]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_types.h
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_types.h
1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
7 #ifndef __INTEL_ENGINE_TYPES__
8 #define __INTEL_ENGINE_TYPES__
9
10 #include <linux/average.h>
11 #include <linux/hashtable.h>
12 #include <linux/irq_work.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/llist.h>
16 #include <linux/rbtree.h>
17 #include <linux/timer.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20
21 #include "i915_gem.h"
22 #include "i915_pmu.h"
23 #include "i915_priolist_types.h"
24 #include "i915_selftest.h"
25 #include "intel_engine_pool_types.h"
26 #include "intel_sseu.h"
27 #include "intel_timeline_types.h"
28 #include "intel_wakeref.h"
29 #include "intel_workarounds_types.h"
30
31 /* Legacy HW Engine ID */
32
33 #define RCS0_HW 0
34 #define VCS0_HW 1
35 #define BCS0_HW 2
36 #define VECS0_HW 3
37 #define VCS1_HW 4
38 #define VCS2_HW 6
39 #define VCS3_HW 7
40 #define VECS1_HW 12
41
42 /* Gen11+ HW Engine class + instance */
43 #define RENDER_CLASS 0
44 #define VIDEO_DECODE_CLASS 1
45 #define VIDEO_ENHANCEMENT_CLASS 2
46 #define COPY_ENGINE_CLASS 3
47 #define OTHER_CLASS 4
48 #define MAX_ENGINE_CLASS 4
49 #define MAX_ENGINE_INSTANCE 3
50
51 #define I915_MAX_SLICES 3
52 #define I915_MAX_SUBSLICES 8
53
54 #define I915_CMD_HASH_ORDER 9
55
56 struct dma_fence;
57 struct drm_i915_gem_object;
58 struct drm_i915_reg_table;
59 struct i915_gem_context;
60 struct i915_request;
61 struct i915_sched_attr;
62 struct intel_gt;
63 struct intel_ring;
64 struct intel_uncore;
65
66 typedef u8 intel_engine_mask_t;
67 #define ALL_ENGINES ((intel_engine_mask_t)~0ul)
68
69 struct intel_hw_status_page {
70 struct i915_vma *vma;
71 u32 *addr;
72 };
73
74 struct intel_instdone {
75 u32 instdone;
76 /* The following exist only in the RCS engine */
77 u32 slice_common;
78 u32 slice_common_extra[2];
79 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
80 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
81 };
82
83 /*
84 * we use a single page to load ctx workarounds so all of these
85 * values are referred in terms of dwords
86 *
87 * struct i915_wa_ctx_bb:
88 * offset: specifies batch starting position, also helpful in case
89 * if we want to have multiple batches at different offsets based on
90 * some criteria. It is not a requirement at the moment but provides
91 * an option for future use.
92 * size: size of the batch in DWORDS
93 */
94 struct i915_ctx_workarounds {
95 struct i915_wa_ctx_bb {
96 u32 offset;
97 u32 size;
98 } indirect_ctx, per_ctx;
99 struct i915_vma *vma;
100 };
101
102 #define I915_MAX_VCS 4
103 #define I915_MAX_VECS 2
104
105 /*
106 * Engine IDs definitions.
107 * Keep instances of the same type engine together.
108 */
109 enum intel_engine_id {
110 RCS0 = 0,
111 BCS0,
112 VCS0,
113 VCS1,
114 VCS2,
115 VCS3,
116 #define _VCS(n) (VCS0 + (n))
117 VECS0,
118 VECS1,
119 #define _VECS(n) (VECS0 + (n))
120 I915_NUM_ENGINES
121 #define INVALID_ENGINE ((enum intel_engine_id)-1)
122 };
123
124 /* A simple estimator for the round-trip latency of an engine */
125 DECLARE_EWMA(_engine_latency, 6, 4)
126
127 struct st_preempt_hang {
128 struct completion completion;
129 unsigned int count;
130 };
131
132 /**
133 * struct intel_engine_execlists - execlist submission queue and port state
134 *
135 * The struct intel_engine_execlists represents the combined logical state of
136 * driver and the hardware state for execlist mode of submission.
137 */
138 struct intel_engine_execlists {
139 /**
140 * @tasklet: softirq tasklet for bottom handler
141 */
142 struct tasklet_struct tasklet;
143
144 /**
145 * @timer: kick the current context if its timeslice expires
146 */
147 struct timer_list timer;
148
149 /**
150 * @preempt: reset the current context if it fails to give way
151 */
152 struct timer_list preempt;
153
154 /**
155 * @default_priolist: priority list for I915_PRIORITY_NORMAL
156 */
157 struct i915_priolist default_priolist;
158
159 /**
160 * @ccid: identifier for contexts submitted to this engine
161 */
162 u32 ccid;
163
164 /**
165 * @yield: CCID at the time of the last semaphore-wait interrupt.
166 *
167 * Instead of leaving a semaphore busy-spinning on an engine, we would
168 * like to switch to another ready context, i.e. yielding the semaphore
169 * timeslice.
170 */
171 u32 yield;
172
173 /**
174 * @error_interrupt: CS Master EIR
175 *
176 * The CS generates an interrupt when it detects an error. We capture
177 * the first error interrupt, record the EIR and schedule the tasklet.
178 * In the tasklet, we process the pending CS events to ensure we have
179 * the guilty request, and then reset the engine.
180 */
181 u32 error_interrupt;
182
183 /**
184 * @no_priolist: priority lists disabled
185 */
186 bool no_priolist;
187
188 /**
189 * @submit_reg: gen-specific execlist submission register
190 * set to the ExecList Submission Port (elsp) register pre-Gen11 and to
191 * the ExecList Submission Queue Contents register array for Gen11+
192 */
193 u32 __iomem *submit_reg;
194
195 /**
196 * @ctrl_reg: the enhanced execlists control register, used to load the
197 * submit queue on the HW and to request preemptions to idle
198 */
199 u32 __iomem *ctrl_reg;
200
201 #define EXECLIST_MAX_PORTS 2
202 /**
203 * @active: the currently known context executing on HW
204 */
205 struct i915_request * const *active;
206 /**
207 * @inflight: the set of contexts submitted and acknowleged by HW
208 *
209 * The set of inflight contexts is managed by reading CS events
210 * from the HW. On a context-switch event (not preemption), we
211 * know the HW has transitioned from port0 to port1, and we
212 * advance our inflight/active tracking accordingly.
213 */
214 struct i915_request *inflight[EXECLIST_MAX_PORTS + 1 /* sentinel */];
215 /**
216 * @pending: the next set of contexts submitted to ELSP
217 *
218 * We store the array of contexts that we submit to HW (via ELSP) and
219 * promote them to the inflight array once HW has signaled the
220 * preemption or idle-to-active event.
221 */
222 struct i915_request *pending[EXECLIST_MAX_PORTS + 1];
223
224 /**
225 * @port_mask: number of execlist ports - 1
226 */
227 unsigned int port_mask;
228
229 /**
230 * @switch_priority_hint: Second context priority.
231 *
232 * We submit multiple contexts to the HW simultaneously and would
233 * like to occasionally switch between them to emulate timeslicing.
234 * To know when timeslicing is suitable, we track the priority of
235 * the context submitted second.
236 */
237 int switch_priority_hint;
238
239 /**
240 * @queue_priority_hint: Highest pending priority.
241 *
242 * When we add requests into the queue, or adjust the priority of
243 * executing requests, we compute the maximum priority of those
244 * pending requests. We can then use this value to determine if
245 * we need to preempt the executing requests to service the queue.
246 * However, since the we may have recorded the priority of an inflight
247 * request we wanted to preempt but since completed, at the time of
248 * dequeuing the priority hint may no longer may match the highest
249 * available request priority.
250 */
251 int queue_priority_hint;
252
253 /**
254 * @queue: queue of requests, in priority lists
255 */
256 struct rb_root_cached queue;
257 struct rb_root_cached virtual;
258
259 /**
260 * @csb_write: control register for Context Switch buffer
261 *
262 * Note this register may be either mmio or HWSP shadow.
263 */
264 u32 *csb_write;
265
266 /**
267 * @csb_status: status array for Context Switch buffer
268 *
269 * Note these register may be either mmio or HWSP shadow.
270 */
271 u32 *csb_status;
272
273 /**
274 * @csb_size: context status buffer FIFO size
275 */
276 u8 csb_size;
277
278 /**
279 * @csb_head: context status buffer head
280 */
281 u8 csb_head;
282
283 I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;)
284 };
285
286 #define INTEL_ENGINE_CS_MAX_NAME 8
287
288 struct intel_engine_cs {
289 struct drm_i915_private *i915;
290 struct intel_gt *gt;
291 struct intel_uncore *uncore;
292 char name[INTEL_ENGINE_CS_MAX_NAME];
293
294 enum intel_engine_id id;
295 enum intel_engine_id legacy_idx;
296
297 unsigned int hw_id;
298 unsigned int guc_id;
299
300 intel_engine_mask_t mask;
301
302 u8 class;
303 u8 instance;
304
305 u16 uabi_class;
306 u16 uabi_instance;
307
308 u32 uabi_capabilities;
309 u32 context_size;
310 u32 mmio_base;
311
312 unsigned long context_tag;
313
314 struct rb_node uabi_node;
315
316 struct intel_sseu sseu;
317
318 struct {
319 spinlock_t lock;
320 struct list_head requests;
321 struct list_head hold; /* ready requests, but on hold */
322 } active;
323
324 struct llist_head barrier_tasks;
325
326 struct intel_context *kernel_context; /* pinned */
327
328 intel_engine_mask_t saturated; /* submitting semaphores too late? */
329
330 struct {
331 struct delayed_work work;
332 struct i915_request *systole;
333 } heartbeat;
334
335 unsigned long serial;
336
337 unsigned long wakeref_serial;
338 struct intel_wakeref wakeref;
339 struct drm_i915_gem_object *default_state;
340 void *pinned_default_state;
341
342 struct {
343 struct intel_ring *ring;
344 struct intel_timeline *timeline;
345 } legacy;
346
347 /*
348 * We track the average duration of the idle pulse on parking the
349 * engine to keep an estimate of the how the fast the engine is
350 * under ideal conditions.
351 */
352 struct ewma__engine_latency latency;
353
354 /* Rather than have every client wait upon all user interrupts,
355 * with the herd waking after every interrupt and each doing the
356 * heavyweight seqno dance, we delegate the task (of being the
357 * bottom-half of the user interrupt) to the first client. After
358 * every interrupt, we wake up one client, who does the heavyweight
359 * coherent seqno read and either goes back to sleep (if incomplete),
360 * or wakes up all the completed clients in parallel, before then
361 * transferring the bottom-half status to the next client in the queue.
362 *
363 * Compared to walking the entire list of waiters in a single dedicated
364 * bottom-half, we reduce the latency of the first waiter by avoiding
365 * a context switch, but incur additional coherent seqno reads when
366 * following the chain of request breadcrumbs. Since it is most likely
367 * that we have a single client waiting on each seqno, then reducing
368 * the overhead of waking that client is much preferred.
369 */
370 struct intel_breadcrumbs {
371 spinlock_t irq_lock;
372 struct list_head signalers;
373
374 struct irq_work irq_work; /* for use from inside irq_lock */
375
376 unsigned int irq_enabled;
377
378 bool irq_armed;
379 } breadcrumbs;
380
381 struct intel_engine_pmu {
382 /**
383 * @enable: Bitmask of enable sample events on this engine.
384 *
385 * Bits correspond to sample event types, for instance
386 * I915_SAMPLE_QUEUED is bit 0 etc.
387 */
388 u32 enable;
389 /**
390 * @enable_count: Reference count for the enabled samplers.
391 *
392 * Index number corresponds to @enum drm_i915_pmu_engine_sample.
393 */
394 unsigned int enable_count[I915_ENGINE_SAMPLE_COUNT];
395 /**
396 * @sample: Counter values for sampling events.
397 *
398 * Our internal timer stores the current counters in this field.
399 *
400 * Index number corresponds to @enum drm_i915_pmu_engine_sample.
401 */
402 struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_COUNT];
403 } pmu;
404
405 /*
406 * A pool of objects to use as shadow copies of client batch buffers
407 * when the command parser is enabled. Prevents the client from
408 * modifying the batch contents after software parsing.
409 */
410 struct intel_engine_pool pool;
411
412 struct intel_hw_status_page status_page;
413 struct i915_ctx_workarounds wa_ctx;
414 struct i915_wa_list ctx_wa_list;
415 struct i915_wa_list wa_list;
416 struct i915_wa_list whitelist;
417
418 u32 irq_keep_mask; /* always keep these interrupts */
419 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
420 void (*irq_enable)(struct intel_engine_cs *engine);
421 void (*irq_disable)(struct intel_engine_cs *engine);
422
423 int (*resume)(struct intel_engine_cs *engine);
424
425 struct {
426 void (*prepare)(struct intel_engine_cs *engine);
427
428 void (*rewind)(struct intel_engine_cs *engine, bool stalled);
429 void (*cancel)(struct intel_engine_cs *engine);
430
431 void (*finish)(struct intel_engine_cs *engine);
432 } reset;
433
434 void (*park)(struct intel_engine_cs *engine);
435 void (*unpark)(struct intel_engine_cs *engine);
436
437 void (*set_default_submission)(struct intel_engine_cs *engine);
438
439 const struct intel_context_ops *cops;
440
441 int (*request_alloc)(struct i915_request *rq);
442
443 int (*emit_flush)(struct i915_request *request, u32 mode);
444 #define EMIT_INVALIDATE BIT(0)
445 #define EMIT_FLUSH BIT(1)
446 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
447 int (*emit_bb_start)(struct i915_request *rq,
448 u64 offset, u32 length,
449 unsigned int dispatch_flags);
450 #define I915_DISPATCH_SECURE BIT(0)
451 #define I915_DISPATCH_PINNED BIT(1)
452 int (*emit_init_breadcrumb)(struct i915_request *rq);
453 u32 *(*emit_fini_breadcrumb)(struct i915_request *rq,
454 u32 *cs);
455 unsigned int emit_fini_breadcrumb_dw;
456
457 /* Pass the request to the hardware queue (e.g. directly into
458 * the legacy ringbuffer or to the end of an execlist).
459 *
460 * This is called from an atomic context with irqs disabled; must
461 * be irq safe.
462 */
463 void (*submit_request)(struct i915_request *rq);
464
465 /*
466 * Called on signaling of a SUBMIT_FENCE, passing along the signaling
467 * request down to the bonded pairs.
468 */
469 void (*bond_execute)(struct i915_request *rq,
470 struct dma_fence *signal);
471
472 /*
473 * Call when the priority on a request has changed and it and its
474 * dependencies may need rescheduling. Note the request itself may
475 * not be ready to run!
476 */
477 void (*schedule)(struct i915_request *request,
478 const struct i915_sched_attr *attr);
479
480 void (*release)(struct intel_engine_cs *engine);
481
482 struct intel_engine_execlists execlists;
483
484 /*
485 * Keep track of completed timelines on this engine for early
486 * retirement with the goal of quickly enabling powersaving as
487 * soon as the engine is idle.
488 */
489 struct intel_timeline *retire;
490 struct work_struct retire_work;
491
492 /* status_notifier: list of callbacks for context-switch changes */
493 struct atomic_notifier_head context_status_notifier;
494
495 #define I915_ENGINE_USING_CMD_PARSER BIT(0)
496 #define I915_ENGINE_SUPPORTS_STATS BIT(1)
497 #define I915_ENGINE_HAS_PREEMPTION BIT(2)
498 #define I915_ENGINE_HAS_SEMAPHORES BIT(3)
499 #define I915_ENGINE_HAS_TIMESLICES BIT(4)
500 #define I915_ENGINE_NEEDS_BREADCRUMB_TASKLET BIT(5)
501 #define I915_ENGINE_IS_VIRTUAL BIT(6)
502 #define I915_ENGINE_HAS_RELATIVE_MMIO BIT(7)
503 #define I915_ENGINE_REQUIRES_CMD_PARSER BIT(8)
504 unsigned int flags;
505
506 /*
507 * Table of commands the command parser needs to know about
508 * for this engine.
509 */
510 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
511
512 /*
513 * Table of registers allowed in commands that read/write registers.
514 */
515 const struct drm_i915_reg_table *reg_tables;
516 int reg_table_count;
517
518 /*
519 * Returns the bitmask for the length field of the specified command.
520 * Return 0 for an unrecognized/invalid command.
521 *
522 * If the command parser finds an entry for a command in the engine's
523 * cmd_tables, it gets the command's length based on the table entry.
524 * If not, it calls this function to determine the per-engine length
525 * field encoding for the command (i.e. different opcode ranges use
526 * certain bits to encode the command length in the header).
527 */
528 u32 (*get_cmd_length_mask)(u32 cmd_header);
529
530 struct {
531 /**
532 * @lock: Lock protecting the below fields.
533 */
534 seqlock_t lock;
535 /**
536 * @enabled: Reference count indicating number of listeners.
537 */
538 unsigned int enabled;
539 /**
540 * @active: Number of contexts currently scheduled in.
541 */
542 unsigned int active;
543 /**
544 * @enabled_at: Timestamp when busy stats were enabled.
545 */
546 ktime_t enabled_at;
547 /**
548 * @start: Timestamp of the last idle to active transition.
549 *
550 * Idle is defined as active == 0, active is active > 0.
551 */
552 ktime_t start;
553 /**
554 * @total: Total time this engine was busy.
555 *
556 * Accumulated time not counting the most recent block in cases
557 * where engine is currently busy (active > 0).
558 */
559 ktime_t total;
560 } stats;
561
562 struct {
563 unsigned long heartbeat_interval_ms;
564 unsigned long max_busywait_duration_ns;
565 unsigned long preempt_timeout_ms;
566 unsigned long stop_timeout_ms;
567 unsigned long timeslice_duration_ms;
568 } props;
569 };
570
571 static inline bool
572 intel_engine_using_cmd_parser(const struct intel_engine_cs *engine)
573 {
574 return engine->flags & I915_ENGINE_USING_CMD_PARSER;
575 }
576
577 static inline bool
578 intel_engine_requires_cmd_parser(const struct intel_engine_cs *engine)
579 {
580 return engine->flags & I915_ENGINE_REQUIRES_CMD_PARSER;
581 }
582
583 static inline bool
584 intel_engine_supports_stats(const struct intel_engine_cs *engine)
585 {
586 return engine->flags & I915_ENGINE_SUPPORTS_STATS;
587 }
588
589 static inline bool
590 intel_engine_has_preemption(const struct intel_engine_cs *engine)
591 {
592 return engine->flags & I915_ENGINE_HAS_PREEMPTION;
593 }
594
595 static inline bool
596 intel_engine_has_semaphores(const struct intel_engine_cs *engine)
597 {
598 return engine->flags & I915_ENGINE_HAS_SEMAPHORES;
599 }
600
601 static inline bool
602 intel_engine_has_timeslices(const struct intel_engine_cs *engine)
603 {
604 if (!IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
605 return false;
606
607 return engine->flags & I915_ENGINE_HAS_TIMESLICES;
608 }
609
610 static inline bool
611 intel_engine_needs_breadcrumb_tasklet(const struct intel_engine_cs *engine)
612 {
613 return engine->flags & I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
614 }
615
616 static inline bool
617 intel_engine_is_virtual(const struct intel_engine_cs *engine)
618 {
619 return engine->flags & I915_ENGINE_IS_VIRTUAL;
620 }
621
622 static inline bool
623 intel_engine_has_relative_mmio(const struct intel_engine_cs * const engine)
624 {
625 return engine->flags & I915_ENGINE_HAS_RELATIVE_MMIO;
626 }
627
628 #define instdone_has_slice(dev_priv___, sseu___, slice___) \
629 ((IS_GEN(dev_priv___, 7) ? 1 : ((sseu___)->slice_mask)) & BIT(slice___))
630
631 #define instdone_has_subslice(dev_priv__, sseu__, slice__, subslice__) \
632 (IS_GEN(dev_priv__, 7) ? (1 & BIT(subslice__)) : \
633 intel_sseu_has_subslice(sseu__, 0, subslice__))
634
635 #define for_each_instdone_slice_subslice(dev_priv_, sseu_, slice_, subslice_) \
636 for ((slice_) = 0, (subslice_) = 0; (slice_) < I915_MAX_SLICES; \
637 (subslice_) = ((subslice_) + 1) % I915_MAX_SUBSLICES, \
638 (slice_) += ((subslice_) == 0)) \
639 for_each_if((instdone_has_slice(dev_priv_, sseu_, slice_)) && \
640 (instdone_has_subslice(dev_priv_, sseu_, slice_, \
641 subslice_)))
642 #endif /* __INTEL_ENGINE_TYPES_H__ */