]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
Merge tag 'v4.9.32' into linux-4.9.x-grsecurity-3.1
[people/arne_f/kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52
53 static drm_driver_no_const driver;
54
55 static unsigned int i915_load_fail_count;
56
57 bool __i915_inject_load_failure(const char *func, int line)
58 {
59 if (i915_load_fail_count >= i915.inject_load_failure)
60 return false;
61
62 if (++i915_load_fail_count == i915.inject_load_failure) {
63 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
64 i915.inject_load_failure, func, line);
65 return true;
66 }
67
68 return false;
69 }
70
71 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
72 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
73 "providing the dmesg log by booting with drm.debug=0xf"
74
75 void
76 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
77 const char *fmt, ...)
78 {
79 static bool shown_bug_once;
80 struct device *kdev = dev_priv->drm.dev;
81 bool is_error = level[1] <= KERN_ERR[1];
82 bool is_debug = level[1] == KERN_DEBUG[1];
83 struct va_format vaf;
84 va_list args;
85
86 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
87 return;
88
89 va_start(args, fmt);
90
91 vaf.fmt = fmt;
92 vaf.va = &args;
93
94 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
95 __builtin_return_address(0), &vaf);
96
97 if (is_error && !shown_bug_once) {
98 dev_notice(kdev, "%s", FDO_BUG_MSG);
99 shown_bug_once = true;
100 }
101
102 va_end(args);
103 }
104
105 static bool i915_error_injected(struct drm_i915_private *dev_priv)
106 {
107 return i915.inject_load_failure &&
108 i915_load_fail_count == i915.inject_load_failure;
109 }
110
111 #define i915_load_error(dev_priv, fmt, ...) \
112 __i915_printk(dev_priv, \
113 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
114 fmt, ##__VA_ARGS__)
115
116
117 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
118 {
119 enum intel_pch ret = PCH_NOP;
120
121 /*
122 * In a virtualized passthrough environment we can be in a
123 * setup where the ISA bridge is not able to be passed through.
124 * In this case, a south bridge can be emulated and we have to
125 * make an educated guess as to which PCH is really there.
126 */
127
128 if (IS_GEN5(dev)) {
129 ret = PCH_IBX;
130 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
131 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
132 ret = PCH_CPT;
133 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
134 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
135 ret = PCH_LPT;
136 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
137 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
138 ret = PCH_SPT;
139 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
140 }
141
142 return ret;
143 }
144
145 static void intel_detect_pch(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = to_i915(dev);
148 struct pci_dev *pch = NULL;
149
150 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151 * (which really amounts to a PCH but no South Display).
152 */
153 if (INTEL_INFO(dev)->num_pipes == 0) {
154 dev_priv->pch_type = PCH_NOP;
155 return;
156 }
157
158 /*
159 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160 * make graphics device passthrough work easy for VMM, that only
161 * need to expose ISA bridge to let driver know the real hardware
162 * underneath. This is a requirement from virtualization team.
163 *
164 * In some virtualized environments (e.g. XEN), there is irrelevant
165 * ISA bridge in the system. To work reliably, we should scan trhough
166 * all the ISA bridge devices and check for the first match, instead
167 * of only checking the first one.
168 */
169 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172 dev_priv->pch_id = id;
173
174 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175 dev_priv->pch_type = PCH_IBX;
176 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177 WARN_ON(!IS_GEN5(dev));
178 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179 dev_priv->pch_type = PCH_CPT;
180 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
182 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
183 /* PantherPoint is CPT compatible */
184 dev_priv->pch_type = PCH_CPT;
185 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
186 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
187 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
188 dev_priv->pch_type = PCH_LPT;
189 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
190 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
191 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
192 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
193 dev_priv->pch_type = PCH_LPT;
194 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
195 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
196 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
197 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
198 dev_priv->pch_type = PCH_SPT;
199 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
200 WARN_ON(!IS_SKYLAKE(dev) &&
201 !IS_KABYLAKE(dev));
202 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
203 dev_priv->pch_type = PCH_SPT;
204 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
205 WARN_ON(!IS_SKYLAKE(dev) &&
206 !IS_KABYLAKE(dev));
207 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
208 dev_priv->pch_type = PCH_KBP;
209 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
210 WARN_ON(!IS_KABYLAKE(dev));
211 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
212 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
213 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
214 pch->subsystem_vendor ==
215 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
216 pch->subsystem_device ==
217 PCI_SUBDEVICE_ID_QEMU)) {
218 dev_priv->pch_type = intel_virt_detect_pch(dev);
219 } else
220 continue;
221
222 break;
223 }
224 }
225 if (!pch)
226 DRM_DEBUG_KMS("No PCH found.\n");
227
228 pci_dev_put(pch);
229 }
230
231 static int i915_getparam(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233 {
234 struct drm_i915_private *dev_priv = to_i915(dev);
235 struct pci_dev *pdev = dev_priv->drm.pdev;
236 drm_i915_getparam_t *param = data;
237 int value;
238
239 switch (param->param) {
240 case I915_PARAM_IRQ_ACTIVE:
241 case I915_PARAM_ALLOW_BATCHBUFFER:
242 case I915_PARAM_LAST_DISPATCH:
243 case I915_PARAM_HAS_EXEC_CONSTANTS:
244 /* Reject all old ums/dri params. */
245 return -ENODEV;
246 case I915_PARAM_CHIPSET_ID:
247 value = pdev->device;
248 break;
249 case I915_PARAM_REVISION:
250 value = pdev->revision;
251 break;
252 case I915_PARAM_NUM_FENCES_AVAIL:
253 value = dev_priv->num_fence_regs;
254 break;
255 case I915_PARAM_HAS_OVERLAY:
256 value = dev_priv->overlay ? 1 : 0;
257 break;
258 case I915_PARAM_HAS_BSD:
259 value = intel_engine_initialized(&dev_priv->engine[VCS]);
260 break;
261 case I915_PARAM_HAS_BLT:
262 value = intel_engine_initialized(&dev_priv->engine[BCS]);
263 break;
264 case I915_PARAM_HAS_VEBOX:
265 value = intel_engine_initialized(&dev_priv->engine[VECS]);
266 break;
267 case I915_PARAM_HAS_BSD2:
268 value = intel_engine_initialized(&dev_priv->engine[VCS2]);
269 break;
270 case I915_PARAM_HAS_LLC:
271 value = HAS_LLC(dev_priv);
272 break;
273 case I915_PARAM_HAS_WT:
274 value = HAS_WT(dev_priv);
275 break;
276 case I915_PARAM_HAS_ALIASING_PPGTT:
277 value = USES_PPGTT(dev_priv);
278 break;
279 case I915_PARAM_HAS_SEMAPHORES:
280 value = i915.semaphores;
281 break;
282 case I915_PARAM_HAS_SECURE_BATCHES:
283 value = capable(CAP_SYS_ADMIN);
284 break;
285 case I915_PARAM_CMD_PARSER_VERSION:
286 value = i915_cmd_parser_get_version(dev_priv);
287 break;
288 case I915_PARAM_SUBSLICE_TOTAL:
289 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
290 if (!value)
291 return -ENODEV;
292 break;
293 case I915_PARAM_EU_TOTAL:
294 value = INTEL_INFO(dev_priv)->sseu.eu_total;
295 if (!value)
296 return -ENODEV;
297 break;
298 case I915_PARAM_HAS_GPU_RESET:
299 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
300 break;
301 case I915_PARAM_HAS_RESOURCE_STREAMER:
302 value = HAS_RESOURCE_STREAMER(dev_priv);
303 break;
304 case I915_PARAM_HAS_POOLED_EU:
305 value = HAS_POOLED_EU(dev_priv);
306 break;
307 case I915_PARAM_MIN_EU_IN_POOL:
308 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
309 break;
310 case I915_PARAM_MMAP_GTT_VERSION:
311 /* Though we've started our numbering from 1, and so class all
312 * earlier versions as 0, in effect their value is undefined as
313 * the ioctl will report EINVAL for the unknown param!
314 */
315 value = i915_gem_mmap_gtt_version();
316 break;
317 case I915_PARAM_MMAP_VERSION:
318 /* Remember to bump this if the version changes! */
319 case I915_PARAM_HAS_GEM:
320 case I915_PARAM_HAS_PAGEFLIPPING:
321 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
322 case I915_PARAM_HAS_RELAXED_FENCING:
323 case I915_PARAM_HAS_COHERENT_RINGS:
324 case I915_PARAM_HAS_RELAXED_DELTA:
325 case I915_PARAM_HAS_GEN7_SOL_RESET:
326 case I915_PARAM_HAS_WAIT_TIMEOUT:
327 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
328 case I915_PARAM_HAS_PINNED_BATCHES:
329 case I915_PARAM_HAS_EXEC_NO_RELOC:
330 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
331 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
332 case I915_PARAM_HAS_EXEC_SOFTPIN:
333 /* For the time being all of these are always true;
334 * if some supported hardware does not have one of these
335 * features this value needs to be provided from
336 * INTEL_INFO(), a feature macro, or similar.
337 */
338 value = 1;
339 break;
340 default:
341 DRM_DEBUG("Unknown parameter %d\n", param->param);
342 return -EINVAL;
343 }
344
345 if (put_user(value, param->value))
346 return -EFAULT;
347
348 return 0;
349 }
350
351 static int i915_get_bridge_dev(struct drm_device *dev)
352 {
353 struct drm_i915_private *dev_priv = to_i915(dev);
354
355 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
356 if (!dev_priv->bridge_dev) {
357 DRM_ERROR("bridge device not found\n");
358 return -1;
359 }
360 return 0;
361 }
362
363 /* Allocate space for the MCH regs if needed, return nonzero on error */
364 static int
365 intel_alloc_mchbar_resource(struct drm_device *dev)
366 {
367 struct drm_i915_private *dev_priv = to_i915(dev);
368 int reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
369 u32 temp_lo, temp_hi = 0;
370 u64 mchbar_addr;
371 int ret;
372
373 if (INTEL_INFO(dev)->gen >= 4)
374 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
375 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
376 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
377
378 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
379 #ifdef CONFIG_PNP
380 if (mchbar_addr &&
381 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
382 return 0;
383 #endif
384
385 /* Get some space for it */
386 dev_priv->mch_res.name = "i915 MCHBAR";
387 dev_priv->mch_res.flags = IORESOURCE_MEM;
388 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
389 &dev_priv->mch_res,
390 MCHBAR_SIZE, MCHBAR_SIZE,
391 PCIBIOS_MIN_MEM,
392 0, pcibios_align_resource,
393 dev_priv->bridge_dev);
394 if (ret) {
395 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
396 dev_priv->mch_res.start = 0;
397 return ret;
398 }
399
400 if (INTEL_INFO(dev)->gen >= 4)
401 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
402 upper_32_bits(dev_priv->mch_res.start));
403
404 pci_write_config_dword(dev_priv->bridge_dev, reg,
405 lower_32_bits(dev_priv->mch_res.start));
406 return 0;
407 }
408
409 /* Setup MCHBAR if possible, return true if we should disable it again */
410 static void
411 intel_setup_mchbar(struct drm_device *dev)
412 {
413 struct drm_i915_private *dev_priv = to_i915(dev);
414 int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
415 u32 temp;
416 bool enabled;
417
418 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
419 return;
420
421 dev_priv->mchbar_need_disable = false;
422
423 if (IS_I915G(dev) || IS_I915GM(dev)) {
424 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
425 enabled = !!(temp & DEVEN_MCHBAR_EN);
426 } else {
427 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
428 enabled = temp & 1;
429 }
430
431 /* If it's already enabled, don't have to do anything */
432 if (enabled)
433 return;
434
435 if (intel_alloc_mchbar_resource(dev))
436 return;
437
438 dev_priv->mchbar_need_disable = true;
439
440 /* Space is allocated or reserved, so enable it. */
441 if (IS_I915G(dev) || IS_I915GM(dev)) {
442 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
443 temp | DEVEN_MCHBAR_EN);
444 } else {
445 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
446 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
447 }
448 }
449
450 static void
451 intel_teardown_mchbar(struct drm_device *dev)
452 {
453 struct drm_i915_private *dev_priv = to_i915(dev);
454 int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
455
456 if (dev_priv->mchbar_need_disable) {
457 if (IS_I915G(dev) || IS_I915GM(dev)) {
458 u32 deven_val;
459
460 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
461 &deven_val);
462 deven_val &= ~DEVEN_MCHBAR_EN;
463 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
464 deven_val);
465 } else {
466 u32 mchbar_val;
467
468 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
469 &mchbar_val);
470 mchbar_val &= ~1;
471 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
472 mchbar_val);
473 }
474 }
475
476 if (dev_priv->mch_res.start)
477 release_resource(&dev_priv->mch_res);
478 }
479
480 /* true = enable decode, false = disable decoder */
481 static unsigned int i915_vga_set_decode(void *cookie, bool state)
482 {
483 struct drm_device *dev = cookie;
484
485 intel_modeset_vga_set_state(dev, state);
486 if (state)
487 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
488 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
489 else
490 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
491 }
492
493 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
494 {
495 struct drm_device *dev = pci_get_drvdata(pdev);
496 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
497
498 if (state == VGA_SWITCHEROO_ON) {
499 pr_info("switched on\n");
500 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
501 /* i915 resume handler doesn't set to D0 */
502 pci_set_power_state(pdev, PCI_D0);
503 i915_resume_switcheroo(dev);
504 dev->switch_power_state = DRM_SWITCH_POWER_ON;
505 } else {
506 pr_info("switched off\n");
507 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
508 i915_suspend_switcheroo(dev, pmm);
509 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
510 }
511 }
512
513 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
514 {
515 struct drm_device *dev = pci_get_drvdata(pdev);
516
517 /*
518 * FIXME: open_count is protected by drm_global_mutex but that would lead to
519 * locking inversion with the driver load path. And the access here is
520 * completely racy anyway. So don't bother with locking for now.
521 */
522 return local_read(&dev->open_count) == 0;
523 }
524
525 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
526 .set_gpu_state = i915_switcheroo_set_state,
527 .reprobe = NULL,
528 .can_switch = i915_switcheroo_can_switch,
529 };
530
531 static void i915_gem_fini(struct drm_device *dev)
532 {
533 struct drm_i915_private *dev_priv = to_i915(dev);
534
535 /*
536 * Neither the BIOS, ourselves or any other kernel
537 * expects the system to be in execlists mode on startup,
538 * so we need to reset the GPU back to legacy mode. And the only
539 * known way to disable logical contexts is through a GPU reset.
540 *
541 * So in order to leave the system in a known default configuration,
542 * always reset the GPU upon unload. Afterwards we then clean up the
543 * GEM state tracking, flushing off the requests and leaving the
544 * system in a known idle state.
545 *
546 * Note that is of the upmost importance that the GPU is idle and
547 * all stray writes are flushed *before* we dismantle the backing
548 * storage for the pinned objects.
549 *
550 * However, since we are uncertain that reseting the GPU on older
551 * machines is a good idea, we don't - just in case it leaves the
552 * machine in an unusable condition.
553 */
554 if (HAS_HW_CONTEXTS(dev)) {
555 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
556 WARN_ON(reset && reset != -ENODEV);
557 }
558
559 mutex_lock(&dev->struct_mutex);
560 i915_gem_cleanup_engines(dev);
561 i915_gem_context_fini(dev);
562 mutex_unlock(&dev->struct_mutex);
563
564 WARN_ON(!list_empty(&to_i915(dev)->context_list));
565 }
566
567 static int i915_load_modeset_init(struct drm_device *dev)
568 {
569 struct drm_i915_private *dev_priv = to_i915(dev);
570 struct pci_dev *pdev = dev_priv->drm.pdev;
571 int ret;
572
573 if (i915_inject_load_failure())
574 return -ENODEV;
575
576 intel_bios_init(dev_priv);
577
578 /* If we have > 1 VGA cards, then we need to arbitrate access
579 * to the common VGA resources.
580 *
581 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
582 * then we do not take part in VGA arbitration and the
583 * vga_client_register() fails with -ENODEV.
584 */
585 ret = vga_client_register(pdev, dev, NULL, i915_vga_set_decode);
586 if (ret && ret != -ENODEV)
587 goto out;
588
589 intel_register_dsm_handler();
590
591 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
592 if (ret)
593 goto cleanup_vga_client;
594
595 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
596 intel_update_rawclk(dev_priv);
597
598 intel_power_domains_init_hw(dev_priv, false);
599
600 intel_csr_ucode_init(dev_priv);
601
602 ret = intel_irq_install(dev_priv);
603 if (ret)
604 goto cleanup_csr;
605
606 intel_setup_gmbus(dev);
607
608 /* Important: The output setup functions called by modeset_init need
609 * working irqs for e.g. gmbus and dp aux transfers. */
610 intel_modeset_init(dev);
611
612 intel_guc_init(dev);
613
614 ret = i915_gem_init(dev);
615 if (ret)
616 goto cleanup_irq;
617
618 intel_modeset_gem_init(dev);
619
620 if (INTEL_INFO(dev)->num_pipes == 0)
621 return 0;
622
623 ret = intel_fbdev_init(dev);
624 if (ret)
625 goto cleanup_gem;
626
627 /* Only enable hotplug handling once the fbdev is fully set up. */
628 intel_hpd_init(dev_priv);
629
630 drm_kms_helper_poll_init(dev);
631
632 return 0;
633
634 cleanup_gem:
635 i915_gem_fini(dev);
636 cleanup_irq:
637 intel_guc_fini(dev);
638 drm_irq_uninstall(dev);
639 intel_teardown_gmbus(dev);
640 cleanup_csr:
641 intel_csr_ucode_fini(dev_priv);
642 intel_power_domains_fini(dev_priv);
643 vga_switcheroo_unregister_client(pdev);
644 cleanup_vga_client:
645 vga_client_register(pdev, NULL, NULL, NULL);
646 out:
647 return ret;
648 }
649
650 #if IS_ENABLED(CONFIG_FB)
651 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
652 {
653 struct apertures_struct *ap;
654 struct pci_dev *pdev = dev_priv->drm.pdev;
655 struct i915_ggtt *ggtt = &dev_priv->ggtt;
656 bool primary;
657 int ret;
658
659 ap = alloc_apertures(1);
660 if (!ap)
661 return -ENOMEM;
662
663 ap->ranges[0].base = ggtt->mappable_base;
664 ap->ranges[0].size = ggtt->mappable_end;
665
666 primary =
667 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
668
669 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
670
671 kfree(ap);
672
673 return ret;
674 }
675 #else
676 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
677 {
678 return 0;
679 }
680 #endif
681
682 #if !defined(CONFIG_VGA_CONSOLE)
683 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
684 {
685 return 0;
686 }
687 #elif !defined(CONFIG_DUMMY_CONSOLE)
688 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
689 {
690 return -ENODEV;
691 }
692 #else
693 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
694 {
695 int ret = 0;
696
697 DRM_INFO("Replacing VGA console driver\n");
698
699 console_lock();
700 if (con_is_bound(&vga_con))
701 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
702 if (ret == 0) {
703 ret = do_unregister_con_driver(&vga_con);
704
705 /* Ignore "already unregistered". */
706 if (ret == -ENODEV)
707 ret = 0;
708 }
709 console_unlock();
710
711 return ret;
712 }
713 #endif
714
715 static void intel_init_dpio(struct drm_i915_private *dev_priv)
716 {
717 /*
718 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
719 * CHV x1 PHY (DP/HDMI D)
720 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
721 */
722 if (IS_CHERRYVIEW(dev_priv)) {
723 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
724 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
725 } else if (IS_VALLEYVIEW(dev_priv)) {
726 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
727 }
728 }
729
730 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
731 {
732 /*
733 * The i915 workqueue is primarily used for batched retirement of
734 * requests (and thus managing bo) once the task has been completed
735 * by the GPU. i915_gem_retire_requests() is called directly when we
736 * need high-priority retirement, such as waiting for an explicit
737 * bo.
738 *
739 * It is also used for periodic low-priority events, such as
740 * idle-timers and recording error state.
741 *
742 * All tasks on the workqueue are expected to acquire the dev mutex
743 * so there is no point in running more than one instance of the
744 * workqueue at any time. Use an ordered one.
745 */
746 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
747 if (dev_priv->wq == NULL)
748 goto out_err;
749
750 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
751 if (dev_priv->hotplug.dp_wq == NULL)
752 goto out_free_wq;
753
754 return 0;
755
756 out_free_wq:
757 destroy_workqueue(dev_priv->wq);
758 out_err:
759 DRM_ERROR("Failed to allocate workqueues.\n");
760
761 return -ENOMEM;
762 }
763
764 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
765 {
766 destroy_workqueue(dev_priv->hotplug.dp_wq);
767 destroy_workqueue(dev_priv->wq);
768 }
769
770 /**
771 * i915_driver_init_early - setup state not requiring device access
772 * @dev_priv: device private
773 *
774 * Initialize everything that is a "SW-only" state, that is state not
775 * requiring accessing the device or exposing the driver via kernel internal
776 * or userspace interfaces. Example steps belonging here: lock initialization,
777 * system memory allocation, setting up device specific attributes and
778 * function hooks not requiring accessing the device.
779 */
780 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
781 const struct pci_device_id *ent)
782 {
783 const struct intel_device_info *match_info =
784 (struct intel_device_info *)ent->driver_data;
785 struct intel_device_info *device_info;
786 int ret = 0;
787
788 if (i915_inject_load_failure())
789 return -ENODEV;
790
791 /* Setup the write-once "constant" device info */
792 device_info = mkwrite_device_info(dev_priv);
793 memcpy(device_info, match_info, sizeof(*device_info));
794 device_info->device_id = dev_priv->drm.pdev->device;
795
796 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
797 device_info->gen_mask = BIT(device_info->gen - 1);
798
799 spin_lock_init(&dev_priv->irq_lock);
800 spin_lock_init(&dev_priv->gpu_error.lock);
801 mutex_init(&dev_priv->backlight_lock);
802 spin_lock_init(&dev_priv->uncore.lock);
803 spin_lock_init(&dev_priv->mm.object_stat_lock);
804 spin_lock_init(&dev_priv->mmio_flip_lock);
805 mutex_init(&dev_priv->sb_lock);
806 mutex_init(&dev_priv->modeset_restore_lock);
807 mutex_init(&dev_priv->av_mutex);
808 mutex_init(&dev_priv->wm.wm_mutex);
809 mutex_init(&dev_priv->pps_mutex);
810
811 i915_memcpy_init_early(dev_priv);
812
813 ret = i915_workqueues_init(dev_priv);
814 if (ret < 0)
815 return ret;
816
817 ret = intel_gvt_init(dev_priv);
818 if (ret < 0)
819 goto err_workqueues;
820
821 /* This must be called before any calls to HAS_PCH_* */
822 intel_detect_pch(&dev_priv->drm);
823
824 intel_pm_setup(&dev_priv->drm);
825 intel_init_dpio(dev_priv);
826 intel_power_domains_init(dev_priv);
827 intel_irq_init(dev_priv);
828 intel_init_display_hooks(dev_priv);
829 intel_init_clock_gating_hooks(dev_priv);
830 intel_init_audio_hooks(dev_priv);
831 i915_gem_load_init(&dev_priv->drm);
832
833 intel_display_crc_init(dev_priv);
834
835 intel_device_info_dump(dev_priv);
836
837 /* Not all pre-production machines fall into this category, only the
838 * very first ones. Almost everything should work, except for maybe
839 * suspend/resume. And we don't implement workarounds that affect only
840 * pre-production machines. */
841 if (IS_HSW_EARLY_SDV(dev_priv))
842 DRM_INFO("This is an early pre-production Haswell machine. "
843 "It may not be fully functional.\n");
844
845 return 0;
846
847 err_workqueues:
848 i915_workqueues_cleanup(dev_priv);
849 return ret;
850 }
851
852 /**
853 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
854 * @dev_priv: device private
855 */
856 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
857 {
858 i915_gem_load_cleanup(&dev_priv->drm);
859 i915_workqueues_cleanup(dev_priv);
860 }
861
862 static int i915_mmio_setup(struct drm_device *dev)
863 {
864 struct drm_i915_private *dev_priv = to_i915(dev);
865 struct pci_dev *pdev = dev_priv->drm.pdev;
866 int mmio_bar;
867 int mmio_size;
868
869 mmio_bar = IS_GEN2(dev) ? 1 : 0;
870 /*
871 * Before gen4, the registers and the GTT are behind different BARs.
872 * However, from gen4 onwards, the registers and the GTT are shared
873 * in the same BAR, so we want to restrict this ioremap from
874 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
875 * the register BAR remains the same size for all the earlier
876 * generations up to Ironlake.
877 */
878 if (INTEL_INFO(dev)->gen < 5)
879 mmio_size = 512 * 1024;
880 else
881 mmio_size = 2 * 1024 * 1024;
882 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
883 if (dev_priv->regs == NULL) {
884 DRM_ERROR("failed to map registers\n");
885
886 return -EIO;
887 }
888
889 /* Try to make sure MCHBAR is enabled before poking at it */
890 intel_setup_mchbar(dev);
891
892 return 0;
893 }
894
895 static void i915_mmio_cleanup(struct drm_device *dev)
896 {
897 struct drm_i915_private *dev_priv = to_i915(dev);
898 struct pci_dev *pdev = dev_priv->drm.pdev;
899
900 intel_teardown_mchbar(dev);
901 pci_iounmap(pdev, dev_priv->regs);
902 }
903
904 /**
905 * i915_driver_init_mmio - setup device MMIO
906 * @dev_priv: device private
907 *
908 * Setup minimal device state necessary for MMIO accesses later in the
909 * initialization sequence. The setup here should avoid any other device-wide
910 * side effects or exposing the driver via kernel internal or user space
911 * interfaces.
912 */
913 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
914 {
915 struct drm_device *dev = &dev_priv->drm;
916 int ret;
917
918 if (i915_inject_load_failure())
919 return -ENODEV;
920
921 if (i915_get_bridge_dev(dev))
922 return -EIO;
923
924 ret = i915_mmio_setup(dev);
925 if (ret < 0)
926 goto put_bridge;
927
928 intel_uncore_init(dev_priv);
929
930 return 0;
931
932 put_bridge:
933 pci_dev_put(dev_priv->bridge_dev);
934
935 return ret;
936 }
937
938 /**
939 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
940 * @dev_priv: device private
941 */
942 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
943 {
944 struct drm_device *dev = &dev_priv->drm;
945
946 intel_uncore_fini(dev_priv);
947 i915_mmio_cleanup(dev);
948 pci_dev_put(dev_priv->bridge_dev);
949 }
950
951 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
952 {
953 i915.enable_execlists =
954 intel_sanitize_enable_execlists(dev_priv,
955 i915.enable_execlists);
956
957 /*
958 * i915.enable_ppgtt is read-only, so do an early pass to validate the
959 * user's requested state against the hardware/driver capabilities. We
960 * do this now so that we can print out any log messages once rather
961 * than every time we check intel_enable_ppgtt().
962 */
963 i915.enable_ppgtt =
964 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
965 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
966
967 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
968 DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
969 }
970
971 /**
972 * i915_driver_init_hw - setup state requiring device access
973 * @dev_priv: device private
974 *
975 * Setup state that requires accessing the device, but doesn't require
976 * exposing the driver via kernel internal or userspace interfaces.
977 */
978 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
979 {
980 struct pci_dev *pdev = dev_priv->drm.pdev;
981 struct drm_device *dev = &dev_priv->drm;
982 int ret;
983
984 if (i915_inject_load_failure())
985 return -ENODEV;
986
987 intel_device_info_runtime_init(dev_priv);
988
989 intel_sanitize_options(dev_priv);
990
991 ret = i915_ggtt_probe_hw(dev_priv);
992 if (ret)
993 return ret;
994
995 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
996 * otherwise the vga fbdev driver falls over. */
997 ret = i915_kick_out_firmware_fb(dev_priv);
998 if (ret) {
999 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1000 goto out_ggtt;
1001 }
1002
1003 ret = i915_kick_out_vgacon(dev_priv);
1004 if (ret) {
1005 DRM_ERROR("failed to remove conflicting VGA console\n");
1006 goto out_ggtt;
1007 }
1008
1009 ret = i915_ggtt_init_hw(dev_priv);
1010 if (ret)
1011 return ret;
1012
1013 ret = i915_ggtt_enable_hw(dev_priv);
1014 if (ret) {
1015 DRM_ERROR("failed to enable GGTT\n");
1016 goto out_ggtt;
1017 }
1018
1019 pci_set_master(pdev);
1020
1021 /* overlay on gen2 is broken and can't address above 1G */
1022 if (IS_GEN2(dev)) {
1023 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1024 if (ret) {
1025 DRM_ERROR("failed to set DMA mask\n");
1026
1027 goto out_ggtt;
1028 }
1029 }
1030
1031 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1032 * using 32bit addressing, overwriting memory if HWS is located
1033 * above 4GB.
1034 *
1035 * The documentation also mentions an issue with undefined
1036 * behaviour if any general state is accessed within a page above 4GB,
1037 * which also needs to be handled carefully.
1038 */
1039 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) {
1040 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1041
1042 if (ret) {
1043 DRM_ERROR("failed to set DMA mask\n");
1044
1045 goto out_ggtt;
1046 }
1047 }
1048
1049 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1050 PM_QOS_DEFAULT_VALUE);
1051
1052 intel_uncore_sanitize(dev_priv);
1053
1054 intel_opregion_setup(dev_priv);
1055
1056 i915_gem_load_init_fences(dev_priv);
1057
1058 /* On the 945G/GM, the chipset reports the MSI capability on the
1059 * integrated graphics even though the support isn't actually there
1060 * according to the published specs. It doesn't appear to function
1061 * correctly in testing on 945G.
1062 * This may be a side effect of MSI having been made available for PEG
1063 * and the registers being closely associated.
1064 *
1065 * According to chipset errata, on the 965GM, MSI interrupts may
1066 * be lost or delayed, but we use them anyways to avoid
1067 * stuck interrupts on some machines.
1068 */
1069 if (!IS_I945G(dev) && !IS_I945GM(dev)) {
1070 if (pci_enable_msi(pdev) < 0)
1071 DRM_DEBUG_DRIVER("can't enable MSI");
1072 }
1073
1074 return 0;
1075
1076 out_ggtt:
1077 i915_ggtt_cleanup_hw(dev_priv);
1078
1079 return ret;
1080 }
1081
1082 /**
1083 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1084 * @dev_priv: device private
1085 */
1086 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1087 {
1088 struct pci_dev *pdev = dev_priv->drm.pdev;
1089
1090 if (pdev->msi_enabled)
1091 pci_disable_msi(pdev);
1092
1093 pm_qos_remove_request(&dev_priv->pm_qos);
1094 i915_ggtt_cleanup_hw(dev_priv);
1095 }
1096
1097 /**
1098 * i915_driver_register - register the driver with the rest of the system
1099 * @dev_priv: device private
1100 *
1101 * Perform any steps necessary to make the driver available via kernel
1102 * internal or userspace interfaces.
1103 */
1104 static void i915_driver_register(struct drm_i915_private *dev_priv)
1105 {
1106 struct drm_device *dev = &dev_priv->drm;
1107
1108 i915_gem_shrinker_init(dev_priv);
1109
1110 /*
1111 * Notify a valid surface after modesetting,
1112 * when running inside a VM.
1113 */
1114 if (intel_vgpu_active(dev_priv))
1115 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1116
1117 /* Reveal our presence to userspace */
1118 if (drm_dev_register(dev, 0) == 0) {
1119 i915_debugfs_register(dev_priv);
1120 i915_setup_sysfs(dev_priv);
1121 } else
1122 DRM_ERROR("Failed to register driver for userspace access!\n");
1123
1124 if (INTEL_INFO(dev_priv)->num_pipes) {
1125 /* Must be done after probing outputs */
1126 intel_opregion_register(dev_priv);
1127 acpi_video_register();
1128 }
1129
1130 if (IS_GEN5(dev_priv))
1131 intel_gpu_ips_init(dev_priv);
1132
1133 i915_audio_component_init(dev_priv);
1134
1135 /*
1136 * Some ports require correctly set-up hpd registers for detection to
1137 * work properly (leading to ghost connected connector status), e.g. VGA
1138 * on gm45. Hence we can only set up the initial fbdev config after hpd
1139 * irqs are fully enabled. We do it last so that the async config
1140 * cannot run before the connectors are registered.
1141 */
1142 intel_fbdev_initial_config_async(dev);
1143 }
1144
1145 /**
1146 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1147 * @dev_priv: device private
1148 */
1149 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1150 {
1151 i915_audio_component_cleanup(dev_priv);
1152
1153 intel_gpu_ips_teardown();
1154 acpi_video_unregister();
1155 intel_opregion_unregister(dev_priv);
1156
1157 i915_teardown_sysfs(dev_priv);
1158 i915_debugfs_unregister(dev_priv);
1159 drm_dev_unregister(&dev_priv->drm);
1160
1161 i915_gem_shrinker_cleanup(dev_priv);
1162 }
1163
1164 /**
1165 * i915_driver_load - setup chip and create an initial config
1166 * @dev: DRM device
1167 * @flags: startup flags
1168 *
1169 * The driver load routine has to do several things:
1170 * - drive output discovery via intel_modeset_init()
1171 * - initialize the memory manager
1172 * - allocate initial config memory
1173 * - setup the DRM framebuffer with the allocated memory
1174 */
1175 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1176 {
1177 struct drm_i915_private *dev_priv;
1178 int ret;
1179
1180 if (i915.nuclear_pageflip) {
1181 pax_open_kernel();
1182 driver.driver_features |= DRIVER_ATOMIC;
1183 pax_close_kernel();
1184 }
1185
1186 ret = -ENOMEM;
1187 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1188 if (dev_priv)
1189 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1190 if (ret) {
1191 dev_printk(KERN_ERR, &pdev->dev,
1192 "[" DRM_NAME ":%s] allocation failed\n", __func__);
1193 kfree(dev_priv);
1194 return ret;
1195 }
1196
1197 dev_priv->drm.pdev = pdev;
1198 dev_priv->drm.dev_private = dev_priv;
1199
1200 ret = pci_enable_device(pdev);
1201 if (ret)
1202 goto out_free_priv;
1203
1204 pci_set_drvdata(pdev, &dev_priv->drm);
1205
1206 ret = i915_driver_init_early(dev_priv, ent);
1207 if (ret < 0)
1208 goto out_pci_disable;
1209
1210 intel_runtime_pm_get(dev_priv);
1211
1212 ret = i915_driver_init_mmio(dev_priv);
1213 if (ret < 0)
1214 goto out_runtime_pm_put;
1215
1216 ret = i915_driver_init_hw(dev_priv);
1217 if (ret < 0)
1218 goto out_cleanup_mmio;
1219
1220 /*
1221 * TODO: move the vblank init and parts of modeset init steps into one
1222 * of the i915_driver_init_/i915_driver_register functions according
1223 * to the role/effect of the given init step.
1224 */
1225 if (INTEL_INFO(dev_priv)->num_pipes) {
1226 ret = drm_vblank_init(&dev_priv->drm,
1227 INTEL_INFO(dev_priv)->num_pipes);
1228 if (ret)
1229 goto out_cleanup_hw;
1230 }
1231
1232 ret = i915_load_modeset_init(&dev_priv->drm);
1233 if (ret < 0)
1234 goto out_cleanup_vblank;
1235
1236 i915_driver_register(dev_priv);
1237
1238 intel_runtime_pm_enable(dev_priv);
1239
1240 /* Everything is in place, we can now relax! */
1241 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1242 driver.name, driver.major, driver.minor, driver.patchlevel,
1243 driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1244
1245 intel_runtime_pm_put(dev_priv);
1246
1247 return 0;
1248
1249 out_cleanup_vblank:
1250 drm_vblank_cleanup(&dev_priv->drm);
1251 out_cleanup_hw:
1252 i915_driver_cleanup_hw(dev_priv);
1253 out_cleanup_mmio:
1254 i915_driver_cleanup_mmio(dev_priv);
1255 out_runtime_pm_put:
1256 intel_runtime_pm_put(dev_priv);
1257 i915_driver_cleanup_early(dev_priv);
1258 out_pci_disable:
1259 pci_disable_device(pdev);
1260 out_free_priv:
1261 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1262 drm_dev_unref(&dev_priv->drm);
1263 return ret;
1264 }
1265
1266 void i915_driver_unload(struct drm_device *dev)
1267 {
1268 struct drm_i915_private *dev_priv = to_i915(dev);
1269 struct pci_dev *pdev = dev_priv->drm.pdev;
1270
1271 intel_fbdev_fini(dev);
1272
1273 if (i915_gem_suspend(dev))
1274 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1275
1276 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1277
1278 i915_driver_unregister(dev_priv);
1279
1280 drm_vblank_cleanup(dev);
1281
1282 intel_modeset_cleanup(dev);
1283
1284 /*
1285 * free the memory space allocated for the child device
1286 * config parsed from VBT
1287 */
1288 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1289 kfree(dev_priv->vbt.child_dev);
1290 dev_priv->vbt.child_dev = NULL;
1291 dev_priv->vbt.child_dev_num = 0;
1292 }
1293 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1294 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1295 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1296 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1297
1298 vga_switcheroo_unregister_client(pdev);
1299 vga_client_register(pdev, NULL, NULL, NULL);
1300
1301 intel_csr_ucode_fini(dev_priv);
1302
1303 /* Free error state after interrupts are fully disabled. */
1304 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1305 i915_destroy_error_state(dev);
1306
1307 /* Flush any outstanding unpin_work. */
1308 drain_workqueue(dev_priv->wq);
1309
1310 intel_guc_fini(dev);
1311 i915_gem_fini(dev);
1312 intel_fbc_cleanup_cfb(dev_priv);
1313
1314 intel_power_domains_fini(dev_priv);
1315
1316 i915_driver_cleanup_hw(dev_priv);
1317 i915_driver_cleanup_mmio(dev_priv);
1318
1319 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1320
1321 i915_driver_cleanup_early(dev_priv);
1322 }
1323
1324 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1325 {
1326 int ret;
1327
1328 ret = i915_gem_open(dev, file);
1329 if (ret)
1330 return ret;
1331
1332 return 0;
1333 }
1334
1335 /**
1336 * i915_driver_lastclose - clean up after all DRM clients have exited
1337 * @dev: DRM device
1338 *
1339 * Take care of cleaning up after all DRM clients have exited. In the
1340 * mode setting case, we want to restore the kernel's initial mode (just
1341 * in case the last client left us in a bad state).
1342 *
1343 * Additionally, in the non-mode setting case, we'll tear down the GTT
1344 * and DMA structures, since the kernel won't be using them, and clea
1345 * up any GEM state.
1346 */
1347 static void i915_driver_lastclose(struct drm_device *dev)
1348 {
1349 intel_fbdev_restore_mode(dev);
1350 vga_switcheroo_process_delayed_switch();
1351 }
1352
1353 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1354 {
1355 mutex_lock(&dev->struct_mutex);
1356 i915_gem_context_close(dev, file);
1357 i915_gem_release(dev, file);
1358 mutex_unlock(&dev->struct_mutex);
1359 }
1360
1361 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1362 {
1363 struct drm_i915_file_private *file_priv = file->driver_priv;
1364
1365 kfree(file_priv);
1366 }
1367
1368 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1369 {
1370 struct drm_device *dev = &dev_priv->drm;
1371 struct intel_encoder *encoder;
1372
1373 drm_modeset_lock_all(dev);
1374 for_each_intel_encoder(dev, encoder)
1375 if (encoder->suspend)
1376 encoder->suspend(encoder);
1377 drm_modeset_unlock_all(dev);
1378 }
1379
1380 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1381 bool rpm_resume);
1382 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1383
1384 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1385 {
1386 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1387 if (acpi_target_system_state() < ACPI_STATE_S3)
1388 return true;
1389 #endif
1390 return false;
1391 }
1392
1393 static int i915_drm_suspend(struct drm_device *dev)
1394 {
1395 struct drm_i915_private *dev_priv = to_i915(dev);
1396 struct pci_dev *pdev = dev_priv->drm.pdev;
1397 pci_power_t opregion_target_state;
1398 int error;
1399
1400 /* ignore lid events during suspend */
1401 mutex_lock(&dev_priv->modeset_restore_lock);
1402 dev_priv->modeset_restore = MODESET_SUSPENDED;
1403 mutex_unlock(&dev_priv->modeset_restore_lock);
1404
1405 disable_rpm_wakeref_asserts(dev_priv);
1406
1407 /* We do a lot of poking in a lot of registers, make sure they work
1408 * properly. */
1409 intel_display_set_init_power(dev_priv, true);
1410
1411 drm_kms_helper_poll_disable(dev);
1412
1413 pci_save_state(pdev);
1414
1415 error = i915_gem_suspend(dev);
1416 if (error) {
1417 dev_err(&pdev->dev,
1418 "GEM idle failed, resume might fail\n");
1419 goto out;
1420 }
1421
1422 intel_guc_suspend(dev);
1423
1424 intel_display_suspend(dev);
1425
1426 intel_dp_mst_suspend(dev);
1427
1428 intel_runtime_pm_disable_interrupts(dev_priv);
1429 intel_hpd_cancel_work(dev_priv);
1430
1431 intel_suspend_encoders(dev_priv);
1432
1433 intel_suspend_hw(dev);
1434
1435 i915_gem_suspend_gtt_mappings(dev);
1436
1437 i915_save_state(dev);
1438
1439 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1440 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1441
1442 intel_uncore_forcewake_reset(dev_priv, false);
1443 intel_opregion_unregister(dev_priv);
1444
1445 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1446
1447 dev_priv->suspend_count++;
1448
1449 intel_csr_ucode_suspend(dev_priv);
1450
1451 out:
1452 enable_rpm_wakeref_asserts(dev_priv);
1453
1454 return error;
1455 }
1456
1457 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1458 {
1459 struct drm_i915_private *dev_priv = to_i915(dev);
1460 struct pci_dev *pdev = dev_priv->drm.pdev;
1461 bool fw_csr;
1462 int ret;
1463
1464 disable_rpm_wakeref_asserts(dev_priv);
1465
1466 intel_display_set_init_power(dev_priv, false);
1467
1468 fw_csr = !IS_BROXTON(dev_priv) &&
1469 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1470 /*
1471 * In case of firmware assisted context save/restore don't manually
1472 * deinit the power domains. This also means the CSR/DMC firmware will
1473 * stay active, it will power down any HW resources as required and
1474 * also enable deeper system power states that would be blocked if the
1475 * firmware was inactive.
1476 */
1477 if (!fw_csr)
1478 intel_power_domains_suspend(dev_priv);
1479
1480 ret = 0;
1481 if (IS_BROXTON(dev_priv))
1482 bxt_enable_dc9(dev_priv);
1483 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1484 hsw_enable_pc8(dev_priv);
1485 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1486 ret = vlv_suspend_complete(dev_priv);
1487
1488 if (ret) {
1489 DRM_ERROR("Suspend complete failed: %d\n", ret);
1490 if (!fw_csr)
1491 intel_power_domains_init_hw(dev_priv, true);
1492
1493 goto out;
1494 }
1495
1496 pci_disable_device(pdev);
1497 /*
1498 * During hibernation on some platforms the BIOS may try to access
1499 * the device even though it's already in D3 and hang the machine. So
1500 * leave the device in D0 on those platforms and hope the BIOS will
1501 * power down the device properly. The issue was seen on multiple old
1502 * GENs with different BIOS vendors, so having an explicit blacklist
1503 * is inpractical; apply the workaround on everything pre GEN6. The
1504 * platforms where the issue was seen:
1505 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1506 * Fujitsu FSC S7110
1507 * Acer Aspire 1830T
1508 */
1509 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
1510 pci_set_power_state(pdev, PCI_D3hot);
1511
1512 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1513
1514 out:
1515 enable_rpm_wakeref_asserts(dev_priv);
1516
1517 return ret;
1518 }
1519
1520 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1521 {
1522 int error;
1523
1524 if (!dev) {
1525 DRM_ERROR("dev: %p\n", dev);
1526 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1527 return -ENODEV;
1528 }
1529
1530 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1531 state.event != PM_EVENT_FREEZE))
1532 return -EINVAL;
1533
1534 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1535 return 0;
1536
1537 error = i915_drm_suspend(dev);
1538 if (error)
1539 return error;
1540
1541 return i915_drm_suspend_late(dev, false);
1542 }
1543
1544 static int i915_drm_resume(struct drm_device *dev)
1545 {
1546 struct drm_i915_private *dev_priv = to_i915(dev);
1547 int ret;
1548
1549 disable_rpm_wakeref_asserts(dev_priv);
1550 intel_sanitize_gt_powersave(dev_priv);
1551
1552 ret = i915_ggtt_enable_hw(dev_priv);
1553 if (ret)
1554 DRM_ERROR("failed to re-enable GGTT\n");
1555
1556 intel_csr_ucode_resume(dev_priv);
1557
1558 i915_gem_resume(dev);
1559
1560 i915_restore_state(dev);
1561 intel_pps_unlock_regs_wa(dev_priv);
1562 intel_opregion_setup(dev_priv);
1563
1564 intel_init_pch_refclk(dev);
1565 drm_mode_config_reset(dev);
1566
1567 /*
1568 * Interrupts have to be enabled before any batches are run. If not the
1569 * GPU will hang. i915_gem_init_hw() will initiate batches to
1570 * update/restore the context.
1571 *
1572 * Modeset enabling in intel_modeset_init_hw() also needs working
1573 * interrupts.
1574 */
1575 intel_runtime_pm_enable_interrupts(dev_priv);
1576
1577 mutex_lock(&dev->struct_mutex);
1578 if (i915_gem_init_hw(dev)) {
1579 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1580 i915_gem_set_wedged(dev_priv);
1581 }
1582 mutex_unlock(&dev->struct_mutex);
1583
1584 intel_guc_resume(dev);
1585
1586 intel_modeset_init_hw(dev);
1587
1588 spin_lock_irq(&dev_priv->irq_lock);
1589 if (dev_priv->display.hpd_irq_setup)
1590 dev_priv->display.hpd_irq_setup(dev_priv);
1591 spin_unlock_irq(&dev_priv->irq_lock);
1592
1593 intel_dp_mst_resume(dev);
1594
1595 intel_display_resume(dev);
1596
1597 /*
1598 * ... but also need to make sure that hotplug processing
1599 * doesn't cause havoc. Like in the driver load code we don't
1600 * bother with the tiny race here where we might loose hotplug
1601 * notifications.
1602 * */
1603 intel_hpd_init(dev_priv);
1604 /* Config may have changed between suspend and resume */
1605 drm_helper_hpd_irq_event(dev);
1606
1607 intel_opregion_register(dev_priv);
1608
1609 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1610
1611 mutex_lock(&dev_priv->modeset_restore_lock);
1612 dev_priv->modeset_restore = MODESET_DONE;
1613 mutex_unlock(&dev_priv->modeset_restore_lock);
1614
1615 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1616
1617 intel_autoenable_gt_powersave(dev_priv);
1618 drm_kms_helper_poll_enable(dev);
1619
1620 enable_rpm_wakeref_asserts(dev_priv);
1621
1622 return 0;
1623 }
1624
1625 static int i915_drm_resume_early(struct drm_device *dev)
1626 {
1627 struct drm_i915_private *dev_priv = to_i915(dev);
1628 struct pci_dev *pdev = dev_priv->drm.pdev;
1629 int ret;
1630
1631 /*
1632 * We have a resume ordering issue with the snd-hda driver also
1633 * requiring our device to be power up. Due to the lack of a
1634 * parent/child relationship we currently solve this with an early
1635 * resume hook.
1636 *
1637 * FIXME: This should be solved with a special hdmi sink device or
1638 * similar so that power domains can be employed.
1639 */
1640
1641 /*
1642 * Note that we need to set the power state explicitly, since we
1643 * powered off the device during freeze and the PCI core won't power
1644 * it back up for us during thaw. Powering off the device during
1645 * freeze is not a hard requirement though, and during the
1646 * suspend/resume phases the PCI core makes sure we get here with the
1647 * device powered on. So in case we change our freeze logic and keep
1648 * the device powered we can also remove the following set power state
1649 * call.
1650 */
1651 ret = pci_set_power_state(pdev, PCI_D0);
1652 if (ret) {
1653 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1654 goto out;
1655 }
1656
1657 /*
1658 * Note that pci_enable_device() first enables any parent bridge
1659 * device and only then sets the power state for this device. The
1660 * bridge enabling is a nop though, since bridge devices are resumed
1661 * first. The order of enabling power and enabling the device is
1662 * imposed by the PCI core as described above, so here we preserve the
1663 * same order for the freeze/thaw phases.
1664 *
1665 * TODO: eventually we should remove pci_disable_device() /
1666 * pci_enable_enable_device() from suspend/resume. Due to how they
1667 * depend on the device enable refcount we can't anyway depend on them
1668 * disabling/enabling the device.
1669 */
1670 if (pci_enable_device(pdev)) {
1671 ret = -EIO;
1672 goto out;
1673 }
1674
1675 pci_set_master(pdev);
1676
1677 disable_rpm_wakeref_asserts(dev_priv);
1678
1679 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1680 ret = vlv_resume_prepare(dev_priv, false);
1681 if (ret)
1682 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1683 ret);
1684
1685 intel_uncore_early_sanitize(dev_priv, true);
1686
1687 if (IS_BROXTON(dev_priv)) {
1688 if (!dev_priv->suspended_to_idle)
1689 gen9_sanitize_dc_state(dev_priv);
1690 bxt_disable_dc9(dev_priv);
1691 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1692 hsw_disable_pc8(dev_priv);
1693 }
1694
1695 intel_uncore_sanitize(dev_priv);
1696
1697 if (IS_BROXTON(dev_priv) ||
1698 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1699 intel_power_domains_init_hw(dev_priv, true);
1700
1701 enable_rpm_wakeref_asserts(dev_priv);
1702
1703 out:
1704 dev_priv->suspended_to_idle = false;
1705
1706 return ret;
1707 }
1708
1709 int i915_resume_switcheroo(struct drm_device *dev)
1710 {
1711 int ret;
1712
1713 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1714 return 0;
1715
1716 ret = i915_drm_resume_early(dev);
1717 if (ret)
1718 return ret;
1719
1720 return i915_drm_resume(dev);
1721 }
1722
1723 /**
1724 * i915_reset - reset chip after a hang
1725 * @dev: drm device to reset
1726 *
1727 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1728 * on failure.
1729 *
1730 * Caller must hold the struct_mutex.
1731 *
1732 * Procedure is fairly simple:
1733 * - reset the chip using the reset reg
1734 * - re-init context state
1735 * - re-init hardware status page
1736 * - re-init ring buffer
1737 * - re-init interrupt state
1738 * - re-init display
1739 */
1740 void i915_reset(struct drm_i915_private *dev_priv)
1741 {
1742 struct drm_device *dev = &dev_priv->drm;
1743 struct i915_gpu_error *error = &dev_priv->gpu_error;
1744 int ret;
1745
1746 lockdep_assert_held(&dev->struct_mutex);
1747
1748 if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1749 return;
1750
1751 /* Clear any previous failed attempts at recovery. Time to try again. */
1752 __clear_bit(I915_WEDGED, &error->flags);
1753 error->reset_count++;
1754
1755 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1756 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1757 if (ret) {
1758 if (ret != -ENODEV)
1759 DRM_ERROR("Failed to reset chip: %i\n", ret);
1760 else
1761 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1762 goto error;
1763 }
1764
1765 i915_gem_reset(dev_priv);
1766 intel_overlay_reset(dev_priv);
1767
1768 /* Ok, now get things going again... */
1769
1770 /*
1771 * Everything depends on having the GTT running, so we need to start
1772 * there. Fortunately we don't need to do this unless we reset the
1773 * chip at a PCI level.
1774 *
1775 * Next we need to restore the context, but we don't use those
1776 * yet either...
1777 *
1778 * Ring buffer needs to be re-initialized in the KMS case, or if X
1779 * was running at the time of the reset (i.e. we weren't VT
1780 * switched away).
1781 */
1782 ret = i915_gem_init_hw(dev);
1783 if (ret) {
1784 DRM_ERROR("Failed hw init on reset %d\n", ret);
1785 goto error;
1786 }
1787
1788 wakeup:
1789 wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1790 return;
1791
1792 error:
1793 i915_gem_set_wedged(dev_priv);
1794 goto wakeup;
1795 }
1796
1797 static int i915_pm_suspend(struct device *kdev)
1798 {
1799 struct pci_dev *pdev = to_pci_dev(kdev);
1800 struct drm_device *dev = pci_get_drvdata(pdev);
1801
1802 if (!dev) {
1803 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1804 return -ENODEV;
1805 }
1806
1807 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1808 return 0;
1809
1810 return i915_drm_suspend(dev);
1811 }
1812
1813 static int i915_pm_suspend_late(struct device *kdev)
1814 {
1815 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1816
1817 /*
1818 * We have a suspend ordering issue with the snd-hda driver also
1819 * requiring our device to be power up. Due to the lack of a
1820 * parent/child relationship we currently solve this with an late
1821 * suspend hook.
1822 *
1823 * FIXME: This should be solved with a special hdmi sink device or
1824 * similar so that power domains can be employed.
1825 */
1826 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1827 return 0;
1828
1829 return i915_drm_suspend_late(dev, false);
1830 }
1831
1832 static int i915_pm_poweroff_late(struct device *kdev)
1833 {
1834 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1835
1836 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1837 return 0;
1838
1839 return i915_drm_suspend_late(dev, true);
1840 }
1841
1842 static int i915_pm_resume_early(struct device *kdev)
1843 {
1844 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1845
1846 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1847 return 0;
1848
1849 return i915_drm_resume_early(dev);
1850 }
1851
1852 static int i915_pm_resume(struct device *kdev)
1853 {
1854 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1855
1856 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1857 return 0;
1858
1859 return i915_drm_resume(dev);
1860 }
1861
1862 /* freeze: before creating the hibernation_image */
1863 static int i915_pm_freeze(struct device *kdev)
1864 {
1865 int ret;
1866
1867 ret = i915_pm_suspend(kdev);
1868 if (ret)
1869 return ret;
1870
1871 ret = i915_gem_freeze(kdev_to_i915(kdev));
1872 if (ret)
1873 return ret;
1874
1875 return 0;
1876 }
1877
1878 static int i915_pm_freeze_late(struct device *kdev)
1879 {
1880 int ret;
1881
1882 ret = i915_pm_suspend_late(kdev);
1883 if (ret)
1884 return ret;
1885
1886 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1887 if (ret)
1888 return ret;
1889
1890 return 0;
1891 }
1892
1893 /* thaw: called after creating the hibernation image, but before turning off. */
1894 static int i915_pm_thaw_early(struct device *kdev)
1895 {
1896 return i915_pm_resume_early(kdev);
1897 }
1898
1899 static int i915_pm_thaw(struct device *kdev)
1900 {
1901 return i915_pm_resume(kdev);
1902 }
1903
1904 /* restore: called after loading the hibernation image. */
1905 static int i915_pm_restore_early(struct device *kdev)
1906 {
1907 return i915_pm_resume_early(kdev);
1908 }
1909
1910 static int i915_pm_restore(struct device *kdev)
1911 {
1912 return i915_pm_resume(kdev);
1913 }
1914
1915 /*
1916 * Save all Gunit registers that may be lost after a D3 and a subsequent
1917 * S0i[R123] transition. The list of registers needing a save/restore is
1918 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1919 * registers in the following way:
1920 * - Driver: saved/restored by the driver
1921 * - Punit : saved/restored by the Punit firmware
1922 * - No, w/o marking: no need to save/restore, since the register is R/O or
1923 * used internally by the HW in a way that doesn't depend
1924 * keeping the content across a suspend/resume.
1925 * - Debug : used for debugging
1926 *
1927 * We save/restore all registers marked with 'Driver', with the following
1928 * exceptions:
1929 * - Registers out of use, including also registers marked with 'Debug'.
1930 * These have no effect on the driver's operation, so we don't save/restore
1931 * them to reduce the overhead.
1932 * - Registers that are fully setup by an initialization function called from
1933 * the resume path. For example many clock gating and RPS/RC6 registers.
1934 * - Registers that provide the right functionality with their reset defaults.
1935 *
1936 * TODO: Except for registers that based on the above 3 criteria can be safely
1937 * ignored, we save/restore all others, practically treating the HW context as
1938 * a black-box for the driver. Further investigation is needed to reduce the
1939 * saved/restored registers even further, by following the same 3 criteria.
1940 */
1941 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1942 {
1943 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1944 int i;
1945
1946 /* GAM 0x4000-0x4770 */
1947 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1948 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1949 s->arb_mode = I915_READ(ARB_MODE);
1950 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1951 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1952
1953 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1954 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1955
1956 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1957 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1958
1959 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1960 s->ecochk = I915_READ(GAM_ECOCHK);
1961 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1962 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1963
1964 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1965
1966 /* MBC 0x9024-0x91D0, 0x8500 */
1967 s->g3dctl = I915_READ(VLV_G3DCTL);
1968 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1969 s->mbctl = I915_READ(GEN6_MBCTL);
1970
1971 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1972 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1973 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1974 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1975 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1976 s->rstctl = I915_READ(GEN6_RSTCTL);
1977 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1978
1979 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1980 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1981 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1982 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1983 s->ecobus = I915_READ(ECOBUS);
1984 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1985 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1986 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1987 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1988 s->rcedata = I915_READ(VLV_RCEDATA);
1989 s->spare2gh = I915_READ(VLV_SPAREG2H);
1990
1991 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1992 s->gt_imr = I915_READ(GTIMR);
1993 s->gt_ier = I915_READ(GTIER);
1994 s->pm_imr = I915_READ(GEN6_PMIMR);
1995 s->pm_ier = I915_READ(GEN6_PMIER);
1996
1997 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1998 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1999
2000 /* GT SA CZ domain, 0x100000-0x138124 */
2001 s->tilectl = I915_READ(TILECTL);
2002 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2003 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2004 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2005 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2006
2007 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2008 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2009 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2010 s->pcbr = I915_READ(VLV_PCBR);
2011 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2012
2013 /*
2014 * Not saving any of:
2015 * DFT, 0x9800-0x9EC0
2016 * SARB, 0xB000-0xB1FC
2017 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2018 * PCI CFG
2019 */
2020 }
2021
2022 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2023 {
2024 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2025 u32 val;
2026 int i;
2027
2028 /* GAM 0x4000-0x4770 */
2029 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2030 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2031 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2032 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2033 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2034
2035 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2036 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2037
2038 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2039 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2040
2041 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2042 I915_WRITE(GAM_ECOCHK, s->ecochk);
2043 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2044 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2045
2046 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2047
2048 /* MBC 0x9024-0x91D0, 0x8500 */
2049 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2050 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2051 I915_WRITE(GEN6_MBCTL, s->mbctl);
2052
2053 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2054 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2055 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2056 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2057 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2058 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2059 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2060
2061 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2062 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2063 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2064 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2065 I915_WRITE(ECOBUS, s->ecobus);
2066 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2067 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2068 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2069 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2070 I915_WRITE(VLV_RCEDATA, s->rcedata);
2071 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2072
2073 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2074 I915_WRITE(GTIMR, s->gt_imr);
2075 I915_WRITE(GTIER, s->gt_ier);
2076 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2077 I915_WRITE(GEN6_PMIER, s->pm_ier);
2078
2079 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2080 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2081
2082 /* GT SA CZ domain, 0x100000-0x138124 */
2083 I915_WRITE(TILECTL, s->tilectl);
2084 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2085 /*
2086 * Preserve the GT allow wake and GFX force clock bit, they are not
2087 * be restored, as they are used to control the s0ix suspend/resume
2088 * sequence by the caller.
2089 */
2090 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2091 val &= VLV_GTLC_ALLOWWAKEREQ;
2092 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2093 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2094
2095 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2096 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2097 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2098 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2099
2100 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2101
2102 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2103 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2104 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2105 I915_WRITE(VLV_PCBR, s->pcbr);
2106 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2107 }
2108
2109 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2110 {
2111 u32 val;
2112 int err;
2113
2114 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2115 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2116 if (force_on)
2117 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2118 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2119
2120 if (!force_on)
2121 return 0;
2122
2123 err = intel_wait_for_register(dev_priv,
2124 VLV_GTLC_SURVIVABILITY_REG,
2125 VLV_GFX_CLK_STATUS_BIT,
2126 VLV_GFX_CLK_STATUS_BIT,
2127 20);
2128 if (err)
2129 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2130 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2131
2132 return err;
2133 }
2134
2135 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2136 {
2137 u32 val;
2138 int err = 0;
2139
2140 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2141 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2142 if (allow)
2143 val |= VLV_GTLC_ALLOWWAKEREQ;
2144 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2145 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2146
2147 err = intel_wait_for_register(dev_priv,
2148 VLV_GTLC_PW_STATUS,
2149 VLV_GTLC_ALLOWWAKEACK,
2150 allow,
2151 1);
2152 if (err)
2153 DRM_ERROR("timeout disabling GT waking\n");
2154
2155 return err;
2156 }
2157
2158 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2159 bool wait_for_on)
2160 {
2161 u32 mask;
2162 u32 val;
2163 int err;
2164
2165 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2166 val = wait_for_on ? mask : 0;
2167 if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2168 return 0;
2169
2170 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2171 onoff(wait_for_on),
2172 I915_READ(VLV_GTLC_PW_STATUS));
2173
2174 /*
2175 * RC6 transitioning can be delayed up to 2 msec (see
2176 * valleyview_enable_rps), use 3 msec for safety.
2177 */
2178 err = intel_wait_for_register(dev_priv,
2179 VLV_GTLC_PW_STATUS, mask, val,
2180 3);
2181 if (err)
2182 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2183 onoff(wait_for_on));
2184
2185 return err;
2186 }
2187
2188 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2189 {
2190 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2191 return;
2192
2193 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2194 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2195 }
2196
2197 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2198 {
2199 u32 mask;
2200 int err;
2201
2202 /*
2203 * Bspec defines the following GT well on flags as debug only, so
2204 * don't treat them as hard failures.
2205 */
2206 (void)vlv_wait_for_gt_wells(dev_priv, false);
2207
2208 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2209 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2210
2211 vlv_check_no_gt_access(dev_priv);
2212
2213 err = vlv_force_gfx_clock(dev_priv, true);
2214 if (err)
2215 goto err1;
2216
2217 err = vlv_allow_gt_wake(dev_priv, false);
2218 if (err)
2219 goto err2;
2220
2221 if (!IS_CHERRYVIEW(dev_priv))
2222 vlv_save_gunit_s0ix_state(dev_priv);
2223
2224 err = vlv_force_gfx_clock(dev_priv, false);
2225 if (err)
2226 goto err2;
2227
2228 return 0;
2229
2230 err2:
2231 /* For safety always re-enable waking and disable gfx clock forcing */
2232 vlv_allow_gt_wake(dev_priv, true);
2233 err1:
2234 vlv_force_gfx_clock(dev_priv, false);
2235
2236 return err;
2237 }
2238
2239 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2240 bool rpm_resume)
2241 {
2242 struct drm_device *dev = &dev_priv->drm;
2243 int err;
2244 int ret;
2245
2246 /*
2247 * If any of the steps fail just try to continue, that's the best we
2248 * can do at this point. Return the first error code (which will also
2249 * leave RPM permanently disabled).
2250 */
2251 ret = vlv_force_gfx_clock(dev_priv, true);
2252
2253 if (!IS_CHERRYVIEW(dev_priv))
2254 vlv_restore_gunit_s0ix_state(dev_priv);
2255
2256 err = vlv_allow_gt_wake(dev_priv, true);
2257 if (!ret)
2258 ret = err;
2259
2260 err = vlv_force_gfx_clock(dev_priv, false);
2261 if (!ret)
2262 ret = err;
2263
2264 vlv_check_no_gt_access(dev_priv);
2265
2266 if (rpm_resume) {
2267 intel_init_clock_gating(dev);
2268 i915_gem_restore_fences(dev);
2269 }
2270
2271 return ret;
2272 }
2273
2274 static int intel_runtime_suspend(struct device *kdev)
2275 {
2276 struct pci_dev *pdev = to_pci_dev(kdev);
2277 struct drm_device *dev = pci_get_drvdata(pdev);
2278 struct drm_i915_private *dev_priv = to_i915(dev);
2279 int ret;
2280
2281 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2282 return -ENODEV;
2283
2284 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2285 return -ENODEV;
2286
2287 DRM_DEBUG_KMS("Suspending device\n");
2288
2289 /*
2290 * We could deadlock here in case another thread holding struct_mutex
2291 * calls RPM suspend concurrently, since the RPM suspend will wait
2292 * first for this RPM suspend to finish. In this case the concurrent
2293 * RPM resume will be followed by its RPM suspend counterpart. Still
2294 * for consistency return -EAGAIN, which will reschedule this suspend.
2295 */
2296 if (!mutex_trylock(&dev->struct_mutex)) {
2297 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
2298 /*
2299 * Bump the expiration timestamp, otherwise the suspend won't
2300 * be rescheduled.
2301 */
2302 pm_runtime_mark_last_busy(kdev);
2303
2304 return -EAGAIN;
2305 }
2306
2307 disable_rpm_wakeref_asserts(dev_priv);
2308
2309 /*
2310 * We are safe here against re-faults, since the fault handler takes
2311 * an RPM reference.
2312 */
2313 i915_gem_release_all_mmaps(dev_priv);
2314 mutex_unlock(&dev->struct_mutex);
2315
2316 intel_guc_suspend(dev);
2317
2318 intel_runtime_pm_disable_interrupts(dev_priv);
2319
2320 ret = 0;
2321 if (IS_BROXTON(dev_priv)) {
2322 bxt_display_core_uninit(dev_priv);
2323 bxt_enable_dc9(dev_priv);
2324 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2325 hsw_enable_pc8(dev_priv);
2326 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2327 ret = vlv_suspend_complete(dev_priv);
2328 }
2329
2330 if (ret) {
2331 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2332 intel_runtime_pm_enable_interrupts(dev_priv);
2333
2334 enable_rpm_wakeref_asserts(dev_priv);
2335
2336 return ret;
2337 }
2338
2339 intel_uncore_forcewake_reset(dev_priv, false);
2340
2341 enable_rpm_wakeref_asserts(dev_priv);
2342 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2343
2344 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2345 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2346
2347 dev_priv->pm.suspended = true;
2348
2349 /*
2350 * FIXME: We really should find a document that references the arguments
2351 * used below!
2352 */
2353 if (IS_BROADWELL(dev_priv)) {
2354 /*
2355 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2356 * being detected, and the call we do at intel_runtime_resume()
2357 * won't be able to restore them. Since PCI_D3hot matches the
2358 * actual specification and appears to be working, use it.
2359 */
2360 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2361 } else {
2362 /*
2363 * current versions of firmware which depend on this opregion
2364 * notification have repurposed the D1 definition to mean
2365 * "runtime suspended" vs. what you would normally expect (D3)
2366 * to distinguish it from notifications that might be sent via
2367 * the suspend path.
2368 */
2369 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2370 }
2371
2372 assert_forcewakes_inactive(dev_priv);
2373
2374 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2375 intel_hpd_poll_init(dev_priv);
2376
2377 DRM_DEBUG_KMS("Device suspended\n");
2378 return 0;
2379 }
2380
2381 static int intel_runtime_resume(struct device *kdev)
2382 {
2383 struct pci_dev *pdev = to_pci_dev(kdev);
2384 struct drm_device *dev = pci_get_drvdata(pdev);
2385 struct drm_i915_private *dev_priv = to_i915(dev);
2386 int ret = 0;
2387
2388 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
2389 return -ENODEV;
2390
2391 DRM_DEBUG_KMS("Resuming device\n");
2392
2393 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2394 disable_rpm_wakeref_asserts(dev_priv);
2395
2396 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2397 dev_priv->pm.suspended = false;
2398 if (intel_uncore_unclaimed_mmio(dev_priv))
2399 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2400
2401 intel_guc_resume(dev);
2402
2403 if (IS_GEN6(dev_priv))
2404 intel_init_pch_refclk(dev);
2405
2406 if (IS_BROXTON(dev)) {
2407 bxt_disable_dc9(dev_priv);
2408 bxt_display_core_init(dev_priv, true);
2409 if (dev_priv->csr.dmc_payload &&
2410 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2411 gen9_enable_dc5(dev_priv);
2412 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2413 hsw_disable_pc8(dev_priv);
2414 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2415 ret = vlv_resume_prepare(dev_priv, true);
2416 }
2417
2418 /*
2419 * No point of rolling back things in case of an error, as the best
2420 * we can do is to hope that things will still work (and disable RPM).
2421 */
2422 i915_gem_init_swizzling(dev);
2423
2424 intel_runtime_pm_enable_interrupts(dev_priv);
2425
2426 /*
2427 * On VLV/CHV display interrupts are part of the display
2428 * power well, so hpd is reinitialized from there. For
2429 * everyone else do it here.
2430 */
2431 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2432 intel_hpd_init(dev_priv);
2433
2434 enable_rpm_wakeref_asserts(dev_priv);
2435
2436 if (ret)
2437 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2438 else
2439 DRM_DEBUG_KMS("Device resumed\n");
2440
2441 return ret;
2442 }
2443
2444 const struct dev_pm_ops i915_pm_ops = {
2445 /*
2446 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2447 * PMSG_RESUME]
2448 */
2449 .suspend = i915_pm_suspend,
2450 .suspend_late = i915_pm_suspend_late,
2451 .resume_early = i915_pm_resume_early,
2452 .resume = i915_pm_resume,
2453
2454 /*
2455 * S4 event handlers
2456 * @freeze, @freeze_late : called (1) before creating the
2457 * hibernation image [PMSG_FREEZE] and
2458 * (2) after rebooting, before restoring
2459 * the image [PMSG_QUIESCE]
2460 * @thaw, @thaw_early : called (1) after creating the hibernation
2461 * image, before writing it [PMSG_THAW]
2462 * and (2) after failing to create or
2463 * restore the image [PMSG_RECOVER]
2464 * @poweroff, @poweroff_late: called after writing the hibernation
2465 * image, before rebooting [PMSG_HIBERNATE]
2466 * @restore, @restore_early : called after rebooting and restoring the
2467 * hibernation image [PMSG_RESTORE]
2468 */
2469 .freeze = i915_pm_freeze,
2470 .freeze_late = i915_pm_freeze_late,
2471 .thaw_early = i915_pm_thaw_early,
2472 .thaw = i915_pm_thaw,
2473 .poweroff = i915_pm_suspend,
2474 .poweroff_late = i915_pm_poweroff_late,
2475 .restore_early = i915_pm_restore_early,
2476 .restore = i915_pm_restore,
2477
2478 /* S0ix (via runtime suspend) event handlers */
2479 .runtime_suspend = intel_runtime_suspend,
2480 .runtime_resume = intel_runtime_resume,
2481 };
2482
2483 static const struct vm_operations_struct i915_gem_vm_ops = {
2484 .fault = i915_gem_fault,
2485 .open = drm_gem_vm_open,
2486 .close = drm_gem_vm_close,
2487 };
2488
2489 static const struct file_operations i915_driver_fops = {
2490 .owner = THIS_MODULE,
2491 .open = drm_open,
2492 .release = drm_release,
2493 .unlocked_ioctl = drm_ioctl,
2494 .mmap = drm_gem_mmap,
2495 .poll = drm_poll,
2496 .read = drm_read,
2497 #ifdef CONFIG_COMPAT
2498 .compat_ioctl = i915_compat_ioctl,
2499 #endif
2500 .llseek = noop_llseek,
2501 };
2502
2503 static int
2504 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2505 struct drm_file *file)
2506 {
2507 return -ENODEV;
2508 }
2509
2510 static const struct drm_ioctl_desc i915_ioctls[] = {
2511 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2512 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2513 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2514 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2515 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2516 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2517 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2518 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2519 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2520 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2521 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2522 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2523 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2524 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2525 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2526 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2527 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2528 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2529 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2530 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2531 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2532 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2533 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2534 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2535 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2536 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2537 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2538 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2539 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2540 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2541 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2542 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2543 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2544 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2545 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2546 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_RENDER_ALLOW),
2547 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_RENDER_ALLOW),
2548 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2549 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2550 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2551 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2552 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2553 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2554 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2555 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2556 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2557 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2558 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2559 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2560 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2561 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2562 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2563 };
2564
2565 static drm_driver_no_const driver __read_only = {
2566 /* Don't use MTRRs here; the Xserver or userspace app should
2567 * deal with them for Intel hardware.
2568 */
2569 .driver_features =
2570 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2571 DRIVER_RENDER | DRIVER_MODESET,
2572 .open = i915_driver_open,
2573 .lastclose = i915_driver_lastclose,
2574 .preclose = i915_driver_preclose,
2575 .postclose = i915_driver_postclose,
2576 .set_busid = drm_pci_set_busid,
2577
2578 .gem_close_object = i915_gem_close_object,
2579 .gem_free_object = i915_gem_free_object,
2580 .gem_vm_ops = &i915_gem_vm_ops,
2581
2582 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2583 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2584 .gem_prime_export = i915_gem_prime_export,
2585 .gem_prime_import = i915_gem_prime_import,
2586
2587 .dumb_create = i915_gem_dumb_create,
2588 .dumb_map_offset = i915_gem_mmap_gtt,
2589 .dumb_destroy = drm_gem_dumb_destroy,
2590 .ioctls = i915_ioctls,
2591 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2592 .fops = &i915_driver_fops,
2593 .name = DRIVER_NAME,
2594 .desc = DRIVER_DESC,
2595 .date = DRIVER_DATE,
2596 .major = DRIVER_MAJOR,
2597 .minor = DRIVER_MINOR,
2598 .patchlevel = DRIVER_PATCHLEVEL,
2599 };