]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gvt/scheduler.c
Merge tag 'f2fs-for-5.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Zhi Wang <zhi.a.wang@intel.com>
25 *
26 * Contributors:
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
33 *
34 */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41
42 #include "i915_drv.h"
43 #include "gvt.h"
44
45 #define RING_CTX_OFF(x) \
46 offsetof(struct execlist_ring_context, x)
47
48 static void set_context_pdp_root_pointer(
49 struct execlist_ring_context *ring_context,
50 u32 pdp[8])
51 {
52 int i;
53
54 for (i = 0; i < 8; i++)
55 ring_context->pdps[i].val = pdp[7 - i];
56 }
57
58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60 struct drm_i915_gem_object *ctx_obj =
61 workload->req->hw_context->state->obj;
62 struct execlist_ring_context *shadow_ring_context;
63 struct page *page;
64
65 if (WARN_ON(!workload->shadow_mm))
66 return;
67
68 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69 return;
70
71 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72 shadow_ring_context = kmap(page);
73 set_context_pdp_root_pointer(shadow_ring_context,
74 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 kunmap(page);
76 }
77
78 /*
79 * when populating shadow ctx from guest, we should not overrride oa related
80 * registers, so that they will not be overlapped by guest oa configs. Thus
81 * made it possible to capture oa data from host for both host and guests.
82 */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84 u32 *reg_state, bool save)
85 {
86 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
88 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
89 int i = 0;
90 u32 flex_mmio[] = {
91 i915_mmio_reg_offset(EU_PERF_CNTL0),
92 i915_mmio_reg_offset(EU_PERF_CNTL1),
93 i915_mmio_reg_offset(EU_PERF_CNTL2),
94 i915_mmio_reg_offset(EU_PERF_CNTL3),
95 i915_mmio_reg_offset(EU_PERF_CNTL4),
96 i915_mmio_reg_offset(EU_PERF_CNTL5),
97 i915_mmio_reg_offset(EU_PERF_CNTL6),
98 };
99
100 if (workload->ring_id != RCS0)
101 return;
102
103 if (save) {
104 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105
106 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107 u32 state_offset = ctx_flexeu0 + i * 2;
108
109 workload->flex_mmio[i] = reg_state[state_offset + 1];
110 }
111 } else {
112 reg_state[ctx_oactxctrl] =
113 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115
116 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117 u32 state_offset = ctx_flexeu0 + i * 2;
118 u32 mmio = flex_mmio[i];
119
120 reg_state[state_offset] = mmio;
121 reg_state[state_offset + 1] = workload->flex_mmio[i];
122 }
123 }
124 }
125
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128 struct intel_vgpu *vgpu = workload->vgpu;
129 struct intel_gvt *gvt = vgpu->gvt;
130 int ring_id = workload->ring_id;
131 struct drm_i915_gem_object *ctx_obj =
132 workload->req->hw_context->state->obj;
133 struct execlist_ring_context *shadow_ring_context;
134 struct page *page;
135 void *dst;
136 unsigned long context_gpa, context_page_num;
137 int i;
138
139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 shadow_ring_context = kmap(page);
141
142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 + RING_CTX_OFF(name.val),\
149 &shadow_ring_context->name.val, 4);\
150 shadow_ring_context->name.val |= 0xffff << 16;\
151 }
152
153 COPY_REG_MASKED(ctx_ctrl);
154 COPY_REG(ctx_timestamp);
155
156 if (ring_id == RCS0) {
157 COPY_REG(bb_per_ctx_ptr);
158 COPY_REG(rcs_indirect_ctx);
159 COPY_REG(rcs_indirect_ctx_offset);
160 }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164 intel_gvt_hypervisor_read_gpa(vgpu,
165 workload->ring_context_gpa +
166 sizeof(*shadow_ring_context),
167 (void *)shadow_ring_context +
168 sizeof(*shadow_ring_context),
169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 kunmap(page);
173
174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 return 0;
176
177 gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178 workload->ctx_desc.lrca);
179
180 context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181
182 context_page_num = context_page_num >> PAGE_SHIFT;
183
184 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185 context_page_num = 19;
186
187 i = 2;
188 while (i < context_page_num) {
189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 (u32)((workload->ctx_desc.lrca + i) <<
191 I915_GTT_PAGE_SHIFT));
192 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 gvt_vgpu_err("Invalid guest context descriptor\n");
194 return -EFAULT;
195 }
196
197 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198 dst = kmap(page);
199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 I915_GTT_PAGE_SIZE);
201 kunmap(page);
202 i++;
203 }
204 return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209 return i915_gem_context_force_single_submission(req->gem_context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215 u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216 i915_reg_t reg;
217
218 reg = RING_INSTDONE(ring_base);
219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 reg = RING_ACTHD(ring_base);
221 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222 reg = RING_ACTHD_UDW(ring_base);
223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225
226 static int shadow_context_status_change(struct notifier_block *nb,
227 unsigned long action, void *data)
228 {
229 struct i915_request *req = data;
230 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231 shadow_ctx_notifier_block[req->engine->id]);
232 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233 enum intel_engine_id ring_id = req->engine->id;
234 struct intel_vgpu_workload *workload;
235 unsigned long flags;
236
237 if (!is_gvt_request(req)) {
238 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240 scheduler->engine_owner[ring_id]) {
241 /* Switch ring from vGPU to host. */
242 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243 NULL, ring_id);
244 scheduler->engine_owner[ring_id] = NULL;
245 }
246 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247
248 return NOTIFY_OK;
249 }
250
251 workload = scheduler->current_workload[ring_id];
252 if (unlikely(!workload))
253 return NOTIFY_OK;
254
255 switch (action) {
256 case INTEL_CONTEXT_SCHEDULE_IN:
257 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259 /* Switch ring from host to vGPU or vGPU to vGPU. */
260 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261 workload->vgpu, ring_id);
262 scheduler->engine_owner[ring_id] = workload->vgpu;
263 } else
264 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265 ring_id, workload->vgpu->id);
266 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267 atomic_set(&workload->shadow_ctx_active, 1);
268 break;
269 case INTEL_CONTEXT_SCHEDULE_OUT:
270 save_ring_hw_state(workload->vgpu, ring_id);
271 atomic_set(&workload->shadow_ctx_active, 0);
272 break;
273 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274 save_ring_hw_state(workload->vgpu, ring_id);
275 break;
276 default:
277 WARN_ON(1);
278 return NOTIFY_OK;
279 }
280 wake_up(&workload->shadow_ctx_status_wq);
281 return NOTIFY_OK;
282 }
283
284 static void
285 shadow_context_descriptor_update(struct intel_context *ce,
286 struct intel_vgpu_workload *workload)
287 {
288 u64 desc = ce->lrc_desc;
289
290 /*
291 * Update bits 0-11 of the context descriptor which includes flags
292 * like GEN8_CTX_* cached in desc_template
293 */
294 desc &= U64_MAX << 12;
295 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
296
297 desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
298 desc |= workload->ctx_desc.addressing_mode <<
299 GEN8_CTX_ADDRESSING_MODE_SHIFT;
300
301 ce->lrc_desc = desc;
302 }
303
304 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
305 {
306 struct intel_vgpu *vgpu = workload->vgpu;
307 struct i915_request *req = workload->req;
308 void *shadow_ring_buffer_va;
309 u32 *cs;
310 int err;
311
312 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
313 intel_vgpu_restore_inhibit_context(vgpu, req);
314
315 /*
316 * To track whether a request has started on HW, we can emit a
317 * breadcrumb at the beginning of the request and check its
318 * timeline's HWSP to see if the breadcrumb has advanced past the
319 * start of this request. Actually, the request must have the
320 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
321 * scheduler might get a wrong state of it during reset. Since the
322 * requests from gvt always set the has_init_breadcrumb flag, here
323 * need to do the emit_init_breadcrumb for all the requests.
324 */
325 if (req->engine->emit_init_breadcrumb) {
326 err = req->engine->emit_init_breadcrumb(req);
327 if (err) {
328 gvt_vgpu_err("fail to emit init breadcrumb\n");
329 return err;
330 }
331 }
332
333 /* allocate shadow ring buffer */
334 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
335 if (IS_ERR(cs)) {
336 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
337 workload->rb_len);
338 return PTR_ERR(cs);
339 }
340
341 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
342
343 /* get shadow ring buffer va */
344 workload->shadow_ring_buffer_va = cs;
345
346 memcpy(cs, shadow_ring_buffer_va,
347 workload->rb_len);
348
349 cs += workload->rb_len / sizeof(u32);
350 intel_ring_advance(workload->req, cs);
351
352 return 0;
353 }
354
355 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
356 {
357 if (!wa_ctx->indirect_ctx.obj)
358 return;
359
360 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
361 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
362
363 wa_ctx->indirect_ctx.obj = NULL;
364 wa_ctx->indirect_ctx.shadow_va = NULL;
365 }
366
367 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
368 struct i915_gem_context *ctx)
369 {
370 struct intel_vgpu_mm *mm = workload->shadow_mm;
371 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
372 int i = 0;
373
374 if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
375 return -EINVAL;
376
377 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
378 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
379 } else {
380 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
381 struct i915_page_directory * const pd =
382 i915_pd_entry(ppgtt->pd, i);
383
384 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
385 }
386 }
387
388 return 0;
389 }
390
391 static int
392 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
393 {
394 struct intel_vgpu *vgpu = workload->vgpu;
395 struct intel_vgpu_submission *s = &vgpu->submission;
396 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
397 struct i915_request *rq;
398
399 lockdep_assert_held(&dev_priv->drm.struct_mutex);
400
401 if (workload->req)
402 return 0;
403
404 rq = i915_request_create(s->shadow[workload->ring_id]);
405 if (IS_ERR(rq)) {
406 gvt_vgpu_err("fail to allocate gem request\n");
407 return PTR_ERR(rq);
408 }
409
410 workload->req = i915_request_get(rq);
411 return 0;
412 }
413
414 /**
415 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
416 * shadow it as well, include ringbuffer,wa_ctx and ctx.
417 * @workload: an abstract entity for each execlist submission.
418 *
419 * This function is called before the workload submitting to i915, to make
420 * sure the content of the workload is valid.
421 */
422 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
423 {
424 struct intel_vgpu *vgpu = workload->vgpu;
425 struct intel_vgpu_submission *s = &vgpu->submission;
426 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
427 int ret;
428
429 lockdep_assert_held(&dev_priv->drm.struct_mutex);
430
431 if (workload->shadow)
432 return 0;
433
434 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
435 shadow_context_descriptor_update(s->shadow[workload->ring_id],
436 workload);
437
438 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
439 if (ret)
440 return ret;
441
442 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
443 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
444 if (ret)
445 goto err_shadow;
446 }
447
448 workload->shadow = true;
449 return 0;
450 err_shadow:
451 release_shadow_wa_ctx(&workload->wa_ctx);
452 return ret;
453 }
454
455 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
456
457 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
458 {
459 struct intel_gvt *gvt = workload->vgpu->gvt;
460 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
461 struct intel_vgpu_shadow_bb *bb;
462 int ret;
463
464 list_for_each_entry(bb, &workload->shadow_bb, list) {
465 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
466 * is only updated into ring_scan_buffer, not real ring address
467 * allocated in later copy_workload_to_ring_buffer. pls be noted
468 * shadow_ring_buffer_va is now pointed to real ring buffer va
469 * in copy_workload_to_ring_buffer.
470 */
471
472 if (bb->bb_offset)
473 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
474 + bb->bb_offset;
475
476 if (bb->ppgtt) {
477 /* for non-priv bb, scan&shadow is only for
478 * debugging purpose, so the content of shadow bb
479 * is the same as original bb. Therefore,
480 * here, rather than switch to shadow bb's gma
481 * address, we directly use original batch buffer's
482 * gma address, and send original bb to hardware
483 * directly
484 */
485 if (bb->clflush & CLFLUSH_AFTER) {
486 drm_clflush_virt_range(bb->va,
487 bb->obj->base.size);
488 bb->clflush &= ~CLFLUSH_AFTER;
489 }
490 i915_gem_object_finish_access(bb->obj);
491 bb->accessing = false;
492
493 } else {
494 bb->vma = i915_gem_object_ggtt_pin(bb->obj,
495 NULL, 0, 0, 0);
496 if (IS_ERR(bb->vma)) {
497 ret = PTR_ERR(bb->vma);
498 goto err;
499 }
500
501 /* relocate shadow batch buffer */
502 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
503 if (gmadr_bytes == 8)
504 bb->bb_start_cmd_va[2] = 0;
505
506 /* No one is going to touch shadow bb from now on. */
507 if (bb->clflush & CLFLUSH_AFTER) {
508 drm_clflush_virt_range(bb->va,
509 bb->obj->base.size);
510 bb->clflush &= ~CLFLUSH_AFTER;
511 }
512
513 ret = i915_gem_object_set_to_gtt_domain(bb->obj,
514 false);
515 if (ret)
516 goto err;
517
518 ret = i915_vma_move_to_active(bb->vma,
519 workload->req,
520 0);
521 if (ret)
522 goto err;
523
524 i915_gem_object_finish_access(bb->obj);
525 bb->accessing = false;
526 }
527 }
528 return 0;
529 err:
530 release_shadow_batch_buffer(workload);
531 return ret;
532 }
533
534 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
535 {
536 struct intel_vgpu_workload *workload =
537 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
538 struct i915_request *rq = workload->req;
539 struct execlist_ring_context *shadow_ring_context =
540 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
541
542 shadow_ring_context->bb_per_ctx_ptr.val =
543 (shadow_ring_context->bb_per_ctx_ptr.val &
544 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
545 shadow_ring_context->rcs_indirect_ctx.val =
546 (shadow_ring_context->rcs_indirect_ctx.val &
547 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
548 }
549
550 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
551 {
552 struct i915_vma *vma;
553 unsigned char *per_ctx_va =
554 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
555 wa_ctx->indirect_ctx.size;
556
557 if (wa_ctx->indirect_ctx.size == 0)
558 return 0;
559
560 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
561 0, CACHELINE_BYTES, 0);
562 if (IS_ERR(vma))
563 return PTR_ERR(vma);
564
565 /* FIXME: we are not tracking our pinned VMA leaving it
566 * up to the core to fix up the stray pin_count upon
567 * free.
568 */
569
570 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
571
572 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
573 memset(per_ctx_va, 0, CACHELINE_BYTES);
574
575 update_wa_ctx_2_shadow_ctx(wa_ctx);
576 return 0;
577 }
578
579 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
580 {
581 struct intel_vgpu *vgpu = workload->vgpu;
582 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
583 struct intel_vgpu_shadow_bb *bb, *pos;
584
585 if (list_empty(&workload->shadow_bb))
586 return;
587
588 bb = list_first_entry(&workload->shadow_bb,
589 struct intel_vgpu_shadow_bb, list);
590
591 mutex_lock(&dev_priv->drm.struct_mutex);
592
593 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
594 if (bb->obj) {
595 if (bb->accessing)
596 i915_gem_object_finish_access(bb->obj);
597
598 if (bb->va && !IS_ERR(bb->va))
599 i915_gem_object_unpin_map(bb->obj);
600
601 if (bb->vma && !IS_ERR(bb->vma)) {
602 i915_vma_unpin(bb->vma);
603 i915_vma_close(bb->vma);
604 }
605 i915_gem_object_put(bb->obj);
606 }
607 list_del(&bb->list);
608 kfree(bb);
609 }
610
611 mutex_unlock(&dev_priv->drm.struct_mutex);
612 }
613
614 static int prepare_workload(struct intel_vgpu_workload *workload)
615 {
616 struct intel_vgpu *vgpu = workload->vgpu;
617 int ret = 0;
618
619 ret = intel_vgpu_pin_mm(workload->shadow_mm);
620 if (ret) {
621 gvt_vgpu_err("fail to vgpu pin mm\n");
622 return ret;
623 }
624
625 update_shadow_pdps(workload);
626
627 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
628 if (ret) {
629 gvt_vgpu_err("fail to vgpu sync oos pages\n");
630 goto err_unpin_mm;
631 }
632
633 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
634 if (ret) {
635 gvt_vgpu_err("fail to flush post shadow\n");
636 goto err_unpin_mm;
637 }
638
639 ret = copy_workload_to_ring_buffer(workload);
640 if (ret) {
641 gvt_vgpu_err("fail to generate request\n");
642 goto err_unpin_mm;
643 }
644
645 ret = prepare_shadow_batch_buffer(workload);
646 if (ret) {
647 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
648 goto err_unpin_mm;
649 }
650
651 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
652 if (ret) {
653 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
654 goto err_shadow_batch;
655 }
656
657 if (workload->prepare) {
658 ret = workload->prepare(workload);
659 if (ret)
660 goto err_shadow_wa_ctx;
661 }
662
663 return 0;
664 err_shadow_wa_ctx:
665 release_shadow_wa_ctx(&workload->wa_ctx);
666 err_shadow_batch:
667 release_shadow_batch_buffer(workload);
668 err_unpin_mm:
669 intel_vgpu_unpin_mm(workload->shadow_mm);
670 return ret;
671 }
672
673 static int dispatch_workload(struct intel_vgpu_workload *workload)
674 {
675 struct intel_vgpu *vgpu = workload->vgpu;
676 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
677 struct intel_vgpu_submission *s = &vgpu->submission;
678 struct i915_request *rq;
679 int ring_id = workload->ring_id;
680 int ret;
681
682 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
683 ring_id, workload);
684
685 mutex_lock(&vgpu->vgpu_lock);
686 mutex_lock(&dev_priv->drm.struct_mutex);
687
688 ret = set_context_ppgtt_from_shadow(workload,
689 s->shadow[ring_id]->gem_context);
690 if (ret < 0) {
691 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
692 goto err_req;
693 }
694
695 ret = intel_gvt_workload_req_alloc(workload);
696 if (ret)
697 goto err_req;
698
699 ret = intel_gvt_scan_and_shadow_workload(workload);
700 if (ret)
701 goto out;
702
703 ret = populate_shadow_context(workload);
704 if (ret) {
705 release_shadow_wa_ctx(&workload->wa_ctx);
706 goto out;
707 }
708
709 ret = prepare_workload(workload);
710 out:
711 if (ret) {
712 /* We might still need to add request with
713 * clean ctx to retire it properly..
714 */
715 rq = fetch_and_zero(&workload->req);
716 i915_request_put(rq);
717 }
718
719 if (!IS_ERR_OR_NULL(workload->req)) {
720 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
721 ring_id, workload->req);
722 i915_request_add(workload->req);
723 workload->dispatched = true;
724 }
725 err_req:
726 if (ret)
727 workload->status = ret;
728 mutex_unlock(&dev_priv->drm.struct_mutex);
729 mutex_unlock(&vgpu->vgpu_lock);
730 return ret;
731 }
732
733 static struct intel_vgpu_workload *pick_next_workload(
734 struct intel_gvt *gvt, int ring_id)
735 {
736 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
737 struct intel_vgpu_workload *workload = NULL;
738
739 mutex_lock(&gvt->sched_lock);
740
741 /*
742 * no current vgpu / will be scheduled out / no workload
743 * bail out
744 */
745 if (!scheduler->current_vgpu) {
746 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
747 goto out;
748 }
749
750 if (scheduler->need_reschedule) {
751 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
752 goto out;
753 }
754
755 if (!scheduler->current_vgpu->active ||
756 list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
757 goto out;
758
759 /*
760 * still have current workload, maybe the workload disptacher
761 * fail to submit it for some reason, resubmit it.
762 */
763 if (scheduler->current_workload[ring_id]) {
764 workload = scheduler->current_workload[ring_id];
765 gvt_dbg_sched("ring id %d still have current workload %p\n",
766 ring_id, workload);
767 goto out;
768 }
769
770 /*
771 * pick a workload as current workload
772 * once current workload is set, schedule policy routines
773 * will wait the current workload is finished when trying to
774 * schedule out a vgpu.
775 */
776 scheduler->current_workload[ring_id] = container_of(
777 workload_q_head(scheduler->current_vgpu, ring_id)->next,
778 struct intel_vgpu_workload, list);
779
780 workload = scheduler->current_workload[ring_id];
781
782 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
783
784 atomic_inc(&workload->vgpu->submission.running_workload_num);
785 out:
786 mutex_unlock(&gvt->sched_lock);
787 return workload;
788 }
789
790 static void update_guest_context(struct intel_vgpu_workload *workload)
791 {
792 struct i915_request *rq = workload->req;
793 struct intel_vgpu *vgpu = workload->vgpu;
794 struct intel_gvt *gvt = vgpu->gvt;
795 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
796 struct execlist_ring_context *shadow_ring_context;
797 struct page *page;
798 void *src;
799 unsigned long context_gpa, context_page_num;
800 int i;
801 struct drm_i915_private *dev_priv = gvt->dev_priv;
802 u32 ring_base;
803 u32 head, tail;
804 u16 wrap_count;
805
806 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
807 workload->ctx_desc.lrca);
808
809 head = workload->rb_head;
810 tail = workload->rb_tail;
811 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
812
813 if (tail < head) {
814 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
815 wrap_count = 0;
816 else
817 wrap_count += 1;
818 }
819
820 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
821
822 ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
823 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
824 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
825
826 context_page_num = rq->engine->context_size;
827 context_page_num = context_page_num >> PAGE_SHIFT;
828
829 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
830 context_page_num = 19;
831
832 i = 2;
833
834 while (i < context_page_num) {
835 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
836 (u32)((workload->ctx_desc.lrca + i) <<
837 I915_GTT_PAGE_SHIFT));
838 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
839 gvt_vgpu_err("invalid guest context descriptor\n");
840 return;
841 }
842
843 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
844 src = kmap(page);
845 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
846 I915_GTT_PAGE_SIZE);
847 kunmap(page);
848 i++;
849 }
850
851 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
852 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
853
854 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
855 shadow_ring_context = kmap(page);
856
857 #define COPY_REG(name) \
858 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
859 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
860
861 COPY_REG(ctx_ctrl);
862 COPY_REG(ctx_timestamp);
863
864 #undef COPY_REG
865
866 intel_gvt_hypervisor_write_gpa(vgpu,
867 workload->ring_context_gpa +
868 sizeof(*shadow_ring_context),
869 (void *)shadow_ring_context +
870 sizeof(*shadow_ring_context),
871 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
872
873 kunmap(page);
874 }
875
876 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
877 intel_engine_mask_t engine_mask)
878 {
879 struct intel_vgpu_submission *s = &vgpu->submission;
880 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
881 struct intel_engine_cs *engine;
882 struct intel_vgpu_workload *pos, *n;
883 intel_engine_mask_t tmp;
884
885 /* free the unsubmited workloads in the queues. */
886 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
887 list_for_each_entry_safe(pos, n,
888 &s->workload_q_head[engine->id], list) {
889 list_del_init(&pos->list);
890 intel_vgpu_destroy_workload(pos);
891 }
892 clear_bit(engine->id, s->shadow_ctx_desc_updated);
893 }
894 }
895
896 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
897 {
898 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
899 struct intel_vgpu_workload *workload =
900 scheduler->current_workload[ring_id];
901 struct intel_vgpu *vgpu = workload->vgpu;
902 struct intel_vgpu_submission *s = &vgpu->submission;
903 struct i915_request *rq = workload->req;
904 int event;
905
906 mutex_lock(&vgpu->vgpu_lock);
907 mutex_lock(&gvt->sched_lock);
908
909 /* For the workload w/ request, needs to wait for the context
910 * switch to make sure request is completed.
911 * For the workload w/o request, directly complete the workload.
912 */
913 if (rq) {
914 wait_event(workload->shadow_ctx_status_wq,
915 !atomic_read(&workload->shadow_ctx_active));
916
917 /* If this request caused GPU hang, req->fence.error will
918 * be set to -EIO. Use -EIO to set workload status so
919 * that when this request caused GPU hang, didn't trigger
920 * context switch interrupt to guest.
921 */
922 if (likely(workload->status == -EINPROGRESS)) {
923 if (workload->req->fence.error == -EIO)
924 workload->status = -EIO;
925 else
926 workload->status = 0;
927 }
928
929 if (!workload->status &&
930 !(vgpu->resetting_eng & BIT(ring_id))) {
931 update_guest_context(workload);
932
933 for_each_set_bit(event, workload->pending_events,
934 INTEL_GVT_EVENT_MAX)
935 intel_vgpu_trigger_virtual_event(vgpu, event);
936 }
937
938 i915_request_put(fetch_and_zero(&workload->req));
939 }
940
941 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
942 ring_id, workload, workload->status);
943
944 scheduler->current_workload[ring_id] = NULL;
945
946 list_del_init(&workload->list);
947
948 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
949 /* if workload->status is not successful means HW GPU
950 * has occurred GPU hang or something wrong with i915/GVT,
951 * and GVT won't inject context switch interrupt to guest.
952 * So this error is a vGPU hang actually to the guest.
953 * According to this we should emunlate a vGPU hang. If
954 * there are pending workloads which are already submitted
955 * from guest, we should clean them up like HW GPU does.
956 *
957 * if it is in middle of engine resetting, the pending
958 * workloads won't be submitted to HW GPU and will be
959 * cleaned up during the resetting process later, so doing
960 * the workload clean up here doesn't have any impact.
961 **/
962 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
963 }
964
965 workload->complete(workload);
966
967 atomic_dec(&s->running_workload_num);
968 wake_up(&scheduler->workload_complete_wq);
969
970 if (gvt->scheduler.need_reschedule)
971 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
972
973 mutex_unlock(&gvt->sched_lock);
974 mutex_unlock(&vgpu->vgpu_lock);
975 }
976
977 struct workload_thread_param {
978 struct intel_gvt *gvt;
979 int ring_id;
980 };
981
982 static int workload_thread(void *priv)
983 {
984 struct workload_thread_param *p = (struct workload_thread_param *)priv;
985 struct intel_gvt *gvt = p->gvt;
986 int ring_id = p->ring_id;
987 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
988 struct intel_vgpu_workload *workload = NULL;
989 struct intel_vgpu *vgpu = NULL;
990 int ret;
991 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
992 DEFINE_WAIT_FUNC(wait, woken_wake_function);
993
994 kfree(p);
995
996 gvt_dbg_core("workload thread for ring %d started\n", ring_id);
997
998 while (!kthread_should_stop()) {
999 add_wait_queue(&scheduler->waitq[ring_id], &wait);
1000 do {
1001 workload = pick_next_workload(gvt, ring_id);
1002 if (workload)
1003 break;
1004 wait_woken(&wait, TASK_INTERRUPTIBLE,
1005 MAX_SCHEDULE_TIMEOUT);
1006 } while (!kthread_should_stop());
1007 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1008
1009 if (!workload)
1010 break;
1011
1012 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1013 workload->ring_id, workload,
1014 workload->vgpu->id);
1015
1016 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1017 workload->ring_id, workload);
1018
1019 if (need_force_wake)
1020 intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1021 FORCEWAKE_ALL);
1022
1023 ret = dispatch_workload(workload);
1024
1025 if (ret) {
1026 vgpu = workload->vgpu;
1027 gvt_vgpu_err("fail to dispatch workload, skip\n");
1028 goto complete;
1029 }
1030
1031 gvt_dbg_sched("ring id %d wait workload %p\n",
1032 workload->ring_id, workload);
1033 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1034
1035 complete:
1036 gvt_dbg_sched("will complete workload %p, status: %d\n",
1037 workload, workload->status);
1038
1039 complete_current_workload(gvt, ring_id);
1040
1041 if (need_force_wake)
1042 intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1043 FORCEWAKE_ALL);
1044
1045 if (ret && (vgpu_is_vm_unhealthy(ret)))
1046 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1047 }
1048 return 0;
1049 }
1050
1051 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1052 {
1053 struct intel_vgpu_submission *s = &vgpu->submission;
1054 struct intel_gvt *gvt = vgpu->gvt;
1055 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1056
1057 if (atomic_read(&s->running_workload_num)) {
1058 gvt_dbg_sched("wait vgpu idle\n");
1059
1060 wait_event(scheduler->workload_complete_wq,
1061 !atomic_read(&s->running_workload_num));
1062 }
1063 }
1064
1065 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1066 {
1067 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1068 struct intel_engine_cs *engine;
1069 enum intel_engine_id i;
1070
1071 gvt_dbg_core("clean workload scheduler\n");
1072
1073 for_each_engine(engine, gvt->dev_priv, i) {
1074 atomic_notifier_chain_unregister(
1075 &engine->context_status_notifier,
1076 &gvt->shadow_ctx_notifier_block[i]);
1077 kthread_stop(scheduler->thread[i]);
1078 }
1079 }
1080
1081 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1082 {
1083 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1084 struct workload_thread_param *param = NULL;
1085 struct intel_engine_cs *engine;
1086 enum intel_engine_id i;
1087 int ret;
1088
1089 gvt_dbg_core("init workload scheduler\n");
1090
1091 init_waitqueue_head(&scheduler->workload_complete_wq);
1092
1093 for_each_engine(engine, gvt->dev_priv, i) {
1094 init_waitqueue_head(&scheduler->waitq[i]);
1095
1096 param = kzalloc(sizeof(*param), GFP_KERNEL);
1097 if (!param) {
1098 ret = -ENOMEM;
1099 goto err;
1100 }
1101
1102 param->gvt = gvt;
1103 param->ring_id = i;
1104
1105 scheduler->thread[i] = kthread_run(workload_thread, param,
1106 "gvt workload %d", i);
1107 if (IS_ERR(scheduler->thread[i])) {
1108 gvt_err("fail to create workload thread\n");
1109 ret = PTR_ERR(scheduler->thread[i]);
1110 goto err;
1111 }
1112
1113 gvt->shadow_ctx_notifier_block[i].notifier_call =
1114 shadow_context_status_change;
1115 atomic_notifier_chain_register(&engine->context_status_notifier,
1116 &gvt->shadow_ctx_notifier_block[i]);
1117 }
1118 return 0;
1119 err:
1120 intel_gvt_clean_workload_scheduler(gvt);
1121 kfree(param);
1122 param = NULL;
1123 return ret;
1124 }
1125
1126 static void
1127 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1128 struct i915_ppgtt *ppgtt)
1129 {
1130 int i;
1131
1132 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1133 px_dma(ppgtt->pd) = s->i915_context_pml4;
1134 } else {
1135 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1136 struct i915_page_directory * const pd =
1137 i915_pd_entry(ppgtt->pd, i);
1138
1139 px_dma(pd) = s->i915_context_pdps[i];
1140 }
1141 }
1142 }
1143
1144 /**
1145 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1146 * @vgpu: a vGPU
1147 *
1148 * This function is called when a vGPU is being destroyed.
1149 *
1150 */
1151 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1152 {
1153 struct intel_vgpu_submission *s = &vgpu->submission;
1154 struct intel_engine_cs *engine;
1155 enum intel_engine_id id;
1156
1157 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1158
1159 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->gem_context->vm));
1160 for_each_engine(engine, vgpu->gvt->dev_priv, id)
1161 intel_context_unpin(s->shadow[id]);
1162
1163 kmem_cache_destroy(s->workloads);
1164 }
1165
1166
1167 /**
1168 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1169 * @vgpu: a vGPU
1170 * @engine_mask: engines expected to be reset
1171 *
1172 * This function is called when a vGPU is being destroyed.
1173 *
1174 */
1175 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1176 intel_engine_mask_t engine_mask)
1177 {
1178 struct intel_vgpu_submission *s = &vgpu->submission;
1179
1180 if (!s->active)
1181 return;
1182
1183 intel_vgpu_clean_workloads(vgpu, engine_mask);
1184 s->ops->reset(vgpu, engine_mask);
1185 }
1186
1187 static void
1188 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1189 struct i915_ppgtt *ppgtt)
1190 {
1191 int i;
1192
1193 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1194 s->i915_context_pml4 = px_dma(ppgtt->pd);
1195 } else {
1196 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1197 struct i915_page_directory * const pd =
1198 i915_pd_entry(ppgtt->pd, i);
1199
1200 s->i915_context_pdps[i] = px_dma(pd);
1201 }
1202 }
1203 }
1204
1205 /**
1206 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1207 * @vgpu: a vGPU
1208 *
1209 * This function is called when a vGPU is being created.
1210 *
1211 * Returns:
1212 * Zero on success, negative error code if failed.
1213 *
1214 */
1215 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1216 {
1217 struct intel_vgpu_submission *s = &vgpu->submission;
1218 struct intel_engine_cs *engine;
1219 struct i915_gem_context *ctx;
1220 enum intel_engine_id i;
1221 int ret;
1222
1223 ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm);
1224 if (IS_ERR(ctx))
1225 return PTR_ERR(ctx);
1226
1227 i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1228
1229 for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1230 struct intel_context *ce;
1231
1232 INIT_LIST_HEAD(&s->workload_q_head[i]);
1233 s->shadow[i] = ERR_PTR(-EINVAL);
1234
1235 ce = i915_gem_context_get_engine(ctx, i);
1236 if (IS_ERR(ce)) {
1237 ret = PTR_ERR(ce);
1238 goto out_shadow_ctx;
1239 }
1240
1241 ret = intel_context_pin(ce);
1242 intel_context_put(ce);
1243 if (ret)
1244 goto out_shadow_ctx;
1245
1246 s->shadow[i] = ce;
1247 }
1248
1249 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1250
1251 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1252 sizeof(struct intel_vgpu_workload), 0,
1253 SLAB_HWCACHE_ALIGN,
1254 offsetof(struct intel_vgpu_workload, rb_tail),
1255 sizeof_field(struct intel_vgpu_workload, rb_tail),
1256 NULL);
1257
1258 if (!s->workloads) {
1259 ret = -ENOMEM;
1260 goto out_shadow_ctx;
1261 }
1262
1263 atomic_set(&s->running_workload_num, 0);
1264 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1265
1266 i915_gem_context_put(ctx);
1267 return 0;
1268
1269 out_shadow_ctx:
1270 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1271 for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1272 if (IS_ERR(s->shadow[i]))
1273 break;
1274
1275 intel_context_unpin(s->shadow[i]);
1276 }
1277 i915_gem_context_put(ctx);
1278 return ret;
1279 }
1280
1281 /**
1282 * intel_vgpu_select_submission_ops - select virtual submission interface
1283 * @vgpu: a vGPU
1284 * @engine_mask: either ALL_ENGINES or target engine mask
1285 * @interface: expected vGPU virtual submission interface
1286 *
1287 * This function is called when guest configures submission interface.
1288 *
1289 * Returns:
1290 * Zero on success, negative error code if failed.
1291 *
1292 */
1293 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1294 intel_engine_mask_t engine_mask,
1295 unsigned int interface)
1296 {
1297 struct intel_vgpu_submission *s = &vgpu->submission;
1298 const struct intel_vgpu_submission_ops *ops[] = {
1299 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1300 &intel_vgpu_execlist_submission_ops,
1301 };
1302 int ret;
1303
1304 if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1305 return -EINVAL;
1306
1307 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1308 return -EINVAL;
1309
1310 if (s->active)
1311 s->ops->clean(vgpu, engine_mask);
1312
1313 if (interface == 0) {
1314 s->ops = NULL;
1315 s->virtual_submission_interface = 0;
1316 s->active = false;
1317 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1318 return 0;
1319 }
1320
1321 ret = ops[interface]->init(vgpu, engine_mask);
1322 if (ret)
1323 return ret;
1324
1325 s->ops = ops[interface];
1326 s->virtual_submission_interface = interface;
1327 s->active = true;
1328
1329 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1330 vgpu->id, s->ops->name);
1331
1332 return 0;
1333 }
1334
1335 /**
1336 * intel_vgpu_destroy_workload - destroy a vGPU workload
1337 * @workload: workload to destroy
1338 *
1339 * This function is called when destroy a vGPU workload.
1340 *
1341 */
1342 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1343 {
1344 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1345
1346 release_shadow_batch_buffer(workload);
1347 release_shadow_wa_ctx(&workload->wa_ctx);
1348
1349 if (workload->shadow_mm)
1350 intel_vgpu_mm_put(workload->shadow_mm);
1351
1352 kmem_cache_free(s->workloads, workload);
1353 }
1354
1355 static struct intel_vgpu_workload *
1356 alloc_workload(struct intel_vgpu *vgpu)
1357 {
1358 struct intel_vgpu_submission *s = &vgpu->submission;
1359 struct intel_vgpu_workload *workload;
1360
1361 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1362 if (!workload)
1363 return ERR_PTR(-ENOMEM);
1364
1365 INIT_LIST_HEAD(&workload->list);
1366 INIT_LIST_HEAD(&workload->shadow_bb);
1367
1368 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1369 atomic_set(&workload->shadow_ctx_active, 0);
1370
1371 workload->status = -EINPROGRESS;
1372 workload->vgpu = vgpu;
1373
1374 return workload;
1375 }
1376
1377 #define RING_CTX_OFF(x) \
1378 offsetof(struct execlist_ring_context, x)
1379
1380 static void read_guest_pdps(struct intel_vgpu *vgpu,
1381 u64 ring_context_gpa, u32 pdp[8])
1382 {
1383 u64 gpa;
1384 int i;
1385
1386 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1387
1388 for (i = 0; i < 8; i++)
1389 intel_gvt_hypervisor_read_gpa(vgpu,
1390 gpa + i * 8, &pdp[7 - i], 4);
1391 }
1392
1393 static int prepare_mm(struct intel_vgpu_workload *workload)
1394 {
1395 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1396 struct intel_vgpu_mm *mm;
1397 struct intel_vgpu *vgpu = workload->vgpu;
1398 enum intel_gvt_gtt_type root_entry_type;
1399 u64 pdps[GVT_RING_CTX_NR_PDPS];
1400
1401 switch (desc->addressing_mode) {
1402 case 1: /* legacy 32-bit */
1403 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1404 break;
1405 case 3: /* legacy 64-bit */
1406 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1407 break;
1408 default:
1409 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1410 return -EINVAL;
1411 }
1412
1413 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1414
1415 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1416 if (IS_ERR(mm))
1417 return PTR_ERR(mm);
1418
1419 workload->shadow_mm = mm;
1420 return 0;
1421 }
1422
1423 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1424 ((a)->lrca == (b)->lrca))
1425
1426 #define get_last_workload(q) \
1427 (list_empty(q) ? NULL : container_of(q->prev, \
1428 struct intel_vgpu_workload, list))
1429 /**
1430 * intel_vgpu_create_workload - create a vGPU workload
1431 * @vgpu: a vGPU
1432 * @ring_id: ring index
1433 * @desc: a guest context descriptor
1434 *
1435 * This function is called when creating a vGPU workload.
1436 *
1437 * Returns:
1438 * struct intel_vgpu_workload * on success, negative error code in
1439 * pointer if failed.
1440 *
1441 */
1442 struct intel_vgpu_workload *
1443 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1444 struct execlist_ctx_descriptor_format *desc)
1445 {
1446 struct intel_vgpu_submission *s = &vgpu->submission;
1447 struct list_head *q = workload_q_head(vgpu, ring_id);
1448 struct intel_vgpu_workload *last_workload = get_last_workload(q);
1449 struct intel_vgpu_workload *workload = NULL;
1450 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1451 u64 ring_context_gpa;
1452 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1453 u32 guest_head;
1454 int ret;
1455
1456 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1457 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1458 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1459 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1460 return ERR_PTR(-EINVAL);
1461 }
1462
1463 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1464 RING_CTX_OFF(ring_header.val), &head, 4);
1465
1466 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1467 RING_CTX_OFF(ring_tail.val), &tail, 4);
1468
1469 guest_head = head;
1470
1471 head &= RB_HEAD_OFF_MASK;
1472 tail &= RB_TAIL_OFF_MASK;
1473
1474 if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1475 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1476 gvt_dbg_el("ctx head %x real head %lx\n", head,
1477 last_workload->rb_tail);
1478 /*
1479 * cannot use guest context head pointer here,
1480 * as it might not be updated at this time
1481 */
1482 head = last_workload->rb_tail;
1483 }
1484
1485 gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1486
1487 /* record some ring buffer register values for scan and shadow */
1488 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1489 RING_CTX_OFF(rb_start.val), &start, 4);
1490 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1491 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1492 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1493 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1494
1495 workload = alloc_workload(vgpu);
1496 if (IS_ERR(workload))
1497 return workload;
1498
1499 workload->ring_id = ring_id;
1500 workload->ctx_desc = *desc;
1501 workload->ring_context_gpa = ring_context_gpa;
1502 workload->rb_head = head;
1503 workload->guest_rb_head = guest_head;
1504 workload->rb_tail = tail;
1505 workload->rb_start = start;
1506 workload->rb_ctl = ctl;
1507
1508 if (ring_id == RCS0) {
1509 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1510 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1511 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1512 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1513
1514 workload->wa_ctx.indirect_ctx.guest_gma =
1515 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1516 workload->wa_ctx.indirect_ctx.size =
1517 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1518 CACHELINE_BYTES;
1519 workload->wa_ctx.per_ctx.guest_gma =
1520 per_ctx & PER_CTX_ADDR_MASK;
1521 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1522 }
1523
1524 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1525 workload, ring_id, head, tail, start, ctl);
1526
1527 ret = prepare_mm(workload);
1528 if (ret) {
1529 kmem_cache_free(s->workloads, workload);
1530 return ERR_PTR(ret);
1531 }
1532
1533 /* Only scan and shadow the first workload in the queue
1534 * as there is only one pre-allocated buf-obj for shadow.
1535 */
1536 if (list_empty(workload_q_head(vgpu, ring_id))) {
1537 intel_runtime_pm_get(&dev_priv->runtime_pm);
1538 mutex_lock(&dev_priv->drm.struct_mutex);
1539 ret = intel_gvt_scan_and_shadow_workload(workload);
1540 mutex_unlock(&dev_priv->drm.struct_mutex);
1541 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1542 }
1543
1544 if (ret) {
1545 if (vgpu_is_vm_unhealthy(ret))
1546 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1547 intel_vgpu_destroy_workload(workload);
1548 return ERR_PTR(ret);
1549 }
1550
1551 return workload;
1552 }
1553
1554 /**
1555 * intel_vgpu_queue_workload - Qeue a vGPU workload
1556 * @workload: the workload to queue in
1557 */
1558 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1559 {
1560 list_add_tail(&workload->list,
1561 workload_q_head(workload->vgpu, workload->ring_id));
1562 intel_gvt_kick_schedule(workload->vgpu->gvt);
1563 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1564 }