]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/gpu/drm/i915/gt/intel_rps.c
selftests: forwarding: add shebang for sch_red.sh
[people/ms/linux.git] / drivers / gpu / drm / i915 / gt / intel_rps.c
1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/i915_drm.h>
9
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "intel_breadcrumbs.h"
13 #include "intel_gt.h"
14 #include "intel_gt_clock_utils.h"
15 #include "intel_gt_irq.h"
16 #include "intel_gt_pm_irq.h"
17 #include "intel_gt_regs.h"
18 #include "intel_mchbar_regs.h"
19 #include "intel_pcode.h"
20 #include "intel_rps.h"
21 #include "vlv_sideband.h"
22 #include "../../../platform/x86/intel_ips.h"
23
24 #define BUSY_MAX_EI 20u /* ms */
25
26 /*
27 * Lock protecting IPS related data structures
28 */
29 static DEFINE_SPINLOCK(mchdev_lock);
30
31 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
32 {
33 return container_of(rps, struct intel_gt, rps);
34 }
35
36 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
37 {
38 return rps_to_gt(rps)->i915;
39 }
40
41 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
42 {
43 return rps_to_gt(rps)->uncore;
44 }
45
46 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
47 {
48 struct intel_gt *gt = rps_to_gt(rps);
49
50 return &gt->uc.guc.slpc;
51 }
52
53 static bool rps_uses_slpc(struct intel_rps *rps)
54 {
55 struct intel_gt *gt = rps_to_gt(rps);
56
57 return intel_uc_uses_guc_slpc(&gt->uc);
58 }
59
60 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
61 {
62 return mask & ~rps->pm_intrmsk_mbz;
63 }
64
65 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
66 {
67 intel_uncore_write_fw(uncore, reg, val);
68 }
69
70 static void rps_timer(struct timer_list *t)
71 {
72 struct intel_rps *rps = from_timer(rps, t, timer);
73 struct intel_engine_cs *engine;
74 ktime_t dt, last, timestamp;
75 enum intel_engine_id id;
76 s64 max_busy[3] = {};
77
78 timestamp = 0;
79 for_each_engine(engine, rps_to_gt(rps), id) {
80 s64 busy;
81 int i;
82
83 dt = intel_engine_get_busy_time(engine, &timestamp);
84 last = engine->stats.rps;
85 engine->stats.rps = dt;
86
87 busy = ktime_to_ns(ktime_sub(dt, last));
88 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
89 if (busy > max_busy[i])
90 swap(busy, max_busy[i]);
91 }
92 }
93 last = rps->pm_timestamp;
94 rps->pm_timestamp = timestamp;
95
96 if (intel_rps_is_active(rps)) {
97 s64 busy;
98 int i;
99
100 dt = ktime_sub(timestamp, last);
101
102 /*
103 * Our goal is to evaluate each engine independently, so we run
104 * at the lowest clocks required to sustain the heaviest
105 * workload. However, a task may be split into sequential
106 * dependent operations across a set of engines, such that
107 * the independent contributions do not account for high load,
108 * but overall the task is GPU bound. For example, consider
109 * video decode on vcs followed by colour post-processing
110 * on vecs, followed by general post-processing on rcs.
111 * Since multi-engines being active does imply a single
112 * continuous workload across all engines, we hedge our
113 * bets by only contributing a factor of the distributed
114 * load into our busyness calculation.
115 */
116 busy = max_busy[0];
117 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
118 if (!max_busy[i])
119 break;
120
121 busy += div_u64(max_busy[i], 1 << i);
122 }
123 GT_TRACE(rps_to_gt(rps),
124 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
125 busy, (int)div64_u64(100 * busy, dt),
126 max_busy[0], max_busy[1], max_busy[2],
127 rps->pm_interval);
128
129 if (100 * busy > rps->power.up_threshold * dt &&
130 rps->cur_freq < rps->max_freq_softlimit) {
131 rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
132 rps->pm_interval = 1;
133 schedule_work(&rps->work);
134 } else if (100 * busy < rps->power.down_threshold * dt &&
135 rps->cur_freq > rps->min_freq_softlimit) {
136 rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
137 rps->pm_interval = 1;
138 schedule_work(&rps->work);
139 } else {
140 rps->last_adj = 0;
141 }
142
143 mod_timer(&rps->timer,
144 jiffies + msecs_to_jiffies(rps->pm_interval));
145 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
146 }
147 }
148
149 static void rps_start_timer(struct intel_rps *rps)
150 {
151 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
152 rps->pm_interval = 1;
153 mod_timer(&rps->timer, jiffies + 1);
154 }
155
156 static void rps_stop_timer(struct intel_rps *rps)
157 {
158 del_timer_sync(&rps->timer);
159 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
160 cancel_work_sync(&rps->work);
161 }
162
163 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
164 {
165 u32 mask = 0;
166
167 /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
168 if (val > rps->min_freq_softlimit)
169 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
170 GEN6_PM_RP_DOWN_THRESHOLD |
171 GEN6_PM_RP_DOWN_TIMEOUT);
172
173 if (val < rps->max_freq_softlimit)
174 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
175
176 mask &= rps->pm_events;
177
178 return rps_pm_sanitize_mask(rps, ~mask);
179 }
180
181 static void rps_reset_ei(struct intel_rps *rps)
182 {
183 memset(&rps->ei, 0, sizeof(rps->ei));
184 }
185
186 static void rps_enable_interrupts(struct intel_rps *rps)
187 {
188 struct intel_gt *gt = rps_to_gt(rps);
189
190 GEM_BUG_ON(rps_uses_slpc(rps));
191
192 GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
193 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
194
195 rps_reset_ei(rps);
196
197 spin_lock_irq(&gt->irq_lock);
198 gen6_gt_pm_enable_irq(gt, rps->pm_events);
199 spin_unlock_irq(&gt->irq_lock);
200
201 intel_uncore_write(gt->uncore,
202 GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
203 }
204
205 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
206 {
207 gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
208 }
209
210 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
211 {
212 while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
213 ;
214 }
215
216 static void rps_reset_interrupts(struct intel_rps *rps)
217 {
218 struct intel_gt *gt = rps_to_gt(rps);
219
220 spin_lock_irq(&gt->irq_lock);
221 if (GRAPHICS_VER(gt->i915) >= 11)
222 gen11_rps_reset_interrupts(rps);
223 else
224 gen6_rps_reset_interrupts(rps);
225
226 rps->pm_iir = 0;
227 spin_unlock_irq(&gt->irq_lock);
228 }
229
230 static void rps_disable_interrupts(struct intel_rps *rps)
231 {
232 struct intel_gt *gt = rps_to_gt(rps);
233
234 intel_uncore_write(gt->uncore,
235 GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
236
237 spin_lock_irq(&gt->irq_lock);
238 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
239 spin_unlock_irq(&gt->irq_lock);
240
241 intel_synchronize_irq(gt->i915);
242
243 /*
244 * Now that we will not be generating any more work, flush any
245 * outstanding tasks. As we are called on the RPS idle path,
246 * we will reset the GPU to minimum frequencies, so the current
247 * state of the worker can be discarded.
248 */
249 cancel_work_sync(&rps->work);
250
251 rps_reset_interrupts(rps);
252 GT_TRACE(gt, "interrupts:off\n");
253 }
254
255 static const struct cparams {
256 u16 i;
257 u16 t;
258 u16 m;
259 u16 c;
260 } cparams[] = {
261 { 1, 1333, 301, 28664 },
262 { 1, 1066, 294, 24460 },
263 { 1, 800, 294, 25192 },
264 { 0, 1333, 276, 27605 },
265 { 0, 1066, 276, 27605 },
266 { 0, 800, 231, 23784 },
267 };
268
269 static void gen5_rps_init(struct intel_rps *rps)
270 {
271 struct drm_i915_private *i915 = rps_to_i915(rps);
272 struct intel_uncore *uncore = rps_to_uncore(rps);
273 u8 fmax, fmin, fstart;
274 u32 rgvmodectl;
275 int c_m, i;
276
277 if (i915->fsb_freq <= 3200)
278 c_m = 0;
279 else if (i915->fsb_freq <= 4800)
280 c_m = 1;
281 else
282 c_m = 2;
283
284 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
285 if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
286 rps->ips.m = cparams[i].m;
287 rps->ips.c = cparams[i].c;
288 break;
289 }
290 }
291
292 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
293
294 /* Set up min, max, and cur for interrupt handling */
295 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
296 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
297 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
298 MEMMODE_FSTART_SHIFT;
299 drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
300 fmax, fmin, fstart);
301
302 rps->min_freq = fmax;
303 rps->efficient_freq = fstart;
304 rps->max_freq = fmin;
305 }
306
307 static unsigned long
308 __ips_chipset_val(struct intel_ips *ips)
309 {
310 struct intel_uncore *uncore =
311 rps_to_uncore(container_of(ips, struct intel_rps, ips));
312 unsigned long now = jiffies_to_msecs(jiffies), dt;
313 unsigned long result;
314 u64 total, delta;
315
316 lockdep_assert_held(&mchdev_lock);
317
318 /*
319 * Prevent division-by-zero if we are asking too fast.
320 * Also, we don't get interesting results if we are polling
321 * faster than once in 10ms, so just return the saved value
322 * in such cases.
323 */
324 dt = now - ips->last_time1;
325 if (dt <= 10)
326 return ips->chipset_power;
327
328 /* FIXME: handle per-counter overflow */
329 total = intel_uncore_read(uncore, DMIEC);
330 total += intel_uncore_read(uncore, DDREC);
331 total += intel_uncore_read(uncore, CSIEC);
332
333 delta = total - ips->last_count1;
334
335 result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
336
337 ips->last_count1 = total;
338 ips->last_time1 = now;
339
340 ips->chipset_power = result;
341
342 return result;
343 }
344
345 static unsigned long ips_mch_val(struct intel_uncore *uncore)
346 {
347 unsigned int m, x, b;
348 u32 tsfs;
349
350 tsfs = intel_uncore_read(uncore, TSFS);
351 x = intel_uncore_read8(uncore, TR1);
352
353 b = tsfs & TSFS_INTR_MASK;
354 m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
355
356 return m * x / 127 - b;
357 }
358
359 static int _pxvid_to_vd(u8 pxvid)
360 {
361 if (pxvid == 0)
362 return 0;
363
364 if (pxvid >= 8 && pxvid < 31)
365 pxvid = 31;
366
367 return (pxvid + 2) * 125;
368 }
369
370 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
371 {
372 const int vd = _pxvid_to_vd(pxvid);
373
374 if (INTEL_INFO(i915)->is_mobile)
375 return max(vd - 1125, 0);
376
377 return vd;
378 }
379
380 static void __gen5_ips_update(struct intel_ips *ips)
381 {
382 struct intel_uncore *uncore =
383 rps_to_uncore(container_of(ips, struct intel_rps, ips));
384 u64 now, delta, dt;
385 u32 count;
386
387 lockdep_assert_held(&mchdev_lock);
388
389 now = ktime_get_raw_ns();
390 dt = now - ips->last_time2;
391 do_div(dt, NSEC_PER_MSEC);
392
393 /* Don't divide by 0 */
394 if (dt <= 10)
395 return;
396
397 count = intel_uncore_read(uncore, GFXEC);
398 delta = count - ips->last_count2;
399
400 ips->last_count2 = count;
401 ips->last_time2 = now;
402
403 /* More magic constants... */
404 ips->gfx_power = div_u64(delta * 1181, dt * 10);
405 }
406
407 static void gen5_rps_update(struct intel_rps *rps)
408 {
409 spin_lock_irq(&mchdev_lock);
410 __gen5_ips_update(&rps->ips);
411 spin_unlock_irq(&mchdev_lock);
412 }
413
414 static unsigned int gen5_invert_freq(struct intel_rps *rps,
415 unsigned int val)
416 {
417 /* Invert the frequency bin into an ips delay */
418 val = rps->max_freq - val;
419 val = rps->min_freq + val;
420
421 return val;
422 }
423
424 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
425 {
426 struct intel_uncore *uncore = rps_to_uncore(rps);
427 u16 rgvswctl;
428
429 lockdep_assert_held(&mchdev_lock);
430
431 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
432 if (rgvswctl & MEMCTL_CMD_STS) {
433 DRM_DEBUG("gpu busy, RCS change rejected\n");
434 return -EBUSY; /* still busy with another command */
435 }
436
437 /* Invert the frequency bin into an ips delay */
438 val = gen5_invert_freq(rps, val);
439
440 rgvswctl =
441 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
442 (val << MEMCTL_FREQ_SHIFT) |
443 MEMCTL_SFCAVM;
444 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
445 intel_uncore_posting_read16(uncore, MEMSWCTL);
446
447 rgvswctl |= MEMCTL_CMD_STS;
448 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
449
450 return 0;
451 }
452
453 static int gen5_rps_set(struct intel_rps *rps, u8 val)
454 {
455 int err;
456
457 spin_lock_irq(&mchdev_lock);
458 err = __gen5_rps_set(rps, val);
459 spin_unlock_irq(&mchdev_lock);
460
461 return err;
462 }
463
464 static unsigned long intel_pxfreq(u32 vidfreq)
465 {
466 int div = (vidfreq & 0x3f0000) >> 16;
467 int post = (vidfreq & 0x3000) >> 12;
468 int pre = (vidfreq & 0x7);
469
470 if (!pre)
471 return 0;
472
473 return div * 133333 / (pre << post);
474 }
475
476 static unsigned int init_emon(struct intel_uncore *uncore)
477 {
478 u8 pxw[16];
479 int i;
480
481 /* Disable to program */
482 intel_uncore_write(uncore, ECR, 0);
483 intel_uncore_posting_read(uncore, ECR);
484
485 /* Program energy weights for various events */
486 intel_uncore_write(uncore, SDEW, 0x15040d00);
487 intel_uncore_write(uncore, CSIEW0, 0x007f0000);
488 intel_uncore_write(uncore, CSIEW1, 0x1e220004);
489 intel_uncore_write(uncore, CSIEW2, 0x04000004);
490
491 for (i = 0; i < 5; i++)
492 intel_uncore_write(uncore, PEW(i), 0);
493 for (i = 0; i < 3; i++)
494 intel_uncore_write(uncore, DEW(i), 0);
495
496 /* Program P-state weights to account for frequency power adjustment */
497 for (i = 0; i < 16; i++) {
498 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
499 unsigned int freq = intel_pxfreq(pxvidfreq);
500 unsigned int vid =
501 (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
502 unsigned int val;
503
504 val = vid * vid * freq / 1000 * 255;
505 val /= 127 * 127 * 900;
506
507 pxw[i] = val;
508 }
509 /* Render standby states get 0 weight */
510 pxw[14] = 0;
511 pxw[15] = 0;
512
513 for (i = 0; i < 4; i++) {
514 intel_uncore_write(uncore, PXW(i),
515 pxw[i * 4 + 0] << 24 |
516 pxw[i * 4 + 1] << 16 |
517 pxw[i * 4 + 2] << 8 |
518 pxw[i * 4 + 3] << 0);
519 }
520
521 /* Adjust magic regs to magic values (more experimental results) */
522 intel_uncore_write(uncore, OGW0, 0);
523 intel_uncore_write(uncore, OGW1, 0);
524 intel_uncore_write(uncore, EG0, 0x00007f00);
525 intel_uncore_write(uncore, EG1, 0x0000000e);
526 intel_uncore_write(uncore, EG2, 0x000e0000);
527 intel_uncore_write(uncore, EG3, 0x68000300);
528 intel_uncore_write(uncore, EG4, 0x42000000);
529 intel_uncore_write(uncore, EG5, 0x00140031);
530 intel_uncore_write(uncore, EG6, 0);
531 intel_uncore_write(uncore, EG7, 0);
532
533 for (i = 0; i < 8; i++)
534 intel_uncore_write(uncore, PXWL(i), 0);
535
536 /* Enable PMON + select events */
537 intel_uncore_write(uncore, ECR, 0x80000019);
538
539 return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
540 }
541
542 static bool gen5_rps_enable(struct intel_rps *rps)
543 {
544 struct drm_i915_private *i915 = rps_to_i915(rps);
545 struct intel_uncore *uncore = rps_to_uncore(rps);
546 u8 fstart, vstart;
547 u32 rgvmodectl;
548
549 spin_lock_irq(&mchdev_lock);
550
551 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
552
553 /* Enable temp reporting */
554 intel_uncore_write16(uncore, PMMISC,
555 intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
556 intel_uncore_write16(uncore, TSC1,
557 intel_uncore_read16(uncore, TSC1) | TSE);
558
559 /* 100ms RC evaluation intervals */
560 intel_uncore_write(uncore, RCUPEI, 100000);
561 intel_uncore_write(uncore, RCDNEI, 100000);
562
563 /* Set max/min thresholds to 90ms and 80ms respectively */
564 intel_uncore_write(uncore, RCBMAXAVG, 90000);
565 intel_uncore_write(uncore, RCBMINAVG, 80000);
566
567 intel_uncore_write(uncore, MEMIHYST, 1);
568
569 /* Set up min, max, and cur for interrupt handling */
570 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
571 MEMMODE_FSTART_SHIFT;
572
573 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
574 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
575
576 intel_uncore_write(uncore,
577 MEMINTREN,
578 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
579
580 intel_uncore_write(uncore, VIDSTART, vstart);
581 intel_uncore_posting_read(uncore, VIDSTART);
582
583 rgvmodectl |= MEMMODE_SWMODE_EN;
584 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
585
586 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
587 MEMCTL_CMD_STS) == 0, 10))
588 drm_err(&uncore->i915->drm,
589 "stuck trying to change perf mode\n");
590 mdelay(1);
591
592 __gen5_rps_set(rps, rps->cur_freq);
593
594 rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
595 rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
596 rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
597 rps->ips.last_time1 = jiffies_to_msecs(jiffies);
598
599 rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
600 rps->ips.last_time2 = ktime_get_raw_ns();
601
602 spin_lock(&i915->irq_lock);
603 ilk_enable_display_irq(i915, DE_PCU_EVENT);
604 spin_unlock(&i915->irq_lock);
605
606 spin_unlock_irq(&mchdev_lock);
607
608 rps->ips.corr = init_emon(uncore);
609
610 return true;
611 }
612
613 static void gen5_rps_disable(struct intel_rps *rps)
614 {
615 struct drm_i915_private *i915 = rps_to_i915(rps);
616 struct intel_uncore *uncore = rps_to_uncore(rps);
617 u16 rgvswctl;
618
619 spin_lock_irq(&mchdev_lock);
620
621 spin_lock(&i915->irq_lock);
622 ilk_disable_display_irq(i915, DE_PCU_EVENT);
623 spin_unlock(&i915->irq_lock);
624
625 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
626
627 /* Ack interrupts, disable EFC interrupt */
628 intel_uncore_write(uncore, MEMINTREN,
629 intel_uncore_read(uncore, MEMINTREN) &
630 ~MEMINT_EVAL_CHG_EN);
631 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
632
633 /* Go back to the starting frequency */
634 __gen5_rps_set(rps, rps->idle_freq);
635 mdelay(1);
636 rgvswctl |= MEMCTL_CMD_STS;
637 intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
638 mdelay(1);
639
640 spin_unlock_irq(&mchdev_lock);
641 }
642
643 static u32 rps_limits(struct intel_rps *rps, u8 val)
644 {
645 u32 limits;
646
647 /*
648 * Only set the down limit when we've reached the lowest level to avoid
649 * getting more interrupts, otherwise leave this clear. This prevents a
650 * race in the hw when coming out of rc6: There's a tiny window where
651 * the hw runs at the minimal clock before selecting the desired
652 * frequency, if the down threshold expires in that window we will not
653 * receive a down interrupt.
654 */
655 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
656 limits = rps->max_freq_softlimit << 23;
657 if (val <= rps->min_freq_softlimit)
658 limits |= rps->min_freq_softlimit << 14;
659 } else {
660 limits = rps->max_freq_softlimit << 24;
661 if (val <= rps->min_freq_softlimit)
662 limits |= rps->min_freq_softlimit << 16;
663 }
664
665 return limits;
666 }
667
668 static void rps_set_power(struct intel_rps *rps, int new_power)
669 {
670 struct intel_gt *gt = rps_to_gt(rps);
671 struct intel_uncore *uncore = gt->uncore;
672 u32 threshold_up = 0, threshold_down = 0; /* in % */
673 u32 ei_up = 0, ei_down = 0;
674
675 lockdep_assert_held(&rps->power.mutex);
676
677 if (new_power == rps->power.mode)
678 return;
679
680 threshold_up = 95;
681 threshold_down = 85;
682
683 /* Note the units here are not exactly 1us, but 1280ns. */
684 switch (new_power) {
685 case LOW_POWER:
686 ei_up = 16000;
687 ei_down = 32000;
688 break;
689
690 case BETWEEN:
691 ei_up = 13000;
692 ei_down = 32000;
693 break;
694
695 case HIGH_POWER:
696 ei_up = 10000;
697 ei_down = 32000;
698 break;
699 }
700
701 /* When byt can survive without system hang with dynamic
702 * sw freq adjustments, this restriction can be lifted.
703 */
704 if (IS_VALLEYVIEW(gt->i915))
705 goto skip_hw_write;
706
707 GT_TRACE(gt,
708 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
709 new_power, threshold_up, ei_up, threshold_down, ei_down);
710
711 set(uncore, GEN6_RP_UP_EI,
712 intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
713 set(uncore, GEN6_RP_UP_THRESHOLD,
714 intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
715
716 set(uncore, GEN6_RP_DOWN_EI,
717 intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
718 set(uncore, GEN6_RP_DOWN_THRESHOLD,
719 intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
720
721 set(uncore, GEN6_RP_CONTROL,
722 (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
723 GEN6_RP_MEDIA_HW_NORMAL_MODE |
724 GEN6_RP_MEDIA_IS_GFX |
725 GEN6_RP_ENABLE |
726 GEN6_RP_UP_BUSY_AVG |
727 GEN6_RP_DOWN_IDLE_AVG);
728
729 skip_hw_write:
730 rps->power.mode = new_power;
731 rps->power.up_threshold = threshold_up;
732 rps->power.down_threshold = threshold_down;
733 }
734
735 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
736 {
737 int new_power;
738
739 new_power = rps->power.mode;
740 switch (rps->power.mode) {
741 case LOW_POWER:
742 if (val > rps->efficient_freq + 1 &&
743 val > rps->cur_freq)
744 new_power = BETWEEN;
745 break;
746
747 case BETWEEN:
748 if (val <= rps->efficient_freq &&
749 val < rps->cur_freq)
750 new_power = LOW_POWER;
751 else if (val >= rps->rp0_freq &&
752 val > rps->cur_freq)
753 new_power = HIGH_POWER;
754 break;
755
756 case HIGH_POWER:
757 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
758 val < rps->cur_freq)
759 new_power = BETWEEN;
760 break;
761 }
762 /* Max/min bins are special */
763 if (val <= rps->min_freq_softlimit)
764 new_power = LOW_POWER;
765 if (val >= rps->max_freq_softlimit)
766 new_power = HIGH_POWER;
767
768 mutex_lock(&rps->power.mutex);
769 if (rps->power.interactive)
770 new_power = HIGH_POWER;
771 rps_set_power(rps, new_power);
772 mutex_unlock(&rps->power.mutex);
773 }
774
775 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
776 {
777 GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
778 str_yes_no(interactive));
779
780 mutex_lock(&rps->power.mutex);
781 if (interactive) {
782 if (!rps->power.interactive++ && intel_rps_is_active(rps))
783 rps_set_power(rps, HIGH_POWER);
784 } else {
785 GEM_BUG_ON(!rps->power.interactive);
786 rps->power.interactive--;
787 }
788 mutex_unlock(&rps->power.mutex);
789 }
790
791 static int gen6_rps_set(struct intel_rps *rps, u8 val)
792 {
793 struct intel_uncore *uncore = rps_to_uncore(rps);
794 struct drm_i915_private *i915 = rps_to_i915(rps);
795 u32 swreq;
796
797 GEM_BUG_ON(rps_uses_slpc(rps));
798
799 if (GRAPHICS_VER(i915) >= 9)
800 swreq = GEN9_FREQUENCY(val);
801 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
802 swreq = HSW_FREQUENCY(val);
803 else
804 swreq = (GEN6_FREQUENCY(val) |
805 GEN6_OFFSET(0) |
806 GEN6_AGGRESSIVE_TURBO);
807 set(uncore, GEN6_RPNSWREQ, swreq);
808
809 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
810 val, intel_gpu_freq(rps, val), swreq);
811
812 return 0;
813 }
814
815 static int vlv_rps_set(struct intel_rps *rps, u8 val)
816 {
817 struct drm_i915_private *i915 = rps_to_i915(rps);
818 int err;
819
820 vlv_punit_get(i915);
821 err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
822 vlv_punit_put(i915);
823
824 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
825 val, intel_gpu_freq(rps, val));
826
827 return err;
828 }
829
830 static int rps_set(struct intel_rps *rps, u8 val, bool update)
831 {
832 struct drm_i915_private *i915 = rps_to_i915(rps);
833 int err;
834
835 if (val == rps->last_freq)
836 return 0;
837
838 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
839 err = vlv_rps_set(rps, val);
840 else if (GRAPHICS_VER(i915) >= 6)
841 err = gen6_rps_set(rps, val);
842 else
843 err = gen5_rps_set(rps, val);
844 if (err)
845 return err;
846
847 if (update && GRAPHICS_VER(i915) >= 6)
848 gen6_rps_set_thresholds(rps, val);
849 rps->last_freq = val;
850
851 return 0;
852 }
853
854 void intel_rps_unpark(struct intel_rps *rps)
855 {
856 if (!intel_rps_is_enabled(rps))
857 return;
858
859 GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
860
861 /*
862 * Use the user's desired frequency as a guide, but for better
863 * performance, jump directly to RPe as our starting frequency.
864 */
865 mutex_lock(&rps->lock);
866
867 intel_rps_set_active(rps);
868 intel_rps_set(rps,
869 clamp(rps->cur_freq,
870 rps->min_freq_softlimit,
871 rps->max_freq_softlimit));
872
873 mutex_unlock(&rps->lock);
874
875 rps->pm_iir = 0;
876 if (intel_rps_has_interrupts(rps))
877 rps_enable_interrupts(rps);
878 if (intel_rps_uses_timer(rps))
879 rps_start_timer(rps);
880
881 if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
882 gen5_rps_update(rps);
883 }
884
885 void intel_rps_park(struct intel_rps *rps)
886 {
887 int adj;
888
889 if (!intel_rps_is_enabled(rps))
890 return;
891
892 if (!intel_rps_clear_active(rps))
893 return;
894
895 if (intel_rps_uses_timer(rps))
896 rps_stop_timer(rps);
897 if (intel_rps_has_interrupts(rps))
898 rps_disable_interrupts(rps);
899
900 if (rps->last_freq <= rps->idle_freq)
901 return;
902
903 /*
904 * The punit delays the write of the frequency and voltage until it
905 * determines the GPU is awake. During normal usage we don't want to
906 * waste power changing the frequency if the GPU is sleeping (rc6).
907 * However, the GPU and driver is now idle and we do not want to delay
908 * switching to minimum voltage (reducing power whilst idle) as we do
909 * not expect to be woken in the near future and so must flush the
910 * change by waking the device.
911 *
912 * We choose to take the media powerwell (either would do to trick the
913 * punit into committing the voltage change) as that takes a lot less
914 * power than the render powerwell.
915 */
916 intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
917 rps_set(rps, rps->idle_freq, false);
918 intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
919
920 /*
921 * Since we will try and restart from the previously requested
922 * frequency on unparking, treat this idle point as a downclock
923 * interrupt and reduce the frequency for resume. If we park/unpark
924 * more frequently than the rps worker can run, we will not respond
925 * to any EI and never see a change in frequency.
926 *
927 * (Note we accommodate Cherryview's limitation of only using an
928 * even bin by applying it to all.)
929 */
930 adj = rps->last_adj;
931 if (adj < 0)
932 adj *= 2;
933 else /* CHV needs even encode values */
934 adj = -2;
935 rps->last_adj = adj;
936 rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
937 if (rps->cur_freq < rps->efficient_freq) {
938 rps->cur_freq = rps->efficient_freq;
939 rps->last_adj = 0;
940 }
941
942 GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
943 }
944
945 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
946 {
947 struct intel_guc_slpc *slpc;
948
949 if (rps_uses_slpc(rps)) {
950 slpc = rps_to_slpc(rps);
951
952 return slpc->boost_freq;
953 } else {
954 return intel_gpu_freq(rps, rps->boost_freq);
955 }
956 }
957
958 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
959 {
960 bool boost = false;
961
962 /* Validate against (static) hardware limits */
963 val = intel_freq_opcode(rps, val);
964 if (val < rps->min_freq || val > rps->max_freq)
965 return -EINVAL;
966
967 mutex_lock(&rps->lock);
968 if (val != rps->boost_freq) {
969 rps->boost_freq = val;
970 boost = atomic_read(&rps->num_waiters);
971 }
972 mutex_unlock(&rps->lock);
973 if (boost)
974 schedule_work(&rps->work);
975
976 return 0;
977 }
978
979 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
980 {
981 struct intel_guc_slpc *slpc;
982
983 if (rps_uses_slpc(rps)) {
984 slpc = rps_to_slpc(rps);
985
986 return intel_guc_slpc_set_boost_freq(slpc, freq);
987 } else {
988 return rps_set_boost_freq(rps, freq);
989 }
990 }
991
992 void intel_rps_dec_waiters(struct intel_rps *rps)
993 {
994 struct intel_guc_slpc *slpc;
995
996 if (rps_uses_slpc(rps)) {
997 slpc = rps_to_slpc(rps);
998
999 intel_guc_slpc_dec_waiters(slpc);
1000 } else {
1001 atomic_dec(&rps->num_waiters);
1002 }
1003 }
1004
1005 void intel_rps_boost(struct i915_request *rq)
1006 {
1007 struct intel_guc_slpc *slpc;
1008
1009 if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1010 return;
1011
1012 /* Serializes with i915_request_retire() */
1013 if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1014 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1015
1016 if (rps_uses_slpc(rps)) {
1017 slpc = rps_to_slpc(rps);
1018
1019 /* Return if old value is non zero */
1020 if (!atomic_fetch_inc(&slpc->num_waiters))
1021 schedule_work(&slpc->boost_work);
1022
1023 return;
1024 }
1025
1026 if (atomic_fetch_inc(&rps->num_waiters))
1027 return;
1028
1029 if (!intel_rps_is_active(rps))
1030 return;
1031
1032 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1033 rq->fence.context, rq->fence.seqno);
1034
1035 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1036 schedule_work(&rps->work);
1037
1038 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1039 }
1040 }
1041
1042 int intel_rps_set(struct intel_rps *rps, u8 val)
1043 {
1044 int err;
1045
1046 lockdep_assert_held(&rps->lock);
1047 GEM_BUG_ON(val > rps->max_freq);
1048 GEM_BUG_ON(val < rps->min_freq);
1049
1050 if (intel_rps_is_active(rps)) {
1051 err = rps_set(rps, val, true);
1052 if (err)
1053 return err;
1054
1055 /*
1056 * Make sure we continue to get interrupts
1057 * until we hit the minimum or maximum frequencies.
1058 */
1059 if (intel_rps_has_interrupts(rps)) {
1060 struct intel_uncore *uncore = rps_to_uncore(rps);
1061
1062 set(uncore,
1063 GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1064
1065 set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1066 }
1067 }
1068
1069 rps->cur_freq = val;
1070 return 0;
1071 }
1072
1073 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1074 {
1075 struct drm_i915_private *i915 = rps_to_i915(rps);
1076 struct intel_uncore *uncore = rps_to_uncore(rps);
1077
1078 if (IS_PONTEVECCHIO(i915))
1079 return intel_uncore_read(uncore, PVC_RP_STATE_CAP);
1080 else if (IS_XEHPSDV(i915))
1081 return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1082 else if (IS_GEN9_LP(i915))
1083 return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1084 else
1085 return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1086 }
1087
1088 /**
1089 * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1090 * @rps: the intel_rps structure
1091 * @caps: returned freq caps
1092 *
1093 * Returned "caps" frequencies should be converted to MHz using
1094 * intel_gpu_freq()
1095 */
1096 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1097 {
1098 struct drm_i915_private *i915 = rps_to_i915(rps);
1099 u32 rp_state_cap;
1100
1101 rp_state_cap = intel_rps_read_state_cap(rps);
1102
1103 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1104 if (IS_GEN9_LP(i915)) {
1105 caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1106 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1107 caps->min_freq = (rp_state_cap >> 0) & 0xff;
1108 } else {
1109 caps->rp0_freq = (rp_state_cap >> 0) & 0xff;
1110 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1111 caps->min_freq = (rp_state_cap >> 16) & 0xff;
1112 }
1113
1114 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1115 /*
1116 * In this case rp_state_cap register reports frequencies in
1117 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1118 * units of 16.67 MHz
1119 */
1120 caps->rp0_freq *= GEN9_FREQ_SCALER;
1121 caps->rp1_freq *= GEN9_FREQ_SCALER;
1122 caps->min_freq *= GEN9_FREQ_SCALER;
1123 }
1124 }
1125
1126 static void gen6_rps_init(struct intel_rps *rps)
1127 {
1128 struct drm_i915_private *i915 = rps_to_i915(rps);
1129 struct intel_rps_freq_caps caps;
1130
1131 gen6_rps_get_freq_caps(rps, &caps);
1132 rps->rp0_freq = caps.rp0_freq;
1133 rps->rp1_freq = caps.rp1_freq;
1134 rps->min_freq = caps.min_freq;
1135
1136 /* hw_max = RP0 until we check for overclocking */
1137 rps->max_freq = rps->rp0_freq;
1138
1139 rps->efficient_freq = rps->rp1_freq;
1140 if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1141 IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1142 u32 ddcc_status = 0;
1143 u32 mult = 1;
1144
1145 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1146 mult = GEN9_FREQ_SCALER;
1147 if (snb_pcode_read(rps_to_gt(rps)->uncore,
1148 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1149 &ddcc_status, NULL) == 0)
1150 rps->efficient_freq =
1151 clamp_t(u32,
1152 ((ddcc_status >> 8) & 0xff) * mult,
1153 rps->min_freq,
1154 rps->max_freq);
1155 }
1156 }
1157
1158 static bool rps_reset(struct intel_rps *rps)
1159 {
1160 struct drm_i915_private *i915 = rps_to_i915(rps);
1161
1162 /* force a reset */
1163 rps->power.mode = -1;
1164 rps->last_freq = -1;
1165
1166 if (rps_set(rps, rps->min_freq, true)) {
1167 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1168 return false;
1169 }
1170
1171 rps->cur_freq = rps->min_freq;
1172 return true;
1173 }
1174
1175 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1176 static bool gen9_rps_enable(struct intel_rps *rps)
1177 {
1178 struct intel_gt *gt = rps_to_gt(rps);
1179 struct intel_uncore *uncore = gt->uncore;
1180
1181 /* Program defaults and thresholds for RPS */
1182 if (GRAPHICS_VER(gt->i915) == 9)
1183 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1184 GEN9_FREQUENCY(rps->rp1_freq));
1185
1186 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1187
1188 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1189
1190 return rps_reset(rps);
1191 }
1192
1193 static bool gen8_rps_enable(struct intel_rps *rps)
1194 {
1195 struct intel_uncore *uncore = rps_to_uncore(rps);
1196
1197 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1198 HSW_FREQUENCY(rps->rp1_freq));
1199
1200 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1201
1202 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1203
1204 return rps_reset(rps);
1205 }
1206
1207 static bool gen6_rps_enable(struct intel_rps *rps)
1208 {
1209 struct intel_uncore *uncore = rps_to_uncore(rps);
1210
1211 /* Power down if completely idle for over 50ms */
1212 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1213 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1214
1215 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1216 GEN6_PM_RP_DOWN_THRESHOLD |
1217 GEN6_PM_RP_DOWN_TIMEOUT);
1218
1219 return rps_reset(rps);
1220 }
1221
1222 static int chv_rps_max_freq(struct intel_rps *rps)
1223 {
1224 struct drm_i915_private *i915 = rps_to_i915(rps);
1225 struct intel_gt *gt = rps_to_gt(rps);
1226 u32 val;
1227
1228 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1229
1230 switch (gt->info.sseu.eu_total) {
1231 case 8:
1232 /* (2 * 4) config */
1233 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1234 break;
1235 case 12:
1236 /* (2 * 6) config */
1237 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1238 break;
1239 case 16:
1240 /* (2 * 8) config */
1241 default:
1242 /* Setting (2 * 8) Min RP0 for any other combination */
1243 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1244 break;
1245 }
1246
1247 return val & FB_GFX_FREQ_FUSE_MASK;
1248 }
1249
1250 static int chv_rps_rpe_freq(struct intel_rps *rps)
1251 {
1252 struct drm_i915_private *i915 = rps_to_i915(rps);
1253 u32 val;
1254
1255 val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1256 val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1257
1258 return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1259 }
1260
1261 static int chv_rps_guar_freq(struct intel_rps *rps)
1262 {
1263 struct drm_i915_private *i915 = rps_to_i915(rps);
1264 u32 val;
1265
1266 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1267
1268 return val & FB_GFX_FREQ_FUSE_MASK;
1269 }
1270
1271 static u32 chv_rps_min_freq(struct intel_rps *rps)
1272 {
1273 struct drm_i915_private *i915 = rps_to_i915(rps);
1274 u32 val;
1275
1276 val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1277 val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1278
1279 return val & FB_GFX_FREQ_FUSE_MASK;
1280 }
1281
1282 static bool chv_rps_enable(struct intel_rps *rps)
1283 {
1284 struct intel_uncore *uncore = rps_to_uncore(rps);
1285 struct drm_i915_private *i915 = rps_to_i915(rps);
1286 u32 val;
1287
1288 /* 1: Program defaults and thresholds for RPS*/
1289 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1290 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1291 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1292 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1293 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1294
1295 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1296
1297 /* 2: Enable RPS */
1298 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1299 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1300 GEN6_RP_MEDIA_IS_GFX |
1301 GEN6_RP_ENABLE |
1302 GEN6_RP_UP_BUSY_AVG |
1303 GEN6_RP_DOWN_IDLE_AVG);
1304
1305 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1306 GEN6_PM_RP_DOWN_THRESHOLD |
1307 GEN6_PM_RP_DOWN_TIMEOUT);
1308
1309 /* Setting Fixed Bias */
1310 vlv_punit_get(i915);
1311
1312 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1313 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1314
1315 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1316
1317 vlv_punit_put(i915);
1318
1319 /* RPS code assumes GPLL is used */
1320 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1321 "GPLL not enabled\n");
1322
1323 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1324 str_yes_no(val & GPLLENABLE));
1325 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1326
1327 return rps_reset(rps);
1328 }
1329
1330 static int vlv_rps_guar_freq(struct intel_rps *rps)
1331 {
1332 struct drm_i915_private *i915 = rps_to_i915(rps);
1333 u32 val, rp1;
1334
1335 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1336
1337 rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1338 rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1339
1340 return rp1;
1341 }
1342
1343 static int vlv_rps_max_freq(struct intel_rps *rps)
1344 {
1345 struct drm_i915_private *i915 = rps_to_i915(rps);
1346 u32 val, rp0;
1347
1348 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1349
1350 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1351 /* Clamp to max */
1352 rp0 = min_t(u32, rp0, 0xea);
1353
1354 return rp0;
1355 }
1356
1357 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1358 {
1359 struct drm_i915_private *i915 = rps_to_i915(rps);
1360 u32 val, rpe;
1361
1362 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1363 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1364 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1365 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1366
1367 return rpe;
1368 }
1369
1370 static int vlv_rps_min_freq(struct intel_rps *rps)
1371 {
1372 struct drm_i915_private *i915 = rps_to_i915(rps);
1373 u32 val;
1374
1375 val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1376 /*
1377 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1378 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1379 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1380 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1381 * to make sure it matches what Punit accepts.
1382 */
1383 return max_t(u32, val, 0xc0);
1384 }
1385
1386 static bool vlv_rps_enable(struct intel_rps *rps)
1387 {
1388 struct intel_uncore *uncore = rps_to_uncore(rps);
1389 struct drm_i915_private *i915 = rps_to_i915(rps);
1390 u32 val;
1391
1392 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1393 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1394 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1395 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1396 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1397
1398 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1399
1400 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1401 GEN6_RP_MEDIA_TURBO |
1402 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1403 GEN6_RP_MEDIA_IS_GFX |
1404 GEN6_RP_ENABLE |
1405 GEN6_RP_UP_BUSY_AVG |
1406 GEN6_RP_DOWN_IDLE_CONT);
1407
1408 /* WaGsvRC0ResidencyMethod:vlv */
1409 rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1410
1411 vlv_punit_get(i915);
1412
1413 /* Setting Fixed Bias */
1414 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1415 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1416
1417 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1418
1419 vlv_punit_put(i915);
1420
1421 /* RPS code assumes GPLL is used */
1422 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1423 "GPLL not enabled\n");
1424
1425 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1426 str_yes_no(val & GPLLENABLE));
1427 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1428
1429 return rps_reset(rps);
1430 }
1431
1432 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1433 {
1434 struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1435 struct intel_uncore *uncore = rps_to_uncore(rps);
1436 unsigned int t, state1, state2;
1437 u32 pxvid, ext_v;
1438 u64 corr, corr2;
1439
1440 lockdep_assert_held(&mchdev_lock);
1441
1442 pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1443 pxvid = (pxvid >> 24) & 0x7f;
1444 ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1445
1446 state1 = ext_v;
1447
1448 /* Revel in the empirically derived constants */
1449
1450 /* Correction factor in 1/100000 units */
1451 t = ips_mch_val(uncore);
1452 if (t > 80)
1453 corr = t * 2349 + 135940;
1454 else if (t >= 50)
1455 corr = t * 964 + 29317;
1456 else /* < 50 */
1457 corr = t * 301 + 1004;
1458
1459 corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1460 corr2 = div_u64(corr, 100000) * ips->corr;
1461
1462 state2 = div_u64(corr2 * state1, 10000);
1463 state2 /= 100; /* convert to mW */
1464
1465 __gen5_ips_update(ips);
1466
1467 return ips->gfx_power + state2;
1468 }
1469
1470 static bool has_busy_stats(struct intel_rps *rps)
1471 {
1472 struct intel_engine_cs *engine;
1473 enum intel_engine_id id;
1474
1475 for_each_engine(engine, rps_to_gt(rps), id) {
1476 if (!intel_engine_supports_stats(engine))
1477 return false;
1478 }
1479
1480 return true;
1481 }
1482
1483 void intel_rps_enable(struct intel_rps *rps)
1484 {
1485 struct drm_i915_private *i915 = rps_to_i915(rps);
1486 struct intel_uncore *uncore = rps_to_uncore(rps);
1487 bool enabled = false;
1488
1489 if (!HAS_RPS(i915))
1490 return;
1491
1492 if (rps_uses_slpc(rps))
1493 return;
1494
1495 intel_gt_check_clock_frequency(rps_to_gt(rps));
1496
1497 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1498 if (rps->max_freq <= rps->min_freq)
1499 /* leave disabled, no room for dynamic reclocking */;
1500 else if (IS_CHERRYVIEW(i915))
1501 enabled = chv_rps_enable(rps);
1502 else if (IS_VALLEYVIEW(i915))
1503 enabled = vlv_rps_enable(rps);
1504 else if (GRAPHICS_VER(i915) >= 9)
1505 enabled = gen9_rps_enable(rps);
1506 else if (GRAPHICS_VER(i915) >= 8)
1507 enabled = gen8_rps_enable(rps);
1508 else if (GRAPHICS_VER(i915) >= 6)
1509 enabled = gen6_rps_enable(rps);
1510 else if (IS_IRONLAKE_M(i915))
1511 enabled = gen5_rps_enable(rps);
1512 else
1513 MISSING_CASE(GRAPHICS_VER(i915));
1514 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1515 if (!enabled)
1516 return;
1517
1518 GT_TRACE(rps_to_gt(rps),
1519 "min:%x, max:%x, freq:[%d, %d]\n",
1520 rps->min_freq, rps->max_freq,
1521 intel_gpu_freq(rps, rps->min_freq),
1522 intel_gpu_freq(rps, rps->max_freq));
1523
1524 GEM_BUG_ON(rps->max_freq < rps->min_freq);
1525 GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1526
1527 GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1528 GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1529
1530 if (has_busy_stats(rps))
1531 intel_rps_set_timer(rps);
1532 else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1533 intel_rps_set_interrupts(rps);
1534 else
1535 /* Ironlake currently uses intel_ips.ko */ {}
1536
1537 intel_rps_set_enabled(rps);
1538 }
1539
1540 static void gen6_rps_disable(struct intel_rps *rps)
1541 {
1542 set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1543 }
1544
1545 void intel_rps_disable(struct intel_rps *rps)
1546 {
1547 struct drm_i915_private *i915 = rps_to_i915(rps);
1548
1549 intel_rps_clear_enabled(rps);
1550 intel_rps_clear_interrupts(rps);
1551 intel_rps_clear_timer(rps);
1552
1553 if (GRAPHICS_VER(i915) >= 6)
1554 gen6_rps_disable(rps);
1555 else if (IS_IRONLAKE_M(i915))
1556 gen5_rps_disable(rps);
1557 }
1558
1559 static int byt_gpu_freq(struct intel_rps *rps, int val)
1560 {
1561 /*
1562 * N = val - 0xb7
1563 * Slow = Fast = GPLL ref * N
1564 */
1565 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1566 }
1567
1568 static int byt_freq_opcode(struct intel_rps *rps, int val)
1569 {
1570 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1571 }
1572
1573 static int chv_gpu_freq(struct intel_rps *rps, int val)
1574 {
1575 /*
1576 * N = val / 2
1577 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1578 */
1579 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1580 }
1581
1582 static int chv_freq_opcode(struct intel_rps *rps, int val)
1583 {
1584 /* CHV needs even values */
1585 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1586 }
1587
1588 int intel_gpu_freq(struct intel_rps *rps, int val)
1589 {
1590 struct drm_i915_private *i915 = rps_to_i915(rps);
1591
1592 if (GRAPHICS_VER(i915) >= 9)
1593 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1594 GEN9_FREQ_SCALER);
1595 else if (IS_CHERRYVIEW(i915))
1596 return chv_gpu_freq(rps, val);
1597 else if (IS_VALLEYVIEW(i915))
1598 return byt_gpu_freq(rps, val);
1599 else if (GRAPHICS_VER(i915) >= 6)
1600 return val * GT_FREQUENCY_MULTIPLIER;
1601 else
1602 return val;
1603 }
1604
1605 int intel_freq_opcode(struct intel_rps *rps, int val)
1606 {
1607 struct drm_i915_private *i915 = rps_to_i915(rps);
1608
1609 if (GRAPHICS_VER(i915) >= 9)
1610 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1611 GT_FREQUENCY_MULTIPLIER);
1612 else if (IS_CHERRYVIEW(i915))
1613 return chv_freq_opcode(rps, val);
1614 else if (IS_VALLEYVIEW(i915))
1615 return byt_freq_opcode(rps, val);
1616 else if (GRAPHICS_VER(i915) >= 6)
1617 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1618 else
1619 return val;
1620 }
1621
1622 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1623 {
1624 struct drm_i915_private *i915 = rps_to_i915(rps);
1625
1626 rps->gpll_ref_freq =
1627 vlv_get_cck_clock(i915, "GPLL ref",
1628 CCK_GPLL_CLOCK_CONTROL,
1629 i915->czclk_freq);
1630
1631 drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1632 rps->gpll_ref_freq);
1633 }
1634
1635 static void vlv_rps_init(struct intel_rps *rps)
1636 {
1637 struct drm_i915_private *i915 = rps_to_i915(rps);
1638 u32 val;
1639
1640 vlv_iosf_sb_get(i915,
1641 BIT(VLV_IOSF_SB_PUNIT) |
1642 BIT(VLV_IOSF_SB_NC) |
1643 BIT(VLV_IOSF_SB_CCK));
1644
1645 vlv_init_gpll_ref_freq(rps);
1646
1647 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1648 switch ((val >> 6) & 3) {
1649 case 0:
1650 case 1:
1651 i915->mem_freq = 800;
1652 break;
1653 case 2:
1654 i915->mem_freq = 1066;
1655 break;
1656 case 3:
1657 i915->mem_freq = 1333;
1658 break;
1659 }
1660 drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1661
1662 rps->max_freq = vlv_rps_max_freq(rps);
1663 rps->rp0_freq = rps->max_freq;
1664 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1665 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1666
1667 rps->efficient_freq = vlv_rps_rpe_freq(rps);
1668 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1669 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1670
1671 rps->rp1_freq = vlv_rps_guar_freq(rps);
1672 drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1673 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1674
1675 rps->min_freq = vlv_rps_min_freq(rps);
1676 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1677 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1678
1679 vlv_iosf_sb_put(i915,
1680 BIT(VLV_IOSF_SB_PUNIT) |
1681 BIT(VLV_IOSF_SB_NC) |
1682 BIT(VLV_IOSF_SB_CCK));
1683 }
1684
1685 static void chv_rps_init(struct intel_rps *rps)
1686 {
1687 struct drm_i915_private *i915 = rps_to_i915(rps);
1688 u32 val;
1689
1690 vlv_iosf_sb_get(i915,
1691 BIT(VLV_IOSF_SB_PUNIT) |
1692 BIT(VLV_IOSF_SB_NC) |
1693 BIT(VLV_IOSF_SB_CCK));
1694
1695 vlv_init_gpll_ref_freq(rps);
1696
1697 val = vlv_cck_read(i915, CCK_FUSE_REG);
1698
1699 switch ((val >> 2) & 0x7) {
1700 case 3:
1701 i915->mem_freq = 2000;
1702 break;
1703 default:
1704 i915->mem_freq = 1600;
1705 break;
1706 }
1707 drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1708
1709 rps->max_freq = chv_rps_max_freq(rps);
1710 rps->rp0_freq = rps->max_freq;
1711 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1712 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1713
1714 rps->efficient_freq = chv_rps_rpe_freq(rps);
1715 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1716 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1717
1718 rps->rp1_freq = chv_rps_guar_freq(rps);
1719 drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1720 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1721
1722 rps->min_freq = chv_rps_min_freq(rps);
1723 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1724 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1725
1726 vlv_iosf_sb_put(i915,
1727 BIT(VLV_IOSF_SB_PUNIT) |
1728 BIT(VLV_IOSF_SB_NC) |
1729 BIT(VLV_IOSF_SB_CCK));
1730
1731 drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1732 rps->rp1_freq | rps->min_freq) & 1,
1733 "Odd GPU freq values\n");
1734 }
1735
1736 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1737 {
1738 ei->ktime = ktime_get_raw();
1739 ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1740 ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1741 }
1742
1743 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1744 {
1745 struct intel_uncore *uncore = rps_to_uncore(rps);
1746 const struct intel_rps_ei *prev = &rps->ei;
1747 struct intel_rps_ei now;
1748 u32 events = 0;
1749
1750 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1751 return 0;
1752
1753 vlv_c0_read(uncore, &now);
1754
1755 if (prev->ktime) {
1756 u64 time, c0;
1757 u32 render, media;
1758
1759 time = ktime_us_delta(now.ktime, prev->ktime);
1760
1761 time *= rps_to_i915(rps)->czclk_freq;
1762
1763 /* Workload can be split between render + media,
1764 * e.g. SwapBuffers being blitted in X after being rendered in
1765 * mesa. To account for this we need to combine both engines
1766 * into our activity counter.
1767 */
1768 render = now.render_c0 - prev->render_c0;
1769 media = now.media_c0 - prev->media_c0;
1770 c0 = max(render, media);
1771 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1772
1773 if (c0 > time * rps->power.up_threshold)
1774 events = GEN6_PM_RP_UP_THRESHOLD;
1775 else if (c0 < time * rps->power.down_threshold)
1776 events = GEN6_PM_RP_DOWN_THRESHOLD;
1777 }
1778
1779 rps->ei = now;
1780 return events;
1781 }
1782
1783 static void rps_work(struct work_struct *work)
1784 {
1785 struct intel_rps *rps = container_of(work, typeof(*rps), work);
1786 struct intel_gt *gt = rps_to_gt(rps);
1787 struct drm_i915_private *i915 = rps_to_i915(rps);
1788 bool client_boost = false;
1789 int new_freq, adj, min, max;
1790 u32 pm_iir = 0;
1791
1792 spin_lock_irq(&gt->irq_lock);
1793 pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1794 client_boost = atomic_read(&rps->num_waiters);
1795 spin_unlock_irq(&gt->irq_lock);
1796
1797 /* Make sure we didn't queue anything we're not going to process. */
1798 if (!pm_iir && !client_boost)
1799 goto out;
1800
1801 mutex_lock(&rps->lock);
1802 if (!intel_rps_is_active(rps)) {
1803 mutex_unlock(&rps->lock);
1804 return;
1805 }
1806
1807 pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1808
1809 adj = rps->last_adj;
1810 new_freq = rps->cur_freq;
1811 min = rps->min_freq_softlimit;
1812 max = rps->max_freq_softlimit;
1813 if (client_boost)
1814 max = rps->max_freq;
1815
1816 GT_TRACE(gt,
1817 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1818 pm_iir, str_yes_no(client_boost),
1819 adj, new_freq, min, max);
1820
1821 if (client_boost && new_freq < rps->boost_freq) {
1822 new_freq = rps->boost_freq;
1823 adj = 0;
1824 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1825 if (adj > 0)
1826 adj *= 2;
1827 else /* CHV needs even encode values */
1828 adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1829
1830 if (new_freq >= rps->max_freq_softlimit)
1831 adj = 0;
1832 } else if (client_boost) {
1833 adj = 0;
1834 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1835 if (rps->cur_freq > rps->efficient_freq)
1836 new_freq = rps->efficient_freq;
1837 else if (rps->cur_freq > rps->min_freq_softlimit)
1838 new_freq = rps->min_freq_softlimit;
1839 adj = 0;
1840 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1841 if (adj < 0)
1842 adj *= 2;
1843 else /* CHV needs even encode values */
1844 adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1845
1846 if (new_freq <= rps->min_freq_softlimit)
1847 adj = 0;
1848 } else { /* unknown event */
1849 adj = 0;
1850 }
1851
1852 /*
1853 * sysfs frequency limits may have snuck in while
1854 * servicing the interrupt
1855 */
1856 new_freq += adj;
1857 new_freq = clamp_t(int, new_freq, min, max);
1858
1859 if (intel_rps_set(rps, new_freq)) {
1860 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1861 adj = 0;
1862 }
1863 rps->last_adj = adj;
1864
1865 mutex_unlock(&rps->lock);
1866
1867 out:
1868 spin_lock_irq(&gt->irq_lock);
1869 gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1870 spin_unlock_irq(&gt->irq_lock);
1871 }
1872
1873 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1874 {
1875 struct intel_gt *gt = rps_to_gt(rps);
1876 const u32 events = rps->pm_events & pm_iir;
1877
1878 lockdep_assert_held(&gt->irq_lock);
1879
1880 if (unlikely(!events))
1881 return;
1882
1883 GT_TRACE(gt, "irq events:%x\n", events);
1884
1885 gen6_gt_pm_mask_irq(gt, events);
1886
1887 rps->pm_iir |= events;
1888 schedule_work(&rps->work);
1889 }
1890
1891 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1892 {
1893 struct intel_gt *gt = rps_to_gt(rps);
1894 u32 events;
1895
1896 events = pm_iir & rps->pm_events;
1897 if (events) {
1898 spin_lock(&gt->irq_lock);
1899
1900 GT_TRACE(gt, "irq events:%x\n", events);
1901
1902 gen6_gt_pm_mask_irq(gt, events);
1903 rps->pm_iir |= events;
1904
1905 schedule_work(&rps->work);
1906 spin_unlock(&gt->irq_lock);
1907 }
1908
1909 if (GRAPHICS_VER(gt->i915) >= 8)
1910 return;
1911
1912 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1913 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1914
1915 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1916 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1917 }
1918
1919 void gen5_rps_irq_handler(struct intel_rps *rps)
1920 {
1921 struct intel_uncore *uncore = rps_to_uncore(rps);
1922 u32 busy_up, busy_down, max_avg, min_avg;
1923 u8 new_freq;
1924
1925 spin_lock(&mchdev_lock);
1926
1927 intel_uncore_write16(uncore,
1928 MEMINTRSTS,
1929 intel_uncore_read(uncore, MEMINTRSTS));
1930
1931 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1932 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1933 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1934 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1935 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1936
1937 /* Handle RCS change request from hw */
1938 new_freq = rps->cur_freq;
1939 if (busy_up > max_avg)
1940 new_freq++;
1941 else if (busy_down < min_avg)
1942 new_freq--;
1943 new_freq = clamp(new_freq,
1944 rps->min_freq_softlimit,
1945 rps->max_freq_softlimit);
1946
1947 if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1948 rps->cur_freq = new_freq;
1949
1950 spin_unlock(&mchdev_lock);
1951 }
1952
1953 void intel_rps_init_early(struct intel_rps *rps)
1954 {
1955 mutex_init(&rps->lock);
1956 mutex_init(&rps->power.mutex);
1957
1958 INIT_WORK(&rps->work, rps_work);
1959 timer_setup(&rps->timer, rps_timer, 0);
1960
1961 atomic_set(&rps->num_waiters, 0);
1962 }
1963
1964 void intel_rps_init(struct intel_rps *rps)
1965 {
1966 struct drm_i915_private *i915 = rps_to_i915(rps);
1967
1968 if (rps_uses_slpc(rps))
1969 return;
1970
1971 if (IS_CHERRYVIEW(i915))
1972 chv_rps_init(rps);
1973 else if (IS_VALLEYVIEW(i915))
1974 vlv_rps_init(rps);
1975 else if (GRAPHICS_VER(i915) >= 6)
1976 gen6_rps_init(rps);
1977 else if (IS_IRONLAKE_M(i915))
1978 gen5_rps_init(rps);
1979
1980 /* Derive initial user preferences/limits from the hardware limits */
1981 rps->max_freq_softlimit = rps->max_freq;
1982 rps->min_freq_softlimit = rps->min_freq;
1983
1984 /* After setting max-softlimit, find the overclock max freq */
1985 if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1986 u32 params = 0;
1987
1988 snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
1989 if (params & BIT(31)) { /* OC supported */
1990 drm_dbg(&i915->drm,
1991 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1992 (rps->max_freq & 0xff) * 50,
1993 (params & 0xff) * 50);
1994 rps->max_freq = params & 0xff;
1995 }
1996 }
1997
1998 /* Finally allow us to boost to max by default */
1999 rps->boost_freq = rps->max_freq;
2000 rps->idle_freq = rps->min_freq;
2001
2002 /* Start in the middle, from here we will autotune based on workload */
2003 rps->cur_freq = rps->efficient_freq;
2004
2005 rps->pm_intrmsk_mbz = 0;
2006
2007 /*
2008 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2009 * if GEN6_PM_UP_EI_EXPIRED is masked.
2010 *
2011 * TODO: verify if this can be reproduced on VLV,CHV.
2012 */
2013 if (GRAPHICS_VER(i915) <= 7)
2014 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2015
2016 if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2017 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2018
2019 /* GuC needs ARAT expired interrupt unmasked */
2020 if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2021 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2022 }
2023
2024 void intel_rps_sanitize(struct intel_rps *rps)
2025 {
2026 if (rps_uses_slpc(rps))
2027 return;
2028
2029 if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2030 rps_disable_interrupts(rps);
2031 }
2032
2033 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2034 {
2035 struct drm_i915_private *i915 = rps_to_i915(rps);
2036 u32 cagf;
2037
2038 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2039 cagf = (rpstat >> 8) & 0xff;
2040 else if (GRAPHICS_VER(i915) >= 9)
2041 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
2042 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2043 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
2044 else if (GRAPHICS_VER(i915) >= 6)
2045 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
2046 else
2047 cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
2048 MEMSTAT_PSTATE_SHIFT);
2049
2050 return cagf;
2051 }
2052
2053 static u32 read_cagf(struct intel_rps *rps)
2054 {
2055 struct drm_i915_private *i915 = rps_to_i915(rps);
2056 struct intel_uncore *uncore = rps_to_uncore(rps);
2057 u32 freq;
2058
2059 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2060 vlv_punit_get(i915);
2061 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2062 vlv_punit_put(i915);
2063 } else if (GRAPHICS_VER(i915) >= 6) {
2064 freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
2065 } else {
2066 freq = intel_uncore_read(uncore, MEMSTAT_ILK);
2067 }
2068
2069 return intel_rps_get_cagf(rps, freq);
2070 }
2071
2072 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2073 {
2074 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2075 intel_wakeref_t wakeref;
2076 u32 freq = 0;
2077
2078 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2079 freq = intel_gpu_freq(rps, read_cagf(rps));
2080
2081 return freq;
2082 }
2083
2084 u32 intel_rps_read_punit_req(struct intel_rps *rps)
2085 {
2086 struct intel_uncore *uncore = rps_to_uncore(rps);
2087 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2088 intel_wakeref_t wakeref;
2089 u32 freq = 0;
2090
2091 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2092 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2093
2094 return freq;
2095 }
2096
2097 static u32 intel_rps_get_req(u32 pureq)
2098 {
2099 u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2100
2101 return req;
2102 }
2103
2104 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2105 {
2106 u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2107
2108 return intel_gpu_freq(rps, freq);
2109 }
2110
2111 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2112 {
2113 if (rps_uses_slpc(rps))
2114 return intel_rps_read_punit_req_frequency(rps);
2115 else
2116 return intel_gpu_freq(rps, rps->cur_freq);
2117 }
2118
2119 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2120 {
2121 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2122
2123 if (rps_uses_slpc(rps))
2124 return slpc->max_freq_softlimit;
2125 else
2126 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2127 }
2128
2129 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2130 {
2131 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2132
2133 if (rps_uses_slpc(rps))
2134 return slpc->rp0_freq;
2135 else
2136 return intel_gpu_freq(rps, rps->rp0_freq);
2137 }
2138
2139 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2140 {
2141 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2142
2143 if (rps_uses_slpc(rps))
2144 return slpc->rp1_freq;
2145 else
2146 return intel_gpu_freq(rps, rps->rp1_freq);
2147 }
2148
2149 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2150 {
2151 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2152
2153 if (rps_uses_slpc(rps))
2154 return slpc->min_freq;
2155 else
2156 return intel_gpu_freq(rps, rps->min_freq);
2157 }
2158
2159 static int set_max_freq(struct intel_rps *rps, u32 val)
2160 {
2161 struct drm_i915_private *i915 = rps_to_i915(rps);
2162 int ret = 0;
2163
2164 mutex_lock(&rps->lock);
2165
2166 val = intel_freq_opcode(rps, val);
2167 if (val < rps->min_freq ||
2168 val > rps->max_freq ||
2169 val < rps->min_freq_softlimit) {
2170 ret = -EINVAL;
2171 goto unlock;
2172 }
2173
2174 if (val > rps->rp0_freq)
2175 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2176 intel_gpu_freq(rps, val));
2177
2178 rps->max_freq_softlimit = val;
2179
2180 val = clamp_t(int, rps->cur_freq,
2181 rps->min_freq_softlimit,
2182 rps->max_freq_softlimit);
2183
2184 /*
2185 * We still need *_set_rps to process the new max_delay and
2186 * update the interrupt limits and PMINTRMSK even though
2187 * frequency request may be unchanged.
2188 */
2189 intel_rps_set(rps, val);
2190
2191 unlock:
2192 mutex_unlock(&rps->lock);
2193
2194 return ret;
2195 }
2196
2197 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2198 {
2199 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2200
2201 if (rps_uses_slpc(rps))
2202 return intel_guc_slpc_set_max_freq(slpc, val);
2203 else
2204 return set_max_freq(rps, val);
2205 }
2206
2207 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2208 {
2209 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2210
2211 if (rps_uses_slpc(rps))
2212 return slpc->min_freq_softlimit;
2213 else
2214 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2215 }
2216
2217 static int set_min_freq(struct intel_rps *rps, u32 val)
2218 {
2219 int ret = 0;
2220
2221 mutex_lock(&rps->lock);
2222
2223 val = intel_freq_opcode(rps, val);
2224 if (val < rps->min_freq ||
2225 val > rps->max_freq ||
2226 val > rps->max_freq_softlimit) {
2227 ret = -EINVAL;
2228 goto unlock;
2229 }
2230
2231 rps->min_freq_softlimit = val;
2232
2233 val = clamp_t(int, rps->cur_freq,
2234 rps->min_freq_softlimit,
2235 rps->max_freq_softlimit);
2236
2237 /*
2238 * We still need *_set_rps to process the new min_delay and
2239 * update the interrupt limits and PMINTRMSK even though
2240 * frequency request may be unchanged.
2241 */
2242 intel_rps_set(rps, val);
2243
2244 unlock:
2245 mutex_unlock(&rps->lock);
2246
2247 return ret;
2248 }
2249
2250 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2251 {
2252 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2253
2254 if (rps_uses_slpc(rps))
2255 return intel_guc_slpc_set_min_freq(slpc, val);
2256 else
2257 return set_min_freq(rps, val);
2258 }
2259
2260 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2261 {
2262 struct intel_uncore *uncore = rps_to_uncore(rps);
2263 u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2264
2265 /* Allow punit to process software requests */
2266 intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2267 }
2268
2269 void intel_rps_raise_unslice(struct intel_rps *rps)
2270 {
2271 struct intel_uncore *uncore = rps_to_uncore(rps);
2272
2273 mutex_lock(&rps->lock);
2274
2275 if (rps_uses_slpc(rps)) {
2276 /* RP limits have not been initialized yet for SLPC path */
2277 struct intel_rps_freq_caps caps;
2278
2279 gen6_rps_get_freq_caps(rps, &caps);
2280
2281 intel_rps_set_manual(rps, true);
2282 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2283 ((caps.rp0_freq <<
2284 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2285 GEN9_IGNORE_SLICE_RATIO));
2286 intel_rps_set_manual(rps, false);
2287 } else {
2288 intel_rps_set(rps, rps->rp0_freq);
2289 }
2290
2291 mutex_unlock(&rps->lock);
2292 }
2293
2294 void intel_rps_lower_unslice(struct intel_rps *rps)
2295 {
2296 struct intel_uncore *uncore = rps_to_uncore(rps);
2297
2298 mutex_lock(&rps->lock);
2299
2300 if (rps_uses_slpc(rps)) {
2301 /* RP limits have not been initialized yet for SLPC path */
2302 struct intel_rps_freq_caps caps;
2303
2304 gen6_rps_get_freq_caps(rps, &caps);
2305
2306 intel_rps_set_manual(rps, true);
2307 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2308 ((caps.min_freq <<
2309 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2310 GEN9_IGNORE_SLICE_RATIO));
2311 intel_rps_set_manual(rps, false);
2312 } else {
2313 intel_rps_set(rps, rps->min_freq);
2314 }
2315
2316 mutex_unlock(&rps->lock);
2317 }
2318
2319 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2320 {
2321 struct intel_gt *gt = rps_to_gt(rps);
2322 intel_wakeref_t wakeref;
2323 u32 val;
2324
2325 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2326 val = intel_uncore_read(gt->uncore, reg32);
2327
2328 return val;
2329 }
2330
2331 bool rps_read_mask_mmio(struct intel_rps *rps,
2332 i915_reg_t reg32, u32 mask)
2333 {
2334 return rps_read_mmio(rps, reg32) & mask;
2335 }
2336
2337 /* External interface for intel_ips.ko */
2338
2339 static struct drm_i915_private __rcu *ips_mchdev;
2340
2341 /**
2342 * Tells the intel_ips driver that the i915 driver is now loaded, if
2343 * IPS got loaded first.
2344 *
2345 * This awkward dance is so that neither module has to depend on the
2346 * other in order for IPS to do the appropriate communication of
2347 * GPU turbo limits to i915.
2348 */
2349 static void
2350 ips_ping_for_i915_load(void)
2351 {
2352 void (*link)(void);
2353
2354 link = symbol_get(ips_link_to_i915_driver);
2355 if (link) {
2356 link();
2357 symbol_put(ips_link_to_i915_driver);
2358 }
2359 }
2360
2361 void intel_rps_driver_register(struct intel_rps *rps)
2362 {
2363 struct intel_gt *gt = rps_to_gt(rps);
2364
2365 /*
2366 * We only register the i915 ips part with intel-ips once everything is
2367 * set up, to avoid intel-ips sneaking in and reading bogus values.
2368 */
2369 if (GRAPHICS_VER(gt->i915) == 5) {
2370 GEM_BUG_ON(ips_mchdev);
2371 rcu_assign_pointer(ips_mchdev, gt->i915);
2372 ips_ping_for_i915_load();
2373 }
2374 }
2375
2376 void intel_rps_driver_unregister(struct intel_rps *rps)
2377 {
2378 if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2379 rcu_assign_pointer(ips_mchdev, NULL);
2380 }
2381
2382 static struct drm_i915_private *mchdev_get(void)
2383 {
2384 struct drm_i915_private *i915;
2385
2386 rcu_read_lock();
2387 i915 = rcu_dereference(ips_mchdev);
2388 if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2389 i915 = NULL;
2390 rcu_read_unlock();
2391
2392 return i915;
2393 }
2394
2395 /**
2396 * i915_read_mch_val - return value for IPS use
2397 *
2398 * Calculate and return a value for the IPS driver to use when deciding whether
2399 * we have thermal and power headroom to increase CPU or GPU power budget.
2400 */
2401 unsigned long i915_read_mch_val(void)
2402 {
2403 struct drm_i915_private *i915;
2404 unsigned long chipset_val = 0;
2405 unsigned long graphics_val = 0;
2406 intel_wakeref_t wakeref;
2407
2408 i915 = mchdev_get();
2409 if (!i915)
2410 return 0;
2411
2412 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2413 struct intel_ips *ips = &to_gt(i915)->rps.ips;
2414
2415 spin_lock_irq(&mchdev_lock);
2416 chipset_val = __ips_chipset_val(ips);
2417 graphics_val = __ips_gfx_val(ips);
2418 spin_unlock_irq(&mchdev_lock);
2419 }
2420
2421 drm_dev_put(&i915->drm);
2422 return chipset_val + graphics_val;
2423 }
2424 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2425
2426 /**
2427 * i915_gpu_raise - raise GPU frequency limit
2428 *
2429 * Raise the limit; IPS indicates we have thermal headroom.
2430 */
2431 bool i915_gpu_raise(void)
2432 {
2433 struct drm_i915_private *i915;
2434 struct intel_rps *rps;
2435
2436 i915 = mchdev_get();
2437 if (!i915)
2438 return false;
2439
2440 rps = &to_gt(i915)->rps;
2441
2442 spin_lock_irq(&mchdev_lock);
2443 if (rps->max_freq_softlimit < rps->max_freq)
2444 rps->max_freq_softlimit++;
2445 spin_unlock_irq(&mchdev_lock);
2446
2447 drm_dev_put(&i915->drm);
2448 return true;
2449 }
2450 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2451
2452 /**
2453 * i915_gpu_lower - lower GPU frequency limit
2454 *
2455 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2456 * frequency maximum.
2457 */
2458 bool i915_gpu_lower(void)
2459 {
2460 struct drm_i915_private *i915;
2461 struct intel_rps *rps;
2462
2463 i915 = mchdev_get();
2464 if (!i915)
2465 return false;
2466
2467 rps = &to_gt(i915)->rps;
2468
2469 spin_lock_irq(&mchdev_lock);
2470 if (rps->max_freq_softlimit > rps->min_freq)
2471 rps->max_freq_softlimit--;
2472 spin_unlock_irq(&mchdev_lock);
2473
2474 drm_dev_put(&i915->drm);
2475 return true;
2476 }
2477 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2478
2479 /**
2480 * i915_gpu_busy - indicate GPU business to IPS
2481 *
2482 * Tell the IPS driver whether or not the GPU is busy.
2483 */
2484 bool i915_gpu_busy(void)
2485 {
2486 struct drm_i915_private *i915;
2487 bool ret;
2488
2489 i915 = mchdev_get();
2490 if (!i915)
2491 return false;
2492
2493 ret = to_gt(i915)->awake;
2494
2495 drm_dev_put(&i915->drm);
2496 return ret;
2497 }
2498 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2499
2500 /**
2501 * i915_gpu_turbo_disable - disable graphics turbo
2502 *
2503 * Disable graphics turbo by resetting the max frequency and setting the
2504 * current frequency to the default.
2505 */
2506 bool i915_gpu_turbo_disable(void)
2507 {
2508 struct drm_i915_private *i915;
2509 struct intel_rps *rps;
2510 bool ret;
2511
2512 i915 = mchdev_get();
2513 if (!i915)
2514 return false;
2515
2516 rps = &to_gt(i915)->rps;
2517
2518 spin_lock_irq(&mchdev_lock);
2519 rps->max_freq_softlimit = rps->min_freq;
2520 ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2521 spin_unlock_irq(&mchdev_lock);
2522
2523 drm_dev_put(&i915->drm);
2524 return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2527
2528 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2529 #include "selftest_rps.c"
2530 #include "selftest_slpc.c"
2531 #endif