]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gvt/scheduler.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Zhi Wang <zhi.a.wang@intel.com>
25 *
26 * Contributors:
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
33 *
34 */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47 offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50 struct execlist_ring_context *ring_context,
51 u32 pdp[8])
52 {
53 int i;
54
55 for (i = 0; i < 8; i++)
56 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 struct drm_i915_gem_object *ctx_obj =
62 workload->req->context->state->obj;
63 struct execlist_ring_context *shadow_ring_context;
64 struct page *page;
65
66 if (WARN_ON(!workload->shadow_mm))
67 return;
68
69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70 return;
71
72 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73 shadow_ring_context = kmap(page);
74 set_context_pdp_root_pointer(shadow_ring_context,
75 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76 kunmap(page);
77 }
78
79 /*
80 * when populating shadow ctx from guest, we should not overrride oa related
81 * registers, so that they will not be overlapped by guest oa configs. Thus
82 * made it possible to capture oa data from host for both host and guests.
83 */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85 u32 *reg_state, bool save)
86 {
87 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90 int i = 0;
91 u32 flex_mmio[] = {
92 i915_mmio_reg_offset(EU_PERF_CNTL0),
93 i915_mmio_reg_offset(EU_PERF_CNTL1),
94 i915_mmio_reg_offset(EU_PERF_CNTL2),
95 i915_mmio_reg_offset(EU_PERF_CNTL3),
96 i915_mmio_reg_offset(EU_PERF_CNTL4),
97 i915_mmio_reg_offset(EU_PERF_CNTL5),
98 i915_mmio_reg_offset(EU_PERF_CNTL6),
99 };
100
101 if (workload->engine->id != RCS0)
102 return;
103
104 if (save) {
105 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106
107 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108 u32 state_offset = ctx_flexeu0 + i * 2;
109
110 workload->flex_mmio[i] = reg_state[state_offset + 1];
111 }
112 } else {
113 reg_state[ctx_oactxctrl] =
114 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116
117 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118 u32 state_offset = ctx_flexeu0 + i * 2;
119 u32 mmio = flex_mmio[i];
120
121 reg_state[state_offset] = mmio;
122 reg_state[state_offset + 1] = workload->flex_mmio[i];
123 }
124 }
125 }
126
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129 struct intel_vgpu *vgpu = workload->vgpu;
130 struct intel_gvt *gvt = vgpu->gvt;
131 struct drm_i915_gem_object *ctx_obj =
132 workload->req->context->state->obj;
133 struct execlist_ring_context *shadow_ring_context;
134 struct page *page;
135 void *dst;
136 unsigned long context_gpa, context_page_num;
137 int i;
138
139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 shadow_ring_context = kmap(page);
141
142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 + RING_CTX_OFF(name.val),\
149 &shadow_ring_context->name.val, 4);\
150 shadow_ring_context->name.val |= 0xffff << 16;\
151 }
152
153 COPY_REG_MASKED(ctx_ctrl);
154 COPY_REG(ctx_timestamp);
155
156 if (workload->engine->id == RCS0) {
157 COPY_REG(bb_per_ctx_ptr);
158 COPY_REG(rcs_indirect_ctx);
159 COPY_REG(rcs_indirect_ctx_offset);
160 }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164 intel_gvt_hypervisor_read_gpa(vgpu,
165 workload->ring_context_gpa +
166 sizeof(*shadow_ring_context),
167 (void *)shadow_ring_context +
168 sizeof(*shadow_ring_context),
169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 kunmap(page);
173
174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 return 0;
176
177 gvt_dbg_sched("ring %s workload lrca %x",
178 workload->engine->name,
179 workload->ctx_desc.lrca);
180
181 context_page_num = workload->engine->context_size;
182 context_page_num = context_page_num >> PAGE_SHIFT;
183
184 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
185 context_page_num = 19;
186
187 i = 2;
188 while (i < context_page_num) {
189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 (u32)((workload->ctx_desc.lrca + i) <<
191 I915_GTT_PAGE_SHIFT));
192 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 gvt_vgpu_err("Invalid guest context descriptor\n");
194 return -EFAULT;
195 }
196
197 page = i915_gem_object_get_page(ctx_obj, i);
198 dst = kmap(page);
199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 I915_GTT_PAGE_SIZE);
201 kunmap(page);
202 i++;
203 }
204 return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *rq)
208 {
209 return intel_context_force_single_submission(rq->context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu,
213 const struct intel_engine_cs *engine)
214 {
215 struct intel_uncore *uncore = engine->uncore;
216 i915_reg_t reg;
217
218 reg = RING_INSTDONE(engine->mmio_base);
219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
220 intel_uncore_read(uncore, reg);
221
222 reg = RING_ACTHD(engine->mmio_base);
223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
224 intel_uncore_read(uncore, reg);
225
226 reg = RING_ACTHD_UDW(engine->mmio_base);
227 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
228 intel_uncore_read(uncore, reg);
229 }
230
231 static int shadow_context_status_change(struct notifier_block *nb,
232 unsigned long action, void *data)
233 {
234 struct i915_request *rq = data;
235 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
236 shadow_ctx_notifier_block[rq->engine->id]);
237 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
238 enum intel_engine_id ring_id = rq->engine->id;
239 struct intel_vgpu_workload *workload;
240 unsigned long flags;
241
242 if (!is_gvt_request(rq)) {
243 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
244 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
245 scheduler->engine_owner[ring_id]) {
246 /* Switch ring from vGPU to host. */
247 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
248 NULL, rq->engine);
249 scheduler->engine_owner[ring_id] = NULL;
250 }
251 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
252
253 return NOTIFY_OK;
254 }
255
256 workload = scheduler->current_workload[ring_id];
257 if (unlikely(!workload))
258 return NOTIFY_OK;
259
260 switch (action) {
261 case INTEL_CONTEXT_SCHEDULE_IN:
262 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
263 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
264 /* Switch ring from host to vGPU or vGPU to vGPU. */
265 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
266 workload->vgpu, rq->engine);
267 scheduler->engine_owner[ring_id] = workload->vgpu;
268 } else
269 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
270 ring_id, workload->vgpu->id);
271 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
272 atomic_set(&workload->shadow_ctx_active, 1);
273 break;
274 case INTEL_CONTEXT_SCHEDULE_OUT:
275 save_ring_hw_state(workload->vgpu, rq->engine);
276 atomic_set(&workload->shadow_ctx_active, 0);
277 break;
278 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
279 save_ring_hw_state(workload->vgpu, rq->engine);
280 break;
281 default:
282 WARN_ON(1);
283 return NOTIFY_OK;
284 }
285 wake_up(&workload->shadow_ctx_status_wq);
286 return NOTIFY_OK;
287 }
288
289 static void
290 shadow_context_descriptor_update(struct intel_context *ce,
291 struct intel_vgpu_workload *workload)
292 {
293 u64 desc = ce->lrc_desc;
294
295 /*
296 * Update bits 0-11 of the context descriptor which includes flags
297 * like GEN8_CTX_* cached in desc_template
298 */
299 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
300 desc |= (u64)workload->ctx_desc.addressing_mode <<
301 GEN8_CTX_ADDRESSING_MODE_SHIFT;
302
303 ce->lrc_desc = desc;
304 }
305
306 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
307 {
308 struct intel_vgpu *vgpu = workload->vgpu;
309 struct i915_request *req = workload->req;
310 void *shadow_ring_buffer_va;
311 u32 *cs;
312 int err;
313
314 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
315 intel_vgpu_restore_inhibit_context(vgpu, req);
316
317 /*
318 * To track whether a request has started on HW, we can emit a
319 * breadcrumb at the beginning of the request and check its
320 * timeline's HWSP to see if the breadcrumb has advanced past the
321 * start of this request. Actually, the request must have the
322 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
323 * scheduler might get a wrong state of it during reset. Since the
324 * requests from gvt always set the has_init_breadcrumb flag, here
325 * need to do the emit_init_breadcrumb for all the requests.
326 */
327 if (req->engine->emit_init_breadcrumb) {
328 err = req->engine->emit_init_breadcrumb(req);
329 if (err) {
330 gvt_vgpu_err("fail to emit init breadcrumb\n");
331 return err;
332 }
333 }
334
335 /* allocate shadow ring buffer */
336 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
337 if (IS_ERR(cs)) {
338 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
339 workload->rb_len);
340 return PTR_ERR(cs);
341 }
342
343 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
344
345 /* get shadow ring buffer va */
346 workload->shadow_ring_buffer_va = cs;
347
348 memcpy(cs, shadow_ring_buffer_va,
349 workload->rb_len);
350
351 cs += workload->rb_len / sizeof(u32);
352 intel_ring_advance(workload->req, cs);
353
354 return 0;
355 }
356
357 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
358 {
359 if (!wa_ctx->indirect_ctx.obj)
360 return;
361
362 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
363 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
364
365 wa_ctx->indirect_ctx.obj = NULL;
366 wa_ctx->indirect_ctx.shadow_va = NULL;
367 }
368
369 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
370 struct intel_context *ce)
371 {
372 struct intel_vgpu_mm *mm = workload->shadow_mm;
373 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
374 int i = 0;
375
376 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
377 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
378 } else {
379 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
380 struct i915_page_directory * const pd =
381 i915_pd_entry(ppgtt->pd, i);
382
383 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
384 }
385 }
386 }
387
388 static int
389 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
390 {
391 struct intel_vgpu *vgpu = workload->vgpu;
392 struct intel_vgpu_submission *s = &vgpu->submission;
393 struct i915_request *rq;
394
395 if (workload->req)
396 return 0;
397
398 rq = i915_request_create(s->shadow[workload->engine->id]);
399 if (IS_ERR(rq)) {
400 gvt_vgpu_err("fail to allocate gem request\n");
401 return PTR_ERR(rq);
402 }
403
404 workload->req = i915_request_get(rq);
405 return 0;
406 }
407
408 /**
409 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
410 * shadow it as well, include ringbuffer,wa_ctx and ctx.
411 * @workload: an abstract entity for each execlist submission.
412 *
413 * This function is called before the workload submitting to i915, to make
414 * sure the content of the workload is valid.
415 */
416 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
417 {
418 struct intel_vgpu *vgpu = workload->vgpu;
419 struct intel_vgpu_submission *s = &vgpu->submission;
420 int ret;
421
422 lockdep_assert_held(&vgpu->vgpu_lock);
423
424 if (workload->shadow)
425 return 0;
426
427 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
428 shadow_context_descriptor_update(s->shadow[workload->engine->id],
429 workload);
430
431 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
432 if (ret)
433 return ret;
434
435 if (workload->engine->id == RCS0 &&
436 workload->wa_ctx.indirect_ctx.size) {
437 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
438 if (ret)
439 goto err_shadow;
440 }
441
442 workload->shadow = true;
443 return 0;
444
445 err_shadow:
446 release_shadow_wa_ctx(&workload->wa_ctx);
447 return ret;
448 }
449
450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
451
452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
453 {
454 struct intel_gvt *gvt = workload->vgpu->gvt;
455 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
456 struct intel_vgpu_shadow_bb *bb;
457 int ret;
458
459 list_for_each_entry(bb, &workload->shadow_bb, list) {
460 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
461 * is only updated into ring_scan_buffer, not real ring address
462 * allocated in later copy_workload_to_ring_buffer. pls be noted
463 * shadow_ring_buffer_va is now pointed to real ring buffer va
464 * in copy_workload_to_ring_buffer.
465 */
466
467 if (bb->bb_offset)
468 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
469 + bb->bb_offset;
470
471 if (bb->ppgtt) {
472 /* for non-priv bb, scan&shadow is only for
473 * debugging purpose, so the content of shadow bb
474 * is the same as original bb. Therefore,
475 * here, rather than switch to shadow bb's gma
476 * address, we directly use original batch buffer's
477 * gma address, and send original bb to hardware
478 * directly
479 */
480 if (bb->clflush & CLFLUSH_AFTER) {
481 drm_clflush_virt_range(bb->va,
482 bb->obj->base.size);
483 bb->clflush &= ~CLFLUSH_AFTER;
484 }
485 i915_gem_object_finish_access(bb->obj);
486 bb->accessing = false;
487
488 } else {
489 bb->vma = i915_gem_object_ggtt_pin(bb->obj,
490 NULL, 0, 0, 0);
491 if (IS_ERR(bb->vma)) {
492 ret = PTR_ERR(bb->vma);
493 goto err;
494 }
495
496 /* relocate shadow batch buffer */
497 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
498 if (gmadr_bytes == 8)
499 bb->bb_start_cmd_va[2] = 0;
500
501 /* No one is going to touch shadow bb from now on. */
502 if (bb->clflush & CLFLUSH_AFTER) {
503 drm_clflush_virt_range(bb->va,
504 bb->obj->base.size);
505 bb->clflush &= ~CLFLUSH_AFTER;
506 }
507
508 ret = i915_gem_object_set_to_gtt_domain(bb->obj,
509 false);
510 if (ret)
511 goto err;
512
513 ret = i915_vma_move_to_active(bb->vma,
514 workload->req,
515 0);
516 if (ret)
517 goto err;
518
519 i915_gem_object_finish_access(bb->obj);
520 bb->accessing = false;
521 }
522 }
523 return 0;
524 err:
525 release_shadow_batch_buffer(workload);
526 return ret;
527 }
528
529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
530 {
531 struct intel_vgpu_workload *workload =
532 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
533 struct i915_request *rq = workload->req;
534 struct execlist_ring_context *shadow_ring_context =
535 (struct execlist_ring_context *)rq->context->lrc_reg_state;
536
537 shadow_ring_context->bb_per_ctx_ptr.val =
538 (shadow_ring_context->bb_per_ctx_ptr.val &
539 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
540 shadow_ring_context->rcs_indirect_ctx.val =
541 (shadow_ring_context->rcs_indirect_ctx.val &
542 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
543 }
544
545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
546 {
547 struct i915_vma *vma;
548 unsigned char *per_ctx_va =
549 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
550 wa_ctx->indirect_ctx.size;
551
552 if (wa_ctx->indirect_ctx.size == 0)
553 return 0;
554
555 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
556 0, CACHELINE_BYTES, 0);
557 if (IS_ERR(vma))
558 return PTR_ERR(vma);
559
560 /* FIXME: we are not tracking our pinned VMA leaving it
561 * up to the core to fix up the stray pin_count upon
562 * free.
563 */
564
565 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
566
567 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
568 memset(per_ctx_va, 0, CACHELINE_BYTES);
569
570 update_wa_ctx_2_shadow_ctx(wa_ctx);
571 return 0;
572 }
573
574 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
575 {
576 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
577 workload->rb_start;
578 }
579
580 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
581 {
582 struct intel_vgpu_shadow_bb *bb, *pos;
583
584 if (list_empty(&workload->shadow_bb))
585 return;
586
587 bb = list_first_entry(&workload->shadow_bb,
588 struct intel_vgpu_shadow_bb, list);
589
590 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
591 if (bb->obj) {
592 if (bb->accessing)
593 i915_gem_object_finish_access(bb->obj);
594
595 if (bb->va && !IS_ERR(bb->va))
596 i915_gem_object_unpin_map(bb->obj);
597
598 if (bb->vma && !IS_ERR(bb->vma)) {
599 i915_vma_unpin(bb->vma);
600 i915_vma_close(bb->vma);
601 }
602 i915_gem_object_put(bb->obj);
603 }
604 list_del(&bb->list);
605 kfree(bb);
606 }
607 }
608
609 static int prepare_workload(struct intel_vgpu_workload *workload)
610 {
611 struct intel_vgpu *vgpu = workload->vgpu;
612 struct intel_vgpu_submission *s = &vgpu->submission;
613 int ret = 0;
614
615 ret = intel_vgpu_pin_mm(workload->shadow_mm);
616 if (ret) {
617 gvt_vgpu_err("fail to vgpu pin mm\n");
618 return ret;
619 }
620
621 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
622 !workload->shadow_mm->ppgtt_mm.shadowed) {
623 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
624 return -EINVAL;
625 }
626
627 update_shadow_pdps(workload);
628
629 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
630
631 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
632 if (ret) {
633 gvt_vgpu_err("fail to vgpu sync oos pages\n");
634 goto err_unpin_mm;
635 }
636
637 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
638 if (ret) {
639 gvt_vgpu_err("fail to flush post shadow\n");
640 goto err_unpin_mm;
641 }
642
643 ret = copy_workload_to_ring_buffer(workload);
644 if (ret) {
645 gvt_vgpu_err("fail to generate request\n");
646 goto err_unpin_mm;
647 }
648
649 ret = prepare_shadow_batch_buffer(workload);
650 if (ret) {
651 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
652 goto err_unpin_mm;
653 }
654
655 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
656 if (ret) {
657 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
658 goto err_shadow_batch;
659 }
660
661 if (workload->prepare) {
662 ret = workload->prepare(workload);
663 if (ret)
664 goto err_shadow_wa_ctx;
665 }
666
667 return 0;
668 err_shadow_wa_ctx:
669 release_shadow_wa_ctx(&workload->wa_ctx);
670 err_shadow_batch:
671 release_shadow_batch_buffer(workload);
672 err_unpin_mm:
673 intel_vgpu_unpin_mm(workload->shadow_mm);
674 return ret;
675 }
676
677 static int dispatch_workload(struct intel_vgpu_workload *workload)
678 {
679 struct intel_vgpu *vgpu = workload->vgpu;
680 struct i915_request *rq;
681 int ret;
682
683 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
684 workload->engine->name, workload);
685
686 mutex_lock(&vgpu->vgpu_lock);
687
688 ret = intel_gvt_workload_req_alloc(workload);
689 if (ret)
690 goto err_req;
691
692 ret = intel_gvt_scan_and_shadow_workload(workload);
693 if (ret)
694 goto out;
695
696 ret = populate_shadow_context(workload);
697 if (ret) {
698 release_shadow_wa_ctx(&workload->wa_ctx);
699 goto out;
700 }
701
702 ret = prepare_workload(workload);
703 out:
704 if (ret) {
705 /* We might still need to add request with
706 * clean ctx to retire it properly..
707 */
708 rq = fetch_and_zero(&workload->req);
709 i915_request_put(rq);
710 }
711
712 if (!IS_ERR_OR_NULL(workload->req)) {
713 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
714 workload->engine->name, workload->req);
715 i915_request_add(workload->req);
716 workload->dispatched = true;
717 }
718 err_req:
719 if (ret)
720 workload->status = ret;
721 mutex_unlock(&vgpu->vgpu_lock);
722 return ret;
723 }
724
725 static struct intel_vgpu_workload *
726 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
727 {
728 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
729 struct intel_vgpu_workload *workload = NULL;
730
731 mutex_lock(&gvt->sched_lock);
732
733 /*
734 * no current vgpu / will be scheduled out / no workload
735 * bail out
736 */
737 if (!scheduler->current_vgpu) {
738 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
739 goto out;
740 }
741
742 if (scheduler->need_reschedule) {
743 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
744 goto out;
745 }
746
747 if (!scheduler->current_vgpu->active ||
748 list_empty(workload_q_head(scheduler->current_vgpu, engine)))
749 goto out;
750
751 /*
752 * still have current workload, maybe the workload disptacher
753 * fail to submit it for some reason, resubmit it.
754 */
755 if (scheduler->current_workload[engine->id]) {
756 workload = scheduler->current_workload[engine->id];
757 gvt_dbg_sched("ring %s still have current workload %p\n",
758 engine->name, workload);
759 goto out;
760 }
761
762 /*
763 * pick a workload as current workload
764 * once current workload is set, schedule policy routines
765 * will wait the current workload is finished when trying to
766 * schedule out a vgpu.
767 */
768 scheduler->current_workload[engine->id] =
769 list_first_entry(workload_q_head(scheduler->current_vgpu,
770 engine),
771 struct intel_vgpu_workload, list);
772
773 workload = scheduler->current_workload[engine->id];
774
775 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
776
777 atomic_inc(&workload->vgpu->submission.running_workload_num);
778 out:
779 mutex_unlock(&gvt->sched_lock);
780 return workload;
781 }
782
783 static void update_guest_context(struct intel_vgpu_workload *workload)
784 {
785 struct i915_request *rq = workload->req;
786 struct intel_vgpu *vgpu = workload->vgpu;
787 struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
788 struct execlist_ring_context *shadow_ring_context;
789 struct page *page;
790 void *src;
791 unsigned long context_gpa, context_page_num;
792 int i;
793 u32 ring_base;
794 u32 head, tail;
795 u16 wrap_count;
796
797 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
798 workload->ctx_desc.lrca);
799
800 head = workload->rb_head;
801 tail = workload->rb_tail;
802 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
803
804 if (tail < head) {
805 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
806 wrap_count = 0;
807 else
808 wrap_count += 1;
809 }
810
811 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
812
813 ring_base = rq->engine->mmio_base;
814 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
815 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
816
817 context_page_num = rq->engine->context_size;
818 context_page_num = context_page_num >> PAGE_SHIFT;
819
820 if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
821 context_page_num = 19;
822
823 i = 2;
824
825 while (i < context_page_num) {
826 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
827 (u32)((workload->ctx_desc.lrca + i) <<
828 I915_GTT_PAGE_SHIFT));
829 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
830 gvt_vgpu_err("invalid guest context descriptor\n");
831 return;
832 }
833
834 page = i915_gem_object_get_page(ctx_obj, i);
835 src = kmap(page);
836 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
837 I915_GTT_PAGE_SIZE);
838 kunmap(page);
839 i++;
840 }
841
842 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
843 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
844
845 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
846 shadow_ring_context = kmap(page);
847
848 #define COPY_REG(name) \
849 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
850 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
851
852 COPY_REG(ctx_ctrl);
853 COPY_REG(ctx_timestamp);
854
855 #undef COPY_REG
856
857 intel_gvt_hypervisor_write_gpa(vgpu,
858 workload->ring_context_gpa +
859 sizeof(*shadow_ring_context),
860 (void *)shadow_ring_context +
861 sizeof(*shadow_ring_context),
862 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
863
864 kunmap(page);
865 }
866
867 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
868 intel_engine_mask_t engine_mask)
869 {
870 struct intel_vgpu_submission *s = &vgpu->submission;
871 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
872 struct intel_engine_cs *engine;
873 struct intel_vgpu_workload *pos, *n;
874 intel_engine_mask_t tmp;
875
876 /* free the unsubmited workloads in the queues. */
877 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
878 list_for_each_entry_safe(pos, n,
879 &s->workload_q_head[engine->id], list) {
880 list_del_init(&pos->list);
881 intel_vgpu_destroy_workload(pos);
882 }
883 clear_bit(engine->id, s->shadow_ctx_desc_updated);
884 }
885 }
886
887 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
888 {
889 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
890 struct intel_vgpu_workload *workload =
891 scheduler->current_workload[ring_id];
892 struct intel_vgpu *vgpu = workload->vgpu;
893 struct intel_vgpu_submission *s = &vgpu->submission;
894 struct i915_request *rq = workload->req;
895 int event;
896
897 mutex_lock(&vgpu->vgpu_lock);
898 mutex_lock(&gvt->sched_lock);
899
900 /* For the workload w/ request, needs to wait for the context
901 * switch to make sure request is completed.
902 * For the workload w/o request, directly complete the workload.
903 */
904 if (rq) {
905 wait_event(workload->shadow_ctx_status_wq,
906 !atomic_read(&workload->shadow_ctx_active));
907
908 /* If this request caused GPU hang, req->fence.error will
909 * be set to -EIO. Use -EIO to set workload status so
910 * that when this request caused GPU hang, didn't trigger
911 * context switch interrupt to guest.
912 */
913 if (likely(workload->status == -EINPROGRESS)) {
914 if (workload->req->fence.error == -EIO)
915 workload->status = -EIO;
916 else
917 workload->status = 0;
918 }
919
920 if (!workload->status &&
921 !(vgpu->resetting_eng & BIT(ring_id))) {
922 update_guest_context(workload);
923
924 for_each_set_bit(event, workload->pending_events,
925 INTEL_GVT_EVENT_MAX)
926 intel_vgpu_trigger_virtual_event(vgpu, event);
927 }
928
929 i915_request_put(fetch_and_zero(&workload->req));
930 }
931
932 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
933 ring_id, workload, workload->status);
934
935 scheduler->current_workload[ring_id] = NULL;
936
937 list_del_init(&workload->list);
938
939 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
940 /* if workload->status is not successful means HW GPU
941 * has occurred GPU hang or something wrong with i915/GVT,
942 * and GVT won't inject context switch interrupt to guest.
943 * So this error is a vGPU hang actually to the guest.
944 * According to this we should emunlate a vGPU hang. If
945 * there are pending workloads which are already submitted
946 * from guest, we should clean them up like HW GPU does.
947 *
948 * if it is in middle of engine resetting, the pending
949 * workloads won't be submitted to HW GPU and will be
950 * cleaned up during the resetting process later, so doing
951 * the workload clean up here doesn't have any impact.
952 **/
953 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
954 }
955
956 workload->complete(workload);
957
958 atomic_dec(&s->running_workload_num);
959 wake_up(&scheduler->workload_complete_wq);
960
961 if (gvt->scheduler.need_reschedule)
962 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
963
964 mutex_unlock(&gvt->sched_lock);
965 mutex_unlock(&vgpu->vgpu_lock);
966 }
967
968 static int workload_thread(void *arg)
969 {
970 struct intel_engine_cs *engine = arg;
971 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
972 struct intel_gvt *gvt = engine->i915->gvt;
973 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
974 struct intel_vgpu_workload *workload = NULL;
975 struct intel_vgpu *vgpu = NULL;
976 int ret;
977 DEFINE_WAIT_FUNC(wait, woken_wake_function);
978
979 gvt_dbg_core("workload thread for ring %s started\n", engine->name);
980
981 while (!kthread_should_stop()) {
982 intel_wakeref_t wakeref;
983
984 add_wait_queue(&scheduler->waitq[engine->id], &wait);
985 do {
986 workload = pick_next_workload(gvt, engine);
987 if (workload)
988 break;
989 wait_woken(&wait, TASK_INTERRUPTIBLE,
990 MAX_SCHEDULE_TIMEOUT);
991 } while (!kthread_should_stop());
992 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
993
994 if (!workload)
995 break;
996
997 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
998 engine->name, workload,
999 workload->vgpu->id);
1000
1001 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1002
1003 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1004 engine->name, workload);
1005
1006 if (need_force_wake)
1007 intel_uncore_forcewake_get(engine->uncore,
1008 FORCEWAKE_ALL);
1009 /*
1010 * Update the vReg of the vGPU which submitted this
1011 * workload. The vGPU may use these registers for checking
1012 * the context state. The value comes from GPU commands
1013 * in this workload.
1014 */
1015 update_vreg_in_ctx(workload);
1016
1017 ret = dispatch_workload(workload);
1018
1019 if (ret) {
1020 vgpu = workload->vgpu;
1021 gvt_vgpu_err("fail to dispatch workload, skip\n");
1022 goto complete;
1023 }
1024
1025 gvt_dbg_sched("ring %s wait workload %p\n",
1026 engine->name, workload);
1027 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1028
1029 complete:
1030 gvt_dbg_sched("will complete workload %p, status: %d\n",
1031 workload, workload->status);
1032
1033 complete_current_workload(gvt, engine->id);
1034
1035 if (need_force_wake)
1036 intel_uncore_forcewake_put(engine->uncore,
1037 FORCEWAKE_ALL);
1038
1039 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1040 if (ret && (vgpu_is_vm_unhealthy(ret)))
1041 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1042 }
1043 return 0;
1044 }
1045
1046 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1047 {
1048 struct intel_vgpu_submission *s = &vgpu->submission;
1049 struct intel_gvt *gvt = vgpu->gvt;
1050 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1051
1052 if (atomic_read(&s->running_workload_num)) {
1053 gvt_dbg_sched("wait vgpu idle\n");
1054
1055 wait_event(scheduler->workload_complete_wq,
1056 !atomic_read(&s->running_workload_num));
1057 }
1058 }
1059
1060 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1061 {
1062 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1063 struct intel_engine_cs *engine;
1064 enum intel_engine_id i;
1065
1066 gvt_dbg_core("clean workload scheduler\n");
1067
1068 for_each_engine(engine, gvt->gt, i) {
1069 atomic_notifier_chain_unregister(
1070 &engine->context_status_notifier,
1071 &gvt->shadow_ctx_notifier_block[i]);
1072 kthread_stop(scheduler->thread[i]);
1073 }
1074 }
1075
1076 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1077 {
1078 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1079 struct intel_engine_cs *engine;
1080 enum intel_engine_id i;
1081 int ret;
1082
1083 gvt_dbg_core("init workload scheduler\n");
1084
1085 init_waitqueue_head(&scheduler->workload_complete_wq);
1086
1087 for_each_engine(engine, gvt->gt, i) {
1088 init_waitqueue_head(&scheduler->waitq[i]);
1089
1090 scheduler->thread[i] = kthread_run(workload_thread, engine,
1091 "gvt:%s", engine->name);
1092 if (IS_ERR(scheduler->thread[i])) {
1093 gvt_err("fail to create workload thread\n");
1094 ret = PTR_ERR(scheduler->thread[i]);
1095 goto err;
1096 }
1097
1098 gvt->shadow_ctx_notifier_block[i].notifier_call =
1099 shadow_context_status_change;
1100 atomic_notifier_chain_register(&engine->context_status_notifier,
1101 &gvt->shadow_ctx_notifier_block[i]);
1102 }
1103
1104 return 0;
1105
1106 err:
1107 intel_gvt_clean_workload_scheduler(gvt);
1108 return ret;
1109 }
1110
1111 static void
1112 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1113 struct i915_ppgtt *ppgtt)
1114 {
1115 int i;
1116
1117 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1118 px_dma(ppgtt->pd) = s->i915_context_pml4;
1119 } else {
1120 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1121 struct i915_page_directory * const pd =
1122 i915_pd_entry(ppgtt->pd, i);
1123
1124 px_dma(pd) = s->i915_context_pdps[i];
1125 }
1126 }
1127 }
1128
1129 /**
1130 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1131 * @vgpu: a vGPU
1132 *
1133 * This function is called when a vGPU is being destroyed.
1134 *
1135 */
1136 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1137 {
1138 struct intel_vgpu_submission *s = &vgpu->submission;
1139 struct intel_engine_cs *engine;
1140 enum intel_engine_id id;
1141
1142 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1143
1144 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1145 for_each_engine(engine, vgpu->gvt->gt, id)
1146 intel_context_unpin(s->shadow[id]);
1147
1148 kmem_cache_destroy(s->workloads);
1149 }
1150
1151
1152 /**
1153 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1154 * @vgpu: a vGPU
1155 * @engine_mask: engines expected to be reset
1156 *
1157 * This function is called when a vGPU is being destroyed.
1158 *
1159 */
1160 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1161 intel_engine_mask_t engine_mask)
1162 {
1163 struct intel_vgpu_submission *s = &vgpu->submission;
1164
1165 if (!s->active)
1166 return;
1167
1168 intel_vgpu_clean_workloads(vgpu, engine_mask);
1169 s->ops->reset(vgpu, engine_mask);
1170 }
1171
1172 static void
1173 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1174 struct i915_ppgtt *ppgtt)
1175 {
1176 int i;
1177
1178 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1179 s->i915_context_pml4 = px_dma(ppgtt->pd);
1180 } else {
1181 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1182 struct i915_page_directory * const pd =
1183 i915_pd_entry(ppgtt->pd, i);
1184
1185 s->i915_context_pdps[i] = px_dma(pd);
1186 }
1187 }
1188 }
1189
1190 /**
1191 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1192 * @vgpu: a vGPU
1193 *
1194 * This function is called when a vGPU is being created.
1195 *
1196 * Returns:
1197 * Zero on success, negative error code if failed.
1198 *
1199 */
1200 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1201 {
1202 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1203 struct intel_vgpu_submission *s = &vgpu->submission;
1204 struct intel_engine_cs *engine;
1205 struct i915_ppgtt *ppgtt;
1206 enum intel_engine_id i;
1207 int ret;
1208
1209 ppgtt = i915_ppgtt_create(&i915->gt);
1210 if (IS_ERR(ppgtt))
1211 return PTR_ERR(ppgtt);
1212
1213 i915_context_ppgtt_root_save(s, ppgtt);
1214
1215 for_each_engine(engine, vgpu->gvt->gt, i) {
1216 struct intel_context *ce;
1217
1218 INIT_LIST_HEAD(&s->workload_q_head[i]);
1219 s->shadow[i] = ERR_PTR(-EINVAL);
1220
1221 ce = intel_context_create(engine);
1222 if (IS_ERR(ce)) {
1223 ret = PTR_ERR(ce);
1224 goto out_shadow_ctx;
1225 }
1226
1227 i915_vm_put(ce->vm);
1228 ce->vm = i915_vm_get(&ppgtt->vm);
1229 intel_context_set_single_submission(ce);
1230
1231 /* Max ring buffer size */
1232 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1233 const unsigned int ring_size = 512 * SZ_4K;
1234
1235 ce->ring = __intel_context_ring_size(ring_size);
1236 }
1237
1238 ret = intel_context_pin(ce);
1239 intel_context_put(ce);
1240 if (ret)
1241 goto out_shadow_ctx;
1242
1243 s->shadow[i] = ce;
1244 }
1245
1246 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1247
1248 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1249 sizeof(struct intel_vgpu_workload), 0,
1250 SLAB_HWCACHE_ALIGN,
1251 offsetof(struct intel_vgpu_workload, rb_tail),
1252 sizeof_field(struct intel_vgpu_workload, rb_tail),
1253 NULL);
1254
1255 if (!s->workloads) {
1256 ret = -ENOMEM;
1257 goto out_shadow_ctx;
1258 }
1259
1260 atomic_set(&s->running_workload_num, 0);
1261 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1262
1263 i915_vm_put(&ppgtt->vm);
1264 return 0;
1265
1266 out_shadow_ctx:
1267 i915_context_ppgtt_root_restore(s, ppgtt);
1268 for_each_engine(engine, vgpu->gvt->gt, i) {
1269 if (IS_ERR(s->shadow[i]))
1270 break;
1271
1272 intel_context_unpin(s->shadow[i]);
1273 intel_context_put(s->shadow[i]);
1274 }
1275 i915_vm_put(&ppgtt->vm);
1276 return ret;
1277 }
1278
1279 /**
1280 * intel_vgpu_select_submission_ops - select virtual submission interface
1281 * @vgpu: a vGPU
1282 * @engine_mask: either ALL_ENGINES or target engine mask
1283 * @interface: expected vGPU virtual submission interface
1284 *
1285 * This function is called when guest configures submission interface.
1286 *
1287 * Returns:
1288 * Zero on success, negative error code if failed.
1289 *
1290 */
1291 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1292 intel_engine_mask_t engine_mask,
1293 unsigned int interface)
1294 {
1295 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1296 struct intel_vgpu_submission *s = &vgpu->submission;
1297 const struct intel_vgpu_submission_ops *ops[] = {
1298 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1299 &intel_vgpu_execlist_submission_ops,
1300 };
1301 int ret;
1302
1303 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1304 return -EINVAL;
1305
1306 if (drm_WARN_ON(&i915->drm,
1307 interface == 0 && engine_mask != ALL_ENGINES))
1308 return -EINVAL;
1309
1310 if (s->active)
1311 s->ops->clean(vgpu, engine_mask);
1312
1313 if (interface == 0) {
1314 s->ops = NULL;
1315 s->virtual_submission_interface = 0;
1316 s->active = false;
1317 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1318 return 0;
1319 }
1320
1321 ret = ops[interface]->init(vgpu, engine_mask);
1322 if (ret)
1323 return ret;
1324
1325 s->ops = ops[interface];
1326 s->virtual_submission_interface = interface;
1327 s->active = true;
1328
1329 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1330 vgpu->id, s->ops->name);
1331
1332 return 0;
1333 }
1334
1335 /**
1336 * intel_vgpu_destroy_workload - destroy a vGPU workload
1337 * @workload: workload to destroy
1338 *
1339 * This function is called when destroy a vGPU workload.
1340 *
1341 */
1342 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1343 {
1344 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1345
1346 release_shadow_batch_buffer(workload);
1347 release_shadow_wa_ctx(&workload->wa_ctx);
1348
1349 if (workload->shadow_mm)
1350 intel_vgpu_mm_put(workload->shadow_mm);
1351
1352 kmem_cache_free(s->workloads, workload);
1353 }
1354
1355 static struct intel_vgpu_workload *
1356 alloc_workload(struct intel_vgpu *vgpu)
1357 {
1358 struct intel_vgpu_submission *s = &vgpu->submission;
1359 struct intel_vgpu_workload *workload;
1360
1361 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1362 if (!workload)
1363 return ERR_PTR(-ENOMEM);
1364
1365 INIT_LIST_HEAD(&workload->list);
1366 INIT_LIST_HEAD(&workload->shadow_bb);
1367
1368 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1369 atomic_set(&workload->shadow_ctx_active, 0);
1370
1371 workload->status = -EINPROGRESS;
1372 workload->vgpu = vgpu;
1373
1374 return workload;
1375 }
1376
1377 #define RING_CTX_OFF(x) \
1378 offsetof(struct execlist_ring_context, x)
1379
1380 static void read_guest_pdps(struct intel_vgpu *vgpu,
1381 u64 ring_context_gpa, u32 pdp[8])
1382 {
1383 u64 gpa;
1384 int i;
1385
1386 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1387
1388 for (i = 0; i < 8; i++)
1389 intel_gvt_hypervisor_read_gpa(vgpu,
1390 gpa + i * 8, &pdp[7 - i], 4);
1391 }
1392
1393 static int prepare_mm(struct intel_vgpu_workload *workload)
1394 {
1395 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1396 struct intel_vgpu_mm *mm;
1397 struct intel_vgpu *vgpu = workload->vgpu;
1398 enum intel_gvt_gtt_type root_entry_type;
1399 u64 pdps[GVT_RING_CTX_NR_PDPS];
1400
1401 switch (desc->addressing_mode) {
1402 case 1: /* legacy 32-bit */
1403 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1404 break;
1405 case 3: /* legacy 64-bit */
1406 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1407 break;
1408 default:
1409 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1410 return -EINVAL;
1411 }
1412
1413 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1414
1415 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1416 if (IS_ERR(mm))
1417 return PTR_ERR(mm);
1418
1419 workload->shadow_mm = mm;
1420 return 0;
1421 }
1422
1423 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1424 ((a)->lrca == (b)->lrca))
1425
1426 /**
1427 * intel_vgpu_create_workload - create a vGPU workload
1428 * @vgpu: a vGPU
1429 * @engine: the engine
1430 * @desc: a guest context descriptor
1431 *
1432 * This function is called when creating a vGPU workload.
1433 *
1434 * Returns:
1435 * struct intel_vgpu_workload * on success, negative error code in
1436 * pointer if failed.
1437 *
1438 */
1439 struct intel_vgpu_workload *
1440 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1441 const struct intel_engine_cs *engine,
1442 struct execlist_ctx_descriptor_format *desc)
1443 {
1444 struct intel_vgpu_submission *s = &vgpu->submission;
1445 struct list_head *q = workload_q_head(vgpu, engine);
1446 struct intel_vgpu_workload *last_workload = NULL;
1447 struct intel_vgpu_workload *workload = NULL;
1448 u64 ring_context_gpa;
1449 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1450 u32 guest_head;
1451 int ret;
1452
1453 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1454 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1455 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1456 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1457 return ERR_PTR(-EINVAL);
1458 }
1459
1460 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1461 RING_CTX_OFF(ring_header.val), &head, 4);
1462
1463 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1464 RING_CTX_OFF(ring_tail.val), &tail, 4);
1465
1466 guest_head = head;
1467
1468 head &= RB_HEAD_OFF_MASK;
1469 tail &= RB_TAIL_OFF_MASK;
1470
1471 list_for_each_entry_reverse(last_workload, q, list) {
1472
1473 if (same_context(&last_workload->ctx_desc, desc)) {
1474 gvt_dbg_el("ring %s cur workload == last\n",
1475 engine->name);
1476 gvt_dbg_el("ctx head %x real head %lx\n", head,
1477 last_workload->rb_tail);
1478 /*
1479 * cannot use guest context head pointer here,
1480 * as it might not be updated at this time
1481 */
1482 head = last_workload->rb_tail;
1483 break;
1484 }
1485 }
1486
1487 gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1488
1489 /* record some ring buffer register values for scan and shadow */
1490 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1491 RING_CTX_OFF(rb_start.val), &start, 4);
1492 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1493 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1494 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1495 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1496
1497 if (!intel_gvt_ggtt_validate_range(vgpu, start,
1498 _RING_CTL_BUF_SIZE(ctl))) {
1499 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1500 return ERR_PTR(-EINVAL);
1501 }
1502
1503 workload = alloc_workload(vgpu);
1504 if (IS_ERR(workload))
1505 return workload;
1506
1507 workload->engine = engine;
1508 workload->ctx_desc = *desc;
1509 workload->ring_context_gpa = ring_context_gpa;
1510 workload->rb_head = head;
1511 workload->guest_rb_head = guest_head;
1512 workload->rb_tail = tail;
1513 workload->rb_start = start;
1514 workload->rb_ctl = ctl;
1515
1516 if (engine->id == RCS0) {
1517 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1518 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1519 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1520 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1521
1522 workload->wa_ctx.indirect_ctx.guest_gma =
1523 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1524 workload->wa_ctx.indirect_ctx.size =
1525 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1526 CACHELINE_BYTES;
1527
1528 if (workload->wa_ctx.indirect_ctx.size != 0) {
1529 if (!intel_gvt_ggtt_validate_range(vgpu,
1530 workload->wa_ctx.indirect_ctx.guest_gma,
1531 workload->wa_ctx.indirect_ctx.size)) {
1532 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1533 workload->wa_ctx.indirect_ctx.guest_gma);
1534 kmem_cache_free(s->workloads, workload);
1535 return ERR_PTR(-EINVAL);
1536 }
1537 }
1538
1539 workload->wa_ctx.per_ctx.guest_gma =
1540 per_ctx & PER_CTX_ADDR_MASK;
1541 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1542 if (workload->wa_ctx.per_ctx.valid) {
1543 if (!intel_gvt_ggtt_validate_range(vgpu,
1544 workload->wa_ctx.per_ctx.guest_gma,
1545 CACHELINE_BYTES)) {
1546 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1547 workload->wa_ctx.per_ctx.guest_gma);
1548 kmem_cache_free(s->workloads, workload);
1549 return ERR_PTR(-EINVAL);
1550 }
1551 }
1552 }
1553
1554 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1555 workload, engine->name, head, tail, start, ctl);
1556
1557 ret = prepare_mm(workload);
1558 if (ret) {
1559 kmem_cache_free(s->workloads, workload);
1560 return ERR_PTR(ret);
1561 }
1562
1563 /* Only scan and shadow the first workload in the queue
1564 * as there is only one pre-allocated buf-obj for shadow.
1565 */
1566 if (list_empty(q)) {
1567 intel_wakeref_t wakeref;
1568
1569 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1570 ret = intel_gvt_scan_and_shadow_workload(workload);
1571 }
1572
1573 if (ret) {
1574 if (vgpu_is_vm_unhealthy(ret))
1575 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1576 intel_vgpu_destroy_workload(workload);
1577 return ERR_PTR(ret);
1578 }
1579
1580 return workload;
1581 }
1582
1583 /**
1584 * intel_vgpu_queue_workload - Qeue a vGPU workload
1585 * @workload: the workload to queue in
1586 */
1587 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1588 {
1589 list_add_tail(&workload->list,
1590 workload_q_head(workload->vgpu, workload->engine));
1591 intel_gvt_kick_schedule(workload->vgpu->gvt);
1592 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1593 }