2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * Zhi Wang <zhi.a.wang@intel.com>
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
36 #include <linux/kthread.h>
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
43 #include "i915_gem_gtt.h"
46 #define RING_CTX_OFF(x) \
47 offsetof(struct execlist_ring_context, x)
49 static void set_context_pdp_root_pointer(
50 struct execlist_ring_context
*ring_context
,
55 for (i
= 0; i
< 8; i
++)
56 ring_context
->pdps
[i
].val
= pdp
[7 - i
];
59 static void update_shadow_pdps(struct intel_vgpu_workload
*workload
)
61 struct drm_i915_gem_object
*ctx_obj
=
62 workload
->req
->context
->state
->obj
;
63 struct execlist_ring_context
*shadow_ring_context
;
66 if (WARN_ON(!workload
->shadow_mm
))
69 if (WARN_ON(!atomic_read(&workload
->shadow_mm
->pincount
)))
72 page
= i915_gem_object_get_page(ctx_obj
, LRC_STATE_PN
);
73 shadow_ring_context
= kmap(page
);
74 set_context_pdp_root_pointer(shadow_ring_context
,
75 (void *)workload
->shadow_mm
->ppgtt_mm
.shadow_pdps
);
80 * when populating shadow ctx from guest, we should not overrride oa related
81 * registers, so that they will not be overlapped by guest oa configs. Thus
82 * made it possible to capture oa data from host for both host and guests.
84 static void sr_oa_regs(struct intel_vgpu_workload
*workload
,
85 u32
*reg_state
, bool save
)
87 struct drm_i915_private
*dev_priv
= workload
->vgpu
->gvt
->gt
->i915
;
88 u32 ctx_oactxctrl
= dev_priv
->perf
.ctx_oactxctrl_offset
;
89 u32 ctx_flexeu0
= dev_priv
->perf
.ctx_flexeu0_offset
;
92 i915_mmio_reg_offset(EU_PERF_CNTL0
),
93 i915_mmio_reg_offset(EU_PERF_CNTL1
),
94 i915_mmio_reg_offset(EU_PERF_CNTL2
),
95 i915_mmio_reg_offset(EU_PERF_CNTL3
),
96 i915_mmio_reg_offset(EU_PERF_CNTL4
),
97 i915_mmio_reg_offset(EU_PERF_CNTL5
),
98 i915_mmio_reg_offset(EU_PERF_CNTL6
),
101 if (workload
->engine
->id
!= RCS0
)
105 workload
->oactxctrl
= reg_state
[ctx_oactxctrl
+ 1];
107 for (i
= 0; i
< ARRAY_SIZE(workload
->flex_mmio
); i
++) {
108 u32 state_offset
= ctx_flexeu0
+ i
* 2;
110 workload
->flex_mmio
[i
] = reg_state
[state_offset
+ 1];
113 reg_state
[ctx_oactxctrl
] =
114 i915_mmio_reg_offset(GEN8_OACTXCONTROL
);
115 reg_state
[ctx_oactxctrl
+ 1] = workload
->oactxctrl
;
117 for (i
= 0; i
< ARRAY_SIZE(workload
->flex_mmio
); i
++) {
118 u32 state_offset
= ctx_flexeu0
+ i
* 2;
119 u32 mmio
= flex_mmio
[i
];
121 reg_state
[state_offset
] = mmio
;
122 reg_state
[state_offset
+ 1] = workload
->flex_mmio
[i
];
127 static int populate_shadow_context(struct intel_vgpu_workload
*workload
)
129 struct intel_vgpu
*vgpu
= workload
->vgpu
;
130 struct intel_gvt
*gvt
= vgpu
->gvt
;
131 struct drm_i915_gem_object
*ctx_obj
=
132 workload
->req
->context
->state
->obj
;
133 struct execlist_ring_context
*shadow_ring_context
;
136 unsigned long context_gpa
, context_page_num
;
139 page
= i915_gem_object_get_page(ctx_obj
, LRC_STATE_PN
);
140 shadow_ring_context
= kmap(page
);
142 sr_oa_regs(workload
, (u32
*)shadow_ring_context
, true);
143 #define COPY_REG(name) \
144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 + RING_CTX_OFF(name.val),\
149 &shadow_ring_context->name.val, 4);\
150 shadow_ring_context->name.val |= 0xffff << 16;\
153 COPY_REG_MASKED(ctx_ctrl
);
154 COPY_REG(ctx_timestamp
);
156 if (workload
->engine
->id
== RCS0
) {
157 COPY_REG(bb_per_ctx_ptr
);
158 COPY_REG(rcs_indirect_ctx
);
159 COPY_REG(rcs_indirect_ctx_offset
);
162 #undef COPY_REG_MASKED
164 intel_gvt_hypervisor_read_gpa(vgpu
,
165 workload
->ring_context_gpa
+
166 sizeof(*shadow_ring_context
),
167 (void *)shadow_ring_context
+
168 sizeof(*shadow_ring_context
),
169 I915_GTT_PAGE_SIZE
- sizeof(*shadow_ring_context
));
171 sr_oa_regs(workload
, (u32
*)shadow_ring_context
, false);
174 if (IS_RESTORE_INHIBIT(shadow_ring_context
->ctx_ctrl
.val
))
177 gvt_dbg_sched("ring %s workload lrca %x",
178 workload
->engine
->name
,
179 workload
->ctx_desc
.lrca
);
181 context_page_num
= workload
->engine
->context_size
;
182 context_page_num
= context_page_num
>> PAGE_SHIFT
;
184 if (IS_BROADWELL(gvt
->gt
->i915
) && workload
->engine
->id
== RCS0
)
185 context_page_num
= 19;
188 while (i
< context_page_num
) {
189 context_gpa
= intel_vgpu_gma_to_gpa(vgpu
->gtt
.ggtt_mm
,
190 (u32
)((workload
->ctx_desc
.lrca
+ i
) <<
191 I915_GTT_PAGE_SHIFT
));
192 if (context_gpa
== INTEL_GVT_INVALID_ADDR
) {
193 gvt_vgpu_err("Invalid guest context descriptor\n");
197 page
= i915_gem_object_get_page(ctx_obj
, i
);
199 intel_gvt_hypervisor_read_gpa(vgpu
, context_gpa
, dst
,
207 static inline bool is_gvt_request(struct i915_request
*rq
)
209 return intel_context_force_single_submission(rq
->context
);
212 static void save_ring_hw_state(struct intel_vgpu
*vgpu
,
213 const struct intel_engine_cs
*engine
)
215 struct intel_uncore
*uncore
= engine
->uncore
;
218 reg
= RING_INSTDONE(engine
->mmio_base
);
219 vgpu_vreg(vgpu
, i915_mmio_reg_offset(reg
)) =
220 intel_uncore_read(uncore
, reg
);
222 reg
= RING_ACTHD(engine
->mmio_base
);
223 vgpu_vreg(vgpu
, i915_mmio_reg_offset(reg
)) =
224 intel_uncore_read(uncore
, reg
);
226 reg
= RING_ACTHD_UDW(engine
->mmio_base
);
227 vgpu_vreg(vgpu
, i915_mmio_reg_offset(reg
)) =
228 intel_uncore_read(uncore
, reg
);
231 static int shadow_context_status_change(struct notifier_block
*nb
,
232 unsigned long action
, void *data
)
234 struct i915_request
*rq
= data
;
235 struct intel_gvt
*gvt
= container_of(nb
, struct intel_gvt
,
236 shadow_ctx_notifier_block
[rq
->engine
->id
]);
237 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
238 enum intel_engine_id ring_id
= rq
->engine
->id
;
239 struct intel_vgpu_workload
*workload
;
242 if (!is_gvt_request(rq
)) {
243 spin_lock_irqsave(&scheduler
->mmio_context_lock
, flags
);
244 if (action
== INTEL_CONTEXT_SCHEDULE_IN
&&
245 scheduler
->engine_owner
[ring_id
]) {
246 /* Switch ring from vGPU to host. */
247 intel_gvt_switch_mmio(scheduler
->engine_owner
[ring_id
],
249 scheduler
->engine_owner
[ring_id
] = NULL
;
251 spin_unlock_irqrestore(&scheduler
->mmio_context_lock
, flags
);
256 workload
= scheduler
->current_workload
[ring_id
];
257 if (unlikely(!workload
))
261 case INTEL_CONTEXT_SCHEDULE_IN
:
262 spin_lock_irqsave(&scheduler
->mmio_context_lock
, flags
);
263 if (workload
->vgpu
!= scheduler
->engine_owner
[ring_id
]) {
264 /* Switch ring from host to vGPU or vGPU to vGPU. */
265 intel_gvt_switch_mmio(scheduler
->engine_owner
[ring_id
],
266 workload
->vgpu
, rq
->engine
);
267 scheduler
->engine_owner
[ring_id
] = workload
->vgpu
;
269 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
270 ring_id
, workload
->vgpu
->id
);
271 spin_unlock_irqrestore(&scheduler
->mmio_context_lock
, flags
);
272 atomic_set(&workload
->shadow_ctx_active
, 1);
274 case INTEL_CONTEXT_SCHEDULE_OUT
:
275 save_ring_hw_state(workload
->vgpu
, rq
->engine
);
276 atomic_set(&workload
->shadow_ctx_active
, 0);
278 case INTEL_CONTEXT_SCHEDULE_PREEMPTED
:
279 save_ring_hw_state(workload
->vgpu
, rq
->engine
);
285 wake_up(&workload
->shadow_ctx_status_wq
);
290 shadow_context_descriptor_update(struct intel_context
*ce
,
291 struct intel_vgpu_workload
*workload
)
293 u64 desc
= ce
->lrc_desc
;
296 * Update bits 0-11 of the context descriptor which includes flags
297 * like GEN8_CTX_* cached in desc_template
299 desc
&= ~(0x3ull
<< GEN8_CTX_ADDRESSING_MODE_SHIFT
);
300 desc
|= (u64
)workload
->ctx_desc
.addressing_mode
<<
301 GEN8_CTX_ADDRESSING_MODE_SHIFT
;
306 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload
*workload
)
308 struct intel_vgpu
*vgpu
= workload
->vgpu
;
309 struct i915_request
*req
= workload
->req
;
310 void *shadow_ring_buffer_va
;
314 if (IS_GEN(req
->i915
, 9) && is_inhibit_context(req
->context
))
315 intel_vgpu_restore_inhibit_context(vgpu
, req
);
318 * To track whether a request has started on HW, we can emit a
319 * breadcrumb at the beginning of the request and check its
320 * timeline's HWSP to see if the breadcrumb has advanced past the
321 * start of this request. Actually, the request must have the
322 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
323 * scheduler might get a wrong state of it during reset. Since the
324 * requests from gvt always set the has_init_breadcrumb flag, here
325 * need to do the emit_init_breadcrumb for all the requests.
327 if (req
->engine
->emit_init_breadcrumb
) {
328 err
= req
->engine
->emit_init_breadcrumb(req
);
330 gvt_vgpu_err("fail to emit init breadcrumb\n");
335 /* allocate shadow ring buffer */
336 cs
= intel_ring_begin(workload
->req
, workload
->rb_len
/ sizeof(u32
));
338 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
343 shadow_ring_buffer_va
= workload
->shadow_ring_buffer_va
;
345 /* get shadow ring buffer va */
346 workload
->shadow_ring_buffer_va
= cs
;
348 memcpy(cs
, shadow_ring_buffer_va
,
351 cs
+= workload
->rb_len
/ sizeof(u32
);
352 intel_ring_advance(workload
->req
, cs
);
357 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
359 if (!wa_ctx
->indirect_ctx
.obj
)
362 i915_gem_object_unpin_map(wa_ctx
->indirect_ctx
.obj
);
363 i915_gem_object_put(wa_ctx
->indirect_ctx
.obj
);
365 wa_ctx
->indirect_ctx
.obj
= NULL
;
366 wa_ctx
->indirect_ctx
.shadow_va
= NULL
;
369 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload
*workload
,
370 struct intel_context
*ce
)
372 struct intel_vgpu_mm
*mm
= workload
->shadow_mm
;
373 struct i915_ppgtt
*ppgtt
= i915_vm_to_ppgtt(ce
->vm
);
376 if (mm
->ppgtt_mm
.root_entry_type
== GTT_TYPE_PPGTT_ROOT_L4_ENTRY
) {
377 px_dma(ppgtt
->pd
) = mm
->ppgtt_mm
.shadow_pdps
[0];
379 for (i
= 0; i
< GVT_RING_CTX_NR_PDPS
; i
++) {
380 struct i915_page_directory
* const pd
=
381 i915_pd_entry(ppgtt
->pd
, i
);
383 px_dma(pd
) = mm
->ppgtt_mm
.shadow_pdps
[i
];
389 intel_gvt_workload_req_alloc(struct intel_vgpu_workload
*workload
)
391 struct intel_vgpu
*vgpu
= workload
->vgpu
;
392 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
393 struct i915_request
*rq
;
398 rq
= i915_request_create(s
->shadow
[workload
->engine
->id
]);
400 gvt_vgpu_err("fail to allocate gem request\n");
404 workload
->req
= i915_request_get(rq
);
409 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
410 * shadow it as well, include ringbuffer,wa_ctx and ctx.
411 * @workload: an abstract entity for each execlist submission.
413 * This function is called before the workload submitting to i915, to make
414 * sure the content of the workload is valid.
416 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload
*workload
)
418 struct intel_vgpu
*vgpu
= workload
->vgpu
;
419 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
422 lockdep_assert_held(&vgpu
->vgpu_lock
);
424 if (workload
->shadow
)
427 if (!test_and_set_bit(workload
->engine
->id
, s
->shadow_ctx_desc_updated
))
428 shadow_context_descriptor_update(s
->shadow
[workload
->engine
->id
],
431 ret
= intel_gvt_scan_and_shadow_ringbuffer(workload
);
435 if (workload
->engine
->id
== RCS0
&&
436 workload
->wa_ctx
.indirect_ctx
.size
) {
437 ret
= intel_gvt_scan_and_shadow_wa_ctx(&workload
->wa_ctx
);
442 workload
->shadow
= true;
446 release_shadow_wa_ctx(&workload
->wa_ctx
);
450 static void release_shadow_batch_buffer(struct intel_vgpu_workload
*workload
);
452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload
*workload
)
454 struct intel_gvt
*gvt
= workload
->vgpu
->gvt
;
455 const int gmadr_bytes
= gvt
->device_info
.gmadr_bytes_in_cmd
;
456 struct intel_vgpu_shadow_bb
*bb
;
459 list_for_each_entry(bb
, &workload
->shadow_bb
, list
) {
460 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
461 * is only updated into ring_scan_buffer, not real ring address
462 * allocated in later copy_workload_to_ring_buffer. pls be noted
463 * shadow_ring_buffer_va is now pointed to real ring buffer va
464 * in copy_workload_to_ring_buffer.
468 bb
->bb_start_cmd_va
= workload
->shadow_ring_buffer_va
472 /* for non-priv bb, scan&shadow is only for
473 * debugging purpose, so the content of shadow bb
474 * is the same as original bb. Therefore,
475 * here, rather than switch to shadow bb's gma
476 * address, we directly use original batch buffer's
477 * gma address, and send original bb to hardware
480 if (bb
->clflush
& CLFLUSH_AFTER
) {
481 drm_clflush_virt_range(bb
->va
,
483 bb
->clflush
&= ~CLFLUSH_AFTER
;
485 i915_gem_object_finish_access(bb
->obj
);
486 bb
->accessing
= false;
489 bb
->vma
= i915_gem_object_ggtt_pin(bb
->obj
,
491 if (IS_ERR(bb
->vma
)) {
492 ret
= PTR_ERR(bb
->vma
);
496 /* relocate shadow batch buffer */
497 bb
->bb_start_cmd_va
[1] = i915_ggtt_offset(bb
->vma
);
498 if (gmadr_bytes
== 8)
499 bb
->bb_start_cmd_va
[2] = 0;
501 /* No one is going to touch shadow bb from now on. */
502 if (bb
->clflush
& CLFLUSH_AFTER
) {
503 drm_clflush_virt_range(bb
->va
,
505 bb
->clflush
&= ~CLFLUSH_AFTER
;
508 ret
= i915_gem_object_set_to_gtt_domain(bb
->obj
,
513 ret
= i915_vma_move_to_active(bb
->vma
,
519 i915_gem_object_finish_access(bb
->obj
);
520 bb
->accessing
= false;
525 release_shadow_batch_buffer(workload
);
529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
531 struct intel_vgpu_workload
*workload
=
532 container_of(wa_ctx
, struct intel_vgpu_workload
, wa_ctx
);
533 struct i915_request
*rq
= workload
->req
;
534 struct execlist_ring_context
*shadow_ring_context
=
535 (struct execlist_ring_context
*)rq
->context
->lrc_reg_state
;
537 shadow_ring_context
->bb_per_ctx_ptr
.val
=
538 (shadow_ring_context
->bb_per_ctx_ptr
.val
&
539 (~PER_CTX_ADDR_MASK
)) | wa_ctx
->per_ctx
.shadow_gma
;
540 shadow_ring_context
->rcs_indirect_ctx
.val
=
541 (shadow_ring_context
->rcs_indirect_ctx
.val
&
542 (~INDIRECT_CTX_ADDR_MASK
)) | wa_ctx
->indirect_ctx
.shadow_gma
;
545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
547 struct i915_vma
*vma
;
548 unsigned char *per_ctx_va
=
549 (unsigned char *)wa_ctx
->indirect_ctx
.shadow_va
+
550 wa_ctx
->indirect_ctx
.size
;
552 if (wa_ctx
->indirect_ctx
.size
== 0)
555 vma
= i915_gem_object_ggtt_pin(wa_ctx
->indirect_ctx
.obj
, NULL
,
556 0, CACHELINE_BYTES
, 0);
560 /* FIXME: we are not tracking our pinned VMA leaving it
561 * up to the core to fix up the stray pin_count upon
565 wa_ctx
->indirect_ctx
.shadow_gma
= i915_ggtt_offset(vma
);
567 wa_ctx
->per_ctx
.shadow_gma
= *((unsigned int *)per_ctx_va
+ 1);
568 memset(per_ctx_va
, 0, CACHELINE_BYTES
);
570 update_wa_ctx_2_shadow_ctx(wa_ctx
);
574 static void update_vreg_in_ctx(struct intel_vgpu_workload
*workload
)
576 vgpu_vreg_t(workload
->vgpu
, RING_START(workload
->engine
->mmio_base
)) =
580 static void release_shadow_batch_buffer(struct intel_vgpu_workload
*workload
)
582 struct intel_vgpu_shadow_bb
*bb
, *pos
;
584 if (list_empty(&workload
->shadow_bb
))
587 bb
= list_first_entry(&workload
->shadow_bb
,
588 struct intel_vgpu_shadow_bb
, list
);
590 list_for_each_entry_safe(bb
, pos
, &workload
->shadow_bb
, list
) {
593 i915_gem_object_finish_access(bb
->obj
);
595 if (bb
->va
&& !IS_ERR(bb
->va
))
596 i915_gem_object_unpin_map(bb
->obj
);
598 if (bb
->vma
&& !IS_ERR(bb
->vma
)) {
599 i915_vma_unpin(bb
->vma
);
600 i915_vma_close(bb
->vma
);
602 i915_gem_object_put(bb
->obj
);
609 static int prepare_workload(struct intel_vgpu_workload
*workload
)
611 struct intel_vgpu
*vgpu
= workload
->vgpu
;
612 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
615 ret
= intel_vgpu_pin_mm(workload
->shadow_mm
);
617 gvt_vgpu_err("fail to vgpu pin mm\n");
621 if (workload
->shadow_mm
->type
!= INTEL_GVT_MM_PPGTT
||
622 !workload
->shadow_mm
->ppgtt_mm
.shadowed
) {
623 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
627 update_shadow_pdps(workload
);
629 set_context_ppgtt_from_shadow(workload
, s
->shadow
[workload
->engine
->id
]);
631 ret
= intel_vgpu_sync_oos_pages(workload
->vgpu
);
633 gvt_vgpu_err("fail to vgpu sync oos pages\n");
637 ret
= intel_vgpu_flush_post_shadow(workload
->vgpu
);
639 gvt_vgpu_err("fail to flush post shadow\n");
643 ret
= copy_workload_to_ring_buffer(workload
);
645 gvt_vgpu_err("fail to generate request\n");
649 ret
= prepare_shadow_batch_buffer(workload
);
651 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
655 ret
= prepare_shadow_wa_ctx(&workload
->wa_ctx
);
657 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
658 goto err_shadow_batch
;
661 if (workload
->prepare
) {
662 ret
= workload
->prepare(workload
);
664 goto err_shadow_wa_ctx
;
669 release_shadow_wa_ctx(&workload
->wa_ctx
);
671 release_shadow_batch_buffer(workload
);
673 intel_vgpu_unpin_mm(workload
->shadow_mm
);
677 static int dispatch_workload(struct intel_vgpu_workload
*workload
)
679 struct intel_vgpu
*vgpu
= workload
->vgpu
;
680 struct i915_request
*rq
;
683 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
684 workload
->engine
->name
, workload
);
686 mutex_lock(&vgpu
->vgpu_lock
);
688 ret
= intel_gvt_workload_req_alloc(workload
);
692 ret
= intel_gvt_scan_and_shadow_workload(workload
);
696 ret
= populate_shadow_context(workload
);
698 release_shadow_wa_ctx(&workload
->wa_ctx
);
702 ret
= prepare_workload(workload
);
705 /* We might still need to add request with
706 * clean ctx to retire it properly..
708 rq
= fetch_and_zero(&workload
->req
);
709 i915_request_put(rq
);
712 if (!IS_ERR_OR_NULL(workload
->req
)) {
713 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
714 workload
->engine
->name
, workload
->req
);
715 i915_request_add(workload
->req
);
716 workload
->dispatched
= true;
720 workload
->status
= ret
;
721 mutex_unlock(&vgpu
->vgpu_lock
);
725 static struct intel_vgpu_workload
*
726 pick_next_workload(struct intel_gvt
*gvt
, struct intel_engine_cs
*engine
)
728 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
729 struct intel_vgpu_workload
*workload
= NULL
;
731 mutex_lock(&gvt
->sched_lock
);
734 * no current vgpu / will be scheduled out / no workload
737 if (!scheduler
->current_vgpu
) {
738 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine
->name
);
742 if (scheduler
->need_reschedule
) {
743 gvt_dbg_sched("ring %s stop - will reschedule\n", engine
->name
);
747 if (!scheduler
->current_vgpu
->active
||
748 list_empty(workload_q_head(scheduler
->current_vgpu
, engine
)))
752 * still have current workload, maybe the workload disptacher
753 * fail to submit it for some reason, resubmit it.
755 if (scheduler
->current_workload
[engine
->id
]) {
756 workload
= scheduler
->current_workload
[engine
->id
];
757 gvt_dbg_sched("ring %s still have current workload %p\n",
758 engine
->name
, workload
);
763 * pick a workload as current workload
764 * once current workload is set, schedule policy routines
765 * will wait the current workload is finished when trying to
766 * schedule out a vgpu.
768 scheduler
->current_workload
[engine
->id
] =
769 list_first_entry(workload_q_head(scheduler
->current_vgpu
,
771 struct intel_vgpu_workload
, list
);
773 workload
= scheduler
->current_workload
[engine
->id
];
775 gvt_dbg_sched("ring %s pick new workload %p\n", engine
->name
, workload
);
777 atomic_inc(&workload
->vgpu
->submission
.running_workload_num
);
779 mutex_unlock(&gvt
->sched_lock
);
783 static void update_guest_context(struct intel_vgpu_workload
*workload
)
785 struct i915_request
*rq
= workload
->req
;
786 struct intel_vgpu
*vgpu
= workload
->vgpu
;
787 struct drm_i915_gem_object
*ctx_obj
= rq
->context
->state
->obj
;
788 struct execlist_ring_context
*shadow_ring_context
;
791 unsigned long context_gpa
, context_page_num
;
797 gvt_dbg_sched("ring id %d workload lrca %x\n", rq
->engine
->id
,
798 workload
->ctx_desc
.lrca
);
800 head
= workload
->rb_head
;
801 tail
= workload
->rb_tail
;
802 wrap_count
= workload
->guest_rb_head
>> RB_HEAD_WRAP_CNT_OFF
;
805 if (wrap_count
== RB_HEAD_WRAP_CNT_MAX
)
811 head
= (wrap_count
<< RB_HEAD_WRAP_CNT_OFF
) | tail
;
813 ring_base
= rq
->engine
->mmio_base
;
814 vgpu_vreg_t(vgpu
, RING_TAIL(ring_base
)) = tail
;
815 vgpu_vreg_t(vgpu
, RING_HEAD(ring_base
)) = head
;
817 context_page_num
= rq
->engine
->context_size
;
818 context_page_num
= context_page_num
>> PAGE_SHIFT
;
820 if (IS_BROADWELL(rq
->i915
) && rq
->engine
->id
== RCS0
)
821 context_page_num
= 19;
825 while (i
< context_page_num
) {
826 context_gpa
= intel_vgpu_gma_to_gpa(vgpu
->gtt
.ggtt_mm
,
827 (u32
)((workload
->ctx_desc
.lrca
+ i
) <<
828 I915_GTT_PAGE_SHIFT
));
829 if (context_gpa
== INTEL_GVT_INVALID_ADDR
) {
830 gvt_vgpu_err("invalid guest context descriptor\n");
834 page
= i915_gem_object_get_page(ctx_obj
, i
);
836 intel_gvt_hypervisor_write_gpa(vgpu
, context_gpa
, src
,
842 intel_gvt_hypervisor_write_gpa(vgpu
, workload
->ring_context_gpa
+
843 RING_CTX_OFF(ring_header
.val
), &workload
->rb_tail
, 4);
845 page
= i915_gem_object_get_page(ctx_obj
, LRC_STATE_PN
);
846 shadow_ring_context
= kmap(page
);
848 #define COPY_REG(name) \
849 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
850 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
853 COPY_REG(ctx_timestamp
);
857 intel_gvt_hypervisor_write_gpa(vgpu
,
858 workload
->ring_context_gpa
+
859 sizeof(*shadow_ring_context
),
860 (void *)shadow_ring_context
+
861 sizeof(*shadow_ring_context
),
862 I915_GTT_PAGE_SIZE
- sizeof(*shadow_ring_context
));
867 void intel_vgpu_clean_workloads(struct intel_vgpu
*vgpu
,
868 intel_engine_mask_t engine_mask
)
870 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
871 struct drm_i915_private
*dev_priv
= vgpu
->gvt
->gt
->i915
;
872 struct intel_engine_cs
*engine
;
873 struct intel_vgpu_workload
*pos
, *n
;
874 intel_engine_mask_t tmp
;
876 /* free the unsubmited workloads in the queues. */
877 for_each_engine_masked(engine
, &dev_priv
->gt
, engine_mask
, tmp
) {
878 list_for_each_entry_safe(pos
, n
,
879 &s
->workload_q_head
[engine
->id
], list
) {
880 list_del_init(&pos
->list
);
881 intel_vgpu_destroy_workload(pos
);
883 clear_bit(engine
->id
, s
->shadow_ctx_desc_updated
);
887 static void complete_current_workload(struct intel_gvt
*gvt
, int ring_id
)
889 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
890 struct intel_vgpu_workload
*workload
=
891 scheduler
->current_workload
[ring_id
];
892 struct intel_vgpu
*vgpu
= workload
->vgpu
;
893 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
894 struct i915_request
*rq
= workload
->req
;
897 mutex_lock(&vgpu
->vgpu_lock
);
898 mutex_lock(&gvt
->sched_lock
);
900 /* For the workload w/ request, needs to wait for the context
901 * switch to make sure request is completed.
902 * For the workload w/o request, directly complete the workload.
905 wait_event(workload
->shadow_ctx_status_wq
,
906 !atomic_read(&workload
->shadow_ctx_active
));
908 /* If this request caused GPU hang, req->fence.error will
909 * be set to -EIO. Use -EIO to set workload status so
910 * that when this request caused GPU hang, didn't trigger
911 * context switch interrupt to guest.
913 if (likely(workload
->status
== -EINPROGRESS
)) {
914 if (workload
->req
->fence
.error
== -EIO
)
915 workload
->status
= -EIO
;
917 workload
->status
= 0;
920 if (!workload
->status
&&
921 !(vgpu
->resetting_eng
& BIT(ring_id
))) {
922 update_guest_context(workload
);
924 for_each_set_bit(event
, workload
->pending_events
,
926 intel_vgpu_trigger_virtual_event(vgpu
, event
);
929 i915_request_put(fetch_and_zero(&workload
->req
));
932 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
933 ring_id
, workload
, workload
->status
);
935 scheduler
->current_workload
[ring_id
] = NULL
;
937 list_del_init(&workload
->list
);
939 if (workload
->status
|| vgpu
->resetting_eng
& BIT(ring_id
)) {
940 /* if workload->status is not successful means HW GPU
941 * has occurred GPU hang or something wrong with i915/GVT,
942 * and GVT won't inject context switch interrupt to guest.
943 * So this error is a vGPU hang actually to the guest.
944 * According to this we should emunlate a vGPU hang. If
945 * there are pending workloads which are already submitted
946 * from guest, we should clean them up like HW GPU does.
948 * if it is in middle of engine resetting, the pending
949 * workloads won't be submitted to HW GPU and will be
950 * cleaned up during the resetting process later, so doing
951 * the workload clean up here doesn't have any impact.
953 intel_vgpu_clean_workloads(vgpu
, BIT(ring_id
));
956 workload
->complete(workload
);
958 atomic_dec(&s
->running_workload_num
);
959 wake_up(&scheduler
->workload_complete_wq
);
961 if (gvt
->scheduler
.need_reschedule
)
962 intel_gvt_request_service(gvt
, INTEL_GVT_REQUEST_EVENT_SCHED
);
964 mutex_unlock(&gvt
->sched_lock
);
965 mutex_unlock(&vgpu
->vgpu_lock
);
968 static int workload_thread(void *arg
)
970 struct intel_engine_cs
*engine
= arg
;
971 const bool need_force_wake
= INTEL_GEN(engine
->i915
) >= 9;
972 struct intel_gvt
*gvt
= engine
->i915
->gvt
;
973 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
974 struct intel_vgpu_workload
*workload
= NULL
;
975 struct intel_vgpu
*vgpu
= NULL
;
977 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
979 gvt_dbg_core("workload thread for ring %s started\n", engine
->name
);
981 while (!kthread_should_stop()) {
982 intel_wakeref_t wakeref
;
984 add_wait_queue(&scheduler
->waitq
[engine
->id
], &wait
);
986 workload
= pick_next_workload(gvt
, engine
);
989 wait_woken(&wait
, TASK_INTERRUPTIBLE
,
990 MAX_SCHEDULE_TIMEOUT
);
991 } while (!kthread_should_stop());
992 remove_wait_queue(&scheduler
->waitq
[engine
->id
], &wait
);
997 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
998 engine
->name
, workload
,
1001 wakeref
= intel_runtime_pm_get(engine
->uncore
->rpm
);
1003 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1004 engine
->name
, workload
);
1006 if (need_force_wake
)
1007 intel_uncore_forcewake_get(engine
->uncore
,
1010 * Update the vReg of the vGPU which submitted this
1011 * workload. The vGPU may use these registers for checking
1012 * the context state. The value comes from GPU commands
1015 update_vreg_in_ctx(workload
);
1017 ret
= dispatch_workload(workload
);
1020 vgpu
= workload
->vgpu
;
1021 gvt_vgpu_err("fail to dispatch workload, skip\n");
1025 gvt_dbg_sched("ring %s wait workload %p\n",
1026 engine
->name
, workload
);
1027 i915_request_wait(workload
->req
, 0, MAX_SCHEDULE_TIMEOUT
);
1030 gvt_dbg_sched("will complete workload %p, status: %d\n",
1031 workload
, workload
->status
);
1033 complete_current_workload(gvt
, engine
->id
);
1035 if (need_force_wake
)
1036 intel_uncore_forcewake_put(engine
->uncore
,
1039 intel_runtime_pm_put(engine
->uncore
->rpm
, wakeref
);
1040 if (ret
&& (vgpu_is_vm_unhealthy(ret
)))
1041 enter_failsafe_mode(vgpu
, GVT_FAILSAFE_GUEST_ERR
);
1046 void intel_gvt_wait_vgpu_idle(struct intel_vgpu
*vgpu
)
1048 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1049 struct intel_gvt
*gvt
= vgpu
->gvt
;
1050 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
1052 if (atomic_read(&s
->running_workload_num
)) {
1053 gvt_dbg_sched("wait vgpu idle\n");
1055 wait_event(scheduler
->workload_complete_wq
,
1056 !atomic_read(&s
->running_workload_num
));
1060 void intel_gvt_clean_workload_scheduler(struct intel_gvt
*gvt
)
1062 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
1063 struct intel_engine_cs
*engine
;
1064 enum intel_engine_id i
;
1066 gvt_dbg_core("clean workload scheduler\n");
1068 for_each_engine(engine
, gvt
->gt
, i
) {
1069 atomic_notifier_chain_unregister(
1070 &engine
->context_status_notifier
,
1071 &gvt
->shadow_ctx_notifier_block
[i
]);
1072 kthread_stop(scheduler
->thread
[i
]);
1076 int intel_gvt_init_workload_scheduler(struct intel_gvt
*gvt
)
1078 struct intel_gvt_workload_scheduler
*scheduler
= &gvt
->scheduler
;
1079 struct intel_engine_cs
*engine
;
1080 enum intel_engine_id i
;
1083 gvt_dbg_core("init workload scheduler\n");
1085 init_waitqueue_head(&scheduler
->workload_complete_wq
);
1087 for_each_engine(engine
, gvt
->gt
, i
) {
1088 init_waitqueue_head(&scheduler
->waitq
[i
]);
1090 scheduler
->thread
[i
] = kthread_run(workload_thread
, engine
,
1091 "gvt:%s", engine
->name
);
1092 if (IS_ERR(scheduler
->thread
[i
])) {
1093 gvt_err("fail to create workload thread\n");
1094 ret
= PTR_ERR(scheduler
->thread
[i
]);
1098 gvt
->shadow_ctx_notifier_block
[i
].notifier_call
=
1099 shadow_context_status_change
;
1100 atomic_notifier_chain_register(&engine
->context_status_notifier
,
1101 &gvt
->shadow_ctx_notifier_block
[i
]);
1107 intel_gvt_clean_workload_scheduler(gvt
);
1112 i915_context_ppgtt_root_restore(struct intel_vgpu_submission
*s
,
1113 struct i915_ppgtt
*ppgtt
)
1117 if (i915_vm_is_4lvl(&ppgtt
->vm
)) {
1118 px_dma(ppgtt
->pd
) = s
->i915_context_pml4
;
1120 for (i
= 0; i
< GEN8_3LVL_PDPES
; i
++) {
1121 struct i915_page_directory
* const pd
=
1122 i915_pd_entry(ppgtt
->pd
, i
);
1124 px_dma(pd
) = s
->i915_context_pdps
[i
];
1130 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1133 * This function is called when a vGPU is being destroyed.
1136 void intel_vgpu_clean_submission(struct intel_vgpu
*vgpu
)
1138 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1139 struct intel_engine_cs
*engine
;
1140 enum intel_engine_id id
;
1142 intel_vgpu_select_submission_ops(vgpu
, ALL_ENGINES
, 0);
1144 i915_context_ppgtt_root_restore(s
, i915_vm_to_ppgtt(s
->shadow
[0]->vm
));
1145 for_each_engine(engine
, vgpu
->gvt
->gt
, id
)
1146 intel_context_unpin(s
->shadow
[id
]);
1148 kmem_cache_destroy(s
->workloads
);
1153 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1155 * @engine_mask: engines expected to be reset
1157 * This function is called when a vGPU is being destroyed.
1160 void intel_vgpu_reset_submission(struct intel_vgpu
*vgpu
,
1161 intel_engine_mask_t engine_mask
)
1163 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1168 intel_vgpu_clean_workloads(vgpu
, engine_mask
);
1169 s
->ops
->reset(vgpu
, engine_mask
);
1173 i915_context_ppgtt_root_save(struct intel_vgpu_submission
*s
,
1174 struct i915_ppgtt
*ppgtt
)
1178 if (i915_vm_is_4lvl(&ppgtt
->vm
)) {
1179 s
->i915_context_pml4
= px_dma(ppgtt
->pd
);
1181 for (i
= 0; i
< GEN8_3LVL_PDPES
; i
++) {
1182 struct i915_page_directory
* const pd
=
1183 i915_pd_entry(ppgtt
->pd
, i
);
1185 s
->i915_context_pdps
[i
] = px_dma(pd
);
1191 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1194 * This function is called when a vGPU is being created.
1197 * Zero on success, negative error code if failed.
1200 int intel_vgpu_setup_submission(struct intel_vgpu
*vgpu
)
1202 struct drm_i915_private
*i915
= vgpu
->gvt
->gt
->i915
;
1203 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1204 struct intel_engine_cs
*engine
;
1205 struct i915_ppgtt
*ppgtt
;
1206 enum intel_engine_id i
;
1209 ppgtt
= i915_ppgtt_create(&i915
->gt
);
1211 return PTR_ERR(ppgtt
);
1213 i915_context_ppgtt_root_save(s
, ppgtt
);
1215 for_each_engine(engine
, vgpu
->gvt
->gt
, i
) {
1216 struct intel_context
*ce
;
1218 INIT_LIST_HEAD(&s
->workload_q_head
[i
]);
1219 s
->shadow
[i
] = ERR_PTR(-EINVAL
);
1221 ce
= intel_context_create(engine
);
1224 goto out_shadow_ctx
;
1227 i915_vm_put(ce
->vm
);
1228 ce
->vm
= i915_vm_get(&ppgtt
->vm
);
1229 intel_context_set_single_submission(ce
);
1231 /* Max ring buffer size */
1232 if (!intel_uc_wants_guc_submission(&engine
->gt
->uc
)) {
1233 const unsigned int ring_size
= 512 * SZ_4K
;
1235 ce
->ring
= __intel_context_ring_size(ring_size
);
1238 ret
= intel_context_pin(ce
);
1239 intel_context_put(ce
);
1241 goto out_shadow_ctx
;
1246 bitmap_zero(s
->shadow_ctx_desc_updated
, I915_NUM_ENGINES
);
1248 s
->workloads
= kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1249 sizeof(struct intel_vgpu_workload
), 0,
1251 offsetof(struct intel_vgpu_workload
, rb_tail
),
1252 sizeof_field(struct intel_vgpu_workload
, rb_tail
),
1255 if (!s
->workloads
) {
1257 goto out_shadow_ctx
;
1260 atomic_set(&s
->running_workload_num
, 0);
1261 bitmap_zero(s
->tlb_handle_pending
, I915_NUM_ENGINES
);
1263 i915_vm_put(&ppgtt
->vm
);
1267 i915_context_ppgtt_root_restore(s
, ppgtt
);
1268 for_each_engine(engine
, vgpu
->gvt
->gt
, i
) {
1269 if (IS_ERR(s
->shadow
[i
]))
1272 intel_context_unpin(s
->shadow
[i
]);
1273 intel_context_put(s
->shadow
[i
]);
1275 i915_vm_put(&ppgtt
->vm
);
1280 * intel_vgpu_select_submission_ops - select virtual submission interface
1282 * @engine_mask: either ALL_ENGINES or target engine mask
1283 * @interface: expected vGPU virtual submission interface
1285 * This function is called when guest configures submission interface.
1288 * Zero on success, negative error code if failed.
1291 int intel_vgpu_select_submission_ops(struct intel_vgpu
*vgpu
,
1292 intel_engine_mask_t engine_mask
,
1293 unsigned int interface
)
1295 struct drm_i915_private
*i915
= vgpu
->gvt
->gt
->i915
;
1296 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1297 const struct intel_vgpu_submission_ops
*ops
[] = {
1298 [INTEL_VGPU_EXECLIST_SUBMISSION
] =
1299 &intel_vgpu_execlist_submission_ops
,
1303 if (drm_WARN_ON(&i915
->drm
, interface
>= ARRAY_SIZE(ops
)))
1306 if (drm_WARN_ON(&i915
->drm
,
1307 interface
== 0 && engine_mask
!= ALL_ENGINES
))
1311 s
->ops
->clean(vgpu
, engine_mask
);
1313 if (interface
== 0) {
1315 s
->virtual_submission_interface
= 0;
1317 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu
->id
);
1321 ret
= ops
[interface
]->init(vgpu
, engine_mask
);
1325 s
->ops
= ops
[interface
];
1326 s
->virtual_submission_interface
= interface
;
1329 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1330 vgpu
->id
, s
->ops
->name
);
1336 * intel_vgpu_destroy_workload - destroy a vGPU workload
1337 * @workload: workload to destroy
1339 * This function is called when destroy a vGPU workload.
1342 void intel_vgpu_destroy_workload(struct intel_vgpu_workload
*workload
)
1344 struct intel_vgpu_submission
*s
= &workload
->vgpu
->submission
;
1346 release_shadow_batch_buffer(workload
);
1347 release_shadow_wa_ctx(&workload
->wa_ctx
);
1349 if (workload
->shadow_mm
)
1350 intel_vgpu_mm_put(workload
->shadow_mm
);
1352 kmem_cache_free(s
->workloads
, workload
);
1355 static struct intel_vgpu_workload
*
1356 alloc_workload(struct intel_vgpu
*vgpu
)
1358 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1359 struct intel_vgpu_workload
*workload
;
1361 workload
= kmem_cache_zalloc(s
->workloads
, GFP_KERNEL
);
1363 return ERR_PTR(-ENOMEM
);
1365 INIT_LIST_HEAD(&workload
->list
);
1366 INIT_LIST_HEAD(&workload
->shadow_bb
);
1368 init_waitqueue_head(&workload
->shadow_ctx_status_wq
);
1369 atomic_set(&workload
->shadow_ctx_active
, 0);
1371 workload
->status
= -EINPROGRESS
;
1372 workload
->vgpu
= vgpu
;
1377 #define RING_CTX_OFF(x) \
1378 offsetof(struct execlist_ring_context, x)
1380 static void read_guest_pdps(struct intel_vgpu
*vgpu
,
1381 u64 ring_context_gpa
, u32 pdp
[8])
1386 gpa
= ring_context_gpa
+ RING_CTX_OFF(pdps
[0].val
);
1388 for (i
= 0; i
< 8; i
++)
1389 intel_gvt_hypervisor_read_gpa(vgpu
,
1390 gpa
+ i
* 8, &pdp
[7 - i
], 4);
1393 static int prepare_mm(struct intel_vgpu_workload
*workload
)
1395 struct execlist_ctx_descriptor_format
*desc
= &workload
->ctx_desc
;
1396 struct intel_vgpu_mm
*mm
;
1397 struct intel_vgpu
*vgpu
= workload
->vgpu
;
1398 enum intel_gvt_gtt_type root_entry_type
;
1399 u64 pdps
[GVT_RING_CTX_NR_PDPS
];
1401 switch (desc
->addressing_mode
) {
1402 case 1: /* legacy 32-bit */
1403 root_entry_type
= GTT_TYPE_PPGTT_ROOT_L3_ENTRY
;
1405 case 3: /* legacy 64-bit */
1406 root_entry_type
= GTT_TYPE_PPGTT_ROOT_L4_ENTRY
;
1409 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1413 read_guest_pdps(workload
->vgpu
, workload
->ring_context_gpa
, (void *)pdps
);
1415 mm
= intel_vgpu_get_ppgtt_mm(workload
->vgpu
, root_entry_type
, pdps
);
1419 workload
->shadow_mm
= mm
;
1423 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1424 ((a)->lrca == (b)->lrca))
1427 * intel_vgpu_create_workload - create a vGPU workload
1429 * @engine: the engine
1430 * @desc: a guest context descriptor
1432 * This function is called when creating a vGPU workload.
1435 * struct intel_vgpu_workload * on success, negative error code in
1436 * pointer if failed.
1439 struct intel_vgpu_workload
*
1440 intel_vgpu_create_workload(struct intel_vgpu
*vgpu
,
1441 const struct intel_engine_cs
*engine
,
1442 struct execlist_ctx_descriptor_format
*desc
)
1444 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
1445 struct list_head
*q
= workload_q_head(vgpu
, engine
);
1446 struct intel_vgpu_workload
*last_workload
= NULL
;
1447 struct intel_vgpu_workload
*workload
= NULL
;
1448 u64 ring_context_gpa
;
1449 u32 head
, tail
, start
, ctl
, ctx_ctl
, per_ctx
, indirect_ctx
;
1453 ring_context_gpa
= intel_vgpu_gma_to_gpa(vgpu
->gtt
.ggtt_mm
,
1454 (u32
)((desc
->lrca
+ 1) << I915_GTT_PAGE_SHIFT
));
1455 if (ring_context_gpa
== INTEL_GVT_INVALID_ADDR
) {
1456 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc
->lrca
);
1457 return ERR_PTR(-EINVAL
);
1460 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1461 RING_CTX_OFF(ring_header
.val
), &head
, 4);
1463 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1464 RING_CTX_OFF(ring_tail
.val
), &tail
, 4);
1468 head
&= RB_HEAD_OFF_MASK
;
1469 tail
&= RB_TAIL_OFF_MASK
;
1471 list_for_each_entry_reverse(last_workload
, q
, list
) {
1473 if (same_context(&last_workload
->ctx_desc
, desc
)) {
1474 gvt_dbg_el("ring %s cur workload == last\n",
1476 gvt_dbg_el("ctx head %x real head %lx\n", head
,
1477 last_workload
->rb_tail
);
1479 * cannot use guest context head pointer here,
1480 * as it might not be updated at this time
1482 head
= last_workload
->rb_tail
;
1487 gvt_dbg_el("ring %s begin a new workload\n", engine
->name
);
1489 /* record some ring buffer register values for scan and shadow */
1490 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1491 RING_CTX_OFF(rb_start
.val
), &start
, 4);
1492 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1493 RING_CTX_OFF(rb_ctrl
.val
), &ctl
, 4);
1494 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1495 RING_CTX_OFF(ctx_ctrl
.val
), &ctx_ctl
, 4);
1497 if (!intel_gvt_ggtt_validate_range(vgpu
, start
,
1498 _RING_CTL_BUF_SIZE(ctl
))) {
1499 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start
);
1500 return ERR_PTR(-EINVAL
);
1503 workload
= alloc_workload(vgpu
);
1504 if (IS_ERR(workload
))
1507 workload
->engine
= engine
;
1508 workload
->ctx_desc
= *desc
;
1509 workload
->ring_context_gpa
= ring_context_gpa
;
1510 workload
->rb_head
= head
;
1511 workload
->guest_rb_head
= guest_head
;
1512 workload
->rb_tail
= tail
;
1513 workload
->rb_start
= start
;
1514 workload
->rb_ctl
= ctl
;
1516 if (engine
->id
== RCS0
) {
1517 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1518 RING_CTX_OFF(bb_per_ctx_ptr
.val
), &per_ctx
, 4);
1519 intel_gvt_hypervisor_read_gpa(vgpu
, ring_context_gpa
+
1520 RING_CTX_OFF(rcs_indirect_ctx
.val
), &indirect_ctx
, 4);
1522 workload
->wa_ctx
.indirect_ctx
.guest_gma
=
1523 indirect_ctx
& INDIRECT_CTX_ADDR_MASK
;
1524 workload
->wa_ctx
.indirect_ctx
.size
=
1525 (indirect_ctx
& INDIRECT_CTX_SIZE_MASK
) *
1528 if (workload
->wa_ctx
.indirect_ctx
.size
!= 0) {
1529 if (!intel_gvt_ggtt_validate_range(vgpu
,
1530 workload
->wa_ctx
.indirect_ctx
.guest_gma
,
1531 workload
->wa_ctx
.indirect_ctx
.size
)) {
1532 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1533 workload
->wa_ctx
.indirect_ctx
.guest_gma
);
1534 kmem_cache_free(s
->workloads
, workload
);
1535 return ERR_PTR(-EINVAL
);
1539 workload
->wa_ctx
.per_ctx
.guest_gma
=
1540 per_ctx
& PER_CTX_ADDR_MASK
;
1541 workload
->wa_ctx
.per_ctx
.valid
= per_ctx
& 1;
1542 if (workload
->wa_ctx
.per_ctx
.valid
) {
1543 if (!intel_gvt_ggtt_validate_range(vgpu
,
1544 workload
->wa_ctx
.per_ctx
.guest_gma
,
1546 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1547 workload
->wa_ctx
.per_ctx
.guest_gma
);
1548 kmem_cache_free(s
->workloads
, workload
);
1549 return ERR_PTR(-EINVAL
);
1554 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1555 workload
, engine
->name
, head
, tail
, start
, ctl
);
1557 ret
= prepare_mm(workload
);
1559 kmem_cache_free(s
->workloads
, workload
);
1560 return ERR_PTR(ret
);
1563 /* Only scan and shadow the first workload in the queue
1564 * as there is only one pre-allocated buf-obj for shadow.
1566 if (list_empty(q
)) {
1567 intel_wakeref_t wakeref
;
1569 with_intel_runtime_pm(engine
->gt
->uncore
->rpm
, wakeref
)
1570 ret
= intel_gvt_scan_and_shadow_workload(workload
);
1574 if (vgpu_is_vm_unhealthy(ret
))
1575 enter_failsafe_mode(vgpu
, GVT_FAILSAFE_GUEST_ERR
);
1576 intel_vgpu_destroy_workload(workload
);
1577 return ERR_PTR(ret
);
1584 * intel_vgpu_queue_workload - Qeue a vGPU workload
1585 * @workload: the workload to queue in
1587 void intel_vgpu_queue_workload(struct intel_vgpu_workload
*workload
)
1589 list_add_tail(&workload
->list
,
1590 workload_q_head(workload
->vgpu
, workload
->engine
));
1591 intel_gvt_kick_schedule(workload
->vgpu
->gvt
);
1592 wake_up(&workload
->vgpu
->gvt
->scheduler
.waitq
[workload
->engine
->id
]);