]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/gvt/cmd_parser.c
Merge branch 'drm-intel-next-queued' into gvt-next
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Ke Yu
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
27 *
28 * Contributors:
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
34 *
35 */
36
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42
43 #define INVALID_OP (~0U)
44
45 #define OP_LEN_MI 9
46 #define OP_LEN_2D 10
47 #define OP_LEN_3D_MEDIA 16
48 #define OP_LEN_MFX_VC 16
49 #define OP_LEN_VEBOX 16
50
51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
52
53 struct sub_op_bits {
54 int hi;
55 int low;
56 };
57 struct decode_info {
58 char *name;
59 int op_len;
60 int nr_sub_op;
61 struct sub_op_bits *sub_op;
62 };
63
64 #define MAX_CMD_BUDGET 0x7fffffff
65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
68
69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
72
73 /* Render Command Map */
74
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP 0x0
77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
78 #define OP_MI_USER_INTERRUPT 0x2
79 #define OP_MI_WAIT_FOR_EVENT 0x3
80 #define OP_MI_FLUSH 0x4
81 #define OP_MI_ARB_CHECK 0x5
82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
83 #define OP_MI_REPORT_HEAD 0x7
84 #define OP_MI_ARB_ON_OFF 0x8
85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END 0xA
87 #define OP_MI_SUSPEND_FLUSH 0xB
88 #define OP_MI_PREDICATE 0xC /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
90 #define OP_MI_SET_APPID 0xE /* IVB+ */
91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP 0x14
94 #define OP_MI_SEMAPHORE_MBOX 0x16
95 #define OP_MI_SET_CONTEXT 0x18
96 #define OP_MI_MATH 0x1A
97 #define OP_MI_URB_CLEAR 0x19
98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
100
101 #define OP_MI_STORE_DATA_IMM 0x20
102 #define OP_MI_STORE_DATA_INDEX 0x21
103 #define OP_MI_LOAD_REGISTER_IMM 0x22
104 #define OP_MI_UPDATE_GTT 0x23
105 #define OP_MI_STORE_REGISTER_MEM 0x24
106 #define OP_MI_FLUSH_DW 0x26
107 #define OP_MI_CLFLUSH 0x27
108 #define OP_MI_REPORT_PERF_COUNT 0x28
109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
114 #define OP_MI_2E 0x2E /* BDW+ */
115 #define OP_MI_2F 0x2F /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START 0x31
117
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
120
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
122
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
127
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x) ((2<<7) | x)
130
131 #define OP_XY_SETUP_BLT OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
136 #define OP_XY_TEXT_BLT OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
138 #define OP_XY_COLOR_BLT OP_2D(0x50)
139 #define OP_XY_PAT_BLT OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
143 #define OP_XY_FULL_BLT OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
155
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159
160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
161
162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
165
166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
167
168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
169
170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
175
176 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
177 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
178 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
179 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
180
181 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
182 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
183 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
184 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
185 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
186 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
187 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
188 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
189 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
190 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
192 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
193 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
194 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
195 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
196 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
197 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
198 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
199 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
200 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
201 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
202 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
203 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
204 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
205 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
206 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
207 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
208 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
211 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
223 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
224 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
225 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
226 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
227 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
232 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
247
248 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
249 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
250 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
251 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
252 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
253 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
254 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
255 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
256 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
257 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
258 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
259
260 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
262 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
263 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
266 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
267 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
268 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
270 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
271 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
273 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
274 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
280 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
281 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
283 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
285 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
286 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
287 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
288
289 /* VCCP Command Parser */
290
291 /*
292 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
293 * git://anongit.freedesktop.org/vaapi/intel-driver
294 * src/i965_defines.h
295 *
296 */
297
298 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
299 (3 << 13 | \
300 (pipeline) << 11 | \
301 (op) << 8 | \
302 (sub_opa) << 5 | \
303 (sub_opb))
304
305 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
306 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
307 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
310 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
311 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
312 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
313 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
314 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
315 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
316
317 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
318
319 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
320 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
321 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
322 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
323 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
324 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
326 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
327 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
328 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
329 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
330 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
331
332 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
333 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
334 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
335 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
336 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
337
338 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
339 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
340 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
341 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
342 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
343
344 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
345 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
346 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
347
348 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
349 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
350 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
351
352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
353 (3 << 13 | \
354 (pipeline) << 11 | \
355 (op) << 8 | \
356 (sub_opa) << 5 | \
357 (sub_opb))
358
359 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
360 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
361 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
362
363 struct parser_exec_state;
364
365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
366
367 #define GVT_CMD_HASH_BITS 7
368
369 /* which DWords need address fix */
370 #define ADDR_FIX_1(x1) (1 << (x1))
371 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
372 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
373 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
374 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
375
376 struct cmd_info {
377 char *name;
378 u32 opcode;
379
380 #define F_LEN_MASK (1U<<0)
381 #define F_LEN_CONST 1U
382 #define F_LEN_VAR 0U
383
384 /*
385 * command has its own ip advance logic
386 * e.g. MI_BATCH_START, MI_BATCH_END
387 */
388 #define F_IP_ADVANCE_CUSTOM (1<<1)
389
390 #define F_POST_HANDLE (1<<2)
391 u32 flag;
392
393 #define R_RCS (1 << RCS)
394 #define R_VCS1 (1 << VCS)
395 #define R_VCS2 (1 << VCS2)
396 #define R_VCS (R_VCS1 | R_VCS2)
397 #define R_BCS (1 << BCS)
398 #define R_VECS (1 << VECS)
399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
400 /* rings that support this cmd: BLT/RCS/VCS/VECS */
401 uint16_t rings;
402
403 /* devices that support this cmd: SNB/IVB/HSW/... */
404 uint16_t devices;
405
406 /* which DWords are address that need fix up.
407 * bit 0 means a 32-bit non address operand in command
408 * bit 1 means address operand, which could be 32-bit
409 * or 64-bit depending on different architectures.(
410 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
411 * No matter the address length, each address only takes
412 * one bit in the bitmap.
413 */
414 uint16_t addr_bitmap;
415
416 /* flag == F_LEN_CONST : command length
417 * flag == F_LEN_VAR : length bias bits
418 * Note: length is in DWord
419 */
420 uint8_t len;
421
422 parser_cmd_handler handler;
423 };
424
425 struct cmd_entry {
426 struct hlist_node hlist;
427 struct cmd_info *info;
428 };
429
430 enum {
431 RING_BUFFER_INSTRUCTION,
432 BATCH_BUFFER_INSTRUCTION,
433 BATCH_BUFFER_2ND_LEVEL,
434 };
435
436 enum {
437 GTT_BUFFER,
438 PPGTT_BUFFER
439 };
440
441 struct parser_exec_state {
442 struct intel_vgpu *vgpu;
443 int ring_id;
444
445 int buf_type;
446
447 /* batch buffer address type */
448 int buf_addr_type;
449
450 /* graphics memory address of ring buffer start */
451 unsigned long ring_start;
452 unsigned long ring_size;
453 unsigned long ring_head;
454 unsigned long ring_tail;
455
456 /* instruction graphics memory address */
457 unsigned long ip_gma;
458
459 /* mapped va of the instr_gma */
460 void *ip_va;
461 void *rb_va;
462
463 void *ret_bb_va;
464 /* next instruction when return from batch buffer to ring buffer */
465 unsigned long ret_ip_gma_ring;
466
467 /* next instruction when return from 2nd batch buffer to batch buffer */
468 unsigned long ret_ip_gma_bb;
469
470 /* batch buffer address type (GTT or PPGTT)
471 * used when ret from 2nd level batch buffer
472 */
473 int saved_buf_addr_type;
474 bool is_ctx_wa;
475
476 struct cmd_info *info;
477
478 struct intel_vgpu_workload *workload;
479 };
480
481 #define gmadr_dw_number(s) \
482 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
483
484 static unsigned long bypass_scan_mask = 0;
485
486 /* ring ALL, type = 0 */
487 static struct sub_op_bits sub_op_mi[] = {
488 {31, 29},
489 {28, 23},
490 };
491
492 static struct decode_info decode_info_mi = {
493 "MI",
494 OP_LEN_MI,
495 ARRAY_SIZE(sub_op_mi),
496 sub_op_mi,
497 };
498
499 /* ring RCS, command type 2 */
500 static struct sub_op_bits sub_op_2d[] = {
501 {31, 29},
502 {28, 22},
503 };
504
505 static struct decode_info decode_info_2d = {
506 "2D",
507 OP_LEN_2D,
508 ARRAY_SIZE(sub_op_2d),
509 sub_op_2d,
510 };
511
512 /* ring RCS, command type 3 */
513 static struct sub_op_bits sub_op_3d_media[] = {
514 {31, 29},
515 {28, 27},
516 {26, 24},
517 {23, 16},
518 };
519
520 static struct decode_info decode_info_3d_media = {
521 "3D_Media",
522 OP_LEN_3D_MEDIA,
523 ARRAY_SIZE(sub_op_3d_media),
524 sub_op_3d_media,
525 };
526
527 /* ring VCS, command type 3 */
528 static struct sub_op_bits sub_op_mfx_vc[] = {
529 {31, 29},
530 {28, 27},
531 {26, 24},
532 {23, 21},
533 {20, 16},
534 };
535
536 static struct decode_info decode_info_mfx_vc = {
537 "MFX_VC",
538 OP_LEN_MFX_VC,
539 ARRAY_SIZE(sub_op_mfx_vc),
540 sub_op_mfx_vc,
541 };
542
543 /* ring VECS, command type 3 */
544 static struct sub_op_bits sub_op_vebox[] = {
545 {31, 29},
546 {28, 27},
547 {26, 24},
548 {23, 21},
549 {20, 16},
550 };
551
552 static struct decode_info decode_info_vebox = {
553 "VEBOX",
554 OP_LEN_VEBOX,
555 ARRAY_SIZE(sub_op_vebox),
556 sub_op_vebox,
557 };
558
559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
560 [RCS] = {
561 &decode_info_mi,
562 NULL,
563 NULL,
564 &decode_info_3d_media,
565 NULL,
566 NULL,
567 NULL,
568 NULL,
569 },
570
571 [VCS] = {
572 &decode_info_mi,
573 NULL,
574 NULL,
575 &decode_info_mfx_vc,
576 NULL,
577 NULL,
578 NULL,
579 NULL,
580 },
581
582 [BCS] = {
583 &decode_info_mi,
584 NULL,
585 &decode_info_2d,
586 NULL,
587 NULL,
588 NULL,
589 NULL,
590 NULL,
591 },
592
593 [VECS] = {
594 &decode_info_mi,
595 NULL,
596 NULL,
597 &decode_info_vebox,
598 NULL,
599 NULL,
600 NULL,
601 NULL,
602 },
603
604 [VCS2] = {
605 &decode_info_mi,
606 NULL,
607 NULL,
608 &decode_info_mfx_vc,
609 NULL,
610 NULL,
611 NULL,
612 NULL,
613 },
614 };
615
616 static inline u32 get_opcode(u32 cmd, int ring_id)
617 {
618 struct decode_info *d_info;
619
620 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
621 if (d_info == NULL)
622 return INVALID_OP;
623
624 return cmd >> (32 - d_info->op_len);
625 }
626
627 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
628 unsigned int opcode, int ring_id)
629 {
630 struct cmd_entry *e;
631
632 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
633 if ((opcode == e->info->opcode) &&
634 (e->info->rings & (1 << ring_id)))
635 return e->info;
636 }
637 return NULL;
638 }
639
640 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
641 u32 cmd, int ring_id)
642 {
643 u32 opcode;
644
645 opcode = get_opcode(cmd, ring_id);
646 if (opcode == INVALID_OP)
647 return NULL;
648
649 return find_cmd_entry(gvt, opcode, ring_id);
650 }
651
652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
653 {
654 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
655 }
656
657 static inline void print_opcode(u32 cmd, int ring_id)
658 {
659 struct decode_info *d_info;
660 int i;
661
662 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
663 if (d_info == NULL)
664 return;
665
666 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
667 cmd >> (32 - d_info->op_len), d_info->name);
668
669 for (i = 0; i < d_info->nr_sub_op; i++)
670 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
671 d_info->sub_op[i].low));
672
673 pr_err("\n");
674 }
675
676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
677 {
678 return s->ip_va + (index << 2);
679 }
680
681 static inline u32 cmd_val(struct parser_exec_state *s, int index)
682 {
683 return *cmd_ptr(s, index);
684 }
685
686 static void parser_exec_state_dump(struct parser_exec_state *s)
687 {
688 int cnt = 0;
689 int i;
690
691 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
692 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
693 s->ring_id, s->ring_start, s->ring_start + s->ring_size,
694 s->ring_head, s->ring_tail);
695
696 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
697 s->buf_type == RING_BUFFER_INSTRUCTION ?
698 "RING_BUFFER" : "BATCH_BUFFER",
699 s->buf_addr_type == GTT_BUFFER ?
700 "GTT" : "PPGTT", s->ip_gma);
701
702 if (s->ip_va == NULL) {
703 gvt_dbg_cmd(" ip_va(NULL)");
704 return;
705 }
706
707 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
708 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
709 cmd_val(s, 2), cmd_val(s, 3));
710
711 print_opcode(cmd_val(s, 0), s->ring_id);
712
713 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
714
715 while (cnt < 1024) {
716 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
717 for (i = 0; i < 8; i++)
718 gvt_dbg_cmd("%08x ", cmd_val(s, i));
719 gvt_dbg_cmd("\n");
720
721 s->ip_va += 8 * sizeof(u32);
722 cnt += 8;
723 }
724 }
725
726 static inline void update_ip_va(struct parser_exec_state *s)
727 {
728 unsigned long len = 0;
729
730 if (WARN_ON(s->ring_head == s->ring_tail))
731 return;
732
733 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
734 unsigned long ring_top = s->ring_start + s->ring_size;
735
736 if (s->ring_head > s->ring_tail) {
737 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
738 len = (s->ip_gma - s->ring_head);
739 else if (s->ip_gma >= s->ring_start &&
740 s->ip_gma <= s->ring_tail)
741 len = (ring_top - s->ring_head) +
742 (s->ip_gma - s->ring_start);
743 } else
744 len = (s->ip_gma - s->ring_head);
745
746 s->ip_va = s->rb_va + len;
747 } else {/* shadow batch buffer */
748 s->ip_va = s->ret_bb_va;
749 }
750 }
751
752 static inline int ip_gma_set(struct parser_exec_state *s,
753 unsigned long ip_gma)
754 {
755 WARN_ON(!IS_ALIGNED(ip_gma, 4));
756
757 s->ip_gma = ip_gma;
758 update_ip_va(s);
759 return 0;
760 }
761
762 static inline int ip_gma_advance(struct parser_exec_state *s,
763 unsigned int dw_len)
764 {
765 s->ip_gma += (dw_len << 2);
766
767 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
768 if (s->ip_gma >= s->ring_start + s->ring_size)
769 s->ip_gma -= s->ring_size;
770 update_ip_va(s);
771 } else {
772 s->ip_va += (dw_len << 2);
773 }
774
775 return 0;
776 }
777
778 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
779 {
780 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
781 return info->len;
782 else
783 return (cmd & ((1U << info->len) - 1)) + 2;
784 return 0;
785 }
786
787 static inline int cmd_length(struct parser_exec_state *s)
788 {
789 return get_cmd_length(s->info, cmd_val(s, 0));
790 }
791
792 /* do not remove this, some platform may need clflush here */
793 #define patch_value(s, addr, val) do { \
794 *addr = val; \
795 } while (0)
796
797 static bool is_shadowed_mmio(unsigned int offset)
798 {
799 bool ret = false;
800
801 if ((offset == 0x2168) || /*BB current head register UDW */
802 (offset == 0x2140) || /*BB current header register */
803 (offset == 0x211c) || /*second BB header register UDW */
804 (offset == 0x2114)) { /*second BB header register UDW */
805 ret = true;
806 }
807 return ret;
808 }
809
810 static inline bool is_force_nonpriv_mmio(unsigned int offset)
811 {
812 return (offset >= 0x24d0 && offset < 0x2500);
813 }
814
815 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
816 unsigned int offset, unsigned int index, char *cmd)
817 {
818 struct intel_gvt *gvt = s->vgpu->gvt;
819 unsigned int data;
820 u32 ring_base;
821 u32 nopid;
822 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
823
824 if (!strcmp(cmd, "lri"))
825 data = cmd_val(s, index + 1);
826 else {
827 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
828 offset, cmd);
829 return -EINVAL;
830 }
831
832 ring_base = dev_priv->engine[s->ring_id]->mmio_base;
833 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
834
835 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
836 data != nopid) {
837 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
838 offset, data);
839 patch_value(s, cmd_ptr(s, index), nopid);
840 return 0;
841 }
842 return 0;
843 }
844
845 static inline bool is_mocs_mmio(unsigned int offset)
846 {
847 return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
848 ((offset >= 0xb020) && (offset <= 0xb0a0));
849 }
850
851 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
852 unsigned int offset, unsigned int index)
853 {
854 if (!is_mocs_mmio(offset))
855 return -EINVAL;
856 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
857 return 0;
858 }
859
860 static int cmd_reg_handler(struct parser_exec_state *s,
861 unsigned int offset, unsigned int index, char *cmd)
862 {
863 struct intel_vgpu *vgpu = s->vgpu;
864 struct intel_gvt *gvt = vgpu->gvt;
865
866 if (offset + 4 > gvt->device_info.mmio_size) {
867 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
868 cmd, offset);
869 return -EFAULT;
870 }
871
872 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
873 gvt_vgpu_err("%s access to non-render register (%x)\n",
874 cmd, offset);
875 return 0;
876 }
877
878 if (is_shadowed_mmio(offset)) {
879 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
880 return 0;
881 }
882
883 if (is_mocs_mmio(offset) &&
884 mocs_cmd_reg_handler(s, offset, index))
885 return -EINVAL;
886
887 if (is_force_nonpriv_mmio(offset) &&
888 force_nonpriv_reg_handler(s, offset, index, cmd))
889 return -EPERM;
890
891 if (offset == i915_mmio_reg_offset(DERRMR) ||
892 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
893 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
894 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
895 }
896
897 /* TODO: Update the global mask if this MMIO is a masked-MMIO */
898 intel_gvt_mmio_set_cmd_accessed(gvt, offset);
899 return 0;
900 }
901
902 #define cmd_reg(s, i) \
903 (cmd_val(s, i) & GENMASK(22, 2))
904
905 #define cmd_reg_inhibit(s, i) \
906 (cmd_val(s, i) & GENMASK(22, 18))
907
908 #define cmd_gma(s, i) \
909 (cmd_val(s, i) & GENMASK(31, 2))
910
911 #define cmd_gma_hi(s, i) \
912 (cmd_val(s, i) & GENMASK(15, 0))
913
914 static int cmd_handler_lri(struct parser_exec_state *s)
915 {
916 int i, ret = 0;
917 int cmd_len = cmd_length(s);
918 struct intel_gvt *gvt = s->vgpu->gvt;
919
920 for (i = 1; i < cmd_len; i += 2) {
921 if (IS_BROADWELL(gvt->dev_priv) &&
922 (s->ring_id != RCS)) {
923 if (s->ring_id == BCS &&
924 cmd_reg(s, i) ==
925 i915_mmio_reg_offset(DERRMR))
926 ret |= 0;
927 else
928 ret |= (cmd_reg_inhibit(s, i)) ?
929 -EBADRQC : 0;
930 }
931 if (ret)
932 break;
933 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
934 if (ret)
935 break;
936 }
937 return ret;
938 }
939
940 static int cmd_handler_lrr(struct parser_exec_state *s)
941 {
942 int i, ret = 0;
943 int cmd_len = cmd_length(s);
944
945 for (i = 1; i < cmd_len; i += 2) {
946 if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
947 ret |= ((cmd_reg_inhibit(s, i) ||
948 (cmd_reg_inhibit(s, i + 1)))) ?
949 -EBADRQC : 0;
950 if (ret)
951 break;
952 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
953 if (ret)
954 break;
955 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
956 if (ret)
957 break;
958 }
959 return ret;
960 }
961
962 static inline int cmd_address_audit(struct parser_exec_state *s,
963 unsigned long guest_gma, int op_size, bool index_mode);
964
965 static int cmd_handler_lrm(struct parser_exec_state *s)
966 {
967 struct intel_gvt *gvt = s->vgpu->gvt;
968 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
969 unsigned long gma;
970 int i, ret = 0;
971 int cmd_len = cmd_length(s);
972
973 for (i = 1; i < cmd_len;) {
974 if (IS_BROADWELL(gvt->dev_priv))
975 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
976 if (ret)
977 break;
978 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
979 if (ret)
980 break;
981 if (cmd_val(s, 0) & (1 << 22)) {
982 gma = cmd_gma(s, i + 1);
983 if (gmadr_bytes == 8)
984 gma |= (cmd_gma_hi(s, i + 2)) << 32;
985 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
986 if (ret)
987 break;
988 }
989 i += gmadr_dw_number(s) + 1;
990 }
991 return ret;
992 }
993
994 static int cmd_handler_srm(struct parser_exec_state *s)
995 {
996 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
997 unsigned long gma;
998 int i, ret = 0;
999 int cmd_len = cmd_length(s);
1000
1001 for (i = 1; i < cmd_len;) {
1002 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1003 if (ret)
1004 break;
1005 if (cmd_val(s, 0) & (1 << 22)) {
1006 gma = cmd_gma(s, i + 1);
1007 if (gmadr_bytes == 8)
1008 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1009 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1010 if (ret)
1011 break;
1012 }
1013 i += gmadr_dw_number(s) + 1;
1014 }
1015 return ret;
1016 }
1017
1018 struct cmd_interrupt_event {
1019 int pipe_control_notify;
1020 int mi_flush_dw;
1021 int mi_user_interrupt;
1022 };
1023
1024 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1025 [RCS] = {
1026 .pipe_control_notify = RCS_PIPE_CONTROL,
1027 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1028 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1029 },
1030 [BCS] = {
1031 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1032 .mi_flush_dw = BCS_MI_FLUSH_DW,
1033 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1034 },
1035 [VCS] = {
1036 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1037 .mi_flush_dw = VCS_MI_FLUSH_DW,
1038 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1039 },
1040 [VCS2] = {
1041 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1042 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1043 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1044 },
1045 [VECS] = {
1046 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1047 .mi_flush_dw = VECS_MI_FLUSH_DW,
1048 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1049 },
1050 };
1051
1052 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1053 {
1054 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1055 unsigned long gma;
1056 bool index_mode = false;
1057 unsigned int post_sync;
1058 int ret = 0;
1059
1060 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1061
1062 /* LRI post sync */
1063 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1064 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1065 /* post sync */
1066 else if (post_sync) {
1067 if (post_sync == 2)
1068 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1069 else if (post_sync == 3)
1070 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1071 else if (post_sync == 1) {
1072 /* check ggtt*/
1073 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1074 gma = cmd_val(s, 2) & GENMASK(31, 3);
1075 if (gmadr_bytes == 8)
1076 gma |= (cmd_gma_hi(s, 3)) << 32;
1077 /* Store Data Index */
1078 if (cmd_val(s, 1) & (1 << 21))
1079 index_mode = true;
1080 ret |= cmd_address_audit(s, gma, sizeof(u64),
1081 index_mode);
1082 }
1083 }
1084 }
1085
1086 if (ret)
1087 return ret;
1088
1089 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1090 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1091 s->workload->pending_events);
1092 return 0;
1093 }
1094
1095 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1096 {
1097 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1098 s->workload->pending_events);
1099 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1100 return 0;
1101 }
1102
1103 static int cmd_advance_default(struct parser_exec_state *s)
1104 {
1105 return ip_gma_advance(s, cmd_length(s));
1106 }
1107
1108 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1109 {
1110 int ret;
1111
1112 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1113 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1114 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1115 s->buf_addr_type = s->saved_buf_addr_type;
1116 } else {
1117 s->buf_type = RING_BUFFER_INSTRUCTION;
1118 s->buf_addr_type = GTT_BUFFER;
1119 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1120 s->ret_ip_gma_ring -= s->ring_size;
1121 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1122 }
1123 return ret;
1124 }
1125
1126 struct mi_display_flip_command_info {
1127 int pipe;
1128 int plane;
1129 int event;
1130 i915_reg_t stride_reg;
1131 i915_reg_t ctrl_reg;
1132 i915_reg_t surf_reg;
1133 u64 stride_val;
1134 u64 tile_val;
1135 u64 surf_val;
1136 bool async_flip;
1137 };
1138
1139 struct plane_code_mapping {
1140 int pipe;
1141 int plane;
1142 int event;
1143 };
1144
1145 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1146 struct mi_display_flip_command_info *info)
1147 {
1148 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1149 struct plane_code_mapping gen8_plane_code[] = {
1150 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1151 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1152 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1153 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1154 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1155 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1156 };
1157 u32 dword0, dword1, dword2;
1158 u32 v;
1159
1160 dword0 = cmd_val(s, 0);
1161 dword1 = cmd_val(s, 1);
1162 dword2 = cmd_val(s, 2);
1163
1164 v = (dword0 & GENMASK(21, 19)) >> 19;
1165 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1166 return -EBADRQC;
1167
1168 info->pipe = gen8_plane_code[v].pipe;
1169 info->plane = gen8_plane_code[v].plane;
1170 info->event = gen8_plane_code[v].event;
1171 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1172 info->tile_val = (dword1 & 0x1);
1173 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1174 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1175
1176 if (info->plane == PLANE_A) {
1177 info->ctrl_reg = DSPCNTR(info->pipe);
1178 info->stride_reg = DSPSTRIDE(info->pipe);
1179 info->surf_reg = DSPSURF(info->pipe);
1180 } else if (info->plane == PLANE_B) {
1181 info->ctrl_reg = SPRCTL(info->pipe);
1182 info->stride_reg = SPRSTRIDE(info->pipe);
1183 info->surf_reg = SPRSURF(info->pipe);
1184 } else {
1185 WARN_ON(1);
1186 return -EBADRQC;
1187 }
1188 return 0;
1189 }
1190
1191 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1192 struct mi_display_flip_command_info *info)
1193 {
1194 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1195 struct intel_vgpu *vgpu = s->vgpu;
1196 u32 dword0 = cmd_val(s, 0);
1197 u32 dword1 = cmd_val(s, 1);
1198 u32 dword2 = cmd_val(s, 2);
1199 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1200
1201 info->plane = PRIMARY_PLANE;
1202
1203 switch (plane) {
1204 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1205 info->pipe = PIPE_A;
1206 info->event = PRIMARY_A_FLIP_DONE;
1207 break;
1208 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1209 info->pipe = PIPE_B;
1210 info->event = PRIMARY_B_FLIP_DONE;
1211 break;
1212 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1213 info->pipe = PIPE_C;
1214 info->event = PRIMARY_C_FLIP_DONE;
1215 break;
1216
1217 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1218 info->pipe = PIPE_A;
1219 info->event = SPRITE_A_FLIP_DONE;
1220 info->plane = SPRITE_PLANE;
1221 break;
1222 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1223 info->pipe = PIPE_B;
1224 info->event = SPRITE_B_FLIP_DONE;
1225 info->plane = SPRITE_PLANE;
1226 break;
1227 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1228 info->pipe = PIPE_C;
1229 info->event = SPRITE_C_FLIP_DONE;
1230 info->plane = SPRITE_PLANE;
1231 break;
1232
1233 default:
1234 gvt_vgpu_err("unknown plane code %d\n", plane);
1235 return -EBADRQC;
1236 }
1237
1238 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1239 info->tile_val = (dword1 & GENMASK(2, 0));
1240 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1241 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1242
1243 info->ctrl_reg = DSPCNTR(info->pipe);
1244 info->stride_reg = DSPSTRIDE(info->pipe);
1245 info->surf_reg = DSPSURF(info->pipe);
1246
1247 return 0;
1248 }
1249
1250 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1251 struct mi_display_flip_command_info *info)
1252 {
1253 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1254 u32 stride, tile;
1255
1256 if (!info->async_flip)
1257 return 0;
1258
1259 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1260 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1261 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1262 GENMASK(12, 10)) >> 10;
1263 } else {
1264 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1265 GENMASK(15, 6)) >> 6;
1266 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1267 }
1268
1269 if (stride != info->stride_val)
1270 gvt_dbg_cmd("cannot change stride during async flip\n");
1271
1272 if (tile != info->tile_val)
1273 gvt_dbg_cmd("cannot change tile during async flip\n");
1274
1275 return 0;
1276 }
1277
1278 static int gen8_update_plane_mmio_from_mi_display_flip(
1279 struct parser_exec_state *s,
1280 struct mi_display_flip_command_info *info)
1281 {
1282 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1283 struct intel_vgpu *vgpu = s->vgpu;
1284
1285 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1286 info->surf_val << 12);
1287 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1288 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1289 info->stride_val);
1290 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1291 info->tile_val << 10);
1292 } else {
1293 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1294 info->stride_val << 6);
1295 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1296 info->tile_val << 10);
1297 }
1298
1299 vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1300 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1301 return 0;
1302 }
1303
1304 static int decode_mi_display_flip(struct parser_exec_state *s,
1305 struct mi_display_flip_command_info *info)
1306 {
1307 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1308
1309 if (IS_BROADWELL(dev_priv))
1310 return gen8_decode_mi_display_flip(s, info);
1311 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1312 return skl_decode_mi_display_flip(s, info);
1313
1314 return -ENODEV;
1315 }
1316
1317 static int check_mi_display_flip(struct parser_exec_state *s,
1318 struct mi_display_flip_command_info *info)
1319 {
1320 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1321
1322 if (IS_BROADWELL(dev_priv)
1323 || IS_SKYLAKE(dev_priv)
1324 || IS_KABYLAKE(dev_priv))
1325 return gen8_check_mi_display_flip(s, info);
1326 return -ENODEV;
1327 }
1328
1329 static int update_plane_mmio_from_mi_display_flip(
1330 struct parser_exec_state *s,
1331 struct mi_display_flip_command_info *info)
1332 {
1333 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1334
1335 if (IS_BROADWELL(dev_priv)
1336 || IS_SKYLAKE(dev_priv)
1337 || IS_KABYLAKE(dev_priv))
1338 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1339 return -ENODEV;
1340 }
1341
1342 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1343 {
1344 struct mi_display_flip_command_info info;
1345 struct intel_vgpu *vgpu = s->vgpu;
1346 int ret;
1347 int i;
1348 int len = cmd_length(s);
1349
1350 ret = decode_mi_display_flip(s, &info);
1351 if (ret) {
1352 gvt_vgpu_err("fail to decode MI display flip command\n");
1353 return ret;
1354 }
1355
1356 ret = check_mi_display_flip(s, &info);
1357 if (ret) {
1358 gvt_vgpu_err("invalid MI display flip command\n");
1359 return ret;
1360 }
1361
1362 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1363 if (ret) {
1364 gvt_vgpu_err("fail to update plane mmio\n");
1365 return ret;
1366 }
1367
1368 for (i = 0; i < len; i++)
1369 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1370 return 0;
1371 }
1372
1373 static bool is_wait_for_flip_pending(u32 cmd)
1374 {
1375 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1376 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1377 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1378 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1379 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1380 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1381 }
1382
1383 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1384 {
1385 u32 cmd = cmd_val(s, 0);
1386
1387 if (!is_wait_for_flip_pending(cmd))
1388 return 0;
1389
1390 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1391 return 0;
1392 }
1393
1394 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1395 {
1396 unsigned long addr;
1397 unsigned long gma_high, gma_low;
1398 struct intel_vgpu *vgpu = s->vgpu;
1399 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1400
1401 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1402 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1403 return INTEL_GVT_INVALID_ADDR;
1404 }
1405
1406 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1407 if (gmadr_bytes == 4) {
1408 addr = gma_low;
1409 } else {
1410 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1411 addr = (((unsigned long)gma_high) << 32) | gma_low;
1412 }
1413 return addr;
1414 }
1415
1416 static inline int cmd_address_audit(struct parser_exec_state *s,
1417 unsigned long guest_gma, int op_size, bool index_mode)
1418 {
1419 struct intel_vgpu *vgpu = s->vgpu;
1420 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1421 int i;
1422 int ret;
1423
1424 if (op_size > max_surface_size) {
1425 gvt_vgpu_err("command address audit fail name %s\n",
1426 s->info->name);
1427 return -EFAULT;
1428 }
1429
1430 if (index_mode) {
1431 if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) {
1432 ret = -EFAULT;
1433 goto err;
1434 }
1435 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1436 ret = -EFAULT;
1437 goto err;
1438 }
1439
1440 return 0;
1441
1442 err:
1443 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1444 s->info->name, guest_gma, op_size);
1445
1446 pr_err("cmd dump: ");
1447 for (i = 0; i < cmd_length(s); i++) {
1448 if (!(i % 4))
1449 pr_err("\n%08x ", cmd_val(s, i));
1450 else
1451 pr_err("%08x ", cmd_val(s, i));
1452 }
1453 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1454 vgpu->id,
1455 vgpu_aperture_gmadr_base(vgpu),
1456 vgpu_aperture_gmadr_end(vgpu),
1457 vgpu_hidden_gmadr_base(vgpu),
1458 vgpu_hidden_gmadr_end(vgpu));
1459 return ret;
1460 }
1461
1462 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1463 {
1464 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1465 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1466 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1467 unsigned long gma, gma_low, gma_high;
1468 int ret = 0;
1469
1470 /* check ppggt */
1471 if (!(cmd_val(s, 0) & (1 << 22)))
1472 return 0;
1473
1474 gma = cmd_val(s, 2) & GENMASK(31, 2);
1475
1476 if (gmadr_bytes == 8) {
1477 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1478 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1479 gma = (gma_high << 32) | gma_low;
1480 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1481 }
1482 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1483 return ret;
1484 }
1485
1486 static inline int unexpected_cmd(struct parser_exec_state *s)
1487 {
1488 struct intel_vgpu *vgpu = s->vgpu;
1489
1490 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1491
1492 return -EBADRQC;
1493 }
1494
1495 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1496 {
1497 return unexpected_cmd(s);
1498 }
1499
1500 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1501 {
1502 return unexpected_cmd(s);
1503 }
1504
1505 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1506 {
1507 return unexpected_cmd(s);
1508 }
1509
1510 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1511 {
1512 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1513 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1514 sizeof(u32);
1515 unsigned long gma, gma_high;
1516 int ret = 0;
1517
1518 if (!(cmd_val(s, 0) & (1 << 22)))
1519 return ret;
1520
1521 gma = cmd_val(s, 1) & GENMASK(31, 2);
1522 if (gmadr_bytes == 8) {
1523 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1524 gma = (gma_high << 32) | gma;
1525 }
1526 ret = cmd_address_audit(s, gma, op_size, false);
1527 return ret;
1528 }
1529
1530 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1531 {
1532 return unexpected_cmd(s);
1533 }
1534
1535 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1536 {
1537 return unexpected_cmd(s);
1538 }
1539
1540 static int cmd_handler_mi_conditional_batch_buffer_end(
1541 struct parser_exec_state *s)
1542 {
1543 return unexpected_cmd(s);
1544 }
1545
1546 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1547 {
1548 return unexpected_cmd(s);
1549 }
1550
1551 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1552 {
1553 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1554 unsigned long gma;
1555 bool index_mode = false;
1556 int ret = 0;
1557
1558 /* Check post-sync and ppgtt bit */
1559 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1560 gma = cmd_val(s, 1) & GENMASK(31, 3);
1561 if (gmadr_bytes == 8)
1562 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1563 /* Store Data Index */
1564 if (cmd_val(s, 0) & (1 << 21))
1565 index_mode = true;
1566 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1567 }
1568 /* Check notify bit */
1569 if ((cmd_val(s, 0) & (1 << 8)))
1570 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1571 s->workload->pending_events);
1572 return ret;
1573 }
1574
1575 static void addr_type_update_snb(struct parser_exec_state *s)
1576 {
1577 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1578 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1579 s->buf_addr_type = PPGTT_BUFFER;
1580 }
1581 }
1582
1583
1584 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1585 unsigned long gma, unsigned long end_gma, void *va)
1586 {
1587 unsigned long copy_len, offset;
1588 unsigned long len = 0;
1589 unsigned long gpa;
1590
1591 while (gma != end_gma) {
1592 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1593 if (gpa == INTEL_GVT_INVALID_ADDR) {
1594 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1595 return -EFAULT;
1596 }
1597
1598 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1599
1600 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1601 I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1602
1603 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1604
1605 len += copy_len;
1606 gma += copy_len;
1607 }
1608 return len;
1609 }
1610
1611
1612 /*
1613 * Check whether a batch buffer needs to be scanned. Currently
1614 * the only criteria is based on privilege.
1615 */
1616 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1617 {
1618 struct intel_gvt *gvt = s->vgpu->gvt;
1619
1620 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
1621 || IS_KABYLAKE(gvt->dev_priv)) {
1622 /* BDW decides privilege based on address space */
1623 if (cmd_val(s, 0) & (1 << 8) &&
1624 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1625 return 0;
1626 }
1627 return 1;
1628 }
1629
1630 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1631 {
1632 unsigned long gma = 0;
1633 struct cmd_info *info;
1634 uint32_t cmd_len = 0;
1635 bool bb_end = false;
1636 struct intel_vgpu *vgpu = s->vgpu;
1637 u32 cmd;
1638 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1639 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1640
1641 *bb_size = 0;
1642
1643 /* get the start gm address of the batch buffer */
1644 gma = get_gma_bb_from_cmd(s, 1);
1645 if (gma == INTEL_GVT_INVALID_ADDR)
1646 return -EFAULT;
1647
1648 cmd = cmd_val(s, 0);
1649 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1650 if (info == NULL) {
1651 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1652 cmd, get_opcode(cmd, s->ring_id),
1653 (s->buf_addr_type == PPGTT_BUFFER) ?
1654 "ppgtt" : "ggtt", s->ring_id, s->workload);
1655 return -EBADRQC;
1656 }
1657 do {
1658 if (copy_gma_to_hva(s->vgpu, mm,
1659 gma, gma + 4, &cmd) < 0)
1660 return -EFAULT;
1661 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1662 if (info == NULL) {
1663 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1664 cmd, get_opcode(cmd, s->ring_id),
1665 (s->buf_addr_type == PPGTT_BUFFER) ?
1666 "ppgtt" : "ggtt", s->ring_id, s->workload);
1667 return -EBADRQC;
1668 }
1669
1670 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1671 bb_end = true;
1672 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1673 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1674 /* chained batch buffer */
1675 bb_end = true;
1676 }
1677 cmd_len = get_cmd_length(info, cmd) << 2;
1678 *bb_size += cmd_len;
1679 gma += cmd_len;
1680 } while (!bb_end);
1681
1682 return 0;
1683 }
1684
1685 static int perform_bb_shadow(struct parser_exec_state *s)
1686 {
1687 struct intel_vgpu *vgpu = s->vgpu;
1688 struct intel_vgpu_shadow_bb *bb;
1689 unsigned long gma = 0;
1690 unsigned long bb_size;
1691 int ret = 0;
1692 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1693 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1694 unsigned long gma_start_offset = 0;
1695
1696 /* get the start gm address of the batch buffer */
1697 gma = get_gma_bb_from_cmd(s, 1);
1698 if (gma == INTEL_GVT_INVALID_ADDR)
1699 return -EFAULT;
1700
1701 ret = find_bb_size(s, &bb_size);
1702 if (ret)
1703 return ret;
1704
1705 bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1706 if (!bb)
1707 return -ENOMEM;
1708
1709 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1710
1711 /* the gma_start_offset stores the batch buffer's start gma's
1712 * offset relative to page boundary. so for non-privileged batch
1713 * buffer, the shadowed gem object holds exactly the same page
1714 * layout as original gem object. This is for the convience of
1715 * replacing the whole non-privilged batch buffer page to this
1716 * shadowed one in PPGTT at the same gma address. (this replacing
1717 * action is not implemented yet now, but may be necessary in
1718 * future).
1719 * for prileged batch buffer, we just change start gma address to
1720 * that of shadowed page.
1721 */
1722 if (bb->ppgtt)
1723 gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1724
1725 bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1726 roundup(bb_size + gma_start_offset, PAGE_SIZE));
1727 if (IS_ERR(bb->obj)) {
1728 ret = PTR_ERR(bb->obj);
1729 goto err_free_bb;
1730 }
1731
1732 ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1733 if (ret)
1734 goto err_free_obj;
1735
1736 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1737 if (IS_ERR(bb->va)) {
1738 ret = PTR_ERR(bb->va);
1739 goto err_finish_shmem_access;
1740 }
1741
1742 if (bb->clflush & CLFLUSH_BEFORE) {
1743 drm_clflush_virt_range(bb->va, bb->obj->base.size);
1744 bb->clflush &= ~CLFLUSH_BEFORE;
1745 }
1746
1747 ret = copy_gma_to_hva(s->vgpu, mm,
1748 gma, gma + bb_size,
1749 bb->va + gma_start_offset);
1750 if (ret < 0) {
1751 gvt_vgpu_err("fail to copy guest ring buffer\n");
1752 ret = -EFAULT;
1753 goto err_unmap;
1754 }
1755
1756 INIT_LIST_HEAD(&bb->list);
1757 list_add(&bb->list, &s->workload->shadow_bb);
1758
1759 bb->accessing = true;
1760 bb->bb_start_cmd_va = s->ip_va;
1761
1762 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1763 bb->bb_offset = s->ip_va - s->rb_va;
1764 else
1765 bb->bb_offset = 0;
1766
1767 /*
1768 * ip_va saves the virtual address of the shadow batch buffer, while
1769 * ip_gma saves the graphics address of the original batch buffer.
1770 * As the shadow batch buffer is just a copy from the originial one,
1771 * it should be right to use shadow batch buffer'va and original batch
1772 * buffer's gma in pair. After all, we don't want to pin the shadow
1773 * buffer here (too early).
1774 */
1775 s->ip_va = bb->va + gma_start_offset;
1776 s->ip_gma = gma;
1777 return 0;
1778 err_unmap:
1779 i915_gem_object_unpin_map(bb->obj);
1780 err_finish_shmem_access:
1781 i915_gem_obj_finish_shmem_access(bb->obj);
1782 err_free_obj:
1783 i915_gem_object_put(bb->obj);
1784 err_free_bb:
1785 kfree(bb);
1786 return ret;
1787 }
1788
1789 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1790 {
1791 bool second_level;
1792 int ret = 0;
1793 struct intel_vgpu *vgpu = s->vgpu;
1794
1795 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1796 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1797 return -EFAULT;
1798 }
1799
1800 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1801 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1802 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1803 return -EFAULT;
1804 }
1805
1806 s->saved_buf_addr_type = s->buf_addr_type;
1807 addr_type_update_snb(s);
1808 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1809 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1810 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1811 } else if (second_level) {
1812 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1813 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1814 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1815 }
1816
1817 if (batch_buffer_needs_scan(s)) {
1818 ret = perform_bb_shadow(s);
1819 if (ret < 0)
1820 gvt_vgpu_err("invalid shadow batch buffer\n");
1821 } else {
1822 /* emulate a batch buffer end to do return right */
1823 ret = cmd_handler_mi_batch_buffer_end(s);
1824 if (ret < 0)
1825 return ret;
1826 }
1827 return ret;
1828 }
1829
1830 static struct cmd_info cmd_info[] = {
1831 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1832
1833 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1834 0, 1, NULL},
1835
1836 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1837 0, 1, cmd_handler_mi_user_interrupt},
1838
1839 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1840 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1841
1842 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1843
1844 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1845 NULL},
1846
1847 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1848 NULL},
1849
1850 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1851 NULL},
1852
1853 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1854 NULL},
1855
1856 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1857 D_ALL, 0, 1, NULL},
1858
1859 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1860 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1861 cmd_handler_mi_batch_buffer_end},
1862
1863 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1864 0, 1, NULL},
1865
1866 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1867 NULL},
1868
1869 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1870 D_ALL, 0, 1, NULL},
1871
1872 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1873 NULL},
1874
1875 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1876 NULL},
1877
1878 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1879 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1880
1881 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1882 0, 8, NULL},
1883
1884 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1885
1886 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1887
1888 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1889 D_BDW_PLUS, 0, 8, NULL},
1890
1891 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1892 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1893
1894 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1895 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1896
1897 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1898 0, 8, cmd_handler_mi_store_data_index},
1899
1900 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1901 D_ALL, 0, 8, cmd_handler_lri},
1902
1903 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1904 cmd_handler_mi_update_gtt},
1905
1906 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1907 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1908
1909 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1910 cmd_handler_mi_flush_dw},
1911
1912 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1913 10, cmd_handler_mi_clflush},
1914
1915 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1916 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1917
1918 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1919 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1920
1921 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1922 D_ALL, 0, 8, cmd_handler_lrr},
1923
1924 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1925 D_ALL, 0, 8, NULL},
1926
1927 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1928 ADDR_FIX_1(2), 8, NULL},
1929
1930 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1931 ADDR_FIX_1(2), 8, NULL},
1932
1933 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1934 8, cmd_handler_mi_op_2e},
1935
1936 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1937 8, cmd_handler_mi_op_2f},
1938
1939 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1940 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1941 cmd_handler_mi_batch_buffer_start},
1942
1943 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1944 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1945 cmd_handler_mi_conditional_batch_buffer_end},
1946
1947 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1948 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1949
1950 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1951 ADDR_FIX_2(4, 7), 8, NULL},
1952
1953 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1954 0, 8, NULL},
1955
1956 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1957 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1958
1959 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1960
1961 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1962 0, 8, NULL},
1963
1964 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1965 ADDR_FIX_1(3), 8, NULL},
1966
1967 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1968 D_ALL, 0, 8, NULL},
1969
1970 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1971 ADDR_FIX_1(4), 8, NULL},
1972
1973 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1974 ADDR_FIX_2(4, 5), 8, NULL},
1975
1976 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1977 ADDR_FIX_1(4), 8, NULL},
1978
1979 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1980 ADDR_FIX_2(4, 7), 8, NULL},
1981
1982 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1983 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1984
1985 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1986
1987 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1988 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1989
1990 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
1991 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1992
1993 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
1994 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
1995 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1996
1997 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
1998 D_ALL, ADDR_FIX_1(4), 8, NULL},
1999
2000 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2001 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2002
2003 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2004 D_ALL, ADDR_FIX_1(4), 8, NULL},
2005
2006 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2007 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2008
2009 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2010 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2011
2012 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2013 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2014 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2015
2016 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2017 ADDR_FIX_2(4, 5), 8, NULL},
2018
2019 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2020 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2021
2022 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2023 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2024 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2025
2026 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2027 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2028 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2029
2030 {"3DSTATE_BLEND_STATE_POINTERS",
2031 OP_3DSTATE_BLEND_STATE_POINTERS,
2032 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2033
2034 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2035 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2036 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2037
2038 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2039 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2040 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2041
2042 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2043 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2044 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2045
2046 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2047 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2048 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2049
2050 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2051 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2052 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2053
2054 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2055 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2056 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2057
2058 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2059 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2060 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2061
2062 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2063 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2064 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2065
2066 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2067 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2068 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2069
2070 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2071 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2072 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2073
2074 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2075 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2076 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2077
2078 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2079 0, 8, NULL},
2080
2081 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2082 0, 8, NULL},
2083
2084 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2085 0, 8, NULL},
2086
2087 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2088 0, 8, NULL},
2089
2090 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2091 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2092
2093 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2094 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2095
2096 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2097 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2098
2099 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2100 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2101
2102 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2103 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2104
2105 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2106 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2107
2108 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2109 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2110
2111 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2112 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2113
2114 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2115 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2116
2117 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2118 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2119
2120 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2121 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2122
2123 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2124 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2125
2126 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2127 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2128
2129 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2130 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2131
2132 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2133 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2134
2135 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2136 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2137
2138 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2139 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2140
2141 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2142 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2143
2144 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2145 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2146
2147 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2148 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2149
2150 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2151 D_BDW_PLUS, 0, 8, NULL},
2152
2153 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2154 NULL},
2155
2156 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2157 D_BDW_PLUS, 0, 8, NULL},
2158
2159 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2160 D_BDW_PLUS, 0, 8, NULL},
2161
2162 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2163 8, NULL},
2164
2165 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2166 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2167
2168 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2169 8, NULL},
2170
2171 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2172 NULL},
2173
2174 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2175 NULL},
2176
2177 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2178 NULL},
2179
2180 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2181 D_BDW_PLUS, 0, 8, NULL},
2182
2183 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2184 R_RCS, D_ALL, 0, 8, NULL},
2185
2186 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2187 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2188
2189 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2190 R_RCS, D_ALL, 0, 1, NULL},
2191
2192 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2193
2194 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2195 R_RCS, D_ALL, 0, 8, NULL},
2196
2197 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2198 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2199
2200 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2201
2202 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2203
2204 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2205
2206 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2207 D_BDW_PLUS, 0, 8, NULL},
2208
2209 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2210 D_BDW_PLUS, 0, 8, NULL},
2211
2212 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2213 D_ALL, 0, 8, NULL},
2214
2215 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2216 D_BDW_PLUS, 0, 8, NULL},
2217
2218 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2219 D_BDW_PLUS, 0, 8, NULL},
2220
2221 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2222
2223 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2224
2225 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2226
2227 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2228 D_ALL, 0, 8, NULL},
2229
2230 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2231
2232 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2233
2234 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2235 R_RCS, D_ALL, 0, 8, NULL},
2236
2237 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2238 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2239
2240 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2241 0, 8, NULL},
2242
2243 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2244 D_ALL, ADDR_FIX_1(2), 8, NULL},
2245
2246 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248
2249 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2250 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2251
2252 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2253 D_ALL, 0, 8, NULL},
2254
2255 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2256 D_ALL, 0, 8, NULL},
2257
2258 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2259 D_ALL, 0, 8, NULL},
2260
2261 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2262 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263
2264 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2265 D_BDW_PLUS, 0, 8, NULL},
2266
2267 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2268 D_ALL, ADDR_FIX_1(2), 8, NULL},
2269
2270 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2271 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2272
2273 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2274 R_RCS, D_ALL, 0, 8, NULL},
2275
2276 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278
2279 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281
2282 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2283 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284
2285 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2286 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2287
2288 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2289 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2290
2291 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2292 R_RCS, D_ALL, 0, 8, NULL},
2293
2294 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2295 D_ALL, 0, 9, NULL},
2296
2297 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2298 ADDR_FIX_2(2, 4), 8, NULL},
2299
2300 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2301 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2302 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2303
2304 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2305 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2306
2307 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2308 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2309 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2310
2311 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2312 D_BDW_PLUS, 0, 8, NULL},
2313
2314 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2315 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2316
2317 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2318
2319 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2320 1, NULL},
2321
2322 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2323 ADDR_FIX_1(1), 8, NULL},
2324
2325 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326
2327 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2328 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2329
2330 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2331 ADDR_FIX_1(1), 8, NULL},
2332
2333 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334
2335 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336
2337 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2338 0, 8, NULL},
2339
2340 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2341 D_SKL_PLUS, 0, 8, NULL},
2342
2343 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2344 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2345
2346 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2347 0, 16, NULL},
2348
2349 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2350 0, 16, NULL},
2351
2352 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2353
2354 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2355 0, 16, NULL},
2356
2357 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2358 0, 16, NULL},
2359
2360 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2361 0, 16, NULL},
2362
2363 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2364 0, 8, NULL},
2365
2366 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2367 NULL},
2368
2369 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2370 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2371
2372 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2373 R_VCS, D_ALL, 0, 12, NULL},
2374
2375 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2376 R_VCS, D_ALL, 0, 12, NULL},
2377
2378 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2379 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2380
2381 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2382 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2383
2384 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2385 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2386
2387 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2388
2389 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2390 R_VCS, D_ALL, 0, 12, NULL},
2391
2392 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2393 R_VCS, D_ALL, 0, 12, NULL},
2394
2395 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2396 R_VCS, D_ALL, 0, 12, NULL},
2397
2398 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2399 R_VCS, D_ALL, 0, 12, NULL},
2400
2401 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2402 R_VCS, D_ALL, 0, 12, NULL},
2403
2404 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2405 R_VCS, D_ALL, 0, 12, NULL},
2406
2407 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2408 R_VCS, D_ALL, 0, 6, NULL},
2409
2410 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2411 R_VCS, D_ALL, 0, 12, NULL},
2412
2413 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2414 R_VCS, D_ALL, 0, 12, NULL},
2415
2416 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2417 R_VCS, D_ALL, 0, 12, NULL},
2418
2419 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2420 R_VCS, D_ALL, 0, 12, NULL},
2421
2422 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2423 R_VCS, D_ALL, 0, 12, NULL},
2424
2425 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2426 R_VCS, D_ALL, 0, 12, NULL},
2427
2428 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2429 R_VCS, D_ALL, 0, 12, NULL},
2430 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2431 R_VCS, D_ALL, 0, 12, NULL},
2432
2433 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2434 R_VCS, D_ALL, 0, 12, NULL},
2435
2436 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2437 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2438
2439 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2440 R_VCS, D_ALL, 0, 12, NULL},
2441
2442 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2443 R_VCS, D_ALL, 0, 12, NULL},
2444
2445 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2446 R_VCS, D_ALL, 0, 12, NULL},
2447
2448 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2449 R_VCS, D_ALL, 0, 12, NULL},
2450
2451 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2452 R_VCS, D_ALL, 0, 12, NULL},
2453
2454 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2455 R_VCS, D_ALL, 0, 12, NULL},
2456
2457 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2458 R_VCS, D_ALL, 0, 12, NULL},
2459
2460 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2461 R_VCS, D_ALL, 0, 12, NULL},
2462
2463 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2464 R_VCS, D_ALL, 0, 12, NULL},
2465
2466 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2467 R_VCS, D_ALL, 0, 12, NULL},
2468
2469 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2470 R_VCS, D_ALL, 0, 12, NULL},
2471
2472 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2473 0, 16, NULL},
2474
2475 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2476
2477 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2478
2479 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2480 R_VCS, D_ALL, 0, 12, NULL},
2481
2482 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2483 R_VCS, D_ALL, 0, 12, NULL},
2484
2485 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2486 R_VCS, D_ALL, 0, 12, NULL},
2487
2488 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2489
2490 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2491 0, 12, NULL},
2492
2493 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2494 0, 20, NULL},
2495 };
2496
2497 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2498 {
2499 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2500 }
2501
2502 /* call the cmd handler, and advance ip */
2503 static int cmd_parser_exec(struct parser_exec_state *s)
2504 {
2505 struct intel_vgpu *vgpu = s->vgpu;
2506 struct cmd_info *info;
2507 u32 cmd;
2508 int ret = 0;
2509
2510 cmd = cmd_val(s, 0);
2511
2512 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2513 if (info == NULL) {
2514 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2515 cmd, get_opcode(cmd, s->ring_id),
2516 (s->buf_addr_type == PPGTT_BUFFER) ?
2517 "ppgtt" : "ggtt", s->ring_id, s->workload);
2518 return -EBADRQC;
2519 }
2520
2521 s->info = info;
2522
2523 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2524 cmd_length(s), s->buf_type, s->buf_addr_type,
2525 s->workload, info->name);
2526
2527 if (info->handler) {
2528 ret = info->handler(s);
2529 if (ret < 0) {
2530 gvt_vgpu_err("%s handler error\n", info->name);
2531 return ret;
2532 }
2533 }
2534
2535 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2536 ret = cmd_advance_default(s);
2537 if (ret) {
2538 gvt_vgpu_err("%s IP advance error\n", info->name);
2539 return ret;
2540 }
2541 }
2542 return 0;
2543 }
2544
2545 static inline bool gma_out_of_range(unsigned long gma,
2546 unsigned long gma_head, unsigned int gma_tail)
2547 {
2548 if (gma_tail >= gma_head)
2549 return (gma < gma_head) || (gma > gma_tail);
2550 else
2551 return (gma > gma_tail) && (gma < gma_head);
2552 }
2553
2554 /* Keep the consistent return type, e.g EBADRQC for unknown
2555 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2556 * works as the input of VM healthy status.
2557 */
2558 static int command_scan(struct parser_exec_state *s,
2559 unsigned long rb_head, unsigned long rb_tail,
2560 unsigned long rb_start, unsigned long rb_len)
2561 {
2562
2563 unsigned long gma_head, gma_tail, gma_bottom;
2564 int ret = 0;
2565 struct intel_vgpu *vgpu = s->vgpu;
2566
2567 gma_head = rb_start + rb_head;
2568 gma_tail = rb_start + rb_tail;
2569 gma_bottom = rb_start + rb_len;
2570
2571 while (s->ip_gma != gma_tail) {
2572 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2573 if (!(s->ip_gma >= rb_start) ||
2574 !(s->ip_gma < gma_bottom)) {
2575 gvt_vgpu_err("ip_gma %lx out of ring scope."
2576 "(base:0x%lx, bottom: 0x%lx)\n",
2577 s->ip_gma, rb_start,
2578 gma_bottom);
2579 parser_exec_state_dump(s);
2580 return -EFAULT;
2581 }
2582 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2583 gvt_vgpu_err("ip_gma %lx out of range."
2584 "base 0x%lx head 0x%lx tail 0x%lx\n",
2585 s->ip_gma, rb_start,
2586 rb_head, rb_tail);
2587 parser_exec_state_dump(s);
2588 break;
2589 }
2590 }
2591 ret = cmd_parser_exec(s);
2592 if (ret) {
2593 gvt_vgpu_err("cmd parser error\n");
2594 parser_exec_state_dump(s);
2595 break;
2596 }
2597 }
2598
2599 return ret;
2600 }
2601
2602 static int scan_workload(struct intel_vgpu_workload *workload)
2603 {
2604 unsigned long gma_head, gma_tail, gma_bottom;
2605 struct parser_exec_state s;
2606 int ret = 0;
2607
2608 /* ring base is page aligned */
2609 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2610 return -EINVAL;
2611
2612 gma_head = workload->rb_start + workload->rb_head;
2613 gma_tail = workload->rb_start + workload->rb_tail;
2614 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
2615
2616 s.buf_type = RING_BUFFER_INSTRUCTION;
2617 s.buf_addr_type = GTT_BUFFER;
2618 s.vgpu = workload->vgpu;
2619 s.ring_id = workload->ring_id;
2620 s.ring_start = workload->rb_start;
2621 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2622 s.ring_head = gma_head;
2623 s.ring_tail = gma_tail;
2624 s.rb_va = workload->shadow_ring_buffer_va;
2625 s.workload = workload;
2626 s.is_ctx_wa = false;
2627
2628 if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2629 gma_head == gma_tail)
2630 return 0;
2631
2632 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2633 ret = -EINVAL;
2634 goto out;
2635 }
2636
2637 ret = ip_gma_set(&s, gma_head);
2638 if (ret)
2639 goto out;
2640
2641 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2642 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2643
2644 out:
2645 return ret;
2646 }
2647
2648 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2649 {
2650
2651 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2652 struct parser_exec_state s;
2653 int ret = 0;
2654 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2655 struct intel_vgpu_workload,
2656 wa_ctx);
2657
2658 /* ring base is page aligned */
2659 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2660 I915_GTT_PAGE_SIZE)))
2661 return -EINVAL;
2662
2663 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2664 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2665 PAGE_SIZE);
2666 gma_head = wa_ctx->indirect_ctx.guest_gma;
2667 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2668 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2669
2670 s.buf_type = RING_BUFFER_INSTRUCTION;
2671 s.buf_addr_type = GTT_BUFFER;
2672 s.vgpu = workload->vgpu;
2673 s.ring_id = workload->ring_id;
2674 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2675 s.ring_size = ring_size;
2676 s.ring_head = gma_head;
2677 s.ring_tail = gma_tail;
2678 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2679 s.workload = workload;
2680 s.is_ctx_wa = true;
2681
2682 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2683 ret = -EINVAL;
2684 goto out;
2685 }
2686
2687 ret = ip_gma_set(&s, gma_head);
2688 if (ret)
2689 goto out;
2690
2691 ret = command_scan(&s, 0, ring_tail,
2692 wa_ctx->indirect_ctx.guest_gma, ring_size);
2693 out:
2694 return ret;
2695 }
2696
2697 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2698 {
2699 struct intel_vgpu *vgpu = workload->vgpu;
2700 struct intel_vgpu_submission *s = &vgpu->submission;
2701 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2702 void *shadow_ring_buffer_va;
2703 int ring_id = workload->ring_id;
2704 int ret;
2705
2706 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2707
2708 /* calculate workload ring buffer size */
2709 workload->rb_len = (workload->rb_tail + guest_rb_size -
2710 workload->rb_head) % guest_rb_size;
2711
2712 gma_head = workload->rb_start + workload->rb_head;
2713 gma_tail = workload->rb_start + workload->rb_tail;
2714 gma_top = workload->rb_start + guest_rb_size;
2715
2716 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2717 void *p;
2718
2719 /* realloc the new ring buffer if needed */
2720 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2721 GFP_KERNEL);
2722 if (!p) {
2723 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2724 return -ENOMEM;
2725 }
2726 s->ring_scan_buffer[ring_id] = p;
2727 s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2728 }
2729
2730 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2731
2732 /* get shadow ring buffer va */
2733 workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2734
2735 /* head > tail --> copy head <-> top */
2736 if (gma_head > gma_tail) {
2737 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2738 gma_head, gma_top, shadow_ring_buffer_va);
2739 if (ret < 0) {
2740 gvt_vgpu_err("fail to copy guest ring buffer\n");
2741 return ret;
2742 }
2743 shadow_ring_buffer_va += ret;
2744 gma_head = workload->rb_start;
2745 }
2746
2747 /* copy head or start <-> tail */
2748 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2749 shadow_ring_buffer_va);
2750 if (ret < 0) {
2751 gvt_vgpu_err("fail to copy guest ring buffer\n");
2752 return ret;
2753 }
2754 return 0;
2755 }
2756
2757 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2758 {
2759 int ret;
2760 struct intel_vgpu *vgpu = workload->vgpu;
2761
2762 ret = shadow_workload_ring_buffer(workload);
2763 if (ret) {
2764 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2765 return ret;
2766 }
2767
2768 ret = scan_workload(workload);
2769 if (ret) {
2770 gvt_vgpu_err("scan workload error\n");
2771 return ret;
2772 }
2773 return 0;
2774 }
2775
2776 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2777 {
2778 int ctx_size = wa_ctx->indirect_ctx.size;
2779 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2780 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2781 struct intel_vgpu_workload,
2782 wa_ctx);
2783 struct intel_vgpu *vgpu = workload->vgpu;
2784 struct drm_i915_gem_object *obj;
2785 int ret = 0;
2786 void *map;
2787
2788 obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2789 roundup(ctx_size + CACHELINE_BYTES,
2790 PAGE_SIZE));
2791 if (IS_ERR(obj))
2792 return PTR_ERR(obj);
2793
2794 /* get the va of the shadow batch buffer */
2795 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2796 if (IS_ERR(map)) {
2797 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2798 ret = PTR_ERR(map);
2799 goto put_obj;
2800 }
2801
2802 ret = i915_gem_object_set_to_cpu_domain(obj, false);
2803 if (ret) {
2804 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2805 goto unmap_src;
2806 }
2807
2808 ret = copy_gma_to_hva(workload->vgpu,
2809 workload->vgpu->gtt.ggtt_mm,
2810 guest_gma, guest_gma + ctx_size,
2811 map);
2812 if (ret < 0) {
2813 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2814 goto unmap_src;
2815 }
2816
2817 wa_ctx->indirect_ctx.obj = obj;
2818 wa_ctx->indirect_ctx.shadow_va = map;
2819 return 0;
2820
2821 unmap_src:
2822 i915_gem_object_unpin_map(obj);
2823 put_obj:
2824 i915_gem_object_put(obj);
2825 return ret;
2826 }
2827
2828 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2829 {
2830 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2831 unsigned char *bb_start_sva;
2832
2833 if (!wa_ctx->per_ctx.valid)
2834 return 0;
2835
2836 per_ctx_start[0] = 0x18800001;
2837 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2838
2839 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2840 wa_ctx->indirect_ctx.size;
2841
2842 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2843
2844 return 0;
2845 }
2846
2847 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2848 {
2849 int ret;
2850 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2851 struct intel_vgpu_workload,
2852 wa_ctx);
2853 struct intel_vgpu *vgpu = workload->vgpu;
2854
2855 if (wa_ctx->indirect_ctx.size == 0)
2856 return 0;
2857
2858 ret = shadow_indirect_ctx(wa_ctx);
2859 if (ret) {
2860 gvt_vgpu_err("fail to shadow indirect ctx\n");
2861 return ret;
2862 }
2863
2864 combine_wa_ctx(wa_ctx);
2865
2866 ret = scan_wa_ctx(wa_ctx);
2867 if (ret) {
2868 gvt_vgpu_err("scan wa ctx error\n");
2869 return ret;
2870 }
2871
2872 return 0;
2873 }
2874
2875 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2876 unsigned int opcode, unsigned long rings)
2877 {
2878 struct cmd_info *info = NULL;
2879 unsigned int ring;
2880
2881 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2882 info = find_cmd_entry(gvt, opcode, ring);
2883 if (info)
2884 break;
2885 }
2886 return info;
2887 }
2888
2889 static int init_cmd_table(struct intel_gvt *gvt)
2890 {
2891 int i;
2892 struct cmd_entry *e;
2893 struct cmd_info *info;
2894 unsigned int gen_type;
2895
2896 gen_type = intel_gvt_get_device_type(gvt);
2897
2898 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2899 if (!(cmd_info[i].devices & gen_type))
2900 continue;
2901
2902 e = kzalloc(sizeof(*e), GFP_KERNEL);
2903 if (!e)
2904 return -ENOMEM;
2905
2906 e->info = &cmd_info[i];
2907 info = find_cmd_entry_any_ring(gvt,
2908 e->info->opcode, e->info->rings);
2909 if (info) {
2910 gvt_err("%s %s duplicated\n", e->info->name,
2911 info->name);
2912 return -EEXIST;
2913 }
2914
2915 INIT_HLIST_NODE(&e->hlist);
2916 add_cmd_entry(gvt, e);
2917 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2918 e->info->name, e->info->opcode, e->info->flag,
2919 e->info->devices, e->info->rings);
2920 }
2921 return 0;
2922 }
2923
2924 static void clean_cmd_table(struct intel_gvt *gvt)
2925 {
2926 struct hlist_node *tmp;
2927 struct cmd_entry *e;
2928 int i;
2929
2930 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2931 kfree(e);
2932
2933 hash_init(gvt->cmd_table);
2934 }
2935
2936 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2937 {
2938 clean_cmd_table(gvt);
2939 }
2940
2941 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2942 {
2943 int ret;
2944
2945 ret = init_cmd_table(gvt);
2946 if (ret) {
2947 intel_gvt_clean_cmd_parser(gvt);
2948 return ret;
2949 }
2950 return 0;
2951 }