]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gvt/scheduler.c
Merge tag 'kbuild-fixes-v5.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Zhi Wang <zhi.a.wang@intel.com>
25 *
26 * Contributors:
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
33 *
34 */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41
42 #include "i915_drv.h"
43 #include "gvt.h"
44
45 #define RING_CTX_OFF(x) \
46 offsetof(struct execlist_ring_context, x)
47
48 static void set_context_pdp_root_pointer(
49 struct execlist_ring_context *ring_context,
50 u32 pdp[8])
51 {
52 int i;
53
54 for (i = 0; i < 8; i++)
55 ring_context->pdps[i].val = pdp[7 - i];
56 }
57
58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60 struct drm_i915_gem_object *ctx_obj =
61 workload->req->hw_context->state->obj;
62 struct execlist_ring_context *shadow_ring_context;
63 struct page *page;
64
65 if (WARN_ON(!workload->shadow_mm))
66 return;
67
68 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69 return;
70
71 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72 shadow_ring_context = kmap(page);
73 set_context_pdp_root_pointer(shadow_ring_context,
74 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 kunmap(page);
76 }
77
78 /*
79 * when populating shadow ctx from guest, we should not overrride oa related
80 * registers, so that they will not be overlapped by guest oa configs. Thus
81 * made it possible to capture oa data from host for both host and guests.
82 */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84 u32 *reg_state, bool save)
85 {
86 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
88 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
89 int i = 0;
90 u32 flex_mmio[] = {
91 i915_mmio_reg_offset(EU_PERF_CNTL0),
92 i915_mmio_reg_offset(EU_PERF_CNTL1),
93 i915_mmio_reg_offset(EU_PERF_CNTL2),
94 i915_mmio_reg_offset(EU_PERF_CNTL3),
95 i915_mmio_reg_offset(EU_PERF_CNTL4),
96 i915_mmio_reg_offset(EU_PERF_CNTL5),
97 i915_mmio_reg_offset(EU_PERF_CNTL6),
98 };
99
100 if (workload->ring_id != RCS0)
101 return;
102
103 if (save) {
104 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105
106 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107 u32 state_offset = ctx_flexeu0 + i * 2;
108
109 workload->flex_mmio[i] = reg_state[state_offset + 1];
110 }
111 } else {
112 reg_state[ctx_oactxctrl] =
113 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115
116 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117 u32 state_offset = ctx_flexeu0 + i * 2;
118 u32 mmio = flex_mmio[i];
119
120 reg_state[state_offset] = mmio;
121 reg_state[state_offset + 1] = workload->flex_mmio[i];
122 }
123 }
124 }
125
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128 struct intel_vgpu *vgpu = workload->vgpu;
129 struct intel_gvt *gvt = vgpu->gvt;
130 int ring_id = workload->ring_id;
131 struct drm_i915_gem_object *ctx_obj =
132 workload->req->hw_context->state->obj;
133 struct execlist_ring_context *shadow_ring_context;
134 struct page *page;
135 void *dst;
136 unsigned long context_gpa, context_page_num;
137 int i;
138
139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 shadow_ring_context = kmap(page);
141
142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 + RING_CTX_OFF(name.val),\
149 &shadow_ring_context->name.val, 4);\
150 shadow_ring_context->name.val |= 0xffff << 16;\
151 }
152
153 COPY_REG_MASKED(ctx_ctrl);
154 COPY_REG(ctx_timestamp);
155
156 if (ring_id == RCS0) {
157 COPY_REG(bb_per_ctx_ptr);
158 COPY_REG(rcs_indirect_ctx);
159 COPY_REG(rcs_indirect_ctx_offset);
160 }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164 intel_gvt_hypervisor_read_gpa(vgpu,
165 workload->ring_context_gpa +
166 sizeof(*shadow_ring_context),
167 (void *)shadow_ring_context +
168 sizeof(*shadow_ring_context),
169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 kunmap(page);
173
174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 return 0;
176
177 gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178 workload->ctx_desc.lrca);
179
180 context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181
182 context_page_num = context_page_num >> PAGE_SHIFT;
183
184 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185 context_page_num = 19;
186
187 i = 2;
188 while (i < context_page_num) {
189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 (u32)((workload->ctx_desc.lrca + i) <<
191 I915_GTT_PAGE_SHIFT));
192 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 gvt_vgpu_err("Invalid guest context descriptor\n");
194 return -EFAULT;
195 }
196
197 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198 dst = kmap(page);
199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 I915_GTT_PAGE_SIZE);
201 kunmap(page);
202 i++;
203 }
204 return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209 return i915_gem_context_force_single_submission(req->gem_context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215 u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216 i915_reg_t reg;
217
218 reg = RING_INSTDONE(ring_base);
219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 reg = RING_ACTHD(ring_base);
221 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222 reg = RING_ACTHD_UDW(ring_base);
223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225
226 static int shadow_context_status_change(struct notifier_block *nb,
227 unsigned long action, void *data)
228 {
229 struct i915_request *req = data;
230 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231 shadow_ctx_notifier_block[req->engine->id]);
232 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233 enum intel_engine_id ring_id = req->engine->id;
234 struct intel_vgpu_workload *workload;
235 unsigned long flags;
236
237 if (!is_gvt_request(req)) {
238 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240 scheduler->engine_owner[ring_id]) {
241 /* Switch ring from vGPU to host. */
242 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243 NULL, ring_id);
244 scheduler->engine_owner[ring_id] = NULL;
245 }
246 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247
248 return NOTIFY_OK;
249 }
250
251 workload = scheduler->current_workload[ring_id];
252 if (unlikely(!workload))
253 return NOTIFY_OK;
254
255 switch (action) {
256 case INTEL_CONTEXT_SCHEDULE_IN:
257 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259 /* Switch ring from host to vGPU or vGPU to vGPU. */
260 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261 workload->vgpu, ring_id);
262 scheduler->engine_owner[ring_id] = workload->vgpu;
263 } else
264 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265 ring_id, workload->vgpu->id);
266 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267 atomic_set(&workload->shadow_ctx_active, 1);
268 break;
269 case INTEL_CONTEXT_SCHEDULE_OUT:
270 save_ring_hw_state(workload->vgpu, ring_id);
271 atomic_set(&workload->shadow_ctx_active, 0);
272 break;
273 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274 save_ring_hw_state(workload->vgpu, ring_id);
275 break;
276 default:
277 WARN_ON(1);
278 return NOTIFY_OK;
279 }
280 wake_up(&workload->shadow_ctx_status_wq);
281 return NOTIFY_OK;
282 }
283
284 static void
285 shadow_context_descriptor_update(struct intel_context *ce,
286 struct intel_vgpu_workload *workload)
287 {
288 u64 desc = ce->lrc_desc;
289
290 /*
291 * Update bits 0-11 of the context descriptor which includes flags
292 * like GEN8_CTX_* cached in desc_template
293 */
294 desc &= U64_MAX << 12;
295 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
296
297 desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
298 desc |= workload->ctx_desc.addressing_mode <<
299 GEN8_CTX_ADDRESSING_MODE_SHIFT;
300
301 ce->lrc_desc = desc;
302 }
303
304 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
305 {
306 struct intel_vgpu *vgpu = workload->vgpu;
307 struct i915_request *req = workload->req;
308 void *shadow_ring_buffer_va;
309 u32 *cs;
310 int err;
311
312 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
313 intel_vgpu_restore_inhibit_context(vgpu, req);
314
315 /*
316 * To track whether a request has started on HW, we can emit a
317 * breadcrumb at the beginning of the request and check its
318 * timeline's HWSP to see if the breadcrumb has advanced past the
319 * start of this request. Actually, the request must have the
320 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
321 * scheduler might get a wrong state of it during reset. Since the
322 * requests from gvt always set the has_init_breadcrumb flag, here
323 * need to do the emit_init_breadcrumb for all the requests.
324 */
325 if (req->engine->emit_init_breadcrumb) {
326 err = req->engine->emit_init_breadcrumb(req);
327 if (err) {
328 gvt_vgpu_err("fail to emit init breadcrumb\n");
329 return err;
330 }
331 }
332
333 /* allocate shadow ring buffer */
334 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
335 if (IS_ERR(cs)) {
336 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
337 workload->rb_len);
338 return PTR_ERR(cs);
339 }
340
341 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
342
343 /* get shadow ring buffer va */
344 workload->shadow_ring_buffer_va = cs;
345
346 memcpy(cs, shadow_ring_buffer_va,
347 workload->rb_len);
348
349 cs += workload->rb_len / sizeof(u32);
350 intel_ring_advance(workload->req, cs);
351
352 return 0;
353 }
354
355 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
356 {
357 if (!wa_ctx->indirect_ctx.obj)
358 return;
359
360 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
361 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
362
363 wa_ctx->indirect_ctx.obj = NULL;
364 wa_ctx->indirect_ctx.shadow_va = NULL;
365 }
366
367 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
368 struct i915_gem_context *ctx)
369 {
370 struct intel_vgpu_mm *mm = workload->shadow_mm;
371 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
372 int i = 0;
373
374 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
375 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
376 } else {
377 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
378 struct i915_page_directory * const pd =
379 i915_pd_entry(ppgtt->pd, i);
380
381 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
382 }
383 }
384 }
385
386 static int
387 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
388 {
389 struct intel_vgpu *vgpu = workload->vgpu;
390 struct intel_vgpu_submission *s = &vgpu->submission;
391 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
392 struct i915_request *rq;
393
394 lockdep_assert_held(&dev_priv->drm.struct_mutex);
395
396 if (workload->req)
397 return 0;
398
399 rq = i915_request_create(s->shadow[workload->ring_id]);
400 if (IS_ERR(rq)) {
401 gvt_vgpu_err("fail to allocate gem request\n");
402 return PTR_ERR(rq);
403 }
404
405 workload->req = i915_request_get(rq);
406 return 0;
407 }
408
409 /**
410 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
411 * shadow it as well, include ringbuffer,wa_ctx and ctx.
412 * @workload: an abstract entity for each execlist submission.
413 *
414 * This function is called before the workload submitting to i915, to make
415 * sure the content of the workload is valid.
416 */
417 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
418 {
419 struct intel_vgpu *vgpu = workload->vgpu;
420 struct intel_vgpu_submission *s = &vgpu->submission;
421 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
422 int ret;
423
424 lockdep_assert_held(&dev_priv->drm.struct_mutex);
425
426 if (workload->shadow)
427 return 0;
428
429 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
430 shadow_context_descriptor_update(s->shadow[workload->ring_id],
431 workload);
432
433 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
434 if (ret)
435 return ret;
436
437 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
438 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
439 if (ret)
440 goto err_shadow;
441 }
442
443 workload->shadow = true;
444 return 0;
445 err_shadow:
446 release_shadow_wa_ctx(&workload->wa_ctx);
447 return ret;
448 }
449
450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
451
452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
453 {
454 struct intel_gvt *gvt = workload->vgpu->gvt;
455 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
456 struct intel_vgpu_shadow_bb *bb;
457 int ret;
458
459 list_for_each_entry(bb, &workload->shadow_bb, list) {
460 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
461 * is only updated into ring_scan_buffer, not real ring address
462 * allocated in later copy_workload_to_ring_buffer. pls be noted
463 * shadow_ring_buffer_va is now pointed to real ring buffer va
464 * in copy_workload_to_ring_buffer.
465 */
466
467 if (bb->bb_offset)
468 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
469 + bb->bb_offset;
470
471 if (bb->ppgtt) {
472 /* for non-priv bb, scan&shadow is only for
473 * debugging purpose, so the content of shadow bb
474 * is the same as original bb. Therefore,
475 * here, rather than switch to shadow bb's gma
476 * address, we directly use original batch buffer's
477 * gma address, and send original bb to hardware
478 * directly
479 */
480 if (bb->clflush & CLFLUSH_AFTER) {
481 drm_clflush_virt_range(bb->va,
482 bb->obj->base.size);
483 bb->clflush &= ~CLFLUSH_AFTER;
484 }
485 i915_gem_object_finish_access(bb->obj);
486 bb->accessing = false;
487
488 } else {
489 bb->vma = i915_gem_object_ggtt_pin(bb->obj,
490 NULL, 0, 0, 0);
491 if (IS_ERR(bb->vma)) {
492 ret = PTR_ERR(bb->vma);
493 goto err;
494 }
495
496 /* relocate shadow batch buffer */
497 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
498 if (gmadr_bytes == 8)
499 bb->bb_start_cmd_va[2] = 0;
500
501 /* No one is going to touch shadow bb from now on. */
502 if (bb->clflush & CLFLUSH_AFTER) {
503 drm_clflush_virt_range(bb->va,
504 bb->obj->base.size);
505 bb->clflush &= ~CLFLUSH_AFTER;
506 }
507
508 ret = i915_gem_object_set_to_gtt_domain(bb->obj,
509 false);
510 if (ret)
511 goto err;
512
513 ret = i915_vma_move_to_active(bb->vma,
514 workload->req,
515 0);
516 if (ret)
517 goto err;
518
519 i915_gem_object_finish_access(bb->obj);
520 bb->accessing = false;
521 }
522 }
523 return 0;
524 err:
525 release_shadow_batch_buffer(workload);
526 return ret;
527 }
528
529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
530 {
531 struct intel_vgpu_workload *workload =
532 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
533 struct i915_request *rq = workload->req;
534 struct execlist_ring_context *shadow_ring_context =
535 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
536
537 shadow_ring_context->bb_per_ctx_ptr.val =
538 (shadow_ring_context->bb_per_ctx_ptr.val &
539 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
540 shadow_ring_context->rcs_indirect_ctx.val =
541 (shadow_ring_context->rcs_indirect_ctx.val &
542 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
543 }
544
545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
546 {
547 struct i915_vma *vma;
548 unsigned char *per_ctx_va =
549 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
550 wa_ctx->indirect_ctx.size;
551
552 if (wa_ctx->indirect_ctx.size == 0)
553 return 0;
554
555 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
556 0, CACHELINE_BYTES, 0);
557 if (IS_ERR(vma))
558 return PTR_ERR(vma);
559
560 /* FIXME: we are not tracking our pinned VMA leaving it
561 * up to the core to fix up the stray pin_count upon
562 * free.
563 */
564
565 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
566
567 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
568 memset(per_ctx_va, 0, CACHELINE_BYTES);
569
570 update_wa_ctx_2_shadow_ctx(wa_ctx);
571 return 0;
572 }
573
574 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
575 {
576 struct intel_vgpu *vgpu = workload->vgpu;
577 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
578 struct intel_vgpu_shadow_bb *bb, *pos;
579
580 if (list_empty(&workload->shadow_bb))
581 return;
582
583 bb = list_first_entry(&workload->shadow_bb,
584 struct intel_vgpu_shadow_bb, list);
585
586 mutex_lock(&dev_priv->drm.struct_mutex);
587
588 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
589 if (bb->obj) {
590 if (bb->accessing)
591 i915_gem_object_finish_access(bb->obj);
592
593 if (bb->va && !IS_ERR(bb->va))
594 i915_gem_object_unpin_map(bb->obj);
595
596 if (bb->vma && !IS_ERR(bb->vma)) {
597 i915_vma_unpin(bb->vma);
598 i915_vma_close(bb->vma);
599 }
600 i915_gem_object_put(bb->obj);
601 }
602 list_del(&bb->list);
603 kfree(bb);
604 }
605
606 mutex_unlock(&dev_priv->drm.struct_mutex);
607 }
608
609 static int prepare_workload(struct intel_vgpu_workload *workload)
610 {
611 struct intel_vgpu *vgpu = workload->vgpu;
612 struct intel_vgpu_submission *s = &vgpu->submission;
613 int ring = workload->ring_id;
614 int ret = 0;
615
616 ret = intel_vgpu_pin_mm(workload->shadow_mm);
617 if (ret) {
618 gvt_vgpu_err("fail to vgpu pin mm\n");
619 return ret;
620 }
621
622 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
623 !workload->shadow_mm->ppgtt_mm.shadowed) {
624 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
625 return -EINVAL;
626 }
627
628 update_shadow_pdps(workload);
629
630 set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context);
631
632 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
633 if (ret) {
634 gvt_vgpu_err("fail to vgpu sync oos pages\n");
635 goto err_unpin_mm;
636 }
637
638 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
639 if (ret) {
640 gvt_vgpu_err("fail to flush post shadow\n");
641 goto err_unpin_mm;
642 }
643
644 ret = copy_workload_to_ring_buffer(workload);
645 if (ret) {
646 gvt_vgpu_err("fail to generate request\n");
647 goto err_unpin_mm;
648 }
649
650 ret = prepare_shadow_batch_buffer(workload);
651 if (ret) {
652 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
653 goto err_unpin_mm;
654 }
655
656 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
657 if (ret) {
658 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
659 goto err_shadow_batch;
660 }
661
662 if (workload->prepare) {
663 ret = workload->prepare(workload);
664 if (ret)
665 goto err_shadow_wa_ctx;
666 }
667
668 return 0;
669 err_shadow_wa_ctx:
670 release_shadow_wa_ctx(&workload->wa_ctx);
671 err_shadow_batch:
672 release_shadow_batch_buffer(workload);
673 err_unpin_mm:
674 intel_vgpu_unpin_mm(workload->shadow_mm);
675 return ret;
676 }
677
678 static int dispatch_workload(struct intel_vgpu_workload *workload)
679 {
680 struct intel_vgpu *vgpu = workload->vgpu;
681 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
682 struct i915_request *rq;
683 int ring_id = workload->ring_id;
684 int ret;
685
686 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
687 ring_id, workload);
688
689 mutex_lock(&vgpu->vgpu_lock);
690 mutex_lock(&dev_priv->drm.struct_mutex);
691
692 ret = intel_gvt_workload_req_alloc(workload);
693 if (ret)
694 goto err_req;
695
696 ret = intel_gvt_scan_and_shadow_workload(workload);
697 if (ret)
698 goto out;
699
700 ret = populate_shadow_context(workload);
701 if (ret) {
702 release_shadow_wa_ctx(&workload->wa_ctx);
703 goto out;
704 }
705
706 ret = prepare_workload(workload);
707 out:
708 if (ret) {
709 /* We might still need to add request with
710 * clean ctx to retire it properly..
711 */
712 rq = fetch_and_zero(&workload->req);
713 i915_request_put(rq);
714 }
715
716 if (!IS_ERR_OR_NULL(workload->req)) {
717 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
718 ring_id, workload->req);
719 i915_request_add(workload->req);
720 workload->dispatched = true;
721 }
722 err_req:
723 if (ret)
724 workload->status = ret;
725 mutex_unlock(&dev_priv->drm.struct_mutex);
726 mutex_unlock(&vgpu->vgpu_lock);
727 return ret;
728 }
729
730 static struct intel_vgpu_workload *pick_next_workload(
731 struct intel_gvt *gvt, int ring_id)
732 {
733 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
734 struct intel_vgpu_workload *workload = NULL;
735
736 mutex_lock(&gvt->sched_lock);
737
738 /*
739 * no current vgpu / will be scheduled out / no workload
740 * bail out
741 */
742 if (!scheduler->current_vgpu) {
743 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
744 goto out;
745 }
746
747 if (scheduler->need_reschedule) {
748 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
749 goto out;
750 }
751
752 if (!scheduler->current_vgpu->active ||
753 list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
754 goto out;
755
756 /*
757 * still have current workload, maybe the workload disptacher
758 * fail to submit it for some reason, resubmit it.
759 */
760 if (scheduler->current_workload[ring_id]) {
761 workload = scheduler->current_workload[ring_id];
762 gvt_dbg_sched("ring id %d still have current workload %p\n",
763 ring_id, workload);
764 goto out;
765 }
766
767 /*
768 * pick a workload as current workload
769 * once current workload is set, schedule policy routines
770 * will wait the current workload is finished when trying to
771 * schedule out a vgpu.
772 */
773 scheduler->current_workload[ring_id] = container_of(
774 workload_q_head(scheduler->current_vgpu, ring_id)->next,
775 struct intel_vgpu_workload, list);
776
777 workload = scheduler->current_workload[ring_id];
778
779 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
780
781 atomic_inc(&workload->vgpu->submission.running_workload_num);
782 out:
783 mutex_unlock(&gvt->sched_lock);
784 return workload;
785 }
786
787 static void update_guest_context(struct intel_vgpu_workload *workload)
788 {
789 struct i915_request *rq = workload->req;
790 struct intel_vgpu *vgpu = workload->vgpu;
791 struct intel_gvt *gvt = vgpu->gvt;
792 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
793 struct execlist_ring_context *shadow_ring_context;
794 struct page *page;
795 void *src;
796 unsigned long context_gpa, context_page_num;
797 int i;
798 struct drm_i915_private *dev_priv = gvt->dev_priv;
799 u32 ring_base;
800 u32 head, tail;
801 u16 wrap_count;
802
803 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
804 workload->ctx_desc.lrca);
805
806 head = workload->rb_head;
807 tail = workload->rb_tail;
808 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
809
810 if (tail < head) {
811 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
812 wrap_count = 0;
813 else
814 wrap_count += 1;
815 }
816
817 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
818
819 ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
820 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
821 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
822
823 context_page_num = rq->engine->context_size;
824 context_page_num = context_page_num >> PAGE_SHIFT;
825
826 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
827 context_page_num = 19;
828
829 i = 2;
830
831 while (i < context_page_num) {
832 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
833 (u32)((workload->ctx_desc.lrca + i) <<
834 I915_GTT_PAGE_SHIFT));
835 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
836 gvt_vgpu_err("invalid guest context descriptor\n");
837 return;
838 }
839
840 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
841 src = kmap(page);
842 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
843 I915_GTT_PAGE_SIZE);
844 kunmap(page);
845 i++;
846 }
847
848 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
849 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
850
851 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
852 shadow_ring_context = kmap(page);
853
854 #define COPY_REG(name) \
855 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
856 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
857
858 COPY_REG(ctx_ctrl);
859 COPY_REG(ctx_timestamp);
860
861 #undef COPY_REG
862
863 intel_gvt_hypervisor_write_gpa(vgpu,
864 workload->ring_context_gpa +
865 sizeof(*shadow_ring_context),
866 (void *)shadow_ring_context +
867 sizeof(*shadow_ring_context),
868 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
869
870 kunmap(page);
871 }
872
873 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
874 intel_engine_mask_t engine_mask)
875 {
876 struct intel_vgpu_submission *s = &vgpu->submission;
877 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
878 struct intel_engine_cs *engine;
879 struct intel_vgpu_workload *pos, *n;
880 intel_engine_mask_t tmp;
881
882 /* free the unsubmited workloads in the queues. */
883 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
884 list_for_each_entry_safe(pos, n,
885 &s->workload_q_head[engine->id], list) {
886 list_del_init(&pos->list);
887 intel_vgpu_destroy_workload(pos);
888 }
889 clear_bit(engine->id, s->shadow_ctx_desc_updated);
890 }
891 }
892
893 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
894 {
895 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
896 struct intel_vgpu_workload *workload =
897 scheduler->current_workload[ring_id];
898 struct intel_vgpu *vgpu = workload->vgpu;
899 struct intel_vgpu_submission *s = &vgpu->submission;
900 struct i915_request *rq = workload->req;
901 int event;
902
903 mutex_lock(&vgpu->vgpu_lock);
904 mutex_lock(&gvt->sched_lock);
905
906 /* For the workload w/ request, needs to wait for the context
907 * switch to make sure request is completed.
908 * For the workload w/o request, directly complete the workload.
909 */
910 if (rq) {
911 wait_event(workload->shadow_ctx_status_wq,
912 !atomic_read(&workload->shadow_ctx_active));
913
914 /* If this request caused GPU hang, req->fence.error will
915 * be set to -EIO. Use -EIO to set workload status so
916 * that when this request caused GPU hang, didn't trigger
917 * context switch interrupt to guest.
918 */
919 if (likely(workload->status == -EINPROGRESS)) {
920 if (workload->req->fence.error == -EIO)
921 workload->status = -EIO;
922 else
923 workload->status = 0;
924 }
925
926 if (!workload->status &&
927 !(vgpu->resetting_eng & BIT(ring_id))) {
928 update_guest_context(workload);
929
930 for_each_set_bit(event, workload->pending_events,
931 INTEL_GVT_EVENT_MAX)
932 intel_vgpu_trigger_virtual_event(vgpu, event);
933 }
934
935 i915_request_put(fetch_and_zero(&workload->req));
936 }
937
938 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
939 ring_id, workload, workload->status);
940
941 scheduler->current_workload[ring_id] = NULL;
942
943 list_del_init(&workload->list);
944
945 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
946 /* if workload->status is not successful means HW GPU
947 * has occurred GPU hang or something wrong with i915/GVT,
948 * and GVT won't inject context switch interrupt to guest.
949 * So this error is a vGPU hang actually to the guest.
950 * According to this we should emunlate a vGPU hang. If
951 * there are pending workloads which are already submitted
952 * from guest, we should clean them up like HW GPU does.
953 *
954 * if it is in middle of engine resetting, the pending
955 * workloads won't be submitted to HW GPU and will be
956 * cleaned up during the resetting process later, so doing
957 * the workload clean up here doesn't have any impact.
958 **/
959 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
960 }
961
962 workload->complete(workload);
963
964 atomic_dec(&s->running_workload_num);
965 wake_up(&scheduler->workload_complete_wq);
966
967 if (gvt->scheduler.need_reschedule)
968 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
969
970 mutex_unlock(&gvt->sched_lock);
971 mutex_unlock(&vgpu->vgpu_lock);
972 }
973
974 struct workload_thread_param {
975 struct intel_gvt *gvt;
976 int ring_id;
977 };
978
979 static int workload_thread(void *priv)
980 {
981 struct workload_thread_param *p = (struct workload_thread_param *)priv;
982 struct intel_gvt *gvt = p->gvt;
983 int ring_id = p->ring_id;
984 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
985 struct intel_vgpu_workload *workload = NULL;
986 struct intel_vgpu *vgpu = NULL;
987 int ret;
988 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
989 DEFINE_WAIT_FUNC(wait, woken_wake_function);
990 struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
991
992 kfree(p);
993
994 gvt_dbg_core("workload thread for ring %d started\n", ring_id);
995
996 while (!kthread_should_stop()) {
997 add_wait_queue(&scheduler->waitq[ring_id], &wait);
998 do {
999 workload = pick_next_workload(gvt, ring_id);
1000 if (workload)
1001 break;
1002 wait_woken(&wait, TASK_INTERRUPTIBLE,
1003 MAX_SCHEDULE_TIMEOUT);
1004 } while (!kthread_should_stop());
1005 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1006
1007 if (!workload)
1008 break;
1009
1010 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1011 workload->ring_id, workload,
1012 workload->vgpu->id);
1013
1014 intel_runtime_pm_get(rpm);
1015
1016 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1017 workload->ring_id, workload);
1018
1019 if (need_force_wake)
1020 intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1021 FORCEWAKE_ALL);
1022
1023 ret = dispatch_workload(workload);
1024
1025 if (ret) {
1026 vgpu = workload->vgpu;
1027 gvt_vgpu_err("fail to dispatch workload, skip\n");
1028 goto complete;
1029 }
1030
1031 gvt_dbg_sched("ring id %d wait workload %p\n",
1032 workload->ring_id, workload);
1033 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1034
1035 complete:
1036 gvt_dbg_sched("will complete workload %p, status: %d\n",
1037 workload, workload->status);
1038
1039 complete_current_workload(gvt, ring_id);
1040
1041 if (need_force_wake)
1042 intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1043 FORCEWAKE_ALL);
1044
1045 intel_runtime_pm_put_unchecked(rpm);
1046 if (ret && (vgpu_is_vm_unhealthy(ret)))
1047 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1048 }
1049 return 0;
1050 }
1051
1052 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1053 {
1054 struct intel_vgpu_submission *s = &vgpu->submission;
1055 struct intel_gvt *gvt = vgpu->gvt;
1056 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1057
1058 if (atomic_read(&s->running_workload_num)) {
1059 gvt_dbg_sched("wait vgpu idle\n");
1060
1061 wait_event(scheduler->workload_complete_wq,
1062 !atomic_read(&s->running_workload_num));
1063 }
1064 }
1065
1066 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1067 {
1068 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1069 struct intel_engine_cs *engine;
1070 enum intel_engine_id i;
1071
1072 gvt_dbg_core("clean workload scheduler\n");
1073
1074 for_each_engine(engine, gvt->dev_priv, i) {
1075 atomic_notifier_chain_unregister(
1076 &engine->context_status_notifier,
1077 &gvt->shadow_ctx_notifier_block[i]);
1078 kthread_stop(scheduler->thread[i]);
1079 }
1080 }
1081
1082 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1083 {
1084 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1085 struct workload_thread_param *param = NULL;
1086 struct intel_engine_cs *engine;
1087 enum intel_engine_id i;
1088 int ret;
1089
1090 gvt_dbg_core("init workload scheduler\n");
1091
1092 init_waitqueue_head(&scheduler->workload_complete_wq);
1093
1094 for_each_engine(engine, gvt->dev_priv, i) {
1095 init_waitqueue_head(&scheduler->waitq[i]);
1096
1097 param = kzalloc(sizeof(*param), GFP_KERNEL);
1098 if (!param) {
1099 ret = -ENOMEM;
1100 goto err;
1101 }
1102
1103 param->gvt = gvt;
1104 param->ring_id = i;
1105
1106 scheduler->thread[i] = kthread_run(workload_thread, param,
1107 "gvt workload %d", i);
1108 if (IS_ERR(scheduler->thread[i])) {
1109 gvt_err("fail to create workload thread\n");
1110 ret = PTR_ERR(scheduler->thread[i]);
1111 goto err;
1112 }
1113
1114 gvt->shadow_ctx_notifier_block[i].notifier_call =
1115 shadow_context_status_change;
1116 atomic_notifier_chain_register(&engine->context_status_notifier,
1117 &gvt->shadow_ctx_notifier_block[i]);
1118 }
1119 return 0;
1120 err:
1121 intel_gvt_clean_workload_scheduler(gvt);
1122 kfree(param);
1123 param = NULL;
1124 return ret;
1125 }
1126
1127 static void
1128 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1129 struct i915_ppgtt *ppgtt)
1130 {
1131 int i;
1132
1133 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1134 px_dma(ppgtt->pd) = s->i915_context_pml4;
1135 } else {
1136 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1137 struct i915_page_directory * const pd =
1138 i915_pd_entry(ppgtt->pd, i);
1139
1140 px_dma(pd) = s->i915_context_pdps[i];
1141 }
1142 }
1143 }
1144
1145 /**
1146 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1147 * @vgpu: a vGPU
1148 *
1149 * This function is called when a vGPU is being destroyed.
1150 *
1151 */
1152 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1153 {
1154 struct intel_vgpu_submission *s = &vgpu->submission;
1155 struct intel_engine_cs *engine;
1156 enum intel_engine_id id;
1157
1158 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1159
1160 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->gem_context->vm));
1161 for_each_engine(engine, vgpu->gvt->dev_priv, id)
1162 intel_context_unpin(s->shadow[id]);
1163
1164 kmem_cache_destroy(s->workloads);
1165 }
1166
1167
1168 /**
1169 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1170 * @vgpu: a vGPU
1171 * @engine_mask: engines expected to be reset
1172 *
1173 * This function is called when a vGPU is being destroyed.
1174 *
1175 */
1176 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1177 intel_engine_mask_t engine_mask)
1178 {
1179 struct intel_vgpu_submission *s = &vgpu->submission;
1180
1181 if (!s->active)
1182 return;
1183
1184 intel_vgpu_clean_workloads(vgpu, engine_mask);
1185 s->ops->reset(vgpu, engine_mask);
1186 }
1187
1188 static void
1189 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1190 struct i915_ppgtt *ppgtt)
1191 {
1192 int i;
1193
1194 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1195 s->i915_context_pml4 = px_dma(ppgtt->pd);
1196 } else {
1197 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1198 struct i915_page_directory * const pd =
1199 i915_pd_entry(ppgtt->pd, i);
1200
1201 s->i915_context_pdps[i] = px_dma(pd);
1202 }
1203 }
1204 }
1205
1206 /**
1207 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1208 * @vgpu: a vGPU
1209 *
1210 * This function is called when a vGPU is being created.
1211 *
1212 * Returns:
1213 * Zero on success, negative error code if failed.
1214 *
1215 */
1216 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1217 {
1218 struct intel_vgpu_submission *s = &vgpu->submission;
1219 struct intel_engine_cs *engine;
1220 struct i915_gem_context *ctx;
1221 enum intel_engine_id i;
1222 int ret;
1223
1224 ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm);
1225 if (IS_ERR(ctx))
1226 return PTR_ERR(ctx);
1227
1228 i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1229
1230 for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1231 struct intel_context *ce;
1232
1233 INIT_LIST_HEAD(&s->workload_q_head[i]);
1234 s->shadow[i] = ERR_PTR(-EINVAL);
1235
1236 ce = i915_gem_context_get_engine(ctx, i);
1237 if (IS_ERR(ce)) {
1238 ret = PTR_ERR(ce);
1239 goto out_shadow_ctx;
1240 }
1241
1242 ret = intel_context_pin(ce);
1243 intel_context_put(ce);
1244 if (ret)
1245 goto out_shadow_ctx;
1246
1247 s->shadow[i] = ce;
1248 }
1249
1250 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1251
1252 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1253 sizeof(struct intel_vgpu_workload), 0,
1254 SLAB_HWCACHE_ALIGN,
1255 offsetof(struct intel_vgpu_workload, rb_tail),
1256 sizeof_field(struct intel_vgpu_workload, rb_tail),
1257 NULL);
1258
1259 if (!s->workloads) {
1260 ret = -ENOMEM;
1261 goto out_shadow_ctx;
1262 }
1263
1264 atomic_set(&s->running_workload_num, 0);
1265 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1266
1267 i915_gem_context_put(ctx);
1268 return 0;
1269
1270 out_shadow_ctx:
1271 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1272 for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1273 if (IS_ERR(s->shadow[i]))
1274 break;
1275
1276 intel_context_unpin(s->shadow[i]);
1277 }
1278 i915_gem_context_put(ctx);
1279 return ret;
1280 }
1281
1282 /**
1283 * intel_vgpu_select_submission_ops - select virtual submission interface
1284 * @vgpu: a vGPU
1285 * @engine_mask: either ALL_ENGINES or target engine mask
1286 * @interface: expected vGPU virtual submission interface
1287 *
1288 * This function is called when guest configures submission interface.
1289 *
1290 * Returns:
1291 * Zero on success, negative error code if failed.
1292 *
1293 */
1294 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1295 intel_engine_mask_t engine_mask,
1296 unsigned int interface)
1297 {
1298 struct intel_vgpu_submission *s = &vgpu->submission;
1299 const struct intel_vgpu_submission_ops *ops[] = {
1300 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1301 &intel_vgpu_execlist_submission_ops,
1302 };
1303 int ret;
1304
1305 if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1306 return -EINVAL;
1307
1308 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1309 return -EINVAL;
1310
1311 if (s->active)
1312 s->ops->clean(vgpu, engine_mask);
1313
1314 if (interface == 0) {
1315 s->ops = NULL;
1316 s->virtual_submission_interface = 0;
1317 s->active = false;
1318 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1319 return 0;
1320 }
1321
1322 ret = ops[interface]->init(vgpu, engine_mask);
1323 if (ret)
1324 return ret;
1325
1326 s->ops = ops[interface];
1327 s->virtual_submission_interface = interface;
1328 s->active = true;
1329
1330 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1331 vgpu->id, s->ops->name);
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * intel_vgpu_destroy_workload - destroy a vGPU workload
1338 * @workload: workload to destroy
1339 *
1340 * This function is called when destroy a vGPU workload.
1341 *
1342 */
1343 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1344 {
1345 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1346
1347 release_shadow_batch_buffer(workload);
1348 release_shadow_wa_ctx(&workload->wa_ctx);
1349
1350 if (workload->shadow_mm)
1351 intel_vgpu_mm_put(workload->shadow_mm);
1352
1353 kmem_cache_free(s->workloads, workload);
1354 }
1355
1356 static struct intel_vgpu_workload *
1357 alloc_workload(struct intel_vgpu *vgpu)
1358 {
1359 struct intel_vgpu_submission *s = &vgpu->submission;
1360 struct intel_vgpu_workload *workload;
1361
1362 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1363 if (!workload)
1364 return ERR_PTR(-ENOMEM);
1365
1366 INIT_LIST_HEAD(&workload->list);
1367 INIT_LIST_HEAD(&workload->shadow_bb);
1368
1369 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1370 atomic_set(&workload->shadow_ctx_active, 0);
1371
1372 workload->status = -EINPROGRESS;
1373 workload->vgpu = vgpu;
1374
1375 return workload;
1376 }
1377
1378 #define RING_CTX_OFF(x) \
1379 offsetof(struct execlist_ring_context, x)
1380
1381 static void read_guest_pdps(struct intel_vgpu *vgpu,
1382 u64 ring_context_gpa, u32 pdp[8])
1383 {
1384 u64 gpa;
1385 int i;
1386
1387 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1388
1389 for (i = 0; i < 8; i++)
1390 intel_gvt_hypervisor_read_gpa(vgpu,
1391 gpa + i * 8, &pdp[7 - i], 4);
1392 }
1393
1394 static int prepare_mm(struct intel_vgpu_workload *workload)
1395 {
1396 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1397 struct intel_vgpu_mm *mm;
1398 struct intel_vgpu *vgpu = workload->vgpu;
1399 enum intel_gvt_gtt_type root_entry_type;
1400 u64 pdps[GVT_RING_CTX_NR_PDPS];
1401
1402 switch (desc->addressing_mode) {
1403 case 1: /* legacy 32-bit */
1404 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1405 break;
1406 case 3: /* legacy 64-bit */
1407 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1408 break;
1409 default:
1410 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1411 return -EINVAL;
1412 }
1413
1414 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1415
1416 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1417 if (IS_ERR(mm))
1418 return PTR_ERR(mm);
1419
1420 workload->shadow_mm = mm;
1421 return 0;
1422 }
1423
1424 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1425 ((a)->lrca == (b)->lrca))
1426
1427 #define get_last_workload(q) \
1428 (list_empty(q) ? NULL : container_of(q->prev, \
1429 struct intel_vgpu_workload, list))
1430 /**
1431 * intel_vgpu_create_workload - create a vGPU workload
1432 * @vgpu: a vGPU
1433 * @ring_id: ring index
1434 * @desc: a guest context descriptor
1435 *
1436 * This function is called when creating a vGPU workload.
1437 *
1438 * Returns:
1439 * struct intel_vgpu_workload * on success, negative error code in
1440 * pointer if failed.
1441 *
1442 */
1443 struct intel_vgpu_workload *
1444 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1445 struct execlist_ctx_descriptor_format *desc)
1446 {
1447 struct intel_vgpu_submission *s = &vgpu->submission;
1448 struct list_head *q = workload_q_head(vgpu, ring_id);
1449 struct intel_vgpu_workload *last_workload = get_last_workload(q);
1450 struct intel_vgpu_workload *workload = NULL;
1451 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1452 u64 ring_context_gpa;
1453 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1454 u32 guest_head;
1455 int ret;
1456
1457 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1458 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1459 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1460 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1461 return ERR_PTR(-EINVAL);
1462 }
1463
1464 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1465 RING_CTX_OFF(ring_header.val), &head, 4);
1466
1467 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1468 RING_CTX_OFF(ring_tail.val), &tail, 4);
1469
1470 guest_head = head;
1471
1472 head &= RB_HEAD_OFF_MASK;
1473 tail &= RB_TAIL_OFF_MASK;
1474
1475 if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1476 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1477 gvt_dbg_el("ctx head %x real head %lx\n", head,
1478 last_workload->rb_tail);
1479 /*
1480 * cannot use guest context head pointer here,
1481 * as it might not be updated at this time
1482 */
1483 head = last_workload->rb_tail;
1484 }
1485
1486 gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1487
1488 /* record some ring buffer register values for scan and shadow */
1489 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1490 RING_CTX_OFF(rb_start.val), &start, 4);
1491 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1492 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1493 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1494 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1495
1496 if (!intel_gvt_ggtt_validate_range(vgpu, start,
1497 _RING_CTL_BUF_SIZE(ctl))) {
1498 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1499 return ERR_PTR(-EINVAL);
1500 }
1501
1502 workload = alloc_workload(vgpu);
1503 if (IS_ERR(workload))
1504 return workload;
1505
1506 workload->ring_id = ring_id;
1507 workload->ctx_desc = *desc;
1508 workload->ring_context_gpa = ring_context_gpa;
1509 workload->rb_head = head;
1510 workload->guest_rb_head = guest_head;
1511 workload->rb_tail = tail;
1512 workload->rb_start = start;
1513 workload->rb_ctl = ctl;
1514
1515 if (ring_id == RCS0) {
1516 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1517 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1518 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1519 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1520
1521 workload->wa_ctx.indirect_ctx.guest_gma =
1522 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1523 workload->wa_ctx.indirect_ctx.size =
1524 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1525 CACHELINE_BYTES;
1526
1527 if (workload->wa_ctx.indirect_ctx.size != 0) {
1528 if (!intel_gvt_ggtt_validate_range(vgpu,
1529 workload->wa_ctx.indirect_ctx.guest_gma,
1530 workload->wa_ctx.indirect_ctx.size)) {
1531 kmem_cache_free(s->workloads, workload);
1532 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1533 workload->wa_ctx.indirect_ctx.guest_gma);
1534 return ERR_PTR(-EINVAL);
1535 }
1536 }
1537
1538 workload->wa_ctx.per_ctx.guest_gma =
1539 per_ctx & PER_CTX_ADDR_MASK;
1540 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1541 if (workload->wa_ctx.per_ctx.valid) {
1542 if (!intel_gvt_ggtt_validate_range(vgpu,
1543 workload->wa_ctx.per_ctx.guest_gma,
1544 CACHELINE_BYTES)) {
1545 kmem_cache_free(s->workloads, workload);
1546 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1547 workload->wa_ctx.per_ctx.guest_gma);
1548 return ERR_PTR(-EINVAL);
1549 }
1550 }
1551 }
1552
1553 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1554 workload, ring_id, head, tail, start, ctl);
1555
1556 ret = prepare_mm(workload);
1557 if (ret) {
1558 kmem_cache_free(s->workloads, workload);
1559 return ERR_PTR(ret);
1560 }
1561
1562 /* Only scan and shadow the first workload in the queue
1563 * as there is only one pre-allocated buf-obj for shadow.
1564 */
1565 if (list_empty(workload_q_head(vgpu, ring_id))) {
1566 intel_runtime_pm_get(&dev_priv->runtime_pm);
1567 mutex_lock(&dev_priv->drm.struct_mutex);
1568 ret = intel_gvt_scan_and_shadow_workload(workload);
1569 mutex_unlock(&dev_priv->drm.struct_mutex);
1570 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1571 }
1572
1573 if (ret) {
1574 if (vgpu_is_vm_unhealthy(ret))
1575 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1576 intel_vgpu_destroy_workload(workload);
1577 return ERR_PTR(ret);
1578 }
1579
1580 return workload;
1581 }
1582
1583 /**
1584 * intel_vgpu_queue_workload - Qeue a vGPU workload
1585 * @workload: the workload to queue in
1586 */
1587 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1588 {
1589 list_add_tail(&workload->list,
1590 workload_q_head(workload->vgpu, workload->ring_id));
1591 intel_gvt_kick_schedule(workload->vgpu->gvt);
1592 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1593 }