]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge drm/drm-next into drm-intel-next-queued
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/sched/mm.h>
30 #include <linux/sort.h>
31
32 #include <drm/drm_debugfs.h>
33
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_gt_buffer_pool.h"
36 #include "gt/intel_gt_clock_utils.h"
37 #include "gt/intel_gt_pm.h"
38 #include "gt/intel_gt_requests.h"
39 #include "gt/intel_reset.h"
40 #include "gt/intel_rc6.h"
41 #include "gt/intel_rps.h"
42
43 #include "i915_debugfs.h"
44 #include "i915_debugfs_params.h"
45 #include "i915_irq.h"
46 #include "i915_trace.h"
47 #include "intel_pm.h"
48 #include "intel_sideband.h"
49
50 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
51 {
52 return to_i915(node->minor->dev);
53 }
54
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57 struct drm_i915_private *i915 = node_to_i915(m->private);
58 struct drm_printer p = drm_seq_file_printer(m);
59
60 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(i915));
61
62 intel_device_info_print_static(INTEL_INFO(i915), &p);
63 intel_device_info_print_runtime(RUNTIME_INFO(i915), &p);
64 intel_driver_caps_print(&i915->caps, &p);
65
66 kernel_param_lock(THIS_MODULE);
67 i915_params_dump(&i915->params, &p);
68 kernel_param_unlock(THIS_MODULE);
69
70 return 0;
71 }
72
73 static char get_tiling_flag(struct drm_i915_gem_object *obj)
74 {
75 switch (i915_gem_object_get_tiling(obj)) {
76 default:
77 case I915_TILING_NONE: return ' ';
78 case I915_TILING_X: return 'X';
79 case I915_TILING_Y: return 'Y';
80 }
81 }
82
83 static char get_global_flag(struct drm_i915_gem_object *obj)
84 {
85 return READ_ONCE(obj->userfault_count) ? 'g' : ' ';
86 }
87
88 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
89 {
90 return obj->mm.mapping ? 'M' : ' ';
91 }
92
93 static const char *
94 stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
95 {
96 size_t x = 0;
97
98 switch (page_sizes) {
99 case 0:
100 return "";
101 case I915_GTT_PAGE_SIZE_4K:
102 return "4K";
103 case I915_GTT_PAGE_SIZE_64K:
104 return "64K";
105 case I915_GTT_PAGE_SIZE_2M:
106 return "2M";
107 default:
108 if (!buf)
109 return "M";
110
111 if (page_sizes & I915_GTT_PAGE_SIZE_2M)
112 x += snprintf(buf + x, len - x, "2M, ");
113 if (page_sizes & I915_GTT_PAGE_SIZE_64K)
114 x += snprintf(buf + x, len - x, "64K, ");
115 if (page_sizes & I915_GTT_PAGE_SIZE_4K)
116 x += snprintf(buf + x, len - x, "4K, ");
117 buf[x-2] = '\0';
118
119 return buf;
120 }
121 }
122
123 void
124 i915_debugfs_describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
125 {
126 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
127 struct intel_engine_cs *engine;
128 struct i915_vma *vma;
129 int pin_count = 0;
130
131 seq_printf(m, "%pK: %c%c%c %8zdKiB %02x %02x %s%s%s",
132 &obj->base,
133 get_tiling_flag(obj),
134 get_global_flag(obj),
135 get_pin_mapped_flag(obj),
136 obj->base.size / 1024,
137 obj->read_domains,
138 obj->write_domain,
139 i915_cache_level_str(dev_priv, obj->cache_level),
140 obj->mm.dirty ? " dirty" : "",
141 obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 if (obj->base.name)
143 seq_printf(m, " (name: %d)", obj->base.name);
144
145 spin_lock(&obj->vma.lock);
146 list_for_each_entry(vma, &obj->vma.list, obj_link) {
147 if (!drm_mm_node_allocated(&vma->node))
148 continue;
149
150 spin_unlock(&obj->vma.lock);
151
152 if (i915_vma_is_pinned(vma))
153 pin_count++;
154
155 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
156 i915_vma_is_ggtt(vma) ? "g" : "pp",
157 vma->node.start, vma->node.size,
158 stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
159 if (i915_vma_is_ggtt(vma)) {
160 switch (vma->ggtt_view.type) {
161 case I915_GGTT_VIEW_NORMAL:
162 seq_puts(m, ", normal");
163 break;
164
165 case I915_GGTT_VIEW_PARTIAL:
166 seq_printf(m, ", partial [%08llx+%x]",
167 vma->ggtt_view.partial.offset << PAGE_SHIFT,
168 vma->ggtt_view.partial.size << PAGE_SHIFT);
169 break;
170
171 case I915_GGTT_VIEW_ROTATED:
172 seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
173 vma->ggtt_view.rotated.plane[0].width,
174 vma->ggtt_view.rotated.plane[0].height,
175 vma->ggtt_view.rotated.plane[0].stride,
176 vma->ggtt_view.rotated.plane[0].offset,
177 vma->ggtt_view.rotated.plane[1].width,
178 vma->ggtt_view.rotated.plane[1].height,
179 vma->ggtt_view.rotated.plane[1].stride,
180 vma->ggtt_view.rotated.plane[1].offset);
181 break;
182
183 case I915_GGTT_VIEW_REMAPPED:
184 seq_printf(m, ", remapped [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
185 vma->ggtt_view.remapped.plane[0].width,
186 vma->ggtt_view.remapped.plane[0].height,
187 vma->ggtt_view.remapped.plane[0].stride,
188 vma->ggtt_view.remapped.plane[0].offset,
189 vma->ggtt_view.remapped.plane[1].width,
190 vma->ggtt_view.remapped.plane[1].height,
191 vma->ggtt_view.remapped.plane[1].stride,
192 vma->ggtt_view.remapped.plane[1].offset);
193 break;
194
195 default:
196 MISSING_CASE(vma->ggtt_view.type);
197 break;
198 }
199 }
200 if (vma->fence)
201 seq_printf(m, " , fence: %d", vma->fence->id);
202 seq_puts(m, ")");
203
204 spin_lock(&obj->vma.lock);
205 }
206 spin_unlock(&obj->vma.lock);
207
208 seq_printf(m, " (pinned x %d)", pin_count);
209 if (obj->stolen)
210 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
211 if (i915_gem_object_is_framebuffer(obj))
212 seq_printf(m, " (fb)");
213
214 engine = i915_gem_object_last_write_engine(obj);
215 if (engine)
216 seq_printf(m, " (%s)", engine->name);
217 }
218
219 struct file_stats {
220 struct i915_address_space *vm;
221 unsigned long count;
222 u64 total;
223 u64 active, inactive;
224 u64 closed;
225 };
226
227 static int per_file_stats(int id, void *ptr, void *data)
228 {
229 struct drm_i915_gem_object *obj = ptr;
230 struct file_stats *stats = data;
231 struct i915_vma *vma;
232
233 if (!kref_get_unless_zero(&obj->base.refcount))
234 return 0;
235
236 stats->count++;
237 stats->total += obj->base.size;
238
239 spin_lock(&obj->vma.lock);
240 if (!stats->vm) {
241 for_each_ggtt_vma(vma, obj) {
242 if (!drm_mm_node_allocated(&vma->node))
243 continue;
244
245 if (i915_vma_is_active(vma))
246 stats->active += vma->node.size;
247 else
248 stats->inactive += vma->node.size;
249
250 if (i915_vma_is_closed(vma))
251 stats->closed += vma->node.size;
252 }
253 } else {
254 struct rb_node *p = obj->vma.tree.rb_node;
255
256 while (p) {
257 long cmp;
258
259 vma = rb_entry(p, typeof(*vma), obj_node);
260 cmp = i915_vma_compare(vma, stats->vm, NULL);
261 if (cmp == 0) {
262 if (drm_mm_node_allocated(&vma->node)) {
263 if (i915_vma_is_active(vma))
264 stats->active += vma->node.size;
265 else
266 stats->inactive += vma->node.size;
267
268 if (i915_vma_is_closed(vma))
269 stats->closed += vma->node.size;
270 }
271 break;
272 }
273 if (cmp < 0)
274 p = p->rb_right;
275 else
276 p = p->rb_left;
277 }
278 }
279 spin_unlock(&obj->vma.lock);
280
281 i915_gem_object_put(obj);
282 return 0;
283 }
284
285 #define print_file_stats(m, name, stats) do { \
286 if (stats.count) \
287 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu closed)\n", \
288 name, \
289 stats.count, \
290 stats.total, \
291 stats.active, \
292 stats.inactive, \
293 stats.closed); \
294 } while (0)
295
296 static void print_context_stats(struct seq_file *m,
297 struct drm_i915_private *i915)
298 {
299 struct file_stats kstats = {};
300 struct i915_gem_context *ctx, *cn;
301
302 spin_lock(&i915->gem.contexts.lock);
303 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
304 struct i915_gem_engines_iter it;
305 struct intel_context *ce;
306
307 if (!kref_get_unless_zero(&ctx->ref))
308 continue;
309
310 spin_unlock(&i915->gem.contexts.lock);
311
312 for_each_gem_engine(ce,
313 i915_gem_context_lock_engines(ctx), it) {
314 if (intel_context_pin_if_active(ce)) {
315 rcu_read_lock();
316 if (ce->state)
317 per_file_stats(0,
318 ce->state->obj, &kstats);
319 per_file_stats(0, ce->ring->vma->obj, &kstats);
320 rcu_read_unlock();
321 intel_context_unpin(ce);
322 }
323 }
324 i915_gem_context_unlock_engines(ctx);
325
326 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
327 struct file_stats stats = {
328 .vm = rcu_access_pointer(ctx->vm),
329 };
330 struct drm_file *file = ctx->file_priv->file;
331 struct task_struct *task;
332 char name[80];
333
334 rcu_read_lock();
335 idr_for_each(&file->object_idr, per_file_stats, &stats);
336 rcu_read_unlock();
337
338 rcu_read_lock();
339 task = pid_task(ctx->pid ?: file->pid, PIDTYPE_PID);
340 snprintf(name, sizeof(name), "%s",
341 task ? task->comm : "<unknown>");
342 rcu_read_unlock();
343
344 print_file_stats(m, name, stats);
345 }
346
347 spin_lock(&i915->gem.contexts.lock);
348 list_safe_reset_next(ctx, cn, link);
349 i915_gem_context_put(ctx);
350 }
351 spin_unlock(&i915->gem.contexts.lock);
352
353 print_file_stats(m, "[k]contexts", kstats);
354 }
355
356 static int i915_gem_object_info(struct seq_file *m, void *data)
357 {
358 struct drm_i915_private *i915 = node_to_i915(m->private);
359 struct intel_memory_region *mr;
360 enum intel_region_id id;
361
362 seq_printf(m, "%u shrinkable [%u free] objects, %llu bytes\n",
363 i915->mm.shrink_count,
364 atomic_read(&i915->mm.free_count),
365 i915->mm.shrink_memory);
366 for_each_memory_region(mr, i915, id)
367 seq_printf(m, "%s: total:%pa, available:%pa bytes\n",
368 mr->name, &mr->total, &mr->avail);
369 seq_putc(m, '\n');
370
371 print_context_stats(m, i915);
372
373 return 0;
374 }
375
376 static void gen8_display_interrupt_info(struct seq_file *m)
377 {
378 struct drm_i915_private *dev_priv = node_to_i915(m->private);
379 enum pipe pipe;
380
381 for_each_pipe(dev_priv, pipe) {
382 enum intel_display_power_domain power_domain;
383 intel_wakeref_t wakeref;
384
385 power_domain = POWER_DOMAIN_PIPE(pipe);
386 wakeref = intel_display_power_get_if_enabled(dev_priv,
387 power_domain);
388 if (!wakeref) {
389 seq_printf(m, "Pipe %c power disabled\n",
390 pipe_name(pipe));
391 continue;
392 }
393 seq_printf(m, "Pipe %c IMR:\t%08x\n",
394 pipe_name(pipe),
395 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
396 seq_printf(m, "Pipe %c IIR:\t%08x\n",
397 pipe_name(pipe),
398 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
399 seq_printf(m, "Pipe %c IER:\t%08x\n",
400 pipe_name(pipe),
401 I915_READ(GEN8_DE_PIPE_IER(pipe)));
402
403 intel_display_power_put(dev_priv, power_domain, wakeref);
404 }
405
406 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
407 I915_READ(GEN8_DE_PORT_IMR));
408 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
409 I915_READ(GEN8_DE_PORT_IIR));
410 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
411 I915_READ(GEN8_DE_PORT_IER));
412
413 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
414 I915_READ(GEN8_DE_MISC_IMR));
415 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
416 I915_READ(GEN8_DE_MISC_IIR));
417 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
418 I915_READ(GEN8_DE_MISC_IER));
419
420 seq_printf(m, "PCU interrupt mask:\t%08x\n",
421 I915_READ(GEN8_PCU_IMR));
422 seq_printf(m, "PCU interrupt identity:\t%08x\n",
423 I915_READ(GEN8_PCU_IIR));
424 seq_printf(m, "PCU interrupt enable:\t%08x\n",
425 I915_READ(GEN8_PCU_IER));
426 }
427
428 static int i915_interrupt_info(struct seq_file *m, void *data)
429 {
430 struct drm_i915_private *dev_priv = node_to_i915(m->private);
431 struct intel_engine_cs *engine;
432 intel_wakeref_t wakeref;
433 int i, pipe;
434
435 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
436
437 if (IS_CHERRYVIEW(dev_priv)) {
438 intel_wakeref_t pref;
439
440 seq_printf(m, "Master Interrupt Control:\t%08x\n",
441 I915_READ(GEN8_MASTER_IRQ));
442
443 seq_printf(m, "Display IER:\t%08x\n",
444 I915_READ(VLV_IER));
445 seq_printf(m, "Display IIR:\t%08x\n",
446 I915_READ(VLV_IIR));
447 seq_printf(m, "Display IIR_RW:\t%08x\n",
448 I915_READ(VLV_IIR_RW));
449 seq_printf(m, "Display IMR:\t%08x\n",
450 I915_READ(VLV_IMR));
451 for_each_pipe(dev_priv, pipe) {
452 enum intel_display_power_domain power_domain;
453
454 power_domain = POWER_DOMAIN_PIPE(pipe);
455 pref = intel_display_power_get_if_enabled(dev_priv,
456 power_domain);
457 if (!pref) {
458 seq_printf(m, "Pipe %c power disabled\n",
459 pipe_name(pipe));
460 continue;
461 }
462
463 seq_printf(m, "Pipe %c stat:\t%08x\n",
464 pipe_name(pipe),
465 I915_READ(PIPESTAT(pipe)));
466
467 intel_display_power_put(dev_priv, power_domain, pref);
468 }
469
470 pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
471 seq_printf(m, "Port hotplug:\t%08x\n",
472 I915_READ(PORT_HOTPLUG_EN));
473 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
474 I915_READ(VLV_DPFLIPSTAT));
475 seq_printf(m, "DPINVGTT:\t%08x\n",
476 I915_READ(DPINVGTT));
477 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);
478
479 for (i = 0; i < 4; i++) {
480 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
481 i, I915_READ(GEN8_GT_IMR(i)));
482 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
483 i, I915_READ(GEN8_GT_IIR(i)));
484 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
485 i, I915_READ(GEN8_GT_IER(i)));
486 }
487
488 seq_printf(m, "PCU interrupt mask:\t%08x\n",
489 I915_READ(GEN8_PCU_IMR));
490 seq_printf(m, "PCU interrupt identity:\t%08x\n",
491 I915_READ(GEN8_PCU_IIR));
492 seq_printf(m, "PCU interrupt enable:\t%08x\n",
493 I915_READ(GEN8_PCU_IER));
494 } else if (INTEL_GEN(dev_priv) >= 11) {
495 seq_printf(m, "Master Interrupt Control: %08x\n",
496 I915_READ(GEN11_GFX_MSTR_IRQ));
497
498 seq_printf(m, "Render/Copy Intr Enable: %08x\n",
499 I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
500 seq_printf(m, "VCS/VECS Intr Enable: %08x\n",
501 I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
502 seq_printf(m, "GUC/SG Intr Enable:\t %08x\n",
503 I915_READ(GEN11_GUC_SG_INTR_ENABLE));
504 seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
505 I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
506 seq_printf(m, "Crypto Intr Enable:\t %08x\n",
507 I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
508 seq_printf(m, "GUnit/CSME Intr Enable:\t %08x\n",
509 I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
510
511 seq_printf(m, "Display Interrupt Control:\t%08x\n",
512 I915_READ(GEN11_DISPLAY_INT_CTL));
513
514 gen8_display_interrupt_info(m);
515 } else if (INTEL_GEN(dev_priv) >= 8) {
516 seq_printf(m, "Master Interrupt Control:\t%08x\n",
517 I915_READ(GEN8_MASTER_IRQ));
518
519 for (i = 0; i < 4; i++) {
520 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
521 i, I915_READ(GEN8_GT_IMR(i)));
522 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
523 i, I915_READ(GEN8_GT_IIR(i)));
524 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
525 i, I915_READ(GEN8_GT_IER(i)));
526 }
527
528 gen8_display_interrupt_info(m);
529 } else if (IS_VALLEYVIEW(dev_priv)) {
530 intel_wakeref_t pref;
531
532 seq_printf(m, "Display IER:\t%08x\n",
533 I915_READ(VLV_IER));
534 seq_printf(m, "Display IIR:\t%08x\n",
535 I915_READ(VLV_IIR));
536 seq_printf(m, "Display IIR_RW:\t%08x\n",
537 I915_READ(VLV_IIR_RW));
538 seq_printf(m, "Display IMR:\t%08x\n",
539 I915_READ(VLV_IMR));
540 for_each_pipe(dev_priv, pipe) {
541 enum intel_display_power_domain power_domain;
542
543 power_domain = POWER_DOMAIN_PIPE(pipe);
544 pref = intel_display_power_get_if_enabled(dev_priv,
545 power_domain);
546 if (!pref) {
547 seq_printf(m, "Pipe %c power disabled\n",
548 pipe_name(pipe));
549 continue;
550 }
551
552 seq_printf(m, "Pipe %c stat:\t%08x\n",
553 pipe_name(pipe),
554 I915_READ(PIPESTAT(pipe)));
555 intel_display_power_put(dev_priv, power_domain, pref);
556 }
557
558 seq_printf(m, "Master IER:\t%08x\n",
559 I915_READ(VLV_MASTER_IER));
560
561 seq_printf(m, "Render IER:\t%08x\n",
562 I915_READ(GTIER));
563 seq_printf(m, "Render IIR:\t%08x\n",
564 I915_READ(GTIIR));
565 seq_printf(m, "Render IMR:\t%08x\n",
566 I915_READ(GTIMR));
567
568 seq_printf(m, "PM IER:\t\t%08x\n",
569 I915_READ(GEN6_PMIER));
570 seq_printf(m, "PM IIR:\t\t%08x\n",
571 I915_READ(GEN6_PMIIR));
572 seq_printf(m, "PM IMR:\t\t%08x\n",
573 I915_READ(GEN6_PMIMR));
574
575 pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
576 seq_printf(m, "Port hotplug:\t%08x\n",
577 I915_READ(PORT_HOTPLUG_EN));
578 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
579 I915_READ(VLV_DPFLIPSTAT));
580 seq_printf(m, "DPINVGTT:\t%08x\n",
581 I915_READ(DPINVGTT));
582 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);
583
584 } else if (!HAS_PCH_SPLIT(dev_priv)) {
585 seq_printf(m, "Interrupt enable: %08x\n",
586 I915_READ(GEN2_IER));
587 seq_printf(m, "Interrupt identity: %08x\n",
588 I915_READ(GEN2_IIR));
589 seq_printf(m, "Interrupt mask: %08x\n",
590 I915_READ(GEN2_IMR));
591 for_each_pipe(dev_priv, pipe)
592 seq_printf(m, "Pipe %c stat: %08x\n",
593 pipe_name(pipe),
594 I915_READ(PIPESTAT(pipe)));
595 } else {
596 seq_printf(m, "North Display Interrupt enable: %08x\n",
597 I915_READ(DEIER));
598 seq_printf(m, "North Display Interrupt identity: %08x\n",
599 I915_READ(DEIIR));
600 seq_printf(m, "North Display Interrupt mask: %08x\n",
601 I915_READ(DEIMR));
602 seq_printf(m, "South Display Interrupt enable: %08x\n",
603 I915_READ(SDEIER));
604 seq_printf(m, "South Display Interrupt identity: %08x\n",
605 I915_READ(SDEIIR));
606 seq_printf(m, "South Display Interrupt mask: %08x\n",
607 I915_READ(SDEIMR));
608 seq_printf(m, "Graphics Interrupt enable: %08x\n",
609 I915_READ(GTIER));
610 seq_printf(m, "Graphics Interrupt identity: %08x\n",
611 I915_READ(GTIIR));
612 seq_printf(m, "Graphics Interrupt mask: %08x\n",
613 I915_READ(GTIMR));
614 }
615
616 if (INTEL_GEN(dev_priv) >= 11) {
617 seq_printf(m, "RCS Intr Mask:\t %08x\n",
618 I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
619 seq_printf(m, "BCS Intr Mask:\t %08x\n",
620 I915_READ(GEN11_BCS_RSVD_INTR_MASK));
621 seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
622 I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
623 seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
624 I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
625 seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
626 I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
627 seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
628 I915_READ(GEN11_GUC_SG_INTR_MASK));
629 seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
630 I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
631 seq_printf(m, "Crypto Intr Mask:\t %08x\n",
632 I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
633 seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
634 I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
635
636 } else if (INTEL_GEN(dev_priv) >= 6) {
637 for_each_uabi_engine(engine, dev_priv) {
638 seq_printf(m,
639 "Graphics Interrupt mask (%s): %08x\n",
640 engine->name, ENGINE_READ(engine, RING_IMR));
641 }
642 }
643
644 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
645
646 return 0;
647 }
648
649 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
650 {
651 struct drm_i915_private *i915 = node_to_i915(m->private);
652 unsigned int i;
653
654 seq_printf(m, "Total fences = %d\n", i915->ggtt.num_fences);
655
656 rcu_read_lock();
657 for (i = 0; i < i915->ggtt.num_fences; i++) {
658 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
659 struct i915_vma *vma = reg->vma;
660
661 seq_printf(m, "Fence %d, pin count = %d, object = ",
662 i, atomic_read(&reg->pin_count));
663 if (!vma)
664 seq_puts(m, "unused");
665 else
666 i915_debugfs_describe_obj(m, vma->obj);
667 seq_putc(m, '\n');
668 }
669 rcu_read_unlock();
670
671 return 0;
672 }
673
674 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
675 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
676 size_t count, loff_t *pos)
677 {
678 struct i915_gpu_coredump *error;
679 ssize_t ret;
680 void *buf;
681
682 error = file->private_data;
683 if (!error)
684 return 0;
685
686 /* Bounce buffer required because of kernfs __user API convenience. */
687 buf = kmalloc(count, GFP_KERNEL);
688 if (!buf)
689 return -ENOMEM;
690
691 ret = i915_gpu_coredump_copy_to_buffer(error, buf, *pos, count);
692 if (ret <= 0)
693 goto out;
694
695 if (!copy_to_user(ubuf, buf, ret))
696 *pos += ret;
697 else
698 ret = -EFAULT;
699
700 out:
701 kfree(buf);
702 return ret;
703 }
704
705 static int gpu_state_release(struct inode *inode, struct file *file)
706 {
707 i915_gpu_coredump_put(file->private_data);
708 return 0;
709 }
710
711 static int i915_gpu_info_open(struct inode *inode, struct file *file)
712 {
713 struct drm_i915_private *i915 = inode->i_private;
714 struct i915_gpu_coredump *gpu;
715 intel_wakeref_t wakeref;
716
717 gpu = NULL;
718 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
719 gpu = i915_gpu_coredump(i915);
720 if (IS_ERR(gpu))
721 return PTR_ERR(gpu);
722
723 file->private_data = gpu;
724 return 0;
725 }
726
727 static const struct file_operations i915_gpu_info_fops = {
728 .owner = THIS_MODULE,
729 .open = i915_gpu_info_open,
730 .read = gpu_state_read,
731 .llseek = default_llseek,
732 .release = gpu_state_release,
733 };
734
735 static ssize_t
736 i915_error_state_write(struct file *filp,
737 const char __user *ubuf,
738 size_t cnt,
739 loff_t *ppos)
740 {
741 struct i915_gpu_coredump *error = filp->private_data;
742
743 if (!error)
744 return 0;
745
746 drm_dbg(&error->i915->drm, "Resetting error state\n");
747 i915_reset_error_state(error->i915);
748
749 return cnt;
750 }
751
752 static int i915_error_state_open(struct inode *inode, struct file *file)
753 {
754 struct i915_gpu_coredump *error;
755
756 error = i915_first_error_state(inode->i_private);
757 if (IS_ERR(error))
758 return PTR_ERR(error);
759
760 file->private_data = error;
761 return 0;
762 }
763
764 static const struct file_operations i915_error_state_fops = {
765 .owner = THIS_MODULE,
766 .open = i915_error_state_open,
767 .read = gpu_state_read,
768 .write = i915_error_state_write,
769 .llseek = default_llseek,
770 .release = gpu_state_release,
771 };
772 #endif
773
774 static int i915_frequency_info(struct seq_file *m, void *unused)
775 {
776 struct drm_i915_private *dev_priv = node_to_i915(m->private);
777 struct intel_uncore *uncore = &dev_priv->uncore;
778 struct intel_rps *rps = &dev_priv->gt.rps;
779 intel_wakeref_t wakeref;
780 int ret = 0;
781
782 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
783
784 if (IS_GEN(dev_priv, 5)) {
785 u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
786 u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK);
787
788 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
789 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
790 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
791 MEMSTAT_VID_SHIFT);
792 seq_printf(m, "Current P-state: %d\n",
793 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
794 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
795 u32 rpmodectl, freq_sts;
796
797 rpmodectl = I915_READ(GEN6_RP_CONTROL);
798 seq_printf(m, "Video Turbo Mode: %s\n",
799 yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
800 seq_printf(m, "HW control enabled: %s\n",
801 yesno(rpmodectl & GEN6_RP_ENABLE));
802 seq_printf(m, "SW control enabled: %s\n",
803 yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
804 GEN6_RP_MEDIA_SW_MODE));
805
806 vlv_punit_get(dev_priv);
807 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
808 vlv_punit_put(dev_priv);
809
810 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
811 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
812
813 seq_printf(m, "actual GPU freq: %d MHz\n",
814 intel_gpu_freq(rps, (freq_sts >> 8) & 0xff));
815
816 seq_printf(m, "current GPU freq: %d MHz\n",
817 intel_gpu_freq(rps, rps->cur_freq));
818
819 seq_printf(m, "max GPU freq: %d MHz\n",
820 intel_gpu_freq(rps, rps->max_freq));
821
822 seq_printf(m, "min GPU freq: %d MHz\n",
823 intel_gpu_freq(rps, rps->min_freq));
824
825 seq_printf(m, "idle GPU freq: %d MHz\n",
826 intel_gpu_freq(rps, rps->idle_freq));
827
828 seq_printf(m,
829 "efficient (RPe) frequency: %d MHz\n",
830 intel_gpu_freq(rps, rps->efficient_freq));
831 } else if (INTEL_GEN(dev_priv) >= 6) {
832 u32 rp_state_limits;
833 u32 gt_perf_status;
834 u32 rp_state_cap;
835 u32 rpmodectl, rpinclimit, rpdeclimit;
836 u32 rpstat, cagf, reqf;
837 u32 rpupei, rpcurup, rpprevup;
838 u32 rpdownei, rpcurdown, rpprevdown;
839 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
840 int max_freq;
841
842 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
843 if (IS_GEN9_LP(dev_priv)) {
844 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
845 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
846 } else {
847 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
848 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
849 }
850
851 /* RPSTAT1 is in the GT power well */
852 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
853
854 reqf = I915_READ(GEN6_RPNSWREQ);
855 if (INTEL_GEN(dev_priv) >= 9)
856 reqf >>= 23;
857 else {
858 reqf &= ~GEN6_TURBO_DISABLE;
859 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
860 reqf >>= 24;
861 else
862 reqf >>= 25;
863 }
864 reqf = intel_gpu_freq(rps, reqf);
865
866 rpmodectl = I915_READ(GEN6_RP_CONTROL);
867 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
868 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
869
870 rpstat = I915_READ(GEN6_RPSTAT1);
871 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
872 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
873 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
874 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
875 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
876 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
877 cagf = intel_rps_read_actual_frequency(rps);
878
879 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
880
881 if (INTEL_GEN(dev_priv) >= 11) {
882 pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE);
883 pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK);
884 /*
885 * The equivalent to the PM ISR & IIR cannot be read
886 * without affecting the current state of the system
887 */
888 pm_isr = 0;
889 pm_iir = 0;
890 } else if (INTEL_GEN(dev_priv) >= 8) {
891 pm_ier = I915_READ(GEN8_GT_IER(2));
892 pm_imr = I915_READ(GEN8_GT_IMR(2));
893 pm_isr = I915_READ(GEN8_GT_ISR(2));
894 pm_iir = I915_READ(GEN8_GT_IIR(2));
895 } else {
896 pm_ier = I915_READ(GEN6_PMIER);
897 pm_imr = I915_READ(GEN6_PMIMR);
898 pm_isr = I915_READ(GEN6_PMISR);
899 pm_iir = I915_READ(GEN6_PMIIR);
900 }
901 pm_mask = I915_READ(GEN6_PMINTRMSK);
902
903 seq_printf(m, "Video Turbo Mode: %s\n",
904 yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
905 seq_printf(m, "HW control enabled: %s\n",
906 yesno(rpmodectl & GEN6_RP_ENABLE));
907 seq_printf(m, "SW control enabled: %s\n",
908 yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
909 GEN6_RP_MEDIA_SW_MODE));
910
911 seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
912 pm_ier, pm_imr, pm_mask);
913 if (INTEL_GEN(dev_priv) <= 10)
914 seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n",
915 pm_isr, pm_iir);
916 seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
917 rps->pm_intrmsk_mbz);
918 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
919 seq_printf(m, "Render p-state ratio: %d\n",
920 (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
921 seq_printf(m, "Render p-state VID: %d\n",
922 gt_perf_status & 0xff);
923 seq_printf(m, "Render p-state limit: %d\n",
924 rp_state_limits & 0xff);
925 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
926 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
927 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
928 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
929 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
930 seq_printf(m, "CAGF: %dMHz\n", cagf);
931 seq_printf(m, "RP CUR UP EI: %d (%dns)\n",
932 rpupei,
933 intel_gt_pm_interval_to_ns(&dev_priv->gt, rpupei));
934 seq_printf(m, "RP CUR UP: %d (%dun)\n",
935 rpcurup,
936 intel_gt_pm_interval_to_ns(&dev_priv->gt, rpcurup));
937 seq_printf(m, "RP PREV UP: %d (%dns)\n",
938 rpprevup,
939 intel_gt_pm_interval_to_ns(&dev_priv->gt, rpprevup));
940 seq_printf(m, "Up threshold: %d%%\n",
941 rps->power.up_threshold);
942
943 seq_printf(m, "RP CUR DOWN EI: %d (%dns)\n",
944 rpdownei,
945 intel_gt_pm_interval_to_ns(&dev_priv->gt,
946 rpdownei));
947 seq_printf(m, "RP CUR DOWN: %d (%dns)\n",
948 rpcurdown,
949 intel_gt_pm_interval_to_ns(&dev_priv->gt,
950 rpcurdown));
951 seq_printf(m, "RP PREV DOWN: %d (%dns)\n",
952 rpprevdown,
953 intel_gt_pm_interval_to_ns(&dev_priv->gt,
954 rpprevdown));
955 seq_printf(m, "Down threshold: %d%%\n",
956 rps->power.down_threshold);
957
958 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
959 rp_state_cap >> 16) & 0xff;
960 max_freq *= (IS_GEN9_BC(dev_priv) ||
961 INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
962 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
963 intel_gpu_freq(rps, max_freq));
964
965 max_freq = (rp_state_cap & 0xff00) >> 8;
966 max_freq *= (IS_GEN9_BC(dev_priv) ||
967 INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
968 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
969 intel_gpu_freq(rps, max_freq));
970
971 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
972 rp_state_cap >> 0) & 0xff;
973 max_freq *= (IS_GEN9_BC(dev_priv) ||
974 INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
975 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
976 intel_gpu_freq(rps, max_freq));
977 seq_printf(m, "Max overclocked frequency: %dMHz\n",
978 intel_gpu_freq(rps, rps->max_freq));
979
980 seq_printf(m, "Current freq: %d MHz\n",
981 intel_gpu_freq(rps, rps->cur_freq));
982 seq_printf(m, "Actual freq: %d MHz\n", cagf);
983 seq_printf(m, "Idle freq: %d MHz\n",
984 intel_gpu_freq(rps, rps->idle_freq));
985 seq_printf(m, "Min freq: %d MHz\n",
986 intel_gpu_freq(rps, rps->min_freq));
987 seq_printf(m, "Boost freq: %d MHz\n",
988 intel_gpu_freq(rps, rps->boost_freq));
989 seq_printf(m, "Max freq: %d MHz\n",
990 intel_gpu_freq(rps, rps->max_freq));
991 seq_printf(m,
992 "efficient (RPe) frequency: %d MHz\n",
993 intel_gpu_freq(rps, rps->efficient_freq));
994 } else {
995 seq_puts(m, "no P-state info available\n");
996 }
997
998 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
999 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1000 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1001
1002 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1003 return ret;
1004 }
1005
1006 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1007 {
1008 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1009 struct intel_rps *rps = &dev_priv->gt.rps;
1010 unsigned int max_gpu_freq, min_gpu_freq;
1011 intel_wakeref_t wakeref;
1012 int gpu_freq, ia_freq;
1013
1014 if (!HAS_LLC(dev_priv))
1015 return -ENODEV;
1016
1017 min_gpu_freq = rps->min_freq;
1018 max_gpu_freq = rps->max_freq;
1019 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
1020 /* Convert GT frequency to 50 HZ units */
1021 min_gpu_freq /= GEN9_FREQ_SCALER;
1022 max_gpu_freq /= GEN9_FREQ_SCALER;
1023 }
1024
1025 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1026
1027 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1028 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1029 ia_freq = gpu_freq;
1030 sandybridge_pcode_read(dev_priv,
1031 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1032 &ia_freq, NULL);
1033 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1034 intel_gpu_freq(rps,
1035 (gpu_freq *
1036 (IS_GEN9_BC(dev_priv) ||
1037 INTEL_GEN(dev_priv) >= 10 ?
1038 GEN9_FREQ_SCALER : 1))),
1039 ((ia_freq >> 0) & 0xff) * 100,
1040 ((ia_freq >> 8) & 0xff) * 100);
1041 }
1042 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1043
1044 return 0;
1045 }
1046
1047 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1048 {
1049 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
1050 ring->space, ring->head, ring->tail, ring->emit);
1051 }
1052
1053 static int i915_context_status(struct seq_file *m, void *unused)
1054 {
1055 struct drm_i915_private *i915 = node_to_i915(m->private);
1056 struct i915_gem_context *ctx, *cn;
1057
1058 spin_lock(&i915->gem.contexts.lock);
1059 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
1060 struct i915_gem_engines_iter it;
1061 struct intel_context *ce;
1062
1063 if (!kref_get_unless_zero(&ctx->ref))
1064 continue;
1065
1066 spin_unlock(&i915->gem.contexts.lock);
1067
1068 seq_puts(m, "HW context ");
1069 if (ctx->pid) {
1070 struct task_struct *task;
1071
1072 task = get_pid_task(ctx->pid, PIDTYPE_PID);
1073 if (task) {
1074 seq_printf(m, "(%s [%d]) ",
1075 task->comm, task->pid);
1076 put_task_struct(task);
1077 }
1078 } else if (IS_ERR(ctx->file_priv)) {
1079 seq_puts(m, "(deleted) ");
1080 } else {
1081 seq_puts(m, "(kernel) ");
1082 }
1083
1084 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1085 seq_putc(m, '\n');
1086
1087 for_each_gem_engine(ce,
1088 i915_gem_context_lock_engines(ctx), it) {
1089 if (intel_context_pin_if_active(ce)) {
1090 seq_printf(m, "%s: ", ce->engine->name);
1091 if (ce->state)
1092 i915_debugfs_describe_obj(m, ce->state->obj);
1093 describe_ctx_ring(m, ce->ring);
1094 seq_putc(m, '\n');
1095 intel_context_unpin(ce);
1096 }
1097 }
1098 i915_gem_context_unlock_engines(ctx);
1099
1100 seq_putc(m, '\n');
1101
1102 spin_lock(&i915->gem.contexts.lock);
1103 list_safe_reset_next(ctx, cn, link);
1104 i915_gem_context_put(ctx);
1105 }
1106 spin_unlock(&i915->gem.contexts.lock);
1107
1108 return 0;
1109 }
1110
1111 static const char *swizzle_string(unsigned swizzle)
1112 {
1113 switch (swizzle) {
1114 case I915_BIT_6_SWIZZLE_NONE:
1115 return "none";
1116 case I915_BIT_6_SWIZZLE_9:
1117 return "bit9";
1118 case I915_BIT_6_SWIZZLE_9_10:
1119 return "bit9/bit10";
1120 case I915_BIT_6_SWIZZLE_9_11:
1121 return "bit9/bit11";
1122 case I915_BIT_6_SWIZZLE_9_10_11:
1123 return "bit9/bit10/bit11";
1124 case I915_BIT_6_SWIZZLE_9_17:
1125 return "bit9/bit17";
1126 case I915_BIT_6_SWIZZLE_9_10_17:
1127 return "bit9/bit10/bit17";
1128 case I915_BIT_6_SWIZZLE_UNKNOWN:
1129 return "unknown";
1130 }
1131
1132 return "bug";
1133 }
1134
1135 static int i915_swizzle_info(struct seq_file *m, void *data)
1136 {
1137 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1138 struct intel_uncore *uncore = &dev_priv->uncore;
1139 intel_wakeref_t wakeref;
1140
1141 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1142
1143 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1144 swizzle_string(dev_priv->ggtt.bit_6_swizzle_x));
1145 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1146 swizzle_string(dev_priv->ggtt.bit_6_swizzle_y));
1147
1148 if (IS_GEN_RANGE(dev_priv, 3, 4)) {
1149 seq_printf(m, "DDC = 0x%08x\n",
1150 intel_uncore_read(uncore, DCC));
1151 seq_printf(m, "DDC2 = 0x%08x\n",
1152 intel_uncore_read(uncore, DCC2));
1153 seq_printf(m, "C0DRB3 = 0x%04x\n",
1154 intel_uncore_read16(uncore, C0DRB3));
1155 seq_printf(m, "C1DRB3 = 0x%04x\n",
1156 intel_uncore_read16(uncore, C1DRB3));
1157 } else if (INTEL_GEN(dev_priv) >= 6) {
1158 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1159 intel_uncore_read(uncore, MAD_DIMM_C0));
1160 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1161 intel_uncore_read(uncore, MAD_DIMM_C1));
1162 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1163 intel_uncore_read(uncore, MAD_DIMM_C2));
1164 seq_printf(m, "TILECTL = 0x%08x\n",
1165 intel_uncore_read(uncore, TILECTL));
1166 if (INTEL_GEN(dev_priv) >= 8)
1167 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1168 intel_uncore_read(uncore, GAMTARBMODE));
1169 else
1170 seq_printf(m, "ARB_MODE = 0x%08x\n",
1171 intel_uncore_read(uncore, ARB_MODE));
1172 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1173 intel_uncore_read(uncore, DISP_ARB_CTL));
1174 }
1175
1176 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
1177 seq_puts(m, "L-shaped memory detected\n");
1178
1179 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1180
1181 return 0;
1182 }
1183
1184 static const char *rps_power_to_str(unsigned int power)
1185 {
1186 static const char * const strings[] = {
1187 [LOW_POWER] = "low power",
1188 [BETWEEN] = "mixed",
1189 [HIGH_POWER] = "high power",
1190 };
1191
1192 if (power >= ARRAY_SIZE(strings) || !strings[power])
1193 return "unknown";
1194
1195 return strings[power];
1196 }
1197
1198 static int i915_rps_boost_info(struct seq_file *m, void *data)
1199 {
1200 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1201 struct intel_rps *rps = &dev_priv->gt.rps;
1202
1203 seq_printf(m, "RPS enabled? %s\n", yesno(intel_rps_is_enabled(rps)));
1204 seq_printf(m, "RPS active? %s\n", yesno(intel_rps_is_active(rps)));
1205 seq_printf(m, "GPU busy? %s\n", yesno(dev_priv->gt.awake));
1206 seq_printf(m, "Boosts outstanding? %d\n",
1207 atomic_read(&rps->num_waiters));
1208 seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive));
1209 seq_printf(m, "Frequency requested %d, actual %d\n",
1210 intel_gpu_freq(rps, rps->cur_freq),
1211 intel_rps_read_actual_frequency(rps));
1212 seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
1213 intel_gpu_freq(rps, rps->min_freq),
1214 intel_gpu_freq(rps, rps->min_freq_softlimit),
1215 intel_gpu_freq(rps, rps->max_freq_softlimit),
1216 intel_gpu_freq(rps, rps->max_freq));
1217 seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
1218 intel_gpu_freq(rps, rps->idle_freq),
1219 intel_gpu_freq(rps, rps->efficient_freq),
1220 intel_gpu_freq(rps, rps->boost_freq));
1221
1222 seq_printf(m, "Wait boosts: %d\n", atomic_read(&rps->boosts));
1223
1224 if (INTEL_GEN(dev_priv) >= 6 && intel_rps_is_active(rps)) {
1225 u32 rpup, rpupei;
1226 u32 rpdown, rpdownei;
1227
1228 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1229 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
1230 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
1231 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
1232 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
1233 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1234
1235 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
1236 rps_power_to_str(rps->power.mode));
1237 seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
1238 rpup && rpupei ? 100 * rpup / rpupei : 0,
1239 rps->power.up_threshold);
1240 seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
1241 rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
1242 rps->power.down_threshold);
1243 } else {
1244 seq_puts(m, "\nRPS Autotuning inactive\n");
1245 }
1246
1247 return 0;
1248 }
1249
1250 static int i915_llc(struct seq_file *m, void *data)
1251 {
1252 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1253 const bool edram = INTEL_GEN(dev_priv) > 8;
1254
1255 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
1256 seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC",
1257 dev_priv->edram_size_mb);
1258
1259 return 0;
1260 }
1261
1262 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
1263 {
1264 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1265 struct pci_dev *pdev = dev_priv->drm.pdev;
1266
1267 if (!HAS_RUNTIME_PM(dev_priv))
1268 seq_puts(m, "Runtime power management not supported\n");
1269
1270 seq_printf(m, "Runtime power status: %s\n",
1271 enableddisabled(!dev_priv->power_domains.wakeref));
1272
1273 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
1274 seq_printf(m, "IRQs disabled: %s\n",
1275 yesno(!intel_irqs_enabled(dev_priv)));
1276 #ifdef CONFIG_PM
1277 seq_printf(m, "Usage count: %d\n",
1278 atomic_read(&dev_priv->drm.dev->power.usage_count));
1279 #else
1280 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
1281 #endif
1282 seq_printf(m, "PCI device power state: %s [%d]\n",
1283 pci_power_name(pdev->current_state),
1284 pdev->current_state);
1285
1286 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)) {
1287 struct drm_printer p = drm_seq_file_printer(m);
1288
1289 print_intel_runtime_pm_wakeref(&dev_priv->runtime_pm, &p);
1290 }
1291
1292 return 0;
1293 }
1294
1295 static int i915_engine_info(struct seq_file *m, void *unused)
1296 {
1297 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1298 struct intel_engine_cs *engine;
1299 intel_wakeref_t wakeref;
1300 struct drm_printer p;
1301
1302 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1303
1304 seq_printf(m, "GT awake? %s [%d]\n",
1305 yesno(dev_priv->gt.awake),
1306 atomic_read(&dev_priv->gt.wakeref.count));
1307 seq_printf(m, "CS timestamp frequency: %u Hz\n",
1308 RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_hz);
1309
1310 p = drm_seq_file_printer(m);
1311 for_each_uabi_engine(engine, dev_priv)
1312 intel_engine_dump(engine, &p, "%s\n", engine->name);
1313
1314 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1315
1316 return 0;
1317 }
1318
1319 static int i915_rcs_topology(struct seq_file *m, void *unused)
1320 {
1321 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1322 struct drm_printer p = drm_seq_file_printer(m);
1323
1324 intel_device_info_print_topology(&RUNTIME_INFO(dev_priv)->sseu, &p);
1325
1326 return 0;
1327 }
1328
1329 static int i915_shrinker_info(struct seq_file *m, void *unused)
1330 {
1331 struct drm_i915_private *i915 = node_to_i915(m->private);
1332
1333 seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
1334 seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
1335
1336 return 0;
1337 }
1338
1339 static int i915_wa_registers(struct seq_file *m, void *unused)
1340 {
1341 struct drm_i915_private *i915 = node_to_i915(m->private);
1342 struct intel_engine_cs *engine;
1343
1344 for_each_uabi_engine(engine, i915) {
1345 const struct i915_wa_list *wal = &engine->ctx_wa_list;
1346 const struct i915_wa *wa;
1347 unsigned int count;
1348
1349 count = wal->count;
1350 if (!count)
1351 continue;
1352
1353 seq_printf(m, "%s: Workarounds applied: %u\n",
1354 engine->name, count);
1355
1356 for (wa = wal->list; count--; wa++)
1357 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
1358 i915_mmio_reg_offset(wa->reg),
1359 wa->set, wa->clr);
1360
1361 seq_printf(m, "\n");
1362 }
1363
1364 return 0;
1365 }
1366
1367 static int
1368 i915_wedged_get(void *data, u64 *val)
1369 {
1370 struct drm_i915_private *i915 = data;
1371 int ret = intel_gt_terminally_wedged(&i915->gt);
1372
1373 switch (ret) {
1374 case -EIO:
1375 *val = 1;
1376 return 0;
1377 case 0:
1378 *val = 0;
1379 return 0;
1380 default:
1381 return ret;
1382 }
1383 }
1384
1385 static int
1386 i915_wedged_set(void *data, u64 val)
1387 {
1388 struct drm_i915_private *i915 = data;
1389
1390 /* Flush any previous reset before applying for a new one */
1391 wait_event(i915->gt.reset.queue,
1392 !test_bit(I915_RESET_BACKOFF, &i915->gt.reset.flags));
1393
1394 intel_gt_handle_error(&i915->gt, val, I915_ERROR_CAPTURE,
1395 "Manually set wedged engine mask = %llx", val);
1396 return 0;
1397 }
1398
1399 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
1400 i915_wedged_get, i915_wedged_set,
1401 "%llu\n");
1402
1403 static int
1404 i915_perf_noa_delay_set(void *data, u64 val)
1405 {
1406 struct drm_i915_private *i915 = data;
1407
1408 /*
1409 * This would lead to infinite waits as we're doing timestamp
1410 * difference on the CS with only 32bits.
1411 */
1412 if (i915_cs_timestamp_ns_to_ticks(i915, val) > U32_MAX)
1413 return -EINVAL;
1414
1415 atomic64_set(&i915->perf.noa_programming_delay, val);
1416 return 0;
1417 }
1418
1419 static int
1420 i915_perf_noa_delay_get(void *data, u64 *val)
1421 {
1422 struct drm_i915_private *i915 = data;
1423
1424 *val = atomic64_read(&i915->perf.noa_programming_delay);
1425 return 0;
1426 }
1427
1428 DEFINE_SIMPLE_ATTRIBUTE(i915_perf_noa_delay_fops,
1429 i915_perf_noa_delay_get,
1430 i915_perf_noa_delay_set,
1431 "%llu\n");
1432
1433 #define DROP_UNBOUND BIT(0)
1434 #define DROP_BOUND BIT(1)
1435 #define DROP_RETIRE BIT(2)
1436 #define DROP_ACTIVE BIT(3)
1437 #define DROP_FREED BIT(4)
1438 #define DROP_SHRINK_ALL BIT(5)
1439 #define DROP_IDLE BIT(6)
1440 #define DROP_RESET_ACTIVE BIT(7)
1441 #define DROP_RESET_SEQNO BIT(8)
1442 #define DROP_RCU BIT(9)
1443 #define DROP_ALL (DROP_UNBOUND | \
1444 DROP_BOUND | \
1445 DROP_RETIRE | \
1446 DROP_ACTIVE | \
1447 DROP_FREED | \
1448 DROP_SHRINK_ALL |\
1449 DROP_IDLE | \
1450 DROP_RESET_ACTIVE | \
1451 DROP_RESET_SEQNO | \
1452 DROP_RCU)
1453 static int
1454 i915_drop_caches_get(void *data, u64 *val)
1455 {
1456 *val = DROP_ALL;
1457
1458 return 0;
1459 }
1460 static int
1461 gt_drop_caches(struct intel_gt *gt, u64 val)
1462 {
1463 int ret;
1464
1465 if (val & DROP_RESET_ACTIVE &&
1466 wait_for(intel_engines_are_idle(gt), I915_IDLE_ENGINES_TIMEOUT))
1467 intel_gt_set_wedged(gt);
1468
1469 if (val & DROP_RETIRE)
1470 intel_gt_retire_requests(gt);
1471
1472 if (val & (DROP_IDLE | DROP_ACTIVE)) {
1473 ret = intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1474 if (ret)
1475 return ret;
1476 }
1477
1478 if (val & DROP_IDLE) {
1479 ret = intel_gt_pm_wait_for_idle(gt);
1480 if (ret)
1481 return ret;
1482 }
1483
1484 if (val & DROP_RESET_ACTIVE && intel_gt_terminally_wedged(gt))
1485 intel_gt_handle_error(gt, ALL_ENGINES, 0, NULL);
1486
1487 if (val & DROP_FREED)
1488 intel_gt_flush_buffer_pool(gt);
1489
1490 return 0;
1491 }
1492
1493 static int
1494 i915_drop_caches_set(void *data, u64 val)
1495 {
1496 struct drm_i915_private *i915 = data;
1497 int ret;
1498
1499 DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
1500 val, val & DROP_ALL);
1501
1502 ret = gt_drop_caches(&i915->gt, val);
1503 if (ret)
1504 return ret;
1505
1506 fs_reclaim_acquire(GFP_KERNEL);
1507 if (val & DROP_BOUND)
1508 i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_BOUND);
1509
1510 if (val & DROP_UNBOUND)
1511 i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
1512
1513 if (val & DROP_SHRINK_ALL)
1514 i915_gem_shrink_all(i915);
1515 fs_reclaim_release(GFP_KERNEL);
1516
1517 if (val & DROP_RCU)
1518 rcu_barrier();
1519
1520 if (val & DROP_FREED)
1521 i915_gem_drain_freed_objects(i915);
1522
1523 return 0;
1524 }
1525
1526 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
1527 i915_drop_caches_get, i915_drop_caches_set,
1528 "0x%08llx\n");
1529
1530 static int
1531 i915_cache_sharing_get(void *data, u64 *val)
1532 {
1533 struct drm_i915_private *dev_priv = data;
1534 intel_wakeref_t wakeref;
1535 u32 snpcr = 0;
1536
1537 if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
1538 return -ENODEV;
1539
1540 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
1541 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1542
1543 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
1544
1545 return 0;
1546 }
1547
1548 static int
1549 i915_cache_sharing_set(void *data, u64 val)
1550 {
1551 struct drm_i915_private *dev_priv = data;
1552 intel_wakeref_t wakeref;
1553
1554 if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
1555 return -ENODEV;
1556
1557 if (val > 3)
1558 return -EINVAL;
1559
1560 drm_dbg(&dev_priv->drm,
1561 "Manually setting uncore sharing to %llu\n", val);
1562 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
1563 u32 snpcr;
1564
1565 /* Update the cache sharing policy here as well */
1566 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1567 snpcr &= ~GEN6_MBC_SNPCR_MASK;
1568 snpcr |= val << GEN6_MBC_SNPCR_SHIFT;
1569 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
1570 }
1571
1572 return 0;
1573 }
1574
1575 static void
1576 intel_sseu_copy_subslices(const struct sseu_dev_info *sseu, int slice,
1577 u8 *to_mask)
1578 {
1579 int offset = slice * sseu->ss_stride;
1580
1581 memcpy(&to_mask[offset], &sseu->subslice_mask[offset], sseu->ss_stride);
1582 }
1583
1584 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
1585 i915_cache_sharing_get, i915_cache_sharing_set,
1586 "%llu\n");
1587
1588 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
1589 struct sseu_dev_info *sseu)
1590 {
1591 #define SS_MAX 2
1592 const int ss_max = SS_MAX;
1593 u32 sig1[SS_MAX], sig2[SS_MAX];
1594 int ss;
1595
1596 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
1597 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
1598 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
1599 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
1600
1601 for (ss = 0; ss < ss_max; ss++) {
1602 unsigned int eu_cnt;
1603
1604 if (sig1[ss] & CHV_SS_PG_ENABLE)
1605 /* skip disabled subslice */
1606 continue;
1607
1608 sseu->slice_mask = BIT(0);
1609 sseu->subslice_mask[0] |= BIT(ss);
1610 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
1611 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
1612 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
1613 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
1614 sseu->eu_total += eu_cnt;
1615 sseu->eu_per_subslice = max_t(unsigned int,
1616 sseu->eu_per_subslice, eu_cnt);
1617 }
1618 #undef SS_MAX
1619 }
1620
1621 static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
1622 struct sseu_dev_info *sseu)
1623 {
1624 #define SS_MAX 6
1625 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1626 u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
1627 int s, ss;
1628
1629 for (s = 0; s < info->sseu.max_slices; s++) {
1630 /*
1631 * FIXME: Valid SS Mask respects the spec and read
1632 * only valid bits for those registers, excluding reserved
1633 * although this seems wrong because it would leave many
1634 * subslices without ACK.
1635 */
1636 s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
1637 GEN10_PGCTL_VALID_SS_MASK(s);
1638 eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
1639 eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
1640 }
1641
1642 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
1643 GEN9_PGCTL_SSA_EU19_ACK |
1644 GEN9_PGCTL_SSA_EU210_ACK |
1645 GEN9_PGCTL_SSA_EU311_ACK;
1646 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
1647 GEN9_PGCTL_SSB_EU19_ACK |
1648 GEN9_PGCTL_SSB_EU210_ACK |
1649 GEN9_PGCTL_SSB_EU311_ACK;
1650
1651 for (s = 0; s < info->sseu.max_slices; s++) {
1652 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
1653 /* skip disabled slice */
1654 continue;
1655
1656 sseu->slice_mask |= BIT(s);
1657 intel_sseu_copy_subslices(&info->sseu, s, sseu->subslice_mask);
1658
1659 for (ss = 0; ss < info->sseu.max_subslices; ss++) {
1660 unsigned int eu_cnt;
1661
1662 if (info->sseu.has_subslice_pg &&
1663 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
1664 /* skip disabled subslice */
1665 continue;
1666
1667 eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
1668 eu_mask[ss % 2]);
1669 sseu->eu_total += eu_cnt;
1670 sseu->eu_per_subslice = max_t(unsigned int,
1671 sseu->eu_per_subslice,
1672 eu_cnt);
1673 }
1674 }
1675 #undef SS_MAX
1676 }
1677
1678 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
1679 struct sseu_dev_info *sseu)
1680 {
1681 #define SS_MAX 3
1682 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1683 u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
1684 int s, ss;
1685
1686 for (s = 0; s < info->sseu.max_slices; s++) {
1687 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
1688 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
1689 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
1690 }
1691
1692 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
1693 GEN9_PGCTL_SSA_EU19_ACK |
1694 GEN9_PGCTL_SSA_EU210_ACK |
1695 GEN9_PGCTL_SSA_EU311_ACK;
1696 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
1697 GEN9_PGCTL_SSB_EU19_ACK |
1698 GEN9_PGCTL_SSB_EU210_ACK |
1699 GEN9_PGCTL_SSB_EU311_ACK;
1700
1701 for (s = 0; s < info->sseu.max_slices; s++) {
1702 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
1703 /* skip disabled slice */
1704 continue;
1705
1706 sseu->slice_mask |= BIT(s);
1707
1708 if (IS_GEN9_BC(dev_priv))
1709 intel_sseu_copy_subslices(&info->sseu, s,
1710 sseu->subslice_mask);
1711
1712 for (ss = 0; ss < info->sseu.max_subslices; ss++) {
1713 unsigned int eu_cnt;
1714 u8 ss_idx = s * info->sseu.ss_stride +
1715 ss / BITS_PER_BYTE;
1716
1717 if (IS_GEN9_LP(dev_priv)) {
1718 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
1719 /* skip disabled subslice */
1720 continue;
1721
1722 sseu->subslice_mask[ss_idx] |=
1723 BIT(ss % BITS_PER_BYTE);
1724 }
1725
1726 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
1727 eu_mask[ss%2]);
1728 sseu->eu_total += eu_cnt;
1729 sseu->eu_per_subslice = max_t(unsigned int,
1730 sseu->eu_per_subslice,
1731 eu_cnt);
1732 }
1733 }
1734 #undef SS_MAX
1735 }
1736
1737 static void bdw_sseu_device_status(struct drm_i915_private *dev_priv,
1738 struct sseu_dev_info *sseu)
1739 {
1740 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1741 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
1742 int s;
1743
1744 sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
1745
1746 if (sseu->slice_mask) {
1747 sseu->eu_per_subslice = info->sseu.eu_per_subslice;
1748 for (s = 0; s < fls(sseu->slice_mask); s++)
1749 intel_sseu_copy_subslices(&info->sseu, s,
1750 sseu->subslice_mask);
1751 sseu->eu_total = sseu->eu_per_subslice *
1752 intel_sseu_subslice_total(sseu);
1753
1754 /* subtract fused off EU(s) from enabled slice(s) */
1755 for (s = 0; s < fls(sseu->slice_mask); s++) {
1756 u8 subslice_7eu = info->sseu.subslice_7eu[s];
1757
1758 sseu->eu_total -= hweight8(subslice_7eu);
1759 }
1760 }
1761 }
1762
1763 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
1764 const struct sseu_dev_info *sseu)
1765 {
1766 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1767 const char *type = is_available_info ? "Available" : "Enabled";
1768 int s;
1769
1770 seq_printf(m, " %s Slice Mask: %04x\n", type,
1771 sseu->slice_mask);
1772 seq_printf(m, " %s Slice Total: %u\n", type,
1773 hweight8(sseu->slice_mask));
1774 seq_printf(m, " %s Subslice Total: %u\n", type,
1775 intel_sseu_subslice_total(sseu));
1776 for (s = 0; s < fls(sseu->slice_mask); s++) {
1777 seq_printf(m, " %s Slice%i subslices: %u\n", type,
1778 s, intel_sseu_subslices_per_slice(sseu, s));
1779 }
1780 seq_printf(m, " %s EU Total: %u\n", type,
1781 sseu->eu_total);
1782 seq_printf(m, " %s EU Per Subslice: %u\n", type,
1783 sseu->eu_per_subslice);
1784
1785 if (!is_available_info)
1786 return;
1787
1788 seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
1789 if (HAS_POOLED_EU(dev_priv))
1790 seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
1791
1792 seq_printf(m, " Has Slice Power Gating: %s\n",
1793 yesno(sseu->has_slice_pg));
1794 seq_printf(m, " Has Subslice Power Gating: %s\n",
1795 yesno(sseu->has_subslice_pg));
1796 seq_printf(m, " Has EU Power Gating: %s\n",
1797 yesno(sseu->has_eu_pg));
1798 }
1799
1800 static int i915_sseu_status(struct seq_file *m, void *unused)
1801 {
1802 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1803 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1804 struct sseu_dev_info sseu;
1805 intel_wakeref_t wakeref;
1806
1807 if (INTEL_GEN(dev_priv) < 8)
1808 return -ENODEV;
1809
1810 seq_puts(m, "SSEU Device Info\n");
1811 i915_print_sseu_info(m, true, &info->sseu);
1812
1813 seq_puts(m, "SSEU Device Status\n");
1814 memset(&sseu, 0, sizeof(sseu));
1815 intel_sseu_set_info(&sseu, info->sseu.max_slices,
1816 info->sseu.max_subslices,
1817 info->sseu.max_eus_per_subslice);
1818
1819 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
1820 if (IS_CHERRYVIEW(dev_priv))
1821 cherryview_sseu_device_status(dev_priv, &sseu);
1822 else if (IS_BROADWELL(dev_priv))
1823 bdw_sseu_device_status(dev_priv, &sseu);
1824 else if (IS_GEN(dev_priv, 9))
1825 gen9_sseu_device_status(dev_priv, &sseu);
1826 else if (INTEL_GEN(dev_priv) >= 10)
1827 gen10_sseu_device_status(dev_priv, &sseu);
1828 }
1829
1830 i915_print_sseu_info(m, false, &sseu);
1831
1832 return 0;
1833 }
1834
1835 static int i915_forcewake_open(struct inode *inode, struct file *file)
1836 {
1837 struct drm_i915_private *i915 = inode->i_private;
1838 struct intel_gt *gt = &i915->gt;
1839
1840 atomic_inc(&gt->user_wakeref);
1841 intel_gt_pm_get(gt);
1842 if (INTEL_GEN(i915) >= 6)
1843 intel_uncore_forcewake_user_get(gt->uncore);
1844
1845 return 0;
1846 }
1847
1848 static int i915_forcewake_release(struct inode *inode, struct file *file)
1849 {
1850 struct drm_i915_private *i915 = inode->i_private;
1851 struct intel_gt *gt = &i915->gt;
1852
1853 if (INTEL_GEN(i915) >= 6)
1854 intel_uncore_forcewake_user_put(&i915->uncore);
1855 intel_gt_pm_put(gt);
1856 atomic_dec(&gt->user_wakeref);
1857
1858 return 0;
1859 }
1860
1861 static const struct file_operations i915_forcewake_fops = {
1862 .owner = THIS_MODULE,
1863 .open = i915_forcewake_open,
1864 .release = i915_forcewake_release,
1865 };
1866
1867 static const struct drm_info_list i915_debugfs_list[] = {
1868 {"i915_capabilities", i915_capabilities, 0},
1869 {"i915_gem_objects", i915_gem_object_info, 0},
1870 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
1871 {"i915_gem_interrupt", i915_interrupt_info, 0},
1872 {"i915_frequency_info", i915_frequency_info, 0},
1873 {"i915_ring_freq_table", i915_ring_freq_table, 0},
1874 {"i915_context_status", i915_context_status, 0},
1875 {"i915_swizzle_info", i915_swizzle_info, 0},
1876 {"i915_llc", i915_llc, 0},
1877 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
1878 {"i915_engine_info", i915_engine_info, 0},
1879 {"i915_rcs_topology", i915_rcs_topology, 0},
1880 {"i915_shrinker_info", i915_shrinker_info, 0},
1881 {"i915_wa_registers", i915_wa_registers, 0},
1882 {"i915_sseu_status", i915_sseu_status, 0},
1883 {"i915_rps_boost_info", i915_rps_boost_info, 0},
1884 };
1885 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
1886
1887 static const struct i915_debugfs_files {
1888 const char *name;
1889 const struct file_operations *fops;
1890 } i915_debugfs_files[] = {
1891 {"i915_perf_noa_delay", &i915_perf_noa_delay_fops},
1892 {"i915_wedged", &i915_wedged_fops},
1893 {"i915_cache_sharing", &i915_cache_sharing_fops},
1894 {"i915_gem_drop_caches", &i915_drop_caches_fops},
1895 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1896 {"i915_error_state", &i915_error_state_fops},
1897 {"i915_gpu_info", &i915_gpu_info_fops},
1898 #endif
1899 };
1900
1901 void i915_debugfs_register(struct drm_i915_private *dev_priv)
1902 {
1903 struct drm_minor *minor = dev_priv->drm.primary;
1904 int i;
1905
1906 i915_debugfs_params(dev_priv);
1907
1908 debugfs_create_file("i915_forcewake_user", S_IRUSR, minor->debugfs_root,
1909 to_i915(minor->dev), &i915_forcewake_fops);
1910 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
1911 debugfs_create_file(i915_debugfs_files[i].name,
1912 S_IRUGO | S_IWUSR,
1913 minor->debugfs_root,
1914 to_i915(minor->dev),
1915 i915_debugfs_files[i].fops);
1916 }
1917
1918 drm_debugfs_create_files(i915_debugfs_list,
1919 I915_DEBUGFS_ENTRIES,
1920 minor->debugfs_root, minor);
1921 }