]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge tag 'drm-misc-next-2020-04-14' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/sched/mm.h>
30 #include <linux/sort.h>
31
32 #include <drm/drm_debugfs.h>
33
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_gt_pm.h"
36 #include "gt/intel_gt_requests.h"
37 #include "gt/intel_reset.h"
38 #include "gt/intel_rc6.h"
39 #include "gt/intel_rps.h"
40
41 #include "i915_debugfs.h"
42 #include "i915_debugfs_params.h"
43 #include "i915_irq.h"
44 #include "i915_trace.h"
45 #include "intel_pm.h"
46 #include "intel_sideband.h"
47
48 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
49 {
50 return to_i915(node->minor->dev);
51 }
52
53 static int i915_capabilities(struct seq_file *m, void *data)
54 {
55 struct drm_i915_private *i915 = node_to_i915(m->private);
56 struct drm_printer p = drm_seq_file_printer(m);
57
58 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(i915));
59
60 intel_device_info_print_static(INTEL_INFO(i915), &p);
61 intel_device_info_print_runtime(RUNTIME_INFO(i915), &p);
62 intel_driver_caps_print(&i915->caps, &p);
63
64 kernel_param_lock(THIS_MODULE);
65 i915_params_dump(&i915_modparams, &p);
66 kernel_param_unlock(THIS_MODULE);
67
68 return 0;
69 }
70
71 static char get_tiling_flag(struct drm_i915_gem_object *obj)
72 {
73 switch (i915_gem_object_get_tiling(obj)) {
74 default:
75 case I915_TILING_NONE: return ' ';
76 case I915_TILING_X: return 'X';
77 case I915_TILING_Y: return 'Y';
78 }
79 }
80
81 static char get_global_flag(struct drm_i915_gem_object *obj)
82 {
83 return READ_ONCE(obj->userfault_count) ? 'g' : ' ';
84 }
85
86 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
87 {
88 return obj->mm.mapping ? 'M' : ' ';
89 }
90
91 static const char *
92 stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
93 {
94 size_t x = 0;
95
96 switch (page_sizes) {
97 case 0:
98 return "";
99 case I915_GTT_PAGE_SIZE_4K:
100 return "4K";
101 case I915_GTT_PAGE_SIZE_64K:
102 return "64K";
103 case I915_GTT_PAGE_SIZE_2M:
104 return "2M";
105 default:
106 if (!buf)
107 return "M";
108
109 if (page_sizes & I915_GTT_PAGE_SIZE_2M)
110 x += snprintf(buf + x, len - x, "2M, ");
111 if (page_sizes & I915_GTT_PAGE_SIZE_64K)
112 x += snprintf(buf + x, len - x, "64K, ");
113 if (page_sizes & I915_GTT_PAGE_SIZE_4K)
114 x += snprintf(buf + x, len - x, "4K, ");
115 buf[x-2] = '\0';
116
117 return buf;
118 }
119 }
120
121 void
122 i915_debugfs_describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
123 {
124 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
125 struct intel_engine_cs *engine;
126 struct i915_vma *vma;
127 int pin_count = 0;
128
129 seq_printf(m, "%pK: %c%c%c %8zdKiB %02x %02x %s%s%s",
130 &obj->base,
131 get_tiling_flag(obj),
132 get_global_flag(obj),
133 get_pin_mapped_flag(obj),
134 obj->base.size / 1024,
135 obj->read_domains,
136 obj->write_domain,
137 i915_cache_level_str(dev_priv, obj->cache_level),
138 obj->mm.dirty ? " dirty" : "",
139 obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
140 if (obj->base.name)
141 seq_printf(m, " (name: %d)", obj->base.name);
142
143 spin_lock(&obj->vma.lock);
144 list_for_each_entry(vma, &obj->vma.list, obj_link) {
145 if (!drm_mm_node_allocated(&vma->node))
146 continue;
147
148 spin_unlock(&obj->vma.lock);
149
150 if (i915_vma_is_pinned(vma))
151 pin_count++;
152
153 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
154 i915_vma_is_ggtt(vma) ? "g" : "pp",
155 vma->node.start, vma->node.size,
156 stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
157 if (i915_vma_is_ggtt(vma)) {
158 switch (vma->ggtt_view.type) {
159 case I915_GGTT_VIEW_NORMAL:
160 seq_puts(m, ", normal");
161 break;
162
163 case I915_GGTT_VIEW_PARTIAL:
164 seq_printf(m, ", partial [%08llx+%x]",
165 vma->ggtt_view.partial.offset << PAGE_SHIFT,
166 vma->ggtt_view.partial.size << PAGE_SHIFT);
167 break;
168
169 case I915_GGTT_VIEW_ROTATED:
170 seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
171 vma->ggtt_view.rotated.plane[0].width,
172 vma->ggtt_view.rotated.plane[0].height,
173 vma->ggtt_view.rotated.plane[0].stride,
174 vma->ggtt_view.rotated.plane[0].offset,
175 vma->ggtt_view.rotated.plane[1].width,
176 vma->ggtt_view.rotated.plane[1].height,
177 vma->ggtt_view.rotated.plane[1].stride,
178 vma->ggtt_view.rotated.plane[1].offset);
179 break;
180
181 case I915_GGTT_VIEW_REMAPPED:
182 seq_printf(m, ", remapped [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
183 vma->ggtt_view.remapped.plane[0].width,
184 vma->ggtt_view.remapped.plane[0].height,
185 vma->ggtt_view.remapped.plane[0].stride,
186 vma->ggtt_view.remapped.plane[0].offset,
187 vma->ggtt_view.remapped.plane[1].width,
188 vma->ggtt_view.remapped.plane[1].height,
189 vma->ggtt_view.remapped.plane[1].stride,
190 vma->ggtt_view.remapped.plane[1].offset);
191 break;
192
193 default:
194 MISSING_CASE(vma->ggtt_view.type);
195 break;
196 }
197 }
198 if (vma->fence)
199 seq_printf(m, " , fence: %d", vma->fence->id);
200 seq_puts(m, ")");
201
202 spin_lock(&obj->vma.lock);
203 }
204 spin_unlock(&obj->vma.lock);
205
206 seq_printf(m, " (pinned x %d)", pin_count);
207 if (obj->stolen)
208 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
209 if (i915_gem_object_is_framebuffer(obj))
210 seq_printf(m, " (fb)");
211
212 engine = i915_gem_object_last_write_engine(obj);
213 if (engine)
214 seq_printf(m, " (%s)", engine->name);
215 }
216
217 struct file_stats {
218 struct i915_address_space *vm;
219 unsigned long count;
220 u64 total;
221 u64 active, inactive;
222 u64 closed;
223 };
224
225 static int per_file_stats(int id, void *ptr, void *data)
226 {
227 struct drm_i915_gem_object *obj = ptr;
228 struct file_stats *stats = data;
229 struct i915_vma *vma;
230
231 if (!kref_get_unless_zero(&obj->base.refcount))
232 return 0;
233
234 stats->count++;
235 stats->total += obj->base.size;
236
237 spin_lock(&obj->vma.lock);
238 if (!stats->vm) {
239 for_each_ggtt_vma(vma, obj) {
240 if (!drm_mm_node_allocated(&vma->node))
241 continue;
242
243 if (i915_vma_is_active(vma))
244 stats->active += vma->node.size;
245 else
246 stats->inactive += vma->node.size;
247
248 if (i915_vma_is_closed(vma))
249 stats->closed += vma->node.size;
250 }
251 } else {
252 struct rb_node *p = obj->vma.tree.rb_node;
253
254 while (p) {
255 long cmp;
256
257 vma = rb_entry(p, typeof(*vma), obj_node);
258 cmp = i915_vma_compare(vma, stats->vm, NULL);
259 if (cmp == 0) {
260 if (drm_mm_node_allocated(&vma->node)) {
261 if (i915_vma_is_active(vma))
262 stats->active += vma->node.size;
263 else
264 stats->inactive += vma->node.size;
265
266 if (i915_vma_is_closed(vma))
267 stats->closed += vma->node.size;
268 }
269 break;
270 }
271 if (cmp < 0)
272 p = p->rb_right;
273 else
274 p = p->rb_left;
275 }
276 }
277 spin_unlock(&obj->vma.lock);
278
279 i915_gem_object_put(obj);
280 return 0;
281 }
282
283 #define print_file_stats(m, name, stats) do { \
284 if (stats.count) \
285 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu closed)\n", \
286 name, \
287 stats.count, \
288 stats.total, \
289 stats.active, \
290 stats.inactive, \
291 stats.closed); \
292 } while (0)
293
294 static void print_context_stats(struct seq_file *m,
295 struct drm_i915_private *i915)
296 {
297 struct file_stats kstats = {};
298 struct i915_gem_context *ctx, *cn;
299
300 spin_lock(&i915->gem.contexts.lock);
301 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
302 struct i915_gem_engines_iter it;
303 struct intel_context *ce;
304
305 if (!kref_get_unless_zero(&ctx->ref))
306 continue;
307
308 spin_unlock(&i915->gem.contexts.lock);
309
310 for_each_gem_engine(ce,
311 i915_gem_context_lock_engines(ctx), it) {
312 if (intel_context_pin_if_active(ce)) {
313 rcu_read_lock();
314 if (ce->state)
315 per_file_stats(0,
316 ce->state->obj, &kstats);
317 per_file_stats(0, ce->ring->vma->obj, &kstats);
318 rcu_read_unlock();
319 intel_context_unpin(ce);
320 }
321 }
322 i915_gem_context_unlock_engines(ctx);
323
324 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
325 struct file_stats stats = {
326 .vm = rcu_access_pointer(ctx->vm),
327 };
328 struct drm_file *file = ctx->file_priv->file;
329 struct task_struct *task;
330 char name[80];
331
332 rcu_read_lock();
333 idr_for_each(&file->object_idr, per_file_stats, &stats);
334 rcu_read_unlock();
335
336 rcu_read_lock();
337 task = pid_task(ctx->pid ?: file->pid, PIDTYPE_PID);
338 snprintf(name, sizeof(name), "%s",
339 task ? task->comm : "<unknown>");
340 rcu_read_unlock();
341
342 print_file_stats(m, name, stats);
343 }
344
345 spin_lock(&i915->gem.contexts.lock);
346 list_safe_reset_next(ctx, cn, link);
347 i915_gem_context_put(ctx);
348 }
349 spin_unlock(&i915->gem.contexts.lock);
350
351 print_file_stats(m, "[k]contexts", kstats);
352 }
353
354 static int i915_gem_object_info(struct seq_file *m, void *data)
355 {
356 struct drm_i915_private *i915 = node_to_i915(m->private);
357 struct intel_memory_region *mr;
358 enum intel_region_id id;
359
360 seq_printf(m, "%u shrinkable [%u free] objects, %llu bytes\n",
361 i915->mm.shrink_count,
362 atomic_read(&i915->mm.free_count),
363 i915->mm.shrink_memory);
364 for_each_memory_region(mr, i915, id)
365 seq_printf(m, "%s: total:%pa, available:%pa bytes\n",
366 mr->name, &mr->total, &mr->avail);
367 seq_putc(m, '\n');
368
369 print_context_stats(m, i915);
370
371 return 0;
372 }
373
374 static void gen8_display_interrupt_info(struct seq_file *m)
375 {
376 struct drm_i915_private *dev_priv = node_to_i915(m->private);
377 enum pipe pipe;
378
379 for_each_pipe(dev_priv, pipe) {
380 enum intel_display_power_domain power_domain;
381 intel_wakeref_t wakeref;
382
383 power_domain = POWER_DOMAIN_PIPE(pipe);
384 wakeref = intel_display_power_get_if_enabled(dev_priv,
385 power_domain);
386 if (!wakeref) {
387 seq_printf(m, "Pipe %c power disabled\n",
388 pipe_name(pipe));
389 continue;
390 }
391 seq_printf(m, "Pipe %c IMR:\t%08x\n",
392 pipe_name(pipe),
393 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
394 seq_printf(m, "Pipe %c IIR:\t%08x\n",
395 pipe_name(pipe),
396 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
397 seq_printf(m, "Pipe %c IER:\t%08x\n",
398 pipe_name(pipe),
399 I915_READ(GEN8_DE_PIPE_IER(pipe)));
400
401 intel_display_power_put(dev_priv, power_domain, wakeref);
402 }
403
404 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
405 I915_READ(GEN8_DE_PORT_IMR));
406 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
407 I915_READ(GEN8_DE_PORT_IIR));
408 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
409 I915_READ(GEN8_DE_PORT_IER));
410
411 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
412 I915_READ(GEN8_DE_MISC_IMR));
413 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
414 I915_READ(GEN8_DE_MISC_IIR));
415 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
416 I915_READ(GEN8_DE_MISC_IER));
417
418 seq_printf(m, "PCU interrupt mask:\t%08x\n",
419 I915_READ(GEN8_PCU_IMR));
420 seq_printf(m, "PCU interrupt identity:\t%08x\n",
421 I915_READ(GEN8_PCU_IIR));
422 seq_printf(m, "PCU interrupt enable:\t%08x\n",
423 I915_READ(GEN8_PCU_IER));
424 }
425
426 static int i915_interrupt_info(struct seq_file *m, void *data)
427 {
428 struct drm_i915_private *dev_priv = node_to_i915(m->private);
429 struct intel_engine_cs *engine;
430 intel_wakeref_t wakeref;
431 int i, pipe;
432
433 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
434
435 if (IS_CHERRYVIEW(dev_priv)) {
436 intel_wakeref_t pref;
437
438 seq_printf(m, "Master Interrupt Control:\t%08x\n",
439 I915_READ(GEN8_MASTER_IRQ));
440
441 seq_printf(m, "Display IER:\t%08x\n",
442 I915_READ(VLV_IER));
443 seq_printf(m, "Display IIR:\t%08x\n",
444 I915_READ(VLV_IIR));
445 seq_printf(m, "Display IIR_RW:\t%08x\n",
446 I915_READ(VLV_IIR_RW));
447 seq_printf(m, "Display IMR:\t%08x\n",
448 I915_READ(VLV_IMR));
449 for_each_pipe(dev_priv, pipe) {
450 enum intel_display_power_domain power_domain;
451
452 power_domain = POWER_DOMAIN_PIPE(pipe);
453 pref = intel_display_power_get_if_enabled(dev_priv,
454 power_domain);
455 if (!pref) {
456 seq_printf(m, "Pipe %c power disabled\n",
457 pipe_name(pipe));
458 continue;
459 }
460
461 seq_printf(m, "Pipe %c stat:\t%08x\n",
462 pipe_name(pipe),
463 I915_READ(PIPESTAT(pipe)));
464
465 intel_display_power_put(dev_priv, power_domain, pref);
466 }
467
468 pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
469 seq_printf(m, "Port hotplug:\t%08x\n",
470 I915_READ(PORT_HOTPLUG_EN));
471 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
472 I915_READ(VLV_DPFLIPSTAT));
473 seq_printf(m, "DPINVGTT:\t%08x\n",
474 I915_READ(DPINVGTT));
475 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);
476
477 for (i = 0; i < 4; i++) {
478 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
479 i, I915_READ(GEN8_GT_IMR(i)));
480 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
481 i, I915_READ(GEN8_GT_IIR(i)));
482 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
483 i, I915_READ(GEN8_GT_IER(i)));
484 }
485
486 seq_printf(m, "PCU interrupt mask:\t%08x\n",
487 I915_READ(GEN8_PCU_IMR));
488 seq_printf(m, "PCU interrupt identity:\t%08x\n",
489 I915_READ(GEN8_PCU_IIR));
490 seq_printf(m, "PCU interrupt enable:\t%08x\n",
491 I915_READ(GEN8_PCU_IER));
492 } else if (INTEL_GEN(dev_priv) >= 11) {
493 seq_printf(m, "Master Interrupt Control: %08x\n",
494 I915_READ(GEN11_GFX_MSTR_IRQ));
495
496 seq_printf(m, "Render/Copy Intr Enable: %08x\n",
497 I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
498 seq_printf(m, "VCS/VECS Intr Enable: %08x\n",
499 I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
500 seq_printf(m, "GUC/SG Intr Enable:\t %08x\n",
501 I915_READ(GEN11_GUC_SG_INTR_ENABLE));
502 seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
503 I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
504 seq_printf(m, "Crypto Intr Enable:\t %08x\n",
505 I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
506 seq_printf(m, "GUnit/CSME Intr Enable:\t %08x\n",
507 I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
508
509 seq_printf(m, "Display Interrupt Control:\t%08x\n",
510 I915_READ(GEN11_DISPLAY_INT_CTL));
511
512 gen8_display_interrupt_info(m);
513 } else if (INTEL_GEN(dev_priv) >= 8) {
514 seq_printf(m, "Master Interrupt Control:\t%08x\n",
515 I915_READ(GEN8_MASTER_IRQ));
516
517 for (i = 0; i < 4; i++) {
518 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
519 i, I915_READ(GEN8_GT_IMR(i)));
520 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
521 i, I915_READ(GEN8_GT_IIR(i)));
522 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
523 i, I915_READ(GEN8_GT_IER(i)));
524 }
525
526 gen8_display_interrupt_info(m);
527 } else if (IS_VALLEYVIEW(dev_priv)) {
528 intel_wakeref_t pref;
529
530 seq_printf(m, "Display IER:\t%08x\n",
531 I915_READ(VLV_IER));
532 seq_printf(m, "Display IIR:\t%08x\n",
533 I915_READ(VLV_IIR));
534 seq_printf(m, "Display IIR_RW:\t%08x\n",
535 I915_READ(VLV_IIR_RW));
536 seq_printf(m, "Display IMR:\t%08x\n",
537 I915_READ(VLV_IMR));
538 for_each_pipe(dev_priv, pipe) {
539 enum intel_display_power_domain power_domain;
540
541 power_domain = POWER_DOMAIN_PIPE(pipe);
542 pref = intel_display_power_get_if_enabled(dev_priv,
543 power_domain);
544 if (!pref) {
545 seq_printf(m, "Pipe %c power disabled\n",
546 pipe_name(pipe));
547 continue;
548 }
549
550 seq_printf(m, "Pipe %c stat:\t%08x\n",
551 pipe_name(pipe),
552 I915_READ(PIPESTAT(pipe)));
553 intel_display_power_put(dev_priv, power_domain, pref);
554 }
555
556 seq_printf(m, "Master IER:\t%08x\n",
557 I915_READ(VLV_MASTER_IER));
558
559 seq_printf(m, "Render IER:\t%08x\n",
560 I915_READ(GTIER));
561 seq_printf(m, "Render IIR:\t%08x\n",
562 I915_READ(GTIIR));
563 seq_printf(m, "Render IMR:\t%08x\n",
564 I915_READ(GTIMR));
565
566 seq_printf(m, "PM IER:\t\t%08x\n",
567 I915_READ(GEN6_PMIER));
568 seq_printf(m, "PM IIR:\t\t%08x\n",
569 I915_READ(GEN6_PMIIR));
570 seq_printf(m, "PM IMR:\t\t%08x\n",
571 I915_READ(GEN6_PMIMR));
572
573 pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
574 seq_printf(m, "Port hotplug:\t%08x\n",
575 I915_READ(PORT_HOTPLUG_EN));
576 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
577 I915_READ(VLV_DPFLIPSTAT));
578 seq_printf(m, "DPINVGTT:\t%08x\n",
579 I915_READ(DPINVGTT));
580 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);
581
582 } else if (!HAS_PCH_SPLIT(dev_priv)) {
583 seq_printf(m, "Interrupt enable: %08x\n",
584 I915_READ(GEN2_IER));
585 seq_printf(m, "Interrupt identity: %08x\n",
586 I915_READ(GEN2_IIR));
587 seq_printf(m, "Interrupt mask: %08x\n",
588 I915_READ(GEN2_IMR));
589 for_each_pipe(dev_priv, pipe)
590 seq_printf(m, "Pipe %c stat: %08x\n",
591 pipe_name(pipe),
592 I915_READ(PIPESTAT(pipe)));
593 } else {
594 seq_printf(m, "North Display Interrupt enable: %08x\n",
595 I915_READ(DEIER));
596 seq_printf(m, "North Display Interrupt identity: %08x\n",
597 I915_READ(DEIIR));
598 seq_printf(m, "North Display Interrupt mask: %08x\n",
599 I915_READ(DEIMR));
600 seq_printf(m, "South Display Interrupt enable: %08x\n",
601 I915_READ(SDEIER));
602 seq_printf(m, "South Display Interrupt identity: %08x\n",
603 I915_READ(SDEIIR));
604 seq_printf(m, "South Display Interrupt mask: %08x\n",
605 I915_READ(SDEIMR));
606 seq_printf(m, "Graphics Interrupt enable: %08x\n",
607 I915_READ(GTIER));
608 seq_printf(m, "Graphics Interrupt identity: %08x\n",
609 I915_READ(GTIIR));
610 seq_printf(m, "Graphics Interrupt mask: %08x\n",
611 I915_READ(GTIMR));
612 }
613
614 if (INTEL_GEN(dev_priv) >= 11) {
615 seq_printf(m, "RCS Intr Mask:\t %08x\n",
616 I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
617 seq_printf(m, "BCS Intr Mask:\t %08x\n",
618 I915_READ(GEN11_BCS_RSVD_INTR_MASK));
619 seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
620 I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
621 seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
622 I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
623 seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
624 I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
625 seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
626 I915_READ(GEN11_GUC_SG_INTR_MASK));
627 seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
628 I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
629 seq_printf(m, "Crypto Intr Mask:\t %08x\n",
630 I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
631 seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
632 I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
633
634 } else if (INTEL_GEN(dev_priv) >= 6) {
635 for_each_uabi_engine(engine, dev_priv) {
636 seq_printf(m,
637 "Graphics Interrupt mask (%s): %08x\n",
638 engine->name, ENGINE_READ(engine, RING_IMR));
639 }
640 }
641
642 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
643
644 return 0;
645 }
646
647 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
648 {
649 struct drm_i915_private *i915 = node_to_i915(m->private);
650 unsigned int i;
651
652 seq_printf(m, "Total fences = %d\n", i915->ggtt.num_fences);
653
654 rcu_read_lock();
655 for (i = 0; i < i915->ggtt.num_fences; i++) {
656 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
657 struct i915_vma *vma = reg->vma;
658
659 seq_printf(m, "Fence %d, pin count = %d, object = ",
660 i, atomic_read(&reg->pin_count));
661 if (!vma)
662 seq_puts(m, "unused");
663 else
664 i915_debugfs_describe_obj(m, vma->obj);
665 seq_putc(m, '\n');
666 }
667 rcu_read_unlock();
668
669 return 0;
670 }
671
672 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
673 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
674 size_t count, loff_t *pos)
675 {
676 struct i915_gpu_coredump *error;
677 ssize_t ret;
678 void *buf;
679
680 error = file->private_data;
681 if (!error)
682 return 0;
683
684 /* Bounce buffer required because of kernfs __user API convenience. */
685 buf = kmalloc(count, GFP_KERNEL);
686 if (!buf)
687 return -ENOMEM;
688
689 ret = i915_gpu_coredump_copy_to_buffer(error, buf, *pos, count);
690 if (ret <= 0)
691 goto out;
692
693 if (!copy_to_user(ubuf, buf, ret))
694 *pos += ret;
695 else
696 ret = -EFAULT;
697
698 out:
699 kfree(buf);
700 return ret;
701 }
702
703 static int gpu_state_release(struct inode *inode, struct file *file)
704 {
705 i915_gpu_coredump_put(file->private_data);
706 return 0;
707 }
708
709 static int i915_gpu_info_open(struct inode *inode, struct file *file)
710 {
711 struct drm_i915_private *i915 = inode->i_private;
712 struct i915_gpu_coredump *gpu;
713 intel_wakeref_t wakeref;
714
715 gpu = NULL;
716 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
717 gpu = i915_gpu_coredump(i915);
718 if (IS_ERR(gpu))
719 return PTR_ERR(gpu);
720
721 file->private_data = gpu;
722 return 0;
723 }
724
725 static const struct file_operations i915_gpu_info_fops = {
726 .owner = THIS_MODULE,
727 .open = i915_gpu_info_open,
728 .read = gpu_state_read,
729 .llseek = default_llseek,
730 .release = gpu_state_release,
731 };
732
733 static ssize_t
734 i915_error_state_write(struct file *filp,
735 const char __user *ubuf,
736 size_t cnt,
737 loff_t *ppos)
738 {
739 struct i915_gpu_coredump *error = filp->private_data;
740
741 if (!error)
742 return 0;
743
744 drm_dbg(&error->i915->drm, "Resetting error state\n");
745 i915_reset_error_state(error->i915);
746
747 return cnt;
748 }
749
750 static int i915_error_state_open(struct inode *inode, struct file *file)
751 {
752 struct i915_gpu_coredump *error;
753
754 error = i915_first_error_state(inode->i_private);
755 if (IS_ERR(error))
756 return PTR_ERR(error);
757
758 file->private_data = error;
759 return 0;
760 }
761
762 static const struct file_operations i915_error_state_fops = {
763 .owner = THIS_MODULE,
764 .open = i915_error_state_open,
765 .read = gpu_state_read,
766 .write = i915_error_state_write,
767 .llseek = default_llseek,
768 .release = gpu_state_release,
769 };
770 #endif
771
772 static int i915_frequency_info(struct seq_file *m, void *unused)
773 {
774 struct drm_i915_private *dev_priv = node_to_i915(m->private);
775 struct intel_uncore *uncore = &dev_priv->uncore;
776 struct intel_rps *rps = &dev_priv->gt.rps;
777 intel_wakeref_t wakeref;
778 int ret = 0;
779
780 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
781
782 if (IS_GEN(dev_priv, 5)) {
783 u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
784 u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK);
785
786 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
787 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
788 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
789 MEMSTAT_VID_SHIFT);
790 seq_printf(m, "Current P-state: %d\n",
791 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
792 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
793 u32 rpmodectl, freq_sts;
794
795 rpmodectl = I915_READ(GEN6_RP_CONTROL);
796 seq_printf(m, "Video Turbo Mode: %s\n",
797 yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
798 seq_printf(m, "HW control enabled: %s\n",
799 yesno(rpmodectl & GEN6_RP_ENABLE));
800 seq_printf(m, "SW control enabled: %s\n",
801 yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
802 GEN6_RP_MEDIA_SW_MODE));
803
804 vlv_punit_get(dev_priv);
805 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
806 vlv_punit_put(dev_priv);
807
808 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
809 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
810
811 seq_printf(m, "actual GPU freq: %d MHz\n",
812 intel_gpu_freq(rps, (freq_sts >> 8) & 0xff));
813
814 seq_printf(m, "current GPU freq: %d MHz\n",
815 intel_gpu_freq(rps, rps->cur_freq));
816
817 seq_printf(m, "max GPU freq: %d MHz\n",
818 intel_gpu_freq(rps, rps->max_freq));
819
820 seq_printf(m, "min GPU freq: %d MHz\n",
821 intel_gpu_freq(rps, rps->min_freq));
822
823 seq_printf(m, "idle GPU freq: %d MHz\n",
824 intel_gpu_freq(rps, rps->idle_freq));
825
826 seq_printf(m,
827 "efficient (RPe) frequency: %d MHz\n",
828 intel_gpu_freq(rps, rps->efficient_freq));
829 } else if (INTEL_GEN(dev_priv) >= 6) {
830 u32 rp_state_limits;
831 u32 gt_perf_status;
832 u32 rp_state_cap;
833 u32 rpmodectl, rpinclimit, rpdeclimit;
834 u32 rpstat, cagf, reqf;
835 u32 rpupei, rpcurup, rpprevup;
836 u32 rpdownei, rpcurdown, rpprevdown;
837 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
838 int max_freq;
839
840 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
841 if (IS_GEN9_LP(dev_priv)) {
842 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
843 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
844 } else {
845 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
846 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
847 }
848
849 /* RPSTAT1 is in the GT power well */
850 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
851
852 reqf = I915_READ(GEN6_RPNSWREQ);
853 if (INTEL_GEN(dev_priv) >= 9)
854 reqf >>= 23;
855 else {
856 reqf &= ~GEN6_TURBO_DISABLE;
857 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
858 reqf >>= 24;
859 else
860 reqf >>= 25;
861 }
862 reqf = intel_gpu_freq(rps, reqf);
863
864 rpmodectl = I915_READ(GEN6_RP_CONTROL);
865 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
866 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
867
868 rpstat = I915_READ(GEN6_RPSTAT1);
869 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
870 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
871 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
872 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
873 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
874 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
875 cagf = intel_rps_read_actual_frequency(rps);
876
877 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
878
879 if (INTEL_GEN(dev_priv) >= 11) {
880 pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE);
881 pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK);
882 /*
883 * The equivalent to the PM ISR & IIR cannot be read
884 * without affecting the current state of the system
885 */
886 pm_isr = 0;
887 pm_iir = 0;
888 } else if (INTEL_GEN(dev_priv) >= 8) {
889 pm_ier = I915_READ(GEN8_GT_IER(2));
890 pm_imr = I915_READ(GEN8_GT_IMR(2));
891 pm_isr = I915_READ(GEN8_GT_ISR(2));
892 pm_iir = I915_READ(GEN8_GT_IIR(2));
893 } else {
894 pm_ier = I915_READ(GEN6_PMIER);
895 pm_imr = I915_READ(GEN6_PMIMR);
896 pm_isr = I915_READ(GEN6_PMISR);
897 pm_iir = I915_READ(GEN6_PMIIR);
898 }
899 pm_mask = I915_READ(GEN6_PMINTRMSK);
900
901 seq_printf(m, "Video Turbo Mode: %s\n",
902 yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
903 seq_printf(m, "HW control enabled: %s\n",
904 yesno(rpmodectl & GEN6_RP_ENABLE));
905 seq_printf(m, "SW control enabled: %s\n",
906 yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
907 GEN6_RP_MEDIA_SW_MODE));
908
909 seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
910 pm_ier, pm_imr, pm_mask);
911 if (INTEL_GEN(dev_priv) <= 10)
912 seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n",
913 pm_isr, pm_iir);
914 seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
915 rps->pm_intrmsk_mbz);
916 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
917 seq_printf(m, "Render p-state ratio: %d\n",
918 (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
919 seq_printf(m, "Render p-state VID: %d\n",
920 gt_perf_status & 0xff);
921 seq_printf(m, "Render p-state limit: %d\n",
922 rp_state_limits & 0xff);
923 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
924 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
925 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
926 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
927 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
928 seq_printf(m, "CAGF: %dMHz\n", cagf);
929 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
930 rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
931 seq_printf(m, "RP CUR UP: %d (%dus)\n",
932 rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
933 seq_printf(m, "RP PREV UP: %d (%dus)\n",
934 rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
935 seq_printf(m, "Up threshold: %d%%\n",
936 rps->power.up_threshold);
937
938 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
939 rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
940 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
941 rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
942 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
943 rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
944 seq_printf(m, "Down threshold: %d%%\n",
945 rps->power.down_threshold);
946
947 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
948 rp_state_cap >> 16) & 0xff;
949 max_freq *= (IS_GEN9_BC(dev_priv) ||
950 INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
951 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
952 intel_gpu_freq(rps, max_freq));
953
954 max_freq = (rp_state_cap & 0xff00) >> 8;
955 max_freq *= (IS_GEN9_BC(dev_priv) ||
956 INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
957 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
958 intel_gpu_freq(rps, max_freq));
959
960 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
961 rp_state_cap >> 0) & 0xff;
962 max_freq *= (IS_GEN9_BC(dev_priv) ||
963 INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
964 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
965 intel_gpu_freq(rps, max_freq));
966 seq_printf(m, "Max overclocked frequency: %dMHz\n",
967 intel_gpu_freq(rps, rps->max_freq));
968
969 seq_printf(m, "Current freq: %d MHz\n",
970 intel_gpu_freq(rps, rps->cur_freq));
971 seq_printf(m, "Actual freq: %d MHz\n", cagf);
972 seq_printf(m, "Idle freq: %d MHz\n",
973 intel_gpu_freq(rps, rps->idle_freq));
974 seq_printf(m, "Min freq: %d MHz\n",
975 intel_gpu_freq(rps, rps->min_freq));
976 seq_printf(m, "Boost freq: %d MHz\n",
977 intel_gpu_freq(rps, rps->boost_freq));
978 seq_printf(m, "Max freq: %d MHz\n",
979 intel_gpu_freq(rps, rps->max_freq));
980 seq_printf(m,
981 "efficient (RPe) frequency: %d MHz\n",
982 intel_gpu_freq(rps, rps->efficient_freq));
983 } else {
984 seq_puts(m, "no P-state info available\n");
985 }
986
987 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
988 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
989 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
990
991 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
992 return ret;
993 }
994
995 static int i915_ring_freq_table(struct seq_file *m, void *unused)
996 {
997 struct drm_i915_private *dev_priv = node_to_i915(m->private);
998 struct intel_rps *rps = &dev_priv->gt.rps;
999 unsigned int max_gpu_freq, min_gpu_freq;
1000 intel_wakeref_t wakeref;
1001 int gpu_freq, ia_freq;
1002
1003 if (!HAS_LLC(dev_priv))
1004 return -ENODEV;
1005
1006 min_gpu_freq = rps->min_freq;
1007 max_gpu_freq = rps->max_freq;
1008 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
1009 /* Convert GT frequency to 50 HZ units */
1010 min_gpu_freq /= GEN9_FREQ_SCALER;
1011 max_gpu_freq /= GEN9_FREQ_SCALER;
1012 }
1013
1014 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1015
1016 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1017 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1018 ia_freq = gpu_freq;
1019 sandybridge_pcode_read(dev_priv,
1020 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1021 &ia_freq, NULL);
1022 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1023 intel_gpu_freq(rps,
1024 (gpu_freq *
1025 (IS_GEN9_BC(dev_priv) ||
1026 INTEL_GEN(dev_priv) >= 10 ?
1027 GEN9_FREQ_SCALER : 1))),
1028 ((ia_freq >> 0) & 0xff) * 100,
1029 ((ia_freq >> 8) & 0xff) * 100);
1030 }
1031 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1032
1033 return 0;
1034 }
1035
1036 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1037 {
1038 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
1039 ring->space, ring->head, ring->tail, ring->emit);
1040 }
1041
1042 static int i915_context_status(struct seq_file *m, void *unused)
1043 {
1044 struct drm_i915_private *i915 = node_to_i915(m->private);
1045 struct i915_gem_context *ctx, *cn;
1046
1047 spin_lock(&i915->gem.contexts.lock);
1048 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
1049 struct i915_gem_engines_iter it;
1050 struct intel_context *ce;
1051
1052 if (!kref_get_unless_zero(&ctx->ref))
1053 continue;
1054
1055 spin_unlock(&i915->gem.contexts.lock);
1056
1057 seq_puts(m, "HW context ");
1058 if (ctx->pid) {
1059 struct task_struct *task;
1060
1061 task = get_pid_task(ctx->pid, PIDTYPE_PID);
1062 if (task) {
1063 seq_printf(m, "(%s [%d]) ",
1064 task->comm, task->pid);
1065 put_task_struct(task);
1066 }
1067 } else if (IS_ERR(ctx->file_priv)) {
1068 seq_puts(m, "(deleted) ");
1069 } else {
1070 seq_puts(m, "(kernel) ");
1071 }
1072
1073 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1074 seq_putc(m, '\n');
1075
1076 for_each_gem_engine(ce,
1077 i915_gem_context_lock_engines(ctx), it) {
1078 if (intel_context_pin_if_active(ce)) {
1079 seq_printf(m, "%s: ", ce->engine->name);
1080 if (ce->state)
1081 i915_debugfs_describe_obj(m, ce->state->obj);
1082 describe_ctx_ring(m, ce->ring);
1083 seq_putc(m, '\n');
1084 intel_context_unpin(ce);
1085 }
1086 }
1087 i915_gem_context_unlock_engines(ctx);
1088
1089 seq_putc(m, '\n');
1090
1091 spin_lock(&i915->gem.contexts.lock);
1092 list_safe_reset_next(ctx, cn, link);
1093 i915_gem_context_put(ctx);
1094 }
1095 spin_unlock(&i915->gem.contexts.lock);
1096
1097 return 0;
1098 }
1099
1100 static const char *swizzle_string(unsigned swizzle)
1101 {
1102 switch (swizzle) {
1103 case I915_BIT_6_SWIZZLE_NONE:
1104 return "none";
1105 case I915_BIT_6_SWIZZLE_9:
1106 return "bit9";
1107 case I915_BIT_6_SWIZZLE_9_10:
1108 return "bit9/bit10";
1109 case I915_BIT_6_SWIZZLE_9_11:
1110 return "bit9/bit11";
1111 case I915_BIT_6_SWIZZLE_9_10_11:
1112 return "bit9/bit10/bit11";
1113 case I915_BIT_6_SWIZZLE_9_17:
1114 return "bit9/bit17";
1115 case I915_BIT_6_SWIZZLE_9_10_17:
1116 return "bit9/bit10/bit17";
1117 case I915_BIT_6_SWIZZLE_UNKNOWN:
1118 return "unknown";
1119 }
1120
1121 return "bug";
1122 }
1123
1124 static int i915_swizzle_info(struct seq_file *m, void *data)
1125 {
1126 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1127 struct intel_uncore *uncore = &dev_priv->uncore;
1128 intel_wakeref_t wakeref;
1129
1130 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1131
1132 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1133 swizzle_string(dev_priv->ggtt.bit_6_swizzle_x));
1134 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1135 swizzle_string(dev_priv->ggtt.bit_6_swizzle_y));
1136
1137 if (IS_GEN_RANGE(dev_priv, 3, 4)) {
1138 seq_printf(m, "DDC = 0x%08x\n",
1139 intel_uncore_read(uncore, DCC));
1140 seq_printf(m, "DDC2 = 0x%08x\n",
1141 intel_uncore_read(uncore, DCC2));
1142 seq_printf(m, "C0DRB3 = 0x%04x\n",
1143 intel_uncore_read16(uncore, C0DRB3));
1144 seq_printf(m, "C1DRB3 = 0x%04x\n",
1145 intel_uncore_read16(uncore, C1DRB3));
1146 } else if (INTEL_GEN(dev_priv) >= 6) {
1147 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1148 intel_uncore_read(uncore, MAD_DIMM_C0));
1149 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1150 intel_uncore_read(uncore, MAD_DIMM_C1));
1151 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1152 intel_uncore_read(uncore, MAD_DIMM_C2));
1153 seq_printf(m, "TILECTL = 0x%08x\n",
1154 intel_uncore_read(uncore, TILECTL));
1155 if (INTEL_GEN(dev_priv) >= 8)
1156 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1157 intel_uncore_read(uncore, GAMTARBMODE));
1158 else
1159 seq_printf(m, "ARB_MODE = 0x%08x\n",
1160 intel_uncore_read(uncore, ARB_MODE));
1161 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1162 intel_uncore_read(uncore, DISP_ARB_CTL));
1163 }
1164
1165 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
1166 seq_puts(m, "L-shaped memory detected\n");
1167
1168 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1169
1170 return 0;
1171 }
1172
1173 static const char *rps_power_to_str(unsigned int power)
1174 {
1175 static const char * const strings[] = {
1176 [LOW_POWER] = "low power",
1177 [BETWEEN] = "mixed",
1178 [HIGH_POWER] = "high power",
1179 };
1180
1181 if (power >= ARRAY_SIZE(strings) || !strings[power])
1182 return "unknown";
1183
1184 return strings[power];
1185 }
1186
1187 static int i915_rps_boost_info(struct seq_file *m, void *data)
1188 {
1189 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1190 struct intel_rps *rps = &dev_priv->gt.rps;
1191
1192 seq_printf(m, "RPS enabled? %d\n", rps->enabled);
1193 seq_printf(m, "GPU busy? %s\n", yesno(dev_priv->gt.awake));
1194 seq_printf(m, "Boosts outstanding? %d\n",
1195 atomic_read(&rps->num_waiters));
1196 seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive));
1197 seq_printf(m, "Frequency requested %d, actual %d\n",
1198 intel_gpu_freq(rps, rps->cur_freq),
1199 intel_rps_read_actual_frequency(rps));
1200 seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
1201 intel_gpu_freq(rps, rps->min_freq),
1202 intel_gpu_freq(rps, rps->min_freq_softlimit),
1203 intel_gpu_freq(rps, rps->max_freq_softlimit),
1204 intel_gpu_freq(rps, rps->max_freq));
1205 seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
1206 intel_gpu_freq(rps, rps->idle_freq),
1207 intel_gpu_freq(rps, rps->efficient_freq),
1208 intel_gpu_freq(rps, rps->boost_freq));
1209
1210 seq_printf(m, "Wait boosts: %d\n", atomic_read(&rps->boosts));
1211
1212 if (INTEL_GEN(dev_priv) >= 6 && rps->enabled && dev_priv->gt.awake) {
1213 u32 rpup, rpupei;
1214 u32 rpdown, rpdownei;
1215
1216 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1217 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
1218 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
1219 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
1220 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
1221 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1222
1223 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
1224 rps_power_to_str(rps->power.mode));
1225 seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
1226 rpup && rpupei ? 100 * rpup / rpupei : 0,
1227 rps->power.up_threshold);
1228 seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
1229 rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
1230 rps->power.down_threshold);
1231 } else {
1232 seq_puts(m, "\nRPS Autotuning inactive\n");
1233 }
1234
1235 return 0;
1236 }
1237
1238 static int i915_llc(struct seq_file *m, void *data)
1239 {
1240 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1241 const bool edram = INTEL_GEN(dev_priv) > 8;
1242
1243 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
1244 seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC",
1245 dev_priv->edram_size_mb);
1246
1247 return 0;
1248 }
1249
1250 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
1251 {
1252 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1253 struct pci_dev *pdev = dev_priv->drm.pdev;
1254
1255 if (!HAS_RUNTIME_PM(dev_priv))
1256 seq_puts(m, "Runtime power management not supported\n");
1257
1258 seq_printf(m, "Runtime power status: %s\n",
1259 enableddisabled(!dev_priv->power_domains.wakeref));
1260
1261 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
1262 seq_printf(m, "IRQs disabled: %s\n",
1263 yesno(!intel_irqs_enabled(dev_priv)));
1264 #ifdef CONFIG_PM
1265 seq_printf(m, "Usage count: %d\n",
1266 atomic_read(&dev_priv->drm.dev->power.usage_count));
1267 #else
1268 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
1269 #endif
1270 seq_printf(m, "PCI device power state: %s [%d]\n",
1271 pci_power_name(pdev->current_state),
1272 pdev->current_state);
1273
1274 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)) {
1275 struct drm_printer p = drm_seq_file_printer(m);
1276
1277 print_intel_runtime_pm_wakeref(&dev_priv->runtime_pm, &p);
1278 }
1279
1280 return 0;
1281 }
1282
1283 static int i915_engine_info(struct seq_file *m, void *unused)
1284 {
1285 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1286 struct intel_engine_cs *engine;
1287 intel_wakeref_t wakeref;
1288 struct drm_printer p;
1289
1290 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1291
1292 seq_printf(m, "GT awake? %s [%d]\n",
1293 yesno(dev_priv->gt.awake),
1294 atomic_read(&dev_priv->gt.wakeref.count));
1295 seq_printf(m, "CS timestamp frequency: %u kHz\n",
1296 RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
1297
1298 p = drm_seq_file_printer(m);
1299 for_each_uabi_engine(engine, dev_priv)
1300 intel_engine_dump(engine, &p, "%s\n", engine->name);
1301
1302 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1303
1304 return 0;
1305 }
1306
1307 static int i915_rcs_topology(struct seq_file *m, void *unused)
1308 {
1309 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1310 struct drm_printer p = drm_seq_file_printer(m);
1311
1312 intel_device_info_print_topology(&RUNTIME_INFO(dev_priv)->sseu, &p);
1313
1314 return 0;
1315 }
1316
1317 static int i915_shrinker_info(struct seq_file *m, void *unused)
1318 {
1319 struct drm_i915_private *i915 = node_to_i915(m->private);
1320
1321 seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
1322 seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
1323
1324 return 0;
1325 }
1326
1327 static int i915_wa_registers(struct seq_file *m, void *unused)
1328 {
1329 struct drm_i915_private *i915 = node_to_i915(m->private);
1330 struct intel_engine_cs *engine;
1331
1332 for_each_uabi_engine(engine, i915) {
1333 const struct i915_wa_list *wal = &engine->ctx_wa_list;
1334 const struct i915_wa *wa;
1335 unsigned int count;
1336
1337 count = wal->count;
1338 if (!count)
1339 continue;
1340
1341 seq_printf(m, "%s: Workarounds applied: %u\n",
1342 engine->name, count);
1343
1344 for (wa = wal->list; count--; wa++)
1345 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
1346 i915_mmio_reg_offset(wa->reg),
1347 wa->set, wa->clr);
1348
1349 seq_printf(m, "\n");
1350 }
1351
1352 return 0;
1353 }
1354
1355 static int
1356 i915_wedged_get(void *data, u64 *val)
1357 {
1358 struct drm_i915_private *i915 = data;
1359 int ret = intel_gt_terminally_wedged(&i915->gt);
1360
1361 switch (ret) {
1362 case -EIO:
1363 *val = 1;
1364 return 0;
1365 case 0:
1366 *val = 0;
1367 return 0;
1368 default:
1369 return ret;
1370 }
1371 }
1372
1373 static int
1374 i915_wedged_set(void *data, u64 val)
1375 {
1376 struct drm_i915_private *i915 = data;
1377
1378 /* Flush any previous reset before applying for a new one */
1379 wait_event(i915->gt.reset.queue,
1380 !test_bit(I915_RESET_BACKOFF, &i915->gt.reset.flags));
1381
1382 intel_gt_handle_error(&i915->gt, val, I915_ERROR_CAPTURE,
1383 "Manually set wedged engine mask = %llx", val);
1384 return 0;
1385 }
1386
1387 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
1388 i915_wedged_get, i915_wedged_set,
1389 "%llu\n");
1390
1391 static int
1392 i915_perf_noa_delay_set(void *data, u64 val)
1393 {
1394 struct drm_i915_private *i915 = data;
1395 const u32 clk = RUNTIME_INFO(i915)->cs_timestamp_frequency_khz;
1396
1397 /*
1398 * This would lead to infinite waits as we're doing timestamp
1399 * difference on the CS with only 32bits.
1400 */
1401 if (val > mul_u32_u32(U32_MAX, clk))
1402 return -EINVAL;
1403
1404 atomic64_set(&i915->perf.noa_programming_delay, val);
1405 return 0;
1406 }
1407
1408 static int
1409 i915_perf_noa_delay_get(void *data, u64 *val)
1410 {
1411 struct drm_i915_private *i915 = data;
1412
1413 *val = atomic64_read(&i915->perf.noa_programming_delay);
1414 return 0;
1415 }
1416
1417 DEFINE_SIMPLE_ATTRIBUTE(i915_perf_noa_delay_fops,
1418 i915_perf_noa_delay_get,
1419 i915_perf_noa_delay_set,
1420 "%llu\n");
1421
1422 #define DROP_UNBOUND BIT(0)
1423 #define DROP_BOUND BIT(1)
1424 #define DROP_RETIRE BIT(2)
1425 #define DROP_ACTIVE BIT(3)
1426 #define DROP_FREED BIT(4)
1427 #define DROP_SHRINK_ALL BIT(5)
1428 #define DROP_IDLE BIT(6)
1429 #define DROP_RESET_ACTIVE BIT(7)
1430 #define DROP_RESET_SEQNO BIT(8)
1431 #define DROP_RCU BIT(9)
1432 #define DROP_ALL (DROP_UNBOUND | \
1433 DROP_BOUND | \
1434 DROP_RETIRE | \
1435 DROP_ACTIVE | \
1436 DROP_FREED | \
1437 DROP_SHRINK_ALL |\
1438 DROP_IDLE | \
1439 DROP_RESET_ACTIVE | \
1440 DROP_RESET_SEQNO | \
1441 DROP_RCU)
1442 static int
1443 i915_drop_caches_get(void *data, u64 *val)
1444 {
1445 *val = DROP_ALL;
1446
1447 return 0;
1448 }
1449 static int
1450 gt_drop_caches(struct intel_gt *gt, u64 val)
1451 {
1452 int ret;
1453
1454 if (val & DROP_RESET_ACTIVE &&
1455 wait_for(intel_engines_are_idle(gt), I915_IDLE_ENGINES_TIMEOUT))
1456 intel_gt_set_wedged(gt);
1457
1458 if (val & DROP_RETIRE)
1459 intel_gt_retire_requests(gt);
1460
1461 if (val & (DROP_IDLE | DROP_ACTIVE)) {
1462 ret = intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1463 if (ret)
1464 return ret;
1465 }
1466
1467 if (val & DROP_IDLE) {
1468 ret = intel_gt_pm_wait_for_idle(gt);
1469 if (ret)
1470 return ret;
1471 }
1472
1473 if (val & DROP_RESET_ACTIVE && intel_gt_terminally_wedged(gt))
1474 intel_gt_handle_error(gt, ALL_ENGINES, 0, NULL);
1475
1476 return 0;
1477 }
1478
1479 static int
1480 i915_drop_caches_set(void *data, u64 val)
1481 {
1482 struct drm_i915_private *i915 = data;
1483 int ret;
1484
1485 DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
1486 val, val & DROP_ALL);
1487
1488 ret = gt_drop_caches(&i915->gt, val);
1489 if (ret)
1490 return ret;
1491
1492 fs_reclaim_acquire(GFP_KERNEL);
1493 if (val & DROP_BOUND)
1494 i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_BOUND);
1495
1496 if (val & DROP_UNBOUND)
1497 i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
1498
1499 if (val & DROP_SHRINK_ALL)
1500 i915_gem_shrink_all(i915);
1501 fs_reclaim_release(GFP_KERNEL);
1502
1503 if (val & DROP_RCU)
1504 rcu_barrier();
1505
1506 if (val & DROP_FREED)
1507 i915_gem_drain_freed_objects(i915);
1508
1509 return 0;
1510 }
1511
1512 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
1513 i915_drop_caches_get, i915_drop_caches_set,
1514 "0x%08llx\n");
1515
1516 static int
1517 i915_cache_sharing_get(void *data, u64 *val)
1518 {
1519 struct drm_i915_private *dev_priv = data;
1520 intel_wakeref_t wakeref;
1521 u32 snpcr = 0;
1522
1523 if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
1524 return -ENODEV;
1525
1526 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
1527 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1528
1529 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
1530
1531 return 0;
1532 }
1533
1534 static int
1535 i915_cache_sharing_set(void *data, u64 val)
1536 {
1537 struct drm_i915_private *dev_priv = data;
1538 intel_wakeref_t wakeref;
1539
1540 if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
1541 return -ENODEV;
1542
1543 if (val > 3)
1544 return -EINVAL;
1545
1546 drm_dbg(&dev_priv->drm,
1547 "Manually setting uncore sharing to %llu\n", val);
1548 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
1549 u32 snpcr;
1550
1551 /* Update the cache sharing policy here as well */
1552 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1553 snpcr &= ~GEN6_MBC_SNPCR_MASK;
1554 snpcr |= val << GEN6_MBC_SNPCR_SHIFT;
1555 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
1556 }
1557
1558 return 0;
1559 }
1560
1561 static void
1562 intel_sseu_copy_subslices(const struct sseu_dev_info *sseu, int slice,
1563 u8 *to_mask)
1564 {
1565 int offset = slice * sseu->ss_stride;
1566
1567 memcpy(&to_mask[offset], &sseu->subslice_mask[offset], sseu->ss_stride);
1568 }
1569
1570 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
1571 i915_cache_sharing_get, i915_cache_sharing_set,
1572 "%llu\n");
1573
1574 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
1575 struct sseu_dev_info *sseu)
1576 {
1577 #define SS_MAX 2
1578 const int ss_max = SS_MAX;
1579 u32 sig1[SS_MAX], sig2[SS_MAX];
1580 int ss;
1581
1582 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
1583 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
1584 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
1585 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
1586
1587 for (ss = 0; ss < ss_max; ss++) {
1588 unsigned int eu_cnt;
1589
1590 if (sig1[ss] & CHV_SS_PG_ENABLE)
1591 /* skip disabled subslice */
1592 continue;
1593
1594 sseu->slice_mask = BIT(0);
1595 sseu->subslice_mask[0] |= BIT(ss);
1596 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
1597 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
1598 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
1599 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
1600 sseu->eu_total += eu_cnt;
1601 sseu->eu_per_subslice = max_t(unsigned int,
1602 sseu->eu_per_subslice, eu_cnt);
1603 }
1604 #undef SS_MAX
1605 }
1606
1607 static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
1608 struct sseu_dev_info *sseu)
1609 {
1610 #define SS_MAX 6
1611 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1612 u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
1613 int s, ss;
1614
1615 for (s = 0; s < info->sseu.max_slices; s++) {
1616 /*
1617 * FIXME: Valid SS Mask respects the spec and read
1618 * only valid bits for those registers, excluding reserved
1619 * although this seems wrong because it would leave many
1620 * subslices without ACK.
1621 */
1622 s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
1623 GEN10_PGCTL_VALID_SS_MASK(s);
1624 eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
1625 eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
1626 }
1627
1628 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
1629 GEN9_PGCTL_SSA_EU19_ACK |
1630 GEN9_PGCTL_SSA_EU210_ACK |
1631 GEN9_PGCTL_SSA_EU311_ACK;
1632 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
1633 GEN9_PGCTL_SSB_EU19_ACK |
1634 GEN9_PGCTL_SSB_EU210_ACK |
1635 GEN9_PGCTL_SSB_EU311_ACK;
1636
1637 for (s = 0; s < info->sseu.max_slices; s++) {
1638 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
1639 /* skip disabled slice */
1640 continue;
1641
1642 sseu->slice_mask |= BIT(s);
1643 intel_sseu_copy_subslices(&info->sseu, s, sseu->subslice_mask);
1644
1645 for (ss = 0; ss < info->sseu.max_subslices; ss++) {
1646 unsigned int eu_cnt;
1647
1648 if (info->sseu.has_subslice_pg &&
1649 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
1650 /* skip disabled subslice */
1651 continue;
1652
1653 eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
1654 eu_mask[ss % 2]);
1655 sseu->eu_total += eu_cnt;
1656 sseu->eu_per_subslice = max_t(unsigned int,
1657 sseu->eu_per_subslice,
1658 eu_cnt);
1659 }
1660 }
1661 #undef SS_MAX
1662 }
1663
1664 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
1665 struct sseu_dev_info *sseu)
1666 {
1667 #define SS_MAX 3
1668 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1669 u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
1670 int s, ss;
1671
1672 for (s = 0; s < info->sseu.max_slices; s++) {
1673 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
1674 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
1675 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
1676 }
1677
1678 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
1679 GEN9_PGCTL_SSA_EU19_ACK |
1680 GEN9_PGCTL_SSA_EU210_ACK |
1681 GEN9_PGCTL_SSA_EU311_ACK;
1682 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
1683 GEN9_PGCTL_SSB_EU19_ACK |
1684 GEN9_PGCTL_SSB_EU210_ACK |
1685 GEN9_PGCTL_SSB_EU311_ACK;
1686
1687 for (s = 0; s < info->sseu.max_slices; s++) {
1688 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
1689 /* skip disabled slice */
1690 continue;
1691
1692 sseu->slice_mask |= BIT(s);
1693
1694 if (IS_GEN9_BC(dev_priv))
1695 intel_sseu_copy_subslices(&info->sseu, s,
1696 sseu->subslice_mask);
1697
1698 for (ss = 0; ss < info->sseu.max_subslices; ss++) {
1699 unsigned int eu_cnt;
1700 u8 ss_idx = s * info->sseu.ss_stride +
1701 ss / BITS_PER_BYTE;
1702
1703 if (IS_GEN9_LP(dev_priv)) {
1704 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
1705 /* skip disabled subslice */
1706 continue;
1707
1708 sseu->subslice_mask[ss_idx] |=
1709 BIT(ss % BITS_PER_BYTE);
1710 }
1711
1712 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
1713 eu_mask[ss%2]);
1714 sseu->eu_total += eu_cnt;
1715 sseu->eu_per_subslice = max_t(unsigned int,
1716 sseu->eu_per_subslice,
1717 eu_cnt);
1718 }
1719 }
1720 #undef SS_MAX
1721 }
1722
1723 static void bdw_sseu_device_status(struct drm_i915_private *dev_priv,
1724 struct sseu_dev_info *sseu)
1725 {
1726 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1727 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
1728 int s;
1729
1730 sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
1731
1732 if (sseu->slice_mask) {
1733 sseu->eu_per_subslice = info->sseu.eu_per_subslice;
1734 for (s = 0; s < fls(sseu->slice_mask); s++)
1735 intel_sseu_copy_subslices(&info->sseu, s,
1736 sseu->subslice_mask);
1737 sseu->eu_total = sseu->eu_per_subslice *
1738 intel_sseu_subslice_total(sseu);
1739
1740 /* subtract fused off EU(s) from enabled slice(s) */
1741 for (s = 0; s < fls(sseu->slice_mask); s++) {
1742 u8 subslice_7eu = info->sseu.subslice_7eu[s];
1743
1744 sseu->eu_total -= hweight8(subslice_7eu);
1745 }
1746 }
1747 }
1748
1749 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
1750 const struct sseu_dev_info *sseu)
1751 {
1752 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1753 const char *type = is_available_info ? "Available" : "Enabled";
1754 int s;
1755
1756 seq_printf(m, " %s Slice Mask: %04x\n", type,
1757 sseu->slice_mask);
1758 seq_printf(m, " %s Slice Total: %u\n", type,
1759 hweight8(sseu->slice_mask));
1760 seq_printf(m, " %s Subslice Total: %u\n", type,
1761 intel_sseu_subslice_total(sseu));
1762 for (s = 0; s < fls(sseu->slice_mask); s++) {
1763 seq_printf(m, " %s Slice%i subslices: %u\n", type,
1764 s, intel_sseu_subslices_per_slice(sseu, s));
1765 }
1766 seq_printf(m, " %s EU Total: %u\n", type,
1767 sseu->eu_total);
1768 seq_printf(m, " %s EU Per Subslice: %u\n", type,
1769 sseu->eu_per_subslice);
1770
1771 if (!is_available_info)
1772 return;
1773
1774 seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
1775 if (HAS_POOLED_EU(dev_priv))
1776 seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
1777
1778 seq_printf(m, " Has Slice Power Gating: %s\n",
1779 yesno(sseu->has_slice_pg));
1780 seq_printf(m, " Has Subslice Power Gating: %s\n",
1781 yesno(sseu->has_subslice_pg));
1782 seq_printf(m, " Has EU Power Gating: %s\n",
1783 yesno(sseu->has_eu_pg));
1784 }
1785
1786 static int i915_sseu_status(struct seq_file *m, void *unused)
1787 {
1788 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1789 const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1790 struct sseu_dev_info sseu;
1791 intel_wakeref_t wakeref;
1792
1793 if (INTEL_GEN(dev_priv) < 8)
1794 return -ENODEV;
1795
1796 seq_puts(m, "SSEU Device Info\n");
1797 i915_print_sseu_info(m, true, &info->sseu);
1798
1799 seq_puts(m, "SSEU Device Status\n");
1800 memset(&sseu, 0, sizeof(sseu));
1801 intel_sseu_set_info(&sseu, info->sseu.max_slices,
1802 info->sseu.max_subslices,
1803 info->sseu.max_eus_per_subslice);
1804
1805 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
1806 if (IS_CHERRYVIEW(dev_priv))
1807 cherryview_sseu_device_status(dev_priv, &sseu);
1808 else if (IS_BROADWELL(dev_priv))
1809 bdw_sseu_device_status(dev_priv, &sseu);
1810 else if (IS_GEN(dev_priv, 9))
1811 gen9_sseu_device_status(dev_priv, &sseu);
1812 else if (INTEL_GEN(dev_priv) >= 10)
1813 gen10_sseu_device_status(dev_priv, &sseu);
1814 }
1815
1816 i915_print_sseu_info(m, false, &sseu);
1817
1818 return 0;
1819 }
1820
1821 static int i915_forcewake_open(struct inode *inode, struct file *file)
1822 {
1823 struct drm_i915_private *i915 = inode->i_private;
1824 struct intel_gt *gt = &i915->gt;
1825
1826 atomic_inc(&gt->user_wakeref);
1827 intel_gt_pm_get(gt);
1828 if (INTEL_GEN(i915) >= 6)
1829 intel_uncore_forcewake_user_get(gt->uncore);
1830
1831 return 0;
1832 }
1833
1834 static int i915_forcewake_release(struct inode *inode, struct file *file)
1835 {
1836 struct drm_i915_private *i915 = inode->i_private;
1837 struct intel_gt *gt = &i915->gt;
1838
1839 if (INTEL_GEN(i915) >= 6)
1840 intel_uncore_forcewake_user_put(&i915->uncore);
1841 intel_gt_pm_put(gt);
1842 atomic_dec(&gt->user_wakeref);
1843
1844 return 0;
1845 }
1846
1847 static const struct file_operations i915_forcewake_fops = {
1848 .owner = THIS_MODULE,
1849 .open = i915_forcewake_open,
1850 .release = i915_forcewake_release,
1851 };
1852
1853 static const struct drm_info_list i915_debugfs_list[] = {
1854 {"i915_capabilities", i915_capabilities, 0},
1855 {"i915_gem_objects", i915_gem_object_info, 0},
1856 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
1857 {"i915_gem_interrupt", i915_interrupt_info, 0},
1858 {"i915_frequency_info", i915_frequency_info, 0},
1859 {"i915_ring_freq_table", i915_ring_freq_table, 0},
1860 {"i915_context_status", i915_context_status, 0},
1861 {"i915_swizzle_info", i915_swizzle_info, 0},
1862 {"i915_llc", i915_llc, 0},
1863 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
1864 {"i915_engine_info", i915_engine_info, 0},
1865 {"i915_rcs_topology", i915_rcs_topology, 0},
1866 {"i915_shrinker_info", i915_shrinker_info, 0},
1867 {"i915_wa_registers", i915_wa_registers, 0},
1868 {"i915_sseu_status", i915_sseu_status, 0},
1869 {"i915_rps_boost_info", i915_rps_boost_info, 0},
1870 };
1871 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
1872
1873 static const struct i915_debugfs_files {
1874 const char *name;
1875 const struct file_operations *fops;
1876 } i915_debugfs_files[] = {
1877 {"i915_perf_noa_delay", &i915_perf_noa_delay_fops},
1878 {"i915_wedged", &i915_wedged_fops},
1879 {"i915_cache_sharing", &i915_cache_sharing_fops},
1880 {"i915_gem_drop_caches", &i915_drop_caches_fops},
1881 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1882 {"i915_error_state", &i915_error_state_fops},
1883 {"i915_gpu_info", &i915_gpu_info_fops},
1884 #endif
1885 };
1886
1887 void i915_debugfs_register(struct drm_i915_private *dev_priv)
1888 {
1889 struct drm_minor *minor = dev_priv->drm.primary;
1890 int i;
1891
1892 i915_debugfs_params(dev_priv);
1893
1894 debugfs_create_file("i915_forcewake_user", S_IRUSR, minor->debugfs_root,
1895 to_i915(minor->dev), &i915_forcewake_fops);
1896 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
1897 debugfs_create_file(i915_debugfs_files[i].name,
1898 S_IRUGO | S_IWUSR,
1899 minor->debugfs_root,
1900 to_i915(minor->dev),
1901 i915_debugfs_files[i].fops);
1902 }
1903
1904 drm_debugfs_create_files(i915_debugfs_list,
1905 I915_DEBUGFS_ENTRIES,
1906 minor->debugfs_root, minor);
1907 }