]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/display/intel_hdmi.c
Merge tag 'riscv-for-linus-5.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / drivers / gpu / drm / i915 / display / intel_hdmi.c
1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_audio.h"
45 #include "intel_connector.h"
46 #include "intel_ddi.h"
47 #include "intel_display_debugfs.h"
48 #include "intel_display_types.h"
49 #include "intel_dp.h"
50 #include "intel_dpio_phy.h"
51 #include "intel_fifo_underrun.h"
52 #include "intel_gmbus.h"
53 #include "intel_hdcp.h"
54 #include "intel_hdmi.h"
55 #include "intel_hotplug.h"
56 #include "intel_lspcon.h"
57 #include "intel_panel.h"
58 #include "intel_sdvo.h"
59 #include "intel_sideband.h"
60
61 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
62 {
63 return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
64 }
65
66 static void
67 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
68 {
69 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
70 struct drm_i915_private *dev_priv = to_i915(dev);
71 u32 enabled_bits;
72
73 enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
74
75 drm_WARN(dev,
76 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
77 "HDMI port enabled, expecting disabled\n");
78 }
79
80 static void
81 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
82 enum transcoder cpu_transcoder)
83 {
84 drm_WARN(&dev_priv->drm,
85 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
86 TRANS_DDI_FUNC_ENABLE,
87 "HDMI transcoder function enabled, expecting disabled\n");
88 }
89
90 struct intel_hdmi *enc_to_intel_hdmi(struct intel_encoder *encoder)
91 {
92 struct intel_digital_port *intel_dig_port =
93 container_of(&encoder->base, struct intel_digital_port,
94 base.base);
95 return &intel_dig_port->hdmi;
96 }
97
98 static struct intel_hdmi *intel_attached_hdmi(struct intel_connector *connector)
99 {
100 return enc_to_intel_hdmi(intel_attached_encoder(connector));
101 }
102
103 static u32 g4x_infoframe_index(unsigned int type)
104 {
105 switch (type) {
106 case HDMI_PACKET_TYPE_GAMUT_METADATA:
107 return VIDEO_DIP_SELECT_GAMUT;
108 case HDMI_INFOFRAME_TYPE_AVI:
109 return VIDEO_DIP_SELECT_AVI;
110 case HDMI_INFOFRAME_TYPE_SPD:
111 return VIDEO_DIP_SELECT_SPD;
112 case HDMI_INFOFRAME_TYPE_VENDOR:
113 return VIDEO_DIP_SELECT_VENDOR;
114 default:
115 MISSING_CASE(type);
116 return 0;
117 }
118 }
119
120 static u32 g4x_infoframe_enable(unsigned int type)
121 {
122 switch (type) {
123 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
124 return VIDEO_DIP_ENABLE_GCP;
125 case HDMI_PACKET_TYPE_GAMUT_METADATA:
126 return VIDEO_DIP_ENABLE_GAMUT;
127 case DP_SDP_VSC:
128 return 0;
129 case HDMI_INFOFRAME_TYPE_AVI:
130 return VIDEO_DIP_ENABLE_AVI;
131 case HDMI_INFOFRAME_TYPE_SPD:
132 return VIDEO_DIP_ENABLE_SPD;
133 case HDMI_INFOFRAME_TYPE_VENDOR:
134 return VIDEO_DIP_ENABLE_VENDOR;
135 case HDMI_INFOFRAME_TYPE_DRM:
136 return 0;
137 default:
138 MISSING_CASE(type);
139 return 0;
140 }
141 }
142
143 static u32 hsw_infoframe_enable(unsigned int type)
144 {
145 switch (type) {
146 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
147 return VIDEO_DIP_ENABLE_GCP_HSW;
148 case HDMI_PACKET_TYPE_GAMUT_METADATA:
149 return VIDEO_DIP_ENABLE_GMP_HSW;
150 case DP_SDP_VSC:
151 return VIDEO_DIP_ENABLE_VSC_HSW;
152 case DP_SDP_PPS:
153 return VDIP_ENABLE_PPS;
154 case HDMI_INFOFRAME_TYPE_AVI:
155 return VIDEO_DIP_ENABLE_AVI_HSW;
156 case HDMI_INFOFRAME_TYPE_SPD:
157 return VIDEO_DIP_ENABLE_SPD_HSW;
158 case HDMI_INFOFRAME_TYPE_VENDOR:
159 return VIDEO_DIP_ENABLE_VS_HSW;
160 case HDMI_INFOFRAME_TYPE_DRM:
161 return VIDEO_DIP_ENABLE_DRM_GLK;
162 default:
163 MISSING_CASE(type);
164 return 0;
165 }
166 }
167
168 static i915_reg_t
169 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
170 enum transcoder cpu_transcoder,
171 unsigned int type,
172 int i)
173 {
174 switch (type) {
175 case HDMI_PACKET_TYPE_GAMUT_METADATA:
176 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
177 case DP_SDP_VSC:
178 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
179 case DP_SDP_PPS:
180 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
181 case HDMI_INFOFRAME_TYPE_AVI:
182 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
183 case HDMI_INFOFRAME_TYPE_SPD:
184 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
185 case HDMI_INFOFRAME_TYPE_VENDOR:
186 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
187 case HDMI_INFOFRAME_TYPE_DRM:
188 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
189 default:
190 MISSING_CASE(type);
191 return INVALID_MMIO_REG;
192 }
193 }
194
195 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
196 unsigned int type)
197 {
198 switch (type) {
199 case DP_SDP_VSC:
200 return VIDEO_DIP_VSC_DATA_SIZE;
201 case DP_SDP_PPS:
202 return VIDEO_DIP_PPS_DATA_SIZE;
203 case HDMI_PACKET_TYPE_GAMUT_METADATA:
204 if (INTEL_GEN(dev_priv) >= 11)
205 return VIDEO_DIP_GMP_DATA_SIZE;
206 else
207 return VIDEO_DIP_DATA_SIZE;
208 default:
209 return VIDEO_DIP_DATA_SIZE;
210 }
211 }
212
213 static void g4x_write_infoframe(struct intel_encoder *encoder,
214 const struct intel_crtc_state *crtc_state,
215 unsigned int type,
216 const void *frame, ssize_t len)
217 {
218 const u32 *data = frame;
219 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
220 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
221 int i;
222
223 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
224 "Writing DIP with CTL reg disabled\n");
225
226 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
227 val |= g4x_infoframe_index(type);
228
229 val &= ~g4x_infoframe_enable(type);
230
231 intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
232
233 for (i = 0; i < len; i += 4) {
234 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
235 data++;
236 }
237 /* Write every possible data byte to force correct ECC calculation. */
238 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
239 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
240
241 val |= g4x_infoframe_enable(type);
242 val &= ~VIDEO_DIP_FREQ_MASK;
243 val |= VIDEO_DIP_FREQ_VSYNC;
244
245 intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
246 intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
247 }
248
249 static void g4x_read_infoframe(struct intel_encoder *encoder,
250 const struct intel_crtc_state *crtc_state,
251 unsigned int type,
252 void *frame, ssize_t len)
253 {
254 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
255 u32 val, *data = frame;
256 int i;
257
258 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
259
260 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
261 val |= g4x_infoframe_index(type);
262
263 intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
264
265 for (i = 0; i < len; i += 4)
266 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
267 }
268
269 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
270 const struct intel_crtc_state *pipe_config)
271 {
272 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
274
275 if ((val & VIDEO_DIP_ENABLE) == 0)
276 return 0;
277
278 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
279 return 0;
280
281 return val & (VIDEO_DIP_ENABLE_AVI |
282 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
283 }
284
285 static void ibx_write_infoframe(struct intel_encoder *encoder,
286 const struct intel_crtc_state *crtc_state,
287 unsigned int type,
288 const void *frame, ssize_t len)
289 {
290 const u32 *data = frame;
291 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
293 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
294 u32 val = intel_de_read(dev_priv, reg);
295 int i;
296
297 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
298 "Writing DIP with CTL reg disabled\n");
299
300 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
301 val |= g4x_infoframe_index(type);
302
303 val &= ~g4x_infoframe_enable(type);
304
305 intel_de_write(dev_priv, reg, val);
306
307 for (i = 0; i < len; i += 4) {
308 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
309 *data);
310 data++;
311 }
312 /* Write every possible data byte to force correct ECC calculation. */
313 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
314 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
315
316 val |= g4x_infoframe_enable(type);
317 val &= ~VIDEO_DIP_FREQ_MASK;
318 val |= VIDEO_DIP_FREQ_VSYNC;
319
320 intel_de_write(dev_priv, reg, val);
321 intel_de_posting_read(dev_priv, reg);
322 }
323
324 static void ibx_read_infoframe(struct intel_encoder *encoder,
325 const struct intel_crtc_state *crtc_state,
326 unsigned int type,
327 void *frame, ssize_t len)
328 {
329 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
331 u32 val, *data = frame;
332 int i;
333
334 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
335
336 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
337 val |= g4x_infoframe_index(type);
338
339 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
340
341 for (i = 0; i < len; i += 4)
342 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
343 }
344
345 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
346 const struct intel_crtc_state *pipe_config)
347 {
348 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
349 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
350 i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
351 u32 val = intel_de_read(dev_priv, reg);
352
353 if ((val & VIDEO_DIP_ENABLE) == 0)
354 return 0;
355
356 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
357 return 0;
358
359 return val & (VIDEO_DIP_ENABLE_AVI |
360 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
361 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
362 }
363
364 static void cpt_write_infoframe(struct intel_encoder *encoder,
365 const struct intel_crtc_state *crtc_state,
366 unsigned int type,
367 const void *frame, ssize_t len)
368 {
369 const u32 *data = frame;
370 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
372 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
373 u32 val = intel_de_read(dev_priv, reg);
374 int i;
375
376 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
377 "Writing DIP with CTL reg disabled\n");
378
379 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
380 val |= g4x_infoframe_index(type);
381
382 /* The DIP control register spec says that we need to update the AVI
383 * infoframe without clearing its enable bit */
384 if (type != HDMI_INFOFRAME_TYPE_AVI)
385 val &= ~g4x_infoframe_enable(type);
386
387 intel_de_write(dev_priv, reg, val);
388
389 for (i = 0; i < len; i += 4) {
390 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
391 *data);
392 data++;
393 }
394 /* Write every possible data byte to force correct ECC calculation. */
395 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
396 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
397
398 val |= g4x_infoframe_enable(type);
399 val &= ~VIDEO_DIP_FREQ_MASK;
400 val |= VIDEO_DIP_FREQ_VSYNC;
401
402 intel_de_write(dev_priv, reg, val);
403 intel_de_posting_read(dev_priv, reg);
404 }
405
406 static void cpt_read_infoframe(struct intel_encoder *encoder,
407 const struct intel_crtc_state *crtc_state,
408 unsigned int type,
409 void *frame, ssize_t len)
410 {
411 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
413 u32 val, *data = frame;
414 int i;
415
416 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
417
418 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
419 val |= g4x_infoframe_index(type);
420
421 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
422
423 for (i = 0; i < len; i += 4)
424 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
425 }
426
427 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
428 const struct intel_crtc_state *pipe_config)
429 {
430 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
431 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
432 u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
433
434 if ((val & VIDEO_DIP_ENABLE) == 0)
435 return 0;
436
437 return val & (VIDEO_DIP_ENABLE_AVI |
438 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
439 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
440 }
441
442 static void vlv_write_infoframe(struct intel_encoder *encoder,
443 const struct intel_crtc_state *crtc_state,
444 unsigned int type,
445 const void *frame, ssize_t len)
446 {
447 const u32 *data = frame;
448 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
450 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
451 u32 val = intel_de_read(dev_priv, reg);
452 int i;
453
454 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
455 "Writing DIP with CTL reg disabled\n");
456
457 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
458 val |= g4x_infoframe_index(type);
459
460 val &= ~g4x_infoframe_enable(type);
461
462 intel_de_write(dev_priv, reg, val);
463
464 for (i = 0; i < len; i += 4) {
465 intel_de_write(dev_priv,
466 VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
467 data++;
468 }
469 /* Write every possible data byte to force correct ECC calculation. */
470 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
471 intel_de_write(dev_priv,
472 VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
473
474 val |= g4x_infoframe_enable(type);
475 val &= ~VIDEO_DIP_FREQ_MASK;
476 val |= VIDEO_DIP_FREQ_VSYNC;
477
478 intel_de_write(dev_priv, reg, val);
479 intel_de_posting_read(dev_priv, reg);
480 }
481
482 static void vlv_read_infoframe(struct intel_encoder *encoder,
483 const struct intel_crtc_state *crtc_state,
484 unsigned int type,
485 void *frame, ssize_t len)
486 {
487 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
488 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
489 u32 val, *data = frame;
490 int i;
491
492 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
493
494 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
495 val |= g4x_infoframe_index(type);
496
497 intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
498
499 for (i = 0; i < len; i += 4)
500 *data++ = intel_de_read(dev_priv,
501 VLV_TVIDEO_DIP_DATA(crtc->pipe));
502 }
503
504 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
505 const struct intel_crtc_state *pipe_config)
506 {
507 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
508 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
509 u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
510
511 if ((val & VIDEO_DIP_ENABLE) == 0)
512 return 0;
513
514 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
515 return 0;
516
517 return val & (VIDEO_DIP_ENABLE_AVI |
518 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
519 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
520 }
521
522 static void hsw_write_infoframe(struct intel_encoder *encoder,
523 const struct intel_crtc_state *crtc_state,
524 unsigned int type,
525 const void *frame, ssize_t len)
526 {
527 const u32 *data = frame;
528 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
529 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
530 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
531 int data_size;
532 int i;
533 u32 val = intel_de_read(dev_priv, ctl_reg);
534
535 data_size = hsw_dip_data_size(dev_priv, type);
536
537 drm_WARN_ON(&dev_priv->drm, len > data_size);
538
539 val &= ~hsw_infoframe_enable(type);
540 intel_de_write(dev_priv, ctl_reg, val);
541
542 for (i = 0; i < len; i += 4) {
543 intel_de_write(dev_priv,
544 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
545 *data);
546 data++;
547 }
548 /* Write every possible data byte to force correct ECC calculation. */
549 for (; i < data_size; i += 4)
550 intel_de_write(dev_priv,
551 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
552 0);
553
554 val |= hsw_infoframe_enable(type);
555 intel_de_write(dev_priv, ctl_reg, val);
556 intel_de_posting_read(dev_priv, ctl_reg);
557 }
558
559 static void hsw_read_infoframe(struct intel_encoder *encoder,
560 const struct intel_crtc_state *crtc_state,
561 unsigned int type,
562 void *frame, ssize_t len)
563 {
564 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
565 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
566 u32 val, *data = frame;
567 int i;
568
569 val = intel_de_read(dev_priv, HSW_TVIDEO_DIP_CTL(cpu_transcoder));
570
571 for (i = 0; i < len; i += 4)
572 *data++ = intel_de_read(dev_priv,
573 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
574 }
575
576 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
577 const struct intel_crtc_state *pipe_config)
578 {
579 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
580 u32 val = intel_de_read(dev_priv,
581 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
582 u32 mask;
583
584 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
585 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
586 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
587
588 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
589 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
590
591 return val & mask;
592 }
593
594 static const u8 infoframe_type_to_idx[] = {
595 HDMI_PACKET_TYPE_GENERAL_CONTROL,
596 HDMI_PACKET_TYPE_GAMUT_METADATA,
597 DP_SDP_VSC,
598 HDMI_INFOFRAME_TYPE_AVI,
599 HDMI_INFOFRAME_TYPE_SPD,
600 HDMI_INFOFRAME_TYPE_VENDOR,
601 HDMI_INFOFRAME_TYPE_DRM,
602 };
603
604 u32 intel_hdmi_infoframe_enable(unsigned int type)
605 {
606 int i;
607
608 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
609 if (infoframe_type_to_idx[i] == type)
610 return BIT(i);
611 }
612
613 return 0;
614 }
615
616 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
617 const struct intel_crtc_state *crtc_state)
618 {
619 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
620 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
621 u32 val, ret = 0;
622 int i;
623
624 val = dig_port->infoframes_enabled(encoder, crtc_state);
625
626 /* map from hardware bits to dip idx */
627 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
628 unsigned int type = infoframe_type_to_idx[i];
629
630 if (HAS_DDI(dev_priv)) {
631 if (val & hsw_infoframe_enable(type))
632 ret |= BIT(i);
633 } else {
634 if (val & g4x_infoframe_enable(type))
635 ret |= BIT(i);
636 }
637 }
638
639 return ret;
640 }
641
642 /*
643 * The data we write to the DIP data buffer registers is 1 byte bigger than the
644 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
645 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
646 * used for both technologies.
647 *
648 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
649 * DW1: DB3 | DB2 | DB1 | DB0
650 * DW2: DB7 | DB6 | DB5 | DB4
651 * DW3: ...
652 *
653 * (HB is Header Byte, DB is Data Byte)
654 *
655 * The hdmi pack() functions don't know about that hardware specific hole so we
656 * trick them by giving an offset into the buffer and moving back the header
657 * bytes by one.
658 */
659 static void intel_write_infoframe(struct intel_encoder *encoder,
660 const struct intel_crtc_state *crtc_state,
661 enum hdmi_infoframe_type type,
662 const union hdmi_infoframe *frame)
663 {
664 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
665 u8 buffer[VIDEO_DIP_DATA_SIZE];
666 ssize_t len;
667
668 if ((crtc_state->infoframes.enable &
669 intel_hdmi_infoframe_enable(type)) == 0)
670 return;
671
672 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
673 return;
674
675 /* see comment above for the reason for this offset */
676 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
677 if (drm_WARN_ON(encoder->base.dev, len < 0))
678 return;
679
680 /* Insert the 'hole' (see big comment above) at position 3 */
681 memmove(&buffer[0], &buffer[1], 3);
682 buffer[3] = 0;
683 len++;
684
685 intel_dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
686 }
687
688 void intel_read_infoframe(struct intel_encoder *encoder,
689 const struct intel_crtc_state *crtc_state,
690 enum hdmi_infoframe_type type,
691 union hdmi_infoframe *frame)
692 {
693 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
694 u8 buffer[VIDEO_DIP_DATA_SIZE];
695 int ret;
696
697 if ((crtc_state->infoframes.enable &
698 intel_hdmi_infoframe_enable(type)) == 0)
699 return;
700
701 intel_dig_port->read_infoframe(encoder, crtc_state,
702 type, buffer, sizeof(buffer));
703
704 /* Fill the 'hole' (see big comment above) at position 3 */
705 memmove(&buffer[1], &buffer[0], 3);
706
707 /* see comment above for the reason for this offset */
708 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
709 if (ret) {
710 DRM_DEBUG_KMS("Failed to unpack infoframe type 0x%02x\n", type);
711 return;
712 }
713
714 if (frame->any.type != type)
715 DRM_DEBUG_KMS("Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
716 frame->any.type, type);
717 }
718
719 static bool
720 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
721 struct intel_crtc_state *crtc_state,
722 struct drm_connector_state *conn_state)
723 {
724 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
725 const struct drm_display_mode *adjusted_mode =
726 &crtc_state->hw.adjusted_mode;
727 struct drm_connector *connector = conn_state->connector;
728 int ret;
729
730 if (!crtc_state->has_infoframe)
731 return true;
732
733 crtc_state->infoframes.enable |=
734 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
735
736 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
737 adjusted_mode);
738 if (ret)
739 return false;
740
741 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
742 frame->colorspace = HDMI_COLORSPACE_YUV420;
743 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
744 frame->colorspace = HDMI_COLORSPACE_YUV444;
745 else
746 frame->colorspace = HDMI_COLORSPACE_RGB;
747
748 drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
749
750 /* nonsense combination */
751 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
752 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
753
754 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
755 drm_hdmi_avi_infoframe_quant_range(frame, connector,
756 adjusted_mode,
757 crtc_state->limited_color_range ?
758 HDMI_QUANTIZATION_RANGE_LIMITED :
759 HDMI_QUANTIZATION_RANGE_FULL);
760 } else {
761 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
762 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
763 }
764
765 drm_hdmi_avi_infoframe_content_type(frame, conn_state);
766
767 /* TODO: handle pixel repetition for YCBCR420 outputs */
768
769 ret = hdmi_avi_infoframe_check(frame);
770 if (drm_WARN_ON(encoder->base.dev, ret))
771 return false;
772
773 return true;
774 }
775
776 static bool
777 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
778 struct intel_crtc_state *crtc_state,
779 struct drm_connector_state *conn_state)
780 {
781 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
782 int ret;
783
784 if (!crtc_state->has_infoframe)
785 return true;
786
787 crtc_state->infoframes.enable |=
788 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
789
790 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
791 if (drm_WARN_ON(encoder->base.dev, ret))
792 return false;
793
794 frame->sdi = HDMI_SPD_SDI_PC;
795
796 ret = hdmi_spd_infoframe_check(frame);
797 if (drm_WARN_ON(encoder->base.dev, ret))
798 return false;
799
800 return true;
801 }
802
803 static bool
804 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
805 struct intel_crtc_state *crtc_state,
806 struct drm_connector_state *conn_state)
807 {
808 struct hdmi_vendor_infoframe *frame =
809 &crtc_state->infoframes.hdmi.vendor.hdmi;
810 const struct drm_display_info *info =
811 &conn_state->connector->display_info;
812 int ret;
813
814 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
815 return true;
816
817 crtc_state->infoframes.enable |=
818 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
819
820 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
821 conn_state->connector,
822 &crtc_state->hw.adjusted_mode);
823 if (drm_WARN_ON(encoder->base.dev, ret))
824 return false;
825
826 ret = hdmi_vendor_infoframe_check(frame);
827 if (drm_WARN_ON(encoder->base.dev, ret))
828 return false;
829
830 return true;
831 }
832
833 static bool
834 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
835 struct intel_crtc_state *crtc_state,
836 struct drm_connector_state *conn_state)
837 {
838 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
839 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
840 int ret;
841
842 if (!(INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)))
843 return true;
844
845 if (!crtc_state->has_infoframe)
846 return true;
847
848 if (!conn_state->hdr_output_metadata)
849 return true;
850
851 crtc_state->infoframes.enable |=
852 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
853
854 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
855 if (ret < 0) {
856 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
857 return false;
858 }
859
860 ret = hdmi_drm_infoframe_check(frame);
861 if (drm_WARN_ON(&dev_priv->drm, ret))
862 return false;
863
864 return true;
865 }
866
867 static void g4x_set_infoframes(struct intel_encoder *encoder,
868 bool enable,
869 const struct intel_crtc_state *crtc_state,
870 const struct drm_connector_state *conn_state)
871 {
872 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
873 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
874 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
875 i915_reg_t reg = VIDEO_DIP_CTL;
876 u32 val = intel_de_read(dev_priv, reg);
877 u32 port = VIDEO_DIP_PORT(encoder->port);
878
879 assert_hdmi_port_disabled(intel_hdmi);
880
881 /* If the registers were not initialized yet, they might be zeroes,
882 * which means we're selecting the AVI DIP and we're setting its
883 * frequency to once. This seems to really confuse the HW and make
884 * things stop working (the register spec says the AVI always needs to
885 * be sent every VSync). So here we avoid writing to the register more
886 * than we need and also explicitly select the AVI DIP and explicitly
887 * set its frequency to every VSync. Avoiding to write it twice seems to
888 * be enough to solve the problem, but being defensive shouldn't hurt us
889 * either. */
890 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
891
892 if (!enable) {
893 if (!(val & VIDEO_DIP_ENABLE))
894 return;
895 if (port != (val & VIDEO_DIP_PORT_MASK)) {
896 DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
897 (val & VIDEO_DIP_PORT_MASK) >> 29);
898 return;
899 }
900 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
901 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
902 intel_de_write(dev_priv, reg, val);
903 intel_de_posting_read(dev_priv, reg);
904 return;
905 }
906
907 if (port != (val & VIDEO_DIP_PORT_MASK)) {
908 if (val & VIDEO_DIP_ENABLE) {
909 DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
910 (val & VIDEO_DIP_PORT_MASK) >> 29);
911 return;
912 }
913 val &= ~VIDEO_DIP_PORT_MASK;
914 val |= port;
915 }
916
917 val |= VIDEO_DIP_ENABLE;
918 val &= ~(VIDEO_DIP_ENABLE_AVI |
919 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
920
921 intel_de_write(dev_priv, reg, val);
922 intel_de_posting_read(dev_priv, reg);
923
924 intel_write_infoframe(encoder, crtc_state,
925 HDMI_INFOFRAME_TYPE_AVI,
926 &crtc_state->infoframes.avi);
927 intel_write_infoframe(encoder, crtc_state,
928 HDMI_INFOFRAME_TYPE_SPD,
929 &crtc_state->infoframes.spd);
930 intel_write_infoframe(encoder, crtc_state,
931 HDMI_INFOFRAME_TYPE_VENDOR,
932 &crtc_state->infoframes.hdmi);
933 }
934
935 /*
936 * Determine if default_phase=1 can be indicated in the GCP infoframe.
937 *
938 * From HDMI specification 1.4a:
939 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
940 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
941 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
942 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
943 * phase of 0
944 */
945 static bool gcp_default_phase_possible(int pipe_bpp,
946 const struct drm_display_mode *mode)
947 {
948 unsigned int pixels_per_group;
949
950 switch (pipe_bpp) {
951 case 30:
952 /* 4 pixels in 5 clocks */
953 pixels_per_group = 4;
954 break;
955 case 36:
956 /* 2 pixels in 3 clocks */
957 pixels_per_group = 2;
958 break;
959 case 48:
960 /* 1 pixel in 2 clocks */
961 pixels_per_group = 1;
962 break;
963 default:
964 /* phase information not relevant for 8bpc */
965 return false;
966 }
967
968 return mode->crtc_hdisplay % pixels_per_group == 0 &&
969 mode->crtc_htotal % pixels_per_group == 0 &&
970 mode->crtc_hblank_start % pixels_per_group == 0 &&
971 mode->crtc_hblank_end % pixels_per_group == 0 &&
972 mode->crtc_hsync_start % pixels_per_group == 0 &&
973 mode->crtc_hsync_end % pixels_per_group == 0 &&
974 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
975 mode->crtc_htotal/2 % pixels_per_group == 0);
976 }
977
978 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
979 const struct intel_crtc_state *crtc_state,
980 const struct drm_connector_state *conn_state)
981 {
982 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
983 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
984 i915_reg_t reg;
985
986 if ((crtc_state->infoframes.enable &
987 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
988 return false;
989
990 if (HAS_DDI(dev_priv))
991 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
992 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
993 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
994 else if (HAS_PCH_SPLIT(dev_priv))
995 reg = TVIDEO_DIP_GCP(crtc->pipe);
996 else
997 return false;
998
999 intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
1000
1001 return true;
1002 }
1003
1004 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1005 struct intel_crtc_state *crtc_state)
1006 {
1007 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1008 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1009 i915_reg_t reg;
1010
1011 if ((crtc_state->infoframes.enable &
1012 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1013 return;
1014
1015 if (HAS_DDI(dev_priv))
1016 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1017 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1018 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1019 else if (HAS_PCH_SPLIT(dev_priv))
1020 reg = TVIDEO_DIP_GCP(crtc->pipe);
1021 else
1022 return;
1023
1024 crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1025 }
1026
1027 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1028 struct intel_crtc_state *crtc_state,
1029 struct drm_connector_state *conn_state)
1030 {
1031 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1032
1033 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1034 return;
1035
1036 crtc_state->infoframes.enable |=
1037 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1038
1039 /* Indicate color indication for deep color mode */
1040 if (crtc_state->pipe_bpp > 24)
1041 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1042
1043 /* Enable default_phase whenever the display mode is suitably aligned */
1044 if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1045 &crtc_state->hw.adjusted_mode))
1046 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1047 }
1048
1049 static void ibx_set_infoframes(struct intel_encoder *encoder,
1050 bool enable,
1051 const struct intel_crtc_state *crtc_state,
1052 const struct drm_connector_state *conn_state)
1053 {
1054 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1056 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
1057 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
1058 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1059 u32 val = intel_de_read(dev_priv, reg);
1060 u32 port = VIDEO_DIP_PORT(encoder->port);
1061
1062 assert_hdmi_port_disabled(intel_hdmi);
1063
1064 /* See the big comment in g4x_set_infoframes() */
1065 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1066
1067 if (!enable) {
1068 if (!(val & VIDEO_DIP_ENABLE))
1069 return;
1070 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1071 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1072 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1073 intel_de_write(dev_priv, reg, val);
1074 intel_de_posting_read(dev_priv, reg);
1075 return;
1076 }
1077
1078 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1079 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1080 "DIP already enabled on port %c\n",
1081 (val & VIDEO_DIP_PORT_MASK) >> 29);
1082 val &= ~VIDEO_DIP_PORT_MASK;
1083 val |= port;
1084 }
1085
1086 val |= VIDEO_DIP_ENABLE;
1087 val &= ~(VIDEO_DIP_ENABLE_AVI |
1088 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1089 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1090
1091 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1092 val |= VIDEO_DIP_ENABLE_GCP;
1093
1094 intel_de_write(dev_priv, reg, val);
1095 intel_de_posting_read(dev_priv, reg);
1096
1097 intel_write_infoframe(encoder, crtc_state,
1098 HDMI_INFOFRAME_TYPE_AVI,
1099 &crtc_state->infoframes.avi);
1100 intel_write_infoframe(encoder, crtc_state,
1101 HDMI_INFOFRAME_TYPE_SPD,
1102 &crtc_state->infoframes.spd);
1103 intel_write_infoframe(encoder, crtc_state,
1104 HDMI_INFOFRAME_TYPE_VENDOR,
1105 &crtc_state->infoframes.hdmi);
1106 }
1107
1108 static void cpt_set_infoframes(struct intel_encoder *encoder,
1109 bool enable,
1110 const struct intel_crtc_state *crtc_state,
1111 const struct drm_connector_state *conn_state)
1112 {
1113 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1115 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1116 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1117 u32 val = intel_de_read(dev_priv, reg);
1118
1119 assert_hdmi_port_disabled(intel_hdmi);
1120
1121 /* See the big comment in g4x_set_infoframes() */
1122 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1123
1124 if (!enable) {
1125 if (!(val & VIDEO_DIP_ENABLE))
1126 return;
1127 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1128 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1129 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1130 intel_de_write(dev_priv, reg, val);
1131 intel_de_posting_read(dev_priv, reg);
1132 return;
1133 }
1134
1135 /* Set both together, unset both together: see the spec. */
1136 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1137 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1138 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1139
1140 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1141 val |= VIDEO_DIP_ENABLE_GCP;
1142
1143 intel_de_write(dev_priv, reg, val);
1144 intel_de_posting_read(dev_priv, reg);
1145
1146 intel_write_infoframe(encoder, crtc_state,
1147 HDMI_INFOFRAME_TYPE_AVI,
1148 &crtc_state->infoframes.avi);
1149 intel_write_infoframe(encoder, crtc_state,
1150 HDMI_INFOFRAME_TYPE_SPD,
1151 &crtc_state->infoframes.spd);
1152 intel_write_infoframe(encoder, crtc_state,
1153 HDMI_INFOFRAME_TYPE_VENDOR,
1154 &crtc_state->infoframes.hdmi);
1155 }
1156
1157 static void vlv_set_infoframes(struct intel_encoder *encoder,
1158 bool enable,
1159 const struct intel_crtc_state *crtc_state,
1160 const struct drm_connector_state *conn_state)
1161 {
1162 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1164 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1165 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1166 u32 val = intel_de_read(dev_priv, reg);
1167 u32 port = VIDEO_DIP_PORT(encoder->port);
1168
1169 assert_hdmi_port_disabled(intel_hdmi);
1170
1171 /* See the big comment in g4x_set_infoframes() */
1172 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1173
1174 if (!enable) {
1175 if (!(val & VIDEO_DIP_ENABLE))
1176 return;
1177 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1178 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1179 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1180 intel_de_write(dev_priv, reg, val);
1181 intel_de_posting_read(dev_priv, reg);
1182 return;
1183 }
1184
1185 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1186 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1187 "DIP already enabled on port %c\n",
1188 (val & VIDEO_DIP_PORT_MASK) >> 29);
1189 val &= ~VIDEO_DIP_PORT_MASK;
1190 val |= port;
1191 }
1192
1193 val |= VIDEO_DIP_ENABLE;
1194 val &= ~(VIDEO_DIP_ENABLE_AVI |
1195 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1196 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1197
1198 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1199 val |= VIDEO_DIP_ENABLE_GCP;
1200
1201 intel_de_write(dev_priv, reg, val);
1202 intel_de_posting_read(dev_priv, reg);
1203
1204 intel_write_infoframe(encoder, crtc_state,
1205 HDMI_INFOFRAME_TYPE_AVI,
1206 &crtc_state->infoframes.avi);
1207 intel_write_infoframe(encoder, crtc_state,
1208 HDMI_INFOFRAME_TYPE_SPD,
1209 &crtc_state->infoframes.spd);
1210 intel_write_infoframe(encoder, crtc_state,
1211 HDMI_INFOFRAME_TYPE_VENDOR,
1212 &crtc_state->infoframes.hdmi);
1213 }
1214
1215 static void hsw_set_infoframes(struct intel_encoder *encoder,
1216 bool enable,
1217 const struct intel_crtc_state *crtc_state,
1218 const struct drm_connector_state *conn_state)
1219 {
1220 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1221 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1222 u32 val = intel_de_read(dev_priv, reg);
1223
1224 assert_hdmi_transcoder_func_disabled(dev_priv,
1225 crtc_state->cpu_transcoder);
1226
1227 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1228 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1229 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1230 VIDEO_DIP_ENABLE_DRM_GLK);
1231
1232 if (!enable) {
1233 intel_de_write(dev_priv, reg, val);
1234 intel_de_posting_read(dev_priv, reg);
1235 return;
1236 }
1237
1238 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1239 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1240
1241 intel_de_write(dev_priv, reg, val);
1242 intel_de_posting_read(dev_priv, reg);
1243
1244 intel_write_infoframe(encoder, crtc_state,
1245 HDMI_INFOFRAME_TYPE_AVI,
1246 &crtc_state->infoframes.avi);
1247 intel_write_infoframe(encoder, crtc_state,
1248 HDMI_INFOFRAME_TYPE_SPD,
1249 &crtc_state->infoframes.spd);
1250 intel_write_infoframe(encoder, crtc_state,
1251 HDMI_INFOFRAME_TYPE_VENDOR,
1252 &crtc_state->infoframes.hdmi);
1253 intel_write_infoframe(encoder, crtc_state,
1254 HDMI_INFOFRAME_TYPE_DRM,
1255 &crtc_state->infoframes.drm);
1256 }
1257
1258 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1259 {
1260 struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1261 struct i2c_adapter *adapter =
1262 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1263
1264 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1265 return;
1266
1267 DRM_DEBUG_KMS("%s DP dual mode adaptor TMDS output\n",
1268 enable ? "Enabling" : "Disabling");
1269
1270 drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type,
1271 adapter, enable);
1272 }
1273
1274 static int intel_hdmi_hdcp_read(struct intel_digital_port *intel_dig_port,
1275 unsigned int offset, void *buffer, size_t size)
1276 {
1277 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
1278 struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1279 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1280 hdmi->ddc_bus);
1281 int ret;
1282 u8 start = offset & 0xff;
1283 struct i2c_msg msgs[] = {
1284 {
1285 .addr = DRM_HDCP_DDC_ADDR,
1286 .flags = 0,
1287 .len = 1,
1288 .buf = &start,
1289 },
1290 {
1291 .addr = DRM_HDCP_DDC_ADDR,
1292 .flags = I2C_M_RD,
1293 .len = size,
1294 .buf = buffer
1295 }
1296 };
1297 ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1298 if (ret == ARRAY_SIZE(msgs))
1299 return 0;
1300 return ret >= 0 ? -EIO : ret;
1301 }
1302
1303 static int intel_hdmi_hdcp_write(struct intel_digital_port *intel_dig_port,
1304 unsigned int offset, void *buffer, size_t size)
1305 {
1306 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
1307 struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1308 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1309 hdmi->ddc_bus);
1310 int ret;
1311 u8 *write_buf;
1312 struct i2c_msg msg;
1313
1314 write_buf = kzalloc(size + 1, GFP_KERNEL);
1315 if (!write_buf)
1316 return -ENOMEM;
1317
1318 write_buf[0] = offset & 0xff;
1319 memcpy(&write_buf[1], buffer, size);
1320
1321 msg.addr = DRM_HDCP_DDC_ADDR;
1322 msg.flags = 0,
1323 msg.len = size + 1,
1324 msg.buf = write_buf;
1325
1326 ret = i2c_transfer(adapter, &msg, 1);
1327 if (ret == 1)
1328 ret = 0;
1329 else if (ret >= 0)
1330 ret = -EIO;
1331
1332 kfree(write_buf);
1333 return ret;
1334 }
1335
1336 static
1337 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
1338 u8 *an)
1339 {
1340 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
1341 struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1342 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1343 hdmi->ddc_bus);
1344 int ret;
1345
1346 ret = intel_hdmi_hdcp_write(intel_dig_port, DRM_HDCP_DDC_AN, an,
1347 DRM_HDCP_AN_LEN);
1348 if (ret) {
1349 DRM_DEBUG_KMS("Write An over DDC failed (%d)\n", ret);
1350 return ret;
1351 }
1352
1353 ret = intel_gmbus_output_aksv(adapter);
1354 if (ret < 0) {
1355 DRM_DEBUG_KMS("Failed to output aksv (%d)\n", ret);
1356 return ret;
1357 }
1358 return 0;
1359 }
1360
1361 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
1362 u8 *bksv)
1363 {
1364 int ret;
1365 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BKSV, bksv,
1366 DRM_HDCP_KSV_LEN);
1367 if (ret)
1368 DRM_DEBUG_KMS("Read Bksv over DDC failed (%d)\n", ret);
1369 return ret;
1370 }
1371
1372 static
1373 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
1374 u8 *bstatus)
1375 {
1376 int ret;
1377 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BSTATUS,
1378 bstatus, DRM_HDCP_BSTATUS_LEN);
1379 if (ret)
1380 DRM_DEBUG_KMS("Read bstatus over DDC failed (%d)\n", ret);
1381 return ret;
1382 }
1383
1384 static
1385 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
1386 bool *repeater_present)
1387 {
1388 int ret;
1389 u8 val;
1390
1391 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1392 if (ret) {
1393 DRM_DEBUG_KMS("Read bcaps over DDC failed (%d)\n", ret);
1394 return ret;
1395 }
1396 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1397 return 0;
1398 }
1399
1400 static
1401 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
1402 u8 *ri_prime)
1403 {
1404 int ret;
1405 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_RI_PRIME,
1406 ri_prime, DRM_HDCP_RI_LEN);
1407 if (ret)
1408 DRM_DEBUG_KMS("Read Ri' over DDC failed (%d)\n", ret);
1409 return ret;
1410 }
1411
1412 static
1413 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
1414 bool *ksv_ready)
1415 {
1416 int ret;
1417 u8 val;
1418
1419 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420 if (ret) {
1421 DRM_DEBUG_KMS("Read bcaps over DDC failed (%d)\n", ret);
1422 return ret;
1423 }
1424 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1425 return 0;
1426 }
1427
1428 static
1429 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
1430 int num_downstream, u8 *ksv_fifo)
1431 {
1432 int ret;
1433 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_KSV_FIFO,
1434 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1435 if (ret) {
1436 DRM_DEBUG_KMS("Read ksv fifo over DDC failed (%d)\n", ret);
1437 return ret;
1438 }
1439 return 0;
1440 }
1441
1442 static
1443 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
1444 int i, u32 *part)
1445 {
1446 int ret;
1447
1448 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1449 return -EINVAL;
1450
1451 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_V_PRIME(i),
1452 part, DRM_HDCP_V_PRIME_PART_LEN);
1453 if (ret)
1454 DRM_DEBUG_KMS("Read V'[%d] over DDC failed (%d)\n", i, ret);
1455 return ret;
1456 }
1457
1458 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector)
1459 {
1460 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1461 struct intel_digital_port *intel_dig_port = intel_attached_dig_port(connector);
1462 struct drm_crtc *crtc = connector->base.state->crtc;
1463 struct intel_crtc *intel_crtc = container_of(crtc,
1464 struct intel_crtc, base);
1465 u32 scanline;
1466 int ret;
1467
1468 for (;;) {
1469 scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe));
1470 if (scanline > 100 && scanline < 200)
1471 break;
1472 usleep_range(25, 50);
1473 }
1474
1475 ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, false);
1476 if (ret) {
1477 DRM_ERROR("Disable HDCP signalling failed (%d)\n", ret);
1478 return ret;
1479 }
1480 ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, true);
1481 if (ret) {
1482 DRM_ERROR("Enable HDCP signalling failed (%d)\n", ret);
1483 return ret;
1484 }
1485
1486 return 0;
1487 }
1488
1489 static
1490 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
1491 bool enable)
1492 {
1493 struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1494 struct intel_connector *connector = hdmi->attached_connector;
1495 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1496 int ret;
1497
1498 if (!enable)
1499 usleep_range(6, 60); /* Bspec says >= 6us */
1500
1501 ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, enable);
1502 if (ret) {
1503 DRM_ERROR("%s HDCP signalling failed (%d)\n",
1504 enable ? "Enable" : "Disable", ret);
1505 return ret;
1506 }
1507
1508 /*
1509 * WA: To fix incorrect positioning of the window of
1510 * opportunity and enc_en signalling in KABYLAKE.
1511 */
1512 if (IS_KABYLAKE(dev_priv) && enable)
1513 return kbl_repositioning_enc_en_signal(connector);
1514
1515 return 0;
1516 }
1517
1518 static
1519 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *intel_dig_port)
1520 {
1521 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
1522 struct intel_connector *connector =
1523 intel_dig_port->hdmi.attached_connector;
1524 enum port port = intel_dig_port->base.port;
1525 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1526 int ret;
1527 union {
1528 u32 reg;
1529 u8 shim[DRM_HDCP_RI_LEN];
1530 } ri;
1531
1532 ret = intel_hdmi_hdcp_read_ri_prime(intel_dig_port, ri.shim);
1533 if (ret)
1534 return false;
1535
1536 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1537
1538 /* Wait for Ri prime match */
1539 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1540 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1541 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1542 DRM_ERROR("Ri' mismatch detected, link check failed (%x)\n",
1543 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1544 return false;
1545 }
1546 return true;
1547 }
1548
1549 struct hdcp2_hdmi_msg_timeout {
1550 u8 msg_id;
1551 u16 timeout;
1552 };
1553
1554 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1555 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1556 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1557 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1558 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1559 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1560 };
1561
1562 static
1563 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
1564 u8 *rx_status)
1565 {
1566 return intel_hdmi_hdcp_read(intel_dig_port,
1567 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1568 rx_status,
1569 HDCP_2_2_HDMI_RXSTATUS_LEN);
1570 }
1571
1572 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1573 {
1574 int i;
1575
1576 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1577 if (is_paired)
1578 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1579 else
1580 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1581 }
1582
1583 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1584 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1585 return hdcp2_msg_timeout[i].timeout;
1586 }
1587
1588 return -EINVAL;
1589 }
1590
1591 static inline
1592 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_digital_port,
1593 u8 msg_id, bool *msg_ready,
1594 ssize_t *msg_sz)
1595 {
1596 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1597 int ret;
1598
1599 ret = intel_hdmi_hdcp2_read_rx_status(intel_digital_port, rx_status);
1600 if (ret < 0) {
1601 DRM_DEBUG_KMS("rx_status read failed. Err %d\n", ret);
1602 return ret;
1603 }
1604
1605 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1606 rx_status[0]);
1607
1608 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1609 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1610 *msg_sz);
1611 else
1612 *msg_ready = *msg_sz;
1613
1614 return 0;
1615 }
1616
1617 static ssize_t
1618 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
1619 u8 msg_id, bool paired)
1620 {
1621 bool msg_ready = false;
1622 int timeout, ret;
1623 ssize_t msg_sz = 0;
1624
1625 timeout = get_hdcp2_msg_timeout(msg_id, paired);
1626 if (timeout < 0)
1627 return timeout;
1628
1629 ret = __wait_for(ret = hdcp2_detect_msg_availability(intel_dig_port,
1630 msg_id, &msg_ready,
1631 &msg_sz),
1632 !ret && msg_ready && msg_sz, timeout * 1000,
1633 1000, 5 * 1000);
1634 if (ret)
1635 DRM_DEBUG_KMS("msg_id: %d, ret: %d, timeout: %d\n",
1636 msg_id, ret, timeout);
1637
1638 return ret ? ret : msg_sz;
1639 }
1640
1641 static
1642 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
1643 void *buf, size_t size)
1644 {
1645 unsigned int offset;
1646
1647 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1648 return intel_hdmi_hdcp_write(intel_dig_port, offset, buf, size);
1649 }
1650
1651 static
1652 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
1653 u8 msg_id, void *buf, size_t size)
1654 {
1655 struct intel_hdmi *hdmi = &intel_dig_port->hdmi;
1656 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1657 unsigned int offset;
1658 ssize_t ret;
1659
1660 ret = intel_hdmi_hdcp2_wait_for_msg(intel_dig_port, msg_id,
1661 hdcp->is_paired);
1662 if (ret < 0)
1663 return ret;
1664
1665 /*
1666 * Available msg size should be equal to or lesser than the
1667 * available buffer.
1668 */
1669 if (ret > size) {
1670 DRM_DEBUG_KMS("msg_sz(%zd) is more than exp size(%zu)\n",
1671 ret, size);
1672 return -1;
1673 }
1674
1675 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1676 ret = intel_hdmi_hdcp_read(intel_dig_port, offset, buf, ret);
1677 if (ret)
1678 DRM_DEBUG_KMS("Failed to read msg_id: %d(%zd)\n", msg_id, ret);
1679
1680 return ret;
1681 }
1682
1683 static
1684 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
1685 {
1686 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1687 int ret;
1688
1689 ret = intel_hdmi_hdcp2_read_rx_status(intel_dig_port, rx_status);
1690 if (ret)
1691 return ret;
1692
1693 /*
1694 * Re-auth request and Link Integrity Failures are represented by
1695 * same bit. i.e reauth_req.
1696 */
1697 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1698 ret = HDCP_REAUTH_REQUEST;
1699 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1700 ret = HDCP_TOPOLOGY_CHANGE;
1701
1702 return ret;
1703 }
1704
1705 static
1706 int intel_hdmi_hdcp2_capable(struct intel_digital_port *intel_dig_port,
1707 bool *capable)
1708 {
1709 u8 hdcp2_version;
1710 int ret;
1711
1712 *capable = false;
1713 ret = intel_hdmi_hdcp_read(intel_dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1714 &hdcp2_version, sizeof(hdcp2_version));
1715 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1716 *capable = true;
1717
1718 return ret;
1719 }
1720
1721 static inline
1722 enum hdcp_wired_protocol intel_hdmi_hdcp2_protocol(void)
1723 {
1724 return HDCP_PROTOCOL_HDMI;
1725 }
1726
1727 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1728 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1729 .read_bksv = intel_hdmi_hdcp_read_bksv,
1730 .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1731 .repeater_present = intel_hdmi_hdcp_repeater_present,
1732 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1733 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1734 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1735 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1736 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1737 .check_link = intel_hdmi_hdcp_check_link,
1738 .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1739 .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1740 .check_2_2_link = intel_hdmi_hdcp2_check_link,
1741 .hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1742 .protocol = HDCP_PROTOCOL_HDMI,
1743 };
1744
1745 static void intel_hdmi_prepare(struct intel_encoder *encoder,
1746 const struct intel_crtc_state *crtc_state)
1747 {
1748 struct drm_device *dev = encoder->base.dev;
1749 struct drm_i915_private *dev_priv = to_i915(dev);
1750 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1751 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1752 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
1753 u32 hdmi_val;
1754
1755 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
1756
1757 hdmi_val = SDVO_ENCODING_HDMI;
1758 if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range)
1759 hdmi_val |= HDMI_COLOR_RANGE_16_235;
1760 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1761 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
1762 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1763 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
1764
1765 if (crtc_state->pipe_bpp > 24)
1766 hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
1767 else
1768 hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
1769
1770 if (crtc_state->has_hdmi_sink)
1771 hdmi_val |= HDMI_MODE_SELECT_HDMI;
1772
1773 if (HAS_PCH_CPT(dev_priv))
1774 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
1775 else if (IS_CHERRYVIEW(dev_priv))
1776 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
1777 else
1778 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
1779
1780 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, hdmi_val);
1781 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1782 }
1783
1784 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
1785 enum pipe *pipe)
1786 {
1787 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1788 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1789 intel_wakeref_t wakeref;
1790 bool ret;
1791
1792 wakeref = intel_display_power_get_if_enabled(dev_priv,
1793 encoder->power_domain);
1794 if (!wakeref)
1795 return false;
1796
1797 ret = intel_sdvo_port_enabled(dev_priv, intel_hdmi->hdmi_reg, pipe);
1798
1799 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
1800
1801 return ret;
1802 }
1803
1804 static void intel_hdmi_get_config(struct intel_encoder *encoder,
1805 struct intel_crtc_state *pipe_config)
1806 {
1807 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1808 struct drm_device *dev = encoder->base.dev;
1809 struct drm_i915_private *dev_priv = to_i915(dev);
1810 u32 tmp, flags = 0;
1811 int dotclock;
1812
1813 pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
1814
1815 tmp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg);
1816
1817 if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
1818 flags |= DRM_MODE_FLAG_PHSYNC;
1819 else
1820 flags |= DRM_MODE_FLAG_NHSYNC;
1821
1822 if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
1823 flags |= DRM_MODE_FLAG_PVSYNC;
1824 else
1825 flags |= DRM_MODE_FLAG_NVSYNC;
1826
1827 if (tmp & HDMI_MODE_SELECT_HDMI)
1828 pipe_config->has_hdmi_sink = true;
1829
1830 pipe_config->infoframes.enable |=
1831 intel_hdmi_infoframes_enabled(encoder, pipe_config);
1832
1833 if (pipe_config->infoframes.enable)
1834 pipe_config->has_infoframe = true;
1835
1836 if (tmp & HDMI_AUDIO_ENABLE)
1837 pipe_config->has_audio = true;
1838
1839 if (!HAS_PCH_SPLIT(dev_priv) &&
1840 tmp & HDMI_COLOR_RANGE_16_235)
1841 pipe_config->limited_color_range = true;
1842
1843 pipe_config->hw.adjusted_mode.flags |= flags;
1844
1845 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
1846 dotclock = pipe_config->port_clock * 2 / 3;
1847 else
1848 dotclock = pipe_config->port_clock;
1849
1850 if (pipe_config->pixel_multiplier)
1851 dotclock /= pipe_config->pixel_multiplier;
1852
1853 pipe_config->hw.adjusted_mode.crtc_clock = dotclock;
1854
1855 pipe_config->lane_count = 4;
1856
1857 intel_hdmi_read_gcp_infoframe(encoder, pipe_config);
1858
1859 intel_read_infoframe(encoder, pipe_config,
1860 HDMI_INFOFRAME_TYPE_AVI,
1861 &pipe_config->infoframes.avi);
1862 intel_read_infoframe(encoder, pipe_config,
1863 HDMI_INFOFRAME_TYPE_SPD,
1864 &pipe_config->infoframes.spd);
1865 intel_read_infoframe(encoder, pipe_config,
1866 HDMI_INFOFRAME_TYPE_VENDOR,
1867 &pipe_config->infoframes.hdmi);
1868 }
1869
1870 static void intel_enable_hdmi_audio(struct intel_encoder *encoder,
1871 const struct intel_crtc_state *pipe_config,
1872 const struct drm_connector_state *conn_state)
1873 {
1874 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
1875
1876 drm_WARN_ON(encoder->base.dev, !pipe_config->has_hdmi_sink);
1877 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
1878 pipe_name(crtc->pipe));
1879 intel_audio_codec_enable(encoder, pipe_config, conn_state);
1880 }
1881
1882 static void g4x_enable_hdmi(struct intel_encoder *encoder,
1883 const struct intel_crtc_state *pipe_config,
1884 const struct drm_connector_state *conn_state)
1885 {
1886 struct drm_device *dev = encoder->base.dev;
1887 struct drm_i915_private *dev_priv = to_i915(dev);
1888 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1889 u32 temp;
1890
1891 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg);
1892
1893 temp |= SDVO_ENABLE;
1894 if (pipe_config->has_audio)
1895 temp |= HDMI_AUDIO_ENABLE;
1896
1897 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
1898 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1899
1900 if (pipe_config->has_audio)
1901 intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
1902 }
1903
1904 static void ibx_enable_hdmi(struct intel_encoder *encoder,
1905 const struct intel_crtc_state *pipe_config,
1906 const struct drm_connector_state *conn_state)
1907 {
1908 struct drm_device *dev = encoder->base.dev;
1909 struct drm_i915_private *dev_priv = to_i915(dev);
1910 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1911 u32 temp;
1912
1913 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg);
1914
1915 temp |= SDVO_ENABLE;
1916 if (pipe_config->has_audio)
1917 temp |= HDMI_AUDIO_ENABLE;
1918
1919 /*
1920 * HW workaround, need to write this twice for issue
1921 * that may result in first write getting masked.
1922 */
1923 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
1924 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1925 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
1926 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1927
1928 /*
1929 * HW workaround, need to toggle enable bit off and on
1930 * for 12bpc with pixel repeat.
1931 *
1932 * FIXME: BSpec says this should be done at the end of
1933 * of the modeset sequence, so not sure if this isn't too soon.
1934 */
1935 if (pipe_config->pipe_bpp > 24 &&
1936 pipe_config->pixel_multiplier > 1) {
1937 intel_de_write(dev_priv, intel_hdmi->hdmi_reg,
1938 temp & ~SDVO_ENABLE);
1939 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1940
1941 /*
1942 * HW workaround, need to write this twice for issue
1943 * that may result in first write getting masked.
1944 */
1945 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
1946 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1947 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
1948 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1949 }
1950
1951 if (pipe_config->has_audio)
1952 intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
1953 }
1954
1955 static void cpt_enable_hdmi(struct intel_encoder *encoder,
1956 const struct intel_crtc_state *pipe_config,
1957 const struct drm_connector_state *conn_state)
1958 {
1959 struct drm_device *dev = encoder->base.dev;
1960 struct drm_i915_private *dev_priv = to_i915(dev);
1961 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
1962 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1963 enum pipe pipe = crtc->pipe;
1964 u32 temp;
1965
1966 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg);
1967
1968 temp |= SDVO_ENABLE;
1969 if (pipe_config->has_audio)
1970 temp |= HDMI_AUDIO_ENABLE;
1971
1972 /*
1973 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
1974 *
1975 * The procedure for 12bpc is as follows:
1976 * 1. disable HDMI clock gating
1977 * 2. enable HDMI with 8bpc
1978 * 3. enable HDMI with 12bpc
1979 * 4. enable HDMI clock gating
1980 */
1981
1982 if (pipe_config->pipe_bpp > 24) {
1983 intel_de_write(dev_priv, TRANS_CHICKEN1(pipe),
1984 intel_de_read(dev_priv, TRANS_CHICKEN1(pipe)) | TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1985
1986 temp &= ~SDVO_COLOR_FORMAT_MASK;
1987 temp |= SDVO_COLOR_FORMAT_8bpc;
1988 }
1989
1990 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
1991 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1992
1993 if (pipe_config->pipe_bpp > 24) {
1994 temp &= ~SDVO_COLOR_FORMAT_MASK;
1995 temp |= HDMI_COLOR_FORMAT_12bpc;
1996
1997 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
1998 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
1999
2000 intel_de_write(dev_priv, TRANS_CHICKEN1(pipe),
2001 intel_de_read(dev_priv, TRANS_CHICKEN1(pipe)) & ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
2002 }
2003
2004 if (pipe_config->has_audio)
2005 intel_enable_hdmi_audio(encoder, pipe_config, conn_state);
2006 }
2007
2008 static void vlv_enable_hdmi(struct intel_encoder *encoder,
2009 const struct intel_crtc_state *pipe_config,
2010 const struct drm_connector_state *conn_state)
2011 {
2012 }
2013
2014 static void intel_disable_hdmi(struct intel_encoder *encoder,
2015 const struct intel_crtc_state *old_crtc_state,
2016 const struct drm_connector_state *old_conn_state)
2017 {
2018 struct drm_device *dev = encoder->base.dev;
2019 struct drm_i915_private *dev_priv = to_i915(dev);
2020 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2021 struct intel_digital_port *intel_dig_port =
2022 hdmi_to_dig_port(intel_hdmi);
2023 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
2024 u32 temp;
2025
2026 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg);
2027
2028 temp &= ~(SDVO_ENABLE | HDMI_AUDIO_ENABLE);
2029 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
2030 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
2031
2032 /*
2033 * HW workaround for IBX, we need to move the port
2034 * to transcoder A after disabling it to allow the
2035 * matching DP port to be enabled on transcoder A.
2036 */
2037 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) {
2038 /*
2039 * We get CPU/PCH FIFO underruns on the other pipe when
2040 * doing the workaround. Sweep them under the rug.
2041 */
2042 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
2043 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
2044
2045 temp &= ~SDVO_PIPE_SEL_MASK;
2046 temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A);
2047 /*
2048 * HW workaround, need to write this twice for issue
2049 * that may result in first write getting masked.
2050 */
2051 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
2052 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
2053 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
2054 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
2055
2056 temp &= ~SDVO_ENABLE;
2057 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp);
2058 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg);
2059
2060 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
2061 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
2062 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
2063 }
2064
2065 intel_dig_port->set_infoframes(encoder,
2066 false,
2067 old_crtc_state, old_conn_state);
2068
2069 intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
2070 }
2071
2072 static void g4x_disable_hdmi(struct intel_encoder *encoder,
2073 const struct intel_crtc_state *old_crtc_state,
2074 const struct drm_connector_state *old_conn_state)
2075 {
2076 if (old_crtc_state->has_audio)
2077 intel_audio_codec_disable(encoder,
2078 old_crtc_state, old_conn_state);
2079
2080 intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
2081 }
2082
2083 static void pch_disable_hdmi(struct intel_encoder *encoder,
2084 const struct intel_crtc_state *old_crtc_state,
2085 const struct drm_connector_state *old_conn_state)
2086 {
2087 if (old_crtc_state->has_audio)
2088 intel_audio_codec_disable(encoder,
2089 old_crtc_state, old_conn_state);
2090 }
2091
2092 static void pch_post_disable_hdmi(struct intel_encoder *encoder,
2093 const struct intel_crtc_state *old_crtc_state,
2094 const struct drm_connector_state *old_conn_state)
2095 {
2096 intel_disable_hdmi(encoder, old_crtc_state, old_conn_state);
2097 }
2098
2099 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
2100 {
2101 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2102 int max_tmds_clock, vbt_max_tmds_clock;
2103
2104 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
2105 max_tmds_clock = 594000;
2106 else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv))
2107 max_tmds_clock = 300000;
2108 else if (INTEL_GEN(dev_priv) >= 5)
2109 max_tmds_clock = 225000;
2110 else
2111 max_tmds_clock = 165000;
2112
2113 vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
2114 if (vbt_max_tmds_clock)
2115 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
2116
2117 return max_tmds_clock;
2118 }
2119
2120 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
2121 const struct drm_connector_state *conn_state)
2122 {
2123 return hdmi->has_hdmi_sink &&
2124 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
2125 }
2126
2127 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
2128 bool respect_downstream_limits,
2129 bool has_hdmi_sink)
2130 {
2131 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2132 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
2133
2134 if (respect_downstream_limits) {
2135 struct intel_connector *connector = hdmi->attached_connector;
2136 const struct drm_display_info *info = &connector->base.display_info;
2137
2138 if (hdmi->dp_dual_mode.max_tmds_clock)
2139 max_tmds_clock = min(max_tmds_clock,
2140 hdmi->dp_dual_mode.max_tmds_clock);
2141
2142 if (info->max_tmds_clock)
2143 max_tmds_clock = min(max_tmds_clock,
2144 info->max_tmds_clock);
2145 else if (!has_hdmi_sink)
2146 max_tmds_clock = min(max_tmds_clock, 165000);
2147 }
2148
2149 return max_tmds_clock;
2150 }
2151
2152 static enum drm_mode_status
2153 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
2154 int clock, bool respect_downstream_limits,
2155 bool has_hdmi_sink)
2156 {
2157 struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
2158
2159 if (clock < 25000)
2160 return MODE_CLOCK_LOW;
2161 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
2162 has_hdmi_sink))
2163 return MODE_CLOCK_HIGH;
2164
2165 /* BXT DPLL can't generate 223-240 MHz */
2166 if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000)
2167 return MODE_CLOCK_RANGE;
2168
2169 /* CHV DPLL can't generate 216-240 MHz */
2170 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
2171 return MODE_CLOCK_RANGE;
2172
2173 return MODE_OK;
2174 }
2175
2176 static enum drm_mode_status
2177 intel_hdmi_mode_valid(struct drm_connector *connector,
2178 struct drm_display_mode *mode)
2179 {
2180 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2181 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
2182 struct drm_i915_private *dev_priv = to_i915(dev);
2183 enum drm_mode_status status;
2184 int clock = mode->clock;
2185 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
2186 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
2187
2188 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
2189 return MODE_NO_DBLESCAN;
2190
2191 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2192 clock *= 2;
2193
2194 if (clock > max_dotclk)
2195 return MODE_CLOCK_HIGH;
2196
2197 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
2198 clock *= 2;
2199
2200 if (drm_mode_is_420_only(&connector->display_info, mode))
2201 clock /= 2;
2202
2203 /* check if we can do 8bpc */
2204 status = hdmi_port_clock_valid(hdmi, clock, true, has_hdmi_sink);
2205
2206 if (has_hdmi_sink) {
2207 /* if we can't do 8bpc we may still be able to do 12bpc */
2208 if (status != MODE_OK && !HAS_GMCH(dev_priv))
2209 status = hdmi_port_clock_valid(hdmi, clock * 3 / 2,
2210 true, has_hdmi_sink);
2211
2212 /* if we can't do 8,12bpc we may still be able to do 10bpc */
2213 if (status != MODE_OK && INTEL_GEN(dev_priv) >= 11)
2214 status = hdmi_port_clock_valid(hdmi, clock * 5 / 4,
2215 true, has_hdmi_sink);
2216 }
2217 if (status != MODE_OK)
2218 return status;
2219
2220 return intel_mode_valid_max_plane_size(dev_priv, mode);
2221 }
2222
2223 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2224 int bpc)
2225 {
2226 struct drm_i915_private *dev_priv =
2227 to_i915(crtc_state->uapi.crtc->dev);
2228 struct drm_atomic_state *state = crtc_state->uapi.state;
2229 struct drm_connector_state *connector_state;
2230 struct drm_connector *connector;
2231 const struct drm_display_mode *adjusted_mode =
2232 &crtc_state->hw.adjusted_mode;
2233 int i;
2234
2235 if (HAS_GMCH(dev_priv))
2236 return false;
2237
2238 if (bpc == 10 && INTEL_GEN(dev_priv) < 11)
2239 return false;
2240
2241 if (crtc_state->pipe_bpp < bpc * 3)
2242 return false;
2243
2244 if (!crtc_state->has_hdmi_sink)
2245 return false;
2246
2247 /*
2248 * HDMI deep color affects the clocks, so it's only possible
2249 * when not cloning with other encoder types.
2250 */
2251 if (crtc_state->output_types != 1 << INTEL_OUTPUT_HDMI)
2252 return false;
2253
2254 for_each_new_connector_in_state(state, connector, connector_state, i) {
2255 const struct drm_display_info *info = &connector->display_info;
2256
2257 if (connector_state->crtc != crtc_state->uapi.crtc)
2258 continue;
2259
2260 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2261 const struct drm_hdmi_info *hdmi = &info->hdmi;
2262
2263 if (bpc == 12 && !(hdmi->y420_dc_modes &
2264 DRM_EDID_YCBCR420_DC_36))
2265 return false;
2266 else if (bpc == 10 && !(hdmi->y420_dc_modes &
2267 DRM_EDID_YCBCR420_DC_30))
2268 return false;
2269 } else {
2270 if (bpc == 12 && !(info->edid_hdmi_dc_modes &
2271 DRM_EDID_HDMI_DC_36))
2272 return false;
2273 else if (bpc == 10 && !(info->edid_hdmi_dc_modes &
2274 DRM_EDID_HDMI_DC_30))
2275 return false;
2276 }
2277 }
2278
2279 /* Display Wa_1405510057:icl,ehl */
2280 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2281 bpc == 10 && IS_GEN(dev_priv, 11) &&
2282 (adjusted_mode->crtc_hblank_end -
2283 adjusted_mode->crtc_hblank_start) % 8 == 2)
2284 return false;
2285
2286 return true;
2287 }
2288
2289 static bool
2290 intel_hdmi_ycbcr420_config(struct drm_connector *connector,
2291 struct intel_crtc_state *config)
2292 {
2293 struct intel_crtc *intel_crtc = to_intel_crtc(config->uapi.crtc);
2294
2295 if (!connector->ycbcr_420_allowed) {
2296 DRM_ERROR("Platform doesn't support YCBCR420 output\n");
2297 return false;
2298 }
2299
2300 config->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2301
2302 /* YCBCR 420 output conversion needs a scaler */
2303 if (skl_update_scaler_crtc(config)) {
2304 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2305 return false;
2306 }
2307
2308 intel_pch_panel_fitting(intel_crtc, config,
2309 DRM_MODE_SCALE_FULLSCREEN);
2310
2311 return true;
2312 }
2313
2314 static int intel_hdmi_port_clock(int clock, int bpc)
2315 {
2316 /*
2317 * Need to adjust the port link by:
2318 * 1.5x for 12bpc
2319 * 1.25x for 10bpc
2320 */
2321 return clock * bpc / 8;
2322 }
2323
2324 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2325 struct intel_crtc_state *crtc_state,
2326 int clock)
2327 {
2328 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2329 int bpc;
2330
2331 for (bpc = 12; bpc >= 10; bpc -= 2) {
2332 if (hdmi_deep_color_possible(crtc_state, bpc) &&
2333 hdmi_port_clock_valid(intel_hdmi,
2334 intel_hdmi_port_clock(clock, bpc),
2335 true, crtc_state->has_hdmi_sink) == MODE_OK)
2336 return bpc;
2337 }
2338
2339 return 8;
2340 }
2341
2342 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2343 struct intel_crtc_state *crtc_state)
2344 {
2345 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2346 const struct drm_display_mode *adjusted_mode =
2347 &crtc_state->hw.adjusted_mode;
2348 int bpc, clock = adjusted_mode->crtc_clock;
2349
2350 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2351 clock *= 2;
2352
2353 /* YCBCR420 TMDS rate requirement is half the pixel clock */
2354 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2355 clock /= 2;
2356
2357 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2358
2359 crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2360
2361 /*
2362 * pipe_bpp could already be below 8bpc due to
2363 * FDI bandwidth constraints. We shouldn't bump it
2364 * back up to 8bpc in that case.
2365 */
2366 if (crtc_state->pipe_bpp > bpc * 3)
2367 crtc_state->pipe_bpp = bpc * 3;
2368
2369 DRM_DEBUG_KMS("picking %d bpc for HDMI output (pipe bpp: %d)\n",
2370 bpc, crtc_state->pipe_bpp);
2371
2372 if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2373 false, crtc_state->has_hdmi_sink) != MODE_OK) {
2374 DRM_DEBUG_KMS("unsupported HDMI clock (%d kHz), rejecting mode\n",
2375 crtc_state->port_clock);
2376 return -EINVAL;
2377 }
2378
2379 return 0;
2380 }
2381
2382 static bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2383 const struct drm_connector_state *conn_state)
2384 {
2385 const struct intel_digital_connector_state *intel_conn_state =
2386 to_intel_digital_connector_state(conn_state);
2387 const struct drm_display_mode *adjusted_mode =
2388 &crtc_state->hw.adjusted_mode;
2389
2390 /*
2391 * Our YCbCr output is always limited range.
2392 * crtc_state->limited_color_range only applies to RGB,
2393 * and it must never be set for YCbCr or we risk setting
2394 * some conflicting bits in PIPECONF which will mess up
2395 * the colors on the monitor.
2396 */
2397 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2398 return false;
2399
2400 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2401 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2402 return crtc_state->has_hdmi_sink &&
2403 drm_default_rgb_quant_range(adjusted_mode) ==
2404 HDMI_QUANTIZATION_RANGE_LIMITED;
2405 } else {
2406 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2407 }
2408 }
2409
2410 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2411 struct intel_crtc_state *pipe_config,
2412 struct drm_connector_state *conn_state)
2413 {
2414 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2415 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2416 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2417 struct drm_connector *connector = conn_state->connector;
2418 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2419 struct intel_digital_connector_state *intel_conn_state =
2420 to_intel_digital_connector_state(conn_state);
2421 int ret;
2422
2423 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2424 return -EINVAL;
2425
2426 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2427 pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2428 conn_state);
2429
2430 if (pipe_config->has_hdmi_sink)
2431 pipe_config->has_infoframe = true;
2432
2433 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2434 pipe_config->pixel_multiplier = 2;
2435
2436 if (drm_mode_is_420_only(&connector->display_info, adjusted_mode)) {
2437 if (!intel_hdmi_ycbcr420_config(connector, pipe_config)) {
2438 DRM_ERROR("Can't support YCBCR420 output\n");
2439 return -EINVAL;
2440 }
2441 }
2442
2443 pipe_config->limited_color_range =
2444 intel_hdmi_limited_color_range(pipe_config, conn_state);
2445
2446 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2447 pipe_config->has_pch_encoder = true;
2448
2449 if (pipe_config->has_hdmi_sink) {
2450 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2451 pipe_config->has_audio = intel_hdmi->has_audio;
2452 else
2453 pipe_config->has_audio =
2454 intel_conn_state->force_audio == HDMI_AUDIO_ON;
2455 }
2456
2457 ret = intel_hdmi_compute_clock(encoder, pipe_config);
2458 if (ret)
2459 return ret;
2460
2461 if (conn_state->picture_aspect_ratio)
2462 adjusted_mode->picture_aspect_ratio =
2463 conn_state->picture_aspect_ratio;
2464
2465 pipe_config->lane_count = 4;
2466
2467 if (scdc->scrambling.supported && (INTEL_GEN(dev_priv) >= 10 ||
2468 IS_GEMINILAKE(dev_priv))) {
2469 if (scdc->scrambling.low_rates)
2470 pipe_config->hdmi_scrambling = true;
2471
2472 if (pipe_config->port_clock > 340000) {
2473 pipe_config->hdmi_scrambling = true;
2474 pipe_config->hdmi_high_tmds_clock_ratio = true;
2475 }
2476 }
2477
2478 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, conn_state);
2479
2480 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2481 DRM_DEBUG_KMS("bad AVI infoframe\n");
2482 return -EINVAL;
2483 }
2484
2485 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2486 DRM_DEBUG_KMS("bad SPD infoframe\n");
2487 return -EINVAL;
2488 }
2489
2490 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2491 DRM_DEBUG_KMS("bad HDMI infoframe\n");
2492 return -EINVAL;
2493 }
2494
2495 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2496 DRM_DEBUG_KMS("bad DRM infoframe\n");
2497 return -EINVAL;
2498 }
2499
2500 return 0;
2501 }
2502
2503 static void
2504 intel_hdmi_unset_edid(struct drm_connector *connector)
2505 {
2506 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2507
2508 intel_hdmi->has_hdmi_sink = false;
2509 intel_hdmi->has_audio = false;
2510
2511 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2512 intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2513
2514 kfree(to_intel_connector(connector)->detect_edid);
2515 to_intel_connector(connector)->detect_edid = NULL;
2516 }
2517
2518 static void
2519 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2520 {
2521 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2522 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2523 enum port port = hdmi_to_dig_port(hdmi)->base.port;
2524 struct i2c_adapter *adapter =
2525 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2526 enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter);
2527
2528 /*
2529 * Type 1 DVI adaptors are not required to implement any
2530 * registers, so we can't always detect their presence.
2531 * Ideally we should be able to check the state of the
2532 * CONFIG1 pin, but no such luck on our hardware.
2533 *
2534 * The only method left to us is to check the VBT to see
2535 * if the port is a dual mode capable DP port. But let's
2536 * only do that when we sucesfully read the EDID, to avoid
2537 * confusing log messages about DP dual mode adaptors when
2538 * there's nothing connected to the port.
2539 */
2540 if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2541 /* An overridden EDID imply that we want this port for testing.
2542 * Make sure not to set limits for that port.
2543 */
2544 if (has_edid && !connector->override_edid &&
2545 intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2546 DRM_DEBUG_KMS("Assuming DP dual mode adaptor presence based on VBT\n");
2547 type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2548 } else {
2549 type = DRM_DP_DUAL_MODE_NONE;
2550 }
2551 }
2552
2553 if (type == DRM_DP_DUAL_MODE_NONE)
2554 return;
2555
2556 hdmi->dp_dual_mode.type = type;
2557 hdmi->dp_dual_mode.max_tmds_clock =
2558 drm_dp_dual_mode_max_tmds_clock(type, adapter);
2559
2560 DRM_DEBUG_KMS("DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2561 drm_dp_get_dual_mode_type_name(type),
2562 hdmi->dp_dual_mode.max_tmds_clock);
2563 }
2564
2565 static bool
2566 intel_hdmi_set_edid(struct drm_connector *connector)
2567 {
2568 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2569 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2570 intel_wakeref_t wakeref;
2571 struct edid *edid;
2572 bool connected = false;
2573 struct i2c_adapter *i2c;
2574
2575 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2576
2577 i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2578
2579 edid = drm_get_edid(connector, i2c);
2580
2581 if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2582 DRM_DEBUG_KMS("HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2583 intel_gmbus_force_bit(i2c, true);
2584 edid = drm_get_edid(connector, i2c);
2585 intel_gmbus_force_bit(i2c, false);
2586 }
2587
2588 intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2589
2590 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2591
2592 to_intel_connector(connector)->detect_edid = edid;
2593 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2594 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2595 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2596
2597 connected = true;
2598 }
2599
2600 cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2601
2602 return connected;
2603 }
2604
2605 static enum drm_connector_status
2606 intel_hdmi_detect(struct drm_connector *connector, bool force)
2607 {
2608 enum drm_connector_status status = connector_status_disconnected;
2609 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2610 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2611 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2612 intel_wakeref_t wakeref;
2613
2614 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2615 connector->base.id, connector->name);
2616
2617 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2618
2619 if (INTEL_GEN(dev_priv) >= 11 &&
2620 !intel_digital_port_connected(encoder))
2621 goto out;
2622
2623 intel_hdmi_unset_edid(connector);
2624
2625 if (intel_hdmi_set_edid(connector))
2626 status = connector_status_connected;
2627
2628 out:
2629 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2630
2631 if (status != connector_status_connected)
2632 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2633
2634 /*
2635 * Make sure the refs for power wells enabled during detect are
2636 * dropped to avoid a new detect cycle triggered by HPD polling.
2637 */
2638 intel_display_power_flush_work(dev_priv);
2639
2640 return status;
2641 }
2642
2643 static void
2644 intel_hdmi_force(struct drm_connector *connector)
2645 {
2646 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2647 connector->base.id, connector->name);
2648
2649 intel_hdmi_unset_edid(connector);
2650
2651 if (connector->status != connector_status_connected)
2652 return;
2653
2654 intel_hdmi_set_edid(connector);
2655 }
2656
2657 static int intel_hdmi_get_modes(struct drm_connector *connector)
2658 {
2659 struct edid *edid;
2660
2661 edid = to_intel_connector(connector)->detect_edid;
2662 if (edid == NULL)
2663 return 0;
2664
2665 return intel_connector_update_modes(connector, edid);
2666 }
2667
2668 static void intel_hdmi_pre_enable(struct intel_encoder *encoder,
2669 const struct intel_crtc_state *pipe_config,
2670 const struct drm_connector_state *conn_state)
2671 {
2672 struct intel_digital_port *intel_dig_port =
2673 enc_to_dig_port(encoder);
2674
2675 intel_hdmi_prepare(encoder, pipe_config);
2676
2677 intel_dig_port->set_infoframes(encoder,
2678 pipe_config->has_infoframe,
2679 pipe_config, conn_state);
2680 }
2681
2682 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder,
2683 const struct intel_crtc_state *pipe_config,
2684 const struct drm_connector_state *conn_state)
2685 {
2686 struct intel_digital_port *dport = enc_to_dig_port(encoder);
2687 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2688
2689 vlv_phy_pre_encoder_enable(encoder, pipe_config);
2690
2691 /* HDMI 1.0V-2dB */
2692 vlv_set_phy_signal_level(encoder, 0x2b245f5f, 0x00002000, 0x5578b83a,
2693 0x2b247878);
2694
2695 dport->set_infoframes(encoder,
2696 pipe_config->has_infoframe,
2697 pipe_config, conn_state);
2698
2699 g4x_enable_hdmi(encoder, pipe_config, conn_state);
2700
2701 vlv_wait_port_ready(dev_priv, dport, 0x0);
2702 }
2703
2704 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
2705 const struct intel_crtc_state *pipe_config,
2706 const struct drm_connector_state *conn_state)
2707 {
2708 intel_hdmi_prepare(encoder, pipe_config);
2709
2710 vlv_phy_pre_pll_enable(encoder, pipe_config);
2711 }
2712
2713 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder,
2714 const struct intel_crtc_state *pipe_config,
2715 const struct drm_connector_state *conn_state)
2716 {
2717 intel_hdmi_prepare(encoder, pipe_config);
2718
2719 chv_phy_pre_pll_enable(encoder, pipe_config);
2720 }
2721
2722 static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder,
2723 const struct intel_crtc_state *old_crtc_state,
2724 const struct drm_connector_state *old_conn_state)
2725 {
2726 chv_phy_post_pll_disable(encoder, old_crtc_state);
2727 }
2728
2729 static void vlv_hdmi_post_disable(struct intel_encoder *encoder,
2730 const struct intel_crtc_state *old_crtc_state,
2731 const struct drm_connector_state *old_conn_state)
2732 {
2733 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
2734 vlv_phy_reset_lanes(encoder, old_crtc_state);
2735 }
2736
2737 static void chv_hdmi_post_disable(struct intel_encoder *encoder,
2738 const struct intel_crtc_state *old_crtc_state,
2739 const struct drm_connector_state *old_conn_state)
2740 {
2741 struct drm_device *dev = encoder->base.dev;
2742 struct drm_i915_private *dev_priv = to_i915(dev);
2743
2744 vlv_dpio_get(dev_priv);
2745
2746 /* Assert data lane reset */
2747 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
2748
2749 vlv_dpio_put(dev_priv);
2750 }
2751
2752 static void chv_hdmi_pre_enable(struct intel_encoder *encoder,
2753 const struct intel_crtc_state *pipe_config,
2754 const struct drm_connector_state *conn_state)
2755 {
2756 struct intel_digital_port *dport = enc_to_dig_port(encoder);
2757 struct drm_device *dev = encoder->base.dev;
2758 struct drm_i915_private *dev_priv = to_i915(dev);
2759
2760 chv_phy_pre_encoder_enable(encoder, pipe_config);
2761
2762 /* FIXME: Program the support xxx V-dB */
2763 /* Use 800mV-0dB */
2764 chv_set_phy_signal_level(encoder, 128, 102, false);
2765
2766 dport->set_infoframes(encoder,
2767 pipe_config->has_infoframe,
2768 pipe_config, conn_state);
2769
2770 g4x_enable_hdmi(encoder, pipe_config, conn_state);
2771
2772 vlv_wait_port_ready(dev_priv, dport, 0x0);
2773
2774 /* Second common lane will stay alive on its own now */
2775 chv_phy_release_cl2_override(encoder);
2776 }
2777
2778 static struct i2c_adapter *
2779 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2780 {
2781 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2782 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2783
2784 return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2785 }
2786
2787 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2788 {
2789 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2790 struct kobject *i2c_kobj = &adapter->dev.kobj;
2791 struct kobject *connector_kobj = &connector->kdev->kobj;
2792 int ret;
2793
2794 ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2795 if (ret)
2796 DRM_ERROR("Failed to create i2c symlink (%d)\n", ret);
2797 }
2798
2799 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2800 {
2801 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2802 struct kobject *i2c_kobj = &adapter->dev.kobj;
2803 struct kobject *connector_kobj = &connector->kdev->kobj;
2804
2805 sysfs_remove_link(connector_kobj, i2c_kobj->name);
2806 }
2807
2808 static int
2809 intel_hdmi_connector_register(struct drm_connector *connector)
2810 {
2811 int ret;
2812
2813 ret = intel_connector_register(connector);
2814 if (ret)
2815 return ret;
2816
2817 intel_connector_debugfs_add(connector);
2818
2819 intel_hdmi_create_i2c_symlink(connector);
2820
2821 return ret;
2822 }
2823
2824 static void intel_hdmi_destroy(struct drm_connector *connector)
2825 {
2826 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2827
2828 cec_notifier_conn_unregister(n);
2829
2830 intel_connector_destroy(connector);
2831 }
2832
2833 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2834 {
2835 intel_hdmi_remove_i2c_symlink(connector);
2836
2837 intel_connector_unregister(connector);
2838 }
2839
2840 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2841 .detect = intel_hdmi_detect,
2842 .force = intel_hdmi_force,
2843 .fill_modes = drm_helper_probe_single_connector_modes,
2844 .atomic_get_property = intel_digital_connector_atomic_get_property,
2845 .atomic_set_property = intel_digital_connector_atomic_set_property,
2846 .late_register = intel_hdmi_connector_register,
2847 .early_unregister = intel_hdmi_connector_unregister,
2848 .destroy = intel_hdmi_destroy,
2849 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2850 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2851 };
2852
2853 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2854 .get_modes = intel_hdmi_get_modes,
2855 .mode_valid = intel_hdmi_mode_valid,
2856 .atomic_check = intel_digital_connector_atomic_check,
2857 };
2858
2859 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
2860 .destroy = intel_encoder_destroy,
2861 };
2862
2863 static void
2864 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2865 {
2866 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2867 struct intel_digital_port *intel_dig_port =
2868 hdmi_to_dig_port(intel_hdmi);
2869
2870 intel_attach_force_audio_property(connector);
2871 intel_attach_broadcast_rgb_property(connector);
2872 intel_attach_aspect_ratio_property(connector);
2873
2874 /*
2875 * Attach Colorspace property for Non LSPCON based device
2876 * ToDo: This needs to be extended for LSPCON implementation
2877 * as well. Will be implemented separately.
2878 */
2879 if (!intel_dig_port->lspcon.active)
2880 intel_attach_colorspace_property(connector);
2881
2882 drm_connector_attach_content_type_property(connector);
2883
2884 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
2885 drm_object_attach_property(&connector->base,
2886 connector->dev->mode_config.hdr_output_metadata_property, 0);
2887
2888 if (!HAS_GMCH(dev_priv))
2889 drm_connector_attach_max_bpc_property(connector, 8, 12);
2890 }
2891
2892 /*
2893 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2894 * @encoder: intel_encoder
2895 * @connector: drm_connector
2896 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2897 * or reset the high tmds clock ratio for scrambling
2898 * @scrambling: bool to Indicate if the function needs to set or reset
2899 * sink scrambling
2900 *
2901 * This function handles scrambling on HDMI 2.0 capable sinks.
2902 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2903 * it enables scrambling. This should be called before enabling the HDMI
2904 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2905 * detect a scrambled clock within 100 ms.
2906 *
2907 * Returns:
2908 * True on success, false on failure.
2909 */
2910 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2911 struct drm_connector *connector,
2912 bool high_tmds_clock_ratio,
2913 bool scrambling)
2914 {
2915 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2916 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2917 struct drm_scrambling *sink_scrambling =
2918 &connector->display_info.hdmi.scdc.scrambling;
2919 struct i2c_adapter *adapter =
2920 intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2921
2922 if (!sink_scrambling->supported)
2923 return true;
2924
2925 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2926 connector->base.id, connector->name,
2927 yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2928
2929 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2930 return drm_scdc_set_high_tmds_clock_ratio(adapter,
2931 high_tmds_clock_ratio) &&
2932 drm_scdc_set_scrambling(adapter, scrambling);
2933 }
2934
2935 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2936 {
2937 u8 ddc_pin;
2938
2939 switch (port) {
2940 case PORT_B:
2941 ddc_pin = GMBUS_PIN_DPB;
2942 break;
2943 case PORT_C:
2944 ddc_pin = GMBUS_PIN_DPC;
2945 break;
2946 case PORT_D:
2947 ddc_pin = GMBUS_PIN_DPD_CHV;
2948 break;
2949 default:
2950 MISSING_CASE(port);
2951 ddc_pin = GMBUS_PIN_DPB;
2952 break;
2953 }
2954 return ddc_pin;
2955 }
2956
2957 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2958 {
2959 u8 ddc_pin;
2960
2961 switch (port) {
2962 case PORT_B:
2963 ddc_pin = GMBUS_PIN_1_BXT;
2964 break;
2965 case PORT_C:
2966 ddc_pin = GMBUS_PIN_2_BXT;
2967 break;
2968 default:
2969 MISSING_CASE(port);
2970 ddc_pin = GMBUS_PIN_1_BXT;
2971 break;
2972 }
2973 return ddc_pin;
2974 }
2975
2976 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2977 enum port port)
2978 {
2979 u8 ddc_pin;
2980
2981 switch (port) {
2982 case PORT_B:
2983 ddc_pin = GMBUS_PIN_1_BXT;
2984 break;
2985 case PORT_C:
2986 ddc_pin = GMBUS_PIN_2_BXT;
2987 break;
2988 case PORT_D:
2989 ddc_pin = GMBUS_PIN_4_CNP;
2990 break;
2991 case PORT_F:
2992 ddc_pin = GMBUS_PIN_3_BXT;
2993 break;
2994 default:
2995 MISSING_CASE(port);
2996 ddc_pin = GMBUS_PIN_1_BXT;
2997 break;
2998 }
2999 return ddc_pin;
3000 }
3001
3002 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
3003 {
3004 enum phy phy = intel_port_to_phy(dev_priv, port);
3005
3006 if (intel_phy_is_combo(dev_priv, phy))
3007 return GMBUS_PIN_1_BXT + port;
3008 else if (intel_phy_is_tc(dev_priv, phy))
3009 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
3010
3011 drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
3012 return GMBUS_PIN_2_BXT;
3013 }
3014
3015 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
3016 {
3017 enum phy phy = intel_port_to_phy(dev_priv, port);
3018 u8 ddc_pin;
3019
3020 switch (phy) {
3021 case PHY_A:
3022 ddc_pin = GMBUS_PIN_1_BXT;
3023 break;
3024 case PHY_B:
3025 ddc_pin = GMBUS_PIN_2_BXT;
3026 break;
3027 case PHY_C:
3028 ddc_pin = GMBUS_PIN_9_TC1_ICP;
3029 break;
3030 default:
3031 MISSING_CASE(phy);
3032 ddc_pin = GMBUS_PIN_1_BXT;
3033 break;
3034 }
3035 return ddc_pin;
3036 }
3037
3038 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
3039 enum port port)
3040 {
3041 u8 ddc_pin;
3042
3043 switch (port) {
3044 case PORT_B:
3045 ddc_pin = GMBUS_PIN_DPB;
3046 break;
3047 case PORT_C:
3048 ddc_pin = GMBUS_PIN_DPC;
3049 break;
3050 case PORT_D:
3051 ddc_pin = GMBUS_PIN_DPD;
3052 break;
3053 default:
3054 MISSING_CASE(port);
3055 ddc_pin = GMBUS_PIN_DPB;
3056 break;
3057 }
3058 return ddc_pin;
3059 }
3060
3061 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
3062 {
3063 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3064 enum port port = encoder->port;
3065 u8 ddc_pin;
3066
3067 ddc_pin = intel_bios_alternate_ddc_pin(encoder);
3068 if (ddc_pin) {
3069 DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (VBT)\n",
3070 ddc_pin, port_name(port));
3071 return ddc_pin;
3072 }
3073
3074 if (HAS_PCH_MCC(dev_priv))
3075 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
3076 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3077 ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
3078 else if (HAS_PCH_CNP(dev_priv))
3079 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
3080 else if (IS_GEN9_LP(dev_priv))
3081 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
3082 else if (IS_CHERRYVIEW(dev_priv))
3083 ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
3084 else
3085 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
3086
3087 DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (platform default)\n",
3088 ddc_pin, port_name(port));
3089
3090 return ddc_pin;
3091 }
3092
3093 void intel_infoframe_init(struct intel_digital_port *intel_dig_port)
3094 {
3095 struct drm_i915_private *dev_priv =
3096 to_i915(intel_dig_port->base.base.dev);
3097
3098 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3099 intel_dig_port->write_infoframe = vlv_write_infoframe;
3100 intel_dig_port->read_infoframe = vlv_read_infoframe;
3101 intel_dig_port->set_infoframes = vlv_set_infoframes;
3102 intel_dig_port->infoframes_enabled = vlv_infoframes_enabled;
3103 } else if (IS_G4X(dev_priv)) {
3104 intel_dig_port->write_infoframe = g4x_write_infoframe;
3105 intel_dig_port->read_infoframe = g4x_read_infoframe;
3106 intel_dig_port->set_infoframes = g4x_set_infoframes;
3107 intel_dig_port->infoframes_enabled = g4x_infoframes_enabled;
3108 } else if (HAS_DDI(dev_priv)) {
3109 if (intel_dig_port->lspcon.active) {
3110 intel_dig_port->write_infoframe = lspcon_write_infoframe;
3111 intel_dig_port->read_infoframe = lspcon_read_infoframe;
3112 intel_dig_port->set_infoframes = lspcon_set_infoframes;
3113 intel_dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3114 } else {
3115 intel_dig_port->write_infoframe = hsw_write_infoframe;
3116 intel_dig_port->read_infoframe = hsw_read_infoframe;
3117 intel_dig_port->set_infoframes = hsw_set_infoframes;
3118 intel_dig_port->infoframes_enabled = hsw_infoframes_enabled;
3119 }
3120 } else if (HAS_PCH_IBX(dev_priv)) {
3121 intel_dig_port->write_infoframe = ibx_write_infoframe;
3122 intel_dig_port->read_infoframe = ibx_read_infoframe;
3123 intel_dig_port->set_infoframes = ibx_set_infoframes;
3124 intel_dig_port->infoframes_enabled = ibx_infoframes_enabled;
3125 } else {
3126 intel_dig_port->write_infoframe = cpt_write_infoframe;
3127 intel_dig_port->read_infoframe = cpt_read_infoframe;
3128 intel_dig_port->set_infoframes = cpt_set_infoframes;
3129 intel_dig_port->infoframes_enabled = cpt_infoframes_enabled;
3130 }
3131 }
3132
3133 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
3134 struct intel_connector *intel_connector)
3135 {
3136 struct drm_connector *connector = &intel_connector->base;
3137 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
3138 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3139 struct drm_device *dev = intel_encoder->base.dev;
3140 struct drm_i915_private *dev_priv = to_i915(dev);
3141 struct i2c_adapter *ddc;
3142 enum port port = intel_encoder->port;
3143 struct cec_connector_info conn_info;
3144
3145 DRM_DEBUG_KMS("Adding HDMI connector on [ENCODER:%d:%s]\n",
3146 intel_encoder->base.base.id, intel_encoder->base.name);
3147
3148 if (INTEL_GEN(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
3149 return;
3150
3151 if (drm_WARN(dev, intel_dig_port->max_lanes < 4,
3152 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3153 intel_dig_port->max_lanes, intel_encoder->base.base.id,
3154 intel_encoder->base.name))
3155 return;
3156
3157 intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
3158 ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
3159
3160 drm_connector_init_with_ddc(dev, connector,
3161 &intel_hdmi_connector_funcs,
3162 DRM_MODE_CONNECTOR_HDMIA,
3163 ddc);
3164 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3165
3166 connector->interlace_allowed = 1;
3167 connector->doublescan_allowed = 0;
3168 connector->stereo_allowed = 1;
3169
3170 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3171 connector->ycbcr_420_allowed = true;
3172
3173 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
3174 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3175
3176 if (HAS_DDI(dev_priv))
3177 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3178 else
3179 intel_connector->get_hw_state = intel_connector_get_hw_state;
3180
3181 intel_hdmi_add_properties(intel_hdmi, connector);
3182
3183 intel_connector_attach_encoder(intel_connector, intel_encoder);
3184 intel_hdmi->attached_connector = intel_connector;
3185
3186 if (is_hdcp_supported(dev_priv, port)) {
3187 int ret = intel_hdcp_init(intel_connector,
3188 &intel_hdmi_hdcp_shim);
3189 if (ret)
3190 DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
3191 }
3192
3193 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3194 * 0xd. Failure to do so will result in spurious interrupts being
3195 * generated on the port when a cable is not attached.
3196 */
3197 if (IS_G45(dev_priv)) {
3198 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
3199 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
3200 (temp & ~0xf) | 0xd);
3201 }
3202
3203 cec_fill_conn_info_from_drm(&conn_info, connector);
3204
3205 intel_hdmi->cec_notifier =
3206 cec_notifier_conn_register(dev->dev, port_identifier(port),
3207 &conn_info);
3208 if (!intel_hdmi->cec_notifier)
3209 DRM_DEBUG_KMS("CEC notifier get failed\n");
3210 }
3211
3212 static enum intel_hotplug_state
3213 intel_hdmi_hotplug(struct intel_encoder *encoder,
3214 struct intel_connector *connector, bool irq_received)
3215 {
3216 enum intel_hotplug_state state;
3217
3218 state = intel_encoder_hotplug(encoder, connector, irq_received);
3219
3220 /*
3221 * On many platforms the HDMI live state signal is known to be
3222 * unreliable, so we can't use it to detect if a sink is connected or
3223 * not. Instead we detect if it's connected based on whether we can
3224 * read the EDID or not. That in turn has a problem during disconnect,
3225 * since the HPD interrupt may be raised before the DDC lines get
3226 * disconnected (due to how the required length of DDC vs. HPD
3227 * connector pins are specified) and so we'll still be able to get a
3228 * valid EDID. To solve this schedule another detection cycle if this
3229 * time around we didn't detect any change in the sink's connection
3230 * status.
3231 */
3232 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
3233 state = INTEL_HOTPLUG_RETRY;
3234
3235 return state;
3236 }
3237
3238 void intel_hdmi_init(struct drm_i915_private *dev_priv,
3239 i915_reg_t hdmi_reg, enum port port)
3240 {
3241 struct intel_digital_port *intel_dig_port;
3242 struct intel_encoder *intel_encoder;
3243 struct intel_connector *intel_connector;
3244
3245 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3246 if (!intel_dig_port)
3247 return;
3248
3249 intel_connector = intel_connector_alloc();
3250 if (!intel_connector) {
3251 kfree(intel_dig_port);
3252 return;
3253 }
3254
3255 intel_encoder = &intel_dig_port->base;
3256
3257 drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
3258 &intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS,
3259 "HDMI %c", port_name(port));
3260
3261 intel_encoder->hotplug = intel_hdmi_hotplug;
3262 intel_encoder->compute_config = intel_hdmi_compute_config;
3263 if (HAS_PCH_SPLIT(dev_priv)) {
3264 intel_encoder->disable = pch_disable_hdmi;
3265 intel_encoder->post_disable = pch_post_disable_hdmi;
3266 } else {
3267 intel_encoder->disable = g4x_disable_hdmi;
3268 }
3269 intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
3270 intel_encoder->get_config = intel_hdmi_get_config;
3271 if (IS_CHERRYVIEW(dev_priv)) {
3272 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
3273 intel_encoder->pre_enable = chv_hdmi_pre_enable;
3274 intel_encoder->enable = vlv_enable_hdmi;
3275 intel_encoder->post_disable = chv_hdmi_post_disable;
3276 intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
3277 } else if (IS_VALLEYVIEW(dev_priv)) {
3278 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
3279 intel_encoder->pre_enable = vlv_hdmi_pre_enable;
3280 intel_encoder->enable = vlv_enable_hdmi;
3281 intel_encoder->post_disable = vlv_hdmi_post_disable;
3282 } else {
3283 intel_encoder->pre_enable = intel_hdmi_pre_enable;
3284 if (HAS_PCH_CPT(dev_priv))
3285 intel_encoder->enable = cpt_enable_hdmi;
3286 else if (HAS_PCH_IBX(dev_priv))
3287 intel_encoder->enable = ibx_enable_hdmi;
3288 else
3289 intel_encoder->enable = g4x_enable_hdmi;
3290 }
3291
3292 intel_encoder->type = INTEL_OUTPUT_HDMI;
3293 intel_encoder->power_domain = intel_port_to_power_domain(port);
3294 intel_encoder->port = port;
3295 if (IS_CHERRYVIEW(dev_priv)) {
3296 if (port == PORT_D)
3297 intel_encoder->pipe_mask = BIT(PIPE_C);
3298 else
3299 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
3300 } else {
3301 intel_encoder->pipe_mask = ~0;
3302 }
3303 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
3304 /*
3305 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
3306 * to work on real hardware. And since g4x can send infoframes to
3307 * only one port anyway, nothing is lost by allowing it.
3308 */
3309 if (IS_G4X(dev_priv))
3310 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
3311
3312 intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
3313 intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
3314 intel_dig_port->max_lanes = 4;
3315
3316 intel_infoframe_init(intel_dig_port);
3317
3318 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
3319 intel_hdmi_init_connector(intel_dig_port, intel_connector);
3320 }