]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c
Merge tag 's390-6.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008,2010 Intel Corporation
5 */
6
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_auth.h>
13 #include <drm/drm_syncobj.h>
14
15 #include "display/intel_frontbuffer.h"
16
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_gpu_commands.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_buffer_pool.h"
22 #include "gt/intel_gt_pm.h"
23 #include "gt/intel_ring.h"
24
25 #include "pxp/intel_pxp.h"
26
27 #include "i915_cmd_parser.h"
28 #include "i915_drv.h"
29 #include "i915_file_private.h"
30 #include "i915_gem_clflush.h"
31 #include "i915_gem_context.h"
32 #include "i915_gem_evict.h"
33 #include "i915_gem_ioctls.h"
34 #include "i915_reg.h"
35 #include "i915_trace.h"
36 #include "i915_user_extensions.h"
37
38 struct eb_vma {
39 struct i915_vma *vma;
40 unsigned int flags;
41
42 /** This vma's place in the execbuf reservation list */
43 struct drm_i915_gem_exec_object2 *exec;
44 struct list_head bind_link;
45 struct list_head reloc_link;
46
47 struct hlist_node node;
48 u32 handle;
49 };
50
51 enum {
52 FORCE_CPU_RELOC = 1,
53 FORCE_GTT_RELOC,
54 FORCE_GPU_RELOC,
55 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
56 };
57
58 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
59 #define __EXEC_OBJECT_HAS_PIN BIT(29)
60 #define __EXEC_OBJECT_HAS_FENCE BIT(28)
61 #define __EXEC_OBJECT_USERPTR_INIT BIT(27)
62 #define __EXEC_OBJECT_NEEDS_MAP BIT(26)
63 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25)
64 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */
65 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
66
67 #define __EXEC_HAS_RELOC BIT(31)
68 #define __EXEC_ENGINE_PINNED BIT(30)
69 #define __EXEC_USERPTR_USED BIT(29)
70 #define __EXEC_INTERNAL_FLAGS (~0u << 29)
71 #define UPDATE PIN_OFFSET_FIXED
72
73 #define BATCH_OFFSET_BIAS (256*1024)
74
75 #define __I915_EXEC_ILLEGAL_FLAGS \
76 (__I915_EXEC_UNKNOWN_FLAGS | \
77 I915_EXEC_CONSTANTS_MASK | \
78 I915_EXEC_RESOURCE_STREAMER)
79
80 /* Catch emission of unexpected errors for CI! */
81 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
82 #undef EINVAL
83 #define EINVAL ({ \
84 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
85 22; \
86 })
87 #endif
88
89 /**
90 * DOC: User command execution
91 *
92 * Userspace submits commands to be executed on the GPU as an instruction
93 * stream within a GEM object we call a batchbuffer. This instructions may
94 * refer to other GEM objects containing auxiliary state such as kernels,
95 * samplers, render targets and even secondary batchbuffers. Userspace does
96 * not know where in the GPU memory these objects reside and so before the
97 * batchbuffer is passed to the GPU for execution, those addresses in the
98 * batchbuffer and auxiliary objects are updated. This is known as relocation,
99 * or patching. To try and avoid having to relocate each object on the next
100 * execution, userspace is told the location of those objects in this pass,
101 * but this remains just a hint as the kernel may choose a new location for
102 * any object in the future.
103 *
104 * At the level of talking to the hardware, submitting a batchbuffer for the
105 * GPU to execute is to add content to a buffer from which the HW
106 * command streamer is reading.
107 *
108 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
109 * Execlists, this command is not placed on the same buffer as the
110 * remaining items.
111 *
112 * 2. Add a command to invalidate caches to the buffer.
113 *
114 * 3. Add a batchbuffer start command to the buffer; the start command is
115 * essentially a token together with the GPU address of the batchbuffer
116 * to be executed.
117 *
118 * 4. Add a pipeline flush to the buffer.
119 *
120 * 5. Add a memory write command to the buffer to record when the GPU
121 * is done executing the batchbuffer. The memory write writes the
122 * global sequence number of the request, ``i915_request::global_seqno``;
123 * the i915 driver uses the current value in the register to determine
124 * if the GPU has completed the batchbuffer.
125 *
126 * 6. Add a user interrupt command to the buffer. This command instructs
127 * the GPU to issue an interrupt when the command, pipeline flush and
128 * memory write are completed.
129 *
130 * 7. Inform the hardware of the additional commands added to the buffer
131 * (by updating the tail pointer).
132 *
133 * Processing an execbuf ioctl is conceptually split up into a few phases.
134 *
135 * 1. Validation - Ensure all the pointers, handles and flags are valid.
136 * 2. Reservation - Assign GPU address space for every object
137 * 3. Relocation - Update any addresses to point to the final locations
138 * 4. Serialisation - Order the request with respect to its dependencies
139 * 5. Construction - Construct a request to execute the batchbuffer
140 * 6. Submission (at some point in the future execution)
141 *
142 * Reserving resources for the execbuf is the most complicated phase. We
143 * neither want to have to migrate the object in the address space, nor do
144 * we want to have to update any relocations pointing to this object. Ideally,
145 * we want to leave the object where it is and for all the existing relocations
146 * to match. If the object is given a new address, or if userspace thinks the
147 * object is elsewhere, we have to parse all the relocation entries and update
148 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
149 * all the target addresses in all of its objects match the value in the
150 * relocation entries and that they all match the presumed offsets given by the
151 * list of execbuffer objects. Using this knowledge, we know that if we haven't
152 * moved any buffers, all the relocation entries are valid and we can skip
153 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
154 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
155 *
156 * The addresses written in the objects must match the corresponding
157 * reloc.presumed_offset which in turn must match the corresponding
158 * execobject.offset.
159 *
160 * Any render targets written to in the batch must be flagged with
161 * EXEC_OBJECT_WRITE.
162 *
163 * To avoid stalling, execobject.offset should match the current
164 * address of that object within the active context.
165 *
166 * The reservation is done is multiple phases. First we try and keep any
167 * object already bound in its current location - so as long as meets the
168 * constraints imposed by the new execbuffer. Any object left unbound after the
169 * first pass is then fitted into any available idle space. If an object does
170 * not fit, all objects are removed from the reservation and the process rerun
171 * after sorting the objects into a priority order (more difficult to fit
172 * objects are tried first). Failing that, the entire VM is cleared and we try
173 * to fit the execbuf once last time before concluding that it simply will not
174 * fit.
175 *
176 * A small complication to all of this is that we allow userspace not only to
177 * specify an alignment and a size for the object in the address space, but
178 * we also allow userspace to specify the exact offset. This objects are
179 * simpler to place (the location is known a priori) all we have to do is make
180 * sure the space is available.
181 *
182 * Once all the objects are in place, patching up the buried pointers to point
183 * to the final locations is a fairly simple job of walking over the relocation
184 * entry arrays, looking up the right address and rewriting the value into
185 * the object. Simple! ... The relocation entries are stored in user memory
186 * and so to access them we have to copy them into a local buffer. That copy
187 * has to avoid taking any pagefaults as they may lead back to a GEM object
188 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
189 * the relocation into multiple passes. First we try to do everything within an
190 * atomic context (avoid the pagefaults) which requires that we never wait. If
191 * we detect that we may wait, or if we need to fault, then we have to fallback
192 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
193 * bells yet?) Dropping the mutex means that we lose all the state we have
194 * built up so far for the execbuf and we must reset any global data. However,
195 * we do leave the objects pinned in their final locations - which is a
196 * potential issue for concurrent execbufs. Once we have left the mutex, we can
197 * allocate and copy all the relocation entries into a large array at our
198 * leisure, reacquire the mutex, reclaim all the objects and other state and
199 * then proceed to update any incorrect addresses with the objects.
200 *
201 * As we process the relocation entries, we maintain a record of whether the
202 * object is being written to. Using NORELOC, we expect userspace to provide
203 * this information instead. We also check whether we can skip the relocation
204 * by comparing the expected value inside the relocation entry with the target's
205 * final address. If they differ, we have to map the current object and rewrite
206 * the 4 or 8 byte pointer within.
207 *
208 * Serialising an execbuf is quite simple according to the rules of the GEM
209 * ABI. Execution within each context is ordered by the order of submission.
210 * Writes to any GEM object are in order of submission and are exclusive. Reads
211 * from a GEM object are unordered with respect to other reads, but ordered by
212 * writes. A write submitted after a read cannot occur before the read, and
213 * similarly any read submitted after a write cannot occur before the write.
214 * Writes are ordered between engines such that only one write occurs at any
215 * time (completing any reads beforehand) - using semaphores where available
216 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
217 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
218 * reads before starting, and any read (either using set-domain or pread) must
219 * flush all GPU writes before starting. (Note we only employ a barrier before,
220 * we currently rely on userspace not concurrently starting a new execution
221 * whilst reading or writing to an object. This may be an advantage or not
222 * depending on how much you trust userspace not to shoot themselves in the
223 * foot.) Serialisation may just result in the request being inserted into
224 * a DAG awaiting its turn, but most simple is to wait on the CPU until
225 * all dependencies are resolved.
226 *
227 * After all of that, is just a matter of closing the request and handing it to
228 * the hardware (well, leaving it in a queue to be executed). However, we also
229 * offer the ability for batchbuffers to be run with elevated privileges so
230 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
231 * Before any batch is given extra privileges we first must check that it
232 * contains no nefarious instructions, we check that each instruction is from
233 * our whitelist and all registers are also from an allowed list. We first
234 * copy the user's batchbuffer to a shadow (so that the user doesn't have
235 * access to it, either by the CPU or GPU as we scan it) and then parse each
236 * instruction. If everything is ok, we set a flag telling the hardware to run
237 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
238 */
239
240 struct eb_fence {
241 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
242 struct dma_fence *dma_fence;
243 u64 value;
244 struct dma_fence_chain *chain_fence;
245 };
246
247 struct i915_execbuffer {
248 struct drm_i915_private *i915; /** i915 backpointer */
249 struct drm_file *file; /** per-file lookup tables and limits */
250 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
251 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
252 struct eb_vma *vma;
253
254 struct intel_gt *gt; /* gt for the execbuf */
255 struct intel_context *context; /* logical state for the request */
256 struct i915_gem_context *gem_context; /** caller's context */
257 intel_wakeref_t wakeref;
258 intel_wakeref_t wakeref_gt0;
259
260 /** our requests to build */
261 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
262 /** identity of the batch obj/vma */
263 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
264 struct i915_vma *trampoline; /** trampoline used for chaining */
265
266 /** used for excl fence in dma_resv objects when > 1 BB submitted */
267 struct dma_fence *composite_fence;
268
269 /** actual size of execobj[] as we may extend it for the cmdparser */
270 unsigned int buffer_count;
271
272 /* number of batches in execbuf IOCTL */
273 unsigned int num_batches;
274
275 /** list of vma not yet bound during reservation phase */
276 struct list_head unbound;
277
278 /** list of vma that have execobj.relocation_count */
279 struct list_head relocs;
280
281 struct i915_gem_ww_ctx ww;
282
283 /**
284 * Track the most recently used object for relocations, as we
285 * frequently have to perform multiple relocations within the same
286 * obj/page
287 */
288 struct reloc_cache {
289 struct drm_mm_node node; /** temporary GTT binding */
290 unsigned long vaddr; /** Current kmap address */
291 unsigned long page; /** Currently mapped page index */
292 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
293 bool use_64bit_reloc : 1;
294 bool has_llc : 1;
295 bool has_fence : 1;
296 bool needs_unfenced : 1;
297 } reloc_cache;
298
299 u64 invalid_flags; /** Set of execobj.flags that are invalid */
300
301 /** Length of batch within object */
302 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
303 u32 batch_start_offset; /** Location within object of batch */
304 u32 batch_flags; /** Flags composed for emit_bb_start() */
305 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
306
307 /**
308 * Indicate either the size of the hastable used to resolve
309 * relocation handles, or if negative that we are using a direct
310 * index into the execobj[].
311 */
312 int lut_size;
313 struct hlist_head *buckets; /** ht for relocation handles */
314
315 struct eb_fence *fences;
316 unsigned long num_fences;
317 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
318 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
319 #endif
320 };
321
322 static int eb_parse(struct i915_execbuffer *eb);
323 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
324 static void eb_unpin_engine(struct i915_execbuffer *eb);
325 static void eb_capture_release(struct i915_execbuffer *eb);
326
327 static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
328 {
329 return intel_engine_requires_cmd_parser(eb->context->engine) ||
330 (intel_engine_using_cmd_parser(eb->context->engine) &&
331 eb->args->batch_len);
332 }
333
334 static int eb_create(struct i915_execbuffer *eb)
335 {
336 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
337 unsigned int size = 1 + ilog2(eb->buffer_count);
338
339 /*
340 * Without a 1:1 association between relocation handles and
341 * the execobject[] index, we instead create a hashtable.
342 * We size it dynamically based on available memory, starting
343 * first with 1:1 assocative hash and scaling back until
344 * the allocation succeeds.
345 *
346 * Later on we use a positive lut_size to indicate we are
347 * using this hashtable, and a negative value to indicate a
348 * direct lookup.
349 */
350 do {
351 gfp_t flags;
352
353 /* While we can still reduce the allocation size, don't
354 * raise a warning and allow the allocation to fail.
355 * On the last pass though, we want to try as hard
356 * as possible to perform the allocation and warn
357 * if it fails.
358 */
359 flags = GFP_KERNEL;
360 if (size > 1)
361 flags |= __GFP_NORETRY | __GFP_NOWARN;
362
363 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
364 flags);
365 if (eb->buckets)
366 break;
367 } while (--size);
368
369 if (unlikely(!size))
370 return -ENOMEM;
371
372 eb->lut_size = size;
373 } else {
374 eb->lut_size = -eb->buffer_count;
375 }
376
377 return 0;
378 }
379
380 static bool
381 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
382 const struct i915_vma *vma,
383 unsigned int flags)
384 {
385 const u64 start = i915_vma_offset(vma);
386 const u64 size = i915_vma_size(vma);
387
388 if (size < entry->pad_to_size)
389 return true;
390
391 if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
392 return true;
393
394 if (flags & EXEC_OBJECT_PINNED &&
395 start != entry->offset)
396 return true;
397
398 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
399 start < BATCH_OFFSET_BIAS)
400 return true;
401
402 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
403 (start + size + 4095) >> 32)
404 return true;
405
406 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
407 !i915_vma_is_map_and_fenceable(vma))
408 return true;
409
410 return false;
411 }
412
413 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
414 unsigned int exec_flags)
415 {
416 u64 pin_flags = 0;
417
418 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
419 pin_flags |= PIN_GLOBAL;
420
421 /*
422 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
423 * limit address to the first 4GBs for unflagged objects.
424 */
425 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
426 pin_flags |= PIN_ZONE_4G;
427
428 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
429 pin_flags |= PIN_MAPPABLE;
430
431 if (exec_flags & EXEC_OBJECT_PINNED)
432 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
433 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
434 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
435
436 return pin_flags;
437 }
438
439 static int
440 eb_pin_vma(struct i915_execbuffer *eb,
441 const struct drm_i915_gem_exec_object2 *entry,
442 struct eb_vma *ev)
443 {
444 struct i915_vma *vma = ev->vma;
445 u64 pin_flags;
446 int err;
447
448 if (vma->node.size)
449 pin_flags = __i915_vma_offset(vma);
450 else
451 pin_flags = entry->offset & PIN_OFFSET_MASK;
452
453 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
454 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
455 pin_flags |= PIN_GLOBAL;
456
457 /* Attempt to reuse the current location if available */
458 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
459 if (err == -EDEADLK)
460 return err;
461
462 if (unlikely(err)) {
463 if (entry->flags & EXEC_OBJECT_PINNED)
464 return err;
465
466 /* Failing that pick any _free_ space if suitable */
467 err = i915_vma_pin_ww(vma, &eb->ww,
468 entry->pad_to_size,
469 entry->alignment,
470 eb_pin_flags(entry, ev->flags) |
471 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
472 if (unlikely(err))
473 return err;
474 }
475
476 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
477 err = i915_vma_pin_fence(vma);
478 if (unlikely(err))
479 return err;
480
481 if (vma->fence)
482 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
483 }
484
485 ev->flags |= __EXEC_OBJECT_HAS_PIN;
486 if (eb_vma_misplaced(entry, vma, ev->flags))
487 return -EBADSLT;
488
489 return 0;
490 }
491
492 static void
493 eb_unreserve_vma(struct eb_vma *ev)
494 {
495 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
496 __i915_vma_unpin_fence(ev->vma);
497
498 ev->flags &= ~__EXEC_OBJECT_RESERVED;
499 }
500
501 static int
502 eb_validate_vma(struct i915_execbuffer *eb,
503 struct drm_i915_gem_exec_object2 *entry,
504 struct i915_vma *vma)
505 {
506 /* Relocations are disallowed for all platforms after TGL-LP. This
507 * also covers all platforms with local memory.
508 */
509 if (entry->relocation_count &&
510 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
511 return -EINVAL;
512
513 if (unlikely(entry->flags & eb->invalid_flags))
514 return -EINVAL;
515
516 if (unlikely(entry->alignment &&
517 !is_power_of_2_u64(entry->alignment)))
518 return -EINVAL;
519
520 /*
521 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
522 * any non-page-aligned or non-canonical addresses.
523 */
524 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
525 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
526 return -EINVAL;
527
528 /* pad_to_size was once a reserved field, so sanitize it */
529 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
530 if (unlikely(offset_in_page(entry->pad_to_size)))
531 return -EINVAL;
532 } else {
533 entry->pad_to_size = 0;
534 }
535 /*
536 * From drm_mm perspective address space is continuous,
537 * so from this point we're always using non-canonical
538 * form internally.
539 */
540 entry->offset = gen8_noncanonical_addr(entry->offset);
541
542 if (!eb->reloc_cache.has_fence) {
543 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
544 } else {
545 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
546 eb->reloc_cache.needs_unfenced) &&
547 i915_gem_object_is_tiled(vma->obj))
548 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
549 }
550
551 return 0;
552 }
553
554 static bool
555 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
556 {
557 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
558 buffer_idx < eb->num_batches :
559 buffer_idx >= eb->args->buffer_count - eb->num_batches;
560 }
561
562 static int
563 eb_add_vma(struct i915_execbuffer *eb,
564 unsigned int *current_batch,
565 unsigned int i,
566 struct i915_vma *vma)
567 {
568 struct drm_i915_private *i915 = eb->i915;
569 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
570 struct eb_vma *ev = &eb->vma[i];
571
572 ev->vma = vma;
573 ev->exec = entry;
574 ev->flags = entry->flags;
575
576 if (eb->lut_size > 0) {
577 ev->handle = entry->handle;
578 hlist_add_head(&ev->node,
579 &eb->buckets[hash_32(entry->handle,
580 eb->lut_size)]);
581 }
582
583 if (entry->relocation_count)
584 list_add_tail(&ev->reloc_link, &eb->relocs);
585
586 /*
587 * SNA is doing fancy tricks with compressing batch buffers, which leads
588 * to negative relocation deltas. Usually that works out ok since the
589 * relocate address is still positive, except when the batch is placed
590 * very low in the GTT. Ensure this doesn't happen.
591 *
592 * Note that actual hangs have only been observed on gen7, but for
593 * paranoia do it everywhere.
594 */
595 if (is_batch_buffer(eb, i)) {
596 if (entry->relocation_count &&
597 !(ev->flags & EXEC_OBJECT_PINNED))
598 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
599 if (eb->reloc_cache.has_fence)
600 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
601
602 eb->batches[*current_batch] = ev;
603
604 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
605 drm_dbg(&i915->drm,
606 "Attempting to use self-modifying batch buffer\n");
607 return -EINVAL;
608 }
609
610 if (range_overflows_t(u64,
611 eb->batch_start_offset,
612 eb->args->batch_len,
613 ev->vma->size)) {
614 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
615 return -EINVAL;
616 }
617
618 if (eb->args->batch_len == 0)
619 eb->batch_len[*current_batch] = ev->vma->size -
620 eb->batch_start_offset;
621 else
622 eb->batch_len[*current_batch] = eb->args->batch_len;
623 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
624 drm_dbg(&i915->drm, "Invalid batch length\n");
625 return -EINVAL;
626 }
627
628 ++*current_batch;
629 }
630
631 return 0;
632 }
633
634 static int use_cpu_reloc(const struct reloc_cache *cache,
635 const struct drm_i915_gem_object *obj)
636 {
637 if (!i915_gem_object_has_struct_page(obj))
638 return false;
639
640 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
641 return true;
642
643 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
644 return false;
645
646 /*
647 * For objects created by userspace through GEM_CREATE with pat_index
648 * set by set_pat extension, i915_gem_object_has_cache_level() always
649 * return true, otherwise the call would fall back to checking whether
650 * the object is un-cached.
651 */
652 return (cache->has_llc ||
653 obj->cache_dirty ||
654 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
655 }
656
657 static int eb_reserve_vma(struct i915_execbuffer *eb,
658 struct eb_vma *ev,
659 u64 pin_flags)
660 {
661 struct drm_i915_gem_exec_object2 *entry = ev->exec;
662 struct i915_vma *vma = ev->vma;
663 int err;
664
665 if (drm_mm_node_allocated(&vma->node) &&
666 eb_vma_misplaced(entry, vma, ev->flags)) {
667 err = i915_vma_unbind(vma);
668 if (err)
669 return err;
670 }
671
672 err = i915_vma_pin_ww(vma, &eb->ww,
673 entry->pad_to_size, entry->alignment,
674 eb_pin_flags(entry, ev->flags) | pin_flags);
675 if (err)
676 return err;
677
678 if (entry->offset != i915_vma_offset(vma)) {
679 entry->offset = i915_vma_offset(vma) | UPDATE;
680 eb->args->flags |= __EXEC_HAS_RELOC;
681 }
682
683 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
684 err = i915_vma_pin_fence(vma);
685 if (unlikely(err))
686 return err;
687
688 if (vma->fence)
689 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
690 }
691
692 ev->flags |= __EXEC_OBJECT_HAS_PIN;
693 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
694
695 return 0;
696 }
697
698 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
699 {
700 const unsigned int count = eb->buffer_count;
701 unsigned int i;
702 struct list_head last;
703 bool unpinned = false;
704
705 /* Resort *all* the objects into priority order */
706 INIT_LIST_HEAD(&eb->unbound);
707 INIT_LIST_HEAD(&last);
708
709 for (i = 0; i < count; i++) {
710 struct eb_vma *ev = &eb->vma[i];
711 unsigned int flags = ev->flags;
712
713 if (!force && flags & EXEC_OBJECT_PINNED &&
714 flags & __EXEC_OBJECT_HAS_PIN)
715 continue;
716
717 unpinned = true;
718 eb_unreserve_vma(ev);
719
720 if (flags & EXEC_OBJECT_PINNED)
721 /* Pinned must have their slot */
722 list_add(&ev->bind_link, &eb->unbound);
723 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
724 /* Map require the lowest 256MiB (aperture) */
725 list_add_tail(&ev->bind_link, &eb->unbound);
726 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
727 /* Prioritise 4GiB region for restricted bo */
728 list_add(&ev->bind_link, &last);
729 else
730 list_add_tail(&ev->bind_link, &last);
731 }
732
733 list_splice_tail(&last, &eb->unbound);
734 return unpinned;
735 }
736
737 static int eb_reserve(struct i915_execbuffer *eb)
738 {
739 struct eb_vma *ev;
740 unsigned int pass;
741 int err = 0;
742
743 /*
744 * We have one more buffers that we couldn't bind, which could be due to
745 * various reasons. To resolve this we have 4 passes, with every next
746 * level turning the screws tighter:
747 *
748 * 0. Unbind all objects that do not match the GTT constraints for the
749 * execbuffer (fenceable, mappable, alignment etc). Bind all new
750 * objects. This avoids unnecessary unbinding of later objects in order
751 * to make room for the earlier objects *unless* we need to defragment.
752 *
753 * 1. Reorder the buffers, where objects with the most restrictive
754 * placement requirements go first (ignoring fixed location buffers for
755 * now). For example, objects needing the mappable aperture (the first
756 * 256M of GTT), should go first vs objects that can be placed just
757 * about anywhere. Repeat the previous pass.
758 *
759 * 2. Consider buffers that are pinned at a fixed location. Also try to
760 * evict the entire VM this time, leaving only objects that we were
761 * unable to lock. Try again to bind the buffers. (still using the new
762 * buffer order).
763 *
764 * 3. We likely have object lock contention for one or more stubborn
765 * objects in the VM, for which we need to evict to make forward
766 * progress (perhaps we are fighting the shrinker?). When evicting the
767 * VM this time around, anything that we can't lock we now track using
768 * the busy_bo, using the full lock (after dropping the vm->mutex to
769 * prevent deadlocks), instead of trylock. We then continue to evict the
770 * VM, this time with the stubborn object locked, which we can now
771 * hopefully unbind (if still bound in the VM). Repeat until the VM is
772 * evicted. Finally we should be able bind everything.
773 */
774 for (pass = 0; pass <= 3; pass++) {
775 int pin_flags = PIN_USER | PIN_VALIDATE;
776
777 if (pass == 0)
778 pin_flags |= PIN_NONBLOCK;
779
780 if (pass >= 1)
781 eb_unbind(eb, pass >= 2);
782
783 if (pass == 2) {
784 err = mutex_lock_interruptible(&eb->context->vm->mutex);
785 if (!err) {
786 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
787 mutex_unlock(&eb->context->vm->mutex);
788 }
789 if (err)
790 return err;
791 }
792
793 if (pass == 3) {
794 retry:
795 err = mutex_lock_interruptible(&eb->context->vm->mutex);
796 if (!err) {
797 struct drm_i915_gem_object *busy_bo = NULL;
798
799 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
800 mutex_unlock(&eb->context->vm->mutex);
801 if (err && busy_bo) {
802 err = i915_gem_object_lock(busy_bo, &eb->ww);
803 i915_gem_object_put(busy_bo);
804 if (!err)
805 goto retry;
806 }
807 }
808 if (err)
809 return err;
810 }
811
812 list_for_each_entry(ev, &eb->unbound, bind_link) {
813 err = eb_reserve_vma(eb, ev, pin_flags);
814 if (err)
815 break;
816 }
817
818 if (err != -ENOSPC)
819 break;
820 }
821
822 return err;
823 }
824
825 static int eb_select_context(struct i915_execbuffer *eb)
826 {
827 struct i915_gem_context *ctx;
828
829 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
830 if (unlikely(IS_ERR(ctx)))
831 return PTR_ERR(ctx);
832
833 eb->gem_context = ctx;
834 if (i915_gem_context_has_full_ppgtt(ctx))
835 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
836
837 return 0;
838 }
839
840 static int __eb_add_lut(struct i915_execbuffer *eb,
841 u32 handle, struct i915_vma *vma)
842 {
843 struct i915_gem_context *ctx = eb->gem_context;
844 struct i915_lut_handle *lut;
845 int err;
846
847 lut = i915_lut_handle_alloc();
848 if (unlikely(!lut))
849 return -ENOMEM;
850
851 i915_vma_get(vma);
852 if (!atomic_fetch_inc(&vma->open_count))
853 i915_vma_reopen(vma);
854 lut->handle = handle;
855 lut->ctx = ctx;
856
857 /* Check that the context hasn't been closed in the meantime */
858 err = -EINTR;
859 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
860 if (likely(!i915_gem_context_is_closed(ctx)))
861 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
862 else
863 err = -ENOENT;
864 if (err == 0) { /* And nor has this handle */
865 struct drm_i915_gem_object *obj = vma->obj;
866
867 spin_lock(&obj->lut_lock);
868 if (idr_find(&eb->file->object_idr, handle) == obj) {
869 list_add(&lut->obj_link, &obj->lut_list);
870 } else {
871 radix_tree_delete(&ctx->handles_vma, handle);
872 err = -ENOENT;
873 }
874 spin_unlock(&obj->lut_lock);
875 }
876 mutex_unlock(&ctx->lut_mutex);
877 }
878 if (unlikely(err))
879 goto err;
880
881 return 0;
882
883 err:
884 i915_vma_close(vma);
885 i915_vma_put(vma);
886 i915_lut_handle_free(lut);
887 return err;
888 }
889
890 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
891 {
892 struct i915_address_space *vm = eb->context->vm;
893
894 do {
895 struct drm_i915_gem_object *obj;
896 struct i915_vma *vma;
897 int err;
898
899 rcu_read_lock();
900 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
901 if (likely(vma && vma->vm == vm))
902 vma = i915_vma_tryget(vma);
903 rcu_read_unlock();
904 if (likely(vma))
905 return vma;
906
907 obj = i915_gem_object_lookup(eb->file, handle);
908 if (unlikely(!obj))
909 return ERR_PTR(-ENOENT);
910
911 /*
912 * If the user has opted-in for protected-object tracking, make
913 * sure the object encryption can be used.
914 * We only need to do this when the object is first used with
915 * this context, because the context itself will be banned when
916 * the protected objects become invalid.
917 */
918 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
919 i915_gem_object_is_protected(obj)) {
920 err = intel_pxp_key_check(eb->i915->pxp, obj, true);
921 if (err) {
922 i915_gem_object_put(obj);
923 return ERR_PTR(err);
924 }
925 }
926
927 vma = i915_vma_instance(obj, vm, NULL);
928 if (IS_ERR(vma)) {
929 i915_gem_object_put(obj);
930 return vma;
931 }
932
933 err = __eb_add_lut(eb, handle, vma);
934 if (likely(!err))
935 return vma;
936
937 i915_gem_object_put(obj);
938 if (err != -EEXIST)
939 return ERR_PTR(err);
940 } while (1);
941 }
942
943 static int eb_lookup_vmas(struct i915_execbuffer *eb)
944 {
945 unsigned int i, current_batch = 0;
946 int err = 0;
947
948 INIT_LIST_HEAD(&eb->relocs);
949
950 for (i = 0; i < eb->buffer_count; i++) {
951 struct i915_vma *vma;
952
953 vma = eb_lookup_vma(eb, eb->exec[i].handle);
954 if (IS_ERR(vma)) {
955 err = PTR_ERR(vma);
956 goto err;
957 }
958
959 err = eb_validate_vma(eb, &eb->exec[i], vma);
960 if (unlikely(err)) {
961 i915_vma_put(vma);
962 goto err;
963 }
964
965 err = eb_add_vma(eb, &current_batch, i, vma);
966 if (err)
967 return err;
968
969 if (i915_gem_object_is_userptr(vma->obj)) {
970 err = i915_gem_object_userptr_submit_init(vma->obj);
971 if (err) {
972 if (i + 1 < eb->buffer_count) {
973 /*
974 * Execbuffer code expects last vma entry to be NULL,
975 * since we already initialized this entry,
976 * set the next value to NULL or we mess up
977 * cleanup handling.
978 */
979 eb->vma[i + 1].vma = NULL;
980 }
981
982 return err;
983 }
984
985 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
986 eb->args->flags |= __EXEC_USERPTR_USED;
987 }
988 }
989
990 return 0;
991
992 err:
993 eb->vma[i].vma = NULL;
994 return err;
995 }
996
997 static int eb_lock_vmas(struct i915_execbuffer *eb)
998 {
999 unsigned int i;
1000 int err;
1001
1002 for (i = 0; i < eb->buffer_count; i++) {
1003 struct eb_vma *ev = &eb->vma[i];
1004 struct i915_vma *vma = ev->vma;
1005
1006 err = i915_gem_object_lock(vma->obj, &eb->ww);
1007 if (err)
1008 return err;
1009 }
1010
1011 return 0;
1012 }
1013
1014 static int eb_validate_vmas(struct i915_execbuffer *eb)
1015 {
1016 unsigned int i;
1017 int err;
1018
1019 INIT_LIST_HEAD(&eb->unbound);
1020
1021 err = eb_lock_vmas(eb);
1022 if (err)
1023 return err;
1024
1025 for (i = 0; i < eb->buffer_count; i++) {
1026 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1027 struct eb_vma *ev = &eb->vma[i];
1028 struct i915_vma *vma = ev->vma;
1029
1030 err = eb_pin_vma(eb, entry, ev);
1031 if (err == -EDEADLK)
1032 return err;
1033
1034 if (!err) {
1035 if (entry->offset != i915_vma_offset(vma)) {
1036 entry->offset = i915_vma_offset(vma) | UPDATE;
1037 eb->args->flags |= __EXEC_HAS_RELOC;
1038 }
1039 } else {
1040 eb_unreserve_vma(ev);
1041
1042 list_add_tail(&ev->bind_link, &eb->unbound);
1043 if (drm_mm_node_allocated(&vma->node)) {
1044 err = i915_vma_unbind(vma);
1045 if (err)
1046 return err;
1047 }
1048 }
1049
1050 /* Reserve enough slots to accommodate composite fences */
1051 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1052 if (err)
1053 return err;
1054
1055 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1056 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1057 }
1058
1059 if (!list_empty(&eb->unbound))
1060 return eb_reserve(eb);
1061
1062 return 0;
1063 }
1064
1065 static struct eb_vma *
1066 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1067 {
1068 if (eb->lut_size < 0) {
1069 if (handle >= -eb->lut_size)
1070 return NULL;
1071 return &eb->vma[handle];
1072 } else {
1073 struct hlist_head *head;
1074 struct eb_vma *ev;
1075
1076 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1077 hlist_for_each_entry(ev, head, node) {
1078 if (ev->handle == handle)
1079 return ev;
1080 }
1081 return NULL;
1082 }
1083 }
1084
1085 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1086 {
1087 const unsigned int count = eb->buffer_count;
1088 unsigned int i;
1089
1090 for (i = 0; i < count; i++) {
1091 struct eb_vma *ev = &eb->vma[i];
1092 struct i915_vma *vma = ev->vma;
1093
1094 if (!vma)
1095 break;
1096
1097 eb_unreserve_vma(ev);
1098
1099 if (final)
1100 i915_vma_put(vma);
1101 }
1102
1103 eb_capture_release(eb);
1104 eb_unpin_engine(eb);
1105 }
1106
1107 static void eb_destroy(const struct i915_execbuffer *eb)
1108 {
1109 if (eb->lut_size > 0)
1110 kfree(eb->buckets);
1111 }
1112
1113 static u64
1114 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1115 const struct i915_vma *target)
1116 {
1117 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1118 }
1119
1120 static void reloc_cache_init(struct reloc_cache *cache,
1121 struct drm_i915_private *i915)
1122 {
1123 cache->page = -1;
1124 cache->vaddr = 0;
1125 /* Must be a variable in the struct to allow GCC to unroll. */
1126 cache->graphics_ver = GRAPHICS_VER(i915);
1127 cache->has_llc = HAS_LLC(i915);
1128 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1129 cache->has_fence = cache->graphics_ver < 4;
1130 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1131 cache->node.flags = 0;
1132 }
1133
1134 static void *unmask_page(unsigned long p)
1135 {
1136 return (void *)(uintptr_t)(p & PAGE_MASK);
1137 }
1138
1139 static unsigned int unmask_flags(unsigned long p)
1140 {
1141 return p & ~PAGE_MASK;
1142 }
1143
1144 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1145
1146 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1147 {
1148 struct drm_i915_private *i915 =
1149 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1150 return to_gt(i915)->ggtt;
1151 }
1152
1153 static void reloc_cache_unmap(struct reloc_cache *cache)
1154 {
1155 void *vaddr;
1156
1157 if (!cache->vaddr)
1158 return;
1159
1160 vaddr = unmask_page(cache->vaddr);
1161 if (cache->vaddr & KMAP)
1162 kunmap_local(vaddr);
1163 else
1164 io_mapping_unmap_atomic((void __iomem *)vaddr);
1165 }
1166
1167 static void reloc_cache_remap(struct reloc_cache *cache,
1168 struct drm_i915_gem_object *obj)
1169 {
1170 void *vaddr;
1171
1172 if (!cache->vaddr)
1173 return;
1174
1175 if (cache->vaddr & KMAP) {
1176 struct page *page = i915_gem_object_get_page(obj, cache->page);
1177
1178 vaddr = kmap_local_page(page);
1179 cache->vaddr = unmask_flags(cache->vaddr) |
1180 (unsigned long)vaddr;
1181 } else {
1182 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1183 unsigned long offset;
1184
1185 offset = cache->node.start;
1186 if (!drm_mm_node_allocated(&cache->node))
1187 offset += cache->page << PAGE_SHIFT;
1188
1189 cache->vaddr = (unsigned long)
1190 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1191 }
1192 }
1193
1194 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1195 {
1196 void *vaddr;
1197
1198 if (!cache->vaddr)
1199 return;
1200
1201 vaddr = unmask_page(cache->vaddr);
1202 if (cache->vaddr & KMAP) {
1203 struct drm_i915_gem_object *obj =
1204 (struct drm_i915_gem_object *)cache->node.mm;
1205 if (cache->vaddr & CLFLUSH_AFTER)
1206 mb();
1207
1208 kunmap_local(vaddr);
1209 i915_gem_object_finish_access(obj);
1210 } else {
1211 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1212
1213 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1214 io_mapping_unmap_atomic((void __iomem *)vaddr);
1215
1216 if (drm_mm_node_allocated(&cache->node)) {
1217 ggtt->vm.clear_range(&ggtt->vm,
1218 cache->node.start,
1219 cache->node.size);
1220 mutex_lock(&ggtt->vm.mutex);
1221 drm_mm_remove_node(&cache->node);
1222 mutex_unlock(&ggtt->vm.mutex);
1223 } else {
1224 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1225 }
1226 }
1227
1228 cache->vaddr = 0;
1229 cache->page = -1;
1230 }
1231
1232 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1233 struct reloc_cache *cache,
1234 unsigned long pageno)
1235 {
1236 void *vaddr;
1237 struct page *page;
1238
1239 if (cache->vaddr) {
1240 kunmap_local(unmask_page(cache->vaddr));
1241 } else {
1242 unsigned int flushes;
1243 int err;
1244
1245 err = i915_gem_object_prepare_write(obj, &flushes);
1246 if (err)
1247 return ERR_PTR(err);
1248
1249 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1250 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1251
1252 cache->vaddr = flushes | KMAP;
1253 cache->node.mm = (void *)obj;
1254 if (flushes)
1255 mb();
1256 }
1257
1258 page = i915_gem_object_get_page(obj, pageno);
1259 if (!obj->mm.dirty)
1260 set_page_dirty(page);
1261
1262 vaddr = kmap_local_page(page);
1263 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1264 cache->page = pageno;
1265
1266 return vaddr;
1267 }
1268
1269 static void *reloc_iomap(struct i915_vma *batch,
1270 struct i915_execbuffer *eb,
1271 unsigned long page)
1272 {
1273 struct drm_i915_gem_object *obj = batch->obj;
1274 struct reloc_cache *cache = &eb->reloc_cache;
1275 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1276 unsigned long offset;
1277 void *vaddr;
1278
1279 if (cache->vaddr) {
1280 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1281 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1282 } else {
1283 struct i915_vma *vma = ERR_PTR(-ENODEV);
1284 int err;
1285
1286 if (i915_gem_object_is_tiled(obj))
1287 return ERR_PTR(-EINVAL);
1288
1289 if (use_cpu_reloc(cache, obj))
1290 return NULL;
1291
1292 err = i915_gem_object_set_to_gtt_domain(obj, true);
1293 if (err)
1294 return ERR_PTR(err);
1295
1296 /*
1297 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1298 * VMA from the object list because we no longer pin.
1299 *
1300 * Only attempt to pin the batch buffer to ggtt if the current batch
1301 * is not inside ggtt, or the batch buffer is not misplaced.
1302 */
1303 if (!i915_is_ggtt(batch->vm) ||
1304 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1305 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1306 PIN_MAPPABLE |
1307 PIN_NONBLOCK /* NOWARN */ |
1308 PIN_NOEVICT);
1309 }
1310
1311 if (vma == ERR_PTR(-EDEADLK))
1312 return vma;
1313
1314 if (IS_ERR(vma)) {
1315 memset(&cache->node, 0, sizeof(cache->node));
1316 mutex_lock(&ggtt->vm.mutex);
1317 err = drm_mm_insert_node_in_range
1318 (&ggtt->vm.mm, &cache->node,
1319 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1320 0, ggtt->mappable_end,
1321 DRM_MM_INSERT_LOW);
1322 mutex_unlock(&ggtt->vm.mutex);
1323 if (err) /* no inactive aperture space, use cpu reloc */
1324 return NULL;
1325 } else {
1326 cache->node.start = i915_ggtt_offset(vma);
1327 cache->node.mm = (void *)vma;
1328 }
1329 }
1330
1331 offset = cache->node.start;
1332 if (drm_mm_node_allocated(&cache->node)) {
1333 ggtt->vm.insert_page(&ggtt->vm,
1334 i915_gem_object_get_dma_address(obj, page),
1335 offset,
1336 i915_gem_get_pat_index(ggtt->vm.i915,
1337 I915_CACHE_NONE),
1338 0);
1339 } else {
1340 offset += page << PAGE_SHIFT;
1341 }
1342
1343 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1344 offset);
1345 cache->page = page;
1346 cache->vaddr = (unsigned long)vaddr;
1347
1348 return vaddr;
1349 }
1350
1351 static void *reloc_vaddr(struct i915_vma *vma,
1352 struct i915_execbuffer *eb,
1353 unsigned long page)
1354 {
1355 struct reloc_cache *cache = &eb->reloc_cache;
1356 void *vaddr;
1357
1358 if (cache->page == page) {
1359 vaddr = unmask_page(cache->vaddr);
1360 } else {
1361 vaddr = NULL;
1362 if ((cache->vaddr & KMAP) == 0)
1363 vaddr = reloc_iomap(vma, eb, page);
1364 if (!vaddr)
1365 vaddr = reloc_kmap(vma->obj, cache, page);
1366 }
1367
1368 return vaddr;
1369 }
1370
1371 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1372 {
1373 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1374 if (flushes & CLFLUSH_BEFORE)
1375 drm_clflush_virt_range(addr, sizeof(*addr));
1376
1377 *addr = value;
1378
1379 /*
1380 * Writes to the same cacheline are serialised by the CPU
1381 * (including clflush). On the write path, we only require
1382 * that it hits memory in an orderly fashion and place
1383 * mb barriers at the start and end of the relocation phase
1384 * to ensure ordering of clflush wrt to the system.
1385 */
1386 if (flushes & CLFLUSH_AFTER)
1387 drm_clflush_virt_range(addr, sizeof(*addr));
1388 } else
1389 *addr = value;
1390 }
1391
1392 static u64
1393 relocate_entry(struct i915_vma *vma,
1394 const struct drm_i915_gem_relocation_entry *reloc,
1395 struct i915_execbuffer *eb,
1396 const struct i915_vma *target)
1397 {
1398 u64 target_addr = relocation_target(reloc, target);
1399 u64 offset = reloc->offset;
1400 bool wide = eb->reloc_cache.use_64bit_reloc;
1401 void *vaddr;
1402
1403 repeat:
1404 vaddr = reloc_vaddr(vma, eb,
1405 offset >> PAGE_SHIFT);
1406 if (IS_ERR(vaddr))
1407 return PTR_ERR(vaddr);
1408
1409 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1410 clflush_write32(vaddr + offset_in_page(offset),
1411 lower_32_bits(target_addr),
1412 eb->reloc_cache.vaddr);
1413
1414 if (wide) {
1415 offset += sizeof(u32);
1416 target_addr >>= 32;
1417 wide = false;
1418 goto repeat;
1419 }
1420
1421 return target->node.start | UPDATE;
1422 }
1423
1424 static u64
1425 eb_relocate_entry(struct i915_execbuffer *eb,
1426 struct eb_vma *ev,
1427 const struct drm_i915_gem_relocation_entry *reloc)
1428 {
1429 struct drm_i915_private *i915 = eb->i915;
1430 struct eb_vma *target;
1431 int err;
1432
1433 /* we've already hold a reference to all valid objects */
1434 target = eb_get_vma(eb, reloc->target_handle);
1435 if (unlikely(!target))
1436 return -ENOENT;
1437
1438 /* Validate that the target is in a valid r/w GPU domain */
1439 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1440 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1441 "target %d offset %d "
1442 "read %08x write %08x\n",
1443 reloc->target_handle,
1444 (int) reloc->offset,
1445 reloc->read_domains,
1446 reloc->write_domain);
1447 return -EINVAL;
1448 }
1449 if (unlikely((reloc->write_domain | reloc->read_domains)
1450 & ~I915_GEM_GPU_DOMAINS)) {
1451 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1452 "target %d offset %d "
1453 "read %08x write %08x\n",
1454 reloc->target_handle,
1455 (int) reloc->offset,
1456 reloc->read_domains,
1457 reloc->write_domain);
1458 return -EINVAL;
1459 }
1460
1461 if (reloc->write_domain) {
1462 target->flags |= EXEC_OBJECT_WRITE;
1463
1464 /*
1465 * Sandybridge PPGTT errata: We need a global gtt mapping
1466 * for MI and pipe_control writes because the gpu doesn't
1467 * properly redirect them through the ppgtt for non_secure
1468 * batchbuffers.
1469 */
1470 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1471 GRAPHICS_VER(eb->i915) == 6 &&
1472 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1473 struct i915_vma *vma = target->vma;
1474
1475 reloc_cache_unmap(&eb->reloc_cache);
1476 mutex_lock(&vma->vm->mutex);
1477 err = i915_vma_bind(target->vma,
1478 target->vma->obj->pat_index,
1479 PIN_GLOBAL, NULL, NULL);
1480 mutex_unlock(&vma->vm->mutex);
1481 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1482 if (err)
1483 return err;
1484 }
1485 }
1486
1487 /*
1488 * If the relocation already has the right value in it, no
1489 * more work needs to be done.
1490 */
1491 if (!DBG_FORCE_RELOC &&
1492 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1493 return 0;
1494
1495 /* Check that the relocation address is valid... */
1496 if (unlikely(reloc->offset >
1497 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1498 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1499 "target %d offset %d size %d.\n",
1500 reloc->target_handle,
1501 (int)reloc->offset,
1502 (int)ev->vma->size);
1503 return -EINVAL;
1504 }
1505 if (unlikely(reloc->offset & 3)) {
1506 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1507 "target %d offset %d.\n",
1508 reloc->target_handle,
1509 (int)reloc->offset);
1510 return -EINVAL;
1511 }
1512
1513 /*
1514 * If we write into the object, we need to force the synchronisation
1515 * barrier, either with an asynchronous clflush or if we executed the
1516 * patching using the GPU (though that should be serialised by the
1517 * timeline). To be completely sure, and since we are required to
1518 * do relocations we are already stalling, disable the user's opt
1519 * out of our synchronisation.
1520 */
1521 ev->flags &= ~EXEC_OBJECT_ASYNC;
1522
1523 /* and update the user's relocation entry */
1524 return relocate_entry(ev->vma, reloc, eb, target->vma);
1525 }
1526
1527 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1528 {
1529 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1530 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1531 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1532 struct drm_i915_gem_relocation_entry __user *urelocs =
1533 u64_to_user_ptr(entry->relocs_ptr);
1534 unsigned long remain = entry->relocation_count;
1535
1536 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1537 return -EINVAL;
1538
1539 /*
1540 * We must check that the entire relocation array is safe
1541 * to read. However, if the array is not writable the user loses
1542 * the updated relocation values.
1543 */
1544 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1545 return -EFAULT;
1546
1547 do {
1548 struct drm_i915_gem_relocation_entry *r = stack;
1549 unsigned int count =
1550 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1551 unsigned int copied;
1552
1553 /*
1554 * This is the fast path and we cannot handle a pagefault
1555 * whilst holding the struct mutex lest the user pass in the
1556 * relocations contained within a mmaped bo. For in such a case
1557 * we, the page fault handler would call i915_gem_fault() and
1558 * we would try to acquire the struct mutex again. Obviously
1559 * this is bad and so lockdep complains vehemently.
1560 */
1561 pagefault_disable();
1562 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1563 pagefault_enable();
1564 if (unlikely(copied)) {
1565 remain = -EFAULT;
1566 goto out;
1567 }
1568
1569 remain -= count;
1570 do {
1571 u64 offset = eb_relocate_entry(eb, ev, r);
1572
1573 if (likely(offset == 0)) {
1574 } else if ((s64)offset < 0) {
1575 remain = (int)offset;
1576 goto out;
1577 } else {
1578 /*
1579 * Note that reporting an error now
1580 * leaves everything in an inconsistent
1581 * state as we have *already* changed
1582 * the relocation value inside the
1583 * object. As we have not changed the
1584 * reloc.presumed_offset or will not
1585 * change the execobject.offset, on the
1586 * call we may not rewrite the value
1587 * inside the object, leaving it
1588 * dangling and causing a GPU hang. Unless
1589 * userspace dynamically rebuilds the
1590 * relocations on each execbuf rather than
1591 * presume a static tree.
1592 *
1593 * We did previously check if the relocations
1594 * were writable (access_ok), an error now
1595 * would be a strange race with mprotect,
1596 * having already demonstrated that we
1597 * can read from this userspace address.
1598 */
1599 offset = gen8_canonical_addr(offset & ~UPDATE);
1600 __put_user(offset,
1601 &urelocs[r - stack].presumed_offset);
1602 }
1603 } while (r++, --count);
1604 urelocs += ARRAY_SIZE(stack);
1605 } while (remain);
1606 out:
1607 reloc_cache_reset(&eb->reloc_cache, eb);
1608 return remain;
1609 }
1610
1611 static int
1612 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1613 {
1614 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1615 struct drm_i915_gem_relocation_entry *relocs =
1616 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1617 unsigned int i;
1618 int err;
1619
1620 for (i = 0; i < entry->relocation_count; i++) {
1621 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1622
1623 if ((s64)offset < 0) {
1624 err = (int)offset;
1625 goto err;
1626 }
1627 }
1628 err = 0;
1629 err:
1630 reloc_cache_reset(&eb->reloc_cache, eb);
1631 return err;
1632 }
1633
1634 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1635 {
1636 const char __user *addr, *end;
1637 unsigned long size;
1638 char __maybe_unused c;
1639
1640 size = entry->relocation_count;
1641 if (size == 0)
1642 return 0;
1643
1644 if (size > N_RELOC(ULONG_MAX))
1645 return -EINVAL;
1646
1647 addr = u64_to_user_ptr(entry->relocs_ptr);
1648 size *= sizeof(struct drm_i915_gem_relocation_entry);
1649 if (!access_ok(addr, size))
1650 return -EFAULT;
1651
1652 end = addr + size;
1653 for (; addr < end; addr += PAGE_SIZE) {
1654 int err = __get_user(c, addr);
1655 if (err)
1656 return err;
1657 }
1658 return __get_user(c, end - 1);
1659 }
1660
1661 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1662 {
1663 struct drm_i915_gem_relocation_entry *relocs;
1664 const unsigned int count = eb->buffer_count;
1665 unsigned int i;
1666 int err;
1667
1668 for (i = 0; i < count; i++) {
1669 const unsigned int nreloc = eb->exec[i].relocation_count;
1670 struct drm_i915_gem_relocation_entry __user *urelocs;
1671 unsigned long size;
1672 unsigned long copied;
1673
1674 if (nreloc == 0)
1675 continue;
1676
1677 err = check_relocations(&eb->exec[i]);
1678 if (err)
1679 goto err;
1680
1681 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1682 size = nreloc * sizeof(*relocs);
1683
1684 relocs = kvmalloc_array(1, size, GFP_KERNEL);
1685 if (!relocs) {
1686 err = -ENOMEM;
1687 goto err;
1688 }
1689
1690 /* copy_from_user is limited to < 4GiB */
1691 copied = 0;
1692 do {
1693 unsigned int len =
1694 min_t(u64, BIT_ULL(31), size - copied);
1695
1696 if (__copy_from_user((char *)relocs + copied,
1697 (char __user *)urelocs + copied,
1698 len))
1699 goto end;
1700
1701 copied += len;
1702 } while (copied < size);
1703
1704 /*
1705 * As we do not update the known relocation offsets after
1706 * relocating (due to the complexities in lock handling),
1707 * we need to mark them as invalid now so that we force the
1708 * relocation processing next time. Just in case the target
1709 * object is evicted and then rebound into its old
1710 * presumed_offset before the next execbuffer - if that
1711 * happened we would make the mistake of assuming that the
1712 * relocations were valid.
1713 */
1714 if (!user_access_begin(urelocs, size))
1715 goto end;
1716
1717 for (copied = 0; copied < nreloc; copied++)
1718 unsafe_put_user(-1,
1719 &urelocs[copied].presumed_offset,
1720 end_user);
1721 user_access_end();
1722
1723 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1724 }
1725
1726 return 0;
1727
1728 end_user:
1729 user_access_end();
1730 end:
1731 kvfree(relocs);
1732 err = -EFAULT;
1733 err:
1734 while (i--) {
1735 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1736 if (eb->exec[i].relocation_count)
1737 kvfree(relocs);
1738 }
1739 return err;
1740 }
1741
1742 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1743 {
1744 const unsigned int count = eb->buffer_count;
1745 unsigned int i;
1746
1747 for (i = 0; i < count; i++) {
1748 int err;
1749
1750 err = check_relocations(&eb->exec[i]);
1751 if (err)
1752 return err;
1753 }
1754
1755 return 0;
1756 }
1757
1758 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1759 {
1760 const unsigned int count = eb->buffer_count;
1761 unsigned int i;
1762 int ret;
1763
1764 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1765 return 0;
1766
1767 for (i = 0; i < count; i++) {
1768 struct eb_vma *ev = &eb->vma[i];
1769
1770 if (!i915_gem_object_is_userptr(ev->vma->obj))
1771 continue;
1772
1773 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1774 if (ret)
1775 return ret;
1776
1777 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1778 }
1779
1780 return 0;
1781 }
1782
1783 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1784 {
1785 bool have_copy = false;
1786 struct eb_vma *ev;
1787 int err = 0;
1788
1789 repeat:
1790 if (signal_pending(current)) {
1791 err = -ERESTARTSYS;
1792 goto out;
1793 }
1794
1795 /* We may process another execbuffer during the unlock... */
1796 eb_release_vmas(eb, false);
1797 i915_gem_ww_ctx_fini(&eb->ww);
1798
1799 /*
1800 * We take 3 passes through the slowpatch.
1801 *
1802 * 1 - we try to just prefault all the user relocation entries and
1803 * then attempt to reuse the atomic pagefault disabled fast path again.
1804 *
1805 * 2 - we copy the user entries to a local buffer here outside of the
1806 * local and allow ourselves to wait upon any rendering before
1807 * relocations
1808 *
1809 * 3 - we already have a local copy of the relocation entries, but
1810 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1811 */
1812 if (!err) {
1813 err = eb_prefault_relocations(eb);
1814 } else if (!have_copy) {
1815 err = eb_copy_relocations(eb);
1816 have_copy = err == 0;
1817 } else {
1818 cond_resched();
1819 err = 0;
1820 }
1821
1822 if (!err)
1823 err = eb_reinit_userptr(eb);
1824
1825 i915_gem_ww_ctx_init(&eb->ww, true);
1826 if (err)
1827 goto out;
1828
1829 /* reacquire the objects */
1830 repeat_validate:
1831 err = eb_pin_engine(eb, false);
1832 if (err)
1833 goto err;
1834
1835 err = eb_validate_vmas(eb);
1836 if (err)
1837 goto err;
1838
1839 GEM_BUG_ON(!eb->batches[0]);
1840
1841 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1842 if (!have_copy) {
1843 err = eb_relocate_vma(eb, ev);
1844 if (err)
1845 break;
1846 } else {
1847 err = eb_relocate_vma_slow(eb, ev);
1848 if (err)
1849 break;
1850 }
1851 }
1852
1853 if (err == -EDEADLK)
1854 goto err;
1855
1856 if (err && !have_copy)
1857 goto repeat;
1858
1859 if (err)
1860 goto err;
1861
1862 /* as last step, parse the command buffer */
1863 err = eb_parse(eb);
1864 if (err)
1865 goto err;
1866
1867 /*
1868 * Leave the user relocations as are, this is the painfully slow path,
1869 * and we want to avoid the complication of dropping the lock whilst
1870 * having buffers reserved in the aperture and so causing spurious
1871 * ENOSPC for random operations.
1872 */
1873
1874 err:
1875 if (err == -EDEADLK) {
1876 eb_release_vmas(eb, false);
1877 err = i915_gem_ww_ctx_backoff(&eb->ww);
1878 if (!err)
1879 goto repeat_validate;
1880 }
1881
1882 if (err == -EAGAIN)
1883 goto repeat;
1884
1885 out:
1886 if (have_copy) {
1887 const unsigned int count = eb->buffer_count;
1888 unsigned int i;
1889
1890 for (i = 0; i < count; i++) {
1891 const struct drm_i915_gem_exec_object2 *entry =
1892 &eb->exec[i];
1893 struct drm_i915_gem_relocation_entry *relocs;
1894
1895 if (!entry->relocation_count)
1896 continue;
1897
1898 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1899 kvfree(relocs);
1900 }
1901 }
1902
1903 return err;
1904 }
1905
1906 static int eb_relocate_parse(struct i915_execbuffer *eb)
1907 {
1908 int err;
1909 bool throttle = true;
1910
1911 retry:
1912 err = eb_pin_engine(eb, throttle);
1913 if (err) {
1914 if (err != -EDEADLK)
1915 return err;
1916
1917 goto err;
1918 }
1919
1920 /* only throttle once, even if we didn't need to throttle */
1921 throttle = false;
1922
1923 err = eb_validate_vmas(eb);
1924 if (err == -EAGAIN)
1925 goto slow;
1926 else if (err)
1927 goto err;
1928
1929 /* The objects are in their final locations, apply the relocations. */
1930 if (eb->args->flags & __EXEC_HAS_RELOC) {
1931 struct eb_vma *ev;
1932
1933 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1934 err = eb_relocate_vma(eb, ev);
1935 if (err)
1936 break;
1937 }
1938
1939 if (err == -EDEADLK)
1940 goto err;
1941 else if (err)
1942 goto slow;
1943 }
1944
1945 if (!err)
1946 err = eb_parse(eb);
1947
1948 err:
1949 if (err == -EDEADLK) {
1950 eb_release_vmas(eb, false);
1951 err = i915_gem_ww_ctx_backoff(&eb->ww);
1952 if (!err)
1953 goto retry;
1954 }
1955
1956 return err;
1957
1958 slow:
1959 err = eb_relocate_parse_slow(eb);
1960 if (err)
1961 /*
1962 * If the user expects the execobject.offset and
1963 * reloc.presumed_offset to be an exact match,
1964 * as for using NO_RELOC, then we cannot update
1965 * the execobject.offset until we have completed
1966 * relocation.
1967 */
1968 eb->args->flags &= ~__EXEC_HAS_RELOC;
1969
1970 return err;
1971 }
1972
1973 /*
1974 * Using two helper loops for the order of which requests / batches are created
1975 * and added the to backend. Requests are created in order from the parent to
1976 * the last child. Requests are added in the reverse order, from the last child
1977 * to parent. This is done for locking reasons as the timeline lock is acquired
1978 * during request creation and released when the request is added to the
1979 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1980 * the ordering.
1981 */
1982 #define for_each_batch_create_order(_eb, _i) \
1983 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1984 #define for_each_batch_add_order(_eb, _i) \
1985 BUILD_BUG_ON(!typecheck(int, _i)); \
1986 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1987
1988 static struct i915_request *
1989 eb_find_first_request_added(struct i915_execbuffer *eb)
1990 {
1991 int i;
1992
1993 for_each_batch_add_order(eb, i)
1994 if (eb->requests[i])
1995 return eb->requests[i];
1996
1997 GEM_BUG_ON("Request not found");
1998
1999 return NULL;
2000 }
2001
2002 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2003
2004 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2005 static int eb_capture_stage(struct i915_execbuffer *eb)
2006 {
2007 const unsigned int count = eb->buffer_count;
2008 unsigned int i = count, j;
2009
2010 while (i--) {
2011 struct eb_vma *ev = &eb->vma[i];
2012 struct i915_vma *vma = ev->vma;
2013 unsigned int flags = ev->flags;
2014
2015 if (!(flags & EXEC_OBJECT_CAPTURE))
2016 continue;
2017
2018 if (i915_gem_context_is_recoverable(eb->gem_context) &&
2019 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2020 return -EINVAL;
2021
2022 for_each_batch_create_order(eb, j) {
2023 struct i915_capture_list *capture;
2024
2025 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2026 if (!capture)
2027 continue;
2028
2029 capture->next = eb->capture_lists[j];
2030 capture->vma_res = i915_vma_resource_get(vma->resource);
2031 eb->capture_lists[j] = capture;
2032 }
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Commit once we're in the critical path */
2039 static void eb_capture_commit(struct i915_execbuffer *eb)
2040 {
2041 unsigned int j;
2042
2043 for_each_batch_create_order(eb, j) {
2044 struct i915_request *rq = eb->requests[j];
2045
2046 if (!rq)
2047 break;
2048
2049 rq->capture_list = eb->capture_lists[j];
2050 eb->capture_lists[j] = NULL;
2051 }
2052 }
2053
2054 /*
2055 * Release anything that didn't get committed due to errors.
2056 * The capture_list will otherwise be freed at request retire.
2057 */
2058 static void eb_capture_release(struct i915_execbuffer *eb)
2059 {
2060 unsigned int j;
2061
2062 for_each_batch_create_order(eb, j) {
2063 if (eb->capture_lists[j]) {
2064 i915_request_free_capture_list(eb->capture_lists[j]);
2065 eb->capture_lists[j] = NULL;
2066 }
2067 }
2068 }
2069
2070 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2071 {
2072 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2073 }
2074
2075 #else
2076
2077 static int eb_capture_stage(struct i915_execbuffer *eb)
2078 {
2079 return 0;
2080 }
2081
2082 static void eb_capture_commit(struct i915_execbuffer *eb)
2083 {
2084 }
2085
2086 static void eb_capture_release(struct i915_execbuffer *eb)
2087 {
2088 }
2089
2090 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2091 {
2092 }
2093
2094 #endif
2095
2096 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2097 {
2098 const unsigned int count = eb->buffer_count;
2099 unsigned int i = count;
2100 int err = 0, j;
2101
2102 while (i--) {
2103 struct eb_vma *ev = &eb->vma[i];
2104 struct i915_vma *vma = ev->vma;
2105 unsigned int flags = ev->flags;
2106 struct drm_i915_gem_object *obj = vma->obj;
2107
2108 assert_vma_held(vma);
2109
2110 /*
2111 * If the GPU is not _reading_ through the CPU cache, we need
2112 * to make sure that any writes (both previous GPU writes from
2113 * before a change in snooping levels and normal CPU writes)
2114 * caught in that cache are flushed to main memory.
2115 *
2116 * We want to say
2117 * obj->cache_dirty &&
2118 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2119 * but gcc's optimiser doesn't handle that as well and emits
2120 * two jumps instead of one. Maybe one day...
2121 *
2122 * FIXME: There is also sync flushing in set_pages(), which
2123 * serves a different purpose(some of the time at least).
2124 *
2125 * We should consider:
2126 *
2127 * 1. Rip out the async flush code.
2128 *
2129 * 2. Or make the sync flushing use the async clflush path
2130 * using mandatory fences underneath. Currently the below
2131 * async flush happens after we bind the object.
2132 */
2133 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2134 if (i915_gem_clflush_object(obj, 0))
2135 flags &= ~EXEC_OBJECT_ASYNC;
2136 }
2137
2138 /* We only need to await on the first request */
2139 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2140 err = i915_request_await_object
2141 (eb_find_first_request_added(eb), obj,
2142 flags & EXEC_OBJECT_WRITE);
2143 }
2144
2145 for_each_batch_add_order(eb, j) {
2146 if (err)
2147 break;
2148 if (!eb->requests[j])
2149 continue;
2150
2151 err = _i915_vma_move_to_active(vma, eb->requests[j],
2152 j ? NULL :
2153 eb->composite_fence ?
2154 eb->composite_fence :
2155 &eb->requests[j]->fence,
2156 flags | __EXEC_OBJECT_NO_RESERVE |
2157 __EXEC_OBJECT_NO_REQUEST_AWAIT);
2158 }
2159 }
2160
2161 #ifdef CONFIG_MMU_NOTIFIER
2162 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2163 read_lock(&eb->i915->mm.notifier_lock);
2164
2165 /*
2166 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2167 * could not have been set
2168 */
2169 for (i = 0; i < count; i++) {
2170 struct eb_vma *ev = &eb->vma[i];
2171 struct drm_i915_gem_object *obj = ev->vma->obj;
2172
2173 if (!i915_gem_object_is_userptr(obj))
2174 continue;
2175
2176 err = i915_gem_object_userptr_submit_done(obj);
2177 if (err)
2178 break;
2179 }
2180
2181 read_unlock(&eb->i915->mm.notifier_lock);
2182 }
2183 #endif
2184
2185 if (unlikely(err))
2186 goto err_skip;
2187
2188 /* Unconditionally flush any chipset caches (for streaming writes). */
2189 intel_gt_chipset_flush(eb->gt);
2190 eb_capture_commit(eb);
2191
2192 return 0;
2193
2194 err_skip:
2195 for_each_batch_create_order(eb, j) {
2196 if (!eb->requests[j])
2197 break;
2198
2199 i915_request_set_error_once(eb->requests[j], err);
2200 }
2201 return err;
2202 }
2203
2204 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2205 struct drm_i915_gem_execbuffer2 *exec)
2206 {
2207 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2208 return -EINVAL;
2209
2210 /* Kernel clipping was a DRI1 misfeature */
2211 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2212 I915_EXEC_USE_EXTENSIONS))) {
2213 if (exec->num_cliprects || exec->cliprects_ptr)
2214 return -EINVAL;
2215 }
2216
2217 if (exec->DR4 == 0xffffffff) {
2218 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2219 exec->DR4 = 0;
2220 }
2221 if (exec->DR1 || exec->DR4)
2222 return -EINVAL;
2223
2224 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2225 return -EINVAL;
2226
2227 return 0;
2228 }
2229
2230 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2231 {
2232 u32 *cs;
2233 int i;
2234
2235 if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2236 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2237 return -EINVAL;
2238 }
2239
2240 cs = intel_ring_begin(rq, 4 * 2 + 2);
2241 if (IS_ERR(cs))
2242 return PTR_ERR(cs);
2243
2244 *cs++ = MI_LOAD_REGISTER_IMM(4);
2245 for (i = 0; i < 4; i++) {
2246 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2247 *cs++ = 0;
2248 }
2249 *cs++ = MI_NOOP;
2250 intel_ring_advance(rq, cs);
2251
2252 return 0;
2253 }
2254
2255 static struct i915_vma *
2256 shadow_batch_pin(struct i915_execbuffer *eb,
2257 struct drm_i915_gem_object *obj,
2258 struct i915_address_space *vm,
2259 unsigned int flags)
2260 {
2261 struct i915_vma *vma;
2262 int err;
2263
2264 vma = i915_vma_instance(obj, vm, NULL);
2265 if (IS_ERR(vma))
2266 return vma;
2267
2268 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2269 if (err)
2270 return ERR_PTR(err);
2271
2272 return vma;
2273 }
2274
2275 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2276 {
2277 /*
2278 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2279 * batch" bit. Hence we need to pin secure batches into the global gtt.
2280 * hsw should have this fixed, but bdw mucks it up again. */
2281 if (eb->batch_flags & I915_DISPATCH_SECURE)
2282 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2283
2284 return NULL;
2285 }
2286
2287 static int eb_parse(struct i915_execbuffer *eb)
2288 {
2289 struct drm_i915_private *i915 = eb->i915;
2290 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2291 struct i915_vma *shadow, *trampoline, *batch;
2292 unsigned long len;
2293 int err;
2294
2295 if (!eb_use_cmdparser(eb)) {
2296 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2297 if (IS_ERR(batch))
2298 return PTR_ERR(batch);
2299
2300 goto secure_batch;
2301 }
2302
2303 if (intel_context_is_parallel(eb->context))
2304 return -EINVAL;
2305
2306 len = eb->batch_len[0];
2307 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2308 /*
2309 * ppGTT backed shadow buffers must be mapped RO, to prevent
2310 * post-scan tampering
2311 */
2312 if (!eb->context->vm->has_read_only) {
2313 drm_dbg(&i915->drm,
2314 "Cannot prevent post-scan tampering without RO capable vm\n");
2315 return -EINVAL;
2316 }
2317 } else {
2318 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2319 }
2320 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2321 return -EINVAL;
2322
2323 if (!pool) {
2324 pool = intel_gt_get_buffer_pool(eb->gt, len,
2325 I915_MAP_WB);
2326 if (IS_ERR(pool))
2327 return PTR_ERR(pool);
2328 eb->batch_pool = pool;
2329 }
2330
2331 err = i915_gem_object_lock(pool->obj, &eb->ww);
2332 if (err)
2333 return err;
2334
2335 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2336 if (IS_ERR(shadow))
2337 return PTR_ERR(shadow);
2338
2339 intel_gt_buffer_pool_mark_used(pool);
2340 i915_gem_object_set_readonly(shadow->obj);
2341 shadow->private = pool;
2342
2343 trampoline = NULL;
2344 if (CMDPARSER_USES_GGTT(eb->i915)) {
2345 trampoline = shadow;
2346
2347 shadow = shadow_batch_pin(eb, pool->obj,
2348 &eb->gt->ggtt->vm,
2349 PIN_GLOBAL);
2350 if (IS_ERR(shadow))
2351 return PTR_ERR(shadow);
2352
2353 shadow->private = pool;
2354
2355 eb->batch_flags |= I915_DISPATCH_SECURE;
2356 }
2357
2358 batch = eb_dispatch_secure(eb, shadow);
2359 if (IS_ERR(batch))
2360 return PTR_ERR(batch);
2361
2362 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2363 if (err)
2364 return err;
2365
2366 err = intel_engine_cmd_parser(eb->context->engine,
2367 eb->batches[0]->vma,
2368 eb->batch_start_offset,
2369 eb->batch_len[0],
2370 shadow, trampoline);
2371 if (err)
2372 return err;
2373
2374 eb->batches[0] = &eb->vma[eb->buffer_count++];
2375 eb->batches[0]->vma = i915_vma_get(shadow);
2376 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2377
2378 eb->trampoline = trampoline;
2379 eb->batch_start_offset = 0;
2380
2381 secure_batch:
2382 if (batch) {
2383 if (intel_context_is_parallel(eb->context))
2384 return -EINVAL;
2385
2386 eb->batches[0] = &eb->vma[eb->buffer_count++];
2387 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2388 eb->batches[0]->vma = i915_vma_get(batch);
2389 }
2390 return 0;
2391 }
2392
2393 static int eb_request_submit(struct i915_execbuffer *eb,
2394 struct i915_request *rq,
2395 struct i915_vma *batch,
2396 u64 batch_len)
2397 {
2398 int err;
2399
2400 if (intel_context_nopreempt(rq->context))
2401 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2402
2403 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2404 err = i915_reset_gen7_sol_offsets(rq);
2405 if (err)
2406 return err;
2407 }
2408
2409 /*
2410 * After we completed waiting for other engines (using HW semaphores)
2411 * then we can signal that this request/batch is ready to run. This
2412 * allows us to determine if the batch is still waiting on the GPU
2413 * or actually running by checking the breadcrumb.
2414 */
2415 if (rq->context->engine->emit_init_breadcrumb) {
2416 err = rq->context->engine->emit_init_breadcrumb(rq);
2417 if (err)
2418 return err;
2419 }
2420
2421 err = rq->context->engine->emit_bb_start(rq,
2422 i915_vma_offset(batch) +
2423 eb->batch_start_offset,
2424 batch_len,
2425 eb->batch_flags);
2426 if (err)
2427 return err;
2428
2429 if (eb->trampoline) {
2430 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2431 GEM_BUG_ON(eb->batch_start_offset);
2432 err = rq->context->engine->emit_bb_start(rq,
2433 i915_vma_offset(eb->trampoline) +
2434 batch_len, 0, 0);
2435 if (err)
2436 return err;
2437 }
2438
2439 return 0;
2440 }
2441
2442 static int eb_submit(struct i915_execbuffer *eb)
2443 {
2444 unsigned int i;
2445 int err;
2446
2447 err = eb_move_to_gpu(eb);
2448
2449 for_each_batch_create_order(eb, i) {
2450 if (!eb->requests[i])
2451 break;
2452
2453 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2454 if (!err)
2455 err = eb_request_submit(eb, eb->requests[i],
2456 eb->batches[i]->vma,
2457 eb->batch_len[i]);
2458 }
2459
2460 return err;
2461 }
2462
2463 /*
2464 * Find one BSD ring to dispatch the corresponding BSD command.
2465 * The engine index is returned.
2466 */
2467 static unsigned int
2468 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2469 struct drm_file *file)
2470 {
2471 struct drm_i915_file_private *file_priv = file->driver_priv;
2472
2473 /* Check whether the file_priv has already selected one ring. */
2474 if ((int)file_priv->bsd_engine < 0)
2475 file_priv->bsd_engine =
2476 get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2477
2478 return file_priv->bsd_engine;
2479 }
2480
2481 static const enum intel_engine_id user_ring_map[] = {
2482 [I915_EXEC_DEFAULT] = RCS0,
2483 [I915_EXEC_RENDER] = RCS0,
2484 [I915_EXEC_BLT] = BCS0,
2485 [I915_EXEC_BSD] = VCS0,
2486 [I915_EXEC_VEBOX] = VECS0
2487 };
2488
2489 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2490 {
2491 struct intel_ring *ring = ce->ring;
2492 struct intel_timeline *tl = ce->timeline;
2493 struct i915_request *rq;
2494
2495 /*
2496 * Completely unscientific finger-in-the-air estimates for suitable
2497 * maximum user request size (to avoid blocking) and then backoff.
2498 */
2499 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2500 return NULL;
2501
2502 /*
2503 * Find a request that after waiting upon, there will be at least half
2504 * the ring available. The hysteresis allows us to compete for the
2505 * shared ring and should mean that we sleep less often prior to
2506 * claiming our resources, but not so long that the ring completely
2507 * drains before we can submit our next request.
2508 */
2509 list_for_each_entry(rq, &tl->requests, link) {
2510 if (rq->ring != ring)
2511 continue;
2512
2513 if (__intel_ring_space(rq->postfix,
2514 ring->emit, ring->size) > ring->size / 2)
2515 break;
2516 }
2517 if (&rq->link == &tl->requests)
2518 return NULL; /* weird, we will check again later for real */
2519
2520 return i915_request_get(rq);
2521 }
2522
2523 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2524 bool throttle)
2525 {
2526 struct intel_timeline *tl;
2527 struct i915_request *rq = NULL;
2528
2529 /*
2530 * Take a local wakeref for preparing to dispatch the execbuf as
2531 * we expect to access the hardware fairly frequently in the
2532 * process, and require the engine to be kept awake between accesses.
2533 * Upon dispatch, we acquire another prolonged wakeref that we hold
2534 * until the timeline is idle, which in turn releases the wakeref
2535 * taken on the engine, and the parent device.
2536 */
2537 tl = intel_context_timeline_lock(ce);
2538 if (IS_ERR(tl))
2539 return PTR_ERR(tl);
2540
2541 intel_context_enter(ce);
2542 if (throttle)
2543 rq = eb_throttle(eb, ce);
2544 intel_context_timeline_unlock(tl);
2545
2546 if (rq) {
2547 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2548 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2549
2550 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2551 timeout) < 0) {
2552 i915_request_put(rq);
2553
2554 /*
2555 * Error path, cannot use intel_context_timeline_lock as
2556 * that is user interruptable and this clean up step
2557 * must be done.
2558 */
2559 mutex_lock(&ce->timeline->mutex);
2560 intel_context_exit(ce);
2561 mutex_unlock(&ce->timeline->mutex);
2562
2563 if (nonblock)
2564 return -EWOULDBLOCK;
2565 else
2566 return -EINTR;
2567 }
2568 i915_request_put(rq);
2569 }
2570
2571 return 0;
2572 }
2573
2574 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2575 {
2576 struct intel_context *ce = eb->context, *child;
2577 int err;
2578 int i = 0, j = 0;
2579
2580 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2581
2582 if (unlikely(intel_context_is_banned(ce)))
2583 return -EIO;
2584
2585 /*
2586 * Pinning the contexts may generate requests in order to acquire
2587 * GGTT space, so do this first before we reserve a seqno for
2588 * ourselves.
2589 */
2590 err = intel_context_pin_ww(ce, &eb->ww);
2591 if (err)
2592 return err;
2593 for_each_child(ce, child) {
2594 err = intel_context_pin_ww(child, &eb->ww);
2595 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2596 }
2597
2598 for_each_child(ce, child) {
2599 err = eb_pin_timeline(eb, child, throttle);
2600 if (err)
2601 goto unwind;
2602 ++i;
2603 }
2604 err = eb_pin_timeline(eb, ce, throttle);
2605 if (err)
2606 goto unwind;
2607
2608 eb->args->flags |= __EXEC_ENGINE_PINNED;
2609 return 0;
2610
2611 unwind:
2612 for_each_child(ce, child) {
2613 if (j++ < i) {
2614 mutex_lock(&child->timeline->mutex);
2615 intel_context_exit(child);
2616 mutex_unlock(&child->timeline->mutex);
2617 }
2618 }
2619 for_each_child(ce, child)
2620 intel_context_unpin(child);
2621 intel_context_unpin(ce);
2622 return err;
2623 }
2624
2625 static void eb_unpin_engine(struct i915_execbuffer *eb)
2626 {
2627 struct intel_context *ce = eb->context, *child;
2628
2629 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2630 return;
2631
2632 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2633
2634 for_each_child(ce, child) {
2635 mutex_lock(&child->timeline->mutex);
2636 intel_context_exit(child);
2637 mutex_unlock(&child->timeline->mutex);
2638
2639 intel_context_unpin(child);
2640 }
2641
2642 mutex_lock(&ce->timeline->mutex);
2643 intel_context_exit(ce);
2644 mutex_unlock(&ce->timeline->mutex);
2645
2646 intel_context_unpin(ce);
2647 }
2648
2649 static unsigned int
2650 eb_select_legacy_ring(struct i915_execbuffer *eb)
2651 {
2652 struct drm_i915_private *i915 = eb->i915;
2653 struct drm_i915_gem_execbuffer2 *args = eb->args;
2654 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2655
2656 if (user_ring_id != I915_EXEC_BSD &&
2657 (args->flags & I915_EXEC_BSD_MASK)) {
2658 drm_dbg(&i915->drm,
2659 "execbuf with non bsd ring but with invalid "
2660 "bsd dispatch flags: %d\n", (int)(args->flags));
2661 return -1;
2662 }
2663
2664 if (user_ring_id == I915_EXEC_BSD &&
2665 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2666 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2667
2668 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2669 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2670 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2671 bsd_idx <= I915_EXEC_BSD_RING2) {
2672 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2673 bsd_idx--;
2674 } else {
2675 drm_dbg(&i915->drm,
2676 "execbuf with unknown bsd ring: %u\n",
2677 bsd_idx);
2678 return -1;
2679 }
2680
2681 return _VCS(bsd_idx);
2682 }
2683
2684 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2685 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2686 user_ring_id);
2687 return -1;
2688 }
2689
2690 return user_ring_map[user_ring_id];
2691 }
2692
2693 static int
2694 eb_select_engine(struct i915_execbuffer *eb)
2695 {
2696 struct intel_context *ce, *child;
2697 struct intel_gt *gt;
2698 unsigned int idx;
2699 int err;
2700
2701 if (i915_gem_context_user_engines(eb->gem_context))
2702 idx = eb->args->flags & I915_EXEC_RING_MASK;
2703 else
2704 idx = eb_select_legacy_ring(eb);
2705
2706 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2707 if (IS_ERR(ce))
2708 return PTR_ERR(ce);
2709
2710 if (intel_context_is_parallel(ce)) {
2711 if (eb->buffer_count < ce->parallel.number_children + 1) {
2712 intel_context_put(ce);
2713 return -EINVAL;
2714 }
2715 if (eb->batch_start_offset || eb->args->batch_len) {
2716 intel_context_put(ce);
2717 return -EINVAL;
2718 }
2719 }
2720 eb->num_batches = ce->parallel.number_children + 1;
2721 gt = ce->engine->gt;
2722
2723 for_each_child(ce, child)
2724 intel_context_get(child);
2725 eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2726 /*
2727 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2728 * free VMAs while execbuf ioctl is validating VMAs.
2729 */
2730 if (gt->info.id)
2731 eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915));
2732
2733 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2734 err = intel_context_alloc_state(ce);
2735 if (err)
2736 goto err;
2737 }
2738 for_each_child(ce, child) {
2739 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2740 err = intel_context_alloc_state(child);
2741 if (err)
2742 goto err;
2743 }
2744 }
2745
2746 /*
2747 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2748 * EIO if the GPU is already wedged.
2749 */
2750 err = intel_gt_terminally_wedged(ce->engine->gt);
2751 if (err)
2752 goto err;
2753
2754 if (!i915_vm_tryget(ce->vm)) {
2755 err = -ENOENT;
2756 goto err;
2757 }
2758
2759 eb->context = ce;
2760 eb->gt = ce->engine->gt;
2761
2762 /*
2763 * Make sure engine pool stays alive even if we call intel_context_put
2764 * during ww handling. The pool is destroyed when last pm reference
2765 * is dropped, which breaks our -EDEADLK handling.
2766 */
2767 return err;
2768
2769 err:
2770 if (gt->info.id)
2771 intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0);
2772
2773 intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2774 for_each_child(ce, child)
2775 intel_context_put(child);
2776 intel_context_put(ce);
2777 return err;
2778 }
2779
2780 static void
2781 eb_put_engine(struct i915_execbuffer *eb)
2782 {
2783 struct intel_context *child;
2784
2785 i915_vm_put(eb->context->vm);
2786 /*
2787 * This works in conjunction with eb_select_engine() to prevent
2788 * i915_vma_parked() from interfering while execbuf validates vmas.
2789 */
2790 if (eb->gt->info.id)
2791 intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0);
2792 intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2793 for_each_child(eb->context, child)
2794 intel_context_put(child);
2795 intel_context_put(eb->context);
2796 }
2797
2798 static void
2799 __free_fence_array(struct eb_fence *fences, unsigned int n)
2800 {
2801 while (n--) {
2802 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2803 dma_fence_put(fences[n].dma_fence);
2804 dma_fence_chain_free(fences[n].chain_fence);
2805 }
2806 kvfree(fences);
2807 }
2808
2809 static int
2810 add_timeline_fence_array(struct i915_execbuffer *eb,
2811 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2812 {
2813 struct drm_i915_gem_exec_fence __user *user_fences;
2814 u64 __user *user_values;
2815 struct eb_fence *f;
2816 u64 nfences;
2817 int err = 0;
2818
2819 nfences = timeline_fences->fence_count;
2820 if (!nfences)
2821 return 0;
2822
2823 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2824 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2825 if (nfences > min_t(unsigned long,
2826 ULONG_MAX / sizeof(*user_fences),
2827 SIZE_MAX / sizeof(*f)) - eb->num_fences)
2828 return -EINVAL;
2829
2830 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2831 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2832 return -EFAULT;
2833
2834 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2835 if (!access_ok(user_values, nfences * sizeof(*user_values)))
2836 return -EFAULT;
2837
2838 f = krealloc(eb->fences,
2839 (eb->num_fences + nfences) * sizeof(*f),
2840 __GFP_NOWARN | GFP_KERNEL);
2841 if (!f)
2842 return -ENOMEM;
2843
2844 eb->fences = f;
2845 f += eb->num_fences;
2846
2847 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2848 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2849
2850 while (nfences--) {
2851 struct drm_i915_gem_exec_fence user_fence;
2852 struct drm_syncobj *syncobj;
2853 struct dma_fence *fence = NULL;
2854 u64 point;
2855
2856 if (__copy_from_user(&user_fence,
2857 user_fences++,
2858 sizeof(user_fence)))
2859 return -EFAULT;
2860
2861 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2862 return -EINVAL;
2863
2864 if (__get_user(point, user_values++))
2865 return -EFAULT;
2866
2867 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2868 if (!syncobj) {
2869 drm_dbg(&eb->i915->drm,
2870 "Invalid syncobj handle provided\n");
2871 return -ENOENT;
2872 }
2873
2874 fence = drm_syncobj_fence_get(syncobj);
2875
2876 if (!fence && user_fence.flags &&
2877 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2878 drm_dbg(&eb->i915->drm,
2879 "Syncobj handle has no fence\n");
2880 drm_syncobj_put(syncobj);
2881 return -EINVAL;
2882 }
2883
2884 if (fence)
2885 err = dma_fence_chain_find_seqno(&fence, point);
2886
2887 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2888 drm_dbg(&eb->i915->drm,
2889 "Syncobj handle missing requested point %llu\n",
2890 point);
2891 dma_fence_put(fence);
2892 drm_syncobj_put(syncobj);
2893 return err;
2894 }
2895
2896 /*
2897 * A point might have been signaled already and
2898 * garbage collected from the timeline. In this case
2899 * just ignore the point and carry on.
2900 */
2901 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2902 drm_syncobj_put(syncobj);
2903 continue;
2904 }
2905
2906 /*
2907 * For timeline syncobjs we need to preallocate chains for
2908 * later signaling.
2909 */
2910 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2911 /*
2912 * Waiting and signaling the same point (when point !=
2913 * 0) would break the timeline.
2914 */
2915 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2916 drm_dbg(&eb->i915->drm,
2917 "Trying to wait & signal the same timeline point.\n");
2918 dma_fence_put(fence);
2919 drm_syncobj_put(syncobj);
2920 return -EINVAL;
2921 }
2922
2923 f->chain_fence = dma_fence_chain_alloc();
2924 if (!f->chain_fence) {
2925 drm_syncobj_put(syncobj);
2926 dma_fence_put(fence);
2927 return -ENOMEM;
2928 }
2929 } else {
2930 f->chain_fence = NULL;
2931 }
2932
2933 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2934 f->dma_fence = fence;
2935 f->value = point;
2936 f++;
2937 eb->num_fences++;
2938 }
2939
2940 return 0;
2941 }
2942
2943 static int add_fence_array(struct i915_execbuffer *eb)
2944 {
2945 struct drm_i915_gem_execbuffer2 *args = eb->args;
2946 struct drm_i915_gem_exec_fence __user *user;
2947 unsigned long num_fences = args->num_cliprects;
2948 struct eb_fence *f;
2949
2950 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2951 return 0;
2952
2953 if (!num_fences)
2954 return 0;
2955
2956 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2957 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2958 if (num_fences > min_t(unsigned long,
2959 ULONG_MAX / sizeof(*user),
2960 SIZE_MAX / sizeof(*f) - eb->num_fences))
2961 return -EINVAL;
2962
2963 user = u64_to_user_ptr(args->cliprects_ptr);
2964 if (!access_ok(user, num_fences * sizeof(*user)))
2965 return -EFAULT;
2966
2967 f = krealloc(eb->fences,
2968 (eb->num_fences + num_fences) * sizeof(*f),
2969 __GFP_NOWARN | GFP_KERNEL);
2970 if (!f)
2971 return -ENOMEM;
2972
2973 eb->fences = f;
2974 f += eb->num_fences;
2975 while (num_fences--) {
2976 struct drm_i915_gem_exec_fence user_fence;
2977 struct drm_syncobj *syncobj;
2978 struct dma_fence *fence = NULL;
2979
2980 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2981 return -EFAULT;
2982
2983 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2984 return -EINVAL;
2985
2986 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2987 if (!syncobj) {
2988 drm_dbg(&eb->i915->drm,
2989 "Invalid syncobj handle provided\n");
2990 return -ENOENT;
2991 }
2992
2993 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2994 fence = drm_syncobj_fence_get(syncobj);
2995 if (!fence) {
2996 drm_dbg(&eb->i915->drm,
2997 "Syncobj handle has no fence\n");
2998 drm_syncobj_put(syncobj);
2999 return -EINVAL;
3000 }
3001 }
3002
3003 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3004 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3005
3006 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3007 f->dma_fence = fence;
3008 f->value = 0;
3009 f->chain_fence = NULL;
3010 f++;
3011 eb->num_fences++;
3012 }
3013
3014 return 0;
3015 }
3016
3017 static void put_fence_array(struct eb_fence *fences, int num_fences)
3018 {
3019 if (fences)
3020 __free_fence_array(fences, num_fences);
3021 }
3022
3023 static int
3024 await_fence_array(struct i915_execbuffer *eb,
3025 struct i915_request *rq)
3026 {
3027 unsigned int n;
3028 int err;
3029
3030 for (n = 0; n < eb->num_fences; n++) {
3031 if (!eb->fences[n].dma_fence)
3032 continue;
3033
3034 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3035 if (err < 0)
3036 return err;
3037 }
3038
3039 return 0;
3040 }
3041
3042 static void signal_fence_array(const struct i915_execbuffer *eb,
3043 struct dma_fence * const fence)
3044 {
3045 unsigned int n;
3046
3047 for (n = 0; n < eb->num_fences; n++) {
3048 struct drm_syncobj *syncobj;
3049 unsigned int flags;
3050
3051 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3052 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3053 continue;
3054
3055 if (eb->fences[n].chain_fence) {
3056 drm_syncobj_add_point(syncobj,
3057 eb->fences[n].chain_fence,
3058 fence,
3059 eb->fences[n].value);
3060 /*
3061 * The chain's ownership is transferred to the
3062 * timeline.
3063 */
3064 eb->fences[n].chain_fence = NULL;
3065 } else {
3066 drm_syncobj_replace_fence(syncobj, fence);
3067 }
3068 }
3069 }
3070
3071 static int
3072 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3073 {
3074 struct i915_execbuffer *eb = data;
3075 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3076
3077 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3078 return -EFAULT;
3079
3080 return add_timeline_fence_array(eb, &timeline_fences);
3081 }
3082
3083 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3084 {
3085 struct i915_request *rq, *rn;
3086
3087 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3088 if (rq == end || !i915_request_retire(rq))
3089 break;
3090 }
3091
3092 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3093 int err, bool last_parallel)
3094 {
3095 struct intel_timeline * const tl = i915_request_timeline(rq);
3096 struct i915_sched_attr attr = {};
3097 struct i915_request *prev;
3098
3099 lockdep_assert_held(&tl->mutex);
3100 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3101
3102 trace_i915_request_add(rq);
3103
3104 prev = __i915_request_commit(rq);
3105
3106 /* Check that the context wasn't destroyed before submission */
3107 if (likely(!intel_context_is_closed(eb->context))) {
3108 attr = eb->gem_context->sched;
3109 } else {
3110 /* Serialise with context_close via the add_to_timeline */
3111 i915_request_set_error_once(rq, -ENOENT);
3112 __i915_request_skip(rq);
3113 err = -ENOENT; /* override any transient errors */
3114 }
3115
3116 if (intel_context_is_parallel(eb->context)) {
3117 if (err) {
3118 __i915_request_skip(rq);
3119 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3120 &rq->fence.flags);
3121 }
3122 if (last_parallel)
3123 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3124 &rq->fence.flags);
3125 }
3126
3127 __i915_request_queue(rq, &attr);
3128
3129 /* Try to clean up the client's timeline after submitting the request */
3130 if (prev)
3131 retire_requests(tl, prev);
3132
3133 mutex_unlock(&tl->mutex);
3134
3135 return err;
3136 }
3137
3138 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3139 {
3140 int i;
3141
3142 /*
3143 * We iterate in reverse order of creation to release timeline mutexes in
3144 * same order.
3145 */
3146 for_each_batch_add_order(eb, i) {
3147 struct i915_request *rq = eb->requests[i];
3148
3149 if (!rq)
3150 continue;
3151 err |= eb_request_add(eb, rq, err, i == 0);
3152 }
3153
3154 return err;
3155 }
3156
3157 static const i915_user_extension_fn execbuf_extensions[] = {
3158 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3159 };
3160
3161 static int
3162 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3163 struct i915_execbuffer *eb)
3164 {
3165 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3166 return 0;
3167
3168 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3169 * have another flag also using it at the same time.
3170 */
3171 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3172 return -EINVAL;
3173
3174 if (args->num_cliprects != 0)
3175 return -EINVAL;
3176
3177 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3178 execbuf_extensions,
3179 ARRAY_SIZE(execbuf_extensions),
3180 eb);
3181 }
3182
3183 static void eb_requests_get(struct i915_execbuffer *eb)
3184 {
3185 unsigned int i;
3186
3187 for_each_batch_create_order(eb, i) {
3188 if (!eb->requests[i])
3189 break;
3190
3191 i915_request_get(eb->requests[i]);
3192 }
3193 }
3194
3195 static void eb_requests_put(struct i915_execbuffer *eb)
3196 {
3197 unsigned int i;
3198
3199 for_each_batch_create_order(eb, i) {
3200 if (!eb->requests[i])
3201 break;
3202
3203 i915_request_put(eb->requests[i]);
3204 }
3205 }
3206
3207 static struct sync_file *
3208 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3209 {
3210 struct sync_file *out_fence = NULL;
3211 struct dma_fence_array *fence_array;
3212 struct dma_fence **fences;
3213 unsigned int i;
3214
3215 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3216
3217 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3218 if (!fences)
3219 return ERR_PTR(-ENOMEM);
3220
3221 for_each_batch_create_order(eb, i) {
3222 fences[i] = &eb->requests[i]->fence;
3223 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3224 &eb->requests[i]->fence.flags);
3225 }
3226
3227 fence_array = dma_fence_array_create(eb->num_batches,
3228 fences,
3229 eb->context->parallel.fence_context,
3230 eb->context->parallel.seqno++,
3231 false);
3232 if (!fence_array) {
3233 kfree(fences);
3234 return ERR_PTR(-ENOMEM);
3235 }
3236
3237 /* Move ownership to the dma_fence_array created above */
3238 for_each_batch_create_order(eb, i)
3239 dma_fence_get(fences[i]);
3240
3241 if (out_fence_fd != -1) {
3242 out_fence = sync_file_create(&fence_array->base);
3243 /* sync_file now owns fence_arry, drop creation ref */
3244 dma_fence_put(&fence_array->base);
3245 if (!out_fence)
3246 return ERR_PTR(-ENOMEM);
3247 }
3248
3249 eb->composite_fence = &fence_array->base;
3250
3251 return out_fence;
3252 }
3253
3254 static struct sync_file *
3255 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3256 struct dma_fence *in_fence, int out_fence_fd)
3257 {
3258 struct sync_file *out_fence = NULL;
3259 int err;
3260
3261 if (unlikely(eb->gem_context->syncobj)) {
3262 struct dma_fence *fence;
3263
3264 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3265 err = i915_request_await_dma_fence(rq, fence);
3266 dma_fence_put(fence);
3267 if (err)
3268 return ERR_PTR(err);
3269 }
3270
3271 if (in_fence) {
3272 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3273 err = i915_request_await_execution(rq, in_fence);
3274 else
3275 err = i915_request_await_dma_fence(rq, in_fence);
3276 if (err < 0)
3277 return ERR_PTR(err);
3278 }
3279
3280 if (eb->fences) {
3281 err = await_fence_array(eb, rq);
3282 if (err)
3283 return ERR_PTR(err);
3284 }
3285
3286 if (intel_context_is_parallel(eb->context)) {
3287 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3288 if (IS_ERR(out_fence))
3289 return ERR_PTR(-ENOMEM);
3290 } else if (out_fence_fd != -1) {
3291 out_fence = sync_file_create(&rq->fence);
3292 if (!out_fence)
3293 return ERR_PTR(-ENOMEM);
3294 }
3295
3296 return out_fence;
3297 }
3298
3299 static struct intel_context *
3300 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3301 {
3302 struct intel_context *child;
3303
3304 if (likely(context_number == 0))
3305 return eb->context;
3306
3307 for_each_child(eb->context, child)
3308 if (!--context_number)
3309 return child;
3310
3311 GEM_BUG_ON("Context not found");
3312
3313 return NULL;
3314 }
3315
3316 static struct sync_file *
3317 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3318 int out_fence_fd)
3319 {
3320 struct sync_file *out_fence = NULL;
3321 unsigned int i;
3322
3323 for_each_batch_create_order(eb, i) {
3324 /* Allocate a request for this batch buffer nice and early. */
3325 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3326 if (IS_ERR(eb->requests[i])) {
3327 out_fence = ERR_CAST(eb->requests[i]);
3328 eb->requests[i] = NULL;
3329 return out_fence;
3330 }
3331
3332 /*
3333 * Only the first request added (committed to backend) has to
3334 * take the in fences into account as all subsequent requests
3335 * will have fences inserted inbetween them.
3336 */
3337 if (i + 1 == eb->num_batches) {
3338 out_fence = eb_fences_add(eb, eb->requests[i],
3339 in_fence, out_fence_fd);
3340 if (IS_ERR(out_fence))
3341 return out_fence;
3342 }
3343
3344 /*
3345 * Not really on stack, but we don't want to call
3346 * kfree on the batch_snapshot when we put it, so use the
3347 * _onstack interface.
3348 */
3349 if (eb->batches[i]->vma)
3350 eb->requests[i]->batch_res =
3351 i915_vma_resource_get(eb->batches[i]->vma->resource);
3352 if (eb->batch_pool) {
3353 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3354 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3355 eb->requests[i]);
3356 }
3357 }
3358
3359 return out_fence;
3360 }
3361
3362 static int
3363 i915_gem_do_execbuffer(struct drm_device *dev,
3364 struct drm_file *file,
3365 struct drm_i915_gem_execbuffer2 *args,
3366 struct drm_i915_gem_exec_object2 *exec)
3367 {
3368 struct drm_i915_private *i915 = to_i915(dev);
3369 struct i915_execbuffer eb;
3370 struct dma_fence *in_fence = NULL;
3371 struct sync_file *out_fence = NULL;
3372 int out_fence_fd = -1;
3373 int err;
3374
3375 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3376 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3377 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3378
3379 eb.i915 = i915;
3380 eb.file = file;
3381 eb.args = args;
3382 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3383 args->flags |= __EXEC_HAS_RELOC;
3384
3385 eb.exec = exec;
3386 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3387 eb.vma[0].vma = NULL;
3388 eb.batch_pool = NULL;
3389
3390 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3391 reloc_cache_init(&eb.reloc_cache, eb.i915);
3392
3393 eb.buffer_count = args->buffer_count;
3394 eb.batch_start_offset = args->batch_start_offset;
3395 eb.trampoline = NULL;
3396
3397 eb.fences = NULL;
3398 eb.num_fences = 0;
3399
3400 eb_capture_list_clear(&eb);
3401
3402 memset(eb.requests, 0, sizeof(struct i915_request *) *
3403 ARRAY_SIZE(eb.requests));
3404 eb.composite_fence = NULL;
3405
3406 eb.batch_flags = 0;
3407 if (args->flags & I915_EXEC_SECURE) {
3408 if (GRAPHICS_VER(i915) >= 11)
3409 return -ENODEV;
3410
3411 /* Return -EPERM to trigger fallback code on old binaries. */
3412 if (!HAS_SECURE_BATCHES(i915))
3413 return -EPERM;
3414
3415 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3416 return -EPERM;
3417
3418 eb.batch_flags |= I915_DISPATCH_SECURE;
3419 }
3420 if (args->flags & I915_EXEC_IS_PINNED)
3421 eb.batch_flags |= I915_DISPATCH_PINNED;
3422
3423 err = parse_execbuf2_extensions(args, &eb);
3424 if (err)
3425 goto err_ext;
3426
3427 err = add_fence_array(&eb);
3428 if (err)
3429 goto err_ext;
3430
3431 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3432 if (args->flags & IN_FENCES) {
3433 if ((args->flags & IN_FENCES) == IN_FENCES)
3434 return -EINVAL;
3435
3436 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3437 if (!in_fence) {
3438 err = -EINVAL;
3439 goto err_ext;
3440 }
3441 }
3442 #undef IN_FENCES
3443
3444 if (args->flags & I915_EXEC_FENCE_OUT) {
3445 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3446 if (out_fence_fd < 0) {
3447 err = out_fence_fd;
3448 goto err_in_fence;
3449 }
3450 }
3451
3452 err = eb_create(&eb);
3453 if (err)
3454 goto err_out_fence;
3455
3456 GEM_BUG_ON(!eb.lut_size);
3457
3458 err = eb_select_context(&eb);
3459 if (unlikely(err))
3460 goto err_destroy;
3461
3462 err = eb_select_engine(&eb);
3463 if (unlikely(err))
3464 goto err_context;
3465
3466 err = eb_lookup_vmas(&eb);
3467 if (err) {
3468 eb_release_vmas(&eb, true);
3469 goto err_engine;
3470 }
3471
3472 i915_gem_ww_ctx_init(&eb.ww, true);
3473
3474 err = eb_relocate_parse(&eb);
3475 if (err) {
3476 /*
3477 * If the user expects the execobject.offset and
3478 * reloc.presumed_offset to be an exact match,
3479 * as for using NO_RELOC, then we cannot update
3480 * the execobject.offset until we have completed
3481 * relocation.
3482 */
3483 args->flags &= ~__EXEC_HAS_RELOC;
3484 goto err_vma;
3485 }
3486
3487 ww_acquire_done(&eb.ww.ctx);
3488 err = eb_capture_stage(&eb);
3489 if (err)
3490 goto err_vma;
3491
3492 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3493 if (IS_ERR(out_fence)) {
3494 err = PTR_ERR(out_fence);
3495 out_fence = NULL;
3496 if (eb.requests[0])
3497 goto err_request;
3498 else
3499 goto err_vma;
3500 }
3501
3502 err = eb_submit(&eb);
3503
3504 err_request:
3505 eb_requests_get(&eb);
3506 err = eb_requests_add(&eb, err);
3507
3508 if (eb.fences)
3509 signal_fence_array(&eb, eb.composite_fence ?
3510 eb.composite_fence :
3511 &eb.requests[0]->fence);
3512
3513 if (unlikely(eb.gem_context->syncobj)) {
3514 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3515 eb.composite_fence ?
3516 eb.composite_fence :
3517 &eb.requests[0]->fence);
3518 }
3519
3520 if (out_fence) {
3521 if (err == 0) {
3522 fd_install(out_fence_fd, out_fence->file);
3523 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3524 args->rsvd2 |= (u64)out_fence_fd << 32;
3525 out_fence_fd = -1;
3526 } else {
3527 fput(out_fence->file);
3528 }
3529 }
3530
3531 if (!out_fence && eb.composite_fence)
3532 dma_fence_put(eb.composite_fence);
3533
3534 eb_requests_put(&eb);
3535
3536 err_vma:
3537 eb_release_vmas(&eb, true);
3538 WARN_ON(err == -EDEADLK);
3539 i915_gem_ww_ctx_fini(&eb.ww);
3540
3541 if (eb.batch_pool)
3542 intel_gt_buffer_pool_put(eb.batch_pool);
3543 err_engine:
3544 eb_put_engine(&eb);
3545 err_context:
3546 i915_gem_context_put(eb.gem_context);
3547 err_destroy:
3548 eb_destroy(&eb);
3549 err_out_fence:
3550 if (out_fence_fd != -1)
3551 put_unused_fd(out_fence_fd);
3552 err_in_fence:
3553 dma_fence_put(in_fence);
3554 err_ext:
3555 put_fence_array(eb.fences, eb.num_fences);
3556 return err;
3557 }
3558
3559 static size_t eb_element_size(void)
3560 {
3561 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3562 }
3563
3564 static bool check_buffer_count(size_t count)
3565 {
3566 const size_t sz = eb_element_size();
3567
3568 /*
3569 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3570 * array size (see eb_create()). Otherwise, we can accept an array as
3571 * large as can be addressed (though use large arrays at your peril)!
3572 */
3573
3574 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3575 }
3576
3577 int
3578 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3579 struct drm_file *file)
3580 {
3581 struct drm_i915_private *i915 = to_i915(dev);
3582 struct drm_i915_gem_execbuffer2 *args = data;
3583 struct drm_i915_gem_exec_object2 *exec2_list;
3584 const size_t count = args->buffer_count;
3585 int err;
3586
3587 if (!check_buffer_count(count)) {
3588 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3589 return -EINVAL;
3590 }
3591
3592 err = i915_gem_check_execbuffer(i915, args);
3593 if (err)
3594 return err;
3595
3596 /* Allocate extra slots for use by the command parser */
3597 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3598 __GFP_NOWARN | GFP_KERNEL);
3599 if (exec2_list == NULL) {
3600 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3601 count);
3602 return -ENOMEM;
3603 }
3604 if (copy_from_user(exec2_list,
3605 u64_to_user_ptr(args->buffers_ptr),
3606 sizeof(*exec2_list) * count)) {
3607 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3608 kvfree(exec2_list);
3609 return -EFAULT;
3610 }
3611
3612 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3613
3614 /*
3615 * Now that we have begun execution of the batchbuffer, we ignore
3616 * any new error after this point. Also given that we have already
3617 * updated the associated relocations, we try to write out the current
3618 * object locations irrespective of any error.
3619 */
3620 if (args->flags & __EXEC_HAS_RELOC) {
3621 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3622 u64_to_user_ptr(args->buffers_ptr);
3623 unsigned int i;
3624
3625 /* Copy the new buffer offsets back to the user's exec list. */
3626 /*
3627 * Note: count * sizeof(*user_exec_list) does not overflow,
3628 * because we checked 'count' in check_buffer_count().
3629 *
3630 * And this range already got effectively checked earlier
3631 * when we did the "copy_from_user()" above.
3632 */
3633 if (!user_write_access_begin(user_exec_list,
3634 count * sizeof(*user_exec_list)))
3635 goto end;
3636
3637 for (i = 0; i < args->buffer_count; i++) {
3638 if (!(exec2_list[i].offset & UPDATE))
3639 continue;
3640
3641 exec2_list[i].offset =
3642 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3643 unsafe_put_user(exec2_list[i].offset,
3644 &user_exec_list[i].offset,
3645 end_user);
3646 }
3647 end_user:
3648 user_write_access_end();
3649 end:;
3650 }
3651
3652 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3653 kvfree(exec2_list);
3654 return err;
3655 }