIFT;
540 else
541 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
542 DSPFREQGUAR_SHIFT_CHV;
543 }
544
545 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
546 {
547 unsigned int credits, default_credits;
548
549 if (IS_CHERRYVIEW(dev_priv))
550 default_credits = PFI_CREDIT(12);
551 else
552 default_credits = PFI_CREDIT(8);
553
554 if (dev_priv->display.cdclk.hw.cdclk >= dev_priv->czclk_freq) {
555 /* CHV suggested value is 31 or 63 */
556 if (IS_CHERRYVIEW(dev_priv))
557 credits = PFI_CREDIT_63;
558 else
559 credits = PFI_CREDIT(15);
560 } else {
561 credits = default_credits;
562 }
563
564 /*
565 * WA - write default credits before re-programming
566 * FIXME: should we also set the resend bit here?
567 */
568 intel_de_write(dev_priv, GCI_CONTROL,
569 VGA_FAST_MODE_DISABLE | default_credits);
570
571 intel_de_write(dev_priv, GCI_CONTROL,
572 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
573
574 /*
575 * FIXME is this guaranteed to clear
576 * immediately or should we poll for it?
577 */
578 drm_WARN_ON(&dev_priv->drm,
579 intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND);
580 }
581
582 static void vlv_set_cdclk(struct drm_i915_private *dev_priv,
583 const struct intel_cdclk_config *cdclk_config,
584 enum pipe pipe)
585 {
586 int cdclk = cdclk_config->cdclk;
587 u32 val, cmd = cdclk_config->voltage_level;
588 intel_wakeref_t wakeref;
589
590 switch (cdclk) {
591 case 400000:
592 case 333333:
593 case 320000:
594 case 266667:
595 case 200000:
596 break;
597 default:
598 MISSING_CASE(cdclk);
599 return;
600 }
601
602 /* There are cases where we can end up here with power domains
603 * off and a CDCLK frequency other than the minimum, like when
604 * issuing a modeset without actually changing any display after
605 * a system suspend. So grab the display core domain, which covers
606 * the HW blocks needed for the following programming.
607 */
608 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
609
610 vlv_iosf_sb_get(dev_priv,
611 BIT(VLV_IOSF_SB_CCK) |
612 BIT(VLV_IOSF_SB_BUNIT) |
613 BIT(VLV_IOSF_SB_PUNIT));
614
615 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
616 val &= ~DSPFREQGUAR_MASK;
617 val |= (cmd << DSPFREQGUAR_SHIFT);
618 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
619 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
620 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
621 50)) {
622 drm_err(&dev_priv->drm,
623 "timed out waiting for CDclk change\n");
624 }
625
626 if (cdclk == 400000) {
627 u32 divider;
628
629 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
630 cdclk) - 1;
631
632 /* adjust cdclk divider */
633 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
634 val &= ~CCK_FREQUENCY_VALUES;
635 val |= divider;
636 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
637
638 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
639 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
640 50))
641 drm_err(&dev_priv->drm,
642 "timed out waiting for CDclk change\n");
643 }
644
645 /* adjust self-refresh exit latency value */
646 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
647 val &= ~0x7f;
648
649 /*
650 * For high bandwidth configs, we set a higher latency in the bunit
651 * so that the core display fetch happens in time to avoid underruns.
652 */
653 if (cdclk == 400000)
654 val |= 4500 / 250; /* 4.5 usec */
655 else
656 val |= 3000 / 250; /* 3.0 usec */
657 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
658
659 vlv_iosf_sb_put(dev_priv,
660 BIT(VLV_IOSF_SB_CCK) |
661 BIT(VLV_IOSF_SB_BUNIT) |
662 BIT(VLV_IOSF_SB_PUNIT));
663
664 intel_update_cdclk(dev_priv);
665
666 vlv_program_pfi_credits(dev_priv);
667
668 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
669 }
670
671 static void chv_set_cdclk(struct drm_i915_private *dev_priv,
672 const struct intel_cdclk_config *cdclk_config,
673 enum pipe pipe)
674 {
675 int cdclk = cdclk_config->cdclk;
676 u32 val, cmd = cdclk_config->voltage_level;
677 intel_wakeref_t wakeref;
678
679 switch (cdclk) {
680 case 333333:
681 case 320000:
682 case 266667:
683 case 200000:
684 break;
685 default:
686 MISSING_CASE(cdclk);
687 return;
688 }
689
690 /* There are cases where we can end up here with power domains
691 * off and a CDCLK frequency other than the minimum, like when
692 * issuing a modeset without actually changing any display after
693 * a system suspend. So grab the display core domain, which covers
694 * the HW blocks needed for the following programming.
695 */
696 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
697
698 vlv_punit_get(dev_priv);
699 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
700 val &= ~DSPFREQGUAR_MASK_CHV;
701 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
702 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
703 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
704 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
705 50)) {
706 drm_err(&dev_priv->drm,
707 "timed out waiting for CDclk change\n");
708 }
709
710 vlv_punit_put(dev_priv);
711
712 intel_update_cdclk(dev_priv);
713
714 vlv_program_pfi_credits(dev_priv);
715
716 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
717 }
718
719 static int bdw_calc_cdclk(int min_cdclk)
720 {
721 if (min_cdclk > 540000)
722 return 675000;
723 else if (min_cdclk > 450000)
724 return 540000;
725 else if (min_cdclk > 337500)
726 return 450000;
727 else
728 return 337500;
729 }
730
731 static u8 bdw_calc_voltage_level(int cdclk)
732 {
733 switch (cdclk) {
734 default:
735 case 337500:
736 return 2;
737 case 450000:
738 return 0;
739 case 540000:
740 return 1;
741 case 675000:
742 return 3;
743 }
744 }
745
746 static void bdw_get_cdclk(struct drm_i915_private *dev_priv,
747 struct intel_cdclk_config *cdclk_config)
748 {
749 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
750 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
751
752 if (lcpll & LCPLL_CD_SOURCE_FCLK)
753 cdclk_config->cdclk = 800000;
754 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
755 cdclk_config->cdclk = 450000;
756 else if (freq == LCPLL_CLK_FREQ_450)
757 cdclk_config->cdclk = 450000;
758 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
759 cdclk_config->cdclk = 540000;
760 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
761 cdclk_config->cdclk = 337500;
762 else
763 cdclk_config->cdclk = 675000;
764
765 /*
766 * Can't read this out :( Let's assume it's
767 * at least what the CDCLK frequency requires.
768 */
769 cdclk_config->voltage_level =
770 bdw_calc_voltage_level(cdclk_config->cdclk);
771 }
772
773 static u32 bdw_cdclk_freq_sel(int cdclk)
774 {
775 switch (cdclk) {
776 default:
777 MISSING_CASE(cdclk);
778 fallthrough;
779 case 337500:
780 return LCPLL_CLK_FREQ_337_5_BDW;
781 case 450000:
782 return LCPLL_CLK_FREQ_450;
783 case 540000:
784 return LCPLL_CLK_FREQ_54O_BDW;
785 case 675000:
786 return LCPLL_CLK_FREQ_675_BDW;
787 }
788 }
789
790 static void bdw_set_cdclk(struct drm_i915_private *dev_priv,
791 const struct intel_cdclk_config *cdclk_config,
792 enum pipe pipe)
793 {
794 int cdclk = cdclk_config->cdclk;
795 int ret;
796
797 if (drm_WARN(&dev_priv->drm,
798 (intel_de_read(dev_priv, LCPLL_CTL) &
799 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
800 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
801 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
802 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
803 "trying to change cdclk frequency with cdclk not enabled\n"))
804 return;
805
806 ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
807 if (ret) {
808 drm_err(&dev_priv->drm,
809 "failed to inform pcode about cdclk change\n");
810 return;
811 }
812
813 intel_de_rmw(dev_priv, LCPLL_CTL,
814 0, LCPLL_CD_SOURCE_FCLK);
815
816 /*
817 * According to the spec, it should be enough to poll for this 1 us.
818 * However, extensive testing shows that this can take longer.
819 */
820 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
821 LCPLL_CD_SOURCE_FCLK_DONE, 100))
822 drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
823
824 intel_de_rmw(dev_priv, LCPLL_CTL,
825 LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk));
826
827 intel_de_rmw(dev_priv, LCPLL_CTL,
828 LCPLL_CD_SOURCE_FCLK, 0);
829
830 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
831 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
832 drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n");
833
834 snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ,
835 cdclk_config->voltage_level);
836
837 intel_de_write(dev_priv, CDCLK_FREQ,
838 DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
839
840 intel_update_cdclk(dev_priv);
841 }
842
843 static int skl_calc_cdclk(int min_cdclk, int vco)
844 {
845 if (vco == 8640000) {
846 if (min_cdclk > 540000)
847 return 617143;
848 else if (min_cdclk > 432000)
849 return 540000;
850 else if (min_cdclk > 308571)
851 return 432000;
852 else
853 return 308571;
854 } else {
855 if (min_cdclk > 540000)
856 return 675000;
857 else if (min_cdclk > 450000)
858 return 540000;
859 else if (min_cdclk > 337500)
860 return 450000;
861 else
862 return 337500;
863 }
864 }
865
866 static u8 skl_calc_voltage_level(int cdclk)
867 {
868 if (cdclk > 540000)
869 return 3;
870 else if (cdclk > 450000)
871 return 2;
872 else if (cdclk > 337500)
873 return 1;
874 else
875 return 0;
876 }
877
878 static void skl_dpll0_update(struct drm_i915_private *dev_priv,
879 struct intel_cdclk_config *cdclk_config)
880 {
881 u32 val;
882
883 cdclk_config->ref = 24000;
884 cdclk_config->vco = 0;
885
886 val = intel_de_read(dev_priv, LCPLL1_CTL);
887 if ((val & LCPLL_PLL_ENABLE) == 0)
888 return;
889
890 if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0))
891 return;
892
893 val = intel_de_read(dev_priv, DPLL_CTRL1);
894
895 if (drm_WARN_ON(&dev_priv->drm,
896 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
897 DPLL_CTRL1_SSC(SKL_DPLL0) |
898 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
899 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
900 return;
901
902 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
903 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
904 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
905 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
906 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
907 cdclk_config->vco = 8100000;
908 break;
909 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
910 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
911 cdclk_config->vco = 8640000;
912 break;
913 default:
914 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
915 break;
916 }
917 }
918
919 static void skl_get_cdclk(struct drm_i915_private *dev_priv,
920 struct intel_cdclk_config *cdclk_config)
921 {
922 u32 cdctl;
923
924 skl_dpll0_update(dev_priv, cdclk_config);
925
926 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
927
928 if (cdclk_config->vco == 0)
929 goto out;
930
931 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
932
933 if (cdclk_config->vco == 8640000) {
934 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
935 case CDCLK_FREQ_450_432:
936 cdclk_config->cdclk = 432000;
937 break;
938 case CDCLK_FREQ_337_308:
939 cdclk_config->cdclk = 308571;
940 break;
941 case CDCLK_FREQ_540:
942 cdclk_config->cdclk = 540000;
943 break;
944 case CDCLK_FREQ_675_617:
945 cdclk_config->cdclk = 617143;
946 break;
947 default:
948 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
949 break;
950 }
951 } else {
952 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
953 case CDCLK_FREQ_450_432:
954 cdclk_config->cdclk = 450000;
955 break;
956 case CDCLK_FREQ_337_308:
957 cdclk_config->cdclk = 337500;
958 break;
959 case CDCLK_FREQ_540:
960 cdclk_config->cdclk = 540000;
961 break;
962 case CDCLK_FREQ_675_617:
963 cdclk_config->cdclk = 675000;
964 break;
965 default:
966 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
967 break;
968 }
969 }
970
971 out:
972 /*
973 * Can't read this out :( Let's assume it's
974 * at least what the CDCLK frequency requires.
975 */
976 cdclk_config->voltage_level =
977 skl_calc_voltage_level(cdclk_config->cdclk);
978 }
979
980 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
981 static int skl_cdclk_decimal(int cdclk)
982 {
983 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
984 }
985
986 static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv,
987 int vco)
988 {
989 bool changed = dev_priv->skl_preferred_vco_freq != vco;
990
991 dev_priv->skl_preferred_vco_freq = vco;
992
993 if (changed)
994 intel_update_max_cdclk(dev_priv);
995 }
996
997 static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco)
998 {
999 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
1000
1001 /*
1002 * We always enable DPLL0 with the lowest link rate possible, but still
1003 * taking into account the VCO required to operate the eDP panel at the
1004 * desired frequency. The usual DP link rates operate with a VCO of
1005 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
1006 * The modeset code is responsible for the selection of the exact link
1007 * rate later on, with the constraint of choosing a frequency that
1008 * works with vco.
1009 */
1010 if (vco == 8640000)
1011 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
1012 else
1013 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
1014 }
1015
1016 static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
1017 {
1018 intel_de_rmw(dev_priv, DPLL_CTRL1,
1019 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
1020 DPLL_CTRL1_SSC(SKL_DPLL0) |
1021 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
1022 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
1023 skl_dpll0_link_rate(dev_priv, vco));
1024 intel_de_posting_read(dev_priv, DPLL_CTRL1);
1025
1026 intel_de_rmw(dev_priv, LCPLL1_CTL,
1027 0, LCPLL_PLL_ENABLE);
1028
1029 if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
1030 drm_err(&dev_priv->drm, "DPLL0 not locked\n");
1031
1032 dev_priv->display.cdclk.hw.vco = vco;
1033
1034 /* We'll want to keep using the current vco from now on. */
1035 skl_set_preferred_cdclk_vco(dev_priv, vco);
1036 }
1037
1038 static void skl_dpll0_disable(struct drm_i915_private *dev_priv)
1039 {
1040 intel_de_rmw(dev_priv, LCPLL1_CTL,
1041 LCPLL_PLL_ENABLE, 0);
1042
1043 if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
1044 drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n");
1045
1046 dev_priv->display.cdclk.hw.vco = 0;
1047 }
1048
1049 static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv,
1050 int cdclk, int vco)
1051 {
1052 switch (cdclk) {
1053 default:
1054 drm_WARN_ON(&dev_priv->drm,
1055 cdclk != dev_priv->display.cdclk.hw.bypass);
1056 drm_WARN_ON(&dev_priv->drm, vco != 0);
1057 fallthrough;
1058 case 308571:
1059 case 337500:
1060 return CDCLK_FREQ_337_308;
1061 case 450000:
1062 case 432000:
1063 return CDCLK_FREQ_450_432;
1064 case 540000:
1065 return CDCLK_FREQ_540;
1066 case 617143:
1067 case 675000:
1068 return CDCLK_FREQ_675_617;
1069 }
1070 }
1071
1072 static void skl_set_cdclk(struct drm_i915_private *dev_priv,
1073 const struct intel_cdclk_config *cdclk_config,
1074 enum pipe pipe)
1075 {
1076 int cdclk = cdclk_config->cdclk;
1077 int vco = cdclk_config->vco;
1078 u32 freq_select, cdclk_ctl;
1079 int ret;
1080
1081 /*
1082 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
1083 * unsupported on SKL. In theory this should never happen since only
1084 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
1085 * supported on SKL either, see the above WA. WARN whenever trying to
1086 * use the corresponding VCO freq as that always leads to using the
1087 * minimum 308MHz CDCLK.
1088 */
1089 drm_WARN_ON_ONCE(&dev_priv->drm,
1090 IS_SKYLAKE(dev_priv) && vco == 8640000);
1091
1092 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1093 SKL_CDCLK_PREPARE_FOR_CHANGE,
1094 SKL_CDCLK_READY_FOR_CHANGE,
1095 SKL_CDCLK_READY_FOR_CHANGE, 3);
1096 if (ret) {
1097 drm_err(&dev_priv->drm,
1098 "Failed to inform PCU about cdclk change (%d)\n", ret);
1099 return;
1100 }
1101
1102 freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco);
1103
1104 if (dev_priv->display.cdclk.hw.vco != 0 &&
1105 dev_priv->display.cdclk.hw.vco != vco)
1106 skl_dpll0_disable(dev_priv);
1107
1108 cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL);
1109
1110 if (dev_priv->display.cdclk.hw.vco != vco) {
1111 /* Wa Display #1183: skl,kbl,cfl */
1112 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1113 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1114 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1115 }
1116
1117 /* Wa Display #1183: skl,kbl,cfl */
1118 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
1119 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1120 intel_de_posting_read(dev_priv, CDCLK_CTL);
1121
1122 if (dev_priv->display.cdclk.hw.vco != vco)
1123 skl_dpll0_enable(dev_priv, vco);
1124
1125 /* Wa Display #1183: skl,kbl,cfl */
1126 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1127 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1128
1129 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1130 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1131
1132 /* Wa Display #1183: skl,kbl,cfl */
1133 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
1134 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1135 intel_de_posting_read(dev_priv, CDCLK_CTL);
1136
1137 /* inform PCU of the change */
1138 snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1139 cdclk_config->voltage_level);
1140
1141 intel_update_cdclk(dev_priv);
1142 }
1143
1144 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
1145 {
1146 u32 cdctl, expected;
1147
1148 /*
1149 * check if the pre-os initialized the display
1150 * There is SWF18 scratchpad register defined which is set by the
1151 * pre-os which can be used by the OS drivers to check the status
1152 */
1153 if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
1154 goto sanitize;
1155
1156 intel_update_cdclk(dev_priv);
1157 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1158
1159 /* Is PLL enabled and locked ? */
1160 if (dev_priv->display.cdclk.hw.vco == 0 ||
1161 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
1162 goto sanitize;
1163
1164 /* DPLL okay; verify the cdclock
1165 *
1166 * Noticed in some instances that the freq selection is correct but
1167 * decimal part is programmed wrong from BIOS where pre-os does not
1168 * enable display. Verify the same as well.
1169 */
1170 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
1171 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1172 skl_cdclk_decimal(dev_priv->display.cdclk.hw.cdclk);
1173 if (cdctl == expected)
1174 /* All well; nothing to sanitize */
1175 return;
1176
1177 sanitize:
1178 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
1179
1180 /* force cdclk programming */
1181 dev_priv->display.cdclk.hw.cdclk = 0;
1182 /* force full PLL disable + enable */
1183 dev_priv->display.cdclk.hw.vco = ~0;
1184 }
1185
1186 static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv)
1187 {
1188 struct intel_cdclk_config cdclk_config;
1189
1190 skl_sanitize_cdclk(dev_priv);
1191
1192 if (dev_priv->display.cdclk.hw.cdclk != 0 &&
1193 dev_priv->display.cdclk.hw.vco != 0) {
1194 /*
1195 * Use the current vco as our initial
1196 * guess as to what the preferred vco is.
1197 */
1198 if (dev_priv->skl_preferred_vco_freq == 0)
1199 skl_set_preferred_cdclk_vco(dev_priv,
1200 dev_priv->display.cdclk.hw.vco);
1201 return;
1202 }
1203
1204 cdclk_config = dev_priv->display.cdclk.hw;
1205
1206 cdclk_config.vco = dev_priv->skl_preferred_vco_freq;
1207 if (cdclk_config.vco == 0)
1208 cdclk_config.vco = 8100000;
1209 cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco);
1210 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1211
1212 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1213 }
1214
1215 static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
1216 {
1217 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
1218
1219 cdclk_config.cdclk = cdclk_config.bypass;
1220 cdclk_config.vco = 0;
1221 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1222
1223 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1224 }
1225
1226 struct intel_cdclk_vals {
1227 u32 cdclk;
1228 u16 refclk;
1229 u16 waveform;
1230 u8 ratio;
1231 };
1232
1233 static const struct intel_cdclk_vals bxt_cdclk_table[] = {
1234 { .refclk = 19200, .cdclk = 144000, .ratio = 60 },
1235 { .refclk = 19200, .cdclk = 288000, .ratio = 60 },
1236 { .refclk = 19200, .cdclk = 384000, .ratio = 60 },
1237 { .refclk = 19200, .cdclk = 576000, .ratio = 60 },
1238 { .refclk = 19200, .cdclk = 624000, .ratio = 65 },
1239 {}
1240 };
1241
1242 static const struct intel_cdclk_vals glk_cdclk_table[] = {
1243 { .refclk = 19200, .cdclk = 79200, .ratio = 33 },
1244 { .refclk = 19200, .cdclk = 158400, .ratio = 33 },
1245 { .refclk = 19200, .cdclk = 316800, .ratio = 33 },
1246 {}
1247 };
1248
1249 static const struct intel_cdclk_vals icl_cdclk_table[] = {
1250 { .refclk = 19200, .cdclk = 172800, .ratio = 18 },
1251 { .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1252 { .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1253 { .refclk = 19200, .cdclk = 326400, .ratio = 68 },
1254 { .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1255 { .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1256
1257 { .refclk = 24000, .cdclk = 180000, .ratio = 15 },
1258 { .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1259 { .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1260 { .refclk = 24000, .cdclk = 324000, .ratio = 54 },
1261 { .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1262 { .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1263
1264 { .refclk = 38400, .cdclk = 172800, .ratio = 9 },
1265 { .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1266 { .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1267 { .refclk = 38400, .cdclk = 326400, .ratio = 34 },
1268 { .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1269 { .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1270 {}
1271 };
1272
1273 static const struct intel_cdclk_vals rkl_cdclk_table[] = {
1274 { .refclk = 19200, .cdclk = 172800, .ratio = 36 },
1275 { .refclk = 19200, .cdclk = 192000, .ratio = 40 },
1276 { .refclk = 19200, .cdclk = 307200, .ratio = 64 },
1277 { .refclk = 19200, .cdclk = 326400, .ratio = 136 },
1278 { .refclk = 19200, .cdclk = 556800, .ratio = 116 },
1279 { .refclk = 19200, .cdclk = 652800, .ratio = 136 },
1280
1281 { .refclk = 24000, .cdclk = 180000, .ratio = 30 },
1282 { .refclk = 24000, .cdclk = 192000, .ratio = 32 },
1283 { .refclk = 24000, .cdclk = 312000, .ratio = 52 },
1284 { .refclk = 24000, .cdclk = 324000, .ratio = 108 },
1285 { .refclk = 24000, .cdclk = 552000, .ratio = 92 },
1286 { .refclk = 24000, .cdclk = 648000, .ratio = 108 },
1287
1288 { .refclk = 38400, .cdclk = 172800, .ratio = 18 },
1289 { .refclk = 38400, .cdclk = 192000, .ratio = 20 },
1290 { .refclk = 38400, .cdclk = 307200, .ratio = 32 },
1291 { .refclk = 38400, .cdclk = 326400, .ratio = 68 },
1292 { .refclk = 38400, .cdclk = 556800, .ratio = 58 },
1293 { .refclk = 38400, .cdclk = 652800, .ratio = 68 },
1294 {}
1295 };
1296
1297 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
1298 { .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1299 { .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1300 { .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1301
1302 { .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1303 { .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1304 { .refclk = 24400, .cdclk = 648000, .ratio = 54 },
1305
1306 { .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1307 { .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1308 { .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1309 {}
1310 };
1311
1312 static const struct intel_cdclk_vals adlp_cdclk_table[] = {
1313 { .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1314 { .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1315 { .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1316 { .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1317 { .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1318
1319 { .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1320 { .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1321 { .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1322 { .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1323 { .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1324
1325 { .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1326 { .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1327 { .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1328 { .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1329 { .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1330 {}
1331 };
1332
1333 static const struct intel_cdclk_vals rplu_cdclk_table[] = {
1334 { .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1335 { .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1336 { .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1337 { .refclk = 19200, .cdclk = 480000, .ratio = 50 },
1338 { .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1339 { .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1340
1341 { .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1342 { .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1343 { .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1344 { .refclk = 24000, .cdclk = 480000, .ratio = 40 },
1345 { .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1346 { .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1347
1348 { .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1349 { .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1350 { .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1351 { .refclk = 38400, .cdclk = 480000, .ratio = 25 },
1352 { .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1353 { .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1354 {}
1355 };
1356
1357 static const struct intel_cdclk_vals dg2_cdclk_table[] = {
1358 { .refclk = 38400, .cdclk = 163200, .ratio = 34, .waveform = 0x8888 },
1359 { .refclk = 38400, .cdclk = 204000, .ratio = 34, .waveform = 0x9248 },
1360 { .refclk = 38400, .cdclk = 244800, .ratio = 34, .waveform = 0xa4a4 },
1361 { .refclk = 38400, .cdclk = 285600, .ratio = 34, .waveform = 0xa54a },
1362 { .refclk = 38400, .cdclk = 326400, .ratio = 34, .waveform = 0xaaaa },
1363 { .refclk = 38400, .cdclk = 367200, .ratio = 34, .waveform = 0xad5a },
1364 { .refclk = 38400, .cdclk = 408000, .ratio = 34, .waveform = 0xb6b6 },
1365 { .refclk = 38400, .cdclk = 448800, .ratio = 34, .waveform = 0xdbb6 },
1366 { .refclk = 38400, .cdclk = 489600, .ratio = 34, .waveform = 0xeeee },
1367 { .refclk = 38400, .cdclk = 530400, .ratio = 34, .waveform = 0xf7de },
1368 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1369 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1370 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1371 {}
1372 };
1373
1374 static const struct intel_cdclk_vals mtl_cdclk_table[] = {
1375 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1376 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1377 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0x0000 },
1378 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0x0000 },
1379 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0x0000 },
1380 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0x0000 },
1381 {}
1382 };
1383
1384 static const struct intel_cdclk_vals lnl_cdclk_table[] = {
1385 { .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa },
1386 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1387 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1388 { .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 },
1389 { .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee },
1390 { .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de },
1391 { .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe },
1392 { .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe },
1393 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff },
1394 { .refclk = 38400, .cdclk = 330000, .ratio = 25, .waveform = 0xdbb6 },
1395 { .refclk = 38400, .cdclk = 360000, .ratio = 25, .waveform = 0xeeee },
1396 { .refclk = 38400, .cdclk = 390000, .ratio = 25, .waveform = 0xf7de },
1397 { .refclk = 38400, .cdclk = 420000, .ratio = 25, .waveform = 0xfefe },
1398 { .refclk = 38400, .cdclk = 450000, .ratio = 25, .waveform = 0xfffe },
1399 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1400 { .refclk = 38400, .cdclk = 487200, .ratio = 29, .waveform = 0xfefe },
1401 { .refclk = 38400, .cdclk = 522000, .ratio = 29, .waveform = 0xfffe },
1402 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1403 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1404 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1405 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1406 {}
1407 };
1408
1409 static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
1410 {
1411 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1412 int i;
1413
1414 for (i = 0; table[i].refclk; i++)
1415 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1416 table[i].cdclk >= min_cdclk)
1417 return table[i].cdclk;
1418
1419 drm_WARN(&dev_priv->drm, 1,
1420 "Cannot satisfy minimum cdclk %d with refclk %u\n",
1421 min_cdclk, dev_priv->display.cdclk.hw.ref);
1422 return 0;
1423 }
1424
1425 static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
1426 {
1427 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1428 int i;
1429
1430 if (cdclk == dev_priv->display.cdclk.hw.bypass)
1431 return 0;
1432
1433 for (i = 0; table[i].refclk; i++)
1434 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1435 table[i].cdclk == cdclk)
1436 return dev_priv->display.cdclk.hw.ref * table[i].ratio;
1437
1438 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1439 cdclk, dev_priv->display.cdclk.hw.ref);
1440 return 0;
1441 }
1442
1443 static u8 bxt_calc_voltage_level(int cdclk)
1444 {
1445 return DIV_ROUND_UP(cdclk, 25000);
1446 }
1447
1448 static u8 calc_voltage_level(int cdclk, int num_voltage_levels,
1449 const int voltage_level_max_cdclk[])
1450 {
1451 int voltage_level;
1452
1453 for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) {
1454 if (cdclk <= voltage_level_max_cdclk[voltage_level])
1455 return voltage_level;
1456 }
1457
1458 MISSING_CASE(cdclk);
1459 return num_voltage_levels - 1;
1460 }
1461
1462 static u8 icl_calc_voltage_level(int cdclk)
1463 {
1464 static const int icl_voltage_level_max_cdclk[] = {
1465 [0] = 312000,
1466 [1] = 556800,
1467 [2] = 652800,
1468 };
1469
1470 return calc_voltage_level(cdclk,
1471 ARRAY_SIZE(icl_voltage_level_max_cdclk),
1472 icl_voltage_level_max_cdclk);
1473 }
1474
1475 static u8 ehl_calc_voltage_level(int cdclk)
1476 {
1477 static const int ehl_voltage_level_max_cdclk[] = {
1478 [0] = 180000,
1479 [1] = 312000,
1480 [2] = 326400,
1481 /*
1482 * Bspec lists the limit as 556.8 MHz, but some JSL
1483 * development boards (at least) boot with 652.8 MHz
1484 */
1485 [3] = 652800,
1486 };
1487
1488 return calc_voltage_level(cdclk,
1489 ARRAY_SIZE(ehl_voltage_level_max_cdclk),
1490 ehl_voltage_level_max_cdclk);
1491 }
1492
1493 static u8 tgl_calc_voltage_level(int cdclk)
1494 {
1495 static const int tgl_voltage_level_max_cdclk[] = {
1496 [0] = 312000,
1497 [1] = 326400,
1498 [2] = 556800,
1499 [3] = 652800,
1500 };
1501
1502 return calc_voltage_level(cdclk,
1503 ARRAY_SIZE(tgl_voltage_level_max_cdclk),
1504 tgl_voltage_level_max_cdclk);
1505 }
1506
1507 static u8 rplu_calc_voltage_level(int cdclk)
1508 {
1509 static const int rplu_voltage_level_max_cdclk[] = {
1510 [0] = 312000,
1511 [1] = 480000,
1512 [2] = 556800,
1513 [3] = 652800,
1514 };
1515
1516 return calc_voltage_level(cdclk,
1517 ARRAY_SIZE(rplu_voltage_level_max_cdclk),
1518 rplu_voltage_level_max_cdclk);
1519 }
1520
1521 static void icl_readout_refclk(struct drm_i915_private *dev_priv,
1522 struct intel_cdclk_config *cdclk_config)
1523 {
1524 u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
1525
1526 switch (dssm) {
1527 default:
1528 MISSING_CASE(dssm);
1529 fallthrough;
1530 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
1531 cdclk_config->ref = 24000;
1532 break;
1533 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
1534 cdclk_config->ref = 19200;
1535 break;
1536 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
1537 cdclk_config->ref = 38400;
1538 break;
1539 }
1540 }
1541
1542 static void bxt_de_pll_readout(struct drm_i915_private *dev_priv,
1543 struct intel_cdclk_config *cdclk_config)
1544 {
1545 u32 val, ratio;
1546
1547 if (IS_DG2(dev_priv))
1548 cdclk_config->ref = 38400;
1549 else if (DISPLAY_VER(dev_priv) >= 11)
1550 icl_readout_refclk(dev_priv, cdclk_config);
1551 else
1552 cdclk_config->ref = 19200;
1553
1554 val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE);
1555 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
1556 (val & BXT_DE_PLL_LOCK) == 0) {
1557 /*
1558 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
1559 * setting it to zero is a way to signal that.
1560 */
1561 cdclk_config->vco = 0;
1562 return;
1563 }
1564
1565 /*
1566 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
1567 * gen9lp had it in a separate PLL control register.
1568 */
1569 if (DISPLAY_VER(dev_priv) >= 11)
1570 ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
1571 else
1572 ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1573
1574 cdclk_config->vco = ratio * cdclk_config->ref;
1575 }
1576
1577 static void bxt_get_cdclk(struct drm_i915_private *dev_priv,
1578 struct intel_cdclk_config *cdclk_config)
1579 {
1580 u32 squash_ctl = 0;
1581 u32 divider;
1582 int div;
1583
1584 bxt_de_pll_readout(dev_priv, cdclk_config);
1585
1586 if (DISPLAY_VER(dev_priv) >= 12)
1587 cdclk_config->bypass = cdclk_config->ref / 2;
1588 else if (DISPLAY_VER(dev_priv) >= 11)
1589 cdclk_config->bypass = 50000;
1590 else
1591 cdclk_config->bypass = cdclk_config->ref;
1592
1593 if (cdclk_config->vco == 0) {
1594 cdclk_config->cdclk = cdclk_config->bypass;
1595 goto out;
1596 }
1597
1598 divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
1599
1600 switch (divider) {
1601 case BXT_CDCLK_CD2X_DIV_SEL_1:
1602 div = 2;
1603 break;
1604 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1605 div = 3;
1606 break;
1607 case BXT_CDCLK_CD2X_DIV_SEL_2:
1608 div = 4;
1609 break;
1610 case BXT_CDCLK_CD2X_DIV_SEL_4:
1611 div = 8;
1612 break;
1613 default:
1614 MISSING_CASE(divider);
1615 return;
1616 }
1617
1618 if (HAS_CDCLK_SQUASH(dev_priv))
1619 squash_ctl = intel_de_read(dev_priv, CDCLK_SQUASH_CTL);
1620
1621 if (squash_ctl & CDCLK_SQUASH_ENABLE) {
1622 u16 waveform;
1623 int size;
1624
1625 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1;
1626 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size);
1627
1628 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) *
1629 cdclk_config->vco, size * div);
1630 } else {
1631 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
1632 }
1633
1634 out:
1635 /*
1636 * Can't read this out :( Let's assume it's
1637 * at least what the CDCLK frequency requires.
1638 */
1639 cdclk_config->voltage_level =
1640 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config->cdclk);
1641 }
1642
1643 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
1644 {
1645 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0);
1646
1647 /* Timeout 200us */
1648 if (intel_de_wait_for_clear(dev_priv,
1649 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1650 drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n");
1651
1652 dev_priv->display.cdclk.hw.vco = 0;
1653 }
1654
1655 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
1656 {
1657 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1658
1659 intel_de_rmw(dev_priv, BXT_DE_PLL_CTL,
1660 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
1661
1662 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
1663
1664 /* Timeout 200us */
1665 if (intel_de_wait_for_set(dev_priv,
1666 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1667 drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n");
1668
1669 dev_priv->display.cdclk.hw.vco = vco;
1670 }
1671
1672 static void icl_cdclk_pll_disable(struct drm_i915_private *dev_priv)
1673 {
1674 intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE,
1675 BXT_DE_PLL_PLL_ENABLE, 0);
1676
1677 /* Timeout 200us */
1678 if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1679 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n");
1680
1681 dev_priv->display.cdclk.hw.vco = 0;
1682 }
1683
1684 static void icl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco)
1685 {
1686 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1687 u32 val;
1688
1689 val = ICL_CDCLK_PLL_RATIO(ratio);
1690 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1691
1692 val |= BXT_DE_PLL_PLL_ENABLE;
1693 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1694
1695 /* Timeout 200us */
1696 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1697 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n");
1698
1699 dev_priv->display.cdclk.hw.vco = vco;
1700 }
1701
1702 static void adlp_cdclk_pll_crawl(struct drm_i915_private *dev_priv, int vco)
1703 {
1704 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1705 u32 val;
1706
1707 /* Write PLL ratio without disabling */
1708 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
1709 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1710
1711 /* Submit freq change request */
1712 val |= BXT_DE_PLL_FREQ_REQ;
1713 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1714
1715 /* Timeout 200us */
1716 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE,
1717 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1))
1718 drm_err(&dev_priv->drm, "timeout waiting for FREQ change request ack\n");
1719
1720 val &= ~BXT_DE_PLL_FREQ_REQ;
1721 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1722
1723 dev_priv->display.cdclk.hw.vco = vco;
1724 }
1725
1726 static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
1727 {
1728 if (DISPLAY_VER(dev_priv) >= 12) {
1729 if (pipe == INVALID_PIPE)
1730 return TGL_CDCLK_CD2X_PIPE_NONE;
1731 else
1732 return TGL_CDCLK_CD2X_PIPE(pipe);
1733 } else if (DISPLAY_VER(dev_priv) >= 11) {
1734 if (pipe == INVALID_PIPE)
1735 return ICL_CDCLK_CD2X_PIPE_NONE;
1736 else
1737 return ICL_CDCLK_CD2X_PIPE(pipe);
1738 } else {
1739 if (pipe == INVALID_PIPE)
1740 return BXT_CDCLK_CD2X_PIPE_NONE;
1741 else
1742 return BXT_CDCLK_CD2X_PIPE(pipe);
1743 }
1744 }
1745
1746 static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv,
1747 int cdclk, int vco)
1748 {
1749 /* cdclk = vco / 2 / div{1,1.5,2,4} */
1750 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
1751 default:
1752 drm_WARN_ON(&dev_priv->drm,
1753 cdclk != dev_priv->display.cdclk.hw.bypass);
1754 drm_WARN_ON(&dev_priv->drm, vco != 0);
1755 fallthrough;
1756 case 2:
1757 return BXT_CDCLK_CD2X_DIV_SEL_1;
1758 case 3:
1759 return BXT_CDCLK_CD2X_DIV_SEL_1_5;
1760 case 4:
1761 return BXT_CDCLK_CD2X_DIV_SEL_2;
1762 case 8:
1763 return BXT_CDCLK_CD2X_DIV_SEL_4;
1764 }
1765 }
1766
1767 static u32 cdclk_squash_waveform(struct drm_i915_private *dev_priv,
1768 int cdclk)
1769 {
1770 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1771 int i;
1772
1773 if (cdclk == dev_priv->display.cdclk.hw.bypass)
1774 return 0;
1775
1776 for (i = 0; table[i].refclk; i++)
1777 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1778 table[i].cdclk == cdclk)
1779 return table[i].waveform;
1780
1781 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1782 cdclk, dev_priv->display.cdclk.hw.ref);
1783
1784 return 0xffff;
1785 }
1786
1787 static void icl_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1788 {
1789 if (i915->display.cdclk.hw.vco != 0 &&
1790 i915->display.cdclk.hw.vco != vco)
1791 icl_cdclk_pll_disable(i915);
1792
1793 if (i915->display.cdclk.hw.vco != vco)
1794 icl_cdclk_pll_enable(i915, vco);
1795 }
1796
1797 static void bxt_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1798 {
1799 if (i915->display.cdclk.hw.vco != 0 &&
1800 i915->display.cdclk.hw.vco != vco)
1801 bxt_de_pll_disable(i915);
1802
1803 if (i915->display.cdclk.hw.vco != vco)
1804 bxt_de_pll_enable(i915, vco);
1805 }
1806
1807 static void dg2_cdclk_squash_program(struct drm_i915_private *i915,
1808 u16 waveform)
1809 {
1810 u32 squash_ctl = 0;
1811
1812 if (waveform)
1813 squash_ctl = CDCLK_SQUASH_ENABLE |
1814 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform;
1815
1816 intel_de_write(i915, CDCLK_SQUASH_CTL, squash_ctl);
1817 }
1818
1819 static bool cdclk_pll_is_unknown(unsigned int vco)
1820 {
1821 /*
1822 * Ensure driver does not take the crawl path for the
1823 * case when the vco is set to ~0 in the
1824 * sanitize path.
1825 */
1826 return vco == ~0;
1827 }
1828
1829 static const int cdclk_squash_len = 16;
1830
1831 static int cdclk_squash_divider(u16 waveform)
1832 {
1833 return hweight16(waveform ?: 0xffff);
1834 }
1835
1836 static bool cdclk_compute_crawl_and_squash_midpoint(struct drm_i915_private *i915,
1837 const struct intel_cdclk_config *old_cdclk_config,
1838 const struct intel_cdclk_config *new_cdclk_config,
1839 struct intel_cdclk_config *mid_cdclk_config)
1840 {
1841 u16 old_waveform, new_waveform, mid_waveform;
1842 int div = 2;
1843
1844 /* Return if PLL is in an unknown state, force a complete disable and re-enable. */
1845 if (cdclk_pll_is_unknown(old_cdclk_config->vco))
1846 return false;
1847
1848 /* Return if both Squash and Crawl are not present */
1849 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915))
1850 return false;
1851
1852 old_waveform = cdclk_squash_waveform(i915, old_cdclk_config->cdclk);
1853 new_waveform = cdclk_squash_waveform(i915, new_cdclk_config->cdclk);
1854
1855 /* Return if Squash only or Crawl only is the desired action */
1856 if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 ||
1857 old_cdclk_config->vco == new_cdclk_config->vco ||
1858 old_waveform == new_waveform)
1859 return false;
1860
1861 *mid_cdclk_config = *new_cdclk_config;
1862
1863 /*
1864 * Populate the mid_cdclk_config accordingly.
1865 * - If moving to a higher cdclk, the desired action is squashing.
1866 * The mid cdclk config should have the new (squash) waveform.
1867 * - If moving to a lower cdclk, the desired action is crawling.
1868 * The mid cdclk config should have the new vco.
1869 */
1870
1871 if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) {
1872 mid_cdclk_config->vco = old_cdclk_config->vco;
1873 mid_waveform = new_waveform;
1874 } else {
1875 mid_cdclk_config->vco = new_cdclk_config->vco;
1876 mid_waveform = old_waveform;
1877 }
1878
1879 mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) *
1880 mid_cdclk_config->vco,
1881 cdclk_squash_len * div);
1882
1883 /* make sure the mid clock came out sane */
1884
1885 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk <
1886 min(old_cdclk_config->cdclk, new_cdclk_config->cdclk));
1887 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk >
1888 i915->display.cdclk.max_cdclk_freq);
1889 drm_WARN_ON(&i915->drm, cdclk_squash_waveform(i915, mid_cdclk_config->cdclk) !=
1890 mid_waveform);
1891
1892 return true;
1893 }
1894
1895 static bool pll_enable_wa_needed(struct drm_i915_private *dev_priv)
1896 {
1897 return (DISPLAY_VER_FULL(dev_priv) == IP_VER(20, 0) ||
1898 DISPLAY_VER_FULL(dev_priv) == IP_VER(14, 0) ||
1899 IS_DG2(dev_priv)) &&
1900 dev_priv->display.cdclk.hw.vco > 0;
1901 }
1902
1903 static u32 bxt_cdclk_ctl(struct drm_i915_private *i915,
1904 const struct intel_cdclk_config *cdclk_config,
1905 enum pipe pipe)
1906 {
1907 int cdclk = cdclk_config->cdclk;
1908 int vco = cdclk_config->vco;
1909 int unsquashed_cdclk;
1910 u16 waveform;
1911 u32 val;
1912
1913 waveform = cdclk_squash_waveform(i915, cdclk);
1914
1915 unsquashed_cdclk = DIV_ROUND_CLOSEST(cdclk * cdclk_squash_len,
1916 cdclk_squash_divider(waveform));
1917
1918 val = bxt_cdclk_cd2x_div_sel(i915, unsquashed_cdclk, vco) |
1919 bxt_cdclk_cd2x_pipe(i915, pipe);
1920
1921 /*
1922 * Disable SSA Precharge when CD clock frequency < 500 MHz,
1923 * enable otherwise.
1924 */
1925 if ((IS_GEMINILAKE(i915) || IS_BROXTON(i915)) &&
1926 cdclk >= 500000)
1927 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
1928
1929 if (DISPLAY_VER(i915) >= 20)
1930 val |= MDCLK_SOURCE_SEL_CDCLK_PLL;
1931 else
1932 val |= skl_cdclk_decimal(cdclk);
1933
1934 return val;
1935 }
1936
1937 static void _bxt_set_cdclk(struct drm_i915_private *dev_priv,
1938 const struct intel_cdclk_config *cdclk_config,
1939 enum pipe pipe)
1940 {
1941 int cdclk = cdclk_config->cdclk;
1942 int vco = cdclk_config->vco;
1943 u16 waveform;
1944
1945 if (HAS_CDCLK_CRAWL(dev_priv) && dev_priv->display.cdclk.hw.vco > 0 && vco > 0 &&
1946 !cdclk_pll_is_unknown(dev_priv->display.cdclk.hw.vco)) {
1947 if (dev_priv->display.cdclk.hw.vco != vco)
1948 adlp_cdclk_pll_crawl(dev_priv, vco);
1949 } else if (DISPLAY_VER(dev_priv) >= 11) {
1950 /* wa_15010685871: dg2, mtl */
1951 if (pll_enable_wa_needed(dev_priv))
1952 dg2_cdclk_squash_program(dev_priv, 0);
1953
1954 icl_cdclk_pll_update(dev_priv, vco);
1955 } else
1956 bxt_cdclk_pll_update(dev_priv, vco);
1957
1958 waveform = cdclk_squash_waveform(dev_priv, cdclk);
1959
1960 if (HAS_CDCLK_SQUASH(dev_priv))
1961 dg2_cdclk_squash_program(dev_priv, waveform);
1962
1963 intel_de_write(dev_priv, CDCLK_CTL, bxt_cdclk_ctl(dev_priv, cdclk_config, pipe));
1964
1965 if (pipe != INVALID_PIPE)
1966 intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(dev_priv, pipe));
1967 }
1968
1969 static void bxt_set_cdclk(struct drm_i915_private *dev_priv,
1970 const struct intel_cdclk_config *cdclk_config,
1971 enum pipe pipe)
1972 {
1973 struct intel_cdclk_config mid_cdclk_config;
1974 int cdclk = cdclk_config->cdclk;
1975 int ret = 0;
1976
1977 /*
1978 * Inform power controller of upcoming frequency change.
1979 * Display versions 14 and beyond do not follow the PUnit
1980 * mailbox communication, skip
1981 * this step.
1982 */
1983 if (DISPLAY_VER(dev_priv) >= 14 || IS_DG2(dev_priv))
1984 /* NOOP */;
1985 else if (DISPLAY_VER(dev_priv) >= 11)
1986 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1987 SKL_CDCLK_PREPARE_FOR_CHANGE,
1988 SKL_CDCLK_READY_FOR_CHANGE,
1989 SKL_CDCLK_READY_FOR_CHANGE, 3);
1990 else
1991 /*
1992 * BSpec requires us to wait up to 150usec, but that leads to
1993 * timeouts; the 2ms used here is based on experiment.
1994 */
1995 ret = snb_pcode_write_timeout(&dev_priv->uncore,
1996 HSW_PCODE_DE_WRITE_FREQ_REQ,
1997 0x80000000, 150, 2);
1998
1999 if (ret) {
2000 drm_err(&dev_priv->drm,
2001 "Failed to inform PCU about cdclk change (err %d, freq %d)\n",
2002 ret, cdclk);
2003 return;
2004 }
2005
2006 if (cdclk_compute_crawl_and_squash_midpoint(dev_priv, &dev_priv->display.cdclk.hw,
2007 cdclk_config, &mid_cdclk_config)) {
2008 _bxt_set_cdclk(dev_priv, &mid_cdclk_config, pipe);
2009 _bxt_set_cdclk(dev_priv, cdclk_config, pipe);
2010 } else {
2011 _bxt_set_cdclk(dev_priv, cdclk_config, pipe);
2012 }
2013
2014 if (DISPLAY_VER(dev_priv) >= 14)
2015 /*
2016 * NOOP - No Pcode communication needed for
2017 * Display versions 14 and beyond
2018 */;
2019 else if (DISPLAY_VER(dev_priv) >= 11 && !IS_DG2(dev_priv))
2020 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
2021 cdclk_config->voltage_level);
2022 if (DISPLAY_VER(dev_priv) < 11) {
2023 /*
2024 * The timeout isn't specified, the 2ms used here is based on
2025 * experiment.
2026 * FIXME: Waiting for the request completion could be delayed
2027 * until the next PCODE request based on BSpec.
2028 */
2029 ret = snb_pcode_write_timeout(&dev_priv->uncore,
2030 HSW_PCODE_DE_WRITE_FREQ_REQ,
2031 cdclk_config->voltage_level,
2032 150, 2);
2033 }
2034 if (ret) {
2035 drm_err(&dev_priv->drm,
2036 "PCode CDCLK freq set failed, (err %d, freq %d)\n",
2037 ret, cdclk);
2038 return;
2039 }
2040
2041 intel_update_cdclk(dev_priv);
2042
2043 if (DISPLAY_VER(dev_priv) >= 11)
2044 /*
2045 * Can't read out the voltage level :(
2046 * Let's just assume everything is as expected.
2047 */
2048 dev_priv->display.cdclk.hw.voltage_level = cdclk_config->voltage_level;
2049 }
2050
2051 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
2052 {
2053 u32 cdctl, expected;
2054 int cdclk, vco;
2055
2056 intel_update_cdclk(dev_priv);
2057 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
2058
2059 if (dev_priv->display.cdclk.hw.vco == 0 ||
2060 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
2061 goto sanitize;
2062
2063 /* Make sure this is a legal cdclk value for the platform */
2064 cdclk = bxt_calc_cdclk(dev_priv, dev_priv->display.cdclk.hw.cdclk);
2065 if (cdclk != dev_priv->display.cdclk.hw.cdclk)
2066 goto sanitize;
2067
2068 /* Make sure the VCO is correct for the cdclk */
2069 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2070 if (vco != dev_priv->display.cdclk.hw.vco)
2071 goto sanitize;
2072
2073 /*
2074 * Some BIOS versions leave an incorrect decimal frequency value and
2075 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
2076 * so sanitize this register.
2077 */
2078 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
2079 expected = bxt_cdclk_ctl(dev_priv, &dev_priv->display.cdclk.hw, INVALID_PIPE);
2080
2081 /*
2082 * Let's ignore the pipe field, since BIOS could have configured the
2083 * dividers both synching to an active pipe, or asynchronously
2084 * (PIPE_NONE).
2085 */
2086 cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
2087 expected &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
2088
2089 if (cdctl == expected)
2090 /* All well; nothing to sanitize */
2091 return;
2092
2093 sanitize:
2094 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
2095
2096 /* force cdclk programming */
2097 dev_priv->display.cdclk.hw.cdclk = 0;
2098
2099 /* force full PLL disable + enable */
2100 dev_priv->display.cdclk.hw.vco = ~0;
2101 }
2102
2103 static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv)
2104 {
2105 struct intel_cdclk_config cdclk_config;
2106
2107 bxt_sanitize_cdclk(dev_priv);
2108
2109 if (dev_priv->display.cdclk.hw.cdclk != 0 &&
2110 dev_priv->display.cdclk.hw.vco != 0)
2111 return;
2112
2113 cdclk_config = dev_priv->display.cdclk.hw;
2114
2115 /*
2116 * FIXME:
2117 * - The initial CDCLK needs to be read from VBT.
2118 * Need to make this change after VBT has changes for BXT.
2119 */
2120 cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0);
2121 cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk);
2122 cdclk_config.voltage_level =
2123 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
2124
2125 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
2126 }
2127
2128 static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
2129 {
2130 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
2131
2132 cdclk_config.cdclk = cdclk_config.bypass;
2133 cdclk_config.vco = 0;
2134 cdclk_config.voltage_level =
2135 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
2136
2137 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
2138 }
2139
2140 /**
2141 * intel_cdclk_init_hw - Initialize CDCLK hardware
2142 * @i915: i915 device
2143 *
2144 * Initialize CDCLK. This consists mainly of initializing dev_priv->display.cdclk.hw and
2145 * sanitizing the state of the hardware if needed. This is generally done only
2146 * during the display core initialization sequence, after which the DMC will
2147 * take care of turning CDCLK off/on as needed.
2148 */
2149 void intel_cdclk_init_hw(struct drm_i915_private *i915)
2150 {
2151 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
2152 bxt_cdclk_init_hw(i915);
2153 else if (DISPLAY_VER(i915) == 9)
2154 skl_cdclk_init_hw(i915);
2155 }
2156
2157 /**
2158 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
2159 * @i915: i915 device
2160 *
2161 * Uninitialize CDCLK. This is done only during the display core
2162 * uninitialization sequence.
2163 */
2164 void intel_cdclk_uninit_hw(struct drm_i915_private *i915)
2165 {
2166 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
2167 bxt_cdclk_uninit_hw(i915);
2168 else if (DISPLAY_VER(i915) == 9)
2169 skl_cdclk_uninit_hw(i915);
2170 }
2171
2172 static bool intel_cdclk_can_crawl_and_squash(struct drm_i915_private *i915,
2173 const struct intel_cdclk_config *a,
2174 const struct intel_cdclk_config *b)
2175 {
2176 u16 old_waveform;
2177 u16 new_waveform;
2178
2179 drm_WARN_ON(&i915->drm, cdclk_pll_is_unknown(a->vco));
2180
2181 if (a->vco == 0 || b->vco == 0)
2182 return false;
2183
2184 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915))
2185 return false;
2186
2187 old_waveform = cdclk_squash_waveform(i915, a->cdclk);
2188 new_waveform = cdclk_squash_waveform(i915, b->cdclk);
2189
2190 return a->vco != b->vco &&
2191 old_waveform != new_waveform;
2192 }
2193
2194 static bool intel_cdclk_can_crawl(struct drm_i915_private *dev_priv,
2195 const struct intel_cdclk_config *a,
2196 const struct intel_cdclk_config *b)
2197 {
2198 int a_div, b_div;
2199
2200 if (!HAS_CDCLK_CRAWL(dev_priv))
2201 return false;
2202
2203 /*
2204 * The vco and cd2x divider will change independently
2205 * from each, so we disallow cd2x change when crawling.
2206 */
2207 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
2208 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
2209
2210 return a->vco != 0 && b->vco != 0 &&
2211 a->vco != b->vco &&
2212 a_div == b_div &&
2213 a->ref == b->ref;
2214 }
2215
2216 static bool intel_cdclk_can_squash(struct drm_i915_private *dev_priv,
2217 const struct intel_cdclk_config *a,
2218 const struct intel_cdclk_config *b)
2219 {
2220 /*
2221 * FIXME should store a bit more state in intel_cdclk_config
2222 * to differentiate squasher vs. cd2x divider properly. For
2223 * the moment all platforms with squasher use a fixed cd2x
2224 * divider.
2225 */
2226 if (!HAS_CDCLK_SQUASH(dev_priv))
2227 return false;
2228
2229 return a->cdclk != b->cdclk &&
2230 a->vco != 0 &&
2231 a->vco == b->vco &&
2232 a->ref == b->ref;
2233 }
2234
2235 /**
2236 * intel_cdclk_needs_modeset - Determine if changong between the CDCLK
2237 * configurations requires a modeset on all pipes
2238 * @a: first CDCLK configuration
2239 * @b: second CDCLK configuration
2240 *
2241 * Returns:
2242 * True if changing between the two CDCLK configurations
2243 * requires all pipes to be off, false if not.
2244 */
2245 bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a,
2246 const struct intel_cdclk_config *b)
2247 {
2248 return a->cdclk != b->cdclk ||
2249 a->vco != b->vco ||
2250 a->ref != b->ref;
2251 }
2252
2253 /**
2254 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
2255 * configurations requires only a cd2x divider update
2256 * @dev_priv: i915 device
2257 * @a: first CDCLK configuration
2258 * @b: second CDCLK configuration
2259 *
2260 * Returns:
2261 * True if changing between the two CDCLK configurations
2262 * can be done with just a cd2x divider update, false if not.
2263 */
2264 static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv,
2265 const struct intel_cdclk_config *a,
2266 const struct intel_cdclk_config *b)
2267 {
2268 /* Older hw doesn't have the capability */
2269 if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv))
2270 return false;
2271
2272 /*
2273 * FIXME should store a bit more state in intel_cdclk_config
2274 * to differentiate squasher vs. cd2x divider properly. For
2275 * the moment all platforms with squasher use a fixed cd2x
2276 * divider.
2277 */
2278 if (HAS_CDCLK_SQUASH(dev_priv))
2279 return false;
2280
2281 return a->cdclk != b->cdclk &&
2282 a->vco != 0 &&
2283 a->vco == b->vco &&
2284 a->ref == b->ref;
2285 }
2286
2287 /**
2288 * intel_cdclk_changed - Determine if two CDCLK configurations are different
2289 * @a: first CDCLK configuration
2290 * @b: second CDCLK configuration
2291 *
2292 * Returns:
2293 * True if the CDCLK configurations don't match, false if they do.
2294 */
2295 static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
2296 const struct intel_cdclk_config *b)
2297 {
2298 return intel_cdclk_needs_modeset(a, b) ||
2299 a->voltage_level != b->voltage_level;
2300 }
2301
2302 void intel_cdclk_dump_config(struct drm_i915_private *i915,
2303 const struct intel_cdclk_config *cdclk_config,
2304 const char *context)
2305 {
2306 drm_dbg_kms(&i915->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
2307 context, cdclk_config->cdclk, cdclk_config->vco,
2308 cdclk_config->ref, cdclk_config->bypass,
2309 cdclk_config->voltage_level);
2310 }
2311
2312 static void intel_pcode_notify(struct drm_i915_private *i915,
2313 u8 voltage_level,
2314 u8 active_pipe_count,
2315 u16 cdclk,
2316 bool cdclk_update_valid,
2317 bool pipe_count_update_valid)
2318 {
2319 int ret;
2320 u32 update_mask = 0;
2321
2322 if (!IS_DG2(i915))
2323 return;
2324
2325 update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level);
2326
2327 if (cdclk_update_valid)
2328 update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID;
2329
2330 if (pipe_count_update_valid)
2331 update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID;
2332
2333 ret = skl_pcode_request(&i915->uncore, SKL_PCODE_CDCLK_CONTROL,
2334 SKL_CDCLK_PREPARE_FOR_CHANGE |
2335 update_mask,
2336 SKL_CDCLK_READY_FOR_CHANGE,
2337 SKL_CDCLK_READY_FOR_CHANGE, 3);
2338 if (ret)
2339 drm_err(&i915->drm,
2340 "Failed to inform PCU about display config (err %d)\n",
2341 ret);
2342 }
2343
2344 /**
2345 * intel_set_cdclk - Push the CDCLK configuration to the hardware
2346 * @dev_priv: i915 device
2347 * @cdclk_config: new CDCLK configuration
2348 * @pipe: pipe with which to synchronize the update
2349 *
2350 * Program the hardware based on the passed in CDCLK state,
2351 * if necessary.
2352 */
2353 static void intel_set_cdclk(struct drm_i915_private *dev_priv,
2354 const struct intel_cdclk_config *cdclk_config,
2355 enum pipe pipe)
2356 {
2357 struct intel_encoder *encoder;
2358
2359 if (!intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config))
2360 return;
2361
2362 if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->display.funcs.cdclk->set_cdclk))
2363 return;
2364
2365 intel_cdclk_dump_config(dev_priv, cdclk_config, "Changing CDCLK to");
2366
2367 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2368 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2369
2370 intel_psr_pause(intel_dp);
2371 }
2372
2373 intel_audio_cdclk_change_pre(dev_priv);
2374
2375 /*
2376 * Lock aux/gmbus while we change cdclk in case those
2377 * functions use cdclk. Not all platforms/ports do,
2378 * but we'll lock them all for simplicity.
2379 */
2380 mutex_lock(&dev_priv->display.gmbus.mutex);
2381 for_each_intel_dp(&dev_priv->drm, encoder) {
2382 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2383
2384 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
2385 &dev_priv->display.gmbus.mutex);
2386 }
2387
2388 intel_cdclk_set_cdclk(dev_priv, cdclk_config, pipe);
2389
2390 for_each_intel_dp(&dev_priv->drm, encoder) {
2391 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2392
2393 mutex_unlock(&intel_dp->aux.hw_mutex);
2394 }
2395 mutex_unlock(&dev_priv->display.gmbus.mutex);
2396
2397 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2398 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2399
2400 intel_psr_resume(intel_dp);
2401 }
2402
2403 intel_audio_cdclk_change_post(dev_priv);
2404
2405 if (drm_WARN(&dev_priv->drm,
2406 intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config),
2407 "cdclk state doesn't match!\n")) {
2408 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "[hw state]");
2409 intel_cdclk_dump_config(dev_priv, cdclk_config, "[sw state]");
2410 }
2411 }
2412
2413 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state)
2414 {
2415 struct drm_i915_private *i915 = to_i915(state->base.dev);
2416 const struct intel_cdclk_state *old_cdclk_state =
2417 intel_atomic_get_old_cdclk_state(state);
2418 const struct intel_cdclk_state *new_cdclk_state =
2419 intel_atomic_get_new_cdclk_state(state);
2420 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2421 bool change_cdclk, update_pipe_count;
2422
2423 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2424 &new_cdclk_state->actual) &&
2425 new_cdclk_state->active_pipes ==
2426 old_cdclk_state->active_pipes)
2427 return;
2428
2429 /* According to "Sequence Before Frequency Change", voltage level set to 0x3 */
2430 voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX;
2431
2432 change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2433 update_pipe_count = hweight8(new_cdclk_state->active_pipes) >
2434 hweight8(old_cdclk_state->active_pipes);
2435
2436 /*
2437 * According to "Sequence Before Frequency Change",
2438 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK,
2439 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK,
2440 * which basically means we choose the maximum of old and new CDCLK, if we know both
2441 */
2442 if (change_cdclk)
2443 cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk);
2444
2445 /*
2446 * According to "Sequence For Pipe Count Change",
2447 * if pipe count is increasing, set bits 25:16 to upcoming pipe count
2448 * (power well is enabled)
2449 * no action if it is decreasing, before the change
2450 */
2451 if (update_pipe_count)
2452 num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2453
2454 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk,
2455 change_cdclk, update_pipe_count);
2456 }
2457
2458 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state)
2459 {
2460 struct drm_i915_private *i915 = to_i915(state->base.dev);
2461 const struct intel_cdclk_state *new_cdclk_state =
2462 intel_atomic_get_new_cdclk_state(state);
2463 const struct intel_cdclk_state *old_cdclk_state =
2464 intel_atomic_get_old_cdclk_state(state);
2465 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2466 bool update_cdclk, update_pipe_count;
2467
2468 /* According to "Sequence After Frequency Change", set voltage to used level */
2469 voltage_level = new_cdclk_state->actual.voltage_level;
2470
2471 update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2472 update_pipe_count = hweight8(new_cdclk_state->active_pipes) <
2473 hweight8(old_cdclk_state->active_pipes);
2474
2475 /*
2476 * According to "Sequence After Frequency Change",
2477 * set bits 25:16 to current CDCLK
2478 */
2479 if (update_cdclk)
2480 cdclk = new_cdclk_state->actual.cdclk;
2481
2482 /*
2483 * According to "Sequence For Pipe Count Change",
2484 * if pipe count is decreasing, set bits 25:16 to current pipe count,
2485 * after the change(power well is disabled)
2486 * no action if it is increasing, after the change
2487 */
2488 if (update_pipe_count)
2489 num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2490
2491 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk,
2492 update_cdclk, update_pipe_count);
2493 }
2494
2495 /**
2496 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
2497 * @state: intel atomic state
2498 *
2499 * Program the hardware before updating the HW plane state based on the
2500 * new CDCLK state, if necessary.
2501 */
2502 void
2503 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
2504 {
2505 struct drm_i915_private *i915 = to_i915(state->base.dev);
2506 const struct intel_cdclk_state *old_cdclk_state =
2507 intel_atomic_get_old_cdclk_state(state);
2508 const struct intel_cdclk_state *new_cdclk_state =
2509 intel_atomic_get_new_cdclk_state(state);
2510 enum pipe pipe = new_cdclk_state->pipe;
2511
2512 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2513 &new_cdclk_state->actual))
2514 return;
2515
2516 if (IS_DG2(i915))
2517 intel_cdclk_pcode_pre_notify(state);
2518
2519 if (pipe == INVALID_PIPE ||
2520 old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) {
2521 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed);
2522
2523 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe);
2524 }
2525 }
2526
2527 /**
2528 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
2529 * @state: intel atomic state
2530 *
2531 * Program the hardware after updating the HW plane state based on the
2532 * new CDCLK state, if necessary.
2533 */
2534 void
2535 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
2536 {
2537 struct drm_i915_private *i915 = to_i915(state->base.dev);
2538 const struct intel_cdclk_state *old_cdclk_state =
2539 intel_atomic_get_old_cdclk_state(state);
2540 const struct intel_cdclk_state *new_cdclk_state =
2541 intel_atomic_get_new_cdclk_state(state);
2542 enum pipe pipe = new_cdclk_state->pipe;
2543
2544 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2545 &new_cdclk_state->actual))
2546 return;
2547
2548 if (IS_DG2(i915))
2549 intel_cdclk_pcode_post_notify(state);
2550
2551 if (pipe != INVALID_PIPE &&
2552 old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) {
2553 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed);
2554
2555 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe);
2556 }
2557 }
2558
2559 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
2560 {
2561 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2562 int pixel_rate = crtc_state->pixel_rate;
2563
2564 if (DISPLAY_VER(dev_priv) >= 10)
2565 return DIV_ROUND_UP(pixel_rate, 2);
2566 else if (DISPLAY_VER(dev_priv) == 9 ||
2567 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2568 return pixel_rate;
2569 else if (IS_CHERRYVIEW(dev_priv))
2570 return DIV_ROUND_UP(pixel_rate * 100, 95);
2571 else if (crtc_state->double_wide)
2572 return DIV_ROUND_UP(pixel_rate * 100, 90 * 2);
2573 else
2574 return DIV_ROUND_UP(pixel_rate * 100, 90);
2575 }
2576
2577 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
2578 {
2579 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2580 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2581 struct intel_plane *plane;
2582 int min_cdclk = 0;
2583
2584 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
2585 min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk);
2586
2587 return min_cdclk;
2588 }
2589
2590 static int intel_vdsc_min_cdclk(const struct intel_crtc_state *crtc_state)
2591 {
2592 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2593 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2594 int num_vdsc_instances = intel_dsc_get_num_vdsc_instances(crtc_state);
2595 int min_cdclk = 0;
2596
2597 /*
2598 * When we decide to use only one VDSC engine, since
2599 * each VDSC operates with 1 ppc throughput, pixel clock
2600 * cannot be higher than the VDSC clock (cdclk)
2601 * If there 2 VDSC engines, then pixel clock can't be higher than
2602 * VDSC clock(cdclk) * 2 and so on.
2603 */
2604 min_cdclk = max_t(int, min_cdclk,
2605 DIV_ROUND_UP(crtc_state->pixel_rate, num_vdsc_instances));
2606
2607 if (crtc_state->bigjoiner_pipes) {
2608 int pixel_clock = intel_dp_mode_to_fec_clock(crtc_state->hw.adjusted_mode.clock);
2609
2610 /*
2611 * According to Bigjoiner bw check:
2612 * compressed_bpp <= PPC * CDCLK * Big joiner Interface bits / Pixel clock
2613 *
2614 * We have already computed compressed_bpp, so now compute the min CDCLK that
2615 * is required to support this compressed_bpp.
2616 *
2617 * => CDCLK >= compressed_bpp * Pixel clock / (PPC * Bigjoiner Interface bits)
2618 *
2619 * Since PPC = 2 with bigjoiner
2620 * => CDCLK >= compressed_bpp * Pixel clock / 2 * Bigjoiner Interface bits
2621 */
2622 int bigjoiner_interface_bits = DISPLAY_VER(i915) >= 14 ? 36 : 24;
2623 int min_cdclk_bj =
2624 (to_bpp_int_roundup(crtc_state->dsc.compressed_bpp_x16) *
2625 pixel_clock) / (2 * bigjoiner_interface_bits);
2626
2627 min_cdclk = max(min_cdclk, min_cdclk_bj);
2628 }
2629
2630 return min_cdclk;
2631 }
2632
2633 int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
2634 {
2635 struct drm_i915_private *dev_priv =
2636 to_i915(crtc_state->uapi.crtc->dev);
2637 int min_cdclk;
2638
2639 if (!crtc_state->hw.enable)
2640 return 0;
2641
2642 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
2643
2644 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
2645 if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state))
2646 min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95);
2647
2648 /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz,
2649 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else
2650 * there may be audio corruption or screen corruption." This cdclk
2651 * restriction for GLK is 316.8 MHz.
2652 */
2653 if (intel_crtc_has_dp_encoder(crtc_state) &&
2654 crtc_state->has_audio &&
2655 crtc_state->port_clock >= 540000 &&
2656 crtc_state->lane_count == 4) {
2657 if (DISPLAY_VER(dev_priv) == 10) {
2658 /* Display WA #1145: glk */
2659 min_cdclk = max(316800, min_cdclk);
2660 } else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) {
2661 /* Display WA #1144: skl,bxt */
2662 min_cdclk = max(432000, min_cdclk);
2663 }
2664 }
2665
2666 /*
2667 * According to BSpec, "The CD clock frequency must be at least twice
2668 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default.
2669 */
2670 if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9)
2671 min_cdclk = max(2 * 96000, min_cdclk);
2672
2673 /*
2674 * "For DP audio configuration, cdclk frequency shall be set to
2675 * meet the following requirements:
2676 * DP Link Frequency(MHz) | Cdclk frequency(MHz)
2677 * 270 | 320 or higher
2678 * 162 | 200 or higher"
2679 */
2680 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
2681 intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio)
2682 min_cdclk = max(crtc_state->port_clock, min_cdclk);
2683
2684 /*
2685 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower
2686 * than 320000KHz.
2687 */
2688 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2689 IS_VALLEYVIEW(dev_priv))
2690 min_cdclk = max(320000, min_cdclk);
2691
2692 /*
2693 * On Geminilake once the CDCLK gets as low as 79200
2694 * picture gets unstable, despite that values are
2695 * correct for DSI PLL and DE PLL.
2696 */
2697 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2698 IS_GEMINILAKE(dev_priv))
2699 min_cdclk = max(158400, min_cdclk);
2700
2701 /* Account for additional needs from the planes */
2702 min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk);
2703
2704 if (crtc_state->dsc.compression_enable)
2705 min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state));
2706
2707 /*
2708 * HACK. Currently for TGL/DG2 platforms we calculate
2709 * min_cdclk initially based on pixel_rate divided
2710 * by 2, accounting for also plane requirements,
2711 * however in some cases the lowest possible CDCLK
2712 * doesn't work and causing the underruns.
2713 * Explicitly stating here that this seems to be currently
2714 * rather a Hack, than final solution.
2715 */
2716 if (IS_TIGERLAKE(dev_priv) || IS_DG2(dev_priv)) {
2717 /*
2718 * Clamp to max_cdclk_freq in case pixel rate is higher,
2719 * in order not to break an 8K, but still leave W/A at place.
2720 */
2721 min_cdclk = max_t(int, min_cdclk,
2722 min_t(int, crtc_state->pixel_rate,
2723 dev_priv->display.cdclk.max_cdclk_freq));
2724 }
2725
2726 return min_cdclk;
2727 }
2728
2729 static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state)
2730 {
2731 struct intel_atomic_state *state = cdclk_state->base.state;
2732 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2733 const struct intel_bw_state *bw_state;
2734 struct intel_crtc *crtc;
2735 struct intel_crtc_state *crtc_state;
2736 int min_cdclk, i;
2737 enum pipe pipe;
2738
2739 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2740 int ret;
2741
2742 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
2743 if (min_cdclk < 0)
2744 return min_cdclk;
2745
2746 if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk)
2747 continue;
2748
2749 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
2750
2751 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2752 if (ret)
2753 return ret;
2754 }
2755
2756 bw_state = intel_atomic_get_new_bw_state(state);
2757 if (bw_state) {
2758 min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state);
2759
2760 if (cdclk_state->bw_min_cdclk != min_cdclk) {
2761 int ret;
2762
2763 cdclk_state->bw_min_cdclk = min_cdclk;
2764
2765 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2766 if (ret)
2767 return ret;
2768 }
2769 }
2770
2771 min_cdclk = max(cdclk_state->force_min_cdclk,
2772 cdclk_state->bw_min_cdclk);
2773 for_each_pipe(dev_priv, pipe)
2774 min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
2775
2776 /*
2777 * Avoid glk_force_audio_cdclk() causing excessive screen
2778 * blinking when multiple pipes are active by making sure
2779 * CDCLK frequency is always high enough for audio. With a
2780 * single active pipe we can always change CDCLK frequency
2781 * by changing the cd2x divider (see glk_cdclk_table[]) and
2782 * thus a full modeset won't be needed then.
2783 */
2784 if (IS_GEMINILAKE(dev_priv) && cdclk_state->active_pipes &&
2785 !is_power_of_2(cdclk_state->active_pipes))
2786 min_cdclk = max(2 * 96000, min_cdclk);
2787
2788 if (min_cdclk > dev_priv->display.cdclk.max_cdclk_freq) {
2789 drm_dbg_kms(&dev_priv->drm,
2790 "required cdclk (%d kHz) exceeds max (%d kHz)\n",
2791 min_cdclk, dev_priv->display.cdclk.max_cdclk_freq);
2792 return -EINVAL;
2793 }
2794
2795 return min_cdclk;
2796 }
2797
2798 /*
2799 * Account for port clock min voltage level requirements.
2800 * This only really does something on DISPLA_VER >= 11 but can be
2801 * called on earlier platforms as well.
2802 *
2803 * Note that this functions assumes that 0 is
2804 * the lowest voltage value, and higher values
2805 * correspond to increasingly higher voltages.
2806 *
2807 * Should that relationship no longer hold on
2808 * future platforms this code will need to be
2809 * adjusted.
2810 */
2811 static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state)
2812 {
2813 struct intel_atomic_state *state = cdclk_state->base.state;
2814 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2815 struct intel_crtc *crtc;
2816 struct intel_crtc_state *crtc_state;
2817 u8 min_voltage_level;
2818 int i;
2819 enum pipe pipe;
2820
2821 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2822 int ret;
2823
2824 if (crtc_state->hw.enable)
2825 min_voltage_level = crtc_state->min_voltage_level;
2826 else
2827 min_voltage_level = 0;
2828
2829 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
2830 continue;
2831
2832 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
2833
2834 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2835 if (ret)
2836 return ret;
2837 }
2838
2839 min_voltage_level = 0;
2840 for_each_pipe(dev_priv, pipe)
2841 min_voltage_level = max(cdclk_state->min_voltage_level[pipe],
2842 min_voltage_level);
2843
2844 return min_voltage_level;
2845 }
2846
2847 static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2848 {
2849 struct intel_atomic_state *state = cdclk_state->base.state;
2850 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2851 int min_cdclk, cdclk;
2852
2853 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2854 if (min_cdclk < 0)
2855 return min_cdclk;
2856
2857 cdclk = vlv_calc_cdclk(dev_priv, min_cdclk);
2858
2859 cdclk_state->logical.cdclk = cdclk;
2860 cdclk_state->logical.voltage_level =
2861 vlv_calc_voltage_level(dev_priv, cdclk);
2862
2863 if (!cdclk_state->active_pipes) {
2864 cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
2865
2866 cdclk_state->actual.cdclk = cdclk;
2867 cdclk_state->actual.voltage_level =
2868 vlv_calc_voltage_level(dev_priv, cdclk);
2869 } else {
2870 cdclk_state->actual = cdclk_state->logical;
2871 }
2872
2873 return 0;
2874 }
2875
2876 static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2877 {
2878 int min_cdclk, cdclk;
2879
2880 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2881 if (min_cdclk < 0)
2882 return min_cdclk;
2883
2884 cdclk = bdw_calc_cdclk(min_cdclk);
2885
2886 cdclk_state->logical.cdclk = cdclk;
2887 cdclk_state->logical.voltage_level =
2888 bdw_calc_voltage_level(cdclk);
2889
2890 if (!cdclk_state->active_pipes) {
2891 cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk);
2892
2893 cdclk_state->actual.cdclk = cdclk;
2894 cdclk_state->actual.voltage_level =
2895 bdw_calc_voltage_level(cdclk);
2896 } else {
2897 cdclk_state->actual = cdclk_state->logical;
2898 }
2899
2900 return 0;
2901 }
2902
2903 static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state)
2904 {
2905 struct intel_atomic_state *state = cdclk_state->base.state;
2906 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2907 struct intel_crtc *crtc;
2908 struct intel_crtc_state *crtc_state;
2909 int vco, i;
2910
2911 vco = cdclk_state->logical.vco;
2912 if (!vco)
2913 vco = dev_priv->skl_preferred_vco_freq;
2914
2915 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2916 if (!crtc_state->hw.enable)
2917 continue;
2918
2919 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2920 continue;
2921
2922 /*
2923 * DPLL0 VCO may need to be adjusted to get the correct
2924 * clock for eDP. This will affect cdclk as well.
2925 */
2926 switch (crtc_state->port_clock / 2) {
2927 case 108000:
2928 case 216000:
2929 vco = 8640000;
2930 break;
2931 default:
2932 vco = 8100000;
2933 break;
2934 }
2935 }
2936
2937 return vco;
2938 }
2939
2940 static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2941 {
2942 int min_cdclk, cdclk, vco;
2943
2944 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2945 if (min_cdclk < 0)
2946 return min_cdclk;
2947
2948 vco = skl_dpll0_vco(cdclk_state);
2949
2950 cdclk = skl_calc_cdclk(min_cdclk, vco);
2951
2952 cdclk_state->logical.vco = vco;
2953 cdclk_state->logical.cdclk = cdclk;
2954 cdclk_state->logical.voltage_level =
2955 skl_calc_voltage_level(cdclk);
2956
2957 if (!cdclk_state->active_pipes) {
2958 cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco);
2959
2960 cdclk_state->actual.vco = vco;
2961 cdclk_state->actual.cdclk = cdclk;
2962 cdclk_state->actual.voltage_level =
2963 skl_calc_voltage_level(cdclk);
2964 } else {
2965 cdclk_state->actual = cdclk_state->logical;
2966 }
2967
2968 return 0;
2969 }
2970
2971 static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2972 {
2973 struct intel_atomic_state *state = cdclk_state->base.state;
2974 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2975 int min_cdclk, min_voltage_level, cdclk, vco;
2976
2977 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2978 if (min_cdclk < 0)
2979 return min_cdclk;
2980
2981 min_voltage_level = bxt_compute_min_voltage_level(cdclk_state);
2982 if (min_voltage_level < 0)
2983 return min_voltage_level;
2984
2985 cdclk = bxt_calc_cdclk(dev_priv, min_cdclk);
2986 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2987
2988 cdclk_state->logical.vco = vco;
2989 cdclk_state->logical.cdclk = cdclk;
2990 cdclk_state->logical.voltage_level =
2991 max_t(int, min_voltage_level,
2992 intel_cdclk_calc_voltage_level(dev_priv, cdclk));
2993
2994 if (!cdclk_state->active_pipes) {
2995 cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
2996 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2997
2998 cdclk_state->actual.vco = vco;
2999 cdclk_state->actual.cdclk = cdclk;
3000 cdclk_state->actual.voltage_level =
3001 intel_cdclk_calc_voltage_level(dev_priv, cdclk);
3002 } else {
3003 cdclk_state->actual = cdclk_state->logical;
3004 }
3005
3006 return 0;
3007 }
3008
3009 static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
3010 {
3011 int min_cdclk;
3012
3013 /*
3014 * We can't change the cdclk frequency, but we still want to
3015 * check that the required minimum frequency doesn't exceed
3016 * the actual cdclk frequency.
3017 */
3018 min_cdclk = intel_compute_min_cdclk(cdclk_state);
3019 if (min_cdclk < 0)
3020 return min_cdclk;
3021
3022 return 0;
3023 }
3024
3025 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
3026 {
3027 struct intel_cdclk_state *cdclk_state;
3028
3029 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
3030 if (!cdclk_state)
3031 return NULL;
3032
3033 cdclk_state->pipe = INVALID_PIPE;
3034
3035 return &cdclk_state->base;
3036 }
3037
3038 static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
3039 struct intel_global_state *state)
3040 {
3041 kfree(state);
3042 }
3043
3044 static const struct intel_global_state_funcs intel_cdclk_funcs = {
3045 .atomic_duplicate_state = intel_cdclk_duplicate_state,
3046 .atomic_destroy_state = intel_cdclk_destroy_state,
3047 };
3048
3049 struct intel_cdclk_state *
3050 intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
3051 {
3052 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3053 struct intel_global_state *cdclk_state;
3054
3055 cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.cdclk.obj);
3056 if (IS_ERR(cdclk_state))
3057 return ERR_CAST(cdclk_state);
3058
3059 return to_intel_cdclk_state(cdclk_state);
3060 }
3061
3062 int intel_cdclk_atomic_check(struct intel_atomic_state *state,
3063 bool *need_cdclk_calc)
3064 {
3065 const struct intel_cdclk_state *old_cdclk_state;
3066 const struct intel_cdclk_state *new_cdclk_state;
3067 struct intel_plane_state __maybe_unused *plane_state;
3068 struct intel_plane *plane;
3069 int ret;
3070 int i;
3071
3072 /*
3073 * active_planes bitmask has been updated, and potentially affected
3074 * planes are part of the state. We can now compute the minimum cdclk
3075 * for each plane.
3076 */
3077 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
3078 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
3079 if (ret)
3080 return ret;
3081 }
3082
3083 ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc);
3084 if (ret)
3085 return ret;
3086
3087 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3088 new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
3089
3090 if (new_cdclk_state &&
3091 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
3092 *need_cdclk_calc = true;
3093
3094 return 0;
3095 }
3096
3097 int intel_cdclk_init(struct drm_i915_private *dev_priv)
3098 {
3099 struct intel_cdclk_state *cdclk_state;
3100
3101 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
3102 if (!cdclk_state)
3103 return -ENOMEM;
3104
3105 intel_atomic_global_obj_init(dev_priv, &dev_priv->display.cdclk.obj,
3106 &cdclk_state->base, &intel_cdclk_funcs);
3107
3108 return 0;
3109 }
3110
3111 static bool intel_cdclk_need_serialize(struct drm_i915_private *i915,
3112 const struct intel_cdclk_state *old_cdclk_state,
3113 const struct intel_cdclk_state *new_cdclk_state)
3114 {
3115 bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) !=
3116 hweight8(new_cdclk_state->active_pipes);
3117 bool cdclk_changed = intel_cdclk_changed(&old_cdclk_state->actual,
3118 &new_cdclk_state->actual);
3119 /*
3120 * We need to poke hw for gen >= 12, because we notify PCode if
3121 * pipe power well count changes.
3122 */
3123 return cdclk_changed || (IS_DG2(i915) && power_well_cnt_changed);
3124 }
3125
3126 int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
3127 {
3128 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3129 const struct intel_cdclk_state *old_cdclk_state;
3130 struct intel_cdclk_state *new_cdclk_state;
3131 enum pipe pipe = INVALID_PIPE;
3132 int ret;
3133
3134 new_cdclk_state = intel_atomic_get_cdclk_state(state);
3135 if (IS_ERR(new_cdclk_state))
3136 return PTR_ERR(new_cdclk_state);
3137
3138 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3139
3140 new_cdclk_state->active_pipes =
3141 intel_calc_active_pipes(state, old_cdclk_state->active_pipes);
3142
3143 ret = intel_cdclk_modeset_calc_cdclk(dev_priv, new_cdclk_state);
3144 if (ret)
3145 return ret;
3146
3147 if (intel_cdclk_need_serialize(dev_priv, old_cdclk_state, new_cdclk_state)) {
3148 /*
3149 * Also serialize commits across all crtcs
3150 * if the actual hw needs to be poked.
3151 */
3152 ret = intel_atomic_serialize_global_state(&new_cdclk_state->base);
3153 if (ret)
3154 return ret;
3155 } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes ||
3156 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk ||
3157 intel_cdclk_changed(&old_cdclk_state->logical,
3158 &new_cdclk_state->logical)) {
3159 ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
3160 if (ret)
3161 return ret;
3162 } else {
3163 return 0;
3164 }
3165
3166 if (is_power_of_2(new_cdclk_state->active_pipes) &&
3167 intel_cdclk_can_cd2x_update(dev_priv,
3168 &old_cdclk_state->actual,
3169 &new_cdclk_state->actual)) {
3170 struct intel_crtc *crtc;
3171 struct intel_crtc_state *crtc_state;
3172
3173 pipe = ilog2(new_cdclk_state->active_pipes);
3174 crtc = intel_crtc_for_pipe(dev_priv, pipe);
3175
3176 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
3177 if (IS_ERR(crtc_state))
3178 return PTR_ERR(crtc_state);
3179
3180 if (intel_crtc_needs_modeset(crtc_state))
3181 pipe = INVALID_PIPE;
3182 }
3183
3184 if (intel_cdclk_can_crawl_and_squash(dev_priv,
3185 &old_cdclk_state->actual,
3186 &new_cdclk_state->actual)) {
3187 drm_dbg_kms(&dev_priv->drm,
3188 "Can change cdclk via crawling and squashing\n");
3189 } else if (intel_cdclk_can_squash(dev_priv,
3190 &old_cdclk_state->actual,
3191 &new_cdclk_state->actual)) {
3192 drm_dbg_kms(&dev_priv->drm,
3193 "Can change cdclk via squashing\n");
3194 } else if (intel_cdclk_can_crawl(dev_priv,
3195 &old_cdclk_state->actual,
3196 &new_cdclk_state->actual)) {
3197 drm_dbg_kms(&dev_priv->drm,
3198 "Can change cdclk via crawling\n");
3199 } else if (pipe != INVALID_PIPE) {
3200 new_cdclk_state->pipe = pipe;
3201
3202 drm_dbg_kms(&dev_priv->drm,
3203 "Can change cdclk cd2x divider with pipe %c active\n",
3204 pipe_name(pipe));
3205 } else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual,
3206 &new_cdclk_state->actual)) {
3207 /* All pipes must be switched off while we change the cdclk. */
3208 ret = intel_modeset_all_pipes_late(state, "CDCLK change");
3209 if (ret)
3210 return ret;
3211
3212 drm_dbg_kms(&dev_priv->drm,
3213 "Modeset required for cdclk change\n");
3214 }
3215
3216 drm_dbg_kms(&dev_priv->drm,
3217 "New cdclk calculated to be logical %u kHz, actual %u kHz\n",
3218 new_cdclk_state->logical.cdclk,
3219 new_cdclk_state->actual.cdclk);
3220 drm_dbg_kms(&dev_priv->drm,
3221 "New voltage level calculated to be logical %u, actual %u\n",
3222 new_cdclk_state->logical.voltage_level,
3223 new_cdclk_state->actual.voltage_level);
3224
3225 return 0;
3226 }
3227
3228 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
3229 {
3230 int max_cdclk_freq = dev_priv->display.cdclk.max_cdclk_freq;
3231
3232 if (DISPLAY_VER(dev_priv) >= 10)
3233 return 2 * max_cdclk_freq;
3234 else if (DISPLAY_VER(dev_priv) == 9 ||
3235 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
3236 return max_cdclk_freq;
3237 else if (IS_CHERRYVIEW(dev_priv))
3238 return max_cdclk_freq*95/100;
3239 else if (DISPLAY_VER(dev_priv) < 4)
3240 return 2*max_cdclk_freq*90/100;
3241 else
3242 return max_cdclk_freq*90/100;
3243 }
3244
3245 /**
3246 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
3247 * @dev_priv: i915 device
3248 *
3249 * Determine the maximum CDCLK frequency the platform supports, and also
3250 * derive the maximum dot clock frequency the maximum CDCLK frequency
3251 * allows.
3252 */
3253 void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
3254 {
3255 if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3256 if (dev_priv->display.cdclk.hw.ref == 24000)
3257 dev_priv->display.cdclk.max_cdclk_freq = 552000;
3258 else
3259 dev_priv->display.cdclk.max_cdclk_freq = 556800;
3260 } else if (DISPLAY_VER(dev_priv) >= 11) {
3261 if (dev_priv->display.cdclk.hw.ref == 24000)
3262 dev_priv->display.cdclk.max_cdclk_freq = 648000;
3263 else
3264 dev_priv->display.cdclk.max_cdclk_freq = 652800;
3265 } else if (IS_GEMINILAKE(dev_priv)) {
3266 dev_priv->display.cdclk.max_cdclk_freq = 316800;
3267 } else if (IS_BROXTON(dev_priv)) {
3268 dev_priv->display.cdclk.max_cdclk_freq = 624000;
3269 } else if (DISPLAY_VER(dev_priv) == 9) {
3270 u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
3271 int max_cdclk, vco;
3272
3273 vco = dev_priv->skl_preferred_vco_freq;
3274 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
3275
3276 /*
3277 * Use the lower (vco 8640) cdclk values as a
3278 * first guess. skl_calc_cdclk() will correct it
3279 * if the preferred vco is 8100 instead.
3280 */
3281 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
3282 max_cdclk = 617143;
3283 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
3284 max_cdclk = 540000;
3285 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
3286 max_cdclk = 432000;
3287 else
3288 max_cdclk = 308571;
3289
3290 dev_priv->display.cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
3291 } else if (IS_BROADWELL(dev_priv)) {
3292 /*
3293 * FIXME with extra cooling we can allow
3294 * 540 MHz for ULX and 675 Mhz for ULT.
3295 * How can we know if extra cooling is
3296 * available? PCI ID, VTB, something else?
3297 */
3298 if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
3299 dev_priv->display.cdclk.max_cdclk_freq = 450000;
3300 else if (IS_BROADWELL_ULX(dev_priv))
3301 dev_priv->display.cdclk.max_cdclk_freq = 450000;
3302 else if (IS_BROADWELL_ULT(dev_priv))
3303 dev_priv->display.cdclk.max_cdclk_freq = 540000;
3304 else
3305 dev_priv->display.cdclk.max_cdclk_freq = 675000;
3306 } else if (IS_CHERRYVIEW(dev_priv)) {
3307 dev_priv->display.cdclk.max_cdclk_freq = 320000;
3308 } else if (IS_VALLEYVIEW(dev_priv)) {
3309 dev_priv->display.cdclk.max_cdclk_freq = 400000;
3310 } else {
3311 /* otherwise assume cdclk is fixed */
3312 dev_priv->display.cdclk.max_cdclk_freq = dev_priv->display.cdclk.hw.cdclk;
3313 }
3314
3315 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
3316
3317 drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n",
3318 dev_priv->display.cdclk.max_cdclk_freq);
3319
3320 drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n",
3321 dev_priv->max_dotclk_freq);
3322 }
3323
3324 /**
3325 * intel_update_cdclk - Determine the current CDCLK frequency
3326 * @dev_priv: i915 device
3327 *
3328 * Determine the current CDCLK frequency.
3329 */
3330 void intel_update_cdclk(struct drm_i915_private *dev_priv)
3331 {
3332 intel_cdclk_get_cdclk(dev_priv, &dev_priv->display.cdclk.hw);
3333
3334 /*
3335 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
3336 * Programmng [sic] note: bit[9:2] should be programmed to the number
3337 * of cdclk that generates 4MHz reference clock freq which is used to
3338 * generate GMBus clock. This will vary with the cdclk freq.
3339 */
3340 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3341 intel_de_write(dev_priv, GMBUSFREQ_VLV,
3342 DIV_ROUND_UP(dev_priv->display.cdclk.hw.cdclk, 1000));
3343 }
3344
3345 static int dg1_rawclk(struct drm_i915_private *dev_priv)
3346 {
3347 /*
3348 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us
3349 * "Program Numerator=2, Denominator=4, Divider=37 decimal."
3350 */
3351 intel_de_write(dev_priv, PCH_RAWCLK_FREQ,
3352 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
3353
3354 return 38400;
3355 }
3356
3357 static int cnp_rawclk(struct drm_i915_private *dev_priv)
3358 {
3359 u32 rawclk;
3360 int divider, fraction;
3361
3362 if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
3363 /* 24 MHz */
3364 divider = 24000;
3365 fraction = 0;
3366 } else {
3367 /* 19.2 MHz */
3368 divider = 19000;
3369 fraction = 200;
3370 }
3371
3372 rawclk = CNP_RAWCLK_DIV(divider / 1000);
3373 if (fraction) {
3374 int numerator = 1;
3375
3376 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
3377 fraction) - 1);
3378 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3379 rawclk |= ICP_RAWCLK_NUM(numerator);
3380 }
3381
3382 intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk);
3383 return divider + fraction;
3384 }
3385
3386 static int pch_rawclk(struct drm_i915_private *dev_priv)
3387 {
3388 return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
3389 }
3390
3391 static int vlv_hrawclk(struct drm_i915_private *dev_priv)
3392 {
3393 /* RAWCLK_FREQ_VLV register updated from power well code */
3394 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
3395 CCK_DISPLAY_REF_CLOCK_CONTROL);
3396 }
3397
3398 static int i9xx_hrawclk(struct drm_i915_private *dev_priv)
3399 {
3400 u32 clkcfg;
3401
3402 /*
3403 * hrawclock is 1/4 the FSB frequency
3404 *
3405 * Note that this only reads the state of the FSB
3406 * straps, not the actual FSB frequency. Some BIOSen
3407 * let you configure each independently. Ideally we'd
3408 * read out the actual FSB frequency but sadly we
3409 * don't know which registers have that information,
3410 * and all the relevant docs have gone to bit heaven :(
3411 */
3412 clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK;
3413
3414 if (IS_MOBILE(dev_priv)) {
3415 switch (clkcfg) {
3416 case CLKCFG_FSB_400:
3417 return 100000;
3418 case CLKCFG_FSB_533:
3419 return 133333;
3420 case CLKCFG_FSB_667:
3421 return 166667;
3422 case CLKCFG_FSB_800:
3423 return 200000;
3424 case CLKCFG_FSB_1067:
3425 return 266667;
3426 case CLKCFG_FSB_1333:
3427 return 333333;
3428 default:
3429 MISSING_CASE(clkcfg);
3430 return 133333;
3431 }
3432 } else {
3433 switch (clkcfg) {
3434 case CLKCFG_FSB_400_ALT:
3435 return 100000;
3436 case CLKCFG_FSB_533:
3437 return 133333;
3438 case CLKCFG_FSB_667:
3439 return 166667;
3440 case CLKCFG_FSB_800:
3441 return 200000;
3442 case CLKCFG_FSB_1067_ALT:
3443 return 266667;
3444 case CLKCFG_FSB_1333_ALT:
3445 return 333333;
3446 case CLKCFG_FSB_1600_ALT:
3447 return 400000;
3448 default:
3449 return 133333;
3450 }
3451 }
3452 }
3453
3454 /**
3455 * intel_read_rawclk - Determine the current RAWCLK frequency
3456 * @dev_priv: i915 device
3457 *
3458 * Determine the current RAWCLK frequency. RAWCLK is a fixed
3459 * frequency clock so this needs to done only once.
3460 */
3461 u32 intel_read_rawclk(struct drm_i915_private *dev_priv)
3462 {
3463 u32 freq;
3464
3465 if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTL)
3466 /*
3467 * MTL always uses a 38.4 MHz rawclk. The bspec tells us
3468 * "RAWCLK_FREQ defaults to the values for 38.4 and does
3469 * not need to be programmed."
3470 */
3471 freq = 38400;
3472 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
3473 freq = dg1_rawclk(dev_priv);
3474 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3475 freq = cnp_rawclk(dev_priv);
3476 else if (HAS_PCH_SPLIT(dev_priv))
3477 freq = pch_rawclk(dev_priv);
3478 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3479 freq = vlv_hrawclk(dev_priv);
3480 else if (DISPLAY_VER(dev_priv) >= 3)
3481 freq = i9xx_hrawclk(dev_priv);
3482 else
3483 /* no rawclk on other platforms, or no need to know it */
3484 return 0;
3485
3486 return freq;
3487 }
3488
3489 static int i915_cdclk_info_show(struct seq_file *m, void *unused)
3490 {
3491 struct drm_i915_private *i915 = m->private;
3492
3493 seq_printf(m, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk);
3494 seq_printf(m, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq);
3495 seq_printf(m, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq);
3496
3497 return 0;
3498 }
3499
3500 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info);
3501
3502 void intel_cdclk_debugfs_register(struct drm_i915_private *i915)
3503 {
3504 struct drm_minor *minor = i915->drm.primary;
3505
3506 debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root,
3507 i915, &i915_cdclk_info_fops);
3508 }
3509
3510 static const struct intel_cdclk_funcs mtl_cdclk_funcs = {
3511 .get_cdclk = bxt_get_cdclk,
3512 .set_cdclk = bxt_set_cdclk,
3513 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3514 .calc_voltage_level = rplu_calc_voltage_level,
3515 };
3516
3517 static const struct intel_cdclk_funcs rplu_cdclk_funcs = {
3518 .get_cdclk = bxt_get_cdclk,
3519 .set_cdclk = bxt_set_cdclk,
3520 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3521 .calc_voltage_level = rplu_calc_voltage_level,
3522 };
3523
3524 static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
3525 .get_cdclk = bxt_get_cdclk,
3526 .set_cdclk = bxt_set_cdclk,
3527 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3528 .calc_voltage_level = tgl_calc_voltage_level,
3529 };
3530
3531 static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
3532 .get_cdclk = bxt_get_cdclk,
3533 .set_cdclk = bxt_set_cdclk,
3534 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3535 .calc_voltage_level = ehl_calc_voltage_level,
3536 };
3537
3538 static const struct intel_cdclk_funcs icl_cdclk_funcs = {
3539 .get_cdclk = bxt_get_cdclk,
3540 .set_cdclk = bxt_set_cdclk,
3541 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3542 .calc_voltage_level = icl_calc_voltage_level,
3543 };
3544
3545 static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
3546 .get_cdclk = bxt_get_cdclk,
3547 .set_cdclk = bxt_set_cdclk,
3548 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3549 .calc_voltage_level = bxt_calc_voltage_level,
3550 };
3551
3552 static const struct intel_cdclk_funcs skl_cdclk_funcs = {
3553 .get_cdclk = skl_get_cdclk,
3554 .set_cdclk = skl_set_cdclk,
3555 .modeset_calc_cdclk = skl_modeset_calc_cdclk,
3556 };
3557
3558 static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
3559 .get_cdclk = bdw_get_cdclk,
3560 .set_cdclk = bdw_set_cdclk,
3561 .modeset_calc_cdclk = bdw_modeset_calc_cdclk,
3562 };
3563
3564 static const struct intel_cdclk_funcs chv_cdclk_funcs = {
3565 .get_cdclk = vlv_get_cdclk,
3566 .set_cdclk = chv_set_cdclk,
3567 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3568 };
3569
3570 static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
3571 .get_cdclk = vlv_get_cdclk,
3572 .set_cdclk = vlv_set_cdclk,
3573 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3574 };
3575
3576 static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
3577 .get_cdclk = hsw_get_cdclk,
3578 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3579 };
3580
3581 /* SNB, IVB, 965G, 945G */
3582 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
3583 .get_cdclk = fixed_400mhz_get_cdclk,
3584 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3585 };
3586
3587 static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
3588 .get_cdclk = fixed_450mhz_get_cdclk,
3589 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3590 };
3591
3592 static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
3593 .get_cdclk = gm45_get_cdclk,
3594 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3595 };
3596
3597 /* G45 uses G33 */
3598
3599 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
3600 .get_cdclk = i965gm_get_cdclk,
3601 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3602 };
3603
3604 /* i965G uses fixed 400 */
3605
3606 static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
3607 .get_cdclk = pnv_get_cdclk,
3608 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3609 };
3610
3611 static const struct intel_cdclk_funcs g33_cdclk_funcs = {
3612 .get_cdclk = g33_get_cdclk,
3613 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3614 };
3615
3616 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = {
3617 .get_cdclk = i945gm_get_cdclk,
3618 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3619 };
3620
3621 /* i945G uses fixed 400 */
3622
3623 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = {
3624 .get_cdclk = i915gm_get_cdclk,
3625 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3626 };
3627
3628 static const struct intel_cdclk_funcs i915g_cdclk_funcs = {
3629 .get_cdclk = fixed_333mhz_get_cdclk,
3630 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3631 };
3632
3633 static const struct intel_cdclk_funcs i865g_cdclk_funcs = {
3634 .get_cdclk = fixed_266mhz_get_cdclk,
3635 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3636 };
3637
3638 static const struct intel_cdclk_funcs i85x_cdclk_funcs = {
3639 .get_cdclk = i85x_get_cdclk,
3640 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3641 };
3642
3643 static const struct intel_cdclk_funcs i845g_cdclk_funcs = {
3644 .get_cdclk = fixed_200mhz_get_cdclk,
3645 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3646 };
3647
3648 static const struct intel_cdclk_funcs i830_cdclk_funcs = {
3649 .get_cdclk = fixed_133mhz_get_cdclk,
3650 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3651 };
3652
3653 /**
3654 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
3655 * @dev_priv: i915 device
3656 */
3657 void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv)
3658 {
3659 if (DISPLAY_VER(dev_priv) >= 20) {
3660 dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs;
3661 dev_priv->display.cdclk.table = lnl_cdclk_table;
3662 } else if (DISPLAY_VER(dev_priv) >= 14) {
3663 dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs;
3664 dev_priv->display.cdclk.table = mtl_cdclk_table;
3665 } else if (IS_DG2(dev_priv)) {
3666 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3667 dev_priv->display.cdclk.table = dg2_cdclk_table;
3668 } else if (IS_ALDERLAKE_P(dev_priv)) {
3669 /* Wa_22011320316:adl-p[a0] */
3670 if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
3671 dev_priv->display.cdclk.table = adlp_a_step_cdclk_table;
3672 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3673 } else if (IS_RAPTORLAKE_U(dev_priv)) {
3674 dev_priv->display.cdclk.table = rplu_cdclk_table;
3675 dev_priv->display.funcs.cdclk = &rplu_cdclk_funcs;
3676 } else {
3677 dev_priv->display.cdclk.table = adlp_cdclk_table;
3678 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3679 }
3680 } else if (IS_ROCKETLAKE(dev_priv)) {
3681 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3682 dev_priv->display.cdclk.table = rkl_cdclk_table;
3683 } else if (DISPLAY_VER(dev_priv) >= 12) {
3684 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3685 dev_priv->display.cdclk.table = icl_cdclk_table;
3686 } else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3687 dev_priv->display.funcs.cdclk = &ehl_cdclk_funcs;
3688 dev_priv->display.cdclk.table = icl_cdclk_table;
3689 } else if (DISPLAY_VER(dev_priv) >= 11) {
3690 dev_priv->display.funcs.cdclk = &icl_cdclk_funcs;
3691 dev_priv->display.cdclk.table = icl_cdclk_table;
3692 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
3693 dev_priv->display.funcs.cdclk = &bxt_cdclk_funcs;
3694 if (IS_GEMINILAKE(dev_priv))
3695 dev_priv->display.cdclk.table = glk_cdclk_table;
3696 else
3697 dev_priv->display.cdclk.table = bxt_cdclk_table;
3698 } else if (DISPLAY_VER(dev_priv) == 9) {
3699 dev_priv->display.funcs.cdclk = &skl_cdclk_funcs;
3700 } else if (IS_BROADWELL(dev_priv)) {
3701 dev_priv->display.funcs.cdclk = &bdw_cdclk_funcs;
3702 } else if (IS_HASWELL(dev_priv)) {
3703 dev_priv->display.funcs.cdclk = &hsw_cdclk_funcs;
3704 } else if (IS_CHERRYVIEW(dev_priv)) {
3705 dev_priv->display.funcs.cdclk = &chv_cdclk_funcs;
3706 } else if (IS_VALLEYVIEW(dev_priv)) {
3707 dev_priv->display.funcs.cdclk = &vlv_cdclk_funcs;
3708 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
3709 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3710 } else if (IS_IRONLAKE(dev_priv)) {
3711 dev_priv->display.funcs.cdclk = &ilk_cdclk_funcs;
3712 } else if (IS_GM45(dev_priv)) {
3713 dev_priv->display.funcs.cdclk = &gm45_cdclk_funcs;
3714 } else if (IS_G45(dev_priv)) {
3715 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3716 } else if (IS_I965GM(dev_priv)) {
3717 dev_priv->display.funcs.cdclk = &i965gm_cdclk_funcs;
3718 } else if (IS_I965G(dev_priv)) {
3719 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3720 } else if (IS_PINEVIEW(dev_priv)) {
3721 dev_priv->display.funcs.cdclk = &pnv_cdclk_funcs;
3722 } else if (IS_G33(dev_priv)) {
3723 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3724 } else if (IS_I945GM(dev_priv)) {
3725 dev_priv->display.funcs.cdclk = &i945gm_cdclk_funcs;
3726 } else if (IS_I945G(dev_priv)) {
3727 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3728 } else if (IS_I915GM(dev_priv)) {
3729 dev_priv->display.funcs.cdclk = &i915gm_cdclk_funcs;
3730 } else if (IS_I915G(dev_priv)) {
3731 dev_priv->display.funcs.cdclk = &i915g_cdclk_funcs;
3732 } else if (IS_I865G(dev_priv)) {
3733 dev_priv->display.funcs.cdclk = &i865g_cdclk_funcs;
3734 } else if (IS_I85X(dev_priv)) {
3735 dev_priv->display.funcs.cdclk = &i85x_cdclk_funcs;
3736 } else if (IS_I845G(dev_priv)) {
3737 dev_priv->display.funcs.cdclk = &i845g_cdclk_funcs;
3738 } else if (IS_I830(dev_priv)) {
3739 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3740 }
3741
3742 if (drm_WARN(&dev_priv->drm, !dev_priv->display.funcs.cdclk,
3743 "Unknown platform. Assuming i830\n"))
3744 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3745 }