]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gt/intel_workarounds.c
Merge drm/drm-next into drm-intel-gt-next
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gt / intel_workarounds.c
1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2018 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_regs.h"
15 #include "intel_ring.h"
16 #include "intel_workarounds.h"
17
18 /**
19 * DOC: Hardware workarounds
20 *
21 * Hardware workarounds are register programming documented to be executed in
22 * the driver that fall outside of the normal programming sequences for a
23 * platform. There are some basic categories of workarounds, depending on
24 * how/when they are applied:
25 *
26 * - Context workarounds: workarounds that touch registers that are
27 * saved/restored to/from the HW context image. The list is emitted (via Load
28 * Register Immediate commands) once when initializing the device and saved in
29 * the default context. That default context is then used on every context
30 * creation to have a "primed golden context", i.e. a context image that
31 * already contains the changes needed to all the registers.
32 *
33 * Context workarounds should be implemented in the \*_ctx_workarounds_init()
34 * variants respective to the targeted platforms.
35 *
36 * - Engine workarounds: the list of these WAs is applied whenever the specific
37 * engine is reset. It's also possible that a set of engine classes share a
38 * common power domain and they are reset together. This happens on some
39 * platforms with render and compute engines. In this case (at least) one of
40 * them need to keeep the workaround programming: the approach taken in the
41 * driver is to tie those workarounds to the first compute/render engine that
42 * is registered. When executing with GuC submission, engine resets are
43 * outside of kernel driver control, hence the list of registers involved in
44 * written once, on engine initialization, and then passed to GuC, that
45 * saves/restores their values before/after the reset takes place. See
46 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
47 *
48 * Workarounds for registers specific to RCS and CCS should be implemented in
49 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
50 * registers belonging to BCS, VCS or VECS should be implemented in
51 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
52 * engine's MMIO range but that are part of of the common RCS/CCS reset domain
53 * should be implemented in general_render_compute_wa_init().
54 *
55 * - GT workarounds: the list of these WAs is applied whenever these registers
56 * revert to their default values: on GPU reset, suspend/resume [1]_, etc.
57 *
58 * GT workarounds should be implemented in the \*_gt_workarounds_init()
59 * variants respective to the targeted platforms.
60 *
61 * - Register whitelist: some workarounds need to be implemented in userspace,
62 * but need to touch privileged registers. The whitelist in the kernel
63 * instructs the hardware to allow the access to happen. From the kernel side,
64 * this is just a special case of a MMIO workaround (as we write the list of
65 * these to/be-whitelisted registers to some special HW registers).
66 *
67 * Register whitelisting should be done in the \*_whitelist_build() variants
68 * respective to the targeted platforms.
69 *
70 * - Workaround batchbuffers: buffers that get executed automatically by the
71 * hardware on every HW context restore. These buffers are created and
72 * programmed in the default context so the hardware always go through those
73 * programming sequences when switching contexts. The support for workaround
74 * batchbuffers is enabled these hardware mechanisms:
75 *
76 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
77 * context, pointing the hardware to jump to that location when that offset
78 * is reached in the context restore. Workaround batchbuffer in the driver
79 * currently uses this mechanism for all platforms.
80 *
81 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
82 * pointing the hardware to a buffer to continue executing after the
83 * engine registers are restored in a context restore sequence. This is
84 * currently not used in the driver.
85 *
86 * - Other: There are WAs that, due to their nature, cannot be applied from a
87 * central place. Those are peppered around the rest of the code, as needed.
88 * Workarounds related to the display IP are the main example.
89 *
90 * .. [1] Technically, some registers are powercontext saved & restored, so they
91 * survive a suspend/resume. In practice, writing them again is not too
92 * costly and simplifies things, so it's the approach taken in the driver.
93 */
94
95 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
96 const char *name, const char *engine_name)
97 {
98 wal->gt = gt;
99 wal->name = name;
100 wal->engine_name = engine_name;
101 }
102
103 #define WA_LIST_CHUNK (1 << 4)
104
105 static void wa_init_finish(struct i915_wa_list *wal)
106 {
107 /* Trim unused entries. */
108 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
109 struct i915_wa *list = kmemdup(wal->list,
110 wal->count * sizeof(*list),
111 GFP_KERNEL);
112
113 if (list) {
114 kfree(wal->list);
115 wal->list = list;
116 }
117 }
118
119 if (!wal->count)
120 return;
121
122 drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
123 wal->wa_count, wal->name, wal->engine_name);
124 }
125
126 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
127 {
128 unsigned int addr = i915_mmio_reg_offset(wa->reg);
129 struct drm_i915_private *i915 = wal->gt->i915;
130 unsigned int start = 0, end = wal->count;
131 const unsigned int grow = WA_LIST_CHUNK;
132 struct i915_wa *wa_;
133
134 GEM_BUG_ON(!is_power_of_2(grow));
135
136 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
137 struct i915_wa *list;
138
139 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
140 GFP_KERNEL);
141 if (!list) {
142 drm_err(&i915->drm, "No space for workaround init!\n");
143 return;
144 }
145
146 if (wal->list) {
147 memcpy(list, wal->list, sizeof(*wa) * wal->count);
148 kfree(wal->list);
149 }
150
151 wal->list = list;
152 }
153
154 while (start < end) {
155 unsigned int mid = start + (end - start) / 2;
156
157 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
158 start = mid + 1;
159 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
160 end = mid;
161 } else {
162 wa_ = &wal->list[mid];
163
164 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
165 drm_err(&i915->drm,
166 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
167 i915_mmio_reg_offset(wa_->reg),
168 wa_->clr, wa_->set);
169
170 wa_->set &= ~wa->clr;
171 }
172
173 wal->wa_count++;
174 wa_->set |= wa->set;
175 wa_->clr |= wa->clr;
176 wa_->read |= wa->read;
177 return;
178 }
179 }
180
181 wal->wa_count++;
182 wa_ = &wal->list[wal->count++];
183 *wa_ = *wa;
184
185 while (wa_-- > wal->list) {
186 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
187 i915_mmio_reg_offset(wa_[1].reg));
188 if (i915_mmio_reg_offset(wa_[1].reg) >
189 i915_mmio_reg_offset(wa_[0].reg))
190 break;
191
192 swap(wa_[1], wa_[0]);
193 }
194 }
195
196 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
197 u32 clear, u32 set, u32 read_mask, bool masked_reg)
198 {
199 struct i915_wa wa = {
200 .reg = reg,
201 .clr = clear,
202 .set = set,
203 .read = read_mask,
204 .masked_reg = masked_reg,
205 };
206
207 _wa_add(wal, &wa);
208 }
209
210 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
211 u32 clear, u32 set, u32 read_mask, bool masked_reg)
212 {
213 struct i915_wa wa = {
214 .mcr_reg = reg,
215 .clr = clear,
216 .set = set,
217 .read = read_mask,
218 .masked_reg = masked_reg,
219 .is_mcr = 1,
220 };
221
222 _wa_add(wal, &wa);
223 }
224
225 static void
226 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
227 {
228 wa_add(wal, reg, clear, set, clear, false);
229 }
230
231 static void
232 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
233 {
234 wa_mcr_add(wal, reg, clear, set, clear, false);
235 }
236
237 static void
238 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
239 {
240 wa_write_clr_set(wal, reg, ~0, set);
241 }
242
243 static void
244 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
245 {
246 wa_mcr_write_clr_set(wal, reg, ~0, set);
247 }
248
249 static void
250 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
251 {
252 wa_write_clr_set(wal, reg, set, set);
253 }
254
255 static void
256 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
257 {
258 wa_mcr_write_clr_set(wal, reg, set, set);
259 }
260
261 static void
262 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
263 {
264 wa_write_clr_set(wal, reg, clr, 0);
265 }
266
267 static void
268 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
269 {
270 wa_mcr_write_clr_set(wal, reg, clr, 0);
271 }
272
273 /*
274 * WA operations on "masked register". A masked register has the upper 16 bits
275 * documented as "masked" in b-spec. Its purpose is to allow writing to just a
276 * portion of the register without a rmw: you simply write in the upper 16 bits
277 * the mask of bits you are going to modify.
278 *
279 * The wa_masked_* family of functions already does the necessary operations to
280 * calculate the mask based on the parameters passed, so user only has to
281 * provide the lower 16 bits of that register.
282 */
283
284 static void
285 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
286 {
287 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
288 }
289
290 static void
291 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
292 {
293 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
294 }
295
296 static void
297 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
298 {
299 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
300 }
301
302 static void
303 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
304 {
305 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
306 }
307
308 static void
309 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
310 u32 mask, u32 val)
311 {
312 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
313 }
314
315 static void
316 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
317 u32 mask, u32 val)
318 {
319 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
320 }
321
322 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
323 struct i915_wa_list *wal)
324 {
325 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
326 }
327
328 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
329 struct i915_wa_list *wal)
330 {
331 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
332 }
333
334 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
335 struct i915_wa_list *wal)
336 {
337 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
338
339 /* WaDisableAsyncFlipPerfMode:bdw,chv */
340 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
341
342 /* WaDisablePartialInstShootdown:bdw,chv */
343 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
344 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
345
346 /* Use Force Non-Coherent whenever executing a 3D context. This is a
347 * workaround for a possible hang in the unlikely event a TLB
348 * invalidation occurs during a PSD flush.
349 */
350 /* WaForceEnableNonCoherent:bdw,chv */
351 /* WaHdcDisableFetchWhenMasked:bdw,chv */
352 wa_masked_en(wal, HDC_CHICKEN0,
353 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
354 HDC_FORCE_NON_COHERENT);
355
356 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
357 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
358 * polygons in the same 8x4 pixel/sample area to be processed without
359 * stalling waiting for the earlier ones to write to Hierarchical Z
360 * buffer."
361 *
362 * This optimization is off by default for BDW and CHV; turn it on.
363 */
364 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
365
366 /* Wa4x4STCOptimizationDisable:bdw,chv */
367 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
368
369 /*
370 * BSpec recommends 8x4 when MSAA is used,
371 * however in practice 16x4 seems fastest.
372 *
373 * Note that PS/WM thread counts depend on the WIZ hashing
374 * disable bit, which we don't touch here, but it's good
375 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
376 */
377 wa_masked_field_set(wal, GEN7_GT_MODE,
378 GEN6_WIZ_HASHING_MASK,
379 GEN6_WIZ_HASHING_16x4);
380 }
381
382 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
383 struct i915_wa_list *wal)
384 {
385 struct drm_i915_private *i915 = engine->i915;
386
387 gen8_ctx_workarounds_init(engine, wal);
388
389 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
390 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
391
392 /* WaDisableDopClockGating:bdw
393 *
394 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
395 * to disable EUTC clock gating.
396 */
397 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
398 DOP_CLOCK_GATING_DISABLE);
399
400 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
401 GEN8_SAMPLER_POWER_BYPASS_DIS);
402
403 wa_masked_en(wal, HDC_CHICKEN0,
404 /* WaForceContextSaveRestoreNonCoherent:bdw */
405 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
406 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
407 (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
408 }
409
410 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
411 struct i915_wa_list *wal)
412 {
413 gen8_ctx_workarounds_init(engine, wal);
414
415 /* WaDisableThreadStallDopClockGating:chv */
416 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
417
418 /* Improve HiZ throughput on CHV. */
419 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
420 }
421
422 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
423 struct i915_wa_list *wal)
424 {
425 struct drm_i915_private *i915 = engine->i915;
426
427 if (HAS_LLC(i915)) {
428 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
429 *
430 * Must match Display Engine. See
431 * WaCompressedResourceDisplayNewHashMode.
432 */
433 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
434 GEN9_PBE_COMPRESSED_HASH_SELECTION);
435 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
436 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
437 }
438
439 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
440 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
441 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
442 FLOW_CONTROL_ENABLE |
443 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
444
445 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
446 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
447 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
448 GEN9_ENABLE_YV12_BUGFIX |
449 GEN9_ENABLE_GPGPU_PREEMPTION);
450
451 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
452 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
453 wa_masked_en(wal, CACHE_MODE_1,
454 GEN8_4x4_STC_OPTIMIZATION_DISABLE |
455 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
456
457 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
458 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
459 GEN9_CCS_TLB_PREFETCH_ENABLE);
460
461 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
462 wa_masked_en(wal, HDC_CHICKEN0,
463 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
464 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
465
466 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
467 * both tied to WaForceContextSaveRestoreNonCoherent
468 * in some hsds for skl. We keep the tie for all gen9. The
469 * documentation is a bit hazy and so we want to get common behaviour,
470 * even though there is no clear evidence we would need both on kbl/bxt.
471 * This area has been source of system hangs so we play it safe
472 * and mimic the skl regardless of what bspec says.
473 *
474 * Use Force Non-Coherent whenever executing a 3D context. This
475 * is a workaround for a possible hang in the unlikely event
476 * a TLB invalidation occurs during a PSD flush.
477 */
478
479 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
480 wa_masked_en(wal, HDC_CHICKEN0,
481 HDC_FORCE_NON_COHERENT);
482
483 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
484 if (IS_SKYLAKE(i915) ||
485 IS_KABYLAKE(i915) ||
486 IS_COFFEELAKE(i915) ||
487 IS_COMETLAKE(i915))
488 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
489 GEN8_SAMPLER_POWER_BYPASS_DIS);
490
491 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
492 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
493
494 /*
495 * Supporting preemption with fine-granularity requires changes in the
496 * batch buffer programming. Since we can't break old userspace, we
497 * need to set our default preemption level to safe value. Userspace is
498 * still able to use more fine-grained preemption levels, since in
499 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
500 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
501 * not real HW workarounds, but merely a way to start using preemption
502 * while maintaining old contract with userspace.
503 */
504
505 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
506 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
507
508 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
509 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
510 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
511 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
512
513 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */
514 if (IS_GEN9_LP(i915))
515 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
516 }
517
518 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
519 struct i915_wa_list *wal)
520 {
521 struct intel_gt *gt = engine->gt;
522 u8 vals[3] = { 0, 0, 0 };
523 unsigned int i;
524
525 for (i = 0; i < 3; i++) {
526 u8 ss;
527
528 /*
529 * Only consider slices where one, and only one, subslice has 7
530 * EUs
531 */
532 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
533 continue;
534
535 /*
536 * subslice_7eu[i] != 0 (because of the check above) and
537 * ss_max == 4 (maximum number of subslices possible per slice)
538 *
539 * -> 0 <= ss <= 3;
540 */
541 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
542 vals[i] = 3 - ss;
543 }
544
545 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
546 return;
547
548 /* Tune IZ hashing. See intel_device_info_runtime_init() */
549 wa_masked_field_set(wal, GEN7_GT_MODE,
550 GEN9_IZ_HASHING_MASK(2) |
551 GEN9_IZ_HASHING_MASK(1) |
552 GEN9_IZ_HASHING_MASK(0),
553 GEN9_IZ_HASHING(2, vals[2]) |
554 GEN9_IZ_HASHING(1, vals[1]) |
555 GEN9_IZ_HASHING(0, vals[0]));
556 }
557
558 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
559 struct i915_wa_list *wal)
560 {
561 gen9_ctx_workarounds_init(engine, wal);
562 skl_tune_iz_hashing(engine, wal);
563 }
564
565 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
566 struct i915_wa_list *wal)
567 {
568 gen9_ctx_workarounds_init(engine, wal);
569
570 /* WaDisableThreadStallDopClockGating:bxt */
571 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
572 STALL_DOP_GATING_DISABLE);
573
574 /* WaToEnableHwFixForPushConstHWBug:bxt */
575 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
576 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
577 }
578
579 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
580 struct i915_wa_list *wal)
581 {
582 struct drm_i915_private *i915 = engine->i915;
583
584 gen9_ctx_workarounds_init(engine, wal);
585
586 /* WaToEnableHwFixForPushConstHWBug:kbl */
587 if (IS_KBL_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
588 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
589 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
590
591 /* WaDisableSbeCacheDispatchPortSharing:kbl */
592 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
593 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
594 }
595
596 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
597 struct i915_wa_list *wal)
598 {
599 gen9_ctx_workarounds_init(engine, wal);
600
601 /* WaToEnableHwFixForPushConstHWBug:glk */
602 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
603 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
604 }
605
606 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
607 struct i915_wa_list *wal)
608 {
609 gen9_ctx_workarounds_init(engine, wal);
610
611 /* WaToEnableHwFixForPushConstHWBug:cfl */
612 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
613 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
614
615 /* WaDisableSbeCacheDispatchPortSharing:cfl */
616 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
617 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
618 }
619
620 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
621 struct i915_wa_list *wal)
622 {
623 /* Wa_1406697149 (WaDisableBankHangMode:icl) */
624 wa_write(wal,
625 GEN8_L3CNTLREG,
626 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) |
627 GEN8_ERRDETBCTRL);
628
629 /* WaForceEnableNonCoherent:icl
630 * This is not the same workaround as in early Gen9 platforms, where
631 * lacking this could cause system hangs, but coherency performance
632 * overhead is high and only a few compute workloads really need it
633 * (the register is whitelisted in hardware now, so UMDs can opt in
634 * for coherency if they have a good reason).
635 */
636 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
637
638 /* WaEnableFloatBlendOptimization:icl */
639 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
640 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
641 0 /* write-only, so skip validation */,
642 true);
643
644 /* WaDisableGPGPUMidThreadPreemption:icl */
645 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
646 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
647 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
648
649 /* allow headerless messages for preemptible GPGPU context */
650 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
651 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
652
653 /* Wa_1604278689:icl,ehl */
654 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
655 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
656 0, /* write-only register; skip validation */
657 0xFFFFFFFF);
658
659 /* Wa_1406306137:icl,ehl */
660 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
661 }
662
663 /*
664 * These settings aren't actually workarounds, but general tuning settings that
665 * need to be programmed on dg2 platform.
666 */
667 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
668 struct i915_wa_list *wal)
669 {
670 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
671 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
672 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
673 wa_mcr_add(wal,
674 XEHP_FF_MODE2,
675 FF_MODE2_TDS_TIMER_MASK,
676 FF_MODE2_TDS_TIMER_128,
677 0, false);
678 }
679
680 /*
681 * These settings aren't actually workarounds, but general tuning settings that
682 * need to be programmed on several platforms.
683 */
684 static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine,
685 struct i915_wa_list *wal)
686 {
687 /*
688 * Although some platforms refer to it as Wa_1604555607, we need to
689 * program it even on those that don't explicitly list that
690 * workaround.
691 *
692 * Note that the programming of this register is further modified
693 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12.
694 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
695 * value when read. The default value for this register is zero for all
696 * fields and there are no bit masks. So instead of doing a RMW we
697 * should just write TDS timer value. For the same reason read
698 * verification is ignored.
699 */
700 wa_add(wal,
701 GEN12_FF_MODE2,
702 FF_MODE2_TDS_TIMER_MASK,
703 FF_MODE2_TDS_TIMER_128,
704 0, false);
705 }
706
707 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
708 struct i915_wa_list *wal)
709 {
710 struct drm_i915_private *i915 = engine->i915;
711
712 gen12_ctx_gt_tuning_init(engine, wal);
713
714 /*
715 * Wa_1409142259:tgl,dg1,adl-p
716 * Wa_1409347922:tgl,dg1,adl-p
717 * Wa_1409252684:tgl,dg1,adl-p
718 * Wa_1409217633:tgl,dg1,adl-p
719 * Wa_1409207793:tgl,dg1,adl-p
720 * Wa_1409178076:tgl,dg1,adl-p
721 * Wa_1408979724:tgl,dg1,adl-p
722 * Wa_14010443199:tgl,rkl,dg1,adl-p
723 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
724 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
725 */
726 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
727 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
728
729 /* WaDisableGPGPUMidThreadPreemption:gen12 */
730 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
731 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
732 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
733
734 /*
735 * Wa_16011163337
736 *
737 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due
738 * to Wa_1608008084.
739 */
740 wa_add(wal,
741 GEN12_FF_MODE2,
742 FF_MODE2_GS_TIMER_MASK,
743 FF_MODE2_GS_TIMER_224,
744 0, false);
745
746 if (!IS_DG1(i915)) {
747 /* Wa_1806527549 */
748 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
749
750 /* Wa_1606376872 */
751 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
752 }
753 }
754
755 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
756 struct i915_wa_list *wal)
757 {
758 gen12_ctx_workarounds_init(engine, wal);
759
760 /* Wa_1409044764 */
761 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
762 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
763
764 /* Wa_22010493298 */
765 wa_masked_en(wal, HIZ_CHICKEN,
766 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
767 }
768
769 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
770 struct i915_wa_list *wal)
771 {
772 dg2_ctx_gt_tuning_init(engine, wal);
773
774 /* Wa_16011186671:dg2_g11 */
775 if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) {
776 wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH);
777 wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE);
778 }
779
780 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) {
781 /* Wa_14010469329:dg2_g10 */
782 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
783 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE);
784
785 /*
786 * Wa_22010465075:dg2_g10
787 * Wa_22010613112:dg2_g10
788 * Wa_14010698770:dg2_g10
789 */
790 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
791 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
792 }
793
794 /* Wa_16013271637:dg2 */
795 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
796 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
797
798 /* Wa_14014947963:dg2 */
799 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) ||
800 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
801 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
802
803 /* Wa_18018764978:dg2 */
804 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) ||
805 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
806 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
807
808 /* Wa_15010599737:dg2 */
809 wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN);
810
811 /* Wa_18019271663:dg2 */
812 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
813 }
814
815 static void mtl_ctx_workarounds_init(struct intel_engine_cs *engine,
816 struct i915_wa_list *wal)
817 {
818 struct drm_i915_private *i915 = engine->i915;
819
820 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
821 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
822 /* Wa_14014947963 */
823 wa_masked_field_set(wal, VF_PREEMPTION,
824 PREEMPTION_VERTEX_COUNT, 0x4000);
825
826 /* Wa_16013271637 */
827 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
828 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
829
830 /* Wa_18019627453 */
831 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
832
833 /* Wa_18018764978 */
834 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
835 }
836
837 /* Wa_18019271663 */
838 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
839 }
840
841 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
842 struct i915_wa_list *wal)
843 {
844 /*
845 * This is a "fake" workaround defined by software to ensure we
846 * maintain reliable, backward-compatible behavior for userspace with
847 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
848 *
849 * The per-context setting of MI_MODE[12] determines whether the bits
850 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
851 * in the traditional manner or whether they should instead use a new
852 * tgl+ meaning that breaks backward compatibility, but allows nesting
853 * into 3rd-level batchbuffers. When this new capability was first
854 * added in TGL, it remained off by default unless a context
855 * intentionally opted in to the new behavior. However Xe_HPG now
856 * flips this on by default and requires that we explicitly opt out if
857 * we don't want the new behavior.
858 *
859 * From a SW perspective, we want to maintain the backward-compatible
860 * behavior for userspace, so we'll apply a fake workaround to set it
861 * back to the legacy behavior on platforms where the hardware default
862 * is to break compatibility. At the moment there is no Linux
863 * userspace that utilizes third-level batchbuffers, so this will avoid
864 * userspace from needing to make any changes. using the legacy
865 * meaning is the correct thing to do. If/when we have userspace
866 * consumers that want to utilize third-level batch nesting, we can
867 * provide a context parameter to allow them to opt-in.
868 */
869 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
870 }
871
872 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
873 struct i915_wa_list *wal)
874 {
875 u8 mocs;
876
877 /*
878 * Some blitter commands do not have a field for MOCS, those
879 * commands will use MOCS index pointed by BLIT_CCTL.
880 * BLIT_CCTL registers are needed to be programmed to un-cached.
881 */
882 if (engine->class == COPY_ENGINE_CLASS) {
883 mocs = engine->gt->mocs.uc_index;
884 wa_write_clr_set(wal,
885 BLIT_CCTL(engine->mmio_base),
886 BLIT_CCTL_MASK,
887 BLIT_CCTL_MOCS(mocs, mocs));
888 }
889 }
890
891 /*
892 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
893 * defined by the hardware team, but it programming general context registers.
894 * Adding those context register programming in context workaround
895 * allow us to use the wa framework for proper application and validation.
896 */
897 static void
898 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
899 struct i915_wa_list *wal)
900 {
901 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
902 fakewa_disable_nestedbb_mode(engine, wal);
903
904 gen12_ctx_gt_mocs_init(engine, wal);
905 }
906
907 static void
908 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
909 struct i915_wa_list *wal,
910 const char *name)
911 {
912 struct drm_i915_private *i915 = engine->i915;
913
914 wa_init_start(wal, engine->gt, name, engine->name);
915
916 /* Applies to all engines */
917 /*
918 * Fake workarounds are not the actual workaround but
919 * programming of context registers using workaround framework.
920 */
921 if (GRAPHICS_VER(i915) >= 12)
922 gen12_ctx_gt_fake_wa_init(engine, wal);
923
924 if (engine->class != RENDER_CLASS)
925 goto done;
926
927 if (IS_METEORLAKE(i915))
928 mtl_ctx_workarounds_init(engine, wal);
929 else if (IS_PONTEVECCHIO(i915))
930 ; /* noop; none at this time */
931 else if (IS_DG2(i915))
932 dg2_ctx_workarounds_init(engine, wal);
933 else if (IS_XEHPSDV(i915))
934 ; /* noop; none at this time */
935 else if (IS_DG1(i915))
936 dg1_ctx_workarounds_init(engine, wal);
937 else if (GRAPHICS_VER(i915) == 12)
938 gen12_ctx_workarounds_init(engine, wal);
939 else if (GRAPHICS_VER(i915) == 11)
940 icl_ctx_workarounds_init(engine, wal);
941 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
942 cfl_ctx_workarounds_init(engine, wal);
943 else if (IS_GEMINILAKE(i915))
944 glk_ctx_workarounds_init(engine, wal);
945 else if (IS_KABYLAKE(i915))
946 kbl_ctx_workarounds_init(engine, wal);
947 else if (IS_BROXTON(i915))
948 bxt_ctx_workarounds_init(engine, wal);
949 else if (IS_SKYLAKE(i915))
950 skl_ctx_workarounds_init(engine, wal);
951 else if (IS_CHERRYVIEW(i915))
952 chv_ctx_workarounds_init(engine, wal);
953 else if (IS_BROADWELL(i915))
954 bdw_ctx_workarounds_init(engine, wal);
955 else if (GRAPHICS_VER(i915) == 7)
956 gen7_ctx_workarounds_init(engine, wal);
957 else if (GRAPHICS_VER(i915) == 6)
958 gen6_ctx_workarounds_init(engine, wal);
959 else if (GRAPHICS_VER(i915) < 8)
960 ;
961 else
962 MISSING_CASE(GRAPHICS_VER(i915));
963
964 done:
965 wa_init_finish(wal);
966 }
967
968 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
969 {
970 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
971 }
972
973 int intel_engine_emit_ctx_wa(struct i915_request *rq)
974 {
975 struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
976 struct i915_wa *wa;
977 unsigned int i;
978 u32 *cs;
979 int ret;
980
981 if (wal->count == 0)
982 return 0;
983
984 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
985 if (ret)
986 return ret;
987
988 cs = intel_ring_begin(rq, (wal->count * 2 + 2));
989 if (IS_ERR(cs))
990 return PTR_ERR(cs);
991
992 *cs++ = MI_LOAD_REGISTER_IMM(wal->count);
993 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
994 *cs++ = i915_mmio_reg_offset(wa->reg);
995 *cs++ = wa->set;
996 }
997 *cs++ = MI_NOOP;
998
999 intel_ring_advance(rq, cs);
1000
1001 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1002 if (ret)
1003 return ret;
1004
1005 return 0;
1006 }
1007
1008 static void
1009 gen4_gt_workarounds_init(struct intel_gt *gt,
1010 struct i915_wa_list *wal)
1011 {
1012 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1013 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1014 }
1015
1016 static void
1017 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1018 {
1019 gen4_gt_workarounds_init(gt, wal);
1020
1021 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1022 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1023 }
1024
1025 static void
1026 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1027 {
1028 g4x_gt_workarounds_init(gt, wal);
1029
1030 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1031 }
1032
1033 static void
1034 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1035 {
1036 }
1037
1038 static void
1039 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1040 {
1041 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1042 wa_masked_dis(wal,
1043 GEN7_COMMON_SLICE_CHICKEN1,
1044 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1045
1046 /* WaApplyL3ControlAndL3ChickenMode:ivb */
1047 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1048 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1049
1050 /* WaForceL3Serialization:ivb */
1051 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1052 }
1053
1054 static void
1055 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1056 {
1057 /* WaForceL3Serialization:vlv */
1058 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1059
1060 /*
1061 * WaIncreaseL3CreditsForVLVB0:vlv
1062 * This is the hardware default actually.
1063 */
1064 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1065 }
1066
1067 static void
1068 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1069 {
1070 /* L3 caching of data atomics doesn't work -- disable it. */
1071 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1072
1073 wa_add(wal,
1074 HSW_ROW_CHICKEN3, 0,
1075 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1076 0 /* XXX does this reg exist? */, true);
1077
1078 /* WaVSRefCountFullforceMissDisable:hsw */
1079 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1080 }
1081
1082 static void
1083 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1084 {
1085 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1086 unsigned int slice, subslice;
1087 u32 mcr, mcr_mask;
1088
1089 GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1090
1091 /*
1092 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1093 * Before any MMIO read into slice/subslice specific registers, MCR
1094 * packet control register needs to be programmed to point to any
1095 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1096 * This means each subsequent MMIO read will be forwarded to an
1097 * specific s/ss combination, but this is OK since these registers
1098 * are consistent across s/ss in almost all cases. In the rare
1099 * occasions, such as INSTDONE, where this value is dependent
1100 * on s/ss combo, the read should be done with read_subslice_reg.
1101 */
1102 slice = ffs(sseu->slice_mask) - 1;
1103 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1104 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1105 GEM_BUG_ON(!subslice);
1106 subslice--;
1107
1108 /*
1109 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1110 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1111 */
1112 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1113 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1114
1115 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1116
1117 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1118 }
1119
1120 static void
1121 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1122 {
1123 struct drm_i915_private *i915 = gt->i915;
1124
1125 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1126 gen9_wa_init_mcr(i915, wal);
1127
1128 /* WaDisableKillLogic:bxt,skl,kbl */
1129 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1130 wa_write_or(wal,
1131 GAM_ECOCHK,
1132 ECOCHK_DIS_TLB);
1133
1134 if (HAS_LLC(i915)) {
1135 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1136 *
1137 * Must match Display Engine. See
1138 * WaCompressedResourceDisplayNewHashMode.
1139 */
1140 wa_write_or(wal,
1141 MMCD_MISC_CTRL,
1142 MMCD_PCLA | MMCD_HOTSPOT_EN);
1143 }
1144
1145 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1146 wa_write_or(wal,
1147 GAM_ECOCHK,
1148 BDW_DISABLE_HDC_INVALIDATION);
1149 }
1150
1151 static void
1152 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1153 {
1154 gen9_gt_workarounds_init(gt, wal);
1155
1156 /* WaDisableGafsUnitClkGating:skl */
1157 wa_write_or(wal,
1158 GEN7_UCGCTL4,
1159 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1160
1161 /* WaInPlaceDecompressionHang:skl */
1162 if (IS_SKL_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1163 wa_write_or(wal,
1164 GEN9_GAMT_ECO_REG_RW_IA,
1165 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1166 }
1167
1168 static void
1169 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1170 {
1171 gen9_gt_workarounds_init(gt, wal);
1172
1173 /* WaDisableDynamicCreditSharing:kbl */
1174 if (IS_KBL_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1175 wa_write_or(wal,
1176 GAMT_CHKN_BIT_REG,
1177 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1178
1179 /* WaDisableGafsUnitClkGating:kbl */
1180 wa_write_or(wal,
1181 GEN7_UCGCTL4,
1182 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1183
1184 /* WaInPlaceDecompressionHang:kbl */
1185 wa_write_or(wal,
1186 GEN9_GAMT_ECO_REG_RW_IA,
1187 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1188 }
1189
1190 static void
1191 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1192 {
1193 gen9_gt_workarounds_init(gt, wal);
1194 }
1195
1196 static void
1197 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1198 {
1199 gen9_gt_workarounds_init(gt, wal);
1200
1201 /* WaDisableGafsUnitClkGating:cfl */
1202 wa_write_or(wal,
1203 GEN7_UCGCTL4,
1204 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1205
1206 /* WaInPlaceDecompressionHang:cfl */
1207 wa_write_or(wal,
1208 GEN9_GAMT_ECO_REG_RW_IA,
1209 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1210 }
1211
1212 static void __set_mcr_steering(struct i915_wa_list *wal,
1213 i915_reg_t steering_reg,
1214 unsigned int slice, unsigned int subslice)
1215 {
1216 u32 mcr, mcr_mask;
1217
1218 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1219 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1220
1221 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1222 }
1223
1224 static void debug_dump_steering(struct intel_gt *gt)
1225 {
1226 struct drm_printer p = drm_debug_printer("MCR Steering:");
1227
1228 if (drm_debug_enabled(DRM_UT_DRIVER))
1229 intel_gt_mcr_report_steering(&p, gt, false);
1230 }
1231
1232 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1233 unsigned int slice, unsigned int subslice)
1234 {
1235 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1236
1237 gt->default_steering.groupid = slice;
1238 gt->default_steering.instanceid = subslice;
1239
1240 debug_dump_steering(gt);
1241 }
1242
1243 static void
1244 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1245 {
1246 const struct sseu_dev_info *sseu = &gt->info.sseu;
1247 unsigned int subslice;
1248
1249 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1250 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1251
1252 /*
1253 * Although a platform may have subslices, we need to always steer
1254 * reads to the lowest instance that isn't fused off. When Render
1255 * Power Gating is enabled, grabbing forcewake will only power up a
1256 * single subslice (the "minconfig") if there isn't a real workload
1257 * that needs to be run; this means that if we steer register reads to
1258 * one of the higher subslices, we run the risk of reading back 0's or
1259 * random garbage.
1260 */
1261 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1262
1263 /*
1264 * If the subslice we picked above also steers us to a valid L3 bank,
1265 * then we can just rely on the default steering and won't need to
1266 * worry about explicitly re-steering L3BANK reads later.
1267 */
1268 if (gt->info.l3bank_mask & BIT(subslice))
1269 gt->steering_table[L3BANK] = NULL;
1270
1271 __add_mcr_wa(gt, wal, 0, subslice);
1272 }
1273
1274 static void
1275 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1276 {
1277 const struct sseu_dev_info *sseu = &gt->info.sseu;
1278 unsigned long slice, subslice = 0, slice_mask = 0;
1279 u32 lncf_mask = 0;
1280 int i;
1281
1282 /*
1283 * On Xe_HP the steering increases in complexity. There are now several
1284 * more units that require steering and we're not guaranteed to be able
1285 * to find a common setting for all of them. These are:
1286 * - GSLICE (fusable)
1287 * - DSS (sub-unit within gslice; fusable)
1288 * - L3 Bank (fusable)
1289 * - MSLICE (fusable)
1290 * - LNCF (sub-unit within mslice; always present if mslice is present)
1291 *
1292 * We'll do our default/implicit steering based on GSLICE (in the
1293 * sliceid field) and DSS (in the subsliceid field). If we can
1294 * find overlap between the valid MSLICE and/or LNCF values with
1295 * a suitable GSLICE, then we can just re-use the default value and
1296 * skip and explicit steering at runtime.
1297 *
1298 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1299 * a valid sliceid value. DSS steering is the only type of steering
1300 * that utilizes the 'subsliceid' bits.
1301 *
1302 * Also note that, even though the steering domain is called "GSlice"
1303 * and it is encoded in the register using the gslice format, the spec
1304 * says that the combined (geometry | compute) fuse should be used to
1305 * select the steering.
1306 */
1307
1308 /* Find the potential gslice candidates */
1309 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1310 GEN_DSS_PER_GSLICE);
1311
1312 /*
1313 * Find the potential LNCF candidates. Either LNCF within a valid
1314 * mslice is fine.
1315 */
1316 for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1317 lncf_mask |= (0x3 << (i * 2));
1318
1319 /*
1320 * Are there any sliceid values that work for both GSLICE and LNCF
1321 * steering?
1322 */
1323 if (slice_mask & lncf_mask) {
1324 slice_mask &= lncf_mask;
1325 gt->steering_table[LNCF] = NULL;
1326 }
1327
1328 /* How about sliceid values that also work for MSLICE steering? */
1329 if (slice_mask & gt->info.mslice_mask) {
1330 slice_mask &= gt->info.mslice_mask;
1331 gt->steering_table[MSLICE] = NULL;
1332 }
1333
1334 if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1335 gt->steering_table[GAM] = NULL;
1336
1337 slice = __ffs(slice_mask);
1338 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1339 GEN_DSS_PER_GSLICE;
1340
1341 __add_mcr_wa(gt, wal, slice, subslice);
1342
1343 /*
1344 * SQIDI ranges are special because they use different steering
1345 * registers than everything else we work with. On XeHP SDV and
1346 * DG2-G10, any value in the steering registers will work fine since
1347 * all instances are present, but DG2-G11 only has SQIDI instances at
1348 * ID's 2 and 3, so we need to steer to one of those. For simplicity
1349 * we'll just steer to a hardcoded "2" since that value will work
1350 * everywhere.
1351 */
1352 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1353 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1354
1355 /*
1356 * On DG2, GAM registers have a dedicated steering control register
1357 * and must always be programmed to a hardcoded groupid of "1."
1358 */
1359 if (IS_DG2(gt->i915))
1360 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1361 }
1362
1363 static void
1364 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1365 {
1366 unsigned int dss;
1367
1368 /*
1369 * Setup implicit steering for COMPUTE and DSS ranges to the first
1370 * non-fused-off DSS. All other types of MCR registers will be
1371 * explicitly steered.
1372 */
1373 dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1374 __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1375 }
1376
1377 static void
1378 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1379 {
1380 struct drm_i915_private *i915 = gt->i915;
1381
1382 icl_wa_init_mcr(gt, wal);
1383
1384 /* WaModifyGamTlbPartitioning:icl */
1385 wa_write_clr_set(wal,
1386 GEN11_GACB_PERF_CTRL,
1387 GEN11_HASH_CTRL_MASK,
1388 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1389
1390 /* Wa_1405766107:icl
1391 * Formerly known as WaCL2SFHalfMaxAlloc
1392 */
1393 wa_write_or(wal,
1394 GEN11_LSN_UNSLCVC,
1395 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1396 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1397
1398 /* Wa_220166154:icl
1399 * Formerly known as WaDisCtxReload
1400 */
1401 wa_write_or(wal,
1402 GEN8_GAMW_ECO_DEV_RW_IA,
1403 GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1404
1405 /* Wa_1406463099:icl
1406 * Formerly known as WaGamTlbPendError
1407 */
1408 wa_write_or(wal,
1409 GAMT_CHKN_BIT_REG,
1410 GAMT_CHKN_DISABLE_L3_COH_PIPE);
1411
1412 /*
1413 * Wa_1408615072:icl,ehl (vsunit)
1414 * Wa_1407596294:icl,ehl (hsunit)
1415 */
1416 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1417 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1418
1419 /* Wa_1407352427:icl,ehl */
1420 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1421 PSDUNIT_CLKGATE_DIS);
1422
1423 /* Wa_1406680159:icl,ehl */
1424 wa_mcr_write_or(wal,
1425 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1426 GWUNIT_CLKGATE_DIS);
1427
1428 /* Wa_1607087056:icl,ehl,jsl */
1429 if (IS_ICELAKE(i915) ||
1430 IS_JSL_EHL_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1431 wa_write_or(wal,
1432 GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1433 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1434
1435 /*
1436 * This is not a documented workaround, but rather an optimization
1437 * to reduce sampler power.
1438 */
1439 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1440 }
1441
1442 /*
1443 * Though there are per-engine instances of these registers,
1444 * they retain their value through engine resets and should
1445 * only be provided on the GT workaround list rather than
1446 * the engine-specific workaround list.
1447 */
1448 static void
1449 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1450 {
1451 struct intel_engine_cs *engine;
1452 int id;
1453
1454 for_each_engine(engine, gt, id) {
1455 if (engine->class != VIDEO_DECODE_CLASS ||
1456 (engine->instance % 2))
1457 continue;
1458
1459 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1460 IECPUNIT_CLKGATE_DIS);
1461 }
1462 }
1463
1464 static void
1465 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1466 {
1467 icl_wa_init_mcr(gt, wal);
1468
1469 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1470 wa_14011060649(gt, wal);
1471
1472 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1473 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1474 }
1475
1476 static void
1477 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1478 {
1479 gen12_gt_workarounds_init(gt, wal);
1480
1481 /* Wa_1409420604:dg1 */
1482 wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1483 CPSSUNIT_CLKGATE_DIS);
1484
1485 /* Wa_1408615072:dg1 */
1486 /* Empirical testing shows this register is unaffected by engine reset. */
1487 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1488 }
1489
1490 static void
1491 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1492 {
1493 struct drm_i915_private *i915 = gt->i915;
1494
1495 xehp_init_mcr(gt, wal);
1496
1497 /* Wa_1409757795:xehpsdv */
1498 wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1499
1500 /* Wa_18011725039:xehpsdv */
1501 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1502 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1503 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1504 }
1505
1506 /* Wa_16011155590:xehpsdv */
1507 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1508 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1509 TSGUNIT_CLKGATE_DIS);
1510
1511 /* Wa_14011780169:xehpsdv */
1512 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1513 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1514 GAMTLBVDBOX7_CLKGATE_DIS |
1515 GAMTLBVDBOX6_CLKGATE_DIS |
1516 GAMTLBVDBOX5_CLKGATE_DIS |
1517 GAMTLBVDBOX4_CLKGATE_DIS |
1518 GAMTLBVDBOX3_CLKGATE_DIS |
1519 GAMTLBVDBOX2_CLKGATE_DIS |
1520 GAMTLBVDBOX1_CLKGATE_DIS |
1521 GAMTLBVDBOX0_CLKGATE_DIS |
1522 GAMTLBKCR_CLKGATE_DIS |
1523 GAMTLBGUC_CLKGATE_DIS |
1524 GAMTLBBLT_CLKGATE_DIS);
1525 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1526 GAMTLBGFXA1_CLKGATE_DIS |
1527 GAMTLBCOMPA0_CLKGATE_DIS |
1528 GAMTLBCOMPA1_CLKGATE_DIS |
1529 GAMTLBCOMPB0_CLKGATE_DIS |
1530 GAMTLBCOMPB1_CLKGATE_DIS |
1531 GAMTLBCOMPC0_CLKGATE_DIS |
1532 GAMTLBCOMPC1_CLKGATE_DIS |
1533 GAMTLBCOMPD0_CLKGATE_DIS |
1534 GAMTLBCOMPD1_CLKGATE_DIS |
1535 GAMTLBMERT_CLKGATE_DIS |
1536 GAMTLBVEBOX3_CLKGATE_DIS |
1537 GAMTLBVEBOX2_CLKGATE_DIS |
1538 GAMTLBVEBOX1_CLKGATE_DIS |
1539 GAMTLBVEBOX0_CLKGATE_DIS);
1540 }
1541
1542 /* Wa_16012725990:xehpsdv */
1543 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1544 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1545
1546 /* Wa_14011060649:xehpsdv */
1547 wa_14011060649(gt, wal);
1548
1549 /* Wa_14012362059:xehpsdv */
1550 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1551
1552 /* Wa_14014368820:xehpsdv */
1553 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1554 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1555
1556 /* Wa_14010670810:xehpsdv */
1557 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1558 }
1559
1560 static void
1561 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1562 {
1563 struct intel_engine_cs *engine;
1564 int id;
1565
1566 xehp_init_mcr(gt, wal);
1567
1568 /* Wa_14011060649:dg2 */
1569 wa_14011060649(gt, wal);
1570
1571 /*
1572 * Although there are per-engine instances of these registers,
1573 * they technically exist outside the engine itself and are not
1574 * impacted by engine resets. Furthermore, they're part of the
1575 * GuC blacklist so trying to treat them as engine workarounds
1576 * will result in GuC initialization failure and a wedged GPU.
1577 */
1578 for_each_engine(engine, gt, id) {
1579 if (engine->class != VIDEO_DECODE_CLASS)
1580 continue;
1581
1582 /* Wa_16010515920:dg2_g10 */
1583 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
1584 wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base),
1585 ALNUNIT_CLKGATE_DIS);
1586 }
1587
1588 if (IS_DG2_G10(gt->i915)) {
1589 /* Wa_22010523718:dg2 */
1590 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1591 CG3DDISCFEG_CLKGATE_DIS);
1592
1593 /* Wa_14011006942:dg2 */
1594 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1595 DSS_ROUTER_CLKGATE_DIS);
1596 }
1597
1598 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0) ||
1599 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) {
1600 /* Wa_14012362059:dg2 */
1601 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1602 }
1603
1604 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) {
1605 /* Wa_14010948348:dg2_g10 */
1606 wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS);
1607
1608 /* Wa_14011037102:dg2_g10 */
1609 wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS);
1610
1611 /* Wa_14011371254:dg2_g10 */
1612 wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS);
1613
1614 /* Wa_14011431319:dg2_g10 */
1615 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1616 GAMTLBVDBOX7_CLKGATE_DIS |
1617 GAMTLBVDBOX6_CLKGATE_DIS |
1618 GAMTLBVDBOX5_CLKGATE_DIS |
1619 GAMTLBVDBOX4_CLKGATE_DIS |
1620 GAMTLBVDBOX3_CLKGATE_DIS |
1621 GAMTLBVDBOX2_CLKGATE_DIS |
1622 GAMTLBVDBOX1_CLKGATE_DIS |
1623 GAMTLBVDBOX0_CLKGATE_DIS |
1624 GAMTLBKCR_CLKGATE_DIS |
1625 GAMTLBGUC_CLKGATE_DIS |
1626 GAMTLBBLT_CLKGATE_DIS);
1627 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1628 GAMTLBGFXA1_CLKGATE_DIS |
1629 GAMTLBCOMPA0_CLKGATE_DIS |
1630 GAMTLBCOMPA1_CLKGATE_DIS |
1631 GAMTLBCOMPB0_CLKGATE_DIS |
1632 GAMTLBCOMPB1_CLKGATE_DIS |
1633 GAMTLBCOMPC0_CLKGATE_DIS |
1634 GAMTLBCOMPC1_CLKGATE_DIS |
1635 GAMTLBCOMPD0_CLKGATE_DIS |
1636 GAMTLBCOMPD1_CLKGATE_DIS |
1637 GAMTLBMERT_CLKGATE_DIS |
1638 GAMTLBVEBOX3_CLKGATE_DIS |
1639 GAMTLBVEBOX2_CLKGATE_DIS |
1640 GAMTLBVEBOX1_CLKGATE_DIS |
1641 GAMTLBVEBOX0_CLKGATE_DIS);
1642
1643 /* Wa_14010569222:dg2_g10 */
1644 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1645 GAMEDIA_CLKGATE_DIS);
1646
1647 /* Wa_14011028019:dg2_g10 */
1648 wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS);
1649
1650 /* Wa_14010680813:dg2_g10 */
1651 wa_mcr_write_or(wal, XEHP_GAMSTLB_CTRL,
1652 CONTROL_BLOCK_CLKGATE_DIS |
1653 EGRESS_BLOCK_CLKGATE_DIS |
1654 TAG_BLOCK_CLKGATE_DIS);
1655 }
1656
1657 /* Wa_14014830051:dg2 */
1658 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1659
1660 /* Wa_14015795083 */
1661 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1662
1663 /* Wa_18018781329 */
1664 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1665 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1666 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1667 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1668
1669 /* Wa_1509235366:dg2 */
1670 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1671 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1672
1673 /* Wa_14010648519:dg2 */
1674 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1675 }
1676
1677 static void
1678 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1679 {
1680 pvc_init_mcr(gt, wal);
1681
1682 /* Wa_14015795083 */
1683 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1684
1685 /* Wa_18018781329 */
1686 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1687 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1688 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1689 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1690
1691 /* Wa_16016694945 */
1692 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1693 }
1694
1695 static void
1696 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1697 {
1698 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
1699 IS_MTL_GRAPHICS_STEP(gt->i915, P, STEP_A0, STEP_B0)) {
1700 /* Wa_14014830051 */
1701 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1702
1703 /* Wa_18018781329 */
1704 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1705 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1706 }
1707
1708 /*
1709 * Unlike older platforms, we no longer setup implicit steering here;
1710 * all MCR accesses are explicitly steered.
1711 */
1712 debug_dump_steering(gt);
1713 }
1714
1715 static void
1716 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1717 {
1718 if (IS_MTL_MEDIA_STEP(gt->i915, STEP_A0, STEP_B0)) {
1719 /*
1720 * Wa_18018781329
1721 *
1722 * Note that although these registers are MCR on the primary
1723 * GT, the media GT's versions are regular singleton registers.
1724 */
1725 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1726 wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1727 wa_write_or(wal, XELPMP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1728 }
1729
1730 debug_dump_steering(gt);
1731 }
1732
1733 /*
1734 * The bspec performance guide has recommended MMIO tuning settings. These
1735 * aren't truly "workarounds" but we want to program them through the
1736 * workaround infrastructure to make sure they're (re)applied at the proper
1737 * times.
1738 *
1739 * The programming in this function is for settings that persist through
1740 * engine resets and also are not part of any engine's register state context.
1741 * I.e., settings that only need to be re-applied in the event of a full GT
1742 * reset.
1743 */
1744 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1745 {
1746 if (IS_PONTEVECCHIO(gt->i915)) {
1747 wa_mcr_write(wal, XEHPC_L3SCRUB,
1748 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1749 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1750 }
1751
1752 if (IS_DG2(gt->i915)) {
1753 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1754 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1755 }
1756 }
1757
1758 static void
1759 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1760 {
1761 struct drm_i915_private *i915 = gt->i915;
1762
1763 gt_tuning_settings(gt, wal);
1764
1765 if (gt->type == GT_MEDIA) {
1766 if (MEDIA_VER(i915) >= 13)
1767 xelpmp_gt_workarounds_init(gt, wal);
1768 else
1769 MISSING_CASE(MEDIA_VER(i915));
1770
1771 return;
1772 }
1773
1774 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1775 xelpg_gt_workarounds_init(gt, wal);
1776 else if (IS_PONTEVECCHIO(i915))
1777 pvc_gt_workarounds_init(gt, wal);
1778 else if (IS_DG2(i915))
1779 dg2_gt_workarounds_init(gt, wal);
1780 else if (IS_XEHPSDV(i915))
1781 xehpsdv_gt_workarounds_init(gt, wal);
1782 else if (IS_DG1(i915))
1783 dg1_gt_workarounds_init(gt, wal);
1784 else if (GRAPHICS_VER(i915) == 12)
1785 gen12_gt_workarounds_init(gt, wal);
1786 else if (GRAPHICS_VER(i915) == 11)
1787 icl_gt_workarounds_init(gt, wal);
1788 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1789 cfl_gt_workarounds_init(gt, wal);
1790 else if (IS_GEMINILAKE(i915))
1791 glk_gt_workarounds_init(gt, wal);
1792 else if (IS_KABYLAKE(i915))
1793 kbl_gt_workarounds_init(gt, wal);
1794 else if (IS_BROXTON(i915))
1795 gen9_gt_workarounds_init(gt, wal);
1796 else if (IS_SKYLAKE(i915))
1797 skl_gt_workarounds_init(gt, wal);
1798 else if (IS_HASWELL(i915))
1799 hsw_gt_workarounds_init(gt, wal);
1800 else if (IS_VALLEYVIEW(i915))
1801 vlv_gt_workarounds_init(gt, wal);
1802 else if (IS_IVYBRIDGE(i915))
1803 ivb_gt_workarounds_init(gt, wal);
1804 else if (GRAPHICS_VER(i915) == 6)
1805 snb_gt_workarounds_init(gt, wal);
1806 else if (GRAPHICS_VER(i915) == 5)
1807 ilk_gt_workarounds_init(gt, wal);
1808 else if (IS_G4X(i915))
1809 g4x_gt_workarounds_init(gt, wal);
1810 else if (GRAPHICS_VER(i915) == 4)
1811 gen4_gt_workarounds_init(gt, wal);
1812 else if (GRAPHICS_VER(i915) <= 8)
1813 ;
1814 else
1815 MISSING_CASE(GRAPHICS_VER(i915));
1816 }
1817
1818 void intel_gt_init_workarounds(struct intel_gt *gt)
1819 {
1820 struct i915_wa_list *wal = &gt->wa_list;
1821
1822 wa_init_start(wal, gt, "GT", "global");
1823 gt_init_workarounds(gt, wal);
1824 wa_init_finish(wal);
1825 }
1826
1827 static enum forcewake_domains
1828 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
1829 {
1830 enum forcewake_domains fw = 0;
1831 struct i915_wa *wa;
1832 unsigned int i;
1833
1834 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1835 fw |= intel_uncore_forcewake_for_reg(uncore,
1836 wa->reg,
1837 FW_REG_READ |
1838 FW_REG_WRITE);
1839
1840 return fw;
1841 }
1842
1843 static bool
1844 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1845 const char *name, const char *from)
1846 {
1847 if ((cur ^ wa->set) & wa->read) {
1848 drm_err(&gt->i915->drm,
1849 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1850 name, from, i915_mmio_reg_offset(wa->reg),
1851 cur, cur & wa->read, wa->set & wa->read);
1852
1853 return false;
1854 }
1855
1856 return true;
1857 }
1858
1859 static void wa_list_apply(const struct i915_wa_list *wal)
1860 {
1861 struct intel_gt *gt = wal->gt;
1862 struct intel_uncore *uncore = gt->uncore;
1863 enum forcewake_domains fw;
1864 unsigned long flags;
1865 struct i915_wa *wa;
1866 unsigned int i;
1867
1868 if (!wal->count)
1869 return;
1870
1871 fw = wal_get_fw_for_rmw(uncore, wal);
1872
1873 intel_gt_mcr_lock(gt, &flags);
1874 spin_lock(&uncore->lock);
1875 intel_uncore_forcewake_get__locked(uncore, fw);
1876
1877 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1878 u32 val, old = 0;
1879
1880 /* open-coded rmw due to steering */
1881 if (wa->clr)
1882 old = wa->is_mcr ?
1883 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1884 intel_uncore_read_fw(uncore, wa->reg);
1885 val = (old & ~wa->clr) | wa->set;
1886 if (val != old || !wa->clr) {
1887 if (wa->is_mcr)
1888 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1889 else
1890 intel_uncore_write_fw(uncore, wa->reg, val);
1891 }
1892
1893 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1894 u32 val = wa->is_mcr ?
1895 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1896 intel_uncore_read_fw(uncore, wa->reg);
1897
1898 wa_verify(gt, wa, val, wal->name, "application");
1899 }
1900 }
1901
1902 intel_uncore_forcewake_put__locked(uncore, fw);
1903 spin_unlock(&uncore->lock);
1904 intel_gt_mcr_unlock(gt, flags);
1905 }
1906
1907 void intel_gt_apply_workarounds(struct intel_gt *gt)
1908 {
1909 wa_list_apply(&gt->wa_list);
1910 }
1911
1912 static bool wa_list_verify(struct intel_gt *gt,
1913 const struct i915_wa_list *wal,
1914 const char *from)
1915 {
1916 struct intel_uncore *uncore = gt->uncore;
1917 struct i915_wa *wa;
1918 enum forcewake_domains fw;
1919 unsigned long flags;
1920 unsigned int i;
1921 bool ok = true;
1922
1923 fw = wal_get_fw_for_rmw(uncore, wal);
1924
1925 intel_gt_mcr_lock(gt, &flags);
1926 spin_lock(&uncore->lock);
1927 intel_uncore_forcewake_get__locked(uncore, fw);
1928
1929 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1930 ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1931 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1932 intel_uncore_read_fw(uncore, wa->reg),
1933 wal->name, from);
1934
1935 intel_uncore_forcewake_put__locked(uncore, fw);
1936 spin_unlock(&uncore->lock);
1937 intel_gt_mcr_unlock(gt, flags);
1938
1939 return ok;
1940 }
1941
1942 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1943 {
1944 return wa_list_verify(gt, &gt->wa_list, from);
1945 }
1946
1947 __maybe_unused
1948 static bool is_nonpriv_flags_valid(u32 flags)
1949 {
1950 /* Check only valid flag bits are set */
1951 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1952 return false;
1953
1954 /* NB: Only 3 out of 4 enum values are valid for access field */
1955 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1956 RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1957 return false;
1958
1959 return true;
1960 }
1961
1962 static void
1963 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1964 {
1965 struct i915_wa wa = {
1966 .reg = reg
1967 };
1968
1969 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1970 return;
1971
1972 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1973 return;
1974
1975 wa.reg.reg |= flags;
1976 _wa_add(wal, &wa);
1977 }
1978
1979 static void
1980 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1981 {
1982 struct i915_wa wa = {
1983 .mcr_reg = reg,
1984 .is_mcr = 1,
1985 };
1986
1987 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1988 return;
1989
1990 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1991 return;
1992
1993 wa.mcr_reg.reg |= flags;
1994 _wa_add(wal, &wa);
1995 }
1996
1997 static void
1998 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1999 {
2000 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
2001 }
2002
2003 static void
2004 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
2005 {
2006 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
2007 }
2008
2009 static void gen9_whitelist_build(struct i915_wa_list *w)
2010 {
2011 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
2012 whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2013
2014 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
2015 whitelist_reg(w, GEN8_CS_CHICKEN1);
2016
2017 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
2018 whitelist_reg(w, GEN8_HDC_CHICKEN1);
2019
2020 /* WaSendPushConstantsFromMMIO:skl,bxt */
2021 whitelist_reg(w, COMMON_SLICE_CHICKEN2);
2022 }
2023
2024 static void skl_whitelist_build(struct intel_engine_cs *engine)
2025 {
2026 struct i915_wa_list *w = &engine->whitelist;
2027
2028 if (engine->class != RENDER_CLASS)
2029 return;
2030
2031 gen9_whitelist_build(w);
2032
2033 /* WaDisableLSQCROPERFforOCL:skl */
2034 whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2035 }
2036
2037 static void bxt_whitelist_build(struct intel_engine_cs *engine)
2038 {
2039 if (engine->class != RENDER_CLASS)
2040 return;
2041
2042 gen9_whitelist_build(&engine->whitelist);
2043 }
2044
2045 static void kbl_whitelist_build(struct intel_engine_cs *engine)
2046 {
2047 struct i915_wa_list *w = &engine->whitelist;
2048
2049 if (engine->class != RENDER_CLASS)
2050 return;
2051
2052 gen9_whitelist_build(w);
2053
2054 /* WaDisableLSQCROPERFforOCL:kbl */
2055 whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2056 }
2057
2058 static void glk_whitelist_build(struct intel_engine_cs *engine)
2059 {
2060 struct i915_wa_list *w = &engine->whitelist;
2061
2062 if (engine->class != RENDER_CLASS)
2063 return;
2064
2065 gen9_whitelist_build(w);
2066
2067 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2068 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2069 }
2070
2071 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2072 {
2073 struct i915_wa_list *w = &engine->whitelist;
2074
2075 if (engine->class != RENDER_CLASS)
2076 return;
2077
2078 gen9_whitelist_build(w);
2079
2080 /*
2081 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2082 *
2083 * This covers 4 register which are next to one another :
2084 * - PS_INVOCATION_COUNT
2085 * - PS_INVOCATION_COUNT_UDW
2086 * - PS_DEPTH_COUNT
2087 * - PS_DEPTH_COUNT_UDW
2088 */
2089 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2090 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2091 RING_FORCE_TO_NONPRIV_RANGE_4);
2092 }
2093
2094 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2095 {
2096 struct i915_wa_list *w = &engine->whitelist;
2097
2098 if (engine->class != RENDER_CLASS)
2099 whitelist_reg_ext(w,
2100 RING_CTX_TIMESTAMP(engine->mmio_base),
2101 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2102 }
2103
2104 static void cml_whitelist_build(struct intel_engine_cs *engine)
2105 {
2106 allow_read_ctx_timestamp(engine);
2107
2108 cfl_whitelist_build(engine);
2109 }
2110
2111 static void icl_whitelist_build(struct intel_engine_cs *engine)
2112 {
2113 struct i915_wa_list *w = &engine->whitelist;
2114
2115 allow_read_ctx_timestamp(engine);
2116
2117 switch (engine->class) {
2118 case RENDER_CLASS:
2119 /* WaAllowUMDToModifyHalfSliceChicken7:icl */
2120 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2121
2122 /* WaAllowUMDToModifySamplerMode:icl */
2123 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2124
2125 /* WaEnableStateCacheRedirectToCS:icl */
2126 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2127
2128 /*
2129 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2130 *
2131 * This covers 4 register which are next to one another :
2132 * - PS_INVOCATION_COUNT
2133 * - PS_INVOCATION_COUNT_UDW
2134 * - PS_DEPTH_COUNT
2135 * - PS_DEPTH_COUNT_UDW
2136 */
2137 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2138 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2139 RING_FORCE_TO_NONPRIV_RANGE_4);
2140 break;
2141
2142 case VIDEO_DECODE_CLASS:
2143 /* hucStatusRegOffset */
2144 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2145 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2146 /* hucUKernelHdrInfoRegOffset */
2147 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2148 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2149 /* hucStatus2RegOffset */
2150 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2151 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2152 break;
2153
2154 default:
2155 break;
2156 }
2157 }
2158
2159 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2160 {
2161 struct i915_wa_list *w = &engine->whitelist;
2162
2163 allow_read_ctx_timestamp(engine);
2164
2165 switch (engine->class) {
2166 case RENDER_CLASS:
2167 /*
2168 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2169 * Wa_1408556865:tgl
2170 *
2171 * This covers 4 registers which are next to one another :
2172 * - PS_INVOCATION_COUNT
2173 * - PS_INVOCATION_COUNT_UDW
2174 * - PS_DEPTH_COUNT
2175 * - PS_DEPTH_COUNT_UDW
2176 */
2177 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2178 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2179 RING_FORCE_TO_NONPRIV_RANGE_4);
2180
2181 /*
2182 * Wa_1808121037:tgl
2183 * Wa_14012131227:dg1
2184 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2185 */
2186 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2187
2188 /* Wa_1806527549:tgl */
2189 whitelist_reg(w, HIZ_CHICKEN);
2190
2191 /* Required by recommended tuning setting (not a workaround) */
2192 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2193
2194 break;
2195 default:
2196 break;
2197 }
2198 }
2199
2200 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2201 {
2202 struct i915_wa_list *w = &engine->whitelist;
2203
2204 switch (engine->class) {
2205 case RENDER_CLASS:
2206 /*
2207 * Wa_1507100340:dg2_g10
2208 *
2209 * This covers 4 registers which are next to one another :
2210 * - PS_INVOCATION_COUNT
2211 * - PS_INVOCATION_COUNT_UDW
2212 * - PS_DEPTH_COUNT
2213 * - PS_DEPTH_COUNT_UDW
2214 */
2215 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2216 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2217 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2218 RING_FORCE_TO_NONPRIV_RANGE_4);
2219
2220 /* Required by recommended tuning setting (not a workaround) */
2221 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2222
2223 break;
2224 case COMPUTE_CLASS:
2225 /* Wa_16011157294:dg2_g10 */
2226 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2227 whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2228 break;
2229 default:
2230 break;
2231 }
2232 }
2233
2234 static void blacklist_trtt(struct intel_engine_cs *engine)
2235 {
2236 struct i915_wa_list *w = &engine->whitelist;
2237
2238 /*
2239 * Prevent read/write access to [0x4400, 0x4600) which covers
2240 * the TRTT range across all engines. Note that normally userspace
2241 * cannot access the other engines' trtt control, but for simplicity
2242 * we cover the entire range on each engine.
2243 */
2244 whitelist_reg_ext(w, _MMIO(0x4400),
2245 RING_FORCE_TO_NONPRIV_DENY |
2246 RING_FORCE_TO_NONPRIV_RANGE_64);
2247 whitelist_reg_ext(w, _MMIO(0x4500),
2248 RING_FORCE_TO_NONPRIV_DENY |
2249 RING_FORCE_TO_NONPRIV_RANGE_64);
2250 }
2251
2252 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2253 {
2254 /* Wa_16014440446:pvc */
2255 blacklist_trtt(engine);
2256 }
2257
2258 static void mtl_whitelist_build(struct intel_engine_cs *engine)
2259 {
2260 struct i915_wa_list *w = &engine->whitelist;
2261
2262 switch (engine->class) {
2263 case RENDER_CLASS:
2264 /* Required by recommended tuning setting (not a workaround) */
2265 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2266
2267 break;
2268 default:
2269 break;
2270 }
2271 }
2272
2273 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2274 {
2275 struct drm_i915_private *i915 = engine->i915;
2276 struct i915_wa_list *w = &engine->whitelist;
2277
2278 wa_init_start(w, engine->gt, "whitelist", engine->name);
2279
2280 if (IS_METEORLAKE(i915))
2281 mtl_whitelist_build(engine);
2282 else if (IS_PONTEVECCHIO(i915))
2283 pvc_whitelist_build(engine);
2284 else if (IS_DG2(i915))
2285 dg2_whitelist_build(engine);
2286 else if (IS_XEHPSDV(i915))
2287 ; /* none needed */
2288 else if (GRAPHICS_VER(i915) == 12)
2289 tgl_whitelist_build(engine);
2290 else if (GRAPHICS_VER(i915) == 11)
2291 icl_whitelist_build(engine);
2292 else if (IS_COMETLAKE(i915))
2293 cml_whitelist_build(engine);
2294 else if (IS_COFFEELAKE(i915))
2295 cfl_whitelist_build(engine);
2296 else if (IS_GEMINILAKE(i915))
2297 glk_whitelist_build(engine);
2298 else if (IS_KABYLAKE(i915))
2299 kbl_whitelist_build(engine);
2300 else if (IS_BROXTON(i915))
2301 bxt_whitelist_build(engine);
2302 else if (IS_SKYLAKE(i915))
2303 skl_whitelist_build(engine);
2304 else if (GRAPHICS_VER(i915) <= 8)
2305 ;
2306 else
2307 MISSING_CASE(GRAPHICS_VER(i915));
2308
2309 wa_init_finish(w);
2310 }
2311
2312 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2313 {
2314 const struct i915_wa_list *wal = &engine->whitelist;
2315 struct intel_uncore *uncore = engine->uncore;
2316 const u32 base = engine->mmio_base;
2317 struct i915_wa *wa;
2318 unsigned int i;
2319
2320 if (!wal->count)
2321 return;
2322
2323 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2324 intel_uncore_write(uncore,
2325 RING_FORCE_TO_NONPRIV(base, i),
2326 i915_mmio_reg_offset(wa->reg));
2327
2328 /* And clear the rest just in case of garbage */
2329 for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2330 intel_uncore_write(uncore,
2331 RING_FORCE_TO_NONPRIV(base, i),
2332 i915_mmio_reg_offset(RING_NOPID(base)));
2333 }
2334
2335 /*
2336 * engine_fake_wa_init(), a place holder to program the registers
2337 * which are not part of an official workaround defined by the
2338 * hardware team.
2339 * Adding programming of those register inside workaround will
2340 * allow utilizing wa framework to proper application and verification.
2341 */
2342 static void
2343 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2344 {
2345 u8 mocs_w, mocs_r;
2346
2347 /*
2348 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2349 * by the command streamer when executing commands that don't have
2350 * a way to explicitly specify a MOCS setting. The default should
2351 * usually reference whichever MOCS entry corresponds to uncached
2352 * behavior, although use of a WB cached entry is recommended by the
2353 * spec in certain circumstances on specific platforms.
2354 */
2355 if (GRAPHICS_VER(engine->i915) >= 12) {
2356 mocs_r = engine->gt->mocs.uc_index;
2357 mocs_w = engine->gt->mocs.uc_index;
2358
2359 if (HAS_L3_CCS_READ(engine->i915) &&
2360 engine->class == COMPUTE_CLASS) {
2361 mocs_r = engine->gt->mocs.wb_index;
2362
2363 /*
2364 * Even on the few platforms where MOCS 0 is a
2365 * legitimate table entry, it's never the correct
2366 * setting to use here; we can assume the MOCS init
2367 * just forgot to initialize wb_index.
2368 */
2369 drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2370 }
2371
2372 wa_masked_field_set(wal,
2373 RING_CMD_CCTL(engine->mmio_base),
2374 CMD_CCTL_MOCS_MASK,
2375 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2376 }
2377 }
2378
2379 static bool needs_wa_1308578152(struct intel_engine_cs *engine)
2380 {
2381 return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >=
2382 GEN_DSS_PER_GSLICE;
2383 }
2384
2385 static void
2386 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2387 {
2388 struct drm_i915_private *i915 = engine->i915;
2389
2390 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2391 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
2392 /* Wa_22014600077 */
2393 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2394 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2395 }
2396
2397 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2398 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2399 IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2400 IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2401 /* Wa_1509727124 */
2402 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2403 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2404 }
2405
2406 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2407 IS_DG2_G11(i915) || IS_DG2_G12(i915) ||
2408 IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0)) {
2409 /* Wa_22012856258 */
2410 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2411 GEN12_DISABLE_READ_SUPPRESSION);
2412 }
2413
2414 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2415 /* Wa_14013392000:dg2_g11 */
2416 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE);
2417 }
2418
2419 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) ||
2420 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2421 /* Wa_14012419201:dg2 */
2422 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4,
2423 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX);
2424 }
2425
2426 /* Wa_1308578152:dg2_g10 when first gslice is fused off */
2427 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) &&
2428 needs_wa_1308578152(engine)) {
2429 wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON,
2430 GEN12_REPLAY_MODE_GRANULARITY);
2431 }
2432
2433 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2434 IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2435 /*
2436 * Wa_22010960976:dg2
2437 * Wa_14013347512:dg2
2438 */
2439 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2440 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2441 }
2442
2443 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2444 /*
2445 * Wa_1608949956:dg2_g10
2446 * Wa_14010198302:dg2_g10
2447 */
2448 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
2449 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE);
2450 }
2451
2452 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0))
2453 /* Wa_22010430635:dg2 */
2454 wa_mcr_masked_en(wal,
2455 GEN9_ROW_CHICKEN4,
2456 GEN12_DISABLE_GRF_CLEAR);
2457
2458 /* Wa_14013202645:dg2 */
2459 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
2460 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0))
2461 wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY);
2462
2463 /* Wa_22012532006:dg2 */
2464 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) ||
2465 IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0))
2466 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
2467 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA);
2468
2469 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) ||
2470 IS_DG2_G10(i915)) {
2471 /* Wa_22014600077:dg2 */
2472 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2473 _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2474 0 /* Wa_14012342262 write-only reg, so skip verification */,
2475 true);
2476 }
2477
2478 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2479 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2480 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2481 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2482
2483 /*
2484 * Wa_1407928979:tgl A*
2485 * Wa_18011464164:tgl[B0+],dg1[B0+]
2486 * Wa_22010931296:tgl[B0+],dg1[B0+]
2487 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2488 */
2489 wa_write_or(wal, GEN7_FF_THREAD_MODE,
2490 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2491 }
2492
2493 if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) ||
2494 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2495 /*
2496 * Wa_1606700617:tgl,dg1,adl-p
2497 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2498 * Wa_14010826681:tgl,dg1,rkl,adl-p
2499 * Wa_18019627453:dg2
2500 */
2501 wa_masked_en(wal,
2502 GEN9_CS_DEBUG_MODE1,
2503 FF_DOP_CLOCK_GATE_DISABLE);
2504 }
2505
2506 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2507 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2508 /* Wa_1409804808 */
2509 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2510 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2511
2512 /* Wa_14010229206 */
2513 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2514 }
2515
2516 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2517 /*
2518 * Wa_1607297627
2519 *
2520 * On TGL and RKL there are multiple entries for this WA in the
2521 * BSpec; some indicate this is an A0-only WA, others indicate
2522 * it applies to all steppings so we trust the "all steppings."
2523 */
2524 wa_masked_en(wal,
2525 RING_PSMI_CTL(RENDER_RING_BASE),
2526 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2527 GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2528 }
2529
2530 if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) ||
2531 IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) {
2532 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2533 wa_mcr_masked_en(wal,
2534 GEN10_SAMPLER_MODE,
2535 ENABLE_SMALLPL);
2536 }
2537
2538 if (GRAPHICS_VER(i915) == 11) {
2539 /* This is not an Wa. Enable for better image quality */
2540 wa_masked_en(wal,
2541 _3D_CHICKEN3,
2542 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2543
2544 /*
2545 * Wa_1405543622:icl
2546 * Formerly known as WaGAPZPriorityScheme
2547 */
2548 wa_write_or(wal,
2549 GEN8_GARBCNTL,
2550 GEN11_ARBITRATION_PRIO_ORDER_MASK);
2551
2552 /*
2553 * Wa_1604223664:icl
2554 * Formerly known as WaL3BankAddressHashing
2555 */
2556 wa_write_clr_set(wal,
2557 GEN8_GARBCNTL,
2558 GEN11_HASH_CTRL_EXCL_MASK,
2559 GEN11_HASH_CTRL_EXCL_BIT0);
2560 wa_write_clr_set(wal,
2561 GEN11_GLBLINVL,
2562 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2563 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2564
2565 /*
2566 * Wa_1405733216:icl
2567 * Formerly known as WaDisableCleanEvicts
2568 */
2569 wa_mcr_write_or(wal,
2570 GEN8_L3SQCREG4,
2571 GEN11_LQSC_CLEAN_EVICT_DISABLE);
2572
2573 /* Wa_1606682166:icl */
2574 wa_write_or(wal,
2575 GEN7_SARCHKMD,
2576 GEN7_DISABLE_SAMPLER_PREFETCH);
2577
2578 /* Wa_1409178092:icl */
2579 wa_mcr_write_clr_set(wal,
2580 GEN11_SCRATCH2,
2581 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2582 0);
2583
2584 /* WaEnable32PlaneMode:icl */
2585 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2586 GEN11_ENABLE_32_PLANE_MODE);
2587
2588 /*
2589 * Wa_1408767742:icl[a2..forever],ehl[all]
2590 * Wa_1605460711:icl[a0..c0]
2591 */
2592 wa_write_or(wal,
2593 GEN7_FF_THREAD_MODE,
2594 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2595
2596 /* Wa_22010271021 */
2597 wa_masked_en(wal,
2598 GEN9_CS_DEBUG_MODE1,
2599 FF_DOP_CLOCK_GATE_DISABLE);
2600 }
2601
2602 /*
2603 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2604 * beyond) allow the kernel-mode driver to choose between two different
2605 * options for controlling preemption granularity and behavior.
2606 *
2607 * Option 1 (hardware default):
2608 * Preemption settings are controlled in a global manner via
2609 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity
2610 * and settings chosen by the kernel-mode driver will apply to all
2611 * userspace clients.
2612 *
2613 * Option 2:
2614 * Preemption settings are controlled on a per-context basis via
2615 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on
2616 * context switch and is writable by userspace (e.g., via
2617 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2618 * which allows different userspace drivers/clients to select
2619 * different settings, or to change those settings on the fly in
2620 * response to runtime needs. This option was known by name
2621 * "FtrPerCtxtPreemptionGranularityControl" at one time, although
2622 * that name is somewhat misleading as other non-granularity
2623 * preemption settings are also impacted by this decision.
2624 *
2625 * On Linux, our policy has always been to let userspace drivers
2626 * control preemption granularity/settings (Option 2). This was
2627 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2628 * userspace developed before object-level preemption was enabled would
2629 * not behave well if i915 were to go with Option 1 and enable that
2630 * preemption in a global manner). On gen9 each context would have
2631 * object-level preemption disabled by default (see
2632 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2633 * userspace drivers could opt-in to object-level preemption as they
2634 * saw fit. For post-gen9 platforms, we continue to utilize Option 2;
2635 * even though it is no longer necessary for ABI compatibility when
2636 * enabling a new platform, it does ensure that userspace will be able
2637 * to implement any workarounds that show up requiring temporary
2638 * adjustments to preemption behavior at runtime.
2639 *
2640 * Notes/Workarounds:
2641 * - Wa_14015141709: On DG2 and early steppings of MTL,
2642 * CS_CHICKEN1[0] does not disable object-level preemption as
2643 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2644 * using Option 1). Effectively this means userspace is unable
2645 * to disable object-level preemption on these platforms/steppings
2646 * despite the setting here.
2647 *
2648 * - Wa_16013994831: May require that userspace program
2649 * CS_CHICKEN1[10] when certain runtime conditions are true.
2650 * Userspace requires Option 2 to be in effect for their update of
2651 * CS_CHICKEN1[10] to be effective.
2652 *
2653 * Other workarounds may appear in the future that will also require
2654 * Option 2 behavior to allow proper userspace implementation.
2655 */
2656 if (GRAPHICS_VER(i915) >= 9)
2657 wa_masked_en(wal,
2658 GEN7_FF_SLICE_CS_CHICKEN1,
2659 GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2660
2661 if (IS_SKYLAKE(i915) ||
2662 IS_KABYLAKE(i915) ||
2663 IS_COFFEELAKE(i915) ||
2664 IS_COMETLAKE(i915)) {
2665 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2666 wa_write_or(wal,
2667 GEN8_GARBCNTL,
2668 GEN9_GAPS_TSV_CREDIT_DISABLE);
2669 }
2670
2671 if (IS_BROXTON(i915)) {
2672 /* WaDisablePooledEuLoadBalancingFix:bxt */
2673 wa_masked_en(wal,
2674 FF_SLICE_CS_CHICKEN2,
2675 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2676 }
2677
2678 if (GRAPHICS_VER(i915) == 9) {
2679 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2680 wa_masked_en(wal,
2681 GEN9_CSFE_CHICKEN1_RCS,
2682 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2683
2684 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2685 wa_mcr_write_or(wal,
2686 BDW_SCRATCH1,
2687 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2688
2689 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2690 if (IS_GEN9_LP(i915))
2691 wa_mcr_write_clr_set(wal,
2692 GEN8_L3SQCREG1,
2693 L3_PRIO_CREDITS_MASK,
2694 L3_GENERAL_PRIO_CREDITS(62) |
2695 L3_HIGH_PRIO_CREDITS(2));
2696
2697 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2698 wa_mcr_write_or(wal,
2699 GEN8_L3SQCREG4,
2700 GEN8_LQSC_FLUSH_COHERENT_LINES);
2701
2702 /* Disable atomics in L3 to prevent unrecoverable hangs */
2703 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2704 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2705 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2706 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2707 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2708 EVICTION_PERF_FIX_ENABLE, 0);
2709 }
2710
2711 if (IS_HASWELL(i915)) {
2712 /* WaSampleCChickenBitEnable:hsw */
2713 wa_masked_en(wal,
2714 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2715
2716 wa_masked_dis(wal,
2717 CACHE_MODE_0_GEN7,
2718 /* enable HiZ Raw Stall Optimization */
2719 HIZ_RAW_STALL_OPT_DISABLE);
2720 }
2721
2722 if (IS_VALLEYVIEW(i915)) {
2723 /* WaDisableEarlyCull:vlv */
2724 wa_masked_en(wal,
2725 _3D_CHICKEN3,
2726 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2727
2728 /*
2729 * WaVSThreadDispatchOverride:ivb,vlv
2730 *
2731 * This actually overrides the dispatch
2732 * mode for all thread types.
2733 */
2734 wa_write_clr_set(wal,
2735 GEN7_FF_THREAD_MODE,
2736 GEN7_FF_SCHED_MASK,
2737 GEN7_FF_TS_SCHED_HW |
2738 GEN7_FF_VS_SCHED_HW |
2739 GEN7_FF_DS_SCHED_HW);
2740
2741 /* WaPsdDispatchEnable:vlv */
2742 /* WaDisablePSDDualDispatchEnable:vlv */
2743 wa_masked_en(wal,
2744 GEN7_HALF_SLICE_CHICKEN1,
2745 GEN7_MAX_PS_THREAD_DEP |
2746 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2747 }
2748
2749 if (IS_IVYBRIDGE(i915)) {
2750 /* WaDisableEarlyCull:ivb */
2751 wa_masked_en(wal,
2752 _3D_CHICKEN3,
2753 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2754
2755 if (0) { /* causes HiZ corruption on ivb:gt1 */
2756 /* enable HiZ Raw Stall Optimization */
2757 wa_masked_dis(wal,
2758 CACHE_MODE_0_GEN7,
2759 HIZ_RAW_STALL_OPT_DISABLE);
2760 }
2761
2762 /*
2763 * WaVSThreadDispatchOverride:ivb,vlv
2764 *
2765 * This actually overrides the dispatch
2766 * mode for all thread types.
2767 */
2768 wa_write_clr_set(wal,
2769 GEN7_FF_THREAD_MODE,
2770 GEN7_FF_SCHED_MASK,
2771 GEN7_FF_TS_SCHED_HW |
2772 GEN7_FF_VS_SCHED_HW |
2773 GEN7_FF_DS_SCHED_HW);
2774
2775 /* WaDisablePSDDualDispatchEnable:ivb */
2776 if (IS_IVB_GT1(i915))
2777 wa_masked_en(wal,
2778 GEN7_HALF_SLICE_CHICKEN1,
2779 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2780 }
2781
2782 if (GRAPHICS_VER(i915) == 7) {
2783 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2784 wa_masked_en(wal,
2785 RING_MODE_GEN7(RENDER_RING_BASE),
2786 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2787
2788 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2789 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2790
2791 /*
2792 * BSpec says this must be set, even though
2793 * WaDisable4x2SubspanOptimization:ivb,hsw
2794 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2795 */
2796 wa_masked_en(wal,
2797 CACHE_MODE_1,
2798 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2799
2800 /*
2801 * BSpec recommends 8x4 when MSAA is used,
2802 * however in practice 16x4 seems fastest.
2803 *
2804 * Note that PS/WM thread counts depend on the WIZ hashing
2805 * disable bit, which we don't touch here, but it's good
2806 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2807 */
2808 wa_masked_field_set(wal,
2809 GEN7_GT_MODE,
2810 GEN6_WIZ_HASHING_MASK,
2811 GEN6_WIZ_HASHING_16x4);
2812 }
2813
2814 if (IS_GRAPHICS_VER(i915, 6, 7))
2815 /*
2816 * We need to disable the AsyncFlip performance optimisations in
2817 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2818 * already be programmed to '1' on all products.
2819 *
2820 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2821 */
2822 wa_masked_en(wal,
2823 RING_MI_MODE(RENDER_RING_BASE),
2824 ASYNC_FLIP_PERF_DISABLE);
2825
2826 if (GRAPHICS_VER(i915) == 6) {
2827 /*
2828 * Required for the hardware to program scanline values for
2829 * waiting
2830 * WaEnableFlushTlbInvalidationMode:snb
2831 */
2832 wa_masked_en(wal,
2833 GFX_MODE,
2834 GFX_TLB_INVALIDATE_EXPLICIT);
2835
2836 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2837 wa_masked_en(wal,
2838 _3D_CHICKEN,
2839 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2840
2841 wa_masked_en(wal,
2842 _3D_CHICKEN3,
2843 /* WaStripsFansDisableFastClipPerformanceFix:snb */
2844 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2845 /*
2846 * Bspec says:
2847 * "This bit must be set if 3DSTATE_CLIP clip mode is set
2848 * to normal and 3DSTATE_SF number of SF output attributes
2849 * is more than 16."
2850 */
2851 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2852
2853 /*
2854 * BSpec recommends 8x4 when MSAA is used,
2855 * however in practice 16x4 seems fastest.
2856 *
2857 * Note that PS/WM thread counts depend on the WIZ hashing
2858 * disable bit, which we don't touch here, but it's good
2859 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2860 */
2861 wa_masked_field_set(wal,
2862 GEN6_GT_MODE,
2863 GEN6_WIZ_HASHING_MASK,
2864 GEN6_WIZ_HASHING_16x4);
2865
2866 /* WaDisable_RenderCache_OperationalFlush:snb */
2867 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2868
2869 /*
2870 * From the Sandybridge PRM, volume 1 part 3, page 24:
2871 * "If this bit is set, STCunit will have LRA as replacement
2872 * policy. [...] This bit must be reset. LRA replacement
2873 * policy is not supported."
2874 */
2875 wa_masked_dis(wal,
2876 CACHE_MODE_0,
2877 CM0_STC_EVICT_DISABLE_LRA_SNB);
2878 }
2879
2880 if (IS_GRAPHICS_VER(i915, 4, 6))
2881 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2882 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2883 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2884 /* XXX bit doesn't stick on Broadwater */
2885 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2886
2887 if (GRAPHICS_VER(i915) == 4)
2888 /*
2889 * Disable CONSTANT_BUFFER before it is loaded from the context
2890 * image. For as it is loaded, it is executed and the stored
2891 * address may no longer be valid, leading to a GPU hang.
2892 *
2893 * This imposes the requirement that userspace reload their
2894 * CONSTANT_BUFFER on every batch, fortunately a requirement
2895 * they are already accustomed to from before contexts were
2896 * enabled.
2897 */
2898 wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2899 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2900 0 /* XXX bit doesn't stick on Broadwater */,
2901 true);
2902 }
2903
2904 static void
2905 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2906 {
2907 struct drm_i915_private *i915 = engine->i915;
2908
2909 /* WaKBLVECSSemaphoreWaitPoll:kbl */
2910 if (IS_KBL_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2911 wa_write(wal,
2912 RING_SEMA_WAIT_POLL(engine->mmio_base),
2913 1);
2914 }
2915 }
2916
2917 static void
2918 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2919 {
2920 if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2921 /* Wa_14014999345:pvc */
2922 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2923 }
2924 }
2925
2926 /*
2927 * The bspec performance guide has recommended MMIO tuning settings. These
2928 * aren't truly "workarounds" but we want to program them with the same
2929 * workaround infrastructure to ensure that they're automatically added to
2930 * the GuC save/restore lists, re-applied at the right times, and checked for
2931 * any conflicting programming requested by real workarounds.
2932 *
2933 * Programming settings should be added here only if their registers are not
2934 * part of an engine's register state context. If a register is part of a
2935 * context, then any tuning settings should be programmed in an appropriate
2936 * function invoked by __intel_engine_init_ctx_wa().
2937 */
2938 static void
2939 add_render_compute_tuning_settings(struct drm_i915_private *i915,
2940 struct i915_wa_list *wal)
2941 {
2942 if (IS_DG2(i915))
2943 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2944
2945 /*
2946 * This tuning setting proves beneficial only on ATS-M designs; the
2947 * default "age based" setting is optimal on regular DG2 and other
2948 * platforms.
2949 */
2950 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2951 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2952 THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2953
2954 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2955 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2956 }
2957
2958 /*
2959 * The workarounds in this function apply to shared registers in
2960 * the general render reset domain that aren't tied to a
2961 * specific engine. Since all render+compute engines get reset
2962 * together, and the contents of these registers are lost during
2963 * the shared render domain reset, we'll define such workarounds
2964 * here and then add them to just a single RCS or CCS engine's
2965 * workaround list (whichever engine has the XXXX flag).
2966 */
2967 static void
2968 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2969 {
2970 struct drm_i915_private *i915 = engine->i915;
2971
2972 add_render_compute_tuning_settings(i915, wal);
2973
2974 if (GRAPHICS_VER(i915) >= 11) {
2975 /* This is not a Wa (although referred to as
2976 * WaSetInidrectStateOverride in places), this allows
2977 * applications that reference sampler states through
2978 * the BindlessSamplerStateBaseAddress to have their
2979 * border color relative to DynamicStateBaseAddress
2980 * rather than BindlessSamplerStateBaseAddress.
2981 *
2982 * Otherwise SAMPLER_STATE border colors have to be
2983 * copied in multiple heaps (DynamicStateBaseAddress &
2984 * BindlessSamplerStateBaseAddress)
2985 *
2986 * BSpec: 46052
2987 */
2988 wa_mcr_masked_en(wal,
2989 GEN10_SAMPLER_MODE,
2990 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2991 }
2992
2993 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_B0, STEP_FOREVER) ||
2994 IS_MTL_GRAPHICS_STEP(i915, P, STEP_B0, STEP_FOREVER))
2995 /* Wa_14017856879 */
2996 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2997
2998 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2999 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
3000 /*
3001 * Wa_14017066071
3002 * Wa_14017654203
3003 */
3004 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
3005 MTL_DISABLE_SAMPLER_SC_OOO);
3006
3007 if (IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
3008 /* Wa_22015279794 */
3009 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
3010 DISABLE_PREFETCH_INTO_IC);
3011
3012 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3013 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3014 IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
3015 IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
3016 /* Wa_22013037850 */
3017 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
3018 DISABLE_128B_EVICTION_COMMAND_UDW);
3019 }
3020
3021 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3022 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3023 IS_PONTEVECCHIO(i915) ||
3024 IS_DG2(i915)) {
3025 /* Wa_22014226127 */
3026 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
3027 }
3028
3029 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3030 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3031 IS_DG2(i915)) {
3032 /* Wa_18017747507 */
3033 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
3034 }
3035
3036 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
3037 IS_DG2_G11(i915)) {
3038 /*
3039 * Wa_22012826095:dg2
3040 * Wa_22013059131:dg2
3041 */
3042 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
3043 MAXREQS_PER_BANK,
3044 REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
3045
3046 /* Wa_22013059131:dg2 */
3047 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
3048 FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
3049 }
3050
3051 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
3052 /*
3053 * Wa_14010918519:dg2_g10
3054 *
3055 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping,
3056 * so ignoring verification.
3057 */
3058 wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0,
3059 FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE,
3060 0, false);
3061 }
3062
3063 if (IS_XEHPSDV(i915)) {
3064 /* Wa_1409954639 */
3065 wa_mcr_masked_en(wal,
3066 GEN8_ROW_CHICKEN,
3067 SYSTOLIC_DOP_CLOCK_GATING_DIS);
3068
3069 /* Wa_1607196519 */
3070 wa_mcr_masked_en(wal,
3071 GEN9_ROW_CHICKEN4,
3072 GEN12_DISABLE_GRF_CLEAR);
3073
3074 /* Wa_14010449647:xehpsdv */
3075 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3076 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3077 }
3078
3079 if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) {
3080 /* Wa_14015227452:dg2,pvc */
3081 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
3082
3083 /* Wa_16015675438:dg2,pvc */
3084 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
3085 }
3086
3087 if (IS_DG2(i915)) {
3088 /*
3089 * Wa_16011620976:dg2_g11
3090 * Wa_22015475538:dg2
3091 */
3092 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
3093 }
3094
3095 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_C0) || IS_DG2_G11(i915))
3096 /*
3097 * Wa_22012654132
3098 *
3099 * Note that register 0xE420 is write-only and cannot be read
3100 * back for verification on DG2 (due to Wa_14012342262), so
3101 * we need to explicitly skip the readback.
3102 */
3103 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
3104 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
3105 0 /* write-only, so skip validation */,
3106 true);
3107 }
3108
3109 static void
3110 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3111 {
3112 if (GRAPHICS_VER(engine->i915) < 4)
3113 return;
3114
3115 engine_fake_wa_init(engine, wal);
3116
3117 /*
3118 * These are common workarounds that just need to applied
3119 * to a single RCS/CCS engine's workaround list since
3120 * they're reset as part of the general render domain reset.
3121 */
3122 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3123 general_render_compute_wa_init(engine, wal);
3124
3125 if (engine->class == COMPUTE_CLASS)
3126 ccs_engine_wa_init(engine, wal);
3127 else if (engine->class == RENDER_CLASS)
3128 rcs_engine_wa_init(engine, wal);
3129 else
3130 xcs_engine_wa_init(engine, wal);
3131 }
3132
3133 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3134 {
3135 struct i915_wa_list *wal = &engine->wa_list;
3136
3137 wa_init_start(wal, engine->gt, "engine", engine->name);
3138 engine_init_workarounds(engine, wal);
3139 wa_init_finish(wal);
3140 }
3141
3142 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3143 {
3144 wa_list_apply(&engine->wa_list);
3145 }
3146
3147 static const struct i915_range mcr_ranges_gen8[] = {
3148 { .start = 0x5500, .end = 0x55ff },
3149 { .start = 0x7000, .end = 0x7fff },
3150 { .start = 0x9400, .end = 0x97ff },
3151 { .start = 0xb000, .end = 0xb3ff },
3152 { .start = 0xe000, .end = 0xe7ff },
3153 {},
3154 };
3155
3156 static const struct i915_range mcr_ranges_gen12[] = {
3157 { .start = 0x8150, .end = 0x815f },
3158 { .start = 0x9520, .end = 0x955f },
3159 { .start = 0xb100, .end = 0xb3ff },
3160 { .start = 0xde80, .end = 0xe8ff },
3161 { .start = 0x24a00, .end = 0x24a7f },
3162 {},
3163 };
3164
3165 static const struct i915_range mcr_ranges_xehp[] = {
3166 { .start = 0x4000, .end = 0x4aff },
3167 { .start = 0x5200, .end = 0x52ff },
3168 { .start = 0x5400, .end = 0x7fff },
3169 { .start = 0x8140, .end = 0x815f },
3170 { .start = 0x8c80, .end = 0x8dff },
3171 { .start = 0x94d0, .end = 0x955f },
3172 { .start = 0x9680, .end = 0x96ff },
3173 { .start = 0xb000, .end = 0xb3ff },
3174 { .start = 0xc800, .end = 0xcfff },
3175 { .start = 0xd800, .end = 0xd8ff },
3176 { .start = 0xdc00, .end = 0xffff },
3177 { .start = 0x17000, .end = 0x17fff },
3178 { .start = 0x24a00, .end = 0x24a7f },
3179 {},
3180 };
3181
3182 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3183 {
3184 const struct i915_range *mcr_ranges;
3185 int i;
3186
3187 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3188 mcr_ranges = mcr_ranges_xehp;
3189 else if (GRAPHICS_VER(i915) >= 12)
3190 mcr_ranges = mcr_ranges_gen12;
3191 else if (GRAPHICS_VER(i915) >= 8)
3192 mcr_ranges = mcr_ranges_gen8;
3193 else
3194 return false;
3195
3196 /*
3197 * Registers in these ranges are affected by the MCR selector
3198 * which only controls CPU initiated MMIO. Routing does not
3199 * work for CS access so we cannot verify them on this path.
3200 */
3201 for (i = 0; mcr_ranges[i].start; i++)
3202 if (offset >= mcr_ranges[i].start &&
3203 offset <= mcr_ranges[i].end)
3204 return true;
3205
3206 return false;
3207 }
3208
3209 static int
3210 wa_list_srm(struct i915_request *rq,
3211 const struct i915_wa_list *wal,
3212 struct i915_vma *vma)
3213 {
3214 struct drm_i915_private *i915 = rq->engine->i915;
3215 unsigned int i, count = 0;
3216 const struct i915_wa *wa;
3217 u32 srm, *cs;
3218
3219 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3220 if (GRAPHICS_VER(i915) >= 8)
3221 srm++;
3222
3223 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3224 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3225 count++;
3226 }
3227
3228 cs = intel_ring_begin(rq, 4 * count);
3229 if (IS_ERR(cs))
3230 return PTR_ERR(cs);
3231
3232 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3233 u32 offset = i915_mmio_reg_offset(wa->reg);
3234
3235 if (mcr_range(i915, offset))
3236 continue;
3237
3238 *cs++ = srm;
3239 *cs++ = offset;
3240 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3241 *cs++ = 0;
3242 }
3243 intel_ring_advance(rq, cs);
3244
3245 return 0;
3246 }
3247
3248 static int engine_wa_list_verify(struct intel_context *ce,
3249 const struct i915_wa_list * const wal,
3250 const char *from)
3251 {
3252 const struct i915_wa *wa;
3253 struct i915_request *rq;
3254 struct i915_vma *vma;
3255 struct i915_gem_ww_ctx ww;
3256 unsigned int i;
3257 u32 *results;
3258 int err;
3259
3260 if (!wal->count)
3261 return 0;
3262
3263 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3264 wal->count * sizeof(u32));
3265 if (IS_ERR(vma))
3266 return PTR_ERR(vma);
3267
3268 intel_engine_pm_get(ce->engine);
3269 i915_gem_ww_ctx_init(&ww, false);
3270 retry:
3271 err = i915_gem_object_lock(vma->obj, &ww);
3272 if (err == 0)
3273 err = intel_context_pin_ww(ce, &ww);
3274 if (err)
3275 goto err_pm;
3276
3277 err = i915_vma_pin_ww(vma, &ww, 0, 0,
3278 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3279 if (err)
3280 goto err_unpin;
3281
3282 rq = i915_request_create(ce);
3283 if (IS_ERR(rq)) {
3284 err = PTR_ERR(rq);
3285 goto err_vma;
3286 }
3287
3288 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3289 if (err == 0)
3290 err = wa_list_srm(rq, wal, vma);
3291
3292 i915_request_get(rq);
3293 if (err)
3294 i915_request_set_error_once(rq, err);
3295 i915_request_add(rq);
3296
3297 if (err)
3298 goto err_rq;
3299
3300 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3301 err = -ETIME;
3302 goto err_rq;
3303 }
3304
3305 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3306 if (IS_ERR(results)) {
3307 err = PTR_ERR(results);
3308 goto err_rq;
3309 }
3310
3311 err = 0;
3312 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3313 if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg)))
3314 continue;
3315
3316 if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3317 err = -ENXIO;
3318 }
3319
3320 i915_gem_object_unpin_map(vma->obj);
3321
3322 err_rq:
3323 i915_request_put(rq);
3324 err_vma:
3325 i915_vma_unpin(vma);
3326 err_unpin:
3327 intel_context_unpin(ce);
3328 err_pm:
3329 if (err == -EDEADLK) {
3330 err = i915_gem_ww_ctx_backoff(&ww);
3331 if (!err)
3332 goto retry;
3333 }
3334 i915_gem_ww_ctx_fini(&ww);
3335 intel_engine_pm_put(ce->engine);
3336 i915_vma_put(vma);
3337 return err;
3338 }
3339
3340 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3341 const char *from)
3342 {
3343 return engine_wa_list_verify(engine->kernel_context,
3344 &engine->wa_list,
3345 from);
3346 }
3347
3348 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3349 #include "selftest_workarounds.c"
3350 #endif