]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_cs.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drm_print.h>
26
27 #include "gem/i915_gem_context.h"
28
29 #include "i915_drv.h"
30
31 #include "intel_context.h"
32 #include "intel_engine.h"
33 #include "intel_engine_pm.h"
34 #include "intel_engine_pool.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44 * valid. Now, docs explain in dwords what is in the context object. The full
45 * size is 70720 bytes, however, the power context and execlist context will
46 * never be saved (power context is stored elsewhere, and execlists don't work
47 * on HSW) - so the final size, including the extra state required for the
48 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49 */
50 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
51
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
57
58 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
59
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62 unsigned int hw_id;
63 u8 class;
64 u8 instance;
65 /* mmio bases table *must* be sorted in reverse gen order */
66 struct engine_mmio_base {
67 u32 gen : 8;
68 u32 base : 24;
69 } mmio_bases[MAX_MMIO_BASES];
70 };
71
72 static const struct engine_info intel_engines[] = {
73 [RCS0] = {
74 .hw_id = RCS0_HW,
75 .class = RENDER_CLASS,
76 .instance = 0,
77 .mmio_bases = {
78 { .gen = 1, .base = RENDER_RING_BASE }
79 },
80 },
81 [BCS0] = {
82 .hw_id = BCS0_HW,
83 .class = COPY_ENGINE_CLASS,
84 .instance = 0,
85 .mmio_bases = {
86 { .gen = 6, .base = BLT_RING_BASE }
87 },
88 },
89 [VCS0] = {
90 .hw_id = VCS0_HW,
91 .class = VIDEO_DECODE_CLASS,
92 .instance = 0,
93 .mmio_bases = {
94 { .gen = 11, .base = GEN11_BSD_RING_BASE },
95 { .gen = 6, .base = GEN6_BSD_RING_BASE },
96 { .gen = 4, .base = BSD_RING_BASE }
97 },
98 },
99 [VCS1] = {
100 .hw_id = VCS1_HW,
101 .class = VIDEO_DECODE_CLASS,
102 .instance = 1,
103 .mmio_bases = {
104 { .gen = 11, .base = GEN11_BSD2_RING_BASE },
105 { .gen = 8, .base = GEN8_BSD2_RING_BASE }
106 },
107 },
108 [VCS2] = {
109 .hw_id = VCS2_HW,
110 .class = VIDEO_DECODE_CLASS,
111 .instance = 2,
112 .mmio_bases = {
113 { .gen = 11, .base = GEN11_BSD3_RING_BASE }
114 },
115 },
116 [VCS3] = {
117 .hw_id = VCS3_HW,
118 .class = VIDEO_DECODE_CLASS,
119 .instance = 3,
120 .mmio_bases = {
121 { .gen = 11, .base = GEN11_BSD4_RING_BASE }
122 },
123 },
124 [VECS0] = {
125 .hw_id = VECS0_HW,
126 .class = VIDEO_ENHANCEMENT_CLASS,
127 .instance = 0,
128 .mmio_bases = {
129 { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
130 { .gen = 7, .base = VEBOX_RING_BASE }
131 },
132 },
133 [VECS1] = {
134 .hw_id = VECS1_HW,
135 .class = VIDEO_ENHANCEMENT_CLASS,
136 .instance = 1,
137 .mmio_bases = {
138 { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
139 },
140 },
141 };
142
143 /**
144 * intel_engine_context_size() - return the size of the context for an engine
145 * @gt: the gt
146 * @class: engine class
147 *
148 * Each engine class may require a different amount of space for a context
149 * image.
150 *
151 * Return: size (in bytes) of an engine class specific context image
152 *
153 * Note: this size includes the HWSP, which is part of the context image
154 * in LRC mode, but does not include the "shared data page" used with
155 * GuC submission. The caller should account for this if using the GuC.
156 */
157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 {
159 struct intel_uncore *uncore = gt->uncore;
160 u32 cxt_size;
161
162 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163
164 switch (class) {
165 case RENDER_CLASS:
166 switch (INTEL_GEN(gt->i915)) {
167 default:
168 MISSING_CASE(INTEL_GEN(gt->i915));
169 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170 case 12:
171 case 11:
172 return GEN11_LR_CONTEXT_RENDER_SIZE;
173 case 10:
174 return GEN10_LR_CONTEXT_RENDER_SIZE;
175 case 9:
176 return GEN9_LR_CONTEXT_RENDER_SIZE;
177 case 8:
178 return GEN8_LR_CONTEXT_RENDER_SIZE;
179 case 7:
180 if (IS_HASWELL(gt->i915))
181 return HSW_CXT_TOTAL_SIZE;
182
183 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
185 PAGE_SIZE);
186 case 6:
187 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
189 PAGE_SIZE);
190 case 5:
191 case 4:
192 /*
193 * There is a discrepancy here between the size reported
194 * by the register and the size of the context layout
195 * in the docs. Both are described as authorative!
196 *
197 * The discrepancy is on the order of a few cachelines,
198 * but the total is under one page (4k), which is our
199 * minimum allocation anyway so it should all come
200 * out in the wash.
201 */
202 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 drm_dbg(&gt->i915->drm,
204 "gen%d CXT_SIZE = %d bytes [0x%08x]\n",
205 INTEL_GEN(gt->i915), cxt_size * 64,
206 cxt_size - 1);
207 return round_up(cxt_size * 64, PAGE_SIZE);
208 case 3:
209 case 2:
210 /* For the special day when i810 gets merged. */
211 case 1:
212 return 0;
213 }
214 break;
215 default:
216 MISSING_CASE(class);
217 /* fall through */
218 case VIDEO_DECODE_CLASS:
219 case VIDEO_ENHANCEMENT_CLASS:
220 case COPY_ENGINE_CLASS:
221 if (INTEL_GEN(gt->i915) < 8)
222 return 0;
223 return GEN8_LR_CONTEXT_OTHER_SIZE;
224 }
225 }
226
227 static u32 __engine_mmio_base(struct drm_i915_private *i915,
228 const struct engine_mmio_base *bases)
229 {
230 int i;
231
232 for (i = 0; i < MAX_MMIO_BASES; i++)
233 if (INTEL_GEN(i915) >= bases[i].gen)
234 break;
235
236 GEM_BUG_ON(i == MAX_MMIO_BASES);
237 GEM_BUG_ON(!bases[i].base);
238
239 return bases[i].base;
240 }
241
242 static void __sprint_engine_name(struct intel_engine_cs *engine)
243 {
244 /*
245 * Before we know what the uABI name for this engine will be,
246 * we still would like to keep track of this engine in the debug logs.
247 * We throw in a ' here as a reminder that this isn't its final name.
248 */
249 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
250 intel_engine_class_repr(engine->class),
251 engine->instance) >= sizeof(engine->name));
252 }
253
254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
255 {
256 /*
257 * Though they added more rings on g4x/ilk, they did not add
258 * per-engine HWSTAM until gen6.
259 */
260 if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 return;
262
263 if (INTEL_GEN(engine->i915) >= 3)
264 ENGINE_WRITE(engine, RING_HWSTAM, mask);
265 else
266 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 }
268
269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 {
271 /* Mask off all writes into the unknown HWSP */
272 intel_engine_set_hwsp_writemask(engine, ~0u);
273 }
274
275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 {
277 const struct engine_info *info = &intel_engines[id];
278 struct drm_i915_private *i915 = gt->i915;
279 struct intel_engine_cs *engine;
280
281 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
282 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
283
284 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
285 return -EINVAL;
286
287 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 return -EINVAL;
289
290 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 return -EINVAL;
292
293 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 return -EINVAL;
295
296 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
297 if (!engine)
298 return -ENOMEM;
299
300 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
301
302 engine->id = id;
303 engine->legacy_idx = INVALID_ENGINE;
304 engine->mask = BIT(id);
305 engine->i915 = i915;
306 engine->gt = gt;
307 engine->uncore = gt->uncore;
308 engine->hw_id = engine->guc_id = info->hw_id;
309 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310
311 engine->class = info->class;
312 engine->instance = info->instance;
313 __sprint_engine_name(engine);
314
315 engine->props.heartbeat_interval_ms =
316 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
317 engine->props.max_busywait_duration_ns =
318 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
319 engine->props.preempt_timeout_ms =
320 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
321 engine->props.stop_timeout_ms =
322 CONFIG_DRM_I915_STOP_TIMEOUT;
323 engine->props.timeslice_duration_ms =
324 CONFIG_DRM_I915_TIMESLICE_DURATION;
325
326 /* Override to uninterruptible for OpenCL workloads. */
327 if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
328 engine->props.preempt_timeout_ms = 0;
329
330 engine->context_size = intel_engine_context_size(gt, engine->class);
331 if (WARN_ON(engine->context_size > BIT(20)))
332 engine->context_size = 0;
333 if (engine->context_size)
334 DRIVER_CAPS(i915)->has_logical_contexts = true;
335
336 /* Nothing to do here, execute in order of dependencies */
337 engine->schedule = NULL;
338
339 ewma__engine_latency_init(&engine->latency);
340 seqlock_init(&engine->stats.lock);
341
342 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
343
344 /* Scrub mmio state on takeover */
345 intel_engine_sanitize_mmio(engine);
346
347 gt->engine_class[info->class][info->instance] = engine;
348 gt->engine[id] = engine;
349
350 i915->engine[id] = engine;
351
352 return 0;
353 }
354
355 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
356 {
357 struct drm_i915_private *i915 = engine->i915;
358
359 if (engine->class == VIDEO_DECODE_CLASS) {
360 /*
361 * HEVC support is present on first engine instance
362 * before Gen11 and on all instances afterwards.
363 */
364 if (INTEL_GEN(i915) >= 11 ||
365 (INTEL_GEN(i915) >= 9 && engine->instance == 0))
366 engine->uabi_capabilities |=
367 I915_VIDEO_CLASS_CAPABILITY_HEVC;
368
369 /*
370 * SFC block is present only on even logical engine
371 * instances.
372 */
373 if ((INTEL_GEN(i915) >= 11 &&
374 RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
375 (INTEL_GEN(i915) >= 9 && engine->instance == 0))
376 engine->uabi_capabilities |=
377 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
378 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
379 if (INTEL_GEN(i915) >= 9)
380 engine->uabi_capabilities |=
381 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
382 }
383 }
384
385 static void intel_setup_engine_capabilities(struct intel_gt *gt)
386 {
387 struct intel_engine_cs *engine;
388 enum intel_engine_id id;
389
390 for_each_engine(engine, gt, id)
391 __setup_engine_capabilities(engine);
392 }
393
394 /**
395 * intel_engines_release() - free the resources allocated for Command Streamers
396 * @gt: pointer to struct intel_gt
397 */
398 void intel_engines_release(struct intel_gt *gt)
399 {
400 struct intel_engine_cs *engine;
401 enum intel_engine_id id;
402
403 /*
404 * Before we release the resources held by engine, we must be certain
405 * that the HW is no longer accessing them -- having the GPU scribble
406 * to or read from a page being used for something else causes no end
407 * of fun.
408 *
409 * The GPU should be reset by this point, but assume the worst just
410 * in case we aborted before completely initialising the engines.
411 */
412 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
413 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
414 __intel_gt_reset(gt, ALL_ENGINES);
415
416 /* Decouple the backend; but keep the layout for late GPU resets */
417 for_each_engine(engine, gt, id) {
418 intel_wakeref_wait_for_idle(&engine->wakeref);
419 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
420
421 if (!engine->release)
422 continue;
423
424 engine->release(engine);
425 engine->release = NULL;
426
427 memset(&engine->reset, 0, sizeof(engine->reset));
428
429 gt->i915->engine[id] = NULL;
430 }
431 }
432
433 void intel_engines_free(struct intel_gt *gt)
434 {
435 struct intel_engine_cs *engine;
436 enum intel_engine_id id;
437
438 for_each_engine(engine, gt, id) {
439 kfree(engine);
440 gt->engine[id] = NULL;
441 }
442 }
443
444 /**
445 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
446 * @gt: pointer to struct intel_gt
447 *
448 * Return: non-zero if the initialization failed.
449 */
450 int intel_engines_init_mmio(struct intel_gt *gt)
451 {
452 struct drm_i915_private *i915 = gt->i915;
453 struct intel_device_info *device_info = mkwrite_device_info(i915);
454 const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
455 unsigned int mask = 0;
456 unsigned int i;
457 int err;
458
459 drm_WARN_ON(&i915->drm, engine_mask == 0);
460 drm_WARN_ON(&i915->drm, engine_mask &
461 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
462
463 if (i915_inject_probe_failure(i915))
464 return -ENODEV;
465
466 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
467 if (!HAS_ENGINE(i915, i))
468 continue;
469
470 err = intel_engine_setup(gt, i);
471 if (err)
472 goto cleanup;
473
474 mask |= BIT(i);
475 }
476
477 /*
478 * Catch failures to update intel_engines table when the new engines
479 * are added to the driver by a warning and disabling the forgotten
480 * engines.
481 */
482 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
483 device_info->engine_mask = mask;
484
485 RUNTIME_INFO(i915)->num_engines = hweight32(mask);
486
487 intel_gt_check_and_clear_faults(gt);
488
489 intel_setup_engine_capabilities(gt);
490
491 return 0;
492
493 cleanup:
494 intel_engines_free(gt);
495 return err;
496 }
497
498 void intel_engine_init_execlists(struct intel_engine_cs *engine)
499 {
500 struct intel_engine_execlists * const execlists = &engine->execlists;
501
502 execlists->port_mask = 1;
503 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
504 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
505
506 memset(execlists->pending, 0, sizeof(execlists->pending));
507 execlists->active =
508 memset(execlists->inflight, 0, sizeof(execlists->inflight));
509
510 execlists->queue_priority_hint = INT_MIN;
511 execlists->queue = RB_ROOT_CACHED;
512 }
513
514 static void cleanup_status_page(struct intel_engine_cs *engine)
515 {
516 struct i915_vma *vma;
517
518 /* Prevent writes into HWSP after returning the page to the system */
519 intel_engine_set_hwsp_writemask(engine, ~0u);
520
521 vma = fetch_and_zero(&engine->status_page.vma);
522 if (!vma)
523 return;
524
525 if (!HWS_NEEDS_PHYSICAL(engine->i915))
526 i915_vma_unpin(vma);
527
528 i915_gem_object_unpin_map(vma->obj);
529 i915_gem_object_put(vma->obj);
530 }
531
532 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
533 struct i915_vma *vma)
534 {
535 unsigned int flags;
536
537 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
538 /*
539 * On g33, we cannot place HWS above 256MiB, so
540 * restrict its pinning to the low mappable arena.
541 * Though this restriction is not documented for
542 * gen4, gen5, or byt, they also behave similarly
543 * and hang if the HWS is placed at the top of the
544 * GTT. To generalise, it appears that all !llc
545 * platforms have issues with us placing the HWS
546 * above the mappable region (even though we never
547 * actually map it).
548 */
549 flags = PIN_MAPPABLE;
550 else
551 flags = PIN_HIGH;
552
553 return i915_ggtt_pin(vma, 0, flags);
554 }
555
556 static int init_status_page(struct intel_engine_cs *engine)
557 {
558 struct drm_i915_gem_object *obj;
559 struct i915_vma *vma;
560 void *vaddr;
561 int ret;
562
563 /*
564 * Though the HWS register does support 36bit addresses, historically
565 * we have had hangs and corruption reported due to wild writes if
566 * the HWS is placed above 4G. We only allow objects to be allocated
567 * in GFP_DMA32 for i965, and no earlier physical address users had
568 * access to more than 4G.
569 */
570 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
571 if (IS_ERR(obj)) {
572 drm_err(&engine->i915->drm,
573 "Failed to allocate status page\n");
574 return PTR_ERR(obj);
575 }
576
577 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
578
579 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
580 if (IS_ERR(vma)) {
581 ret = PTR_ERR(vma);
582 goto err;
583 }
584
585 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
586 if (IS_ERR(vaddr)) {
587 ret = PTR_ERR(vaddr);
588 goto err;
589 }
590
591 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
592 engine->status_page.vma = vma;
593
594 if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
595 ret = pin_ggtt_status_page(engine, vma);
596 if (ret)
597 goto err_unpin;
598 }
599
600 return 0;
601
602 err_unpin:
603 i915_gem_object_unpin_map(obj);
604 err:
605 i915_gem_object_put(obj);
606 return ret;
607 }
608
609 static int engine_setup_common(struct intel_engine_cs *engine)
610 {
611 int err;
612
613 init_llist_head(&engine->barrier_tasks);
614
615 err = init_status_page(engine);
616 if (err)
617 return err;
618
619 intel_engine_init_active(engine, ENGINE_PHYSICAL);
620 intel_engine_init_breadcrumbs(engine);
621 intel_engine_init_execlists(engine);
622 intel_engine_init_cmd_parser(engine);
623 intel_engine_init__pm(engine);
624 intel_engine_init_retire(engine);
625
626 intel_engine_pool_init(&engine->pool);
627
628 /* Use the whole device by default */
629 engine->sseu =
630 intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
631
632 intel_engine_init_workarounds(engine);
633 intel_engine_init_whitelist(engine);
634 intel_engine_init_ctx_wa(engine);
635
636 return 0;
637 }
638
639 struct measure_breadcrumb {
640 struct i915_request rq;
641 struct intel_ring ring;
642 u32 cs[1024];
643 };
644
645 static int measure_breadcrumb_dw(struct intel_context *ce)
646 {
647 struct intel_engine_cs *engine = ce->engine;
648 struct measure_breadcrumb *frame;
649 int dw;
650
651 GEM_BUG_ON(!engine->gt->scratch);
652
653 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
654 if (!frame)
655 return -ENOMEM;
656
657 frame->rq.i915 = engine->i915;
658 frame->rq.engine = engine;
659 frame->rq.context = ce;
660 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
661
662 frame->ring.vaddr = frame->cs;
663 frame->ring.size = sizeof(frame->cs);
664 frame->ring.effective_size = frame->ring.size;
665 intel_ring_update_space(&frame->ring);
666 frame->rq.ring = &frame->ring;
667
668 mutex_lock(&ce->timeline->mutex);
669 spin_lock_irq(&engine->active.lock);
670
671 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
672
673 spin_unlock_irq(&engine->active.lock);
674 mutex_unlock(&ce->timeline->mutex);
675
676 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
677
678 kfree(frame);
679 return dw;
680 }
681
682 void
683 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
684 {
685 INIT_LIST_HEAD(&engine->active.requests);
686 INIT_LIST_HEAD(&engine->active.hold);
687
688 spin_lock_init(&engine->active.lock);
689 lockdep_set_subclass(&engine->active.lock, subclass);
690
691 /*
692 * Due to an interesting quirk in lockdep's internal debug tracking,
693 * after setting a subclass we must ensure the lock is used. Otherwise,
694 * nr_unused_locks is incremented once too often.
695 */
696 #ifdef CONFIG_DEBUG_LOCK_ALLOC
697 local_irq_disable();
698 lock_map_acquire(&engine->active.lock.dep_map);
699 lock_map_release(&engine->active.lock.dep_map);
700 local_irq_enable();
701 #endif
702 }
703
704 static struct intel_context *
705 create_kernel_context(struct intel_engine_cs *engine)
706 {
707 static struct lock_class_key kernel;
708 struct intel_context *ce;
709 int err;
710
711 ce = intel_context_create(engine);
712 if (IS_ERR(ce))
713 return ce;
714
715 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
716
717 err = intel_context_pin(ce); /* perma-pin so it is always available */
718 if (err) {
719 intel_context_put(ce);
720 return ERR_PTR(err);
721 }
722
723 /*
724 * Give our perma-pinned kernel timelines a separate lockdep class,
725 * so that we can use them from within the normal user timelines
726 * should we need to inject GPU operations during their request
727 * construction.
728 */
729 lockdep_set_class(&ce->timeline->mutex, &kernel);
730
731 return ce;
732 }
733
734 /**
735 * intel_engines_init_common - initialize cengine state which might require hw access
736 * @engine: Engine to initialize.
737 *
738 * Initializes @engine@ structure members shared between legacy and execlists
739 * submission modes which do require hardware access.
740 *
741 * Typcally done at later stages of submission mode specific engine setup.
742 *
743 * Returns zero on success or an error code on failure.
744 */
745 static int engine_init_common(struct intel_engine_cs *engine)
746 {
747 struct intel_context *ce;
748 int ret;
749
750 engine->set_default_submission(engine);
751
752 /*
753 * We may need to do things with the shrinker which
754 * require us to immediately switch back to the default
755 * context. This can cause a problem as pinning the
756 * default context also requires GTT space which may not
757 * be available. To avoid this we always pin the default
758 * context.
759 */
760 ce = create_kernel_context(engine);
761 if (IS_ERR(ce))
762 return PTR_ERR(ce);
763
764 ret = measure_breadcrumb_dw(ce);
765 if (ret < 0)
766 goto err_context;
767
768 engine->emit_fini_breadcrumb_dw = ret;
769 engine->kernel_context = ce;
770
771 return 0;
772
773 err_context:
774 intel_context_put(ce);
775 return ret;
776 }
777
778 int intel_engines_init(struct intel_gt *gt)
779 {
780 int (*setup)(struct intel_engine_cs *engine);
781 struct intel_engine_cs *engine;
782 enum intel_engine_id id;
783 int err;
784
785 if (HAS_EXECLISTS(gt->i915))
786 setup = intel_execlists_submission_setup;
787 else
788 setup = intel_ring_submission_setup;
789
790 for_each_engine(engine, gt, id) {
791 err = engine_setup_common(engine);
792 if (err)
793 return err;
794
795 err = setup(engine);
796 if (err)
797 return err;
798
799 err = engine_init_common(engine);
800 if (err)
801 return err;
802
803 intel_engine_add_user(engine);
804 }
805
806 return 0;
807 }
808
809 /**
810 * intel_engines_cleanup_common - cleans up the engine state created by
811 * the common initiailizers.
812 * @engine: Engine to cleanup.
813 *
814 * This cleans up everything created by the common helpers.
815 */
816 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
817 {
818 GEM_BUG_ON(!list_empty(&engine->active.requests));
819 tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
820
821 cleanup_status_page(engine);
822
823 intel_engine_fini_retire(engine);
824 intel_engine_pool_fini(&engine->pool);
825 intel_engine_fini_breadcrumbs(engine);
826 intel_engine_cleanup_cmd_parser(engine);
827
828 if (engine->default_state)
829 i915_gem_object_put(engine->default_state);
830
831 if (engine->kernel_context) {
832 intel_context_unpin(engine->kernel_context);
833 intel_context_put(engine->kernel_context);
834 }
835 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
836
837 intel_wa_list_free(&engine->ctx_wa_list);
838 intel_wa_list_free(&engine->wa_list);
839 intel_wa_list_free(&engine->whitelist);
840 }
841
842 /**
843 * intel_engine_resume - re-initializes the HW state of the engine
844 * @engine: Engine to resume.
845 *
846 * Returns zero on success or an error code on failure.
847 */
848 int intel_engine_resume(struct intel_engine_cs *engine)
849 {
850 intel_engine_apply_workarounds(engine);
851 intel_engine_apply_whitelist(engine);
852
853 return engine->resume(engine);
854 }
855
856 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
857 {
858 struct drm_i915_private *i915 = engine->i915;
859
860 u64 acthd;
861
862 if (INTEL_GEN(i915) >= 8)
863 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
864 else if (INTEL_GEN(i915) >= 4)
865 acthd = ENGINE_READ(engine, RING_ACTHD);
866 else
867 acthd = ENGINE_READ(engine, ACTHD);
868
869 return acthd;
870 }
871
872 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
873 {
874 u64 bbaddr;
875
876 if (INTEL_GEN(engine->i915) >= 8)
877 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
878 else
879 bbaddr = ENGINE_READ(engine, RING_BBADDR);
880
881 return bbaddr;
882 }
883
884 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
885 {
886 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
887 return 0;
888
889 /*
890 * If we are doing a normal GPU reset, we can take our time and allow
891 * the engine to quiesce. We've stopped submission to the engine, and
892 * if we wait long enough an innocent context should complete and
893 * leave the engine idle. So they should not be caught unaware by
894 * the forthcoming GPU reset (which usually follows the stop_cs)!
895 */
896 return READ_ONCE(engine->props.stop_timeout_ms);
897 }
898
899 int intel_engine_stop_cs(struct intel_engine_cs *engine)
900 {
901 struct intel_uncore *uncore = engine->uncore;
902 const u32 base = engine->mmio_base;
903 const i915_reg_t mode = RING_MI_MODE(base);
904 int err;
905
906 if (INTEL_GEN(engine->i915) < 3)
907 return -ENODEV;
908
909 ENGINE_TRACE(engine, "\n");
910
911 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
912
913 err = 0;
914 if (__intel_wait_for_register_fw(uncore,
915 mode, MODE_IDLE, MODE_IDLE,
916 1000, stop_timeout(engine),
917 NULL)) {
918 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
919 err = -ETIMEDOUT;
920 }
921
922 /* A final mmio read to let GPU writes be hopefully flushed to memory */
923 intel_uncore_posting_read_fw(uncore, mode);
924
925 return err;
926 }
927
928 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
929 {
930 ENGINE_TRACE(engine, "\n");
931
932 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
933 }
934
935 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
936 {
937 switch (type) {
938 case I915_CACHE_NONE: return " uncached";
939 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
940 case I915_CACHE_L3_LLC: return " L3+LLC";
941 case I915_CACHE_WT: return " WT";
942 default: return "";
943 }
944 }
945
946 static u32
947 read_subslice_reg(const struct intel_engine_cs *engine,
948 int slice, int subslice, i915_reg_t reg)
949 {
950 struct drm_i915_private *i915 = engine->i915;
951 struct intel_uncore *uncore = engine->uncore;
952 u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
953 enum forcewake_domains fw_domains;
954
955 if (INTEL_GEN(i915) >= 11) {
956 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
957 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
958 } else {
959 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
960 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
961 }
962
963 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
964 FW_REG_READ);
965 fw_domains |= intel_uncore_forcewake_for_reg(uncore,
966 GEN8_MCR_SELECTOR,
967 FW_REG_READ | FW_REG_WRITE);
968
969 spin_lock_irq(&uncore->lock);
970 intel_uncore_forcewake_get__locked(uncore, fw_domains);
971
972 old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
973
974 mcr &= ~mcr_mask;
975 mcr |= mcr_ss;
976 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
977
978 val = intel_uncore_read_fw(uncore, reg);
979
980 mcr &= ~mcr_mask;
981 mcr |= old_mcr & mcr_mask;
982
983 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
984
985 intel_uncore_forcewake_put__locked(uncore, fw_domains);
986 spin_unlock_irq(&uncore->lock);
987
988 return val;
989 }
990
991 /* NB: please notice the memset */
992 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
993 struct intel_instdone *instdone)
994 {
995 struct drm_i915_private *i915 = engine->i915;
996 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
997 struct intel_uncore *uncore = engine->uncore;
998 u32 mmio_base = engine->mmio_base;
999 int slice;
1000 int subslice;
1001
1002 memset(instdone, 0, sizeof(*instdone));
1003
1004 switch (INTEL_GEN(i915)) {
1005 default:
1006 instdone->instdone =
1007 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1008
1009 if (engine->id != RCS0)
1010 break;
1011
1012 instdone->slice_common =
1013 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1014 if (INTEL_GEN(i915) >= 12) {
1015 instdone->slice_common_extra[0] =
1016 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1017 instdone->slice_common_extra[1] =
1018 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1019 }
1020 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1021 instdone->sampler[slice][subslice] =
1022 read_subslice_reg(engine, slice, subslice,
1023 GEN7_SAMPLER_INSTDONE);
1024 instdone->row[slice][subslice] =
1025 read_subslice_reg(engine, slice, subslice,
1026 GEN7_ROW_INSTDONE);
1027 }
1028 break;
1029 case 7:
1030 instdone->instdone =
1031 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1032
1033 if (engine->id != RCS0)
1034 break;
1035
1036 instdone->slice_common =
1037 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1038 instdone->sampler[0][0] =
1039 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1040 instdone->row[0][0] =
1041 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1042
1043 break;
1044 case 6:
1045 case 5:
1046 case 4:
1047 instdone->instdone =
1048 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1049 if (engine->id == RCS0)
1050 /* HACK: Using the wrong struct member */
1051 instdone->slice_common =
1052 intel_uncore_read(uncore, GEN4_INSTDONE1);
1053 break;
1054 case 3:
1055 case 2:
1056 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1057 break;
1058 }
1059 }
1060
1061 static bool ring_is_idle(struct intel_engine_cs *engine)
1062 {
1063 bool idle = true;
1064
1065 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1066 return true;
1067
1068 if (!intel_engine_pm_get_if_awake(engine))
1069 return true;
1070
1071 /* First check that no commands are left in the ring */
1072 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1073 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1074 idle = false;
1075
1076 /* No bit for gen2, so assume the CS parser is idle */
1077 if (INTEL_GEN(engine->i915) > 2 &&
1078 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1079 idle = false;
1080
1081 intel_engine_pm_put(engine);
1082
1083 return idle;
1084 }
1085
1086 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1087 {
1088 struct tasklet_struct *t = &engine->execlists.tasklet;
1089
1090 if (__tasklet_is_scheduled(t)) {
1091 local_bh_disable();
1092 if (tasklet_trylock(t)) {
1093 /* Must wait for any GPU reset in progress. */
1094 if (__tasklet_is_enabled(t))
1095 t->func(t->data);
1096 tasklet_unlock(t);
1097 }
1098 local_bh_enable();
1099 }
1100
1101 /* Otherwise flush the tasklet if it was running on another cpu */
1102 tasklet_unlock_wait(t);
1103 }
1104
1105 /**
1106 * intel_engine_is_idle() - Report if the engine has finished process all work
1107 * @engine: the intel_engine_cs
1108 *
1109 * Return true if there are no requests pending, nothing left to be submitted
1110 * to hardware, and that the engine is idle.
1111 */
1112 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1113 {
1114 /* More white lies, if wedged, hw state is inconsistent */
1115 if (intel_gt_is_wedged(engine->gt))
1116 return true;
1117
1118 if (!intel_engine_pm_is_awake(engine))
1119 return true;
1120
1121 /* Waiting to drain ELSP? */
1122 if (execlists_active(&engine->execlists)) {
1123 synchronize_hardirq(engine->i915->drm.pdev->irq);
1124
1125 intel_engine_flush_submission(engine);
1126
1127 if (execlists_active(&engine->execlists))
1128 return false;
1129 }
1130
1131 /* ELSP is empty, but there are ready requests? E.g. after reset */
1132 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1133 return false;
1134
1135 /* Ring stopped? */
1136 return ring_is_idle(engine);
1137 }
1138
1139 bool intel_engines_are_idle(struct intel_gt *gt)
1140 {
1141 struct intel_engine_cs *engine;
1142 enum intel_engine_id id;
1143
1144 /*
1145 * If the driver is wedged, HW state may be very inconsistent and
1146 * report that it is still busy, even though we have stopped using it.
1147 */
1148 if (intel_gt_is_wedged(gt))
1149 return true;
1150
1151 /* Already parked (and passed an idleness test); must still be idle */
1152 if (!READ_ONCE(gt->awake))
1153 return true;
1154
1155 for_each_engine(engine, gt, id) {
1156 if (!intel_engine_is_idle(engine))
1157 return false;
1158 }
1159
1160 return true;
1161 }
1162
1163 void intel_engines_reset_default_submission(struct intel_gt *gt)
1164 {
1165 struct intel_engine_cs *engine;
1166 enum intel_engine_id id;
1167
1168 for_each_engine(engine, gt, id)
1169 engine->set_default_submission(engine);
1170 }
1171
1172 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1173 {
1174 switch (INTEL_GEN(engine->i915)) {
1175 case 2:
1176 return false; /* uses physical not virtual addresses */
1177 case 3:
1178 /* maybe only uses physical not virtual addresses */
1179 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1180 case 4:
1181 return !IS_I965G(engine->i915); /* who knows! */
1182 case 6:
1183 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1184 default:
1185 return true;
1186 }
1187 }
1188
1189 static int print_sched_attr(struct drm_i915_private *i915,
1190 const struct i915_sched_attr *attr,
1191 char *buf, int x, int len)
1192 {
1193 if (attr->priority == I915_PRIORITY_INVALID)
1194 return x;
1195
1196 x += snprintf(buf + x, len - x,
1197 " prio=%d", attr->priority);
1198
1199 return x;
1200 }
1201
1202 static void print_request(struct drm_printer *m,
1203 struct i915_request *rq,
1204 const char *prefix)
1205 {
1206 const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1207 char buf[80] = "";
1208 int x = 0;
1209
1210 x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1211
1212 drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1213 prefix,
1214 rq->fence.context, rq->fence.seqno,
1215 i915_request_completed(rq) ? "!" :
1216 i915_request_started(rq) ? "*" :
1217 "",
1218 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1219 &rq->fence.flags) ? "+" :
1220 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1221 &rq->fence.flags) ? "-" :
1222 "",
1223 buf,
1224 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1225 name);
1226 }
1227
1228 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1229 {
1230 const size_t rowsize = 8 * sizeof(u32);
1231 const void *prev = NULL;
1232 bool skip = false;
1233 size_t pos;
1234
1235 for (pos = 0; pos < len; pos += rowsize) {
1236 char line[128];
1237
1238 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1239 if (!skip) {
1240 drm_printf(m, "*\n");
1241 skip = true;
1242 }
1243 continue;
1244 }
1245
1246 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1247 rowsize, sizeof(u32),
1248 line, sizeof(line),
1249 false) >= sizeof(line));
1250 drm_printf(m, "[%04zx] %s\n", pos, line);
1251
1252 prev = buf + pos;
1253 skip = false;
1254 }
1255 }
1256
1257 static struct intel_timeline *get_timeline(struct i915_request *rq)
1258 {
1259 struct intel_timeline *tl;
1260
1261 /*
1262 * Even though we are holding the engine->active.lock here, there
1263 * is no control over the submission queue per-se and we are
1264 * inspecting the active state at a random point in time, with an
1265 * unknown queue. Play safe and make sure the timeline remains valid.
1266 * (Only being used for pretty printing, one extra kref shouldn't
1267 * cause a camel stampede!)
1268 */
1269 rcu_read_lock();
1270 tl = rcu_dereference(rq->timeline);
1271 if (!kref_get_unless_zero(&tl->kref))
1272 tl = NULL;
1273 rcu_read_unlock();
1274
1275 return tl;
1276 }
1277
1278 static const char *repr_timer(const struct timer_list *t)
1279 {
1280 if (!READ_ONCE(t->expires))
1281 return "inactive";
1282
1283 if (timer_pending(t))
1284 return "active";
1285
1286 return "expired";
1287 }
1288
1289 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1290 struct drm_printer *m)
1291 {
1292 struct drm_i915_private *dev_priv = engine->i915;
1293 struct intel_engine_execlists * const execlists = &engine->execlists;
1294 u64 addr;
1295
1296 if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1297 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1298 if (HAS_EXECLISTS(dev_priv)) {
1299 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1300 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1301 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1302 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1303 }
1304 drm_printf(m, "\tRING_START: 0x%08x\n",
1305 ENGINE_READ(engine, RING_START));
1306 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
1307 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1308 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
1309 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1310 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
1311 ENGINE_READ(engine, RING_CTL),
1312 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1313 if (INTEL_GEN(engine->i915) > 2) {
1314 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
1315 ENGINE_READ(engine, RING_MI_MODE),
1316 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1317 }
1318
1319 if (INTEL_GEN(dev_priv) >= 6) {
1320 drm_printf(m, "\tRING_IMR: 0x%08x\n",
1321 ENGINE_READ(engine, RING_IMR));
1322 drm_printf(m, "\tRING_ESR: 0x%08x\n",
1323 ENGINE_READ(engine, RING_ESR));
1324 drm_printf(m, "\tRING_EMR: 0x%08x\n",
1325 ENGINE_READ(engine, RING_EMR));
1326 drm_printf(m, "\tRING_EIR: 0x%08x\n",
1327 ENGINE_READ(engine, RING_EIR));
1328 }
1329
1330 addr = intel_engine_get_active_head(engine);
1331 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
1332 upper_32_bits(addr), lower_32_bits(addr));
1333 addr = intel_engine_get_last_batch_head(engine);
1334 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1335 upper_32_bits(addr), lower_32_bits(addr));
1336 if (INTEL_GEN(dev_priv) >= 8)
1337 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1338 else if (INTEL_GEN(dev_priv) >= 4)
1339 addr = ENGINE_READ(engine, RING_DMA_FADD);
1340 else
1341 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1342 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1343 upper_32_bits(addr), lower_32_bits(addr));
1344 if (INTEL_GEN(dev_priv) >= 4) {
1345 drm_printf(m, "\tIPEIR: 0x%08x\n",
1346 ENGINE_READ(engine, RING_IPEIR));
1347 drm_printf(m, "\tIPEHR: 0x%08x\n",
1348 ENGINE_READ(engine, RING_IPEHR));
1349 } else {
1350 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1351 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1352 }
1353
1354 if (HAS_EXECLISTS(dev_priv)) {
1355 struct i915_request * const *port, *rq;
1356 const u32 *hws =
1357 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1358 const u8 num_entries = execlists->csb_size;
1359 unsigned int idx;
1360 u8 read, write;
1361
1362 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1363 yesno(test_bit(TASKLET_STATE_SCHED,
1364 &engine->execlists.tasklet.state)),
1365 enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1366 repr_timer(&engine->execlists.preempt),
1367 repr_timer(&engine->execlists.timer));
1368
1369 read = execlists->csb_head;
1370 write = READ_ONCE(*execlists->csb_write);
1371
1372 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1373 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1374 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1375 read, write, num_entries);
1376
1377 if (read >= num_entries)
1378 read = 0;
1379 if (write >= num_entries)
1380 write = 0;
1381 if (read > write)
1382 write += num_entries;
1383 while (read < write) {
1384 idx = ++read % num_entries;
1385 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1386 idx, hws[idx * 2], hws[idx * 2 + 1]);
1387 }
1388
1389 execlists_active_lock_bh(execlists);
1390 rcu_read_lock();
1391 for (port = execlists->active; (rq = *port); port++) {
1392 char hdr[160];
1393 int len;
1394
1395 len = scnprintf(hdr, sizeof(hdr),
1396 "\t\tActive[%d]: ",
1397 (int)(port - execlists->active));
1398 if (!i915_request_signaled(rq)) {
1399 struct intel_timeline *tl = get_timeline(rq);
1400
1401 len += scnprintf(hdr + len, sizeof(hdr) - len,
1402 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1403 i915_ggtt_offset(rq->ring->vma),
1404 tl ? tl->hwsp_offset : 0,
1405 hwsp_seqno(rq),
1406 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1407 1000 * 1000));
1408
1409 if (tl)
1410 intel_timeline_put(tl);
1411 }
1412 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1413 print_request(m, rq, hdr);
1414 }
1415 for (port = execlists->pending; (rq = *port); port++) {
1416 struct intel_timeline *tl = get_timeline(rq);
1417 char hdr[80];
1418
1419 snprintf(hdr, sizeof(hdr),
1420 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1421 (int)(port - execlists->pending),
1422 i915_ggtt_offset(rq->ring->vma),
1423 tl ? tl->hwsp_offset : 0,
1424 hwsp_seqno(rq));
1425 print_request(m, rq, hdr);
1426
1427 if (tl)
1428 intel_timeline_put(tl);
1429 }
1430 rcu_read_unlock();
1431 execlists_active_unlock_bh(execlists);
1432 } else if (INTEL_GEN(dev_priv) > 6) {
1433 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1434 ENGINE_READ(engine, RING_PP_DIR_BASE));
1435 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1436 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1437 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1438 ENGINE_READ(engine, RING_PP_DIR_DCLV));
1439 }
1440 }
1441
1442 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1443 {
1444 void *ring;
1445 int size;
1446
1447 drm_printf(m,
1448 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1449 rq->head, rq->postfix, rq->tail,
1450 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1451 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1452
1453 size = rq->tail - rq->head;
1454 if (rq->tail < rq->head)
1455 size += rq->ring->size;
1456
1457 ring = kmalloc(size, GFP_ATOMIC);
1458 if (ring) {
1459 const void *vaddr = rq->ring->vaddr;
1460 unsigned int head = rq->head;
1461 unsigned int len = 0;
1462
1463 if (rq->tail < head) {
1464 len = rq->ring->size - head;
1465 memcpy(ring, vaddr + head, len);
1466 head = 0;
1467 }
1468 memcpy(ring + len, vaddr + head, size - len);
1469
1470 hexdump(m, ring, size);
1471 kfree(ring);
1472 }
1473 }
1474
1475 static unsigned long list_count(struct list_head *list)
1476 {
1477 struct list_head *pos;
1478 unsigned long count = 0;
1479
1480 list_for_each(pos, list)
1481 count++;
1482
1483 return count;
1484 }
1485
1486 void intel_engine_dump(struct intel_engine_cs *engine,
1487 struct drm_printer *m,
1488 const char *header, ...)
1489 {
1490 struct i915_gpu_error * const error = &engine->i915->gpu_error;
1491 struct i915_request *rq;
1492 intel_wakeref_t wakeref;
1493 unsigned long flags;
1494
1495 if (header) {
1496 va_list ap;
1497
1498 va_start(ap, header);
1499 drm_vprintf(m, header, &ap);
1500 va_end(ap);
1501 }
1502
1503 if (intel_gt_is_wedged(engine->gt))
1504 drm_printf(m, "*** WEDGED ***\n");
1505
1506 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1507 drm_printf(m, "\tBarriers?: %s\n",
1508 yesno(!llist_empty(&engine->barrier_tasks)));
1509 drm_printf(m, "\tLatency: %luus\n",
1510 ewma__engine_latency_read(&engine->latency));
1511
1512 rcu_read_lock();
1513 rq = READ_ONCE(engine->heartbeat.systole);
1514 if (rq)
1515 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1516 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1517 rcu_read_unlock();
1518 drm_printf(m, "\tReset count: %d (global %d)\n",
1519 i915_reset_engine_count(error, engine),
1520 i915_reset_count(error));
1521
1522 drm_printf(m, "\tRequests:\n");
1523
1524 spin_lock_irqsave(&engine->active.lock, flags);
1525 rq = intel_engine_find_active_request(engine);
1526 if (rq) {
1527 struct intel_timeline *tl = get_timeline(rq);
1528
1529 print_request(m, rq, "\t\tactive ");
1530
1531 drm_printf(m, "\t\tring->start: 0x%08x\n",
1532 i915_ggtt_offset(rq->ring->vma));
1533 drm_printf(m, "\t\tring->head: 0x%08x\n",
1534 rq->ring->head);
1535 drm_printf(m, "\t\tring->tail: 0x%08x\n",
1536 rq->ring->tail);
1537 drm_printf(m, "\t\tring->emit: 0x%08x\n",
1538 rq->ring->emit);
1539 drm_printf(m, "\t\tring->space: 0x%08x\n",
1540 rq->ring->space);
1541
1542 if (tl) {
1543 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
1544 tl->hwsp_offset);
1545 intel_timeline_put(tl);
1546 }
1547
1548 print_request_ring(m, rq);
1549
1550 if (rq->context->lrc_reg_state) {
1551 drm_printf(m, "Logical Ring Context:\n");
1552 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1553 }
1554 }
1555 drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1556 spin_unlock_irqrestore(&engine->active.lock, flags);
1557
1558 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
1559 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1560 if (wakeref) {
1561 intel_engine_print_registers(engine, m);
1562 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1563 } else {
1564 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1565 }
1566
1567 intel_execlists_show_requests(engine, m, print_request, 8);
1568
1569 drm_printf(m, "HWSP:\n");
1570 hexdump(m, engine->status_page.addr, PAGE_SIZE);
1571
1572 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1573
1574 intel_engine_print_breadcrumbs(engine, m);
1575 }
1576
1577 /**
1578 * intel_enable_engine_stats() - Enable engine busy tracking on engine
1579 * @engine: engine to enable stats collection
1580 *
1581 * Start collecting the engine busyness data for @engine.
1582 *
1583 * Returns 0 on success or a negative error code.
1584 */
1585 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1586 {
1587 struct intel_engine_execlists *execlists = &engine->execlists;
1588 unsigned long flags;
1589 int err = 0;
1590
1591 if (!intel_engine_supports_stats(engine))
1592 return -ENODEV;
1593
1594 execlists_active_lock_bh(execlists);
1595 write_seqlock_irqsave(&engine->stats.lock, flags);
1596
1597 if (unlikely(engine->stats.enabled == ~0)) {
1598 err = -EBUSY;
1599 goto unlock;
1600 }
1601
1602 if (engine->stats.enabled++ == 0) {
1603 struct i915_request * const *port;
1604 struct i915_request *rq;
1605
1606 engine->stats.enabled_at = ktime_get();
1607
1608 /* XXX submission method oblivious? */
1609 for (port = execlists->active; (rq = *port); port++)
1610 engine->stats.active++;
1611
1612 for (port = execlists->pending; (rq = *port); port++) {
1613 /* Exclude any contexts already counted in active */
1614 if (!intel_context_inflight_count(rq->context))
1615 engine->stats.active++;
1616 }
1617
1618 if (engine->stats.active)
1619 engine->stats.start = engine->stats.enabled_at;
1620 }
1621
1622 unlock:
1623 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1624 execlists_active_unlock_bh(execlists);
1625
1626 return err;
1627 }
1628
1629 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1630 {
1631 ktime_t total = engine->stats.total;
1632
1633 /*
1634 * If the engine is executing something at the moment
1635 * add it to the total.
1636 */
1637 if (engine->stats.active)
1638 total = ktime_add(total,
1639 ktime_sub(ktime_get(), engine->stats.start));
1640
1641 return total;
1642 }
1643
1644 /**
1645 * intel_engine_get_busy_time() - Return current accumulated engine busyness
1646 * @engine: engine to report on
1647 *
1648 * Returns accumulated time @engine was busy since engine stats were enabled.
1649 */
1650 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1651 {
1652 unsigned int seq;
1653 ktime_t total;
1654
1655 do {
1656 seq = read_seqbegin(&engine->stats.lock);
1657 total = __intel_engine_get_busy_time(engine);
1658 } while (read_seqretry(&engine->stats.lock, seq));
1659
1660 return total;
1661 }
1662
1663 /**
1664 * intel_disable_engine_stats() - Disable engine busy tracking on engine
1665 * @engine: engine to disable stats collection
1666 *
1667 * Stops collecting the engine busyness data for @engine.
1668 */
1669 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1670 {
1671 unsigned long flags;
1672
1673 if (!intel_engine_supports_stats(engine))
1674 return;
1675
1676 write_seqlock_irqsave(&engine->stats.lock, flags);
1677 WARN_ON_ONCE(engine->stats.enabled == 0);
1678 if (--engine->stats.enabled == 0) {
1679 engine->stats.total = __intel_engine_get_busy_time(engine);
1680 engine->stats.active = 0;
1681 }
1682 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1683 }
1684
1685 static bool match_ring(struct i915_request *rq)
1686 {
1687 u32 ring = ENGINE_READ(rq->engine, RING_START);
1688
1689 return ring == i915_ggtt_offset(rq->ring->vma);
1690 }
1691
1692 struct i915_request *
1693 intel_engine_find_active_request(struct intel_engine_cs *engine)
1694 {
1695 struct i915_request *request, *active = NULL;
1696
1697 /*
1698 * We are called by the error capture, reset and to dump engine
1699 * state at random points in time. In particular, note that neither is
1700 * crucially ordered with an interrupt. After a hang, the GPU is dead
1701 * and we assume that no more writes can happen (we waited long enough
1702 * for all writes that were in transaction to be flushed) - adding an
1703 * extra delay for a recent interrupt is pointless. Hence, we do
1704 * not need an engine->irq_seqno_barrier() before the seqno reads.
1705 * At all other times, we must assume the GPU is still running, but
1706 * we only care about the snapshot of this moment.
1707 */
1708 lockdep_assert_held(&engine->active.lock);
1709
1710 rcu_read_lock();
1711 request = execlists_active(&engine->execlists);
1712 if (request) {
1713 struct intel_timeline *tl = request->context->timeline;
1714
1715 list_for_each_entry_from_reverse(request, &tl->requests, link) {
1716 if (i915_request_completed(request))
1717 break;
1718
1719 active = request;
1720 }
1721 }
1722 rcu_read_unlock();
1723 if (active)
1724 return active;
1725
1726 list_for_each_entry(request, &engine->active.requests, sched.link) {
1727 if (i915_request_completed(request))
1728 continue;
1729
1730 if (!i915_request_started(request))
1731 continue;
1732
1733 /* More than one preemptible request may match! */
1734 if (!match_ring(request))
1735 continue;
1736
1737 active = request;
1738 break;
1739 }
1740
1741 return active;
1742 }
1743
1744 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1745 #include "mock_engine.c"
1746 #include "selftest_engine.c"
1747 #include "selftest_engine_cs.c"
1748 #endif