]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/display/intel_dp.c
Merge tag 'drm-misc-next-2020-06-19' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/linux.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_types.h"
52 #include "intel_dp.h"
53 #include "intel_dp_link_training.h"
54 #include "intel_dp_mst.h"
55 #include "intel_dpio_phy.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_tc.h"
66 #include "intel_vdsc.h"
67
68 #define DP_DPRX_ESI_LEN 14
69
70 /* DP DSC throughput values used for slice count calculations KPixels/s */
71 #define DP_DSC_PEAK_PIXEL_RATE 2720000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
74
75 /* DP DSC FEC Overhead factor = 1/(0.972261) */
76 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261
77
78 /* Compliance test status bits */
79 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
80 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83
84 struct dp_link_dpll {
85 int clock;
86 struct dpll dpll;
87 };
88
89 static const struct dp_link_dpll g4x_dpll[] = {
90 { 162000,
91 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92 { 270000,
93 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
94 };
95
96 static const struct dp_link_dpll pch_dpll[] = {
97 { 162000,
98 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99 { 270000,
100 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
101 };
102
103 static const struct dp_link_dpll vlv_dpll[] = {
104 { 162000,
105 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106 { 270000,
107 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
108 };
109
110 /*
111 * CHV supports eDP 1.4 that have more link rates.
112 * Below only provides the fixed rate but exclude variable rate.
113 */
114 static const struct dp_link_dpll chv_dpll[] = {
115 /*
116 * CHV requires to program fractional division for m2.
117 * m2 is stored in fixed point format using formula below
118 * (m2_int << 22) | m2_fraction
119 */
120 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
121 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122 { 270000, /* m2_int = 27, m2_fraction = 0 */
123 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
124 };
125
126 /* Constants for DP DSC configurations */
127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
128
129 /* With Single pipe configuration, HW is capable of supporting maximum
130 * of 4 slices per line.
131 */
132 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
133
134 /**
135 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136 * @intel_dp: DP struct
137 *
138 * If a CPU or PCH DP output is attached to an eDP panel, this function
139 * will return true, and false otherwise.
140 */
141 bool intel_dp_is_edp(struct intel_dp *intel_dp)
142 {
143 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
144
145 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
146 }
147
148 static void intel_dp_link_down(struct intel_encoder *encoder,
149 const struct intel_crtc_state *old_crtc_state);
150 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
153 const struct intel_crtc_state *crtc_state);
154 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155 enum pipe pipe);
156 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157
158 /* update sink rates from dpcd */
159 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
160 {
161 static const int dp_rates[] = {
162 162000, 270000, 540000, 810000
163 };
164 int i, max_rate;
165
166 if (drm_dp_has_quirk(&intel_dp->desc, 0,
167 DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
168 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
169 static const int quirk_rates[] = { 162000, 270000, 324000 };
170
171 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
172 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
173
174 return;
175 }
176
177 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178
179 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180 if (dp_rates[i] > max_rate)
181 break;
182 intel_dp->sink_rates[i] = dp_rates[i];
183 }
184
185 intel_dp->num_sink_rates = i;
186 }
187
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191 int i;
192
193 /* Limit results by potentially reduced max rate */
194 for (i = 0; i < len; i++) {
195 if (rates[len - i - 1] <= max_rate)
196 return len - i;
197 }
198
199 return 0;
200 }
201
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204 int max_rate)
205 {
206 return intel_dp_rate_limit_len(intel_dp->common_rates,
207 intel_dp->num_common_rates, max_rate);
208 }
209
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220 int source_max = intel_dig_port->max_lanes;
221 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223
224 return min3(source_max, sink_max, fia_max);
225 }
226
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229 return intel_dp->max_link_lane_count;
230 }
231
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236 return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243 * link rate that is generally expressed in Gbps. Since, 8 bits of data
244 * is transmitted every LS_Clk per lane, there is no need to account for
245 * the channel encoding that is done in the PHY layer here.
246 */
247
248 return max_link_clock * max_lanes;
249 }
250
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255 struct intel_encoder *encoder = &intel_dig_port->base;
256 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257 int max_dotclk = dev_priv->max_dotclk_freq;
258 int ds_max_dotclk;
259
260 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261
262 if (type != DP_DS_PORT_TYPE_VGA)
263 return max_dotclk;
264
265 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266 intel_dp->downstream_ports);
267
268 if (ds_max_dotclk != 0)
269 max_dotclk = min(max_dotclk, ds_max_dotclk);
270
271 return max_dotclk;
272 }
273
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278 enum port port = dig_port->base.port;
279
280 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281
282 /* Low voltage SKUs are limited to max of 5.4G */
283 if (voltage == VOLTAGE_INFO_0_85V)
284 return 540000;
285
286 /* For this SKU 8.1G is supported in all ports */
287 if (IS_CNL_WITH_PORT_F(dev_priv))
288 return 810000;
289
290 /* For other SKUs, max rate on ports A and D is 5.4G */
291 if (port == PORT_A || port == PORT_D)
292 return 540000;
293
294 return 810000;
295 }
296
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302
303 if (intel_phy_is_combo(dev_priv, phy) &&
304 !IS_ELKHARTLAKE(dev_priv) &&
305 !intel_dp_is_edp(intel_dp))
306 return 540000;
307
308 return 810000;
309 }
310
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314 /* The values must be in increasing order */
315 static const int cnl_rates[] = {
316 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317 };
318 static const int bxt_rates[] = {
319 162000, 216000, 243000, 270000, 324000, 432000, 540000
320 };
321 static const int skl_rates[] = {
322 162000, 216000, 270000, 324000, 432000, 540000
323 };
324 static const int hsw_rates[] = {
325 162000, 270000, 540000
326 };
327 static const int g4x_rates[] = {
328 162000, 270000
329 };
330 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331 struct intel_encoder *encoder = &dig_port->base;
332 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333 const int *source_rates;
334 int size, max_rate = 0, vbt_max_rate;
335
336 /* This should only be done once */
337 drm_WARN_ON(&dev_priv->drm,
338 intel_dp->source_rates || intel_dp->num_source_rates);
339
340 if (INTEL_GEN(dev_priv) >= 10) {
341 source_rates = cnl_rates;
342 size = ARRAY_SIZE(cnl_rates);
343 if (IS_GEN(dev_priv, 10))
344 max_rate = cnl_max_source_rate(intel_dp);
345 else
346 max_rate = icl_max_source_rate(intel_dp);
347 } else if (IS_GEN9_LP(dev_priv)) {
348 source_rates = bxt_rates;
349 size = ARRAY_SIZE(bxt_rates);
350 } else if (IS_GEN9_BC(dev_priv)) {
351 source_rates = skl_rates;
352 size = ARRAY_SIZE(skl_rates);
353 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354 IS_BROADWELL(dev_priv)) {
355 source_rates = hsw_rates;
356 size = ARRAY_SIZE(hsw_rates);
357 } else {
358 source_rates = g4x_rates;
359 size = ARRAY_SIZE(g4x_rates);
360 }
361
362 vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363 if (max_rate && vbt_max_rate)
364 max_rate = min(max_rate, vbt_max_rate);
365 else if (vbt_max_rate)
366 max_rate = vbt_max_rate;
367
368 if (max_rate)
369 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
370
371 intel_dp->source_rates = source_rates;
372 intel_dp->num_source_rates = size;
373 }
374
375 static int intersect_rates(const int *source_rates, int source_len,
376 const int *sink_rates, int sink_len,
377 int *common_rates)
378 {
379 int i = 0, j = 0, k = 0;
380
381 while (i < source_len && j < sink_len) {
382 if (source_rates[i] == sink_rates[j]) {
383 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
384 return k;
385 common_rates[k] = source_rates[i];
386 ++k;
387 ++i;
388 ++j;
389 } else if (source_rates[i] < sink_rates[j]) {
390 ++i;
391 } else {
392 ++j;
393 }
394 }
395 return k;
396 }
397
398 /* return index of rate in rates array, or -1 if not found */
399 static int intel_dp_rate_index(const int *rates, int len, int rate)
400 {
401 int i;
402
403 for (i = 0; i < len; i++)
404 if (rate == rates[i])
405 return i;
406
407 return -1;
408 }
409
410 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411 {
412 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
413
414 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
415 intel_dp->num_source_rates,
416 intel_dp->sink_rates,
417 intel_dp->num_sink_rates,
418 intel_dp->common_rates);
419
420 /* Paranoia, there should always be something in common. */
421 if (WARN_ON(intel_dp->num_common_rates == 0)) {
422 intel_dp->common_rates[0] = 162000;
423 intel_dp->num_common_rates = 1;
424 }
425 }
426
427 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
428 u8 lane_count)
429 {
430 /*
431 * FIXME: we need to synchronize the current link parameters with
432 * hardware readout. Currently fast link training doesn't work on
433 * boot-up.
434 */
435 if (link_rate == 0 ||
436 link_rate > intel_dp->max_link_rate)
437 return false;
438
439 if (lane_count == 0 ||
440 lane_count > intel_dp_max_lane_count(intel_dp))
441 return false;
442
443 return true;
444 }
445
446 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
447 int link_rate,
448 u8 lane_count)
449 {
450 const struct drm_display_mode *fixed_mode =
451 intel_dp->attached_connector->panel.fixed_mode;
452 int mode_rate, max_rate;
453
454 mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
455 max_rate = intel_dp_max_data_rate(link_rate, lane_count);
456 if (mode_rate > max_rate)
457 return false;
458
459 return true;
460 }
461
462 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
463 int link_rate, u8 lane_count)
464 {
465 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
466 int index;
467
468 index = intel_dp_rate_index(intel_dp->common_rates,
469 intel_dp->num_common_rates,
470 link_rate);
471 if (index > 0) {
472 if (intel_dp_is_edp(intel_dp) &&
473 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
474 intel_dp->common_rates[index - 1],
475 lane_count)) {
476 drm_dbg_kms(&i915->drm,
477 "Retrying Link training for eDP with same parameters\n");
478 return 0;
479 }
480 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
481 intel_dp->max_link_lane_count = lane_count;
482 } else if (lane_count > 1) {
483 if (intel_dp_is_edp(intel_dp) &&
484 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
485 intel_dp_max_common_rate(intel_dp),
486 lane_count >> 1)) {
487 drm_dbg_kms(&i915->drm,
488 "Retrying Link training for eDP with same parameters\n");
489 return 0;
490 }
491 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
492 intel_dp->max_link_lane_count = lane_count >> 1;
493 } else {
494 drm_err(&i915->drm, "Link Training Unsuccessful\n");
495 return -1;
496 }
497
498 return 0;
499 }
500
501 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
502 {
503 return div_u64(mul_u32_u32(mode_clock, 1000000U),
504 DP_DSC_FEC_OVERHEAD_FACTOR);
505 }
506
507 static int
508 small_joiner_ram_size_bits(struct drm_i915_private *i915)
509 {
510 if (INTEL_GEN(i915) >= 11)
511 return 7680 * 8;
512 else
513 return 6144 * 8;
514 }
515
516 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
517 u32 link_clock, u32 lane_count,
518 u32 mode_clock, u32 mode_hdisplay)
519 {
520 u32 bits_per_pixel, max_bpp_small_joiner_ram;
521 int i;
522
523 /*
524 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
525 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
526 * for SST -> TimeSlotsPerMTP is 1,
527 * for MST -> TimeSlotsPerMTP has to be calculated
528 */
529 bits_per_pixel = (link_clock * lane_count * 8) /
530 intel_dp_mode_to_fec_clock(mode_clock);
531 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
532
533 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
534 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
535 mode_hdisplay;
536 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
537 max_bpp_small_joiner_ram);
538
539 /*
540 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
541 * check, output bpp from small joiner RAM check)
542 */
543 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
544
545 /* Error out if the max bpp is less than smallest allowed valid bpp */
546 if (bits_per_pixel < valid_dsc_bpp[0]) {
547 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
548 bits_per_pixel, valid_dsc_bpp[0]);
549 return 0;
550 }
551
552 /* Find the nearest match in the array of known BPPs from VESA */
553 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
554 if (bits_per_pixel < valid_dsc_bpp[i + 1])
555 break;
556 }
557 bits_per_pixel = valid_dsc_bpp[i];
558
559 /*
560 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
561 * fractional part is 0
562 */
563 return bits_per_pixel << 4;
564 }
565
566 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
567 int mode_clock, int mode_hdisplay)
568 {
569 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
570 u8 min_slice_count, i;
571 int max_slice_width;
572
573 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
574 min_slice_count = DIV_ROUND_UP(mode_clock,
575 DP_DSC_MAX_ENC_THROUGHPUT_0);
576 else
577 min_slice_count = DIV_ROUND_UP(mode_clock,
578 DP_DSC_MAX_ENC_THROUGHPUT_1);
579
580 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
581 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
582 drm_dbg_kms(&i915->drm,
583 "Unsupported slice width %d by DP DSC Sink device\n",
584 max_slice_width);
585 return 0;
586 }
587 /* Also take into account max slice width */
588 min_slice_count = min_t(u8, min_slice_count,
589 DIV_ROUND_UP(mode_hdisplay,
590 max_slice_width));
591
592 /* Find the closest match to the valid slice count values */
593 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
594 if (valid_dsc_slicecount[i] >
595 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
596 false))
597 break;
598 if (min_slice_count <= valid_dsc_slicecount[i])
599 return valid_dsc_slicecount[i];
600 }
601
602 drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
603 min_slice_count);
604 return 0;
605 }
606
607 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
608 int hdisplay)
609 {
610 /*
611 * Older platforms don't like hdisplay==4096 with DP.
612 *
613 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
614 * and frame counter increment), but we don't get vblank interrupts,
615 * and the pipe underruns immediately. The link also doesn't seem
616 * to get trained properly.
617 *
618 * On CHV the vblank interrupts don't seem to disappear but
619 * otherwise the symptoms are similar.
620 *
621 * TODO: confirm the behaviour on HSW+
622 */
623 return hdisplay == 4096 && !HAS_DDI(dev_priv);
624 }
625
626 static enum drm_mode_status
627 intel_dp_mode_valid(struct drm_connector *connector,
628 struct drm_display_mode *mode)
629 {
630 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
631 struct intel_connector *intel_connector = to_intel_connector(connector);
632 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
633 struct drm_i915_private *dev_priv = to_i915(connector->dev);
634 int target_clock = mode->clock;
635 int max_rate, mode_rate, max_lanes, max_link_clock;
636 int max_dotclk;
637 u16 dsc_max_output_bpp = 0;
638 u8 dsc_slice_count = 0;
639
640 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
641 return MODE_NO_DBLESCAN;
642
643 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
644
645 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
646 if (mode->hdisplay > fixed_mode->hdisplay)
647 return MODE_PANEL;
648
649 if (mode->vdisplay > fixed_mode->vdisplay)
650 return MODE_PANEL;
651
652 target_clock = fixed_mode->clock;
653 }
654
655 max_link_clock = intel_dp_max_link_rate(intel_dp);
656 max_lanes = intel_dp_max_lane_count(intel_dp);
657
658 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
659 mode_rate = intel_dp_link_required(target_clock, 18);
660
661 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
662 return MODE_H_ILLEGAL;
663
664 /*
665 * Output bpp is stored in 6.4 format so right shift by 4 to get the
666 * integer value since we support only integer values of bpp.
667 */
668 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
669 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
670 if (intel_dp_is_edp(intel_dp)) {
671 dsc_max_output_bpp =
672 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
673 dsc_slice_count =
674 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
675 true);
676 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
677 dsc_max_output_bpp =
678 intel_dp_dsc_get_output_bpp(dev_priv,
679 max_link_clock,
680 max_lanes,
681 target_clock,
682 mode->hdisplay) >> 4;
683 dsc_slice_count =
684 intel_dp_dsc_get_slice_count(intel_dp,
685 target_clock,
686 mode->hdisplay);
687 }
688 }
689
690 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
691 target_clock > max_dotclk)
692 return MODE_CLOCK_HIGH;
693
694 if (mode->clock < 10000)
695 return MODE_CLOCK_LOW;
696
697 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
698 return MODE_H_ILLEGAL;
699
700 return intel_mode_valid_max_plane_size(dev_priv, mode);
701 }
702
703 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
704 {
705 int i;
706 u32 v = 0;
707
708 if (src_bytes > 4)
709 src_bytes = 4;
710 for (i = 0; i < src_bytes; i++)
711 v |= ((u32)src[i]) << ((3 - i) * 8);
712 return v;
713 }
714
715 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
716 {
717 int i;
718 if (dst_bytes > 4)
719 dst_bytes = 4;
720 for (i = 0; i < dst_bytes; i++)
721 dst[i] = src >> ((3-i) * 8);
722 }
723
724 static void
725 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
726 static void
727 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
728 bool force_disable_vdd);
729 static void
730 intel_dp_pps_init(struct intel_dp *intel_dp);
731
732 static intel_wakeref_t
733 pps_lock(struct intel_dp *intel_dp)
734 {
735 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736 intel_wakeref_t wakeref;
737
738 /*
739 * See intel_power_sequencer_reset() why we need
740 * a power domain reference here.
741 */
742 wakeref = intel_display_power_get(dev_priv,
743 intel_aux_power_domain(dp_to_dig_port(intel_dp)));
744
745 mutex_lock(&dev_priv->pps_mutex);
746
747 return wakeref;
748 }
749
750 static intel_wakeref_t
751 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
752 {
753 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754
755 mutex_unlock(&dev_priv->pps_mutex);
756 intel_display_power_put(dev_priv,
757 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
758 wakeref);
759 return 0;
760 }
761
762 #define with_pps_lock(dp, wf) \
763 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
764
765 static void
766 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
767 {
768 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
769 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
770 enum pipe pipe = intel_dp->pps_pipe;
771 bool pll_enabled, release_cl_override = false;
772 enum dpio_phy phy = DPIO_PHY(pipe);
773 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
774 u32 DP;
775
776 if (drm_WARN(&dev_priv->drm,
777 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
778 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
779 pipe_name(pipe), intel_dig_port->base.base.base.id,
780 intel_dig_port->base.base.name))
781 return;
782
783 drm_dbg_kms(&dev_priv->drm,
784 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
785 pipe_name(pipe), intel_dig_port->base.base.base.id,
786 intel_dig_port->base.base.name);
787
788 /* Preserve the BIOS-computed detected bit. This is
789 * supposed to be read-only.
790 */
791 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
792 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
793 DP |= DP_PORT_WIDTH(1);
794 DP |= DP_LINK_TRAIN_PAT_1;
795
796 if (IS_CHERRYVIEW(dev_priv))
797 DP |= DP_PIPE_SEL_CHV(pipe);
798 else
799 DP |= DP_PIPE_SEL(pipe);
800
801 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
802
803 /*
804 * The DPLL for the pipe must be enabled for this to work.
805 * So enable temporarily it if it's not already enabled.
806 */
807 if (!pll_enabled) {
808 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
809 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
810
811 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
812 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
813 drm_err(&dev_priv->drm,
814 "Failed to force on pll for pipe %c!\n",
815 pipe_name(pipe));
816 return;
817 }
818 }
819
820 /*
821 * Similar magic as in intel_dp_enable_port().
822 * We _must_ do this port enable + disable trick
823 * to make this power sequencer lock onto the port.
824 * Otherwise even VDD force bit won't work.
825 */
826 intel_de_write(dev_priv, intel_dp->output_reg, DP);
827 intel_de_posting_read(dev_priv, intel_dp->output_reg);
828
829 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
830 intel_de_posting_read(dev_priv, intel_dp->output_reg);
831
832 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
833 intel_de_posting_read(dev_priv, intel_dp->output_reg);
834
835 if (!pll_enabled) {
836 vlv_force_pll_off(dev_priv, pipe);
837
838 if (release_cl_override)
839 chv_phy_powergate_ch(dev_priv, phy, ch, false);
840 }
841 }
842
843 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
844 {
845 struct intel_encoder *encoder;
846 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
847
848 /*
849 * We don't have power sequencer currently.
850 * Pick one that's not used by other ports.
851 */
852 for_each_intel_dp(&dev_priv->drm, encoder) {
853 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
854
855 if (encoder->type == INTEL_OUTPUT_EDP) {
856 drm_WARN_ON(&dev_priv->drm,
857 intel_dp->active_pipe != INVALID_PIPE &&
858 intel_dp->active_pipe !=
859 intel_dp->pps_pipe);
860
861 if (intel_dp->pps_pipe != INVALID_PIPE)
862 pipes &= ~(1 << intel_dp->pps_pipe);
863 } else {
864 drm_WARN_ON(&dev_priv->drm,
865 intel_dp->pps_pipe != INVALID_PIPE);
866
867 if (intel_dp->active_pipe != INVALID_PIPE)
868 pipes &= ~(1 << intel_dp->active_pipe);
869 }
870 }
871
872 if (pipes == 0)
873 return INVALID_PIPE;
874
875 return ffs(pipes) - 1;
876 }
877
878 static enum pipe
879 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
880 {
881 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
882 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
883 enum pipe pipe;
884
885 lockdep_assert_held(&dev_priv->pps_mutex);
886
887 /* We should never land here with regular DP ports */
888 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
889
890 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
891 intel_dp->active_pipe != intel_dp->pps_pipe);
892
893 if (intel_dp->pps_pipe != INVALID_PIPE)
894 return intel_dp->pps_pipe;
895
896 pipe = vlv_find_free_pps(dev_priv);
897
898 /*
899 * Didn't find one. This should not happen since there
900 * are two power sequencers and up to two eDP ports.
901 */
902 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
903 pipe = PIPE_A;
904
905 vlv_steal_power_sequencer(dev_priv, pipe);
906 intel_dp->pps_pipe = pipe;
907
908 drm_dbg_kms(&dev_priv->drm,
909 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
910 pipe_name(intel_dp->pps_pipe),
911 intel_dig_port->base.base.base.id,
912 intel_dig_port->base.base.name);
913
914 /* init power sequencer on this pipe and port */
915 intel_dp_init_panel_power_sequencer(intel_dp);
916 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
917
918 /*
919 * Even vdd force doesn't work until we've made
920 * the power sequencer lock in on the port.
921 */
922 vlv_power_sequencer_kick(intel_dp);
923
924 return intel_dp->pps_pipe;
925 }
926
927 static int
928 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
929 {
930 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
931 int backlight_controller = dev_priv->vbt.backlight.controller;
932
933 lockdep_assert_held(&dev_priv->pps_mutex);
934
935 /* We should never land here with regular DP ports */
936 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
937
938 if (!intel_dp->pps_reset)
939 return backlight_controller;
940
941 intel_dp->pps_reset = false;
942
943 /*
944 * Only the HW needs to be reprogrammed, the SW state is fixed and
945 * has been setup during connector init.
946 */
947 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
948
949 return backlight_controller;
950 }
951
952 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
953 enum pipe pipe);
954
955 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
956 enum pipe pipe)
957 {
958 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
959 }
960
961 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
962 enum pipe pipe)
963 {
964 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
965 }
966
967 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
968 enum pipe pipe)
969 {
970 return true;
971 }
972
973 static enum pipe
974 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
975 enum port port,
976 vlv_pipe_check pipe_check)
977 {
978 enum pipe pipe;
979
980 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
981 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
982 PANEL_PORT_SELECT_MASK;
983
984 if (port_sel != PANEL_PORT_SELECT_VLV(port))
985 continue;
986
987 if (!pipe_check(dev_priv, pipe))
988 continue;
989
990 return pipe;
991 }
992
993 return INVALID_PIPE;
994 }
995
996 static void
997 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
998 {
999 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1000 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1001 enum port port = intel_dig_port->base.port;
1002
1003 lockdep_assert_held(&dev_priv->pps_mutex);
1004
1005 /* try to find a pipe with this port selected */
1006 /* first pick one where the panel is on */
1007 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1008 vlv_pipe_has_pp_on);
1009 /* didn't find one? pick one where vdd is on */
1010 if (intel_dp->pps_pipe == INVALID_PIPE)
1011 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1012 vlv_pipe_has_vdd_on);
1013 /* didn't find one? pick one with just the correct port */
1014 if (intel_dp->pps_pipe == INVALID_PIPE)
1015 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1016 vlv_pipe_any);
1017
1018 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1019 if (intel_dp->pps_pipe == INVALID_PIPE) {
1020 drm_dbg_kms(&dev_priv->drm,
1021 "no initial power sequencer for [ENCODER:%d:%s]\n",
1022 intel_dig_port->base.base.base.id,
1023 intel_dig_port->base.base.name);
1024 return;
1025 }
1026
1027 drm_dbg_kms(&dev_priv->drm,
1028 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1029 intel_dig_port->base.base.base.id,
1030 intel_dig_port->base.base.name,
1031 pipe_name(intel_dp->pps_pipe));
1032
1033 intel_dp_init_panel_power_sequencer(intel_dp);
1034 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1035 }
1036
1037 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1038 {
1039 struct intel_encoder *encoder;
1040
1041 if (drm_WARN_ON(&dev_priv->drm,
1042 !(IS_VALLEYVIEW(dev_priv) ||
1043 IS_CHERRYVIEW(dev_priv) ||
1044 IS_GEN9_LP(dev_priv))))
1045 return;
1046
1047 /*
1048 * We can't grab pps_mutex here due to deadlock with power_domain
1049 * mutex when power_domain functions are called while holding pps_mutex.
1050 * That also means that in order to use pps_pipe the code needs to
1051 * hold both a power domain reference and pps_mutex, and the power domain
1052 * reference get/put must be done while _not_ holding pps_mutex.
1053 * pps_{lock,unlock}() do these steps in the correct order, so one
1054 * should use them always.
1055 */
1056
1057 for_each_intel_dp(&dev_priv->drm, encoder) {
1058 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1059
1060 drm_WARN_ON(&dev_priv->drm,
1061 intel_dp->active_pipe != INVALID_PIPE);
1062
1063 if (encoder->type != INTEL_OUTPUT_EDP)
1064 continue;
1065
1066 if (IS_GEN9_LP(dev_priv))
1067 intel_dp->pps_reset = true;
1068 else
1069 intel_dp->pps_pipe = INVALID_PIPE;
1070 }
1071 }
1072
1073 struct pps_registers {
1074 i915_reg_t pp_ctrl;
1075 i915_reg_t pp_stat;
1076 i915_reg_t pp_on;
1077 i915_reg_t pp_off;
1078 i915_reg_t pp_div;
1079 };
1080
1081 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1082 struct pps_registers *regs)
1083 {
1084 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085 int pps_idx = 0;
1086
1087 memset(regs, 0, sizeof(*regs));
1088
1089 if (IS_GEN9_LP(dev_priv))
1090 pps_idx = bxt_power_sequencer_idx(intel_dp);
1091 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1092 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1093
1094 regs->pp_ctrl = PP_CONTROL(pps_idx);
1095 regs->pp_stat = PP_STATUS(pps_idx);
1096 regs->pp_on = PP_ON_DELAYS(pps_idx);
1097 regs->pp_off = PP_OFF_DELAYS(pps_idx);
1098
1099 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1100 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1101 regs->pp_div = INVALID_MMIO_REG;
1102 else
1103 regs->pp_div = PP_DIVISOR(pps_idx);
1104 }
1105
1106 static i915_reg_t
1107 _pp_ctrl_reg(struct intel_dp *intel_dp)
1108 {
1109 struct pps_registers regs;
1110
1111 intel_pps_get_registers(intel_dp, &regs);
1112
1113 return regs.pp_ctrl;
1114 }
1115
1116 static i915_reg_t
1117 _pp_stat_reg(struct intel_dp *intel_dp)
1118 {
1119 struct pps_registers regs;
1120
1121 intel_pps_get_registers(intel_dp, &regs);
1122
1123 return regs.pp_stat;
1124 }
1125
1126 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1127 This function only applicable when panel PM state is not to be tracked */
1128 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1129 void *unused)
1130 {
1131 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1132 edp_notifier);
1133 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134 intel_wakeref_t wakeref;
1135
1136 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1137 return 0;
1138
1139 with_pps_lock(intel_dp, wakeref) {
1140 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1141 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1142 i915_reg_t pp_ctrl_reg, pp_div_reg;
1143 u32 pp_div;
1144
1145 pp_ctrl_reg = PP_CONTROL(pipe);
1146 pp_div_reg = PP_DIVISOR(pipe);
1147 pp_div = intel_de_read(dev_priv, pp_div_reg);
1148 pp_div &= PP_REFERENCE_DIVIDER_MASK;
1149
1150 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1151 intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1152 intel_de_write(dev_priv, pp_ctrl_reg,
1153 PANEL_UNLOCK_REGS);
1154 msleep(intel_dp->panel_power_cycle_delay);
1155 }
1156 }
1157
1158 return 0;
1159 }
1160
1161 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1162 {
1163 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1164
1165 lockdep_assert_held(&dev_priv->pps_mutex);
1166
1167 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1168 intel_dp->pps_pipe == INVALID_PIPE)
1169 return false;
1170
1171 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1172 }
1173
1174 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1175 {
1176 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1177
1178 lockdep_assert_held(&dev_priv->pps_mutex);
1179
1180 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1181 intel_dp->pps_pipe == INVALID_PIPE)
1182 return false;
1183
1184 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1185 }
1186
1187 static void
1188 intel_dp_check_edp(struct intel_dp *intel_dp)
1189 {
1190 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1191
1192 if (!intel_dp_is_edp(intel_dp))
1193 return;
1194
1195 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1196 drm_WARN(&dev_priv->drm, 1,
1197 "eDP powered off while attempting aux channel communication.\n");
1198 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1199 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1200 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1201 }
1202 }
1203
1204 static u32
1205 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1206 {
1207 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1208 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1209 const unsigned int timeout_ms = 10;
1210 u32 status;
1211 bool done;
1212
1213 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1214 done = wait_event_timeout(i915->gmbus_wait_queue, C,
1215 msecs_to_jiffies_timeout(timeout_ms));
1216
1217 /* just trace the final value */
1218 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1219
1220 if (!done)
1221 drm_err(&i915->drm,
1222 "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1223 intel_dp->aux.name, timeout_ms, status);
1224 #undef C
1225
1226 return status;
1227 }
1228
1229 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1230 {
1231 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1232
1233 if (index)
1234 return 0;
1235
1236 /*
1237 * The clock divider is based off the hrawclk, and would like to run at
1238 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1239 */
1240 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1241 }
1242
1243 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1244 {
1245 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1246 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1247 u32 freq;
1248
1249 if (index)
1250 return 0;
1251
1252 /*
1253 * The clock divider is based off the cdclk or PCH rawclk, and would
1254 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1255 * divide by 2000 and use that
1256 */
1257 if (dig_port->aux_ch == AUX_CH_A)
1258 freq = dev_priv->cdclk.hw.cdclk;
1259 else
1260 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1261 return DIV_ROUND_CLOSEST(freq, 2000);
1262 }
1263
1264 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1265 {
1266 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1267 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1268
1269 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1270 /* Workaround for non-ULT HSW */
1271 switch (index) {
1272 case 0: return 63;
1273 case 1: return 72;
1274 default: return 0;
1275 }
1276 }
1277
1278 return ilk_get_aux_clock_divider(intel_dp, index);
1279 }
1280
1281 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1282 {
1283 /*
1284 * SKL doesn't need us to program the AUX clock divider (Hardware will
1285 * derive the clock from CDCLK automatically). We still implement the
1286 * get_aux_clock_divider vfunc to plug-in into the existing code.
1287 */
1288 return index ? 0 : 1;
1289 }
1290
1291 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1292 int send_bytes,
1293 u32 aux_clock_divider)
1294 {
1295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296 struct drm_i915_private *dev_priv =
1297 to_i915(intel_dig_port->base.base.dev);
1298 u32 precharge, timeout;
1299
1300 if (IS_GEN(dev_priv, 6))
1301 precharge = 3;
1302 else
1303 precharge = 5;
1304
1305 if (IS_BROADWELL(dev_priv))
1306 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1307 else
1308 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1309
1310 return DP_AUX_CH_CTL_SEND_BUSY |
1311 DP_AUX_CH_CTL_DONE |
1312 DP_AUX_CH_CTL_INTERRUPT |
1313 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1314 timeout |
1315 DP_AUX_CH_CTL_RECEIVE_ERROR |
1316 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1317 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1318 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1319 }
1320
1321 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1322 int send_bytes,
1323 u32 unused)
1324 {
1325 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1326 struct drm_i915_private *i915 =
1327 to_i915(intel_dig_port->base.base.dev);
1328 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329 u32 ret;
1330
1331 ret = DP_AUX_CH_CTL_SEND_BUSY |
1332 DP_AUX_CH_CTL_DONE |
1333 DP_AUX_CH_CTL_INTERRUPT |
1334 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1335 DP_AUX_CH_CTL_TIME_OUT_MAX |
1336 DP_AUX_CH_CTL_RECEIVE_ERROR |
1337 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1338 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1339 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1340
1341 if (intel_phy_is_tc(i915, phy) &&
1342 intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1343 ret |= DP_AUX_CH_CTL_TBT_IO;
1344
1345 return ret;
1346 }
1347
1348 static int
1349 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1350 const u8 *send, int send_bytes,
1351 u8 *recv, int recv_size,
1352 u32 aux_send_ctl_flags)
1353 {
1354 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1355 struct drm_i915_private *i915 =
1356 to_i915(intel_dig_port->base.base.dev);
1357 struct intel_uncore *uncore = &i915->uncore;
1358 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1359 bool is_tc_port = intel_phy_is_tc(i915, phy);
1360 i915_reg_t ch_ctl, ch_data[5];
1361 u32 aux_clock_divider;
1362 enum intel_display_power_domain aux_domain;
1363 intel_wakeref_t aux_wakeref;
1364 intel_wakeref_t pps_wakeref;
1365 int i, ret, recv_bytes;
1366 int try, clock = 0;
1367 u32 status;
1368 bool vdd;
1369
1370 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1371 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1372 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1373
1374 if (is_tc_port)
1375 intel_tc_port_lock(intel_dig_port);
1376
1377 aux_domain = intel_aux_power_domain(intel_dig_port);
1378
1379 aux_wakeref = intel_display_power_get(i915, aux_domain);
1380 pps_wakeref = pps_lock(intel_dp);
1381
1382 /*
1383 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1384 * In such cases we want to leave VDD enabled and it's up to upper layers
1385 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1386 * ourselves.
1387 */
1388 vdd = edp_panel_vdd_on(intel_dp);
1389
1390 /* dp aux is extremely sensitive to irq latency, hence request the
1391 * lowest possible wakeup latency and so prevent the cpu from going into
1392 * deep sleep states.
1393 */
1394 cpu_latency_qos_update_request(&i915->pm_qos, 0);
1395
1396 intel_dp_check_edp(intel_dp);
1397
1398 /* Try to wait for any previous AUX channel activity */
1399 for (try = 0; try < 3; try++) {
1400 status = intel_uncore_read_notrace(uncore, ch_ctl);
1401 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1402 break;
1403 msleep(1);
1404 }
1405 /* just trace the final value */
1406 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1407
1408 if (try == 3) {
1409 const u32 status = intel_uncore_read(uncore, ch_ctl);
1410
1411 if (status != intel_dp->aux_busy_last_status) {
1412 drm_WARN(&i915->drm, 1,
1413 "%s: not started (status 0x%08x)\n",
1414 intel_dp->aux.name, status);
1415 intel_dp->aux_busy_last_status = status;
1416 }
1417
1418 ret = -EBUSY;
1419 goto out;
1420 }
1421
1422 /* Only 5 data registers! */
1423 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1424 ret = -E2BIG;
1425 goto out;
1426 }
1427
1428 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1429 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1430 send_bytes,
1431 aux_clock_divider);
1432
1433 send_ctl |= aux_send_ctl_flags;
1434
1435 /* Must try at least 3 times according to DP spec */
1436 for (try = 0; try < 5; try++) {
1437 /* Load the send data into the aux channel data registers */
1438 for (i = 0; i < send_bytes; i += 4)
1439 intel_uncore_write(uncore,
1440 ch_data[i >> 2],
1441 intel_dp_pack_aux(send + i,
1442 send_bytes - i));
1443
1444 /* Send the command and wait for it to complete */
1445 intel_uncore_write(uncore, ch_ctl, send_ctl);
1446
1447 status = intel_dp_aux_wait_done(intel_dp);
1448
1449 /* Clear done status and any errors */
1450 intel_uncore_write(uncore,
1451 ch_ctl,
1452 status |
1453 DP_AUX_CH_CTL_DONE |
1454 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1455 DP_AUX_CH_CTL_RECEIVE_ERROR);
1456
1457 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1458 * 400us delay required for errors and timeouts
1459 * Timeout errors from the HW already meet this
1460 * requirement so skip to next iteration
1461 */
1462 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1463 continue;
1464
1465 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1466 usleep_range(400, 500);
1467 continue;
1468 }
1469 if (status & DP_AUX_CH_CTL_DONE)
1470 goto done;
1471 }
1472 }
1473
1474 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1475 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1476 intel_dp->aux.name, status);
1477 ret = -EBUSY;
1478 goto out;
1479 }
1480
1481 done:
1482 /* Check for timeout or receive error.
1483 * Timeouts occur when the sink is not connected
1484 */
1485 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1486 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1487 intel_dp->aux.name, status);
1488 ret = -EIO;
1489 goto out;
1490 }
1491
1492 /* Timeouts occur when the device isn't connected, so they're
1493 * "normal" -- don't fill the kernel log with these */
1494 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1495 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1496 intel_dp->aux.name, status);
1497 ret = -ETIMEDOUT;
1498 goto out;
1499 }
1500
1501 /* Unload any bytes sent back from the other side */
1502 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1503 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1504
1505 /*
1506 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1507 * We have no idea of what happened so we return -EBUSY so
1508 * drm layer takes care for the necessary retries.
1509 */
1510 if (recv_bytes == 0 || recv_bytes > 20) {
1511 drm_dbg_kms(&i915->drm,
1512 "%s: Forbidden recv_bytes = %d on aux transaction\n",
1513 intel_dp->aux.name, recv_bytes);
1514 ret = -EBUSY;
1515 goto out;
1516 }
1517
1518 if (recv_bytes > recv_size)
1519 recv_bytes = recv_size;
1520
1521 for (i = 0; i < recv_bytes; i += 4)
1522 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1523 recv + i, recv_bytes - i);
1524
1525 ret = recv_bytes;
1526 out:
1527 cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1528
1529 if (vdd)
1530 edp_panel_vdd_off(intel_dp, false);
1531
1532 pps_unlock(intel_dp, pps_wakeref);
1533 intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1534
1535 if (is_tc_port)
1536 intel_tc_port_unlock(intel_dig_port);
1537
1538 return ret;
1539 }
1540
1541 #define BARE_ADDRESS_SIZE 3
1542 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1543
1544 static void
1545 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1546 const struct drm_dp_aux_msg *msg)
1547 {
1548 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1549 txbuf[1] = (msg->address >> 8) & 0xff;
1550 txbuf[2] = msg->address & 0xff;
1551 txbuf[3] = msg->size - 1;
1552 }
1553
1554 static ssize_t
1555 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1556 {
1557 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1558 u8 txbuf[20], rxbuf[20];
1559 size_t txsize, rxsize;
1560 int ret;
1561
1562 intel_dp_aux_header(txbuf, msg);
1563
1564 switch (msg->request & ~DP_AUX_I2C_MOT) {
1565 case DP_AUX_NATIVE_WRITE:
1566 case DP_AUX_I2C_WRITE:
1567 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1568 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1569 rxsize = 2; /* 0 or 1 data bytes */
1570
1571 if (WARN_ON(txsize > 20))
1572 return -E2BIG;
1573
1574 WARN_ON(!msg->buffer != !msg->size);
1575
1576 if (msg->buffer)
1577 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1578
1579 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1580 rxbuf, rxsize, 0);
1581 if (ret > 0) {
1582 msg->reply = rxbuf[0] >> 4;
1583
1584 if (ret > 1) {
1585 /* Number of bytes written in a short write. */
1586 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1587 } else {
1588 /* Return payload size. */
1589 ret = msg->size;
1590 }
1591 }
1592 break;
1593
1594 case DP_AUX_NATIVE_READ:
1595 case DP_AUX_I2C_READ:
1596 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1597 rxsize = msg->size + 1;
1598
1599 if (WARN_ON(rxsize > 20))
1600 return -E2BIG;
1601
1602 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1603 rxbuf, rxsize, 0);
1604 if (ret > 0) {
1605 msg->reply = rxbuf[0] >> 4;
1606 /*
1607 * Assume happy day, and copy the data. The caller is
1608 * expected to check msg->reply before touching it.
1609 *
1610 * Return payload size.
1611 */
1612 ret--;
1613 memcpy(msg->buffer, rxbuf + 1, ret);
1614 }
1615 break;
1616
1617 default:
1618 ret = -EINVAL;
1619 break;
1620 }
1621
1622 return ret;
1623 }
1624
1625
1626 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1627 {
1628 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630 enum aux_ch aux_ch = dig_port->aux_ch;
1631
1632 switch (aux_ch) {
1633 case AUX_CH_B:
1634 case AUX_CH_C:
1635 case AUX_CH_D:
1636 return DP_AUX_CH_CTL(aux_ch);
1637 default:
1638 MISSING_CASE(aux_ch);
1639 return DP_AUX_CH_CTL(AUX_CH_B);
1640 }
1641 }
1642
1643 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647 enum aux_ch aux_ch = dig_port->aux_ch;
1648
1649 switch (aux_ch) {
1650 case AUX_CH_B:
1651 case AUX_CH_C:
1652 case AUX_CH_D:
1653 return DP_AUX_CH_DATA(aux_ch, index);
1654 default:
1655 MISSING_CASE(aux_ch);
1656 return DP_AUX_CH_DATA(AUX_CH_B, index);
1657 }
1658 }
1659
1660 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1661 {
1662 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1663 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1664 enum aux_ch aux_ch = dig_port->aux_ch;
1665
1666 switch (aux_ch) {
1667 case AUX_CH_A:
1668 return DP_AUX_CH_CTL(aux_ch);
1669 case AUX_CH_B:
1670 case AUX_CH_C:
1671 case AUX_CH_D:
1672 return PCH_DP_AUX_CH_CTL(aux_ch);
1673 default:
1674 MISSING_CASE(aux_ch);
1675 return DP_AUX_CH_CTL(AUX_CH_A);
1676 }
1677 }
1678
1679 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1680 {
1681 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1682 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1683 enum aux_ch aux_ch = dig_port->aux_ch;
1684
1685 switch (aux_ch) {
1686 case AUX_CH_A:
1687 return DP_AUX_CH_DATA(aux_ch, index);
1688 case AUX_CH_B:
1689 case AUX_CH_C:
1690 case AUX_CH_D:
1691 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1692 default:
1693 MISSING_CASE(aux_ch);
1694 return DP_AUX_CH_DATA(AUX_CH_A, index);
1695 }
1696 }
1697
1698 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1699 {
1700 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1701 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1702 enum aux_ch aux_ch = dig_port->aux_ch;
1703
1704 switch (aux_ch) {
1705 case AUX_CH_A:
1706 case AUX_CH_B:
1707 case AUX_CH_C:
1708 case AUX_CH_D:
1709 case AUX_CH_E:
1710 case AUX_CH_F:
1711 case AUX_CH_G:
1712 return DP_AUX_CH_CTL(aux_ch);
1713 default:
1714 MISSING_CASE(aux_ch);
1715 return DP_AUX_CH_CTL(AUX_CH_A);
1716 }
1717 }
1718
1719 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1720 {
1721 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1722 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1723 enum aux_ch aux_ch = dig_port->aux_ch;
1724
1725 switch (aux_ch) {
1726 case AUX_CH_A:
1727 case AUX_CH_B:
1728 case AUX_CH_C:
1729 case AUX_CH_D:
1730 case AUX_CH_E:
1731 case AUX_CH_F:
1732 case AUX_CH_G:
1733 return DP_AUX_CH_DATA(aux_ch, index);
1734 default:
1735 MISSING_CASE(aux_ch);
1736 return DP_AUX_CH_DATA(AUX_CH_A, index);
1737 }
1738 }
1739
1740 static void
1741 intel_dp_aux_fini(struct intel_dp *intel_dp)
1742 {
1743 kfree(intel_dp->aux.name);
1744 }
1745
1746 static void
1747 intel_dp_aux_init(struct intel_dp *intel_dp)
1748 {
1749 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1750 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1751 struct intel_encoder *encoder = &dig_port->base;
1752
1753 if (INTEL_GEN(dev_priv) >= 9) {
1754 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1755 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1756 } else if (HAS_PCH_SPLIT(dev_priv)) {
1757 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1758 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1759 } else {
1760 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1761 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1762 }
1763
1764 if (INTEL_GEN(dev_priv) >= 9)
1765 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1766 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1767 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1768 else if (HAS_PCH_SPLIT(dev_priv))
1769 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1770 else
1771 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1772
1773 if (INTEL_GEN(dev_priv) >= 9)
1774 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1775 else
1776 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1777
1778 drm_dp_aux_init(&intel_dp->aux);
1779
1780 /* Failure to allocate our preferred name is not critical */
1781 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1782 aux_ch_name(dig_port->aux_ch),
1783 port_name(encoder->port));
1784 intel_dp->aux.transfer = intel_dp_aux_transfer;
1785 }
1786
1787 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1788 {
1789 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1790
1791 return max_rate >= 540000;
1792 }
1793
1794 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1795 {
1796 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1797
1798 return max_rate >= 810000;
1799 }
1800
1801 static void
1802 intel_dp_set_clock(struct intel_encoder *encoder,
1803 struct intel_crtc_state *pipe_config)
1804 {
1805 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1806 const struct dp_link_dpll *divisor = NULL;
1807 int i, count = 0;
1808
1809 if (IS_G4X(dev_priv)) {
1810 divisor = g4x_dpll;
1811 count = ARRAY_SIZE(g4x_dpll);
1812 } else if (HAS_PCH_SPLIT(dev_priv)) {
1813 divisor = pch_dpll;
1814 count = ARRAY_SIZE(pch_dpll);
1815 } else if (IS_CHERRYVIEW(dev_priv)) {
1816 divisor = chv_dpll;
1817 count = ARRAY_SIZE(chv_dpll);
1818 } else if (IS_VALLEYVIEW(dev_priv)) {
1819 divisor = vlv_dpll;
1820 count = ARRAY_SIZE(vlv_dpll);
1821 }
1822
1823 if (divisor && count) {
1824 for (i = 0; i < count; i++) {
1825 if (pipe_config->port_clock == divisor[i].clock) {
1826 pipe_config->dpll = divisor[i].dpll;
1827 pipe_config->clock_set = true;
1828 break;
1829 }
1830 }
1831 }
1832 }
1833
1834 static void snprintf_int_array(char *str, size_t len,
1835 const int *array, int nelem)
1836 {
1837 int i;
1838
1839 str[0] = '\0';
1840
1841 for (i = 0; i < nelem; i++) {
1842 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1843 if (r >= len)
1844 return;
1845 str += r;
1846 len -= r;
1847 }
1848 }
1849
1850 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1851 {
1852 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1853 char str[128]; /* FIXME: too big for stack? */
1854
1855 if (!drm_debug_enabled(DRM_UT_KMS))
1856 return;
1857
1858 snprintf_int_array(str, sizeof(str),
1859 intel_dp->source_rates, intel_dp->num_source_rates);
1860 drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1861
1862 snprintf_int_array(str, sizeof(str),
1863 intel_dp->sink_rates, intel_dp->num_sink_rates);
1864 drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1865
1866 snprintf_int_array(str, sizeof(str),
1867 intel_dp->common_rates, intel_dp->num_common_rates);
1868 drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1869 }
1870
1871 int
1872 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1873 {
1874 int len;
1875
1876 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1877 if (WARN_ON(len <= 0))
1878 return 162000;
1879
1880 return intel_dp->common_rates[len - 1];
1881 }
1882
1883 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1884 {
1885 int i = intel_dp_rate_index(intel_dp->sink_rates,
1886 intel_dp->num_sink_rates, rate);
1887
1888 if (WARN_ON(i < 0))
1889 i = 0;
1890
1891 return i;
1892 }
1893
1894 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1895 u8 *link_bw, u8 *rate_select)
1896 {
1897 /* eDP 1.4 rate select method. */
1898 if (intel_dp->use_rate_select) {
1899 *link_bw = 0;
1900 *rate_select =
1901 intel_dp_rate_select(intel_dp, port_clock);
1902 } else {
1903 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1904 *rate_select = 0;
1905 }
1906 }
1907
1908 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1909 const struct intel_crtc_state *pipe_config)
1910 {
1911 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1912
1913 /* On TGL, FEC is supported on all Pipes */
1914 if (INTEL_GEN(dev_priv) >= 12)
1915 return true;
1916
1917 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1918 return true;
1919
1920 return false;
1921 }
1922
1923 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1924 const struct intel_crtc_state *pipe_config)
1925 {
1926 return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1927 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1928 }
1929
1930 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1931 const struct intel_crtc_state *crtc_state)
1932 {
1933 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1934
1935 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1936 return false;
1937
1938 return intel_dsc_source_support(encoder, crtc_state) &&
1939 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1940 }
1941
1942 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1943 struct intel_crtc_state *pipe_config)
1944 {
1945 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1946 struct intel_connector *intel_connector = intel_dp->attached_connector;
1947 int bpp, bpc;
1948
1949 bpp = pipe_config->pipe_bpp;
1950 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1951
1952 if (bpc > 0)
1953 bpp = min(bpp, 3*bpc);
1954
1955 if (intel_dp_is_edp(intel_dp)) {
1956 /* Get bpp from vbt only for panels that dont have bpp in edid */
1957 if (intel_connector->base.display_info.bpc == 0 &&
1958 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1959 drm_dbg_kms(&dev_priv->drm,
1960 "clamping bpp for eDP panel to BIOS-provided %i\n",
1961 dev_priv->vbt.edp.bpp);
1962 bpp = dev_priv->vbt.edp.bpp;
1963 }
1964 }
1965
1966 return bpp;
1967 }
1968
1969 /* Adjust link config limits based on compliance test requests. */
1970 void
1971 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1972 struct intel_crtc_state *pipe_config,
1973 struct link_config_limits *limits)
1974 {
1975 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1976
1977 /* For DP Compliance we override the computed bpp for the pipe */
1978 if (intel_dp->compliance.test_data.bpc != 0) {
1979 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1980
1981 limits->min_bpp = limits->max_bpp = bpp;
1982 pipe_config->dither_force_disable = bpp == 6 * 3;
1983
1984 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1985 }
1986
1987 /* Use values requested by Compliance Test Request */
1988 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1989 int index;
1990
1991 /* Validate the compliance test data since max values
1992 * might have changed due to link train fallback.
1993 */
1994 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1995 intel_dp->compliance.test_lane_count)) {
1996 index = intel_dp_rate_index(intel_dp->common_rates,
1997 intel_dp->num_common_rates,
1998 intel_dp->compliance.test_link_rate);
1999 if (index >= 0)
2000 limits->min_clock = limits->max_clock = index;
2001 limits->min_lane_count = limits->max_lane_count =
2002 intel_dp->compliance.test_lane_count;
2003 }
2004 }
2005 }
2006
2007 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2008 {
2009 /*
2010 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2011 * format of the number of bytes per pixel will be half the number
2012 * of bytes of RGB pixel.
2013 */
2014 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2015 bpp /= 2;
2016
2017 return bpp;
2018 }
2019
2020 /* Optimize link config in order: max bpp, min clock, min lanes */
2021 static int
2022 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2023 struct intel_crtc_state *pipe_config,
2024 const struct link_config_limits *limits)
2025 {
2026 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2027 int bpp, clock, lane_count;
2028 int mode_rate, link_clock, link_avail;
2029
2030 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2031 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2032
2033 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2034 output_bpp);
2035
2036 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2037 for (lane_count = limits->min_lane_count;
2038 lane_count <= limits->max_lane_count;
2039 lane_count <<= 1) {
2040 link_clock = intel_dp->common_rates[clock];
2041 link_avail = intel_dp_max_data_rate(link_clock,
2042 lane_count);
2043
2044 if (mode_rate <= link_avail) {
2045 pipe_config->lane_count = lane_count;
2046 pipe_config->pipe_bpp = bpp;
2047 pipe_config->port_clock = link_clock;
2048
2049 return 0;
2050 }
2051 }
2052 }
2053 }
2054
2055 return -EINVAL;
2056 }
2057
2058 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2059 {
2060 int i, num_bpc;
2061 u8 dsc_bpc[3] = {0};
2062
2063 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2064 dsc_bpc);
2065 for (i = 0; i < num_bpc; i++) {
2066 if (dsc_max_bpc >= dsc_bpc[i])
2067 return dsc_bpc[i] * 3;
2068 }
2069
2070 return 0;
2071 }
2072
2073 #define DSC_SUPPORTED_VERSION_MIN 1
2074
2075 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2076 struct intel_crtc_state *crtc_state)
2077 {
2078 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2079 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2080 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2081 u8 line_buf_depth;
2082 int ret;
2083
2084 ret = intel_dsc_compute_params(encoder, crtc_state);
2085 if (ret)
2086 return ret;
2087
2088 /*
2089 * Slice Height of 8 works for all currently available panels. So start
2090 * with that if pic_height is an integral multiple of 8. Eventually add
2091 * logic to try multiple slice heights.
2092 */
2093 if (vdsc_cfg->pic_height % 8 == 0)
2094 vdsc_cfg->slice_height = 8;
2095 else if (vdsc_cfg->pic_height % 4 == 0)
2096 vdsc_cfg->slice_height = 4;
2097 else
2098 vdsc_cfg->slice_height = 2;
2099
2100 vdsc_cfg->dsc_version_major =
2101 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2102 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2103 vdsc_cfg->dsc_version_minor =
2104 min(DSC_SUPPORTED_VERSION_MIN,
2105 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2106 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2107
2108 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2109 DP_DSC_RGB;
2110
2111 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2112 if (!line_buf_depth) {
2113 drm_dbg_kms(&i915->drm,
2114 "DSC Sink Line Buffer Depth invalid\n");
2115 return -EINVAL;
2116 }
2117
2118 if (vdsc_cfg->dsc_version_minor == 2)
2119 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2120 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2121 else
2122 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2123 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2124
2125 vdsc_cfg->block_pred_enable =
2126 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2127 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2128
2129 return drm_dsc_compute_rc_parameters(vdsc_cfg);
2130 }
2131
2132 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2133 struct intel_crtc_state *pipe_config,
2134 struct drm_connector_state *conn_state,
2135 struct link_config_limits *limits)
2136 {
2137 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2138 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2139 const struct drm_display_mode *adjusted_mode =
2140 &pipe_config->hw.adjusted_mode;
2141 u8 dsc_max_bpc;
2142 int pipe_bpp;
2143 int ret;
2144
2145 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2146 intel_dp_supports_fec(intel_dp, pipe_config);
2147
2148 if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2149 return -EINVAL;
2150
2151 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2152 if (INTEL_GEN(dev_priv) >= 12)
2153 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2154 else
2155 dsc_max_bpc = min_t(u8, 10,
2156 conn_state->max_requested_bpc);
2157
2158 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2159
2160 /* Min Input BPC for ICL+ is 8 */
2161 if (pipe_bpp < 8 * 3) {
2162 drm_dbg_kms(&dev_priv->drm,
2163 "No DSC support for less than 8bpc\n");
2164 return -EINVAL;
2165 }
2166
2167 /*
2168 * For now enable DSC for max bpp, max link rate, max lane count.
2169 * Optimize this later for the minimum possible link rate/lane count
2170 * with DSC enabled for the requested mode.
2171 */
2172 pipe_config->pipe_bpp = pipe_bpp;
2173 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2174 pipe_config->lane_count = limits->max_lane_count;
2175
2176 if (intel_dp_is_edp(intel_dp)) {
2177 pipe_config->dsc.compressed_bpp =
2178 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2179 pipe_config->pipe_bpp);
2180 pipe_config->dsc.slice_count =
2181 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2182 true);
2183 } else {
2184 u16 dsc_max_output_bpp;
2185 u8 dsc_dp_slice_count;
2186
2187 dsc_max_output_bpp =
2188 intel_dp_dsc_get_output_bpp(dev_priv,
2189 pipe_config->port_clock,
2190 pipe_config->lane_count,
2191 adjusted_mode->crtc_clock,
2192 adjusted_mode->crtc_hdisplay);
2193 dsc_dp_slice_count =
2194 intel_dp_dsc_get_slice_count(intel_dp,
2195 adjusted_mode->crtc_clock,
2196 adjusted_mode->crtc_hdisplay);
2197 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2198 drm_dbg_kms(&dev_priv->drm,
2199 "Compressed BPP/Slice Count not supported\n");
2200 return -EINVAL;
2201 }
2202 pipe_config->dsc.compressed_bpp = min_t(u16,
2203 dsc_max_output_bpp >> 4,
2204 pipe_config->pipe_bpp);
2205 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2206 }
2207 /*
2208 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2209 * is greater than the maximum Cdclock and if slice count is even
2210 * then we need to use 2 VDSC instances.
2211 */
2212 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2213 if (pipe_config->dsc.slice_count > 1) {
2214 pipe_config->dsc.dsc_split = true;
2215 } else {
2216 drm_dbg_kms(&dev_priv->drm,
2217 "Cannot split stream to use 2 VDSC instances\n");
2218 return -EINVAL;
2219 }
2220 }
2221
2222 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2223 if (ret < 0) {
2224 drm_dbg_kms(&dev_priv->drm,
2225 "Cannot compute valid DSC parameters for Input Bpp = %d "
2226 "Compressed BPP = %d\n",
2227 pipe_config->pipe_bpp,
2228 pipe_config->dsc.compressed_bpp);
2229 return ret;
2230 }
2231
2232 pipe_config->dsc.compression_enable = true;
2233 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2234 "Compressed Bpp = %d Slice Count = %d\n",
2235 pipe_config->pipe_bpp,
2236 pipe_config->dsc.compressed_bpp,
2237 pipe_config->dsc.slice_count);
2238
2239 return 0;
2240 }
2241
2242 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2243 {
2244 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2245 return 6 * 3;
2246 else
2247 return 8 * 3;
2248 }
2249
2250 static int
2251 intel_dp_compute_link_config(struct intel_encoder *encoder,
2252 struct intel_crtc_state *pipe_config,
2253 struct drm_connector_state *conn_state)
2254 {
2255 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2256 const struct drm_display_mode *adjusted_mode =
2257 &pipe_config->hw.adjusted_mode;
2258 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2259 struct link_config_limits limits;
2260 int common_len;
2261 int ret;
2262
2263 common_len = intel_dp_common_len_rate_limit(intel_dp,
2264 intel_dp->max_link_rate);
2265
2266 /* No common link rates between source and sink */
2267 drm_WARN_ON(encoder->base.dev, common_len <= 0);
2268
2269 limits.min_clock = 0;
2270 limits.max_clock = common_len - 1;
2271
2272 limits.min_lane_count = 1;
2273 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2274
2275 limits.min_bpp = intel_dp_min_bpp(pipe_config);
2276 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2277
2278 if (intel_dp_is_edp(intel_dp)) {
2279 /*
2280 * Use the maximum clock and number of lanes the eDP panel
2281 * advertizes being capable of. The panels are generally
2282 * designed to support only a single clock and lane
2283 * configuration, and typically these values correspond to the
2284 * native resolution of the panel.
2285 */
2286 limits.min_lane_count = limits.max_lane_count;
2287 limits.min_clock = limits.max_clock;
2288 }
2289
2290 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2291
2292 drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2293 "max rate %d max bpp %d pixel clock %iKHz\n",
2294 limits.max_lane_count,
2295 intel_dp->common_rates[limits.max_clock],
2296 limits.max_bpp, adjusted_mode->crtc_clock);
2297
2298 /*
2299 * Optimize for slow and wide. This is the place to add alternative
2300 * optimization policy.
2301 */
2302 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2303
2304 /* enable compression if the mode doesn't fit available BW */
2305 drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2306 if (ret || intel_dp->force_dsc_en) {
2307 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2308 conn_state, &limits);
2309 if (ret < 0)
2310 return ret;
2311 }
2312
2313 if (pipe_config->dsc.compression_enable) {
2314 drm_dbg_kms(&i915->drm,
2315 "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2316 pipe_config->lane_count, pipe_config->port_clock,
2317 pipe_config->pipe_bpp,
2318 pipe_config->dsc.compressed_bpp);
2319
2320 drm_dbg_kms(&i915->drm,
2321 "DP link rate required %i available %i\n",
2322 intel_dp_link_required(adjusted_mode->crtc_clock,
2323 pipe_config->dsc.compressed_bpp),
2324 intel_dp_max_data_rate(pipe_config->port_clock,
2325 pipe_config->lane_count));
2326 } else {
2327 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2328 pipe_config->lane_count, pipe_config->port_clock,
2329 pipe_config->pipe_bpp);
2330
2331 drm_dbg_kms(&i915->drm,
2332 "DP link rate required %i available %i\n",
2333 intel_dp_link_required(adjusted_mode->crtc_clock,
2334 pipe_config->pipe_bpp),
2335 intel_dp_max_data_rate(pipe_config->port_clock,
2336 pipe_config->lane_count));
2337 }
2338 return 0;
2339 }
2340
2341 static int
2342 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2343 struct intel_crtc_state *crtc_state,
2344 const struct drm_connector_state *conn_state)
2345 {
2346 struct drm_connector *connector = conn_state->connector;
2347 const struct drm_display_info *info = &connector->display_info;
2348 const struct drm_display_mode *adjusted_mode =
2349 &crtc_state->hw.adjusted_mode;
2350
2351 if (!drm_mode_is_420_only(info, adjusted_mode) ||
2352 !intel_dp_get_colorimetry_status(intel_dp) ||
2353 !connector->ycbcr_420_allowed)
2354 return 0;
2355
2356 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2357
2358 return intel_pch_panel_fitting(crtc_state, conn_state);
2359 }
2360
2361 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2362 const struct drm_connector_state *conn_state)
2363 {
2364 const struct intel_digital_connector_state *intel_conn_state =
2365 to_intel_digital_connector_state(conn_state);
2366 const struct drm_display_mode *adjusted_mode =
2367 &crtc_state->hw.adjusted_mode;
2368
2369 /*
2370 * Our YCbCr output is always limited range.
2371 * crtc_state->limited_color_range only applies to RGB,
2372 * and it must never be set for YCbCr or we risk setting
2373 * some conflicting bits in PIPECONF which will mess up
2374 * the colors on the monitor.
2375 */
2376 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2377 return false;
2378
2379 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2380 /*
2381 * See:
2382 * CEA-861-E - 5.1 Default Encoding Parameters
2383 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2384 */
2385 return crtc_state->pipe_bpp != 18 &&
2386 drm_default_rgb_quant_range(adjusted_mode) ==
2387 HDMI_QUANTIZATION_RANGE_LIMITED;
2388 } else {
2389 return intel_conn_state->broadcast_rgb ==
2390 INTEL_BROADCAST_RGB_LIMITED;
2391 }
2392 }
2393
2394 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2395 enum port port)
2396 {
2397 if (IS_G4X(dev_priv))
2398 return false;
2399 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2400 return false;
2401
2402 return true;
2403 }
2404
2405 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2406 const struct drm_connector_state *conn_state,
2407 struct drm_dp_vsc_sdp *vsc)
2408 {
2409 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2410 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2411
2412 /*
2413 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2414 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2415 * Colorimetry Format indication.
2416 */
2417 vsc->revision = 0x5;
2418 vsc->length = 0x13;
2419
2420 /* DP 1.4a spec, Table 2-120 */
2421 switch (crtc_state->output_format) {
2422 case INTEL_OUTPUT_FORMAT_YCBCR444:
2423 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2424 break;
2425 case INTEL_OUTPUT_FORMAT_YCBCR420:
2426 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2427 break;
2428 case INTEL_OUTPUT_FORMAT_RGB:
2429 default:
2430 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2431 }
2432
2433 switch (conn_state->colorspace) {
2434 case DRM_MODE_COLORIMETRY_BT709_YCC:
2435 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2436 break;
2437 case DRM_MODE_COLORIMETRY_XVYCC_601:
2438 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2439 break;
2440 case DRM_MODE_COLORIMETRY_XVYCC_709:
2441 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2442 break;
2443 case DRM_MODE_COLORIMETRY_SYCC_601:
2444 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2445 break;
2446 case DRM_MODE_COLORIMETRY_OPYCC_601:
2447 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2448 break;
2449 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2450 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2451 break;
2452 case DRM_MODE_COLORIMETRY_BT2020_RGB:
2453 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2454 break;
2455 case DRM_MODE_COLORIMETRY_BT2020_YCC:
2456 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2457 break;
2458 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2459 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2460 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2461 break;
2462 default:
2463 /*
2464 * RGB->YCBCR color conversion uses the BT.709
2465 * color space.
2466 */
2467 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2468 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2469 else
2470 vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2471 break;
2472 }
2473
2474 vsc->bpc = crtc_state->pipe_bpp / 3;
2475
2476 /* only RGB pixelformat supports 6 bpc */
2477 drm_WARN_ON(&dev_priv->drm,
2478 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2479
2480 /* all YCbCr are always limited range */
2481 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2482 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2483 }
2484
2485 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2486 struct intel_crtc_state *crtc_state,
2487 const struct drm_connector_state *conn_state)
2488 {
2489 struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2490
2491 /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2492 if (crtc_state->has_psr)
2493 return;
2494
2495 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2496 return;
2497
2498 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2499 vsc->sdp_type = DP_SDP_VSC;
2500 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2501 &crtc_state->infoframes.vsc);
2502 }
2503
2504 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2505 const struct intel_crtc_state *crtc_state,
2506 const struct drm_connector_state *conn_state,
2507 struct drm_dp_vsc_sdp *vsc)
2508 {
2509 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2510
2511 vsc->sdp_type = DP_SDP_VSC;
2512
2513 if (dev_priv->psr.psr2_enabled) {
2514 if (dev_priv->psr.colorimetry_support &&
2515 intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2516 /* [PSR2, +Colorimetry] */
2517 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2518 vsc);
2519 } else {
2520 /*
2521 * [PSR2, -Colorimetry]
2522 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2523 * 3D stereo + PSR/PSR2 + Y-coordinate.
2524 */
2525 vsc->revision = 0x4;
2526 vsc->length = 0xe;
2527 }
2528 } else {
2529 /*
2530 * [PSR1]
2531 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2532 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2533 * higher).
2534 */
2535 vsc->revision = 0x2;
2536 vsc->length = 0x8;
2537 }
2538 }
2539
2540 static void
2541 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2542 struct intel_crtc_state *crtc_state,
2543 const struct drm_connector_state *conn_state)
2544 {
2545 int ret;
2546 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2547 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2548
2549 if (!conn_state->hdr_output_metadata)
2550 return;
2551
2552 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2553
2554 if (ret) {
2555 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2556 return;
2557 }
2558
2559 crtc_state->infoframes.enable |=
2560 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2561 }
2562
2563 int
2564 intel_dp_compute_config(struct intel_encoder *encoder,
2565 struct intel_crtc_state *pipe_config,
2566 struct drm_connector_state *conn_state)
2567 {
2568 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2569 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2570 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2571 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2572 enum port port = encoder->port;
2573 struct intel_connector *intel_connector = intel_dp->attached_connector;
2574 struct intel_digital_connector_state *intel_conn_state =
2575 to_intel_digital_connector_state(conn_state);
2576 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2577 DP_DPCD_QUIRK_CONSTANT_N);
2578 int ret = 0, output_bpp;
2579
2580 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2581 pipe_config->has_pch_encoder = true;
2582
2583 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2584
2585 if (lspcon->active)
2586 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2587 else
2588 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2589 conn_state);
2590 if (ret)
2591 return ret;
2592
2593 pipe_config->has_drrs = false;
2594 if (!intel_dp_port_has_audio(dev_priv, port))
2595 pipe_config->has_audio = false;
2596 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2597 pipe_config->has_audio = intel_dp->has_audio;
2598 else
2599 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2600
2601 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2602 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2603 adjusted_mode);
2604
2605 if (HAS_GMCH(dev_priv))
2606 ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2607 else
2608 ret = intel_pch_panel_fitting(pipe_config, conn_state);
2609 if (ret)
2610 return ret;
2611 }
2612
2613 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2614 return -EINVAL;
2615
2616 if (HAS_GMCH(dev_priv) &&
2617 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2618 return -EINVAL;
2619
2620 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2621 return -EINVAL;
2622
2623 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2624 return -EINVAL;
2625
2626 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2627 if (ret < 0)
2628 return ret;
2629
2630 pipe_config->limited_color_range =
2631 intel_dp_limited_color_range(pipe_config, conn_state);
2632
2633 if (pipe_config->dsc.compression_enable)
2634 output_bpp = pipe_config->dsc.compressed_bpp;
2635 else
2636 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2637
2638 intel_link_compute_m_n(output_bpp,
2639 pipe_config->lane_count,
2640 adjusted_mode->crtc_clock,
2641 pipe_config->port_clock,
2642 &pipe_config->dp_m_n,
2643 constant_n, pipe_config->fec_enable);
2644
2645 if (intel_connector->panel.downclock_mode != NULL &&
2646 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2647 pipe_config->has_drrs = true;
2648 intel_link_compute_m_n(output_bpp,
2649 pipe_config->lane_count,
2650 intel_connector->panel.downclock_mode->clock,
2651 pipe_config->port_clock,
2652 &pipe_config->dp_m2_n2,
2653 constant_n, pipe_config->fec_enable);
2654 }
2655
2656 if (!HAS_DDI(dev_priv))
2657 intel_dp_set_clock(encoder, pipe_config);
2658
2659 intel_psr_compute_config(intel_dp, pipe_config);
2660 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2661 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2662
2663 return 0;
2664 }
2665
2666 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2667 int link_rate, u8 lane_count,
2668 bool link_mst)
2669 {
2670 intel_dp->link_trained = false;
2671 intel_dp->link_rate = link_rate;
2672 intel_dp->lane_count = lane_count;
2673 intel_dp->link_mst = link_mst;
2674 }
2675
2676 static void intel_dp_prepare(struct intel_encoder *encoder,
2677 const struct intel_crtc_state *pipe_config)
2678 {
2679 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2680 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2681 enum port port = encoder->port;
2682 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2683 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2684
2685 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2686 pipe_config->lane_count,
2687 intel_crtc_has_type(pipe_config,
2688 INTEL_OUTPUT_DP_MST));
2689
2690 /*
2691 * There are four kinds of DP registers:
2692 *
2693 * IBX PCH
2694 * SNB CPU
2695 * IVB CPU
2696 * CPT PCH
2697 *
2698 * IBX PCH and CPU are the same for almost everything,
2699 * except that the CPU DP PLL is configured in this
2700 * register
2701 *
2702 * CPT PCH is quite different, having many bits moved
2703 * to the TRANS_DP_CTL register instead. That
2704 * configuration happens (oddly) in ilk_pch_enable
2705 */
2706
2707 /* Preserve the BIOS-computed detected bit. This is
2708 * supposed to be read-only.
2709 */
2710 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2711
2712 /* Handle DP bits in common between all three register formats */
2713 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2714 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2715
2716 /* Split out the IBX/CPU vs CPT settings */
2717
2718 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2719 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2720 intel_dp->DP |= DP_SYNC_HS_HIGH;
2721 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2722 intel_dp->DP |= DP_SYNC_VS_HIGH;
2723 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2724
2725 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2726 intel_dp->DP |= DP_ENHANCED_FRAMING;
2727
2728 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2729 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2730 u32 trans_dp;
2731
2732 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2733
2734 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2735 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2736 trans_dp |= TRANS_DP_ENH_FRAMING;
2737 else
2738 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2739 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2740 } else {
2741 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2742 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2743
2744 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2745 intel_dp->DP |= DP_SYNC_HS_HIGH;
2746 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2747 intel_dp->DP |= DP_SYNC_VS_HIGH;
2748 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2749
2750 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2751 intel_dp->DP |= DP_ENHANCED_FRAMING;
2752
2753 if (IS_CHERRYVIEW(dev_priv))
2754 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2755 else
2756 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2757 }
2758 }
2759
2760 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2761 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2762
2763 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2764 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2765
2766 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2767 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2768
2769 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2770
2771 static void wait_panel_status(struct intel_dp *intel_dp,
2772 u32 mask,
2773 u32 value)
2774 {
2775 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2776 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2777
2778 lockdep_assert_held(&dev_priv->pps_mutex);
2779
2780 intel_pps_verify_state(intel_dp);
2781
2782 pp_stat_reg = _pp_stat_reg(intel_dp);
2783 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2784
2785 drm_dbg_kms(&dev_priv->drm,
2786 "mask %08x value %08x status %08x control %08x\n",
2787 mask, value,
2788 intel_de_read(dev_priv, pp_stat_reg),
2789 intel_de_read(dev_priv, pp_ctrl_reg));
2790
2791 if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2792 mask, value, 5000))
2793 drm_err(&dev_priv->drm,
2794 "Panel status timeout: status %08x control %08x\n",
2795 intel_de_read(dev_priv, pp_stat_reg),
2796 intel_de_read(dev_priv, pp_ctrl_reg));
2797
2798 drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2799 }
2800
2801 static void wait_panel_on(struct intel_dp *intel_dp)
2802 {
2803 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2804
2805 drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2806 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2807 }
2808
2809 static void wait_panel_off(struct intel_dp *intel_dp)
2810 {
2811 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2812
2813 drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2814 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2815 }
2816
2817 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2818 {
2819 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2820 ktime_t panel_power_on_time;
2821 s64 panel_power_off_duration;
2822
2823 drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2824
2825 /* take the difference of currrent time and panel power off time
2826 * and then make panel wait for t11_t12 if needed. */
2827 panel_power_on_time = ktime_get_boottime();
2828 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2829
2830 /* When we disable the VDD override bit last we have to do the manual
2831 * wait. */
2832 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2833 wait_remaining_ms_from_jiffies(jiffies,
2834 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2835
2836 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2837 }
2838
2839 static void wait_backlight_on(struct intel_dp *intel_dp)
2840 {
2841 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2842 intel_dp->backlight_on_delay);
2843 }
2844
2845 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2846 {
2847 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2848 intel_dp->backlight_off_delay);
2849 }
2850
2851 /* Read the current pp_control value, unlocking the register if it
2852 * is locked
2853 */
2854
2855 static u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2856 {
2857 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2858 u32 control;
2859
2860 lockdep_assert_held(&dev_priv->pps_mutex);
2861
2862 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2863 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2864 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2865 control &= ~PANEL_UNLOCK_MASK;
2866 control |= PANEL_UNLOCK_REGS;
2867 }
2868 return control;
2869 }
2870
2871 /*
2872 * Must be paired with edp_panel_vdd_off().
2873 * Must hold pps_mutex around the whole on/off sequence.
2874 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2875 */
2876 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2877 {
2878 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2879 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2880 u32 pp;
2881 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2882 bool need_to_disable = !intel_dp->want_panel_vdd;
2883
2884 lockdep_assert_held(&dev_priv->pps_mutex);
2885
2886 if (!intel_dp_is_edp(intel_dp))
2887 return false;
2888
2889 cancel_delayed_work(&intel_dp->panel_vdd_work);
2890 intel_dp->want_panel_vdd = true;
2891
2892 if (edp_have_panel_vdd(intel_dp))
2893 return need_to_disable;
2894
2895 intel_display_power_get(dev_priv,
2896 intel_aux_power_domain(intel_dig_port));
2897
2898 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2899 intel_dig_port->base.base.base.id,
2900 intel_dig_port->base.base.name);
2901
2902 if (!edp_have_panel_power(intel_dp))
2903 wait_panel_power_cycle(intel_dp);
2904
2905 pp = ilk_get_pp_control(intel_dp);
2906 pp |= EDP_FORCE_VDD;
2907
2908 pp_stat_reg = _pp_stat_reg(intel_dp);
2909 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2910
2911 intel_de_write(dev_priv, pp_ctrl_reg, pp);
2912 intel_de_posting_read(dev_priv, pp_ctrl_reg);
2913 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2914 intel_de_read(dev_priv, pp_stat_reg),
2915 intel_de_read(dev_priv, pp_ctrl_reg));
2916 /*
2917 * If the panel wasn't on, delay before accessing aux channel
2918 */
2919 if (!edp_have_panel_power(intel_dp)) {
2920 drm_dbg_kms(&dev_priv->drm,
2921 "[ENCODER:%d:%s] panel power wasn't enabled\n",
2922 intel_dig_port->base.base.base.id,
2923 intel_dig_port->base.base.name);
2924 msleep(intel_dp->panel_power_up_delay);
2925 }
2926
2927 return need_to_disable;
2928 }
2929
2930 /*
2931 * Must be paired with intel_edp_panel_vdd_off() or
2932 * intel_edp_panel_off().
2933 * Nested calls to these functions are not allowed since
2934 * we drop the lock. Caller must use some higher level
2935 * locking to prevent nested calls from other threads.
2936 */
2937 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2938 {
2939 intel_wakeref_t wakeref;
2940 bool vdd;
2941
2942 if (!intel_dp_is_edp(intel_dp))
2943 return;
2944
2945 vdd = false;
2946 with_pps_lock(intel_dp, wakeref)
2947 vdd = edp_panel_vdd_on(intel_dp);
2948 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2949 dp_to_dig_port(intel_dp)->base.base.base.id,
2950 dp_to_dig_port(intel_dp)->base.base.name);
2951 }
2952
2953 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2954 {
2955 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2956 struct intel_digital_port *intel_dig_port =
2957 dp_to_dig_port(intel_dp);
2958 u32 pp;
2959 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2960
2961 lockdep_assert_held(&dev_priv->pps_mutex);
2962
2963 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2964
2965 if (!edp_have_panel_vdd(intel_dp))
2966 return;
2967
2968 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2969 intel_dig_port->base.base.base.id,
2970 intel_dig_port->base.base.name);
2971
2972 pp = ilk_get_pp_control(intel_dp);
2973 pp &= ~EDP_FORCE_VDD;
2974
2975 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2976 pp_stat_reg = _pp_stat_reg(intel_dp);
2977
2978 intel_de_write(dev_priv, pp_ctrl_reg, pp);
2979 intel_de_posting_read(dev_priv, pp_ctrl_reg);
2980
2981 /* Make sure sequencer is idle before allowing subsequent activity */
2982 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2983 intel_de_read(dev_priv, pp_stat_reg),
2984 intel_de_read(dev_priv, pp_ctrl_reg));
2985
2986 if ((pp & PANEL_POWER_ON) == 0)
2987 intel_dp->panel_power_off_time = ktime_get_boottime();
2988
2989 intel_display_power_put_unchecked(dev_priv,
2990 intel_aux_power_domain(intel_dig_port));
2991 }
2992
2993 static void edp_panel_vdd_work(struct work_struct *__work)
2994 {
2995 struct intel_dp *intel_dp =
2996 container_of(to_delayed_work(__work),
2997 struct intel_dp, panel_vdd_work);
2998 intel_wakeref_t wakeref;
2999
3000 with_pps_lock(intel_dp, wakeref) {
3001 if (!intel_dp->want_panel_vdd)
3002 edp_panel_vdd_off_sync(intel_dp);
3003 }
3004 }
3005
3006 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3007 {
3008 unsigned long delay;
3009
3010 /*
3011 * Queue the timer to fire a long time from now (relative to the power
3012 * down delay) to keep the panel power up across a sequence of
3013 * operations.
3014 */
3015 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3016 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3017 }
3018
3019 /*
3020 * Must be paired with edp_panel_vdd_on().
3021 * Must hold pps_mutex around the whole on/off sequence.
3022 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3023 */
3024 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3025 {
3026 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3027
3028 lockdep_assert_held(&dev_priv->pps_mutex);
3029
3030 if (!intel_dp_is_edp(intel_dp))
3031 return;
3032
3033 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3034 dp_to_dig_port(intel_dp)->base.base.base.id,
3035 dp_to_dig_port(intel_dp)->base.base.name);
3036
3037 intel_dp->want_panel_vdd = false;
3038
3039 if (sync)
3040 edp_panel_vdd_off_sync(intel_dp);
3041 else
3042 edp_panel_vdd_schedule_off(intel_dp);
3043 }
3044
3045 static void edp_panel_on(struct intel_dp *intel_dp)
3046 {
3047 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3048 u32 pp;
3049 i915_reg_t pp_ctrl_reg;
3050
3051 lockdep_assert_held(&dev_priv->pps_mutex);
3052
3053 if (!intel_dp_is_edp(intel_dp))
3054 return;
3055
3056 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3057 dp_to_dig_port(intel_dp)->base.base.base.id,
3058 dp_to_dig_port(intel_dp)->base.base.name);
3059
3060 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3061 "[ENCODER:%d:%s] panel power already on\n",
3062 dp_to_dig_port(intel_dp)->base.base.base.id,
3063 dp_to_dig_port(intel_dp)->base.base.name))
3064 return;
3065
3066 wait_panel_power_cycle(intel_dp);
3067
3068 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3069 pp = ilk_get_pp_control(intel_dp);
3070 if (IS_GEN(dev_priv, 5)) {
3071 /* ILK workaround: disable reset around power sequence */
3072 pp &= ~PANEL_POWER_RESET;
3073 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3074 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3075 }
3076
3077 pp |= PANEL_POWER_ON;
3078 if (!IS_GEN(dev_priv, 5))
3079 pp |= PANEL_POWER_RESET;
3080
3081 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3082 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3083
3084 wait_panel_on(intel_dp);
3085 intel_dp->last_power_on = jiffies;
3086
3087 if (IS_GEN(dev_priv, 5)) {
3088 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3089 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3090 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3091 }
3092 }
3093
3094 void intel_edp_panel_on(struct intel_dp *intel_dp)
3095 {
3096 intel_wakeref_t wakeref;
3097
3098 if (!intel_dp_is_edp(intel_dp))
3099 return;
3100
3101 with_pps_lock(intel_dp, wakeref)
3102 edp_panel_on(intel_dp);
3103 }
3104
3105
3106 static void edp_panel_off(struct intel_dp *intel_dp)
3107 {
3108 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3109 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3110 u32 pp;
3111 i915_reg_t pp_ctrl_reg;
3112
3113 lockdep_assert_held(&dev_priv->pps_mutex);
3114
3115 if (!intel_dp_is_edp(intel_dp))
3116 return;
3117
3118 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3119 dig_port->base.base.base.id, dig_port->base.base.name);
3120
3121 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3122 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3123 dig_port->base.base.base.id, dig_port->base.base.name);
3124
3125 pp = ilk_get_pp_control(intel_dp);
3126 /* We need to switch off panel power _and_ force vdd, for otherwise some
3127 * panels get very unhappy and cease to work. */
3128 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3129 EDP_BLC_ENABLE);
3130
3131 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3132
3133 intel_dp->want_panel_vdd = false;
3134
3135 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3136 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3137
3138 wait_panel_off(intel_dp);
3139 intel_dp->panel_power_off_time = ktime_get_boottime();
3140
3141 /* We got a reference when we enabled the VDD. */
3142 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3143 }
3144
3145 void intel_edp_panel_off(struct intel_dp *intel_dp)
3146 {
3147 intel_wakeref_t wakeref;
3148
3149 if (!intel_dp_is_edp(intel_dp))
3150 return;
3151
3152 with_pps_lock(intel_dp, wakeref)
3153 edp_panel_off(intel_dp);
3154 }
3155
3156 /* Enable backlight in the panel power control. */
3157 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3158 {
3159 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3160 intel_wakeref_t wakeref;
3161
3162 /*
3163 * If we enable the backlight right away following a panel power
3164 * on, we may see slight flicker as the panel syncs with the eDP
3165 * link. So delay a bit to make sure the image is solid before
3166 * allowing it to appear.
3167 */
3168 wait_backlight_on(intel_dp);
3169
3170 with_pps_lock(intel_dp, wakeref) {
3171 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3172 u32 pp;
3173
3174 pp = ilk_get_pp_control(intel_dp);
3175 pp |= EDP_BLC_ENABLE;
3176
3177 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3178 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3179 }
3180 }
3181
3182 /* Enable backlight PWM and backlight PP control. */
3183 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3184 const struct drm_connector_state *conn_state)
3185 {
3186 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3187 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3188
3189 if (!intel_dp_is_edp(intel_dp))
3190 return;
3191
3192 drm_dbg_kms(&i915->drm, "\n");
3193
3194 intel_panel_enable_backlight(crtc_state, conn_state);
3195 _intel_edp_backlight_on(intel_dp);
3196 }
3197
3198 /* Disable backlight in the panel power control. */
3199 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3200 {
3201 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3202 intel_wakeref_t wakeref;
3203
3204 if (!intel_dp_is_edp(intel_dp))
3205 return;
3206
3207 with_pps_lock(intel_dp, wakeref) {
3208 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3209 u32 pp;
3210
3211 pp = ilk_get_pp_control(intel_dp);
3212 pp &= ~EDP_BLC_ENABLE;
3213
3214 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3215 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3216 }
3217
3218 intel_dp->last_backlight_off = jiffies;
3219 edp_wait_backlight_off(intel_dp);
3220 }
3221
3222 /* Disable backlight PP control and backlight PWM. */
3223 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3224 {
3225 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3226 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3227
3228 if (!intel_dp_is_edp(intel_dp))
3229 return;
3230
3231 drm_dbg_kms(&i915->drm, "\n");
3232
3233 _intel_edp_backlight_off(intel_dp);
3234 intel_panel_disable_backlight(old_conn_state);
3235 }
3236
3237 /*
3238 * Hook for controlling the panel power control backlight through the bl_power
3239 * sysfs attribute. Take care to handle multiple calls.
3240 */
3241 static void intel_edp_backlight_power(struct intel_connector *connector,
3242 bool enable)
3243 {
3244 struct drm_i915_private *i915 = to_i915(connector->base.dev);
3245 struct intel_dp *intel_dp = intel_attached_dp(connector);
3246 intel_wakeref_t wakeref;
3247 bool is_enabled;
3248
3249 is_enabled = false;
3250 with_pps_lock(intel_dp, wakeref)
3251 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3252 if (is_enabled == enable)
3253 return;
3254
3255 drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3256 enable ? "enable" : "disable");
3257
3258 if (enable)
3259 _intel_edp_backlight_on(intel_dp);
3260 else
3261 _intel_edp_backlight_off(intel_dp);
3262 }
3263
3264 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3265 {
3266 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3267 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3268 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3269
3270 I915_STATE_WARN(cur_state != state,
3271 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3272 dig_port->base.base.base.id, dig_port->base.base.name,
3273 onoff(state), onoff(cur_state));
3274 }
3275 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3276
3277 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3278 {
3279 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3280
3281 I915_STATE_WARN(cur_state != state,
3282 "eDP PLL state assertion failure (expected %s, current %s)\n",
3283 onoff(state), onoff(cur_state));
3284 }
3285 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3286 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3287
3288 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3289 const struct intel_crtc_state *pipe_config)
3290 {
3291 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3292 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3293
3294 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3295 assert_dp_port_disabled(intel_dp);
3296 assert_edp_pll_disabled(dev_priv);
3297
3298 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3299 pipe_config->port_clock);
3300
3301 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3302
3303 if (pipe_config->port_clock == 162000)
3304 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3305 else
3306 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3307
3308 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3309 intel_de_posting_read(dev_priv, DP_A);
3310 udelay(500);
3311
3312 /*
3313 * [DevILK] Work around required when enabling DP PLL
3314 * while a pipe is enabled going to FDI:
3315 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3316 * 2. Program DP PLL enable
3317 */
3318 if (IS_GEN(dev_priv, 5))
3319 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3320
3321 intel_dp->DP |= DP_PLL_ENABLE;
3322
3323 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3324 intel_de_posting_read(dev_priv, DP_A);
3325 udelay(200);
3326 }
3327
3328 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3329 const struct intel_crtc_state *old_crtc_state)
3330 {
3331 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3332 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3333
3334 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3335 assert_dp_port_disabled(intel_dp);
3336 assert_edp_pll_enabled(dev_priv);
3337
3338 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3339
3340 intel_dp->DP &= ~DP_PLL_ENABLE;
3341
3342 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3343 intel_de_posting_read(dev_priv, DP_A);
3344 udelay(200);
3345 }
3346
3347 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3348 {
3349 /*
3350 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3351 * be capable of signalling downstream hpd with a long pulse.
3352 * Whether or not that means D3 is safe to use is not clear,
3353 * but let's assume so until proven otherwise.
3354 *
3355 * FIXME should really check all downstream ports...
3356 */
3357 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3358 drm_dp_is_branch(intel_dp->dpcd) &&
3359 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3360 }
3361
3362 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3363 const struct intel_crtc_state *crtc_state,
3364 bool enable)
3365 {
3366 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3367 int ret;
3368
3369 if (!crtc_state->dsc.compression_enable)
3370 return;
3371
3372 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3373 enable ? DP_DECOMPRESSION_EN : 0);
3374 if (ret < 0)
3375 drm_dbg_kms(&i915->drm,
3376 "Failed to %s sink decompression state\n",
3377 enable ? "enable" : "disable");
3378 }
3379
3380 /* If the sink supports it, try to set the power state appropriately */
3381 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3382 {
3383 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3384 int ret, i;
3385
3386 /* Should have a valid DPCD by this point */
3387 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3388 return;
3389
3390 if (mode != DRM_MODE_DPMS_ON) {
3391 if (downstream_hpd_needs_d0(intel_dp))
3392 return;
3393
3394 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3395 DP_SET_POWER_D3);
3396 } else {
3397 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3398
3399 /*
3400 * When turning on, we need to retry for 1ms to give the sink
3401 * time to wake up.
3402 */
3403 for (i = 0; i < 3; i++) {
3404 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3405 DP_SET_POWER_D0);
3406 if (ret == 1)
3407 break;
3408 msleep(1);
3409 }
3410
3411 if (ret == 1 && lspcon->active)
3412 lspcon_wait_pcon_mode(lspcon);
3413 }
3414
3415 if (ret != 1)
3416 drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3417 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3418 }
3419
3420 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3421 enum port port, enum pipe *pipe)
3422 {
3423 enum pipe p;
3424
3425 for_each_pipe(dev_priv, p) {
3426 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3427
3428 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3429 *pipe = p;
3430 return true;
3431 }
3432 }
3433
3434 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3435 port_name(port));
3436
3437 /* must initialize pipe to something for the asserts */
3438 *pipe = PIPE_A;
3439
3440 return false;
3441 }
3442
3443 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3444 i915_reg_t dp_reg, enum port port,
3445 enum pipe *pipe)
3446 {
3447 bool ret;
3448 u32 val;
3449
3450 val = intel_de_read(dev_priv, dp_reg);
3451
3452 ret = val & DP_PORT_EN;
3453
3454 /* asserts want to know the pipe even if the port is disabled */
3455 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3456 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3457 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3458 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3459 else if (IS_CHERRYVIEW(dev_priv))
3460 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3461 else
3462 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3463
3464 return ret;
3465 }
3466
3467 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3468 enum pipe *pipe)
3469 {
3470 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3471 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3472 intel_wakeref_t wakeref;
3473 bool ret;
3474
3475 wakeref = intel_display_power_get_if_enabled(dev_priv,
3476 encoder->power_domain);
3477 if (!wakeref)
3478 return false;
3479
3480 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3481 encoder->port, pipe);
3482
3483 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3484
3485 return ret;
3486 }
3487
3488 static void intel_dp_get_config(struct intel_encoder *encoder,
3489 struct intel_crtc_state *pipe_config)
3490 {
3491 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3492 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3493 u32 tmp, flags = 0;
3494 enum port port = encoder->port;
3495 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3496
3497 if (encoder->type == INTEL_OUTPUT_EDP)
3498 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3499 else
3500 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3501
3502 tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3503
3504 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3505
3506 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3507 u32 trans_dp = intel_de_read(dev_priv,
3508 TRANS_DP_CTL(crtc->pipe));
3509
3510 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3511 flags |= DRM_MODE_FLAG_PHSYNC;
3512 else
3513 flags |= DRM_MODE_FLAG_NHSYNC;
3514
3515 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3516 flags |= DRM_MODE_FLAG_PVSYNC;
3517 else
3518 flags |= DRM_MODE_FLAG_NVSYNC;
3519 } else {
3520 if (tmp & DP_SYNC_HS_HIGH)
3521 flags |= DRM_MODE_FLAG_PHSYNC;
3522 else
3523 flags |= DRM_MODE_FLAG_NHSYNC;
3524
3525 if (tmp & DP_SYNC_VS_HIGH)
3526 flags |= DRM_MODE_FLAG_PVSYNC;
3527 else
3528 flags |= DRM_MODE_FLAG_NVSYNC;
3529 }
3530
3531 pipe_config->hw.adjusted_mode.flags |= flags;
3532
3533 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3534 pipe_config->limited_color_range = true;
3535
3536 pipe_config->lane_count =
3537 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3538
3539 intel_dp_get_m_n(crtc, pipe_config);
3540
3541 if (port == PORT_A) {
3542 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3543 pipe_config->port_clock = 162000;
3544 else
3545 pipe_config->port_clock = 270000;
3546 }
3547
3548 pipe_config->hw.adjusted_mode.crtc_clock =
3549 intel_dotclock_calculate(pipe_config->port_clock,
3550 &pipe_config->dp_m_n);
3551
3552 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3553 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3554 /*
3555 * This is a big fat ugly hack.
3556 *
3557 * Some machines in UEFI boot mode provide us a VBT that has 18
3558 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3559 * unknown we fail to light up. Yet the same BIOS boots up with
3560 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3561 * max, not what it tells us to use.
3562 *
3563 * Note: This will still be broken if the eDP panel is not lit
3564 * up by the BIOS, and thus we can't get the mode at module
3565 * load.
3566 */
3567 drm_dbg_kms(&dev_priv->drm,
3568 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3569 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3570 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3571 }
3572 }
3573
3574 static void intel_disable_dp(struct intel_atomic_state *state,
3575 struct intel_encoder *encoder,
3576 const struct intel_crtc_state *old_crtc_state,
3577 const struct drm_connector_state *old_conn_state)
3578 {
3579 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3580
3581 intel_dp->link_trained = false;
3582
3583 if (old_crtc_state->has_audio)
3584 intel_audio_codec_disable(encoder,
3585 old_crtc_state, old_conn_state);
3586
3587 /* Make sure the panel is off before trying to change the mode. But also
3588 * ensure that we have vdd while we switch off the panel. */
3589 intel_edp_panel_vdd_on(intel_dp);
3590 intel_edp_backlight_off(old_conn_state);
3591 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3592 intel_edp_panel_off(intel_dp);
3593 }
3594
3595 static void g4x_disable_dp(struct intel_atomic_state *state,
3596 struct intel_encoder *encoder,
3597 const struct intel_crtc_state *old_crtc_state,
3598 const struct drm_connector_state *old_conn_state)
3599 {
3600 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3601 }
3602
3603 static void vlv_disable_dp(struct intel_atomic_state *state,
3604 struct intel_encoder *encoder,
3605 const struct intel_crtc_state *old_crtc_state,
3606 const struct drm_connector_state *old_conn_state)
3607 {
3608 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3609 }
3610
3611 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3612 struct intel_encoder *encoder,
3613 const struct intel_crtc_state *old_crtc_state,
3614 const struct drm_connector_state *old_conn_state)
3615 {
3616 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3617 enum port port = encoder->port;
3618
3619 /*
3620 * Bspec does not list a specific disable sequence for g4x DP.
3621 * Follow the ilk+ sequence (disable pipe before the port) for
3622 * g4x DP as it does not suffer from underruns like the normal
3623 * g4x modeset sequence (disable pipe after the port).
3624 */
3625 intel_dp_link_down(encoder, old_crtc_state);
3626
3627 /* Only ilk+ has port A */
3628 if (port == PORT_A)
3629 ilk_edp_pll_off(intel_dp, old_crtc_state);
3630 }
3631
3632 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3633 struct intel_encoder *encoder,
3634 const struct intel_crtc_state *old_crtc_state,
3635 const struct drm_connector_state *old_conn_state)
3636 {
3637 intel_dp_link_down(encoder, old_crtc_state);
3638 }
3639
3640 static void chv_post_disable_dp(struct intel_atomic_state *state,
3641 struct intel_encoder *encoder,
3642 const struct intel_crtc_state *old_crtc_state,
3643 const struct drm_connector_state *old_conn_state)
3644 {
3645 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3646
3647 intel_dp_link_down(encoder, old_crtc_state);
3648
3649 vlv_dpio_get(dev_priv);
3650
3651 /* Assert data lane reset */
3652 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3653
3654 vlv_dpio_put(dev_priv);
3655 }
3656
3657 static void
3658 cpt_set_link_train(struct intel_dp *intel_dp,
3659 u8 dp_train_pat)
3660 {
3661 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3662 u32 *DP = &intel_dp->DP;
3663
3664 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3665
3666 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3667 case DP_TRAINING_PATTERN_DISABLE:
3668 *DP |= DP_LINK_TRAIN_OFF_CPT;
3669 break;
3670 case DP_TRAINING_PATTERN_1:
3671 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3672 break;
3673 case DP_TRAINING_PATTERN_2:
3674 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3675 break;
3676 case DP_TRAINING_PATTERN_3:
3677 drm_dbg_kms(&dev_priv->drm,
3678 "TPS3 not supported, using TPS2 instead\n");
3679 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3680 break;
3681 }
3682
3683 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3684 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3685 }
3686
3687 static void
3688 g4x_set_link_train(struct intel_dp *intel_dp,
3689 u8 dp_train_pat)
3690 {
3691 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3692 u32 *DP = &intel_dp->DP;
3693
3694 *DP &= ~DP_LINK_TRAIN_MASK;
3695
3696 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3697 case DP_TRAINING_PATTERN_DISABLE:
3698 *DP |= DP_LINK_TRAIN_OFF;
3699 break;
3700 case DP_TRAINING_PATTERN_1:
3701 *DP |= DP_LINK_TRAIN_PAT_1;
3702 break;
3703 case DP_TRAINING_PATTERN_2:
3704 *DP |= DP_LINK_TRAIN_PAT_2;
3705 break;
3706 case DP_TRAINING_PATTERN_3:
3707 drm_dbg_kms(&dev_priv->drm,
3708 "TPS3 not supported, using TPS2 instead\n");
3709 *DP |= DP_LINK_TRAIN_PAT_2;
3710 break;
3711 }
3712
3713 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3714 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3715 }
3716
3717 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3718 const struct intel_crtc_state *old_crtc_state)
3719 {
3720 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3721
3722 /* enable with pattern 1 (as per spec) */
3723
3724 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3725
3726 /*
3727 * Magic for VLV/CHV. We _must_ first set up the register
3728 * without actually enabling the port, and then do another
3729 * write to enable the port. Otherwise link training will
3730 * fail when the power sequencer is freshly used for this port.
3731 */
3732 intel_dp->DP |= DP_PORT_EN;
3733 if (old_crtc_state->has_audio)
3734 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3735
3736 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3737 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3738 }
3739
3740 static void intel_enable_dp(struct intel_atomic_state *state,
3741 struct intel_encoder *encoder,
3742 const struct intel_crtc_state *pipe_config,
3743 const struct drm_connector_state *conn_state)
3744 {
3745 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3746 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3747 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3748 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3749 enum pipe pipe = crtc->pipe;
3750 intel_wakeref_t wakeref;
3751
3752 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3753 return;
3754
3755 with_pps_lock(intel_dp, wakeref) {
3756 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3757 vlv_init_panel_power_sequencer(encoder, pipe_config);
3758
3759 intel_dp_enable_port(intel_dp, pipe_config);
3760
3761 edp_panel_vdd_on(intel_dp);
3762 edp_panel_on(intel_dp);
3763 edp_panel_vdd_off(intel_dp, true);
3764 }
3765
3766 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3767 unsigned int lane_mask = 0x0;
3768
3769 if (IS_CHERRYVIEW(dev_priv))
3770 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3771
3772 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3773 lane_mask);
3774 }
3775
3776 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3777 intel_dp_start_link_train(intel_dp);
3778 intel_dp_stop_link_train(intel_dp);
3779
3780 if (pipe_config->has_audio) {
3781 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3782 pipe_name(pipe));
3783 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3784 }
3785 }
3786
3787 static void g4x_enable_dp(struct intel_atomic_state *state,
3788 struct intel_encoder *encoder,
3789 const struct intel_crtc_state *pipe_config,
3790 const struct drm_connector_state *conn_state)
3791 {
3792 intel_enable_dp(state, encoder, pipe_config, conn_state);
3793 intel_edp_backlight_on(pipe_config, conn_state);
3794 }
3795
3796 static void vlv_enable_dp(struct intel_atomic_state *state,
3797 struct intel_encoder *encoder,
3798 const struct intel_crtc_state *pipe_config,
3799 const struct drm_connector_state *conn_state)
3800 {
3801 intel_edp_backlight_on(pipe_config, conn_state);
3802 }
3803
3804 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3805 struct intel_encoder *encoder,
3806 const struct intel_crtc_state *pipe_config,
3807 const struct drm_connector_state *conn_state)
3808 {
3809 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3810 enum port port = encoder->port;
3811
3812 intel_dp_prepare(encoder, pipe_config);
3813
3814 /* Only ilk+ has port A */
3815 if (port == PORT_A)
3816 ilk_edp_pll_on(intel_dp, pipe_config);
3817 }
3818
3819 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3820 {
3821 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3822 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3823 enum pipe pipe = intel_dp->pps_pipe;
3824 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3825
3826 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3827
3828 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3829 return;
3830
3831 edp_panel_vdd_off_sync(intel_dp);
3832
3833 /*
3834 * VLV seems to get confused when multiple power sequencers
3835 * have the same port selected (even if only one has power/vdd
3836 * enabled). The failure manifests as vlv_wait_port_ready() failing
3837 * CHV on the other hand doesn't seem to mind having the same port
3838 * selected in multiple power sequencers, but let's clear the
3839 * port select always when logically disconnecting a power sequencer
3840 * from a port.
3841 */
3842 drm_dbg_kms(&dev_priv->drm,
3843 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3844 pipe_name(pipe), intel_dig_port->base.base.base.id,
3845 intel_dig_port->base.base.name);
3846 intel_de_write(dev_priv, pp_on_reg, 0);
3847 intel_de_posting_read(dev_priv, pp_on_reg);
3848
3849 intel_dp->pps_pipe = INVALID_PIPE;
3850 }
3851
3852 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3853 enum pipe pipe)
3854 {
3855 struct intel_encoder *encoder;
3856
3857 lockdep_assert_held(&dev_priv->pps_mutex);
3858
3859 for_each_intel_dp(&dev_priv->drm, encoder) {
3860 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3861
3862 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3863 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3864 pipe_name(pipe), encoder->base.base.id,
3865 encoder->base.name);
3866
3867 if (intel_dp->pps_pipe != pipe)
3868 continue;
3869
3870 drm_dbg_kms(&dev_priv->drm,
3871 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3872 pipe_name(pipe), encoder->base.base.id,
3873 encoder->base.name);
3874
3875 /* make sure vdd is off before we steal it */
3876 vlv_detach_power_sequencer(intel_dp);
3877 }
3878 }
3879
3880 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3881 const struct intel_crtc_state *crtc_state)
3882 {
3883 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3884 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3885 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3886
3887 lockdep_assert_held(&dev_priv->pps_mutex);
3888
3889 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3890
3891 if (intel_dp->pps_pipe != INVALID_PIPE &&
3892 intel_dp->pps_pipe != crtc->pipe) {
3893 /*
3894 * If another power sequencer was being used on this
3895 * port previously make sure to turn off vdd there while
3896 * we still have control of it.
3897 */
3898 vlv_detach_power_sequencer(intel_dp);
3899 }
3900
3901 /*
3902 * We may be stealing the power
3903 * sequencer from another port.
3904 */
3905 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3906
3907 intel_dp->active_pipe = crtc->pipe;
3908
3909 if (!intel_dp_is_edp(intel_dp))
3910 return;
3911
3912 /* now it's all ours */
3913 intel_dp->pps_pipe = crtc->pipe;
3914
3915 drm_dbg_kms(&dev_priv->drm,
3916 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3917 pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3918 encoder->base.name);
3919
3920 /* init power sequencer on this pipe and port */
3921 intel_dp_init_panel_power_sequencer(intel_dp);
3922 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3923 }
3924
3925 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3926 struct intel_encoder *encoder,
3927 const struct intel_crtc_state *pipe_config,
3928 const struct drm_connector_state *conn_state)
3929 {
3930 vlv_phy_pre_encoder_enable(encoder, pipe_config);
3931
3932 intel_enable_dp(state, encoder, pipe_config, conn_state);
3933 }
3934
3935 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3936 struct intel_encoder *encoder,
3937 const struct intel_crtc_state *pipe_config,
3938 const struct drm_connector_state *conn_state)
3939 {
3940 intel_dp_prepare(encoder, pipe_config);
3941
3942 vlv_phy_pre_pll_enable(encoder, pipe_config);
3943 }
3944
3945 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3946 struct intel_encoder *encoder,
3947 const struct intel_crtc_state *pipe_config,
3948 const struct drm_connector_state *conn_state)
3949 {
3950 chv_phy_pre_encoder_enable(encoder, pipe_config);
3951
3952 intel_enable_dp(state, encoder, pipe_config, conn_state);
3953
3954 /* Second common lane will stay alive on its own now */
3955 chv_phy_release_cl2_override(encoder);
3956 }
3957
3958 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3959 struct intel_encoder *encoder,
3960 const struct intel_crtc_state *pipe_config,
3961 const struct drm_connector_state *conn_state)
3962 {
3963 intel_dp_prepare(encoder, pipe_config);
3964
3965 chv_phy_pre_pll_enable(encoder, pipe_config);
3966 }
3967
3968 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3969 struct intel_encoder *encoder,
3970 const struct intel_crtc_state *old_crtc_state,
3971 const struct drm_connector_state *old_conn_state)
3972 {
3973 chv_phy_post_pll_disable(encoder, old_crtc_state);
3974 }
3975
3976 /*
3977 * Fetch AUX CH registers 0x202 - 0x207 which contain
3978 * link status information
3979 */
3980 bool
3981 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3982 {
3983 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3984 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3985 }
3986
3987 /* These are source-specific values. */
3988 u8
3989 intel_dp_voltage_max(struct intel_dp *intel_dp)
3990 {
3991 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3992 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3993 enum port port = encoder->port;
3994
3995 if (HAS_DDI(dev_priv))
3996 return intel_ddi_dp_voltage_max(encoder);
3997 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3998 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3999 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
4000 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4001 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
4002 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4003 else
4004 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4005 }
4006
4007 u8
4008 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
4009 {
4010 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4011 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4012 enum port port = encoder->port;
4013
4014 if (HAS_DDI(dev_priv)) {
4015 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
4016 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4017 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4019 return DP_TRAIN_PRE_EMPH_LEVEL_3;
4020 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4021 return DP_TRAIN_PRE_EMPH_LEVEL_2;
4022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4023 return DP_TRAIN_PRE_EMPH_LEVEL_1;
4024 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4025 default:
4026 return DP_TRAIN_PRE_EMPH_LEVEL_0;
4027 }
4028 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4029 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4030 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4031 return DP_TRAIN_PRE_EMPH_LEVEL_2;
4032 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4033 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4034 return DP_TRAIN_PRE_EMPH_LEVEL_1;
4035 default:
4036 return DP_TRAIN_PRE_EMPH_LEVEL_0;
4037 }
4038 } else {
4039 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4040 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4041 return DP_TRAIN_PRE_EMPH_LEVEL_2;
4042 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4043 return DP_TRAIN_PRE_EMPH_LEVEL_2;
4044 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4045 return DP_TRAIN_PRE_EMPH_LEVEL_1;
4046 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4047 default:
4048 return DP_TRAIN_PRE_EMPH_LEVEL_0;
4049 }
4050 }
4051 }
4052
4053 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4054 {
4055 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4056 unsigned long demph_reg_value, preemph_reg_value,
4057 uniqtranscale_reg_value;
4058 u8 train_set = intel_dp->train_set[0];
4059
4060 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4061 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4062 preemph_reg_value = 0x0004000;
4063 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4065 demph_reg_value = 0x2B405555;
4066 uniqtranscale_reg_value = 0x552AB83A;
4067 break;
4068 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4069 demph_reg_value = 0x2B404040;
4070 uniqtranscale_reg_value = 0x5548B83A;
4071 break;
4072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4073 demph_reg_value = 0x2B245555;
4074 uniqtranscale_reg_value = 0x5560B83A;
4075 break;
4076 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4077 demph_reg_value = 0x2B405555;
4078 uniqtranscale_reg_value = 0x5598DA3A;
4079 break;
4080 default:
4081 return;
4082 }
4083 break;
4084 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4085 preemph_reg_value = 0x0002000;
4086 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4087 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4088 demph_reg_value = 0x2B404040;
4089 uniqtranscale_reg_value = 0x5552B83A;
4090 break;
4091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4092 demph_reg_value = 0x2B404848;
4093 uniqtranscale_reg_value = 0x5580B83A;
4094 break;
4095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4096 demph_reg_value = 0x2B404040;
4097 uniqtranscale_reg_value = 0x55ADDA3A;
4098 break;
4099 default:
4100 return;
4101 }
4102 break;
4103 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4104 preemph_reg_value = 0x0000000;
4105 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4106 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4107 demph_reg_value = 0x2B305555;
4108 uniqtranscale_reg_value = 0x5570B83A;
4109 break;
4110 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4111 demph_reg_value = 0x2B2B4040;
4112 uniqtranscale_reg_value = 0x55ADDA3A;
4113 break;
4114 default:
4115 return;
4116 }
4117 break;
4118 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4119 preemph_reg_value = 0x0006000;
4120 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4121 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4122 demph_reg_value = 0x1B405555;
4123 uniqtranscale_reg_value = 0x55ADDA3A;
4124 break;
4125 default:
4126 return;
4127 }
4128 break;
4129 default:
4130 return;
4131 }
4132
4133 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4134 uniqtranscale_reg_value, 0);
4135 }
4136
4137 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4138 {
4139 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4140 u32 deemph_reg_value, margin_reg_value;
4141 bool uniq_trans_scale = false;
4142 u8 train_set = intel_dp->train_set[0];
4143
4144 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4145 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4146 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4147 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4148 deemph_reg_value = 128;
4149 margin_reg_value = 52;
4150 break;
4151 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4152 deemph_reg_value = 128;
4153 margin_reg_value = 77;
4154 break;
4155 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4156 deemph_reg_value = 128;
4157 margin_reg_value = 102;
4158 break;
4159 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4160 deemph_reg_value = 128;
4161 margin_reg_value = 154;
4162 uniq_trans_scale = true;
4163 break;
4164 default:
4165 return;
4166 }
4167 break;
4168 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4169 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4170 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4171 deemph_reg_value = 85;
4172 margin_reg_value = 78;
4173 break;
4174 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4175 deemph_reg_value = 85;
4176 margin_reg_value = 116;
4177 break;
4178 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4179 deemph_reg_value = 85;
4180 margin_reg_value = 154;
4181 break;
4182 default:
4183 return;
4184 }
4185 break;
4186 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4187 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4189 deemph_reg_value = 64;
4190 margin_reg_value = 104;
4191 break;
4192 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4193 deemph_reg_value = 64;
4194 margin_reg_value = 154;
4195 break;
4196 default:
4197 return;
4198 }
4199 break;
4200 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4201 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4203 deemph_reg_value = 43;
4204 margin_reg_value = 154;
4205 break;
4206 default:
4207 return;
4208 }
4209 break;
4210 default:
4211 return;
4212 }
4213
4214 chv_set_phy_signal_level(encoder, deemph_reg_value,
4215 margin_reg_value, uniq_trans_scale);
4216 }
4217
4218 static u32 g4x_signal_levels(u8 train_set)
4219 {
4220 u32 signal_levels = 0;
4221
4222 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4223 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4224 default:
4225 signal_levels |= DP_VOLTAGE_0_4;
4226 break;
4227 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4228 signal_levels |= DP_VOLTAGE_0_6;
4229 break;
4230 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4231 signal_levels |= DP_VOLTAGE_0_8;
4232 break;
4233 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4234 signal_levels |= DP_VOLTAGE_1_2;
4235 break;
4236 }
4237 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4238 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4239 default:
4240 signal_levels |= DP_PRE_EMPHASIS_0;
4241 break;
4242 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4243 signal_levels |= DP_PRE_EMPHASIS_3_5;
4244 break;
4245 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4246 signal_levels |= DP_PRE_EMPHASIS_6;
4247 break;
4248 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4249 signal_levels |= DP_PRE_EMPHASIS_9_5;
4250 break;
4251 }
4252 return signal_levels;
4253 }
4254
4255 static void
4256 g4x_set_signal_levels(struct intel_dp *intel_dp)
4257 {
4258 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4259 u8 train_set = intel_dp->train_set[0];
4260 u32 signal_levels;
4261
4262 signal_levels = g4x_signal_levels(train_set);
4263
4264 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4265 signal_levels);
4266
4267 intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4268 intel_dp->DP |= signal_levels;
4269
4270 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4271 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4272 }
4273
4274 /* SNB CPU eDP voltage swing and pre-emphasis control */
4275 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4276 {
4277 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4278 DP_TRAIN_PRE_EMPHASIS_MASK);
4279
4280 switch (signal_levels) {
4281 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4282 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4283 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4284 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4285 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4287 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4288 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4289 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4291 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4292 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4294 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4295 default:
4296 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4297 "0x%x\n", signal_levels);
4298 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4299 }
4300 }
4301
4302 static void
4303 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4304 {
4305 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4306 u8 train_set = intel_dp->train_set[0];
4307 u32 signal_levels;
4308
4309 signal_levels = snb_cpu_edp_signal_levels(train_set);
4310
4311 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4312 signal_levels);
4313
4314 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4315 intel_dp->DP |= signal_levels;
4316
4317 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4318 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4319 }
4320
4321 /* IVB CPU eDP voltage swing and pre-emphasis control */
4322 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4323 {
4324 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4325 DP_TRAIN_PRE_EMPHASIS_MASK);
4326
4327 switch (signal_levels) {
4328 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4329 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4331 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4332 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4333 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4334
4335 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4336 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4338 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4339
4340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4341 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4342 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4343 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4344
4345 default:
4346 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4347 "0x%x\n", signal_levels);
4348 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4349 }
4350 }
4351
4352 static void
4353 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4354 {
4355 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4356 u8 train_set = intel_dp->train_set[0];
4357 u32 signal_levels;
4358
4359 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4360
4361 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4362 signal_levels);
4363
4364 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4365 intel_dp->DP |= signal_levels;
4366
4367 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4368 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4369 }
4370
4371 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4372 {
4373 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4374 u8 train_set = intel_dp->train_set[0];
4375
4376 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4377 train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4378 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4379 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4380 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4381 DP_TRAIN_PRE_EMPHASIS_SHIFT,
4382 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4383 " (max)" : "");
4384
4385 intel_dp->set_signal_levels(intel_dp);
4386 }
4387
4388 void
4389 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4390 u8 dp_train_pat)
4391 {
4392 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4393 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4394
4395 if (dp_train_pat & train_pat_mask)
4396 drm_dbg_kms(&dev_priv->drm,
4397 "Using DP training pattern TPS%d\n",
4398 dp_train_pat & train_pat_mask);
4399
4400 intel_dp->set_link_train(intel_dp, dp_train_pat);
4401 }
4402
4403 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4404 {
4405 if (intel_dp->set_idle_link_train)
4406 intel_dp->set_idle_link_train(intel_dp);
4407 }
4408
4409 static void
4410 intel_dp_link_down(struct intel_encoder *encoder,
4411 const struct intel_crtc_state *old_crtc_state)
4412 {
4413 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4414 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4415 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4416 enum port port = encoder->port;
4417 u32 DP = intel_dp->DP;
4418
4419 if (drm_WARN_ON(&dev_priv->drm,
4420 (intel_de_read(dev_priv, intel_dp->output_reg) &
4421 DP_PORT_EN) == 0))
4422 return;
4423
4424 drm_dbg_kms(&dev_priv->drm, "\n");
4425
4426 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4427 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4428 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4429 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4430 } else {
4431 DP &= ~DP_LINK_TRAIN_MASK;
4432 DP |= DP_LINK_TRAIN_PAT_IDLE;
4433 }
4434 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4435 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4436
4437 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4438 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4439 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4440
4441 /*
4442 * HW workaround for IBX, we need to move the port
4443 * to transcoder A after disabling it to allow the
4444 * matching HDMI port to be enabled on transcoder A.
4445 */
4446 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4447 /*
4448 * We get CPU/PCH FIFO underruns on the other pipe when
4449 * doing the workaround. Sweep them under the rug.
4450 */
4451 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4452 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4453
4454 /* always enable with pattern 1 (as per spec) */
4455 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4456 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4457 DP_LINK_TRAIN_PAT_1;
4458 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4459 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4460
4461 DP &= ~DP_PORT_EN;
4462 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4463 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4464
4465 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4466 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4467 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4468 }
4469
4470 msleep(intel_dp->panel_power_down_delay);
4471
4472 intel_dp->DP = DP;
4473
4474 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4475 intel_wakeref_t wakeref;
4476
4477 with_pps_lock(intel_dp, wakeref)
4478 intel_dp->active_pipe = INVALID_PIPE;
4479 }
4480 }
4481
4482 static void
4483 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4484 {
4485 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4486 u8 dpcd_ext[6];
4487
4488 /*
4489 * Prior to DP1.3 the bit represented by
4490 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4491 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4492 * the true capability of the panel. The only way to check is to
4493 * then compare 0000h and 2200h.
4494 */
4495 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4496 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4497 return;
4498
4499 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4500 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4501 drm_err(&i915->drm,
4502 "DPCD failed read at extended capabilities\n");
4503 return;
4504 }
4505
4506 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4507 drm_dbg_kms(&i915->drm,
4508 "DPCD extended DPCD rev less than base DPCD rev\n");
4509 return;
4510 }
4511
4512 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4513 return;
4514
4515 drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4516 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4517
4518 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4519 }
4520
4521 bool
4522 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4523 {
4524 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4525
4526 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4527 sizeof(intel_dp->dpcd)) < 0)
4528 return false; /* aux transfer failed */
4529
4530 intel_dp_extended_receiver_capabilities(intel_dp);
4531
4532 drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4533 intel_dp->dpcd);
4534
4535 return intel_dp->dpcd[DP_DPCD_REV] != 0;
4536 }
4537
4538 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4539 {
4540 u8 dprx = 0;
4541
4542 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4543 &dprx) != 1)
4544 return false;
4545 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4546 }
4547
4548 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4549 {
4550 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4551
4552 /*
4553 * Clear the cached register set to avoid using stale values
4554 * for the sinks that do not support DSC.
4555 */
4556 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4557
4558 /* Clear fec_capable to avoid using stale values */
4559 intel_dp->fec_capable = 0;
4560
4561 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4562 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4563 intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4564 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4565 intel_dp->dsc_dpcd,
4566 sizeof(intel_dp->dsc_dpcd)) < 0)
4567 drm_err(&i915->drm,
4568 "Failed to read DPCD register 0x%x\n",
4569 DP_DSC_SUPPORT);
4570
4571 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4572 (int)sizeof(intel_dp->dsc_dpcd),
4573 intel_dp->dsc_dpcd);
4574
4575 /* FEC is supported only on DP 1.4 */
4576 if (!intel_dp_is_edp(intel_dp) &&
4577 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4578 &intel_dp->fec_capable) < 0)
4579 drm_err(&i915->drm,
4580 "Failed to read FEC DPCD register\n");
4581
4582 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4583 intel_dp->fec_capable);
4584 }
4585 }
4586
4587 static bool
4588 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4589 {
4590 struct drm_i915_private *dev_priv =
4591 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4592
4593 /* this function is meant to be called only once */
4594 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4595
4596 if (!intel_dp_read_dpcd(intel_dp))
4597 return false;
4598
4599 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4600 drm_dp_is_branch(intel_dp->dpcd));
4601
4602 /*
4603 * Read the eDP display control registers.
4604 *
4605 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4606 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4607 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4608 * method). The display control registers should read zero if they're
4609 * not supported anyway.
4610 */
4611 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4612 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4613 sizeof(intel_dp->edp_dpcd))
4614 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4615 (int)sizeof(intel_dp->edp_dpcd),
4616 intel_dp->edp_dpcd);
4617
4618 /*
4619 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4620 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4621 */
4622 intel_psr_init_dpcd(intel_dp);
4623
4624 /* Read the eDP 1.4+ supported link rates. */
4625 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4626 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4627 int i;
4628
4629 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4630 sink_rates, sizeof(sink_rates));
4631
4632 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4633 int val = le16_to_cpu(sink_rates[i]);
4634
4635 if (val == 0)
4636 break;
4637
4638 /* Value read multiplied by 200kHz gives the per-lane
4639 * link rate in kHz. The source rates are, however,
4640 * stored in terms of LS_Clk kHz. The full conversion
4641 * back to symbols is
4642 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4643 */
4644 intel_dp->sink_rates[i] = (val * 200) / 10;
4645 }
4646 intel_dp->num_sink_rates = i;
4647 }
4648
4649 /*
4650 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4651 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4652 */
4653 if (intel_dp->num_sink_rates)
4654 intel_dp->use_rate_select = true;
4655 else
4656 intel_dp_set_sink_rates(intel_dp);
4657
4658 intel_dp_set_common_rates(intel_dp);
4659
4660 /* Read the eDP DSC DPCD registers */
4661 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4662 intel_dp_get_dsc_sink_cap(intel_dp);
4663
4664 return true;
4665 }
4666
4667
4668 static bool
4669 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4670 {
4671 if (!intel_dp_read_dpcd(intel_dp))
4672 return false;
4673
4674 /*
4675 * Don't clobber cached eDP rates. Also skip re-reading
4676 * the OUI/ID since we know it won't change.
4677 */
4678 if (!intel_dp_is_edp(intel_dp)) {
4679 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4680 drm_dp_is_branch(intel_dp->dpcd));
4681
4682 intel_dp_set_sink_rates(intel_dp);
4683 intel_dp_set_common_rates(intel_dp);
4684 }
4685
4686 /*
4687 * Some eDP panels do not set a valid value for sink count, that is why
4688 * it don't care about read it here and in intel_edp_init_dpcd().
4689 */
4690 if (!intel_dp_is_edp(intel_dp) &&
4691 !drm_dp_has_quirk(&intel_dp->desc, 0,
4692 DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4693 u8 count;
4694 ssize_t r;
4695
4696 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4697 if (r < 1)
4698 return false;
4699
4700 /*
4701 * Sink count can change between short pulse hpd hence
4702 * a member variable in intel_dp will track any changes
4703 * between short pulse interrupts.
4704 */
4705 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4706
4707 /*
4708 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4709 * a dongle is present but no display. Unless we require to know
4710 * if a dongle is present or not, we don't need to update
4711 * downstream port information. So, an early return here saves
4712 * time from performing other operations which are not required.
4713 */
4714 if (!intel_dp->sink_count)
4715 return false;
4716 }
4717
4718 if (!drm_dp_is_branch(intel_dp->dpcd))
4719 return true; /* native DP sink */
4720
4721 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4722 return true; /* no per-port downstream info */
4723
4724 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4725 intel_dp->downstream_ports,
4726 DP_MAX_DOWNSTREAM_PORTS) < 0)
4727 return false; /* downstream port status fetch failed */
4728
4729 return true;
4730 }
4731
4732 static bool
4733 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4734 {
4735 u8 mstm_cap;
4736
4737 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4738 return false;
4739
4740 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4741 return false;
4742
4743 return mstm_cap & DP_MST_CAP;
4744 }
4745
4746 static bool
4747 intel_dp_can_mst(struct intel_dp *intel_dp)
4748 {
4749 return i915_modparams.enable_dp_mst &&
4750 intel_dp->can_mst &&
4751 intel_dp_sink_can_mst(intel_dp);
4752 }
4753
4754 static void
4755 intel_dp_configure_mst(struct intel_dp *intel_dp)
4756 {
4757 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4758 struct intel_encoder *encoder =
4759 &dp_to_dig_port(intel_dp)->base;
4760 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4761
4762 drm_dbg_kms(&i915->drm,
4763 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4764 encoder->base.base.id, encoder->base.name,
4765 yesno(intel_dp->can_mst), yesno(sink_can_mst),
4766 yesno(i915_modparams.enable_dp_mst));
4767
4768 if (!intel_dp->can_mst)
4769 return;
4770
4771 intel_dp->is_mst = sink_can_mst &&
4772 i915_modparams.enable_dp_mst;
4773
4774 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4775 intel_dp->is_mst);
4776 }
4777
4778 static bool
4779 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4780 {
4781 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4782 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4783 DP_DPRX_ESI_LEN;
4784 }
4785
4786 bool
4787 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4788 const struct drm_connector_state *conn_state)
4789 {
4790 /*
4791 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4792 * of Color Encoding Format and Content Color Gamut], in order to
4793 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4794 */
4795 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4796 return true;
4797
4798 switch (conn_state->colorspace) {
4799 case DRM_MODE_COLORIMETRY_SYCC_601:
4800 case DRM_MODE_COLORIMETRY_OPYCC_601:
4801 case DRM_MODE_COLORIMETRY_BT2020_YCC:
4802 case DRM_MODE_COLORIMETRY_BT2020_RGB:
4803 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4804 return true;
4805 default:
4806 break;
4807 }
4808
4809 return false;
4810 }
4811
4812 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4813 struct dp_sdp *sdp, size_t size)
4814 {
4815 size_t length = sizeof(struct dp_sdp);
4816
4817 if (size < length)
4818 return -ENOSPC;
4819
4820 memset(sdp, 0, size);
4821
4822 /*
4823 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4824 * VSC SDP Header Bytes
4825 */
4826 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4827 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4828 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4829 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4830
4831 /*
4832 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4833 * per DP 1.4a spec.
4834 */
4835 if (vsc->revision != 0x5)
4836 goto out;
4837
4838 /* VSC SDP Payload for DB16 through DB18 */
4839 /* Pixel Encoding and Colorimetry Formats */
4840 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4841 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4842
4843 switch (vsc->bpc) {
4844 case 6:
4845 /* 6bpc: 0x0 */
4846 break;
4847 case 8:
4848 sdp->db[17] = 0x1; /* DB17[3:0] */
4849 break;
4850 case 10:
4851 sdp->db[17] = 0x2;
4852 break;
4853 case 12:
4854 sdp->db[17] = 0x3;
4855 break;
4856 case 16:
4857 sdp->db[17] = 0x4;
4858 break;
4859 default:
4860 MISSING_CASE(vsc->bpc);
4861 break;
4862 }
4863 /* Dynamic Range and Component Bit Depth */
4864 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4865 sdp->db[17] |= 0x80; /* DB17[7] */
4866
4867 /* Content Type */
4868 sdp->db[18] = vsc->content_type & 0x7;
4869
4870 out:
4871 return length;
4872 }
4873
4874 static ssize_t
4875 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4876 struct dp_sdp *sdp,
4877 size_t size)
4878 {
4879 size_t length = sizeof(struct dp_sdp);
4880 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4881 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4882 ssize_t len;
4883
4884 if (size < length)
4885 return -ENOSPC;
4886
4887 memset(sdp, 0, size);
4888
4889 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4890 if (len < 0) {
4891 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4892 return -ENOSPC;
4893 }
4894
4895 if (len != infoframe_size) {
4896 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4897 return -ENOSPC;
4898 }
4899
4900 /*
4901 * Set up the infoframe sdp packet for HDR static metadata.
4902 * Prepare VSC Header for SU as per DP 1.4a spec,
4903 * Table 2-100 and Table 2-101
4904 */
4905
4906 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4907 sdp->sdp_header.HB0 = 0;
4908 /*
4909 * Packet Type 80h + Non-audio INFOFRAME Type value
4910 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4911 * - 80h + Non-audio INFOFRAME Type value
4912 * - InfoFrame Type: 0x07
4913 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4914 */
4915 sdp->sdp_header.HB1 = drm_infoframe->type;
4916 /*
4917 * Least Significant Eight Bits of (Data Byte Count – 1)
4918 * infoframe_size - 1
4919 */
4920 sdp->sdp_header.HB2 = 0x1D;
4921 /* INFOFRAME SDP Version Number */
4922 sdp->sdp_header.HB3 = (0x13 << 2);
4923 /* CTA Header Byte 2 (INFOFRAME Version Number) */
4924 sdp->db[0] = drm_infoframe->version;
4925 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4926 sdp->db[1] = drm_infoframe->length;
4927 /*
4928 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4929 * HDMI_INFOFRAME_HEADER_SIZE
4930 */
4931 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4932 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4933 HDMI_DRM_INFOFRAME_SIZE);
4934
4935 /*
4936 * Size of DP infoframe sdp packet for HDR static metadata consists of
4937 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4938 * - Two Data Blocks: 2 bytes
4939 * CTA Header Byte2 (INFOFRAME Version Number)
4940 * CTA Header Byte3 (Length of INFOFRAME)
4941 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4942 *
4943 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4944 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4945 * will pad rest of the size.
4946 */
4947 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4948 }
4949
4950 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4951 const struct intel_crtc_state *crtc_state,
4952 unsigned int type)
4953 {
4954 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4955 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4956 struct dp_sdp sdp = {};
4957 ssize_t len;
4958
4959 if ((crtc_state->infoframes.enable &
4960 intel_hdmi_infoframe_enable(type)) == 0)
4961 return;
4962
4963 switch (type) {
4964 case DP_SDP_VSC:
4965 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4966 sizeof(sdp));
4967 break;
4968 case HDMI_PACKET_TYPE_GAMUT_METADATA:
4969 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4970 &sdp, sizeof(sdp));
4971 break;
4972 default:
4973 MISSING_CASE(type);
4974 return;
4975 }
4976
4977 if (drm_WARN_ON(&dev_priv->drm, len < 0))
4978 return;
4979
4980 intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4981 }
4982
4983 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
4984 const struct intel_crtc_state *crtc_state,
4985 struct drm_dp_vsc_sdp *vsc)
4986 {
4987 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4988 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4989 struct dp_sdp sdp = {};
4990 ssize_t len;
4991
4992 len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
4993
4994 if (drm_WARN_ON(&dev_priv->drm, len < 0))
4995 return;
4996
4997 intel_dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
4998 &sdp, len);
4999 }
5000
5001 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5002 bool enable,
5003 const struct intel_crtc_state *crtc_state,
5004 const struct drm_connector_state *conn_state)
5005 {
5006 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5007 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5008 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5009 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5010 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5011 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5012 u32 val = intel_de_read(dev_priv, reg);
5013
5014 /* TODO: Add DSC case (DIP_ENABLE_PPS) */
5015 /* When PSR is enabled, this routine doesn't disable VSC DIP */
5016 if (intel_psr_enabled(intel_dp))
5017 val &= ~dip_enable;
5018 else
5019 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5020
5021 if (!enable) {
5022 intel_de_write(dev_priv, reg, val);
5023 intel_de_posting_read(dev_priv, reg);
5024 return;
5025 }
5026
5027 intel_de_write(dev_priv, reg, val);
5028 intel_de_posting_read(dev_priv, reg);
5029
5030 /* When PSR is enabled, VSC SDP is handled by PSR routine */
5031 if (!intel_psr_enabled(intel_dp))
5032 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5033
5034 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5035 }
5036
5037 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5038 const void *buffer, size_t size)
5039 {
5040 const struct dp_sdp *sdp = buffer;
5041
5042 if (size < sizeof(struct dp_sdp))
5043 return -EINVAL;
5044
5045 memset(vsc, 0, size);
5046
5047 if (sdp->sdp_header.HB0 != 0)
5048 return -EINVAL;
5049
5050 if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5051 return -EINVAL;
5052
5053 vsc->sdp_type = sdp->sdp_header.HB1;
5054 vsc->revision = sdp->sdp_header.HB2;
5055 vsc->length = sdp->sdp_header.HB3;
5056
5057 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5058 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5059 /*
5060 * - HB2 = 0x2, HB3 = 0x8
5061 * VSC SDP supporting 3D stereo + PSR
5062 * - HB2 = 0x4, HB3 = 0xe
5063 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5064 * first scan line of the SU region (applies to eDP v1.4b
5065 * and higher).
5066 */
5067 return 0;
5068 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5069 /*
5070 * - HB2 = 0x5, HB3 = 0x13
5071 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5072 * Format.
5073 */
5074 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5075 vsc->colorimetry = sdp->db[16] & 0xf;
5076 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5077
5078 switch (sdp->db[17] & 0x7) {
5079 case 0x0:
5080 vsc->bpc = 6;
5081 break;
5082 case 0x1:
5083 vsc->bpc = 8;
5084 break;
5085 case 0x2:
5086 vsc->bpc = 10;
5087 break;
5088 case 0x3:
5089 vsc->bpc = 12;
5090 break;
5091 case 0x4:
5092 vsc->bpc = 16;
5093 break;
5094 default:
5095 MISSING_CASE(sdp->db[17] & 0x7);
5096 return -EINVAL;
5097 }
5098
5099 vsc->content_type = sdp->db[18] & 0x7;
5100 } else {
5101 return -EINVAL;
5102 }
5103
5104 return 0;
5105 }
5106
5107 static int
5108 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5109 const void *buffer, size_t size)
5110 {
5111 int ret;
5112
5113 const struct dp_sdp *sdp = buffer;
5114
5115 if (size < sizeof(struct dp_sdp))
5116 return -EINVAL;
5117
5118 if (sdp->sdp_header.HB0 != 0)
5119 return -EINVAL;
5120
5121 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5122 return -EINVAL;
5123
5124 /*
5125 * Least Significant Eight Bits of (Data Byte Count – 1)
5126 * 1Dh (i.e., Data Byte Count = 30 bytes).
5127 */
5128 if (sdp->sdp_header.HB2 != 0x1D)
5129 return -EINVAL;
5130
5131 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5132 if ((sdp->sdp_header.HB3 & 0x3) != 0)
5133 return -EINVAL;
5134
5135 /* INFOFRAME SDP Version Number */
5136 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5137 return -EINVAL;
5138
5139 /* CTA Header Byte 2 (INFOFRAME Version Number) */
5140 if (sdp->db[0] != 1)
5141 return -EINVAL;
5142
5143 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5144 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5145 return -EINVAL;
5146
5147 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5148 HDMI_DRM_INFOFRAME_SIZE);
5149
5150 return ret;
5151 }
5152
5153 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5154 struct intel_crtc_state *crtc_state,
5155 struct drm_dp_vsc_sdp *vsc)
5156 {
5157 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5158 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5159 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5160 unsigned int type = DP_SDP_VSC;
5161 struct dp_sdp sdp = {};
5162 int ret;
5163
5164 /* When PSR is enabled, VSC SDP is handled by PSR routine */
5165 if (intel_psr_enabled(intel_dp))
5166 return;
5167
5168 if ((crtc_state->infoframes.enable &
5169 intel_hdmi_infoframe_enable(type)) == 0)
5170 return;
5171
5172 intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5173
5174 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5175
5176 if (ret)
5177 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5178 }
5179
5180 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5181 struct intel_crtc_state *crtc_state,
5182 struct hdmi_drm_infoframe *drm_infoframe)
5183 {
5184 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5185 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5186 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5187 struct dp_sdp sdp = {};
5188 int ret;
5189
5190 if ((crtc_state->infoframes.enable &
5191 intel_hdmi_infoframe_enable(type)) == 0)
5192 return;
5193
5194 intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5195 sizeof(sdp));
5196
5197 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5198 sizeof(sdp));
5199
5200 if (ret)
5201 drm_dbg_kms(&dev_priv->drm,
5202 "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5203 }
5204
5205 void intel_read_dp_sdp(struct intel_encoder *encoder,
5206 struct intel_crtc_state *crtc_state,
5207 unsigned int type)
5208 {
5209 if (encoder->type != INTEL_OUTPUT_DDI)
5210 return;
5211
5212 switch (type) {
5213 case DP_SDP_VSC:
5214 intel_read_dp_vsc_sdp(encoder, crtc_state,
5215 &crtc_state->infoframes.vsc);
5216 break;
5217 case HDMI_PACKET_TYPE_GAMUT_METADATA:
5218 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5219 &crtc_state->infoframes.drm.drm);
5220 break;
5221 default:
5222 MISSING_CASE(type);
5223 break;
5224 }
5225 }
5226
5227 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5228 {
5229 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5230 int status = 0;
5231 int test_link_rate;
5232 u8 test_lane_count, test_link_bw;
5233 /* (DP CTS 1.2)
5234 * 4.3.1.11
5235 */
5236 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5237 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5238 &test_lane_count);
5239
5240 if (status <= 0) {
5241 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5242 return DP_TEST_NAK;
5243 }
5244 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5245
5246 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5247 &test_link_bw);
5248 if (status <= 0) {
5249 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5250 return DP_TEST_NAK;
5251 }
5252 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5253
5254 /* Validate the requested link rate and lane count */
5255 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5256 test_lane_count))
5257 return DP_TEST_NAK;
5258
5259 intel_dp->compliance.test_lane_count = test_lane_count;
5260 intel_dp->compliance.test_link_rate = test_link_rate;
5261
5262 return DP_TEST_ACK;
5263 }
5264
5265 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5266 {
5267 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5268 u8 test_pattern;
5269 u8 test_misc;
5270 __be16 h_width, v_height;
5271 int status = 0;
5272
5273 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5274 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5275 &test_pattern);
5276 if (status <= 0) {
5277 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5278 return DP_TEST_NAK;
5279 }
5280 if (test_pattern != DP_COLOR_RAMP)
5281 return DP_TEST_NAK;
5282
5283 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5284 &h_width, 2);
5285 if (status <= 0) {
5286 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5287 return DP_TEST_NAK;
5288 }
5289
5290 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5291 &v_height, 2);
5292 if (status <= 0) {
5293 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5294 return DP_TEST_NAK;
5295 }
5296
5297 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5298 &test_misc);
5299 if (status <= 0) {
5300 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5301 return DP_TEST_NAK;
5302 }
5303 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5304 return DP_TEST_NAK;
5305 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5306 return DP_TEST_NAK;
5307 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5308 case DP_TEST_BIT_DEPTH_6:
5309 intel_dp->compliance.test_data.bpc = 6;
5310 break;
5311 case DP_TEST_BIT_DEPTH_8:
5312 intel_dp->compliance.test_data.bpc = 8;
5313 break;
5314 default:
5315 return DP_TEST_NAK;
5316 }
5317
5318 intel_dp->compliance.test_data.video_pattern = test_pattern;
5319 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5320 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5321 /* Set test active flag here so userspace doesn't interrupt things */
5322 intel_dp->compliance.test_active = true;
5323
5324 return DP_TEST_ACK;
5325 }
5326
5327 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5328 {
5329 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5330 u8 test_result = DP_TEST_ACK;
5331 struct intel_connector *intel_connector = intel_dp->attached_connector;
5332 struct drm_connector *connector = &intel_connector->base;
5333
5334 if (intel_connector->detect_edid == NULL ||
5335 connector->edid_corrupt ||
5336 intel_dp->aux.i2c_defer_count > 6) {
5337 /* Check EDID read for NACKs, DEFERs and corruption
5338 * (DP CTS 1.2 Core r1.1)
5339 * 4.2.2.4 : Failed EDID read, I2C_NAK
5340 * 4.2.2.5 : Failed EDID read, I2C_DEFER
5341 * 4.2.2.6 : EDID corruption detected
5342 * Use failsafe mode for all cases
5343 */
5344 if (intel_dp->aux.i2c_nack_count > 0 ||
5345 intel_dp->aux.i2c_defer_count > 0)
5346 drm_dbg_kms(&i915->drm,
5347 "EDID read had %d NACKs, %d DEFERs\n",
5348 intel_dp->aux.i2c_nack_count,
5349 intel_dp->aux.i2c_defer_count);
5350 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5351 } else {
5352 struct edid *block = intel_connector->detect_edid;
5353
5354 /* We have to write the checksum
5355 * of the last block read
5356 */
5357 block += intel_connector->detect_edid->extensions;
5358
5359 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5360 block->checksum) <= 0)
5361 drm_dbg_kms(&i915->drm,
5362 "Failed to write EDID checksum\n");
5363
5364 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5365 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5366 }
5367
5368 /* Set test active flag here so userspace doesn't interrupt things */
5369 intel_dp->compliance.test_active = true;
5370
5371 return test_result;
5372 }
5373
5374 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5375 {
5376 struct drm_dp_phy_test_params *data =
5377 &intel_dp->compliance.test_data.phytest;
5378
5379 if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5380 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5381 return DP_TEST_NAK;
5382 }
5383
5384 /*
5385 * link_mst is set to false to avoid executing mst related code
5386 * during compliance testing.
5387 */
5388 intel_dp->link_mst = false;
5389
5390 return DP_TEST_ACK;
5391 }
5392
5393 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5394 {
5395 struct drm_i915_private *dev_priv =
5396 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5397 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5398 struct drm_dp_phy_test_params *data =
5399 &intel_dp->compliance.test_data.phytest;
5400 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5401 enum pipe pipe = crtc->pipe;
5402 u32 pattern_val;
5403
5404 switch (data->phy_pattern) {
5405 case DP_PHY_TEST_PATTERN_NONE:
5406 DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5407 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5408 break;
5409 case DP_PHY_TEST_PATTERN_D10_2:
5410 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5411 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5412 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5413 break;
5414 case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5415 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5416 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5417 DDI_DP_COMP_CTL_ENABLE |
5418 DDI_DP_COMP_CTL_SCRAMBLED_0);
5419 break;
5420 case DP_PHY_TEST_PATTERN_PRBS7:
5421 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5422 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5423 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5424 break;
5425 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5426 /*
5427 * FIXME: Ideally pattern should come from DPCD 0x250. As
5428 * current firmware of DPR-100 could not set it, so hardcoding
5429 * now for complaince test.
5430 */
5431 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5432 pattern_val = 0x3e0f83e0;
5433 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5434 pattern_val = 0x0f83e0f8;
5435 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5436 pattern_val = 0x0000f83e;
5437 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5438 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5439 DDI_DP_COMP_CTL_ENABLE |
5440 DDI_DP_COMP_CTL_CUSTOM80);
5441 break;
5442 case DP_PHY_TEST_PATTERN_CP2520:
5443 /*
5444 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5445 * current firmware of DPR-100 could not set it, so hardcoding
5446 * now for complaince test.
5447 */
5448 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5449 pattern_val = 0xFB;
5450 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5451 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5452 pattern_val);
5453 break;
5454 default:
5455 WARN(1, "Invalid Phy Test Pattern\n");
5456 }
5457 }
5458
5459 static void
5460 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5461 {
5462 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5463 struct drm_device *dev = intel_dig_port->base.base.dev;
5464 struct drm_i915_private *dev_priv = to_i915(dev);
5465 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5466 enum pipe pipe = crtc->pipe;
5467 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5468
5469 trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5470 TRANS_DDI_FUNC_CTL(pipe));
5471 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5472 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5473
5474 trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5475 TGL_TRANS_DDI_PORT_MASK);
5476 trans_conf_value &= ~PIPECONF_ENABLE;
5477 dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5478
5479 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5480 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5481 trans_ddi_func_ctl_value);
5482 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5483 }
5484
5485 static void
5486 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5487 {
5488 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5489 struct drm_device *dev = intel_dig_port->base.base.dev;
5490 struct drm_i915_private *dev_priv = to_i915(dev);
5491 enum port port = intel_dig_port->base.port;
5492 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5493 enum pipe pipe = crtc->pipe;
5494 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5495
5496 trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5497 TRANS_DDI_FUNC_CTL(pipe));
5498 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5499 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5500
5501 trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5502 TGL_TRANS_DDI_SELECT_PORT(port);
5503 trans_conf_value |= PIPECONF_ENABLE;
5504 dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5505
5506 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5507 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5508 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5509 trans_ddi_func_ctl_value);
5510 }
5511
5512 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5513 {
5514 struct drm_dp_phy_test_params *data =
5515 &intel_dp->compliance.test_data.phytest;
5516 u8 link_status[DP_LINK_STATUS_SIZE];
5517
5518 if (!intel_dp_get_link_status(intel_dp, link_status)) {
5519 DRM_DEBUG_KMS("failed to get link status\n");
5520 return;
5521 }
5522
5523 /* retrieve vswing & pre-emphasis setting */
5524 intel_dp_get_adjust_train(intel_dp, link_status);
5525
5526 intel_dp_autotest_phy_ddi_disable(intel_dp);
5527
5528 intel_dp_set_signal_levels(intel_dp);
5529
5530 intel_dp_phy_pattern_update(intel_dp);
5531
5532 intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5533
5534 drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5535 link_status[DP_DPCD_REV]);
5536 }
5537
5538 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5539 {
5540 u8 test_result;
5541
5542 test_result = intel_dp_prepare_phytest(intel_dp);
5543 if (test_result != DP_TEST_ACK)
5544 DRM_ERROR("Phy test preparation failed\n");
5545
5546 intel_dp_process_phy_request(intel_dp);
5547
5548 return test_result;
5549 }
5550
5551 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5552 {
5553 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5554 u8 response = DP_TEST_NAK;
5555 u8 request = 0;
5556 int status;
5557
5558 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5559 if (status <= 0) {
5560 drm_dbg_kms(&i915->drm,
5561 "Could not read test request from sink\n");
5562 goto update_status;
5563 }
5564
5565 switch (request) {
5566 case DP_TEST_LINK_TRAINING:
5567 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5568 response = intel_dp_autotest_link_training(intel_dp);
5569 break;
5570 case DP_TEST_LINK_VIDEO_PATTERN:
5571 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5572 response = intel_dp_autotest_video_pattern(intel_dp);
5573 break;
5574 case DP_TEST_LINK_EDID_READ:
5575 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5576 response = intel_dp_autotest_edid(intel_dp);
5577 break;
5578 case DP_TEST_LINK_PHY_TEST_PATTERN:
5579 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5580 response = intel_dp_autotest_phy_pattern(intel_dp);
5581 break;
5582 default:
5583 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5584 request);
5585 break;
5586 }
5587
5588 if (response & DP_TEST_ACK)
5589 intel_dp->compliance.test_type = request;
5590
5591 update_status:
5592 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5593 if (status <= 0)
5594 drm_dbg_kms(&i915->drm,
5595 "Could not write test response to sink\n");
5596 }
5597
5598 static int
5599 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5600 {
5601 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5602 bool need_retrain = false;
5603
5604 if (!intel_dp->is_mst)
5605 return -EINVAL;
5606
5607 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5608
5609 for (;;) {
5610 u8 esi[DP_DPRX_ESI_LEN] = {};
5611 bool bret, handled;
5612 int retry;
5613
5614 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5615 if (!bret) {
5616 drm_dbg_kms(&i915->drm,
5617 "failed to get ESI - device may have failed\n");
5618 return -EINVAL;
5619 }
5620
5621 /* check link status - esi[10] = 0x200c */
5622 if (intel_dp->active_mst_links > 0 && !need_retrain &&
5623 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5624 drm_dbg_kms(&i915->drm,
5625 "channel EQ not ok, retraining\n");
5626 need_retrain = true;
5627 }
5628
5629 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5630
5631 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5632 if (!handled)
5633 break;
5634
5635 for (retry = 0; retry < 3; retry++) {
5636 int wret;
5637
5638 wret = drm_dp_dpcd_write(&intel_dp->aux,
5639 DP_SINK_COUNT_ESI+1,
5640 &esi[1], 3);
5641 if (wret == 3)
5642 break;
5643 }
5644 }
5645
5646 return need_retrain;
5647 }
5648
5649 static bool
5650 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5651 {
5652 u8 link_status[DP_LINK_STATUS_SIZE];
5653
5654 if (!intel_dp->link_trained)
5655 return false;
5656
5657 /*
5658 * While PSR source HW is enabled, it will control main-link sending
5659 * frames, enabling and disabling it so trying to do a retrain will fail
5660 * as the link would or not be on or it could mix training patterns
5661 * and frame data at the same time causing retrain to fail.
5662 * Also when exiting PSR, HW will retrain the link anyways fixing
5663 * any link status error.
5664 */
5665 if (intel_psr_enabled(intel_dp))
5666 return false;
5667
5668 if (!intel_dp_get_link_status(intel_dp, link_status))
5669 return false;
5670
5671 /*
5672 * Validate the cached values of intel_dp->link_rate and
5673 * intel_dp->lane_count before attempting to retrain.
5674 */
5675 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5676 intel_dp->lane_count))
5677 return false;
5678
5679 /* Retrain if Channel EQ or CR not ok */
5680 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5681 }
5682
5683 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5684 const struct drm_connector_state *conn_state)
5685 {
5686 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5687 struct intel_encoder *encoder;
5688 enum pipe pipe;
5689
5690 if (!conn_state->best_encoder)
5691 return false;
5692
5693 /* SST */
5694 encoder = &dp_to_dig_port(intel_dp)->base;
5695 if (conn_state->best_encoder == &encoder->base)
5696 return true;
5697
5698 /* MST */
5699 for_each_pipe(i915, pipe) {
5700 encoder = &intel_dp->mst_encoders[pipe]->base;
5701 if (conn_state->best_encoder == &encoder->base)
5702 return true;
5703 }
5704
5705 return false;
5706 }
5707
5708 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5709 struct drm_modeset_acquire_ctx *ctx,
5710 u32 *crtc_mask)
5711 {
5712 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5713 struct drm_connector_list_iter conn_iter;
5714 struct intel_connector *connector;
5715 int ret = 0;
5716
5717 *crtc_mask = 0;
5718
5719 if (!intel_dp_needs_link_retrain(intel_dp))
5720 return 0;
5721
5722 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5723 for_each_intel_connector_iter(connector, &conn_iter) {
5724 struct drm_connector_state *conn_state =
5725 connector->base.state;
5726 struct intel_crtc_state *crtc_state;
5727 struct intel_crtc *crtc;
5728
5729 if (!intel_dp_has_connector(intel_dp, conn_state))
5730 continue;
5731
5732 crtc = to_intel_crtc(conn_state->crtc);
5733 if (!crtc)
5734 continue;
5735
5736 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5737 if (ret)
5738 break;
5739
5740 crtc_state = to_intel_crtc_state(crtc->base.state);
5741
5742 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5743
5744 if (!crtc_state->hw.active)
5745 continue;
5746
5747 if (conn_state->commit &&
5748 !try_wait_for_completion(&conn_state->commit->hw_done))
5749 continue;
5750
5751 *crtc_mask |= drm_crtc_mask(&crtc->base);
5752 }
5753 drm_connector_list_iter_end(&conn_iter);
5754
5755 if (!intel_dp_needs_link_retrain(intel_dp))
5756 *crtc_mask = 0;
5757
5758 return ret;
5759 }
5760
5761 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5762 {
5763 struct intel_connector *connector = intel_dp->attached_connector;
5764
5765 return connector->base.status == connector_status_connected ||
5766 intel_dp->is_mst;
5767 }
5768
5769 int intel_dp_retrain_link(struct intel_encoder *encoder,
5770 struct drm_modeset_acquire_ctx *ctx)
5771 {
5772 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5773 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5774 struct intel_crtc *crtc;
5775 u32 crtc_mask;
5776 int ret;
5777
5778 if (!intel_dp_is_connected(intel_dp))
5779 return 0;
5780
5781 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5782 ctx);
5783 if (ret)
5784 return ret;
5785
5786 ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5787 if (ret)
5788 return ret;
5789
5790 if (crtc_mask == 0)
5791 return 0;
5792
5793 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5794 encoder->base.base.id, encoder->base.name);
5795
5796 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5797 const struct intel_crtc_state *crtc_state =
5798 to_intel_crtc_state(crtc->base.state);
5799
5800 /* Suppress underruns caused by re-training */
5801 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5802 if (crtc_state->has_pch_encoder)
5803 intel_set_pch_fifo_underrun_reporting(dev_priv,
5804 intel_crtc_pch_transcoder(crtc), false);
5805 }
5806
5807 intel_dp_start_link_train(intel_dp);
5808 intel_dp_stop_link_train(intel_dp);
5809
5810 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5811 const struct intel_crtc_state *crtc_state =
5812 to_intel_crtc_state(crtc->base.state);
5813
5814 /* Keep underrun reporting disabled until things are stable */
5815 intel_wait_for_vblank(dev_priv, crtc->pipe);
5816
5817 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5818 if (crtc_state->has_pch_encoder)
5819 intel_set_pch_fifo_underrun_reporting(dev_priv,
5820 intel_crtc_pch_transcoder(crtc), true);
5821 }
5822
5823 return 0;
5824 }
5825
5826 /*
5827 * If display is now connected check links status,
5828 * there has been known issues of link loss triggering
5829 * long pulse.
5830 *
5831 * Some sinks (eg. ASUS PB287Q) seem to perform some
5832 * weird HPD ping pong during modesets. So we can apparently
5833 * end up with HPD going low during a modeset, and then
5834 * going back up soon after. And once that happens we must
5835 * retrain the link to get a picture. That's in case no
5836 * userspace component reacted to intermittent HPD dip.
5837 */
5838 static enum intel_hotplug_state
5839 intel_dp_hotplug(struct intel_encoder *encoder,
5840 struct intel_connector *connector)
5841 {
5842 struct drm_modeset_acquire_ctx ctx;
5843 enum intel_hotplug_state state;
5844 int ret;
5845
5846 state = intel_encoder_hotplug(encoder, connector);
5847
5848 drm_modeset_acquire_init(&ctx, 0);
5849
5850 for (;;) {
5851 ret = intel_dp_retrain_link(encoder, &ctx);
5852
5853 if (ret == -EDEADLK) {
5854 drm_modeset_backoff(&ctx);
5855 continue;
5856 }
5857
5858 break;
5859 }
5860
5861 drm_modeset_drop_locks(&ctx);
5862 drm_modeset_acquire_fini(&ctx);
5863 drm_WARN(encoder->base.dev, ret,
5864 "Acquiring modeset locks failed with %i\n", ret);
5865
5866 /*
5867 * Keeping it consistent with intel_ddi_hotplug() and
5868 * intel_hdmi_hotplug().
5869 */
5870 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5871 state = INTEL_HOTPLUG_RETRY;
5872
5873 return state;
5874 }
5875
5876 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5877 {
5878 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5879 u8 val;
5880
5881 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5882 return;
5883
5884 if (drm_dp_dpcd_readb(&intel_dp->aux,
5885 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5886 return;
5887
5888 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5889
5890 if (val & DP_AUTOMATED_TEST_REQUEST)
5891 intel_dp_handle_test_request(intel_dp);
5892
5893 if (val & DP_CP_IRQ)
5894 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5895
5896 if (val & DP_SINK_SPECIFIC_IRQ)
5897 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5898 }
5899
5900 /*
5901 * According to DP spec
5902 * 5.1.2:
5903 * 1. Read DPCD
5904 * 2. Configure link according to Receiver Capabilities
5905 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
5906 * 4. Check link status on receipt of hot-plug interrupt
5907 *
5908 * intel_dp_short_pulse - handles short pulse interrupts
5909 * when full detection is not required.
5910 * Returns %true if short pulse is handled and full detection
5911 * is NOT required and %false otherwise.
5912 */
5913 static bool
5914 intel_dp_short_pulse(struct intel_dp *intel_dp)
5915 {
5916 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5917 u8 old_sink_count = intel_dp->sink_count;
5918 bool ret;
5919
5920 /*
5921 * Clearing compliance test variables to allow capturing
5922 * of values for next automated test request.
5923 */
5924 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5925
5926 /*
5927 * Now read the DPCD to see if it's actually running
5928 * If the current value of sink count doesn't match with
5929 * the value that was stored earlier or dpcd read failed
5930 * we need to do full detection
5931 */
5932 ret = intel_dp_get_dpcd(intel_dp);
5933
5934 if ((old_sink_count != intel_dp->sink_count) || !ret) {
5935 /* No need to proceed if we are going to do full detect */
5936 return false;
5937 }
5938
5939 intel_dp_check_service_irq(intel_dp);
5940
5941 /* Handle CEC interrupts, if any */
5942 drm_dp_cec_irq(&intel_dp->aux);
5943
5944 /* defer to the hotplug work for link retraining if needed */
5945 if (intel_dp_needs_link_retrain(intel_dp))
5946 return false;
5947
5948 intel_psr_short_pulse(intel_dp);
5949
5950 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5951 drm_dbg_kms(&dev_priv->drm,
5952 "Link Training Compliance Test requested\n");
5953 /* Send a Hotplug Uevent to userspace to start modeset */
5954 drm_kms_helper_hotplug_event(&dev_priv->drm);
5955 }
5956
5957 return true;
5958 }
5959
5960 /* XXX this is probably wrong for multiple downstream ports */
5961 static enum drm_connector_status
5962 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5963 {
5964 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5965 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5966 u8 *dpcd = intel_dp->dpcd;
5967 u8 type;
5968
5969 if (WARN_ON(intel_dp_is_edp(intel_dp)))
5970 return connector_status_connected;
5971
5972 if (lspcon->active)
5973 lspcon_resume(lspcon);
5974
5975 if (!intel_dp_get_dpcd(intel_dp))
5976 return connector_status_disconnected;
5977
5978 /* if there's no downstream port, we're done */
5979 if (!drm_dp_is_branch(dpcd))
5980 return connector_status_connected;
5981
5982 /* If we're HPD-aware, SINK_COUNT changes dynamically */
5983 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5984 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5985
5986 return intel_dp->sink_count ?
5987 connector_status_connected : connector_status_disconnected;
5988 }
5989
5990 if (intel_dp_can_mst(intel_dp))
5991 return connector_status_connected;
5992
5993 /* If no HPD, poke DDC gently */
5994 if (drm_probe_ddc(&intel_dp->aux.ddc))
5995 return connector_status_connected;
5996
5997 /* Well we tried, say unknown for unreliable port types */
5998 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5999 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6000 if (type == DP_DS_PORT_TYPE_VGA ||
6001 type == DP_DS_PORT_TYPE_NON_EDID)
6002 return connector_status_unknown;
6003 } else {
6004 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6005 DP_DWN_STRM_PORT_TYPE_MASK;
6006 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6007 type == DP_DWN_STRM_PORT_TYPE_OTHER)
6008 return connector_status_unknown;
6009 }
6010
6011 /* Anything else is out of spec, warn and ignore */
6012 drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6013 return connector_status_disconnected;
6014 }
6015
6016 static enum drm_connector_status
6017 edp_detect(struct intel_dp *intel_dp)
6018 {
6019 return connector_status_connected;
6020 }
6021
6022 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6023 {
6024 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6025 u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6026
6027 return intel_de_read(dev_priv, SDEISR) & bit;
6028 }
6029
6030 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6031 {
6032 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6033 u32 bit;
6034
6035 switch (encoder->hpd_pin) {
6036 case HPD_PORT_B:
6037 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6038 break;
6039 case HPD_PORT_C:
6040 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6041 break;
6042 case HPD_PORT_D:
6043 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6044 break;
6045 default:
6046 MISSING_CASE(encoder->hpd_pin);
6047 return false;
6048 }
6049
6050 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6051 }
6052
6053 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6054 {
6055 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6056 u32 bit;
6057
6058 switch (encoder->hpd_pin) {
6059 case HPD_PORT_B:
6060 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6061 break;
6062 case HPD_PORT_C:
6063 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6064 break;
6065 case HPD_PORT_D:
6066 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6067 break;
6068 default:
6069 MISSING_CASE(encoder->hpd_pin);
6070 return false;
6071 }
6072
6073 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6074 }
6075
6076 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6077 {
6078 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6079 u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6080
6081 return intel_de_read(dev_priv, DEISR) & bit;
6082 }
6083
6084 /*
6085 * intel_digital_port_connected - is the specified port connected?
6086 * @encoder: intel_encoder
6087 *
6088 * In cases where there's a connector physically connected but it can't be used
6089 * by our hardware we also return false, since the rest of the driver should
6090 * pretty much treat the port as disconnected. This is relevant for type-C
6091 * (starting on ICL) where there's ownership involved.
6092 *
6093 * Return %true if port is connected, %false otherwise.
6094 */
6095 bool intel_digital_port_connected(struct intel_encoder *encoder)
6096 {
6097 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6098 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6099 bool is_connected = false;
6100 intel_wakeref_t wakeref;
6101
6102 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6103 is_connected = dig_port->connected(encoder);
6104
6105 return is_connected;
6106 }
6107
6108 static struct edid *
6109 intel_dp_get_edid(struct intel_dp *intel_dp)
6110 {
6111 struct intel_connector *intel_connector = intel_dp->attached_connector;
6112
6113 /* use cached edid if we have one */
6114 if (intel_connector->edid) {
6115 /* invalid edid */
6116 if (IS_ERR(intel_connector->edid))
6117 return NULL;
6118
6119 return drm_edid_duplicate(intel_connector->edid);
6120 } else
6121 return drm_get_edid(&intel_connector->base,
6122 &intel_dp->aux.ddc);
6123 }
6124
6125 static void
6126 intel_dp_set_edid(struct intel_dp *intel_dp)
6127 {
6128 struct intel_connector *intel_connector = intel_dp->attached_connector;
6129 struct edid *edid;
6130
6131 intel_dp_unset_edid(intel_dp);
6132 edid = intel_dp_get_edid(intel_dp);
6133 intel_connector->detect_edid = edid;
6134
6135 intel_dp->has_audio = drm_detect_monitor_audio(edid);
6136 drm_dp_cec_set_edid(&intel_dp->aux, edid);
6137 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6138 }
6139
6140 static void
6141 intel_dp_unset_edid(struct intel_dp *intel_dp)
6142 {
6143 struct intel_connector *intel_connector = intel_dp->attached_connector;
6144
6145 drm_dp_cec_unset_edid(&intel_dp->aux);
6146 kfree(intel_connector->detect_edid);
6147 intel_connector->detect_edid = NULL;
6148
6149 intel_dp->has_audio = false;
6150 intel_dp->edid_quirks = 0;
6151 }
6152
6153 static int
6154 intel_dp_detect(struct drm_connector *connector,
6155 struct drm_modeset_acquire_ctx *ctx,
6156 bool force)
6157 {
6158 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6159 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6160 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6161 struct intel_encoder *encoder = &dig_port->base;
6162 enum drm_connector_status status;
6163
6164 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6165 connector->base.id, connector->name);
6166 drm_WARN_ON(&dev_priv->drm,
6167 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6168
6169 /* Can't disconnect eDP */
6170 if (intel_dp_is_edp(intel_dp))
6171 status = edp_detect(intel_dp);
6172 else if (intel_digital_port_connected(encoder))
6173 status = intel_dp_detect_dpcd(intel_dp);
6174 else
6175 status = connector_status_disconnected;
6176
6177 if (status == connector_status_disconnected) {
6178 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6179 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6180
6181 if (intel_dp->is_mst) {
6182 drm_dbg_kms(&dev_priv->drm,
6183 "MST device may have disappeared %d vs %d\n",
6184 intel_dp->is_mst,
6185 intel_dp->mst_mgr.mst_state);
6186 intel_dp->is_mst = false;
6187 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6188 intel_dp->is_mst);
6189 }
6190
6191 goto out;
6192 }
6193
6194 if (intel_dp->reset_link_params) {
6195 /* Initial max link lane count */
6196 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6197
6198 /* Initial max link rate */
6199 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6200
6201 intel_dp->reset_link_params = false;
6202 }
6203
6204 intel_dp_print_rates(intel_dp);
6205
6206 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6207 if (INTEL_GEN(dev_priv) >= 11)
6208 intel_dp_get_dsc_sink_cap(intel_dp);
6209
6210 intel_dp_configure_mst(intel_dp);
6211
6212 if (intel_dp->is_mst) {
6213 /*
6214 * If we are in MST mode then this connector
6215 * won't appear connected or have anything
6216 * with EDID on it
6217 */
6218 status = connector_status_disconnected;
6219 goto out;
6220 }
6221
6222 /*
6223 * Some external monitors do not signal loss of link synchronization
6224 * with an IRQ_HPD, so force a link status check.
6225 */
6226 if (!intel_dp_is_edp(intel_dp)) {
6227 int ret;
6228
6229 ret = intel_dp_retrain_link(encoder, ctx);
6230 if (ret)
6231 return ret;
6232 }
6233
6234 /*
6235 * Clearing NACK and defer counts to get their exact values
6236 * while reading EDID which are required by Compliance tests
6237 * 4.2.2.4 and 4.2.2.5
6238 */
6239 intel_dp->aux.i2c_nack_count = 0;
6240 intel_dp->aux.i2c_defer_count = 0;
6241
6242 intel_dp_set_edid(intel_dp);
6243 if (intel_dp_is_edp(intel_dp) ||
6244 to_intel_connector(connector)->detect_edid)
6245 status = connector_status_connected;
6246
6247 intel_dp_check_service_irq(intel_dp);
6248
6249 out:
6250 if (status != connector_status_connected && !intel_dp->is_mst)
6251 intel_dp_unset_edid(intel_dp);
6252
6253 /*
6254 * Make sure the refs for power wells enabled during detect are
6255 * dropped to avoid a new detect cycle triggered by HPD polling.
6256 */
6257 intel_display_power_flush_work(dev_priv);
6258
6259 return status;
6260 }
6261
6262 static void
6263 intel_dp_force(struct drm_connector *connector)
6264 {
6265 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6266 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6267 struct intel_encoder *intel_encoder = &dig_port->base;
6268 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6269 enum intel_display_power_domain aux_domain =
6270 intel_aux_power_domain(dig_port);
6271 intel_wakeref_t wakeref;
6272
6273 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6274 connector->base.id, connector->name);
6275 intel_dp_unset_edid(intel_dp);
6276
6277 if (connector->status != connector_status_connected)
6278 return;
6279
6280 wakeref = intel_display_power_get(dev_priv, aux_domain);
6281
6282 intel_dp_set_edid(intel_dp);
6283
6284 intel_display_power_put(dev_priv, aux_domain, wakeref);
6285 }
6286
6287 static int intel_dp_get_modes(struct drm_connector *connector)
6288 {
6289 struct intel_connector *intel_connector = to_intel_connector(connector);
6290 struct edid *edid;
6291
6292 edid = intel_connector->detect_edid;
6293 if (edid) {
6294 int ret = intel_connector_update_modes(connector, edid);
6295 if (ret)
6296 return ret;
6297 }
6298
6299 /* if eDP has no EDID, fall back to fixed mode */
6300 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6301 intel_connector->panel.fixed_mode) {
6302 struct drm_display_mode *mode;
6303
6304 mode = drm_mode_duplicate(connector->dev,
6305 intel_connector->panel.fixed_mode);
6306 if (mode) {
6307 drm_mode_probed_add(connector, mode);
6308 return 1;
6309 }
6310 }
6311
6312 return 0;
6313 }
6314
6315 static int
6316 intel_dp_connector_register(struct drm_connector *connector)
6317 {
6318 struct drm_i915_private *i915 = to_i915(connector->dev);
6319 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6320 int ret;
6321
6322 ret = intel_connector_register(connector);
6323 if (ret)
6324 return ret;
6325
6326 drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6327 intel_dp->aux.name, connector->kdev->kobj.name);
6328
6329 intel_dp->aux.dev = connector->kdev;
6330 ret = drm_dp_aux_register(&intel_dp->aux);
6331 if (!ret)
6332 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6333 return ret;
6334 }
6335
6336 static void
6337 intel_dp_connector_unregister(struct drm_connector *connector)
6338 {
6339 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6340
6341 drm_dp_cec_unregister_connector(&intel_dp->aux);
6342 drm_dp_aux_unregister(&intel_dp->aux);
6343 intel_connector_unregister(connector);
6344 }
6345
6346 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6347 {
6348 struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6349 struct intel_dp *intel_dp = &intel_dig_port->dp;
6350
6351 intel_dp_mst_encoder_cleanup(intel_dig_port);
6352 if (intel_dp_is_edp(intel_dp)) {
6353 intel_wakeref_t wakeref;
6354
6355 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6356 /*
6357 * vdd might still be enabled do to the delayed vdd off.
6358 * Make sure vdd is actually turned off here.
6359 */
6360 with_pps_lock(intel_dp, wakeref)
6361 edp_panel_vdd_off_sync(intel_dp);
6362
6363 if (intel_dp->edp_notifier.notifier_call) {
6364 unregister_reboot_notifier(&intel_dp->edp_notifier);
6365 intel_dp->edp_notifier.notifier_call = NULL;
6366 }
6367 }
6368
6369 intel_dp_aux_fini(intel_dp);
6370 }
6371
6372 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6373 {
6374 intel_dp_encoder_flush_work(encoder);
6375
6376 drm_encoder_cleanup(encoder);
6377 kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6378 }
6379
6380 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6381 {
6382 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6383 intel_wakeref_t wakeref;
6384
6385 if (!intel_dp_is_edp(intel_dp))
6386 return;
6387
6388 /*
6389 * vdd might still be enabled do to the delayed vdd off.
6390 * Make sure vdd is actually turned off here.
6391 */
6392 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6393 with_pps_lock(intel_dp, wakeref)
6394 edp_panel_vdd_off_sync(intel_dp);
6395 }
6396
6397 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6398 {
6399 long ret;
6400
6401 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6402 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6403 msecs_to_jiffies(timeout));
6404
6405 if (!ret)
6406 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6407 }
6408
6409 static
6410 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
6411 u8 *an)
6412 {
6413 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6414 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6415 static const struct drm_dp_aux_msg msg = {
6416 .request = DP_AUX_NATIVE_WRITE,
6417 .address = DP_AUX_HDCP_AKSV,
6418 .size = DRM_HDCP_KSV_LEN,
6419 };
6420 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6421 ssize_t dpcd_ret;
6422 int ret;
6423
6424 /* Output An first, that's easy */
6425 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
6426 an, DRM_HDCP_AN_LEN);
6427 if (dpcd_ret != DRM_HDCP_AN_LEN) {
6428 drm_dbg_kms(&i915->drm,
6429 "Failed to write An over DP/AUX (%zd)\n",
6430 dpcd_ret);
6431 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6432 }
6433
6434 /*
6435 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6436 * order to get it on the wire, we need to create the AUX header as if
6437 * we were writing the data, and then tickle the hardware to output the
6438 * data once the header is sent out.
6439 */
6440 intel_dp_aux_header(txbuf, &msg);
6441
6442 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6443 rxbuf, sizeof(rxbuf),
6444 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6445 if (ret < 0) {
6446 drm_dbg_kms(&i915->drm,
6447 "Write Aksv over DP/AUX failed (%d)\n", ret);
6448 return ret;
6449 } else if (ret == 0) {
6450 drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6451 return -EIO;
6452 }
6453
6454 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6455 if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6456 drm_dbg_kms(&i915->drm,
6457 "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6458 reply);
6459 return -EIO;
6460 }
6461 return 0;
6462 }
6463
6464 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6465 u8 *bksv)
6466 {
6467 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6468 ssize_t ret;
6469
6470 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6471 DRM_HDCP_KSV_LEN);
6472 if (ret != DRM_HDCP_KSV_LEN) {
6473 drm_dbg_kms(&i915->drm,
6474 "Read Bksv from DP/AUX failed (%zd)\n", ret);
6475 return ret >= 0 ? -EIO : ret;
6476 }
6477 return 0;
6478 }
6479
6480 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6481 u8 *bstatus)
6482 {
6483 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6484 ssize_t ret;
6485
6486 /*
6487 * For some reason the HDMI and DP HDCP specs call this register
6488 * definition by different names. In the HDMI spec, it's called BSTATUS,
6489 * but in DP it's called BINFO.
6490 */
6491 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6492 bstatus, DRM_HDCP_BSTATUS_LEN);
6493 if (ret != DRM_HDCP_BSTATUS_LEN) {
6494 drm_dbg_kms(&i915->drm,
6495 "Read bstatus from DP/AUX failed (%zd)\n", ret);
6496 return ret >= 0 ? -EIO : ret;
6497 }
6498 return 0;
6499 }
6500
6501 static
6502 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6503 u8 *bcaps)
6504 {
6505 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6506 ssize_t ret;
6507
6508 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6509 bcaps, 1);
6510 if (ret != 1) {
6511 drm_dbg_kms(&i915->drm,
6512 "Read bcaps from DP/AUX failed (%zd)\n", ret);
6513 return ret >= 0 ? -EIO : ret;
6514 }
6515
6516 return 0;
6517 }
6518
6519 static
6520 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6521 bool *repeater_present)
6522 {
6523 ssize_t ret;
6524 u8 bcaps;
6525
6526 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6527 if (ret)
6528 return ret;
6529
6530 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6531 return 0;
6532 }
6533
6534 static
6535 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6536 u8 *ri_prime)
6537 {
6538 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6539 ssize_t ret;
6540
6541 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6542 ri_prime, DRM_HDCP_RI_LEN);
6543 if (ret != DRM_HDCP_RI_LEN) {
6544 drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6545 ret);
6546 return ret >= 0 ? -EIO : ret;
6547 }
6548 return 0;
6549 }
6550
6551 static
6552 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6553 bool *ksv_ready)
6554 {
6555 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6556 ssize_t ret;
6557 u8 bstatus;
6558
6559 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6560 &bstatus, 1);
6561 if (ret != 1) {
6562 drm_dbg_kms(&i915->drm,
6563 "Read bstatus from DP/AUX failed (%zd)\n", ret);
6564 return ret >= 0 ? -EIO : ret;
6565 }
6566 *ksv_ready = bstatus & DP_BSTATUS_READY;
6567 return 0;
6568 }
6569
6570 static
6571 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6572 int num_downstream, u8 *ksv_fifo)
6573 {
6574 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6575 ssize_t ret;
6576 int i;
6577
6578 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6579 for (i = 0; i < num_downstream; i += 3) {
6580 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6581 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6582 DP_AUX_HDCP_KSV_FIFO,
6583 ksv_fifo + i * DRM_HDCP_KSV_LEN,
6584 len);
6585 if (ret != len) {
6586 drm_dbg_kms(&i915->drm,
6587 "Read ksv[%d] from DP/AUX failed (%zd)\n",
6588 i, ret);
6589 return ret >= 0 ? -EIO : ret;
6590 }
6591 }
6592 return 0;
6593 }
6594
6595 static
6596 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6597 int i, u32 *part)
6598 {
6599 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6600 ssize_t ret;
6601
6602 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6603 return -EINVAL;
6604
6605 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6606 DP_AUX_HDCP_V_PRIME(i), part,
6607 DRM_HDCP_V_PRIME_PART_LEN);
6608 if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6609 drm_dbg_kms(&i915->drm,
6610 "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6611 return ret >= 0 ? -EIO : ret;
6612 }
6613 return 0;
6614 }
6615
6616 static
6617 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6618 bool enable)
6619 {
6620 /* Not used for single stream DisplayPort setups */
6621 return 0;
6622 }
6623
6624 static
6625 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6626 {
6627 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6628 ssize_t ret;
6629 u8 bstatus;
6630
6631 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6632 &bstatus, 1);
6633 if (ret != 1) {
6634 drm_dbg_kms(&i915->drm,
6635 "Read bstatus from DP/AUX failed (%zd)\n", ret);
6636 return false;
6637 }
6638
6639 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6640 }
6641
6642 static
6643 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6644 bool *hdcp_capable)
6645 {
6646 ssize_t ret;
6647 u8 bcaps;
6648
6649 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6650 if (ret)
6651 return ret;
6652
6653 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6654 return 0;
6655 }
6656
6657 struct hdcp2_dp_errata_stream_type {
6658 u8 msg_id;
6659 u8 stream_type;
6660 } __packed;
6661
6662 struct hdcp2_dp_msg_data {
6663 u8 msg_id;
6664 u32 offset;
6665 bool msg_detectable;
6666 u32 timeout;
6667 u32 timeout2; /* Added for non_paired situation */
6668 };
6669
6670 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6671 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6672 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6673 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6674 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6675 false, 0, 0 },
6676 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6677 false, 0, 0 },
6678 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6679 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6680 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6681 { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6682 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6683 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6684 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6685 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6686 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6687 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6688 0, 0 },
6689 { HDCP_2_2_REP_SEND_RECVID_LIST,
6690 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6691 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6692 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6693 0, 0 },
6694 { HDCP_2_2_REP_STREAM_MANAGE,
6695 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6696 0, 0 },
6697 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6698 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6699 /* local define to shovel this through the write_2_2 interface */
6700 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50
6701 { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6702 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6703 0, 0 },
6704 };
6705
6706 static int
6707 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6708 u8 *rx_status)
6709 {
6710 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6711 ssize_t ret;
6712
6713 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6714 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6715 HDCP_2_2_DP_RXSTATUS_LEN);
6716 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6717 drm_dbg_kms(&i915->drm,
6718 "Read bstatus from DP/AUX failed (%zd)\n", ret);
6719 return ret >= 0 ? -EIO : ret;
6720 }
6721
6722 return 0;
6723 }
6724
6725 static
6726 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6727 u8 msg_id, bool *msg_ready)
6728 {
6729 u8 rx_status;
6730 int ret;
6731
6732 *msg_ready = false;
6733 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6734 if (ret < 0)
6735 return ret;
6736
6737 switch (msg_id) {
6738 case HDCP_2_2_AKE_SEND_HPRIME:
6739 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6740 *msg_ready = true;
6741 break;
6742 case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6743 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6744 *msg_ready = true;
6745 break;
6746 case HDCP_2_2_REP_SEND_RECVID_LIST:
6747 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6748 *msg_ready = true;
6749 break;
6750 default:
6751 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6752 return -EINVAL;
6753 }
6754
6755 return 0;
6756 }
6757
6758 static ssize_t
6759 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6760 const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6761 {
6762 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6763 struct intel_dp *dp = &intel_dig_port->dp;
6764 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6765 u8 msg_id = hdcp2_msg_data->msg_id;
6766 int ret, timeout;
6767 bool msg_ready = false;
6768
6769 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6770 timeout = hdcp2_msg_data->timeout2;
6771 else
6772 timeout = hdcp2_msg_data->timeout;
6773
6774 /*
6775 * There is no way to detect the CERT, LPRIME and STREAM_READY
6776 * availability. So Wait for timeout and read the msg.
6777 */
6778 if (!hdcp2_msg_data->msg_detectable) {
6779 mdelay(timeout);
6780 ret = 0;
6781 } else {
6782 /*
6783 * As we want to check the msg availability at timeout, Ignoring
6784 * the timeout at wait for CP_IRQ.
6785 */
6786 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6787 ret = hdcp2_detect_msg_availability(intel_dig_port,
6788 msg_id, &msg_ready);
6789 if (!msg_ready)
6790 ret = -ETIMEDOUT;
6791 }
6792
6793 if (ret)
6794 drm_dbg_kms(&i915->drm,
6795 "msg_id %d, ret %d, timeout(mSec): %d\n",
6796 hdcp2_msg_data->msg_id, ret, timeout);
6797
6798 return ret;
6799 }
6800
6801 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6802 {
6803 int i;
6804
6805 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6806 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6807 return &hdcp2_dp_msg_data[i];
6808
6809 return NULL;
6810 }
6811
6812 static
6813 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6814 void *buf, size_t size)
6815 {
6816 struct intel_dp *dp = &intel_dig_port->dp;
6817 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6818 unsigned int offset;
6819 u8 *byte = buf;
6820 ssize_t ret, bytes_to_write, len;
6821 const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6822
6823 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6824 if (!hdcp2_msg_data)
6825 return -EINVAL;
6826
6827 offset = hdcp2_msg_data->offset;
6828
6829 /* No msg_id in DP HDCP2.2 msgs */
6830 bytes_to_write = size - 1;
6831 byte++;
6832
6833 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6834
6835 while (bytes_to_write) {
6836 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6837 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6838
6839 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6840 offset, (void *)byte, len);
6841 if (ret < 0)
6842 return ret;
6843
6844 bytes_to_write -= ret;
6845 byte += ret;
6846 offset += ret;
6847 }
6848
6849 return size;
6850 }
6851
6852 static
6853 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6854 {
6855 u8 rx_info[HDCP_2_2_RXINFO_LEN];
6856 u32 dev_cnt;
6857 ssize_t ret;
6858
6859 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6860 DP_HDCP_2_2_REG_RXINFO_OFFSET,
6861 (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6862 if (ret != HDCP_2_2_RXINFO_LEN)
6863 return ret >= 0 ? -EIO : ret;
6864
6865 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6866 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6867
6868 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6869 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6870
6871 ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6872 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6873 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6874
6875 return ret;
6876 }
6877
6878 static
6879 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6880 u8 msg_id, void *buf, size_t size)
6881 {
6882 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6883 unsigned int offset;
6884 u8 *byte = buf;
6885 ssize_t ret, bytes_to_recv, len;
6886 const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6887
6888 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6889 if (!hdcp2_msg_data)
6890 return -EINVAL;
6891 offset = hdcp2_msg_data->offset;
6892
6893 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6894 if (ret < 0)
6895 return ret;
6896
6897 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6898 ret = get_receiver_id_list_size(intel_dig_port);
6899 if (ret < 0)
6900 return ret;
6901
6902 size = ret;
6903 }
6904 bytes_to_recv = size - 1;
6905
6906 /* DP adaptation msgs has no msg_id */
6907 byte++;
6908
6909 while (bytes_to_recv) {
6910 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6911 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6912
6913 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6914 (void *)byte, len);
6915 if (ret < 0) {
6916 drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
6917 msg_id, ret);
6918 return ret;
6919 }
6920
6921 bytes_to_recv -= ret;
6922 byte += ret;
6923 offset += ret;
6924 }
6925 byte = buf;
6926 *byte = msg_id;
6927
6928 return size;
6929 }
6930
6931 static
6932 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6933 bool is_repeater, u8 content_type)
6934 {
6935 int ret;
6936 struct hdcp2_dp_errata_stream_type stream_type_msg;
6937
6938 if (is_repeater)
6939 return 0;
6940
6941 /*
6942 * Errata for DP: As Stream type is used for encryption, Receiver
6943 * should be communicated with stream type for the decryption of the
6944 * content.
6945 * Repeater will be communicated with stream type as a part of it's
6946 * auth later in time.
6947 */
6948 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6949 stream_type_msg.stream_type = content_type;
6950
6951 ret = intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6952 sizeof(stream_type_msg));
6953
6954 return ret < 0 ? ret : 0;
6955
6956 }
6957
6958 static
6959 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6960 {
6961 u8 rx_status;
6962 int ret;
6963
6964 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6965 if (ret)
6966 return ret;
6967
6968 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6969 ret = HDCP_REAUTH_REQUEST;
6970 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6971 ret = HDCP_LINK_INTEGRITY_FAILURE;
6972 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6973 ret = HDCP_TOPOLOGY_CHANGE;
6974
6975 return ret;
6976 }
6977
6978 static
6979 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6980 bool *capable)
6981 {
6982 u8 rx_caps[3];
6983 int ret;
6984
6985 *capable = false;
6986 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6987 DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6988 rx_caps, HDCP_2_2_RXCAPS_LEN);
6989 if (ret != HDCP_2_2_RXCAPS_LEN)
6990 return ret >= 0 ? -EIO : ret;
6991
6992 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6993 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6994 *capable = true;
6995
6996 return 0;
6997 }
6998
6999 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
7000 .write_an_aksv = intel_dp_hdcp_write_an_aksv,
7001 .read_bksv = intel_dp_hdcp_read_bksv,
7002 .read_bstatus = intel_dp_hdcp_read_bstatus,
7003 .repeater_present = intel_dp_hdcp_repeater_present,
7004 .read_ri_prime = intel_dp_hdcp_read_ri_prime,
7005 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
7006 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
7007 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
7008 .toggle_signalling = intel_dp_hdcp_toggle_signalling,
7009 .check_link = intel_dp_hdcp_check_link,
7010 .hdcp_capable = intel_dp_hdcp_capable,
7011 .write_2_2_msg = intel_dp_hdcp2_write_msg,
7012 .read_2_2_msg = intel_dp_hdcp2_read_msg,
7013 .config_stream_type = intel_dp_hdcp2_config_stream_type,
7014 .check_2_2_link = intel_dp_hdcp2_check_link,
7015 .hdcp_2_2_capable = intel_dp_hdcp2_capable,
7016 .protocol = HDCP_PROTOCOL_DP,
7017 };
7018
7019 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
7020 {
7021 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7022 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
7023
7024 lockdep_assert_held(&dev_priv->pps_mutex);
7025
7026 if (!edp_have_panel_vdd(intel_dp))
7027 return;
7028
7029 /*
7030 * The VDD bit needs a power domain reference, so if the bit is
7031 * already enabled when we boot or resume, grab this reference and
7032 * schedule a vdd off, so we don't hold on to the reference
7033 * indefinitely.
7034 */
7035 drm_dbg_kms(&dev_priv->drm,
7036 "VDD left on by BIOS, adjusting state tracking\n");
7037 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7038
7039 edp_panel_vdd_schedule_off(intel_dp);
7040 }
7041
7042 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7043 {
7044 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7045 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7046 enum pipe pipe;
7047
7048 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7049 encoder->port, &pipe))
7050 return pipe;
7051
7052 return INVALID_PIPE;
7053 }
7054
7055 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7056 {
7057 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7058 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7059 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7060 intel_wakeref_t wakeref;
7061
7062 if (!HAS_DDI(dev_priv))
7063 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7064
7065 if (lspcon->active)
7066 lspcon_resume(lspcon);
7067
7068 intel_dp->reset_link_params = true;
7069
7070 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7071 !intel_dp_is_edp(intel_dp))
7072 return;
7073
7074 with_pps_lock(intel_dp, wakeref) {
7075 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7076 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7077
7078 if (intel_dp_is_edp(intel_dp)) {
7079 /*
7080 * Reinit the power sequencer, in case BIOS did
7081 * something nasty with it.
7082 */
7083 intel_dp_pps_init(intel_dp);
7084 intel_edp_panel_vdd_sanitize(intel_dp);
7085 }
7086 }
7087 }
7088
7089 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7090 int tile_group_id)
7091 {
7092 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7093 struct drm_connector_list_iter conn_iter;
7094 struct drm_connector *connector;
7095 int ret = 0;
7096
7097 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7098 drm_for_each_connector_iter(connector, &conn_iter) {
7099 struct drm_connector_state *conn_state;
7100 struct intel_crtc_state *crtc_state;
7101 struct intel_crtc *crtc;
7102
7103 if (!connector->has_tile ||
7104 connector->tile_group->id != tile_group_id)
7105 continue;
7106
7107 conn_state = drm_atomic_get_connector_state(&state->base,
7108 connector);
7109 if (IS_ERR(conn_state)) {
7110 ret = PTR_ERR(conn_state);
7111 break;
7112 }
7113
7114 crtc = to_intel_crtc(conn_state->crtc);
7115
7116 if (!crtc)
7117 continue;
7118
7119 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7120 crtc_state->uapi.mode_changed = true;
7121
7122 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7123 if (ret)
7124 break;
7125 }
7126 drm_connector_list_iter_end(&conn_iter);
7127
7128 return ret;
7129 }
7130
7131 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7132 {
7133 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7134 struct intel_crtc *crtc;
7135
7136 if (transcoders == 0)
7137 return 0;
7138
7139 for_each_intel_crtc(&dev_priv->drm, crtc) {
7140 struct intel_crtc_state *crtc_state;
7141 int ret;
7142
7143 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7144 if (IS_ERR(crtc_state))
7145 return PTR_ERR(crtc_state);
7146
7147 if (!crtc_state->hw.enable)
7148 continue;
7149
7150 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7151 continue;
7152
7153 crtc_state->uapi.mode_changed = true;
7154
7155 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7156 if (ret)
7157 return ret;
7158
7159 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7160 if (ret)
7161 return ret;
7162
7163 transcoders &= ~BIT(crtc_state->cpu_transcoder);
7164 }
7165
7166 drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7167
7168 return 0;
7169 }
7170
7171 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7172 struct drm_connector *connector)
7173 {
7174 const struct drm_connector_state *old_conn_state =
7175 drm_atomic_get_old_connector_state(&state->base, connector);
7176 const struct intel_crtc_state *old_crtc_state;
7177 struct intel_crtc *crtc;
7178 u8 transcoders;
7179
7180 crtc = to_intel_crtc(old_conn_state->crtc);
7181 if (!crtc)
7182 return 0;
7183
7184 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7185
7186 if (!old_crtc_state->hw.active)
7187 return 0;
7188
7189 transcoders = old_crtc_state->sync_mode_slaves_mask;
7190 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7191 transcoders |= BIT(old_crtc_state->master_transcoder);
7192
7193 return intel_modeset_affected_transcoders(state,
7194 transcoders);
7195 }
7196
7197 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7198 struct drm_atomic_state *_state)
7199 {
7200 struct drm_i915_private *dev_priv = to_i915(conn->dev);
7201 struct intel_atomic_state *state = to_intel_atomic_state(_state);
7202 int ret;
7203
7204 ret = intel_digital_connector_atomic_check(conn, &state->base);
7205 if (ret)
7206 return ret;
7207
7208 /*
7209 * We don't enable port sync on BDW due to missing w/as and
7210 * due to not having adjusted the modeset sequence appropriately.
7211 */
7212 if (INTEL_GEN(dev_priv) < 9)
7213 return 0;
7214
7215 if (!intel_connector_needs_modeset(state, conn))
7216 return 0;
7217
7218 if (conn->has_tile) {
7219 ret = intel_modeset_tile_group(state, conn->tile_group->id);
7220 if (ret)
7221 return ret;
7222 }
7223
7224 return intel_modeset_synced_crtcs(state, conn);
7225 }
7226
7227 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7228 .force = intel_dp_force,
7229 .fill_modes = drm_helper_probe_single_connector_modes,
7230 .atomic_get_property = intel_digital_connector_atomic_get_property,
7231 .atomic_set_property = intel_digital_connector_atomic_set_property,
7232 .late_register = intel_dp_connector_register,
7233 .early_unregister = intel_dp_connector_unregister,
7234 .destroy = intel_connector_destroy,
7235 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7236 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
7237 };
7238
7239 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7240 .detect_ctx = intel_dp_detect,
7241 .get_modes = intel_dp_get_modes,
7242 .mode_valid = intel_dp_mode_valid,
7243 .atomic_check = intel_dp_connector_atomic_check,
7244 };
7245
7246 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7247 .reset = intel_dp_encoder_reset,
7248 .destroy = intel_dp_encoder_destroy,
7249 };
7250
7251 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7252 {
7253 intel_wakeref_t wakeref;
7254 bool have_power = false;
7255
7256 with_pps_lock(intel_dp, wakeref) {
7257 have_power = edp_have_panel_power(intel_dp) &&
7258 edp_have_panel_vdd(intel_dp);
7259 }
7260
7261 return have_power;
7262 }
7263
7264 enum irqreturn
7265 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
7266 {
7267 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7268 struct intel_dp *intel_dp = &intel_dig_port->dp;
7269
7270 if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
7271 (long_hpd || !intel_edp_have_power(intel_dp))) {
7272 /*
7273 * vdd off can generate a long/short pulse on eDP which
7274 * would require vdd on to handle it, and thus we
7275 * would end up in an endless cycle of
7276 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7277 */
7278 drm_dbg_kms(&i915->drm,
7279 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7280 long_hpd ? "long" : "short",
7281 intel_dig_port->base.base.base.id,
7282 intel_dig_port->base.base.name);
7283 return IRQ_HANDLED;
7284 }
7285
7286 drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7287 intel_dig_port->base.base.base.id,
7288 intel_dig_port->base.base.name,
7289 long_hpd ? "long" : "short");
7290
7291 if (long_hpd) {
7292 intel_dp->reset_link_params = true;
7293 return IRQ_NONE;
7294 }
7295
7296 if (intel_dp->is_mst) {
7297 switch (intel_dp_check_mst_status(intel_dp)) {
7298 case -EINVAL:
7299 /*
7300 * If we were in MST mode, and device is not
7301 * there, get out of MST mode
7302 */
7303 drm_dbg_kms(&i915->drm,
7304 "MST device may have disappeared %d vs %d\n",
7305 intel_dp->is_mst,
7306 intel_dp->mst_mgr.mst_state);
7307 intel_dp->is_mst = false;
7308 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7309 intel_dp->is_mst);
7310
7311 return IRQ_NONE;
7312 case 1:
7313 return IRQ_NONE;
7314 default:
7315 break;
7316 }
7317 }
7318
7319 if (!intel_dp->is_mst) {
7320 bool handled;
7321
7322 handled = intel_dp_short_pulse(intel_dp);
7323
7324 if (!handled)
7325 return IRQ_NONE;
7326 }
7327
7328 return IRQ_HANDLED;
7329 }
7330
7331 /* check the VBT to see whether the eDP is on another port */
7332 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7333 {
7334 /*
7335 * eDP not supported on g4x. so bail out early just
7336 * for a bit extra safety in case the VBT is bonkers.
7337 */
7338 if (INTEL_GEN(dev_priv) < 5)
7339 return false;
7340
7341 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7342 return true;
7343
7344 return intel_bios_is_port_edp(dev_priv, port);
7345 }
7346
7347 static void
7348 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7349 {
7350 struct drm_i915_private *dev_priv = to_i915(connector->dev);
7351 enum port port = dp_to_dig_port(intel_dp)->base.port;
7352
7353 if (!IS_G4X(dev_priv) && port != PORT_A)
7354 intel_attach_force_audio_property(connector);
7355
7356 intel_attach_broadcast_rgb_property(connector);
7357 if (HAS_GMCH(dev_priv))
7358 drm_connector_attach_max_bpc_property(connector, 6, 10);
7359 else if (INTEL_GEN(dev_priv) >= 5)
7360 drm_connector_attach_max_bpc_property(connector, 6, 12);
7361
7362 intel_attach_colorspace_property(connector);
7363
7364 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7365 drm_object_attach_property(&connector->base,
7366 connector->dev->mode_config.hdr_output_metadata_property,
7367 0);
7368
7369 if (intel_dp_is_edp(intel_dp)) {
7370 u32 allowed_scalers;
7371
7372 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7373 if (!HAS_GMCH(dev_priv))
7374 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7375
7376 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7377
7378 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7379
7380 }
7381 }
7382
7383 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7384 {
7385 intel_dp->panel_power_off_time = ktime_get_boottime();
7386 intel_dp->last_power_on = jiffies;
7387 intel_dp->last_backlight_off = jiffies;
7388 }
7389
7390 static void
7391 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7392 {
7393 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7394 u32 pp_on, pp_off, pp_ctl;
7395 struct pps_registers regs;
7396
7397 intel_pps_get_registers(intel_dp, &regs);
7398
7399 pp_ctl = ilk_get_pp_control(intel_dp);
7400
7401 /* Ensure PPS is unlocked */
7402 if (!HAS_DDI(dev_priv))
7403 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7404
7405 pp_on = intel_de_read(dev_priv, regs.pp_on);
7406 pp_off = intel_de_read(dev_priv, regs.pp_off);
7407
7408 /* Pull timing values out of registers */
7409 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7410 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7411 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7412 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7413
7414 if (i915_mmio_reg_valid(regs.pp_div)) {
7415 u32 pp_div;
7416
7417 pp_div = intel_de_read(dev_priv, regs.pp_div);
7418
7419 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7420 } else {
7421 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7422 }
7423 }
7424
7425 static void
7426 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7427 {
7428 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7429 state_name,
7430 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7431 }
7432
7433 static void
7434 intel_pps_verify_state(struct intel_dp *intel_dp)
7435 {
7436 struct edp_power_seq hw;
7437 struct edp_power_seq *sw = &intel_dp->pps_delays;
7438
7439 intel_pps_readout_hw_state(intel_dp, &hw);
7440
7441 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7442 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7443 DRM_ERROR("PPS state mismatch\n");
7444 intel_pps_dump_state("sw", sw);
7445 intel_pps_dump_state("hw", &hw);
7446 }
7447 }
7448
7449 static void
7450 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7451 {
7452 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7453 struct edp_power_seq cur, vbt, spec,
7454 *final = &intel_dp->pps_delays;
7455
7456 lockdep_assert_held(&dev_priv->pps_mutex);
7457
7458 /* already initialized? */
7459 if (final->t11_t12 != 0)
7460 return;
7461
7462 intel_pps_readout_hw_state(intel_dp, &cur);
7463
7464 intel_pps_dump_state("cur", &cur);
7465
7466 vbt = dev_priv->vbt.edp.pps;
7467 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7468 * of 500ms appears to be too short. Ocassionally the panel
7469 * just fails to power back on. Increasing the delay to 800ms
7470 * seems sufficient to avoid this problem.
7471 */
7472 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7473 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7474 drm_dbg_kms(&dev_priv->drm,
7475 "Increasing T12 panel delay as per the quirk to %d\n",
7476 vbt.t11_t12);
7477 }
7478 /* T11_T12 delay is special and actually in units of 100ms, but zero
7479 * based in the hw (so we need to add 100 ms). But the sw vbt
7480 * table multiplies it with 1000 to make it in units of 100usec,
7481 * too. */
7482 vbt.t11_t12 += 100 * 10;
7483
7484 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7485 * our hw here, which are all in 100usec. */
7486 spec.t1_t3 = 210 * 10;
7487 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7488 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7489 spec.t10 = 500 * 10;
7490 /* This one is special and actually in units of 100ms, but zero
7491 * based in the hw (so we need to add 100 ms). But the sw vbt
7492 * table multiplies it with 1000 to make it in units of 100usec,
7493 * too. */
7494 spec.t11_t12 = (510 + 100) * 10;
7495
7496 intel_pps_dump_state("vbt", &vbt);
7497
7498 /* Use the max of the register settings and vbt. If both are
7499 * unset, fall back to the spec limits. */
7500 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
7501 spec.field : \
7502 max(cur.field, vbt.field))
7503 assign_final(t1_t3);
7504 assign_final(t8);
7505 assign_final(t9);
7506 assign_final(t10);
7507 assign_final(t11_t12);
7508 #undef assign_final
7509
7510 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
7511 intel_dp->panel_power_up_delay = get_delay(t1_t3);
7512 intel_dp->backlight_on_delay = get_delay(t8);
7513 intel_dp->backlight_off_delay = get_delay(t9);
7514 intel_dp->panel_power_down_delay = get_delay(t10);
7515 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7516 #undef get_delay
7517
7518 drm_dbg_kms(&dev_priv->drm,
7519 "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7520 intel_dp->panel_power_up_delay,
7521 intel_dp->panel_power_down_delay,
7522 intel_dp->panel_power_cycle_delay);
7523
7524 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7525 intel_dp->backlight_on_delay,
7526 intel_dp->backlight_off_delay);
7527
7528 /*
7529 * We override the HW backlight delays to 1 because we do manual waits
7530 * on them. For T8, even BSpec recommends doing it. For T9, if we
7531 * don't do this, we'll end up waiting for the backlight off delay
7532 * twice: once when we do the manual sleep, and once when we disable
7533 * the panel and wait for the PP_STATUS bit to become zero.
7534 */
7535 final->t8 = 1;
7536 final->t9 = 1;
7537
7538 /*
7539 * HW has only a 100msec granularity for t11_t12 so round it up
7540 * accordingly.
7541 */
7542 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7543 }
7544
7545 static void
7546 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7547 bool force_disable_vdd)
7548 {
7549 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7550 u32 pp_on, pp_off, port_sel = 0;
7551 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7552 struct pps_registers regs;
7553 enum port port = dp_to_dig_port(intel_dp)->base.port;
7554 const struct edp_power_seq *seq = &intel_dp->pps_delays;
7555
7556 lockdep_assert_held(&dev_priv->pps_mutex);
7557
7558 intel_pps_get_registers(intel_dp, &regs);
7559
7560 /*
7561 * On some VLV machines the BIOS can leave the VDD
7562 * enabled even on power sequencers which aren't
7563 * hooked up to any port. This would mess up the
7564 * power domain tracking the first time we pick
7565 * one of these power sequencers for use since
7566 * edp_panel_vdd_on() would notice that the VDD was
7567 * already on and therefore wouldn't grab the power
7568 * domain reference. Disable VDD first to avoid this.
7569 * This also avoids spuriously turning the VDD on as
7570 * soon as the new power sequencer gets initialized.
7571 */
7572 if (force_disable_vdd) {
7573 u32 pp = ilk_get_pp_control(intel_dp);
7574
7575 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7576 "Panel power already on\n");
7577
7578 if (pp & EDP_FORCE_VDD)
7579 drm_dbg_kms(&dev_priv->drm,
7580 "VDD already on, disabling first\n");
7581
7582 pp &= ~EDP_FORCE_VDD;
7583
7584 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7585 }
7586
7587 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7588 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7589 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7590 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7591
7592 /* Haswell doesn't have any port selection bits for the panel
7593 * power sequencer any more. */
7594 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7595 port_sel = PANEL_PORT_SELECT_VLV(port);
7596 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7597 switch (port) {
7598 case PORT_A:
7599 port_sel = PANEL_PORT_SELECT_DPA;
7600 break;
7601 case PORT_C:
7602 port_sel = PANEL_PORT_SELECT_DPC;
7603 break;
7604 case PORT_D:
7605 port_sel = PANEL_PORT_SELECT_DPD;
7606 break;
7607 default:
7608 MISSING_CASE(port);
7609 break;
7610 }
7611 }
7612
7613 pp_on |= port_sel;
7614
7615 intel_de_write(dev_priv, regs.pp_on, pp_on);
7616 intel_de_write(dev_priv, regs.pp_off, pp_off);
7617
7618 /*
7619 * Compute the divisor for the pp clock, simply match the Bspec formula.
7620 */
7621 if (i915_mmio_reg_valid(regs.pp_div)) {
7622 intel_de_write(dev_priv, regs.pp_div,
7623 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7624 } else {
7625 u32 pp_ctl;
7626
7627 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7628 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7629 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7630 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7631 }
7632
7633 drm_dbg_kms(&dev_priv->drm,
7634 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7635 intel_de_read(dev_priv, regs.pp_on),
7636 intel_de_read(dev_priv, regs.pp_off),
7637 i915_mmio_reg_valid(regs.pp_div) ?
7638 intel_de_read(dev_priv, regs.pp_div) :
7639 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7640 }
7641
7642 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7643 {
7644 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7645
7646 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7647 vlv_initial_power_sequencer_setup(intel_dp);
7648 } else {
7649 intel_dp_init_panel_power_sequencer(intel_dp);
7650 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7651 }
7652 }
7653
7654 /**
7655 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7656 * @dev_priv: i915 device
7657 * @crtc_state: a pointer to the active intel_crtc_state
7658 * @refresh_rate: RR to be programmed
7659 *
7660 * This function gets called when refresh rate (RR) has to be changed from
7661 * one frequency to another. Switches can be between high and low RR
7662 * supported by the panel or to any other RR based on media playback (in
7663 * this case, RR value needs to be passed from user space).
7664 *
7665 * The caller of this function needs to take a lock on dev_priv->drrs.
7666 */
7667 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7668 const struct intel_crtc_state *crtc_state,
7669 int refresh_rate)
7670 {
7671 struct intel_dp *intel_dp = dev_priv->drrs.dp;
7672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7673 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7674
7675 if (refresh_rate <= 0) {
7676 drm_dbg_kms(&dev_priv->drm,
7677 "Refresh rate should be positive non-zero.\n");
7678 return;
7679 }
7680
7681 if (intel_dp == NULL) {
7682 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7683 return;
7684 }
7685
7686 if (!intel_crtc) {
7687 drm_dbg_kms(&dev_priv->drm,
7688 "DRRS: intel_crtc not initialized\n");
7689 return;
7690 }
7691
7692 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7693 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7694 return;
7695 }
7696
7697 if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7698 refresh_rate)
7699 index = DRRS_LOW_RR;
7700
7701 if (index == dev_priv->drrs.refresh_rate_type) {
7702 drm_dbg_kms(&dev_priv->drm,
7703 "DRRS requested for previously set RR...ignoring\n");
7704 return;
7705 }
7706
7707 if (!crtc_state->hw.active) {
7708 drm_dbg_kms(&dev_priv->drm,
7709 "eDP encoder disabled. CRTC not Active\n");
7710 return;
7711 }
7712
7713 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7714 switch (index) {
7715 case DRRS_HIGH_RR:
7716 intel_dp_set_m_n(crtc_state, M1_N1);
7717 break;
7718 case DRRS_LOW_RR:
7719 intel_dp_set_m_n(crtc_state, M2_N2);
7720 break;
7721 case DRRS_MAX_RR:
7722 default:
7723 drm_err(&dev_priv->drm,
7724 "Unsupported refreshrate type\n");
7725 }
7726 } else if (INTEL_GEN(dev_priv) > 6) {
7727 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7728 u32 val;
7729
7730 val = intel_de_read(dev_priv, reg);
7731 if (index > DRRS_HIGH_RR) {
7732 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7733 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7734 else
7735 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7736 } else {
7737 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7738 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7739 else
7740 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7741 }
7742 intel_de_write(dev_priv, reg, val);
7743 }
7744
7745 dev_priv->drrs.refresh_rate_type = index;
7746
7747 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7748 refresh_rate);
7749 }
7750
7751 /**
7752 * intel_edp_drrs_enable - init drrs struct if supported
7753 * @intel_dp: DP struct
7754 * @crtc_state: A pointer to the active crtc state.
7755 *
7756 * Initializes frontbuffer_bits and drrs.dp
7757 */
7758 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7759 const struct intel_crtc_state *crtc_state)
7760 {
7761 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7762
7763 if (!crtc_state->has_drrs) {
7764 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7765 return;
7766 }
7767
7768 if (dev_priv->psr.enabled) {
7769 drm_dbg_kms(&dev_priv->drm,
7770 "PSR enabled. Not enabling DRRS.\n");
7771 return;
7772 }
7773
7774 mutex_lock(&dev_priv->drrs.mutex);
7775 if (dev_priv->drrs.dp) {
7776 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7777 goto unlock;
7778 }
7779
7780 dev_priv->drrs.busy_frontbuffer_bits = 0;
7781
7782 dev_priv->drrs.dp = intel_dp;
7783
7784 unlock:
7785 mutex_unlock(&dev_priv->drrs.mutex);
7786 }
7787
7788 /**
7789 * intel_edp_drrs_disable - Disable DRRS
7790 * @intel_dp: DP struct
7791 * @old_crtc_state: Pointer to old crtc_state.
7792 *
7793 */
7794 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7795 const struct intel_crtc_state *old_crtc_state)
7796 {
7797 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7798
7799 if (!old_crtc_state->has_drrs)
7800 return;
7801
7802 mutex_lock(&dev_priv->drrs.mutex);
7803 if (!dev_priv->drrs.dp) {
7804 mutex_unlock(&dev_priv->drrs.mutex);
7805 return;
7806 }
7807
7808 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7809 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7810 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7811
7812 dev_priv->drrs.dp = NULL;
7813 mutex_unlock(&dev_priv->drrs.mutex);
7814
7815 cancel_delayed_work_sync(&dev_priv->drrs.work);
7816 }
7817
7818 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7819 {
7820 struct drm_i915_private *dev_priv =
7821 container_of(work, typeof(*dev_priv), drrs.work.work);
7822 struct intel_dp *intel_dp;
7823
7824 mutex_lock(&dev_priv->drrs.mutex);
7825
7826 intel_dp = dev_priv->drrs.dp;
7827
7828 if (!intel_dp)
7829 goto unlock;
7830
7831 /*
7832 * The delayed work can race with an invalidate hence we need to
7833 * recheck.
7834 */
7835
7836 if (dev_priv->drrs.busy_frontbuffer_bits)
7837 goto unlock;
7838
7839 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7840 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7841
7842 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7843 drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7844 }
7845
7846 unlock:
7847 mutex_unlock(&dev_priv->drrs.mutex);
7848 }
7849
7850 /**
7851 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7852 * @dev_priv: i915 device
7853 * @frontbuffer_bits: frontbuffer plane tracking bits
7854 *
7855 * This function gets called everytime rendering on the given planes start.
7856 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7857 *
7858 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7859 */
7860 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7861 unsigned int frontbuffer_bits)
7862 {
7863 struct intel_dp *intel_dp;
7864 struct drm_crtc *crtc;
7865 enum pipe pipe;
7866
7867 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7868 return;
7869
7870 cancel_delayed_work(&dev_priv->drrs.work);
7871
7872 mutex_lock(&dev_priv->drrs.mutex);
7873
7874 intel_dp = dev_priv->drrs.dp;
7875 if (!intel_dp) {
7876 mutex_unlock(&dev_priv->drrs.mutex);
7877 return;
7878 }
7879
7880 crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7881 pipe = to_intel_crtc(crtc)->pipe;
7882
7883 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7884 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7885
7886 /* invalidate means busy screen hence upclock */
7887 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7888 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7889 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7890
7891 mutex_unlock(&dev_priv->drrs.mutex);
7892 }
7893
7894 /**
7895 * intel_edp_drrs_flush - Restart Idleness DRRS
7896 * @dev_priv: i915 device
7897 * @frontbuffer_bits: frontbuffer plane tracking bits
7898 *
7899 * This function gets called every time rendering on the given planes has
7900 * completed or flip on a crtc is completed. So DRRS should be upclocked
7901 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7902 * if no other planes are dirty.
7903 *
7904 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7905 */
7906 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7907 unsigned int frontbuffer_bits)
7908 {
7909 struct intel_dp *intel_dp;
7910 struct drm_crtc *crtc;
7911 enum pipe pipe;
7912
7913 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7914 return;
7915
7916 cancel_delayed_work(&dev_priv->drrs.work);
7917
7918 mutex_lock(&dev_priv->drrs.mutex);
7919
7920 intel_dp = dev_priv->drrs.dp;
7921 if (!intel_dp) {
7922 mutex_unlock(&dev_priv->drrs.mutex);
7923 return;
7924 }
7925
7926 crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7927 pipe = to_intel_crtc(crtc)->pipe;
7928
7929 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7930 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7931
7932 /* flush means busy screen hence upclock */
7933 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7934 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7935 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7936
7937 /*
7938 * flush also means no more activity hence schedule downclock, if all
7939 * other fbs are quiescent too
7940 */
7941 if (!dev_priv->drrs.busy_frontbuffer_bits)
7942 schedule_delayed_work(&dev_priv->drrs.work,
7943 msecs_to_jiffies(1000));
7944 mutex_unlock(&dev_priv->drrs.mutex);
7945 }
7946
7947 /**
7948 * DOC: Display Refresh Rate Switching (DRRS)
7949 *
7950 * Display Refresh Rate Switching (DRRS) is a power conservation feature
7951 * which enables swtching between low and high refresh rates,
7952 * dynamically, based on the usage scenario. This feature is applicable
7953 * for internal panels.
7954 *
7955 * Indication that the panel supports DRRS is given by the panel EDID, which
7956 * would list multiple refresh rates for one resolution.
7957 *
7958 * DRRS is of 2 types - static and seamless.
7959 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7960 * (may appear as a blink on screen) and is used in dock-undock scenario.
7961 * Seamless DRRS involves changing RR without any visual effect to the user
7962 * and can be used during normal system usage. This is done by programming
7963 * certain registers.
7964 *
7965 * Support for static/seamless DRRS may be indicated in the VBT based on
7966 * inputs from the panel spec.
7967 *
7968 * DRRS saves power by switching to low RR based on usage scenarios.
7969 *
7970 * The implementation is based on frontbuffer tracking implementation. When
7971 * there is a disturbance on the screen triggered by user activity or a periodic
7972 * system activity, DRRS is disabled (RR is changed to high RR). When there is
7973 * no movement on screen, after a timeout of 1 second, a switch to low RR is
7974 * made.
7975 *
7976 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7977 * and intel_edp_drrs_flush() are called.
7978 *
7979 * DRRS can be further extended to support other internal panels and also
7980 * the scenario of video playback wherein RR is set based on the rate
7981 * requested by userspace.
7982 */
7983
7984 /**
7985 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7986 * @connector: eDP connector
7987 * @fixed_mode: preferred mode of panel
7988 *
7989 * This function is called only once at driver load to initialize basic
7990 * DRRS stuff.
7991 *
7992 * Returns:
7993 * Downclock mode if panel supports it, else return NULL.
7994 * DRRS support is determined by the presence of downclock mode (apart
7995 * from VBT setting).
7996 */
7997 static struct drm_display_mode *
7998 intel_dp_drrs_init(struct intel_connector *connector,
7999 struct drm_display_mode *fixed_mode)
8000 {
8001 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
8002 struct drm_display_mode *downclock_mode = NULL;
8003
8004 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
8005 mutex_init(&dev_priv->drrs.mutex);
8006
8007 if (INTEL_GEN(dev_priv) <= 6) {
8008 drm_dbg_kms(&dev_priv->drm,
8009 "DRRS supported for Gen7 and above\n");
8010 return NULL;
8011 }
8012
8013 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
8014 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
8015 return NULL;
8016 }
8017
8018 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
8019 if (!downclock_mode) {
8020 drm_dbg_kms(&dev_priv->drm,
8021 "Downclock mode is not found. DRRS not supported\n");
8022 return NULL;
8023 }
8024
8025 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
8026
8027 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
8028 drm_dbg_kms(&dev_priv->drm,
8029 "seamless DRRS supported for eDP panel.\n");
8030 return downclock_mode;
8031 }
8032
8033 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
8034 struct intel_connector *intel_connector)
8035 {
8036 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
8037 struct drm_device *dev = &dev_priv->drm;
8038 struct drm_connector *connector = &intel_connector->base;
8039 struct drm_display_mode *fixed_mode = NULL;
8040 struct drm_display_mode *downclock_mode = NULL;
8041 bool has_dpcd;
8042 enum pipe pipe = INVALID_PIPE;
8043 intel_wakeref_t wakeref;
8044 struct edid *edid;
8045
8046 if (!intel_dp_is_edp(intel_dp))
8047 return true;
8048
8049 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
8050
8051 /*
8052 * On IBX/CPT we may get here with LVDS already registered. Since the
8053 * driver uses the only internal power sequencer available for both
8054 * eDP and LVDS bail out early in this case to prevent interfering
8055 * with an already powered-on LVDS power sequencer.
8056 */
8057 if (intel_get_lvds_encoder(dev_priv)) {
8058 drm_WARN_ON(dev,
8059 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8060 drm_info(&dev_priv->drm,
8061 "LVDS was detected, not registering eDP\n");
8062
8063 return false;
8064 }
8065
8066 with_pps_lock(intel_dp, wakeref) {
8067 intel_dp_init_panel_power_timestamps(intel_dp);
8068 intel_dp_pps_init(intel_dp);
8069 intel_edp_panel_vdd_sanitize(intel_dp);
8070 }
8071
8072 /* Cache DPCD and EDID for edp. */
8073 has_dpcd = intel_edp_init_dpcd(intel_dp);
8074
8075 if (!has_dpcd) {
8076 /* if this fails, presume the device is a ghost */
8077 drm_info(&dev_priv->drm,
8078 "failed to retrieve link info, disabling eDP\n");
8079 goto out_vdd_off;
8080 }
8081
8082 mutex_lock(&dev->mode_config.mutex);
8083 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8084 if (edid) {
8085 if (drm_add_edid_modes(connector, edid)) {
8086 drm_connector_update_edid_property(connector, edid);
8087 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8088 } else {
8089 kfree(edid);
8090 edid = ERR_PTR(-EINVAL);
8091 }
8092 } else {
8093 edid = ERR_PTR(-ENOENT);
8094 }
8095 intel_connector->edid = edid;
8096
8097 fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8098 if (fixed_mode)
8099 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8100
8101 /* fallback to VBT if available for eDP */
8102 if (!fixed_mode)
8103 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8104 mutex_unlock(&dev->mode_config.mutex);
8105
8106 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8107 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8108 register_reboot_notifier(&intel_dp->edp_notifier);
8109
8110 /*
8111 * Figure out the current pipe for the initial backlight setup.
8112 * If the current pipe isn't valid, try the PPS pipe, and if that
8113 * fails just assume pipe A.
8114 */
8115 pipe = vlv_active_pipe(intel_dp);
8116
8117 if (pipe != PIPE_A && pipe != PIPE_B)
8118 pipe = intel_dp->pps_pipe;
8119
8120 if (pipe != PIPE_A && pipe != PIPE_B)
8121 pipe = PIPE_A;
8122
8123 drm_dbg_kms(&dev_priv->drm,
8124 "using pipe %c for initial backlight setup\n",
8125 pipe_name(pipe));
8126 }
8127
8128 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8129 intel_connector->panel.backlight.power = intel_edp_backlight_power;
8130 intel_panel_setup_backlight(connector, pipe);
8131
8132 if (fixed_mode) {
8133 drm_connector_set_panel_orientation_with_quirk(connector,
8134 dev_priv->vbt.orientation,
8135 fixed_mode->hdisplay, fixed_mode->vdisplay);
8136 }
8137
8138 return true;
8139
8140 out_vdd_off:
8141 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8142 /*
8143 * vdd might still be enabled do to the delayed vdd off.
8144 * Make sure vdd is actually turned off here.
8145 */
8146 with_pps_lock(intel_dp, wakeref)
8147 edp_panel_vdd_off_sync(intel_dp);
8148
8149 return false;
8150 }
8151
8152 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8153 {
8154 struct intel_connector *intel_connector;
8155 struct drm_connector *connector;
8156
8157 intel_connector = container_of(work, typeof(*intel_connector),
8158 modeset_retry_work);
8159 connector = &intel_connector->base;
8160 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8161 connector->name);
8162
8163 /* Grab the locks before changing connector property*/
8164 mutex_lock(&connector->dev->mode_config.mutex);
8165 /* Set connector link status to BAD and send a Uevent to notify
8166 * userspace to do a modeset.
8167 */
8168 drm_connector_set_link_status_property(connector,
8169 DRM_MODE_LINK_STATUS_BAD);
8170 mutex_unlock(&connector->dev->mode_config.mutex);
8171 /* Send Hotplug uevent so userspace can reprobe */
8172 drm_kms_helper_hotplug_event(connector->dev);
8173 }
8174
8175 bool
8176 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
8177 struct intel_connector *intel_connector)
8178 {
8179 struct drm_connector *connector = &intel_connector->base;
8180 struct intel_dp *intel_dp = &intel_dig_port->dp;
8181 struct intel_encoder *intel_encoder = &intel_dig_port->base;
8182 struct drm_device *dev = intel_encoder->base.dev;
8183 struct drm_i915_private *dev_priv = to_i915(dev);
8184 enum port port = intel_encoder->port;
8185 enum phy phy = intel_port_to_phy(dev_priv, port);
8186 int type;
8187
8188 /* Initialize the work for modeset in case of link train failure */
8189 INIT_WORK(&intel_connector->modeset_retry_work,
8190 intel_dp_modeset_retry_work_fn);
8191
8192 if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
8193 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8194 intel_dig_port->max_lanes, intel_encoder->base.base.id,
8195 intel_encoder->base.name))
8196 return false;
8197
8198 intel_dp_set_source_rates(intel_dp);
8199
8200 intel_dp->reset_link_params = true;
8201 intel_dp->pps_pipe = INVALID_PIPE;
8202 intel_dp->active_pipe = INVALID_PIPE;
8203
8204 /* Preserve the current hw state. */
8205 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8206 intel_dp->attached_connector = intel_connector;
8207
8208 if (intel_dp_is_port_edp(dev_priv, port)) {
8209 /*
8210 * Currently we don't support eDP on TypeC ports, although in
8211 * theory it could work on TypeC legacy ports.
8212 */
8213 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8214 type = DRM_MODE_CONNECTOR_eDP;
8215 } else {
8216 type = DRM_MODE_CONNECTOR_DisplayPort;
8217 }
8218
8219 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8220 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8221
8222 /*
8223 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8224 * for DP the encoder type can be set by the caller to
8225 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8226 */
8227 if (type == DRM_MODE_CONNECTOR_eDP)
8228 intel_encoder->type = INTEL_OUTPUT_EDP;
8229
8230 /* eDP only on port B and/or C on vlv/chv */
8231 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8232 IS_CHERRYVIEW(dev_priv)) &&
8233 intel_dp_is_edp(intel_dp) &&
8234 port != PORT_B && port != PORT_C))
8235 return false;
8236
8237 drm_dbg_kms(&dev_priv->drm,
8238 "Adding %s connector on [ENCODER:%d:%s]\n",
8239 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8240 intel_encoder->base.base.id, intel_encoder->base.name);
8241
8242 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8243 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8244
8245 if (!HAS_GMCH(dev_priv))
8246 connector->interlace_allowed = true;
8247 connector->doublescan_allowed = 0;
8248
8249 if (INTEL_GEN(dev_priv) >= 11)
8250 connector->ycbcr_420_allowed = true;
8251
8252 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8253 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8254
8255 intel_dp_aux_init(intel_dp);
8256
8257 intel_connector_attach_encoder(intel_connector, intel_encoder);
8258
8259 if (HAS_DDI(dev_priv))
8260 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8261 else
8262 intel_connector->get_hw_state = intel_connector_get_hw_state;
8263
8264 /* init MST on ports that can support it */
8265 intel_dp_mst_encoder_init(intel_dig_port,
8266 intel_connector->base.base.id);
8267
8268 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8269 intel_dp_aux_fini(intel_dp);
8270 intel_dp_mst_encoder_cleanup(intel_dig_port);
8271 goto fail;
8272 }
8273
8274 intel_dp_add_properties(intel_dp, connector);
8275
8276 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8277 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8278 if (ret)
8279 drm_dbg_kms(&dev_priv->drm,
8280 "HDCP init failed, skipping.\n");
8281 }
8282
8283 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8284 * 0xd. Failure to do so will result in spurious interrupts being
8285 * generated on the port when a cable is not attached.
8286 */
8287 if (IS_G45(dev_priv)) {
8288 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8289 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8290 (temp & ~0xf) | 0xd);
8291 }
8292
8293 return true;
8294
8295 fail:
8296 drm_connector_cleanup(connector);
8297
8298 return false;
8299 }
8300
8301 bool intel_dp_init(struct drm_i915_private *dev_priv,
8302 i915_reg_t output_reg,
8303 enum port port)
8304 {
8305 struct intel_digital_port *intel_dig_port;
8306 struct intel_encoder *intel_encoder;
8307 struct drm_encoder *encoder;
8308 struct intel_connector *intel_connector;
8309
8310 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8311 if (!intel_dig_port)
8312 return false;
8313
8314 intel_connector = intel_connector_alloc();
8315 if (!intel_connector)
8316 goto err_connector_alloc;
8317
8318 intel_encoder = &intel_dig_port->base;
8319 encoder = &intel_encoder->base;
8320
8321 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8322 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8323 "DP %c", port_name(port)))
8324 goto err_encoder_init;
8325
8326 intel_encoder->hotplug = intel_dp_hotplug;
8327 intel_encoder->compute_config = intel_dp_compute_config;
8328 intel_encoder->get_hw_state = intel_dp_get_hw_state;
8329 intel_encoder->get_config = intel_dp_get_config;
8330 intel_encoder->update_pipe = intel_panel_update_backlight;
8331 intel_encoder->suspend = intel_dp_encoder_suspend;
8332 if (IS_CHERRYVIEW(dev_priv)) {
8333 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8334 intel_encoder->pre_enable = chv_pre_enable_dp;
8335 intel_encoder->enable = vlv_enable_dp;
8336 intel_encoder->disable = vlv_disable_dp;
8337 intel_encoder->post_disable = chv_post_disable_dp;
8338 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8339 } else if (IS_VALLEYVIEW(dev_priv)) {
8340 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8341 intel_encoder->pre_enable = vlv_pre_enable_dp;
8342 intel_encoder->enable = vlv_enable_dp;
8343 intel_encoder->disable = vlv_disable_dp;
8344 intel_encoder->post_disable = vlv_post_disable_dp;
8345 } else {
8346 intel_encoder->pre_enable = g4x_pre_enable_dp;
8347 intel_encoder->enable = g4x_enable_dp;
8348 intel_encoder->disable = g4x_disable_dp;
8349 intel_encoder->post_disable = g4x_post_disable_dp;
8350 }
8351
8352 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
8353 (HAS_PCH_CPT(dev_priv) && port != PORT_A))
8354 intel_dig_port->dp.set_link_train = cpt_set_link_train;
8355 else
8356 intel_dig_port->dp.set_link_train = g4x_set_link_train;
8357
8358 if (IS_CHERRYVIEW(dev_priv))
8359 intel_dig_port->dp.set_signal_levels = chv_set_signal_levels;
8360 else if (IS_VALLEYVIEW(dev_priv))
8361 intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels;
8362 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
8363 intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
8364 else if (IS_GEN(dev_priv, 6) && port == PORT_A)
8365 intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
8366 else
8367 intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels;
8368
8369 intel_dig_port->dp.output_reg = output_reg;
8370 intel_dig_port->max_lanes = 4;
8371 intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
8372 intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8373
8374 intel_encoder->type = INTEL_OUTPUT_DP;
8375 intel_encoder->power_domain = intel_port_to_power_domain(port);
8376 if (IS_CHERRYVIEW(dev_priv)) {
8377 if (port == PORT_D)
8378 intel_encoder->pipe_mask = BIT(PIPE_C);
8379 else
8380 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8381 } else {
8382 intel_encoder->pipe_mask = ~0;
8383 }
8384 intel_encoder->cloneable = 0;
8385 intel_encoder->port = port;
8386
8387 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
8388
8389 if (HAS_GMCH(dev_priv)) {
8390 if (IS_GM45(dev_priv))
8391 intel_dig_port->connected = gm45_digital_port_connected;
8392 else
8393 intel_dig_port->connected = g4x_digital_port_connected;
8394 } else {
8395 if (port == PORT_A)
8396 intel_dig_port->connected = ilk_digital_port_connected;
8397 else
8398 intel_dig_port->connected = ibx_digital_port_connected;
8399 }
8400
8401 if (port != PORT_A)
8402 intel_infoframe_init(intel_dig_port);
8403
8404 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8405 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
8406 goto err_init_connector;
8407
8408 return true;
8409
8410 err_init_connector:
8411 drm_encoder_cleanup(encoder);
8412 err_encoder_init:
8413 kfree(intel_connector);
8414 err_connector_alloc:
8415 kfree(intel_dig_port);
8416 return false;
8417 }
8418
8419 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8420 {
8421 struct intel_encoder *encoder;
8422
8423 for_each_intel_encoder(&dev_priv->drm, encoder) {
8424 struct intel_dp *intel_dp;
8425
8426 if (encoder->type != INTEL_OUTPUT_DDI)
8427 continue;
8428
8429 intel_dp = enc_to_intel_dp(encoder);
8430
8431 if (!intel_dp->can_mst)
8432 continue;
8433
8434 if (intel_dp->is_mst)
8435 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8436 }
8437 }
8438
8439 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8440 {
8441 struct intel_encoder *encoder;
8442
8443 for_each_intel_encoder(&dev_priv->drm, encoder) {
8444 struct intel_dp *intel_dp;
8445 int ret;
8446
8447 if (encoder->type != INTEL_OUTPUT_DDI)
8448 continue;
8449
8450 intel_dp = enc_to_intel_dp(encoder);
8451
8452 if (!intel_dp->can_mst)
8453 continue;
8454
8455 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8456 true);
8457 if (ret) {
8458 intel_dp->is_mst = false;
8459 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8460 false);
8461 }
8462 }
8463 }