]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_drv.h
Merge drm/drm-next into drm-intel-next-queued
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56
57 #include "i915_params.h"
58 #include "i915_reg.h"
59 #include "i915_utils.h"
60
61 #include "intel_bios.h"
62 #include "intel_device_info.h"
63 #include "intel_display.h"
64 #include "intel_dpll_mgr.h"
65 #include "intel_lrc.h"
66 #include "intel_opregion.h"
67 #include "intel_ringbuffer.h"
68 #include "intel_uncore.h"
69 #include "intel_wopcm.h"
70 #include "intel_uc.h"
71
72 #include "i915_gem.h"
73 #include "i915_gem_context.h"
74 #include "i915_gem_fence_reg.h"
75 #include "i915_gem_object.h"
76 #include "i915_gem_gtt.h"
77 #include "i915_gpu_error.h"
78 #include "i915_request.h"
79 #include "i915_scheduler.h"
80 #include "i915_timeline.h"
81 #include "i915_vma.h"
82
83 #include "intel_gvt.h"
84
85 /* General customization:
86 */
87
88 #define DRIVER_NAME "i915"
89 #define DRIVER_DESC "Intel Graphics"
90 #define DRIVER_DATE "20180921"
91 #define DRIVER_TIMESTAMP 1537521997
92
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95 * which may not necessarily be a user visible problem. This will either
96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97 * enable distros and users to tailor their preferred amount of i915 abrt
98 * spam.
99 */
100 #define I915_STATE_WARN(condition, format...) ({ \
101 int __ret_warn_on = !!(condition); \
102 if (unlikely(__ret_warn_on)) \
103 if (!WARN(i915_modparams.verbose_state_checks, format)) \
104 DRM_ERROR(format); \
105 unlikely(__ret_warn_on); \
106 })
107
108 #define I915_STATE_WARN_ON(x) \
109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110
111 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
112
113 bool __i915_inject_load_failure(const char *func, int line);
114 #define i915_inject_load_failure() \
115 __i915_inject_load_failure(__func__, __LINE__)
116
117 bool i915_error_injected(void);
118
119 #else
120
121 #define i915_inject_load_failure() false
122 #define i915_error_injected() false
123
124 #endif
125
126 #define i915_load_error(i915, fmt, ...) \
127 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
128 fmt, ##__VA_ARGS__)
129
130 typedef struct {
131 uint32_t val;
132 } uint_fixed_16_16_t;
133
134 #define FP_16_16_MAX ({ \
135 uint_fixed_16_16_t fp; \
136 fp.val = UINT_MAX; \
137 fp; \
138 })
139
140 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
141 {
142 if (val.val == 0)
143 return true;
144 return false;
145 }
146
147 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
148 {
149 uint_fixed_16_16_t fp;
150
151 WARN_ON(val > U16_MAX);
152
153 fp.val = val << 16;
154 return fp;
155 }
156
157 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
158 {
159 return DIV_ROUND_UP(fp.val, 1 << 16);
160 }
161
162 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
163 {
164 return fp.val >> 16;
165 }
166
167 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
168 uint_fixed_16_16_t min2)
169 {
170 uint_fixed_16_16_t min;
171
172 min.val = min(min1.val, min2.val);
173 return min;
174 }
175
176 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
177 uint_fixed_16_16_t max2)
178 {
179 uint_fixed_16_16_t max;
180
181 max.val = max(max1.val, max2.val);
182 return max;
183 }
184
185 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
186 {
187 uint_fixed_16_16_t fp;
188 WARN_ON(val > U32_MAX);
189 fp.val = (uint32_t) val;
190 return fp;
191 }
192
193 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
194 uint_fixed_16_16_t d)
195 {
196 return DIV_ROUND_UP(val.val, d.val);
197 }
198
199 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
200 uint_fixed_16_16_t mul)
201 {
202 uint64_t intermediate_val;
203
204 intermediate_val = (uint64_t) val * mul.val;
205 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
206 WARN_ON(intermediate_val > U32_MAX);
207 return (uint32_t) intermediate_val;
208 }
209
210 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
211 uint_fixed_16_16_t mul)
212 {
213 uint64_t intermediate_val;
214
215 intermediate_val = (uint64_t) val.val * mul.val;
216 intermediate_val = intermediate_val >> 16;
217 return clamp_u64_to_fixed16(intermediate_val);
218 }
219
220 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
221 {
222 uint64_t interm_val;
223
224 interm_val = (uint64_t)val << 16;
225 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
226 return clamp_u64_to_fixed16(interm_val);
227 }
228
229 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
230 uint_fixed_16_16_t d)
231 {
232 uint64_t interm_val;
233
234 interm_val = (uint64_t)val << 16;
235 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
236 WARN_ON(interm_val > U32_MAX);
237 return (uint32_t) interm_val;
238 }
239
240 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
241 uint_fixed_16_16_t mul)
242 {
243 uint64_t intermediate_val;
244
245 intermediate_val = (uint64_t) val * mul.val;
246 return clamp_u64_to_fixed16(intermediate_val);
247 }
248
249 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
250 uint_fixed_16_16_t add2)
251 {
252 uint64_t interm_sum;
253
254 interm_sum = (uint64_t) add1.val + add2.val;
255 return clamp_u64_to_fixed16(interm_sum);
256 }
257
258 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
259 uint32_t add2)
260 {
261 uint64_t interm_sum;
262 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
263
264 interm_sum = (uint64_t) add1.val + interm_add2.val;
265 return clamp_u64_to_fixed16(interm_sum);
266 }
267
268 enum hpd_pin {
269 HPD_NONE = 0,
270 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
271 HPD_CRT,
272 HPD_SDVO_B,
273 HPD_SDVO_C,
274 HPD_PORT_A,
275 HPD_PORT_B,
276 HPD_PORT_C,
277 HPD_PORT_D,
278 HPD_PORT_E,
279 HPD_PORT_F,
280 HPD_NUM_PINS
281 };
282
283 #define for_each_hpd_pin(__pin) \
284 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
285
286 #define HPD_STORM_DEFAULT_THRESHOLD 5
287
288 struct i915_hotplug {
289 struct work_struct hotplug_work;
290
291 struct {
292 unsigned long last_jiffies;
293 int count;
294 enum {
295 HPD_ENABLED = 0,
296 HPD_DISABLED = 1,
297 HPD_MARK_DISABLED = 2
298 } state;
299 } stats[HPD_NUM_PINS];
300 u32 event_bits;
301 struct delayed_work reenable_work;
302
303 u32 long_port_mask;
304 u32 short_port_mask;
305 struct work_struct dig_port_work;
306
307 struct work_struct poll_init_work;
308 bool poll_enabled;
309
310 unsigned int hpd_storm_threshold;
311
312 /*
313 * if we get a HPD irq from DP and a HPD irq from non-DP
314 * the non-DP HPD could block the workqueue on a mode config
315 * mutex getting, that userspace may have taken. However
316 * userspace is waiting on the DP workqueue to run which is
317 * blocked behind the non-DP one.
318 */
319 struct workqueue_struct *dp_wq;
320 };
321
322 #define I915_GEM_GPU_DOMAINS \
323 (I915_GEM_DOMAIN_RENDER | \
324 I915_GEM_DOMAIN_SAMPLER | \
325 I915_GEM_DOMAIN_COMMAND | \
326 I915_GEM_DOMAIN_INSTRUCTION | \
327 I915_GEM_DOMAIN_VERTEX)
328
329 struct drm_i915_private;
330 struct i915_mm_struct;
331 struct i915_mmu_object;
332
333 struct drm_i915_file_private {
334 struct drm_i915_private *dev_priv;
335 struct drm_file *file;
336
337 struct {
338 spinlock_t lock;
339 struct list_head request_list;
340 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
341 * chosen to prevent the CPU getting more than a frame ahead of the GPU
342 * (when using lax throttling for the frontbuffer). We also use it to
343 * offer free GPU waitboosts for severely congested workloads.
344 */
345 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
346 } mm;
347 struct idr context_idr;
348
349 struct intel_rps_client {
350 atomic_t boosts;
351 } rps_client;
352
353 unsigned int bsd_engine;
354
355 /*
356 * Every context ban increments per client ban score. Also
357 * hangs in short succession increments ban score. If ban threshold
358 * is reached, client is considered banned and submitting more work
359 * will fail. This is a stop gap measure to limit the badly behaving
360 * clients access to gpu. Note that unbannable contexts never increment
361 * the client ban score.
362 */
363 #define I915_CLIENT_SCORE_HANG_FAST 1
364 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
365 #define I915_CLIENT_SCORE_CONTEXT_BAN 3
366 #define I915_CLIENT_SCORE_BANNED 9
367 /** ban_score: Accumulated score of all ctx bans and fast hangs. */
368 atomic_t ban_score;
369 unsigned long hang_timestamp;
370 };
371
372 /* Interface history:
373 *
374 * 1.1: Original.
375 * 1.2: Add Power Management
376 * 1.3: Add vblank support
377 * 1.4: Fix cmdbuffer path, add heap destroy
378 * 1.5: Add vblank pipe configuration
379 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
380 * - Support vertical blank on secondary display pipe
381 */
382 #define DRIVER_MAJOR 1
383 #define DRIVER_MINOR 6
384 #define DRIVER_PATCHLEVEL 0
385
386 struct intel_overlay;
387 struct intel_overlay_error_state;
388
389 struct sdvo_device_mapping {
390 u8 initialized;
391 u8 dvo_port;
392 u8 slave_addr;
393 u8 dvo_wiring;
394 u8 i2c_pin;
395 u8 ddc_pin;
396 };
397
398 struct intel_connector;
399 struct intel_encoder;
400 struct intel_atomic_state;
401 struct intel_crtc_state;
402 struct intel_initial_plane_config;
403 struct intel_crtc;
404 struct intel_limit;
405 struct dpll;
406 struct intel_cdclk_state;
407
408 struct drm_i915_display_funcs {
409 void (*get_cdclk)(struct drm_i915_private *dev_priv,
410 struct intel_cdclk_state *cdclk_state);
411 void (*set_cdclk)(struct drm_i915_private *dev_priv,
412 const struct intel_cdclk_state *cdclk_state);
413 int (*get_fifo_size)(struct drm_i915_private *dev_priv,
414 enum i9xx_plane_id i9xx_plane);
415 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
416 int (*compute_intermediate_wm)(struct drm_device *dev,
417 struct intel_crtc *intel_crtc,
418 struct intel_crtc_state *newstate);
419 void (*initial_watermarks)(struct intel_atomic_state *state,
420 struct intel_crtc_state *cstate);
421 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
422 struct intel_crtc_state *cstate);
423 void (*optimize_watermarks)(struct intel_atomic_state *state,
424 struct intel_crtc_state *cstate);
425 int (*compute_global_watermarks)(struct drm_atomic_state *state);
426 void (*update_wm)(struct intel_crtc *crtc);
427 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
428 /* Returns the active state of the crtc, and if the crtc is active,
429 * fills out the pipe-config with the hw state. */
430 bool (*get_pipe_config)(struct intel_crtc *,
431 struct intel_crtc_state *);
432 void (*get_initial_plane_config)(struct intel_crtc *,
433 struct intel_initial_plane_config *);
434 int (*crtc_compute_clock)(struct intel_crtc *crtc,
435 struct intel_crtc_state *crtc_state);
436 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
437 struct drm_atomic_state *old_state);
438 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
439 struct drm_atomic_state *old_state);
440 void (*update_crtcs)(struct drm_atomic_state *state);
441 void (*audio_codec_enable)(struct intel_encoder *encoder,
442 const struct intel_crtc_state *crtc_state,
443 const struct drm_connector_state *conn_state);
444 void (*audio_codec_disable)(struct intel_encoder *encoder,
445 const struct intel_crtc_state *old_crtc_state,
446 const struct drm_connector_state *old_conn_state);
447 void (*fdi_link_train)(struct intel_crtc *crtc,
448 const struct intel_crtc_state *crtc_state);
449 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
450 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
451 /* clock updates for mode set */
452 /* cursor updates */
453 /* render clock increase/decrease */
454 /* display clock increase/decrease */
455 /* pll clock increase/decrease */
456
457 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
458 void (*load_luts)(struct drm_crtc_state *crtc_state);
459 };
460
461 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
462 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
463 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
464
465 struct intel_csr {
466 struct work_struct work;
467 const char *fw_path;
468 uint32_t *dmc_payload;
469 uint32_t dmc_fw_size;
470 uint32_t version;
471 uint32_t mmio_count;
472 i915_reg_t mmioaddr[8];
473 uint32_t mmiodata[8];
474 uint32_t dc_state;
475 uint32_t allowed_dc_mask;
476 };
477
478 enum i915_cache_level {
479 I915_CACHE_NONE = 0,
480 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
481 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
482 caches, eg sampler/render caches, and the
483 large Last-Level-Cache. LLC is coherent with
484 the CPU, but L3 is only visible to the GPU. */
485 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
486 };
487
488 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
489
490 enum fb_op_origin {
491 ORIGIN_GTT,
492 ORIGIN_CPU,
493 ORIGIN_CS,
494 ORIGIN_FLIP,
495 ORIGIN_DIRTYFB,
496 };
497
498 struct intel_fbc {
499 /* This is always the inner lock when overlapping with struct_mutex and
500 * it's the outer lock when overlapping with stolen_lock. */
501 struct mutex lock;
502 unsigned threshold;
503 unsigned int possible_framebuffer_bits;
504 unsigned int busy_bits;
505 unsigned int visible_pipes_mask;
506 struct intel_crtc *crtc;
507
508 struct drm_mm_node compressed_fb;
509 struct drm_mm_node *compressed_llb;
510
511 bool false_color;
512
513 bool enabled;
514 bool active;
515 bool flip_pending;
516
517 bool underrun_detected;
518 struct work_struct underrun_work;
519
520 /*
521 * Due to the atomic rules we can't access some structures without the
522 * appropriate locking, so we cache information here in order to avoid
523 * these problems.
524 */
525 struct intel_fbc_state_cache {
526 struct i915_vma *vma;
527 unsigned long flags;
528
529 struct {
530 unsigned int mode_flags;
531 uint32_t hsw_bdw_pixel_rate;
532 } crtc;
533
534 struct {
535 unsigned int rotation;
536 int src_w;
537 int src_h;
538 bool visible;
539 /*
540 * Display surface base address adjustement for
541 * pageflips. Note that on gen4+ this only adjusts up
542 * to a tile, offsets within a tile are handled in
543 * the hw itself (with the TILEOFF register).
544 */
545 int adjusted_x;
546 int adjusted_y;
547
548 int y;
549 } plane;
550
551 struct {
552 const struct drm_format_info *format;
553 unsigned int stride;
554 } fb;
555 } state_cache;
556
557 /*
558 * This structure contains everything that's relevant to program the
559 * hardware registers. When we want to figure out if we need to disable
560 * and re-enable FBC for a new configuration we just check if there's
561 * something different in the struct. The genx_fbc_activate functions
562 * are supposed to read from it in order to program the registers.
563 */
564 struct intel_fbc_reg_params {
565 struct i915_vma *vma;
566 unsigned long flags;
567
568 struct {
569 enum pipe pipe;
570 enum i9xx_plane_id i9xx_plane;
571 unsigned int fence_y_offset;
572 } crtc;
573
574 struct {
575 const struct drm_format_info *format;
576 unsigned int stride;
577 } fb;
578
579 int cfb_size;
580 unsigned int gen9_wa_cfb_stride;
581 } params;
582
583 const char *no_fbc_reason;
584 };
585
586 /*
587 * HIGH_RR is the highest eDP panel refresh rate read from EDID
588 * LOW_RR is the lowest eDP panel refresh rate found from EDID
589 * parsing for same resolution.
590 */
591 enum drrs_refresh_rate_type {
592 DRRS_HIGH_RR,
593 DRRS_LOW_RR,
594 DRRS_MAX_RR, /* RR count */
595 };
596
597 enum drrs_support_type {
598 DRRS_NOT_SUPPORTED = 0,
599 STATIC_DRRS_SUPPORT = 1,
600 SEAMLESS_DRRS_SUPPORT = 2
601 };
602
603 struct intel_dp;
604 struct i915_drrs {
605 struct mutex mutex;
606 struct delayed_work work;
607 struct intel_dp *dp;
608 unsigned busy_frontbuffer_bits;
609 enum drrs_refresh_rate_type refresh_rate_type;
610 enum drrs_support_type type;
611 };
612
613 struct i915_psr {
614 struct mutex lock;
615
616 #define I915_PSR_DEBUG_MODE_MASK 0x0f
617 #define I915_PSR_DEBUG_DEFAULT 0x00
618 #define I915_PSR_DEBUG_DISABLE 0x01
619 #define I915_PSR_DEBUG_ENABLE 0x02
620 #define I915_PSR_DEBUG_FORCE_PSR1 0x03
621 #define I915_PSR_DEBUG_IRQ 0x10
622
623 u32 debug;
624 bool sink_support;
625 bool prepared, enabled;
626 struct intel_dp *dp;
627 bool active;
628 struct work_struct work;
629 unsigned busy_frontbuffer_bits;
630 bool sink_psr2_support;
631 bool link_standby;
632 bool colorimetry_support;
633 bool alpm;
634 bool psr2_enabled;
635 u8 sink_sync_latency;
636 ktime_t last_entry_attempt;
637 ktime_t last_exit;
638 };
639
640 enum intel_pch {
641 PCH_NONE = 0, /* No PCH present */
642 PCH_IBX, /* Ibexpeak PCH */
643 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
644 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
645 PCH_SPT, /* Sunrisepoint PCH */
646 PCH_KBP, /* Kaby Lake PCH */
647 PCH_CNP, /* Cannon Lake PCH */
648 PCH_ICP, /* Ice Lake PCH */
649 PCH_NOP, /* PCH without south display */
650 };
651
652 enum intel_sbi_destination {
653 SBI_ICLK,
654 SBI_MPHY,
655 };
656
657 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
658 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
659 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
660 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
661 #define QUIRK_INCREASE_T12_DELAY (1<<6)
662 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
663
664 struct intel_fbdev;
665 struct intel_fbc_work;
666
667 struct intel_gmbus {
668 struct i2c_adapter adapter;
669 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
670 u32 force_bit;
671 u32 reg0;
672 i915_reg_t gpio_reg;
673 struct i2c_algo_bit_data bit_algo;
674 struct drm_i915_private *dev_priv;
675 };
676
677 struct i915_suspend_saved_registers {
678 u32 saveDSPARB;
679 u32 saveFBC_CONTROL;
680 u32 saveCACHE_MODE_0;
681 u32 saveMI_ARB_STATE;
682 u32 saveSWF0[16];
683 u32 saveSWF1[16];
684 u32 saveSWF3[3];
685 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
686 u32 savePCH_PORT_HOTPLUG;
687 u16 saveGCDGMBUS;
688 };
689
690 struct vlv_s0ix_state {
691 /* GAM */
692 u32 wr_watermark;
693 u32 gfx_prio_ctrl;
694 u32 arb_mode;
695 u32 gfx_pend_tlb0;
696 u32 gfx_pend_tlb1;
697 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
698 u32 media_max_req_count;
699 u32 gfx_max_req_count;
700 u32 render_hwsp;
701 u32 ecochk;
702 u32 bsd_hwsp;
703 u32 blt_hwsp;
704 u32 tlb_rd_addr;
705
706 /* MBC */
707 u32 g3dctl;
708 u32 gsckgctl;
709 u32 mbctl;
710
711 /* GCP */
712 u32 ucgctl1;
713 u32 ucgctl3;
714 u32 rcgctl1;
715 u32 rcgctl2;
716 u32 rstctl;
717 u32 misccpctl;
718
719 /* GPM */
720 u32 gfxpause;
721 u32 rpdeuhwtc;
722 u32 rpdeuc;
723 u32 ecobus;
724 u32 pwrdwnupctl;
725 u32 rp_down_timeout;
726 u32 rp_deucsw;
727 u32 rcubmabdtmr;
728 u32 rcedata;
729 u32 spare2gh;
730
731 /* Display 1 CZ domain */
732 u32 gt_imr;
733 u32 gt_ier;
734 u32 pm_imr;
735 u32 pm_ier;
736 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
737
738 /* GT SA CZ domain */
739 u32 tilectl;
740 u32 gt_fifoctl;
741 u32 gtlc_wake_ctrl;
742 u32 gtlc_survive;
743 u32 pmwgicz;
744
745 /* Display 2 CZ domain */
746 u32 gu_ctl0;
747 u32 gu_ctl1;
748 u32 pcbr;
749 u32 clock_gate_dis2;
750 };
751
752 struct intel_rps_ei {
753 ktime_t ktime;
754 u32 render_c0;
755 u32 media_c0;
756 };
757
758 struct intel_rps {
759 /*
760 * work, interrupts_enabled and pm_iir are protected by
761 * dev_priv->irq_lock
762 */
763 struct work_struct work;
764 bool interrupts_enabled;
765 u32 pm_iir;
766
767 /* PM interrupt bits that should never be masked */
768 u32 pm_intrmsk_mbz;
769
770 /* Frequencies are stored in potentially platform dependent multiples.
771 * In other words, *_freq needs to be multiplied by X to be interesting.
772 * Soft limits are those which are used for the dynamic reclocking done
773 * by the driver (raise frequencies under heavy loads, and lower for
774 * lighter loads). Hard limits are those imposed by the hardware.
775 *
776 * A distinction is made for overclocking, which is never enabled by
777 * default, and is considered to be above the hard limit if it's
778 * possible at all.
779 */
780 u8 cur_freq; /* Current frequency (cached, may not == HW) */
781 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
782 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
783 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
784 u8 min_freq; /* AKA RPn. Minimum frequency */
785 u8 boost_freq; /* Frequency to request when wait boosting */
786 u8 idle_freq; /* Frequency to request when we are idle */
787 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
788 u8 rp1_freq; /* "less than" RP0 power/freqency */
789 u8 rp0_freq; /* Non-overclocked max frequency. */
790 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
791
792 int last_adj;
793
794 struct {
795 struct mutex mutex;
796
797 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
798 unsigned int interactive;
799
800 u8 up_threshold; /* Current %busy required to uplock */
801 u8 down_threshold; /* Current %busy required to downclock */
802 } power;
803
804 bool enabled;
805 atomic_t num_waiters;
806 atomic_t boosts;
807
808 /* manual wa residency calculations */
809 struct intel_rps_ei ei;
810 };
811
812 struct intel_rc6 {
813 bool enabled;
814 u64 prev_hw_residency[4];
815 u64 cur_residency[4];
816 };
817
818 struct intel_llc_pstate {
819 bool enabled;
820 };
821
822 struct intel_gen6_power_mgmt {
823 struct intel_rps rps;
824 struct intel_rc6 rc6;
825 struct intel_llc_pstate llc_pstate;
826 };
827
828 /* defined intel_pm.c */
829 extern spinlock_t mchdev_lock;
830
831 struct intel_ilk_power_mgmt {
832 u8 cur_delay;
833 u8 min_delay;
834 u8 max_delay;
835 u8 fmax;
836 u8 fstart;
837
838 u64 last_count1;
839 unsigned long last_time1;
840 unsigned long chipset_power;
841 u64 last_count2;
842 u64 last_time2;
843 unsigned long gfx_power;
844 u8 corr;
845
846 int c_m;
847 int r_t;
848 };
849
850 struct drm_i915_private;
851 struct i915_power_well;
852
853 struct i915_power_well_ops {
854 /*
855 * Synchronize the well's hw state to match the current sw state, for
856 * example enable/disable it based on the current refcount. Called
857 * during driver init and resume time, possibly after first calling
858 * the enable/disable handlers.
859 */
860 void (*sync_hw)(struct drm_i915_private *dev_priv,
861 struct i915_power_well *power_well);
862 /*
863 * Enable the well and resources that depend on it (for example
864 * interrupts located on the well). Called after the 0->1 refcount
865 * transition.
866 */
867 void (*enable)(struct drm_i915_private *dev_priv,
868 struct i915_power_well *power_well);
869 /*
870 * Disable the well and resources that depend on it. Called after
871 * the 1->0 refcount transition.
872 */
873 void (*disable)(struct drm_i915_private *dev_priv,
874 struct i915_power_well *power_well);
875 /* Returns the hw enabled state. */
876 bool (*is_enabled)(struct drm_i915_private *dev_priv,
877 struct i915_power_well *power_well);
878 };
879
880 struct i915_power_well_regs {
881 i915_reg_t bios;
882 i915_reg_t driver;
883 i915_reg_t kvmr;
884 i915_reg_t debug;
885 };
886
887 /* Power well structure for haswell */
888 struct i915_power_well_desc {
889 const char *name;
890 bool always_on;
891 u64 domains;
892 /* unique identifier for this power well */
893 enum i915_power_well_id id;
894 /*
895 * Arbitraty data associated with this power well. Platform and power
896 * well specific.
897 */
898 union {
899 struct {
900 /*
901 * request/status flag index in the PUNIT power well
902 * control/status registers.
903 */
904 u8 idx;
905 } vlv;
906 struct {
907 enum dpio_phy phy;
908 } bxt;
909 struct {
910 const struct i915_power_well_regs *regs;
911 /*
912 * request/status flag index in the power well
913 * constrol/status registers.
914 */
915 u8 idx;
916 /* Mask of pipes whose IRQ logic is backed by the pw */
917 u8 irq_pipe_mask;
918 /* The pw is backing the VGA functionality */
919 bool has_vga:1;
920 bool has_fuses:1;
921 } hsw;
922 };
923 const struct i915_power_well_ops *ops;
924 };
925
926 struct i915_power_well {
927 const struct i915_power_well_desc *desc;
928 /* power well enable/disable usage count */
929 int count;
930 /* cached hw enabled state */
931 bool hw_enabled;
932 };
933
934 struct i915_power_domains {
935 /*
936 * Power wells needed for initialization at driver init and suspend
937 * time are on. They are kept on until after the first modeset.
938 */
939 bool initializing;
940 bool display_core_suspended;
941 int power_well_count;
942
943 struct mutex lock;
944 int domain_use_count[POWER_DOMAIN_NUM];
945 struct i915_power_well *power_wells;
946 };
947
948 #define MAX_L3_SLICES 2
949 struct intel_l3_parity {
950 u32 *remap_info[MAX_L3_SLICES];
951 struct work_struct error_work;
952 int which_slice;
953 };
954
955 struct i915_gem_mm {
956 /** Memory allocator for GTT stolen memory */
957 struct drm_mm stolen;
958 /** Protects the usage of the GTT stolen memory allocator. This is
959 * always the inner lock when overlapping with struct_mutex. */
960 struct mutex stolen_lock;
961
962 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
963 spinlock_t obj_lock;
964
965 /** List of all objects in gtt_space. Used to restore gtt
966 * mappings on resume */
967 struct list_head bound_list;
968 /**
969 * List of objects which are not bound to the GTT (thus
970 * are idle and not used by the GPU). These objects may or may
971 * not actually have any pages attached.
972 */
973 struct list_head unbound_list;
974
975 /** List of all objects in gtt_space, currently mmaped by userspace.
976 * All objects within this list must also be on bound_list.
977 */
978 struct list_head userfault_list;
979
980 /**
981 * List of objects which are pending destruction.
982 */
983 struct llist_head free_list;
984 struct work_struct free_work;
985 spinlock_t free_lock;
986 /**
987 * Count of objects pending destructions. Used to skip needlessly
988 * waiting on an RCU barrier if no objects are waiting to be freed.
989 */
990 atomic_t free_count;
991
992 /**
993 * Small stash of WC pages
994 */
995 struct pagestash wc_stash;
996
997 /**
998 * tmpfs instance used for shmem backed objects
999 */
1000 struct vfsmount *gemfs;
1001
1002 /** PPGTT used for aliasing the PPGTT with the GTT */
1003 struct i915_hw_ppgtt *aliasing_ppgtt;
1004
1005 struct notifier_block oom_notifier;
1006 struct notifier_block vmap_notifier;
1007 struct shrinker shrinker;
1008
1009 /** LRU list of objects with fence regs on them. */
1010 struct list_head fence_list;
1011
1012 /**
1013 * Workqueue to fault in userptr pages, flushed by the execbuf
1014 * when required but otherwise left to userspace to try again
1015 * on EAGAIN.
1016 */
1017 struct workqueue_struct *userptr_wq;
1018
1019 u64 unordered_timeline;
1020
1021 /* the indicator for dispatch video commands on two BSD rings */
1022 atomic_t bsd_engine_dispatch_index;
1023
1024 /** Bit 6 swizzling required for X tiling */
1025 uint32_t bit_6_swizzle_x;
1026 /** Bit 6 swizzling required for Y tiling */
1027 uint32_t bit_6_swizzle_y;
1028
1029 /* accounting, useful for userland debugging */
1030 spinlock_t object_stat_lock;
1031 u64 object_memory;
1032 u32 object_count;
1033 };
1034
1035 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1036
1037 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1038 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1039
1040 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1041 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1042
1043 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */
1044
1045 #define DP_AUX_A 0x40
1046 #define DP_AUX_B 0x10
1047 #define DP_AUX_C 0x20
1048 #define DP_AUX_D 0x30
1049 #define DP_AUX_E 0x50
1050 #define DP_AUX_F 0x60
1051
1052 #define DDC_PIN_B 0x05
1053 #define DDC_PIN_C 0x04
1054 #define DDC_PIN_D 0x06
1055
1056 struct ddi_vbt_port_info {
1057 int max_tmds_clock;
1058
1059 /*
1060 * This is an index in the HDMI/DVI DDI buffer translation table.
1061 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1062 * populate this field.
1063 */
1064 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1065 uint8_t hdmi_level_shift;
1066
1067 uint8_t supports_dvi:1;
1068 uint8_t supports_hdmi:1;
1069 uint8_t supports_dp:1;
1070 uint8_t supports_edp:1;
1071
1072 uint8_t alternate_aux_channel;
1073 uint8_t alternate_ddc_pin;
1074
1075 uint8_t dp_boost_level;
1076 uint8_t hdmi_boost_level;
1077 int dp_max_link_rate; /* 0 for not limited by VBT */
1078 };
1079
1080 enum psr_lines_to_wait {
1081 PSR_0_LINES_TO_WAIT = 0,
1082 PSR_1_LINE_TO_WAIT,
1083 PSR_4_LINES_TO_WAIT,
1084 PSR_8_LINES_TO_WAIT
1085 };
1086
1087 struct intel_vbt_data {
1088 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1089 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1090
1091 /* Feature bits */
1092 unsigned int int_tv_support:1;
1093 unsigned int lvds_dither:1;
1094 unsigned int int_crt_support:1;
1095 unsigned int lvds_use_ssc:1;
1096 unsigned int int_lvds_support:1;
1097 unsigned int display_clock_mode:1;
1098 unsigned int fdi_rx_polarity_inverted:1;
1099 unsigned int panel_type:4;
1100 int lvds_ssc_freq;
1101 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1102
1103 enum drrs_support_type drrs_type;
1104
1105 struct {
1106 int rate;
1107 int lanes;
1108 int preemphasis;
1109 int vswing;
1110 bool low_vswing;
1111 bool initialized;
1112 int bpp;
1113 struct edp_power_seq pps;
1114 } edp;
1115
1116 struct {
1117 bool enable;
1118 bool full_link;
1119 bool require_aux_wakeup;
1120 int idle_frames;
1121 enum psr_lines_to_wait lines_to_wait;
1122 int tp1_wakeup_time_us;
1123 int tp2_tp3_wakeup_time_us;
1124 } psr;
1125
1126 struct {
1127 u16 pwm_freq_hz;
1128 bool present;
1129 bool active_low_pwm;
1130 u8 min_brightness; /* min_brightness/255 of max */
1131 u8 controller; /* brightness controller number */
1132 enum intel_backlight_type type;
1133 } backlight;
1134
1135 /* MIPI DSI */
1136 struct {
1137 u16 panel_id;
1138 struct mipi_config *config;
1139 struct mipi_pps_data *pps;
1140 u16 bl_ports;
1141 u16 cabc_ports;
1142 u8 seq_version;
1143 u32 size;
1144 u8 *data;
1145 const u8 *sequence[MIPI_SEQ_MAX];
1146 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1147 } dsi;
1148
1149 int crt_ddc_pin;
1150
1151 int child_dev_num;
1152 struct child_device_config *child_dev;
1153
1154 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1155 struct sdvo_device_mapping sdvo_mappings[2];
1156 };
1157
1158 enum intel_ddb_partitioning {
1159 INTEL_DDB_PART_1_2,
1160 INTEL_DDB_PART_5_6, /* IVB+ */
1161 };
1162
1163 struct intel_wm_level {
1164 bool enable;
1165 uint32_t pri_val;
1166 uint32_t spr_val;
1167 uint32_t cur_val;
1168 uint32_t fbc_val;
1169 };
1170
1171 struct ilk_wm_values {
1172 uint32_t wm_pipe[3];
1173 uint32_t wm_lp[3];
1174 uint32_t wm_lp_spr[3];
1175 uint32_t wm_linetime[3];
1176 bool enable_fbc_wm;
1177 enum intel_ddb_partitioning partitioning;
1178 };
1179
1180 struct g4x_pipe_wm {
1181 uint16_t plane[I915_MAX_PLANES];
1182 uint16_t fbc;
1183 };
1184
1185 struct g4x_sr_wm {
1186 uint16_t plane;
1187 uint16_t cursor;
1188 uint16_t fbc;
1189 };
1190
1191 struct vlv_wm_ddl_values {
1192 uint8_t plane[I915_MAX_PLANES];
1193 };
1194
1195 struct vlv_wm_values {
1196 struct g4x_pipe_wm pipe[3];
1197 struct g4x_sr_wm sr;
1198 struct vlv_wm_ddl_values ddl[3];
1199 uint8_t level;
1200 bool cxsr;
1201 };
1202
1203 struct g4x_wm_values {
1204 struct g4x_pipe_wm pipe[2];
1205 struct g4x_sr_wm sr;
1206 struct g4x_sr_wm hpll;
1207 bool cxsr;
1208 bool hpll_en;
1209 bool fbc_en;
1210 };
1211
1212 struct skl_ddb_entry {
1213 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1214 };
1215
1216 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1217 {
1218 return entry->end - entry->start;
1219 }
1220
1221 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1222 const struct skl_ddb_entry *e2)
1223 {
1224 if (e1->start == e2->start && e1->end == e2->end)
1225 return true;
1226
1227 return false;
1228 }
1229
1230 struct skl_ddb_allocation {
1231 /* packed/y */
1232 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1233 struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1234 u8 enabled_slices; /* GEN11 has configurable 2 slices */
1235 };
1236
1237 struct skl_ddb_values {
1238 unsigned dirty_pipes;
1239 struct skl_ddb_allocation ddb;
1240 };
1241
1242 struct skl_wm_level {
1243 bool plane_en;
1244 uint16_t plane_res_b;
1245 uint8_t plane_res_l;
1246 };
1247
1248 /* Stores plane specific WM parameters */
1249 struct skl_wm_params {
1250 bool x_tiled, y_tiled;
1251 bool rc_surface;
1252 bool is_planar;
1253 uint32_t width;
1254 uint8_t cpp;
1255 uint32_t plane_pixel_rate;
1256 uint32_t y_min_scanlines;
1257 uint32_t plane_bytes_per_line;
1258 uint_fixed_16_16_t plane_blocks_per_line;
1259 uint_fixed_16_16_t y_tile_minimum;
1260 uint32_t linetime_us;
1261 uint32_t dbuf_block_size;
1262 };
1263
1264 /*
1265 * This struct helps tracking the state needed for runtime PM, which puts the
1266 * device in PCI D3 state. Notice that when this happens, nothing on the
1267 * graphics device works, even register access, so we don't get interrupts nor
1268 * anything else.
1269 *
1270 * Every piece of our code that needs to actually touch the hardware needs to
1271 * either call intel_runtime_pm_get or call intel_display_power_get with the
1272 * appropriate power domain.
1273 *
1274 * Our driver uses the autosuspend delay feature, which means we'll only really
1275 * suspend if we stay with zero refcount for a certain amount of time. The
1276 * default value is currently very conservative (see intel_runtime_pm_enable), but
1277 * it can be changed with the standard runtime PM files from sysfs.
1278 *
1279 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1280 * goes back to false exactly before we reenable the IRQs. We use this variable
1281 * to check if someone is trying to enable/disable IRQs while they're supposed
1282 * to be disabled. This shouldn't happen and we'll print some error messages in
1283 * case it happens.
1284 *
1285 * For more, read the Documentation/power/runtime_pm.txt.
1286 */
1287 struct i915_runtime_pm {
1288 atomic_t wakeref_count;
1289 bool suspended;
1290 bool irqs_enabled;
1291 };
1292
1293 enum intel_pipe_crc_source {
1294 INTEL_PIPE_CRC_SOURCE_NONE,
1295 INTEL_PIPE_CRC_SOURCE_PLANE1,
1296 INTEL_PIPE_CRC_SOURCE_PLANE2,
1297 INTEL_PIPE_CRC_SOURCE_PF,
1298 INTEL_PIPE_CRC_SOURCE_PIPE,
1299 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1300 INTEL_PIPE_CRC_SOURCE_TV,
1301 INTEL_PIPE_CRC_SOURCE_DP_B,
1302 INTEL_PIPE_CRC_SOURCE_DP_C,
1303 INTEL_PIPE_CRC_SOURCE_DP_D,
1304 INTEL_PIPE_CRC_SOURCE_AUTO,
1305 INTEL_PIPE_CRC_SOURCE_MAX,
1306 };
1307
1308 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1309 struct intel_pipe_crc {
1310 spinlock_t lock;
1311 int skipped;
1312 enum intel_pipe_crc_source source;
1313 };
1314
1315 struct i915_frontbuffer_tracking {
1316 spinlock_t lock;
1317
1318 /*
1319 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1320 * scheduled flips.
1321 */
1322 unsigned busy_bits;
1323 unsigned flip_bits;
1324 };
1325
1326 struct i915_wa_reg {
1327 u32 addr;
1328 u32 value;
1329 /* bitmask representing WA bits */
1330 u32 mask;
1331 };
1332
1333 #define I915_MAX_WA_REGS 16
1334
1335 struct i915_workarounds {
1336 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1337 u32 count;
1338 };
1339
1340 struct i915_virtual_gpu {
1341 bool active;
1342 u32 caps;
1343 };
1344
1345 /* used in computing the new watermarks state */
1346 struct intel_wm_config {
1347 unsigned int num_pipes_active;
1348 bool sprites_enabled;
1349 bool sprites_scaled;
1350 };
1351
1352 struct i915_oa_format {
1353 u32 format;
1354 int size;
1355 };
1356
1357 struct i915_oa_reg {
1358 i915_reg_t addr;
1359 u32 value;
1360 };
1361
1362 struct i915_oa_config {
1363 char uuid[UUID_STRING_LEN + 1];
1364 int id;
1365
1366 const struct i915_oa_reg *mux_regs;
1367 u32 mux_regs_len;
1368 const struct i915_oa_reg *b_counter_regs;
1369 u32 b_counter_regs_len;
1370 const struct i915_oa_reg *flex_regs;
1371 u32 flex_regs_len;
1372
1373 struct attribute_group sysfs_metric;
1374 struct attribute *attrs[2];
1375 struct device_attribute sysfs_metric_id;
1376
1377 atomic_t ref_count;
1378 };
1379
1380 struct i915_perf_stream;
1381
1382 /**
1383 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1384 */
1385 struct i915_perf_stream_ops {
1386 /**
1387 * @enable: Enables the collection of HW samples, either in response to
1388 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1389 * without `I915_PERF_FLAG_DISABLED`.
1390 */
1391 void (*enable)(struct i915_perf_stream *stream);
1392
1393 /**
1394 * @disable: Disables the collection of HW samples, either in response
1395 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1396 * the stream.
1397 */
1398 void (*disable)(struct i915_perf_stream *stream);
1399
1400 /**
1401 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1402 * once there is something ready to read() for the stream
1403 */
1404 void (*poll_wait)(struct i915_perf_stream *stream,
1405 struct file *file,
1406 poll_table *wait);
1407
1408 /**
1409 * @wait_unlocked: For handling a blocking read, wait until there is
1410 * something to ready to read() for the stream. E.g. wait on the same
1411 * wait queue that would be passed to poll_wait().
1412 */
1413 int (*wait_unlocked)(struct i915_perf_stream *stream);
1414
1415 /**
1416 * @read: Copy buffered metrics as records to userspace
1417 * **buf**: the userspace, destination buffer
1418 * **count**: the number of bytes to copy, requested by userspace
1419 * **offset**: zero at the start of the read, updated as the read
1420 * proceeds, it represents how many bytes have been copied so far and
1421 * the buffer offset for copying the next record.
1422 *
1423 * Copy as many buffered i915 perf samples and records for this stream
1424 * to userspace as will fit in the given buffer.
1425 *
1426 * Only write complete records; returning -%ENOSPC if there isn't room
1427 * for a complete record.
1428 *
1429 * Return any error condition that results in a short read such as
1430 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1431 * returning to userspace.
1432 */
1433 int (*read)(struct i915_perf_stream *stream,
1434 char __user *buf,
1435 size_t count,
1436 size_t *offset);
1437
1438 /**
1439 * @destroy: Cleanup any stream specific resources.
1440 *
1441 * The stream will always be disabled before this is called.
1442 */
1443 void (*destroy)(struct i915_perf_stream *stream);
1444 };
1445
1446 /**
1447 * struct i915_perf_stream - state for a single open stream FD
1448 */
1449 struct i915_perf_stream {
1450 /**
1451 * @dev_priv: i915 drm device
1452 */
1453 struct drm_i915_private *dev_priv;
1454
1455 /**
1456 * @link: Links the stream into ``&drm_i915_private->streams``
1457 */
1458 struct list_head link;
1459
1460 /**
1461 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1462 * properties given when opening a stream, representing the contents
1463 * of a single sample as read() by userspace.
1464 */
1465 u32 sample_flags;
1466
1467 /**
1468 * @sample_size: Considering the configured contents of a sample
1469 * combined with the required header size, this is the total size
1470 * of a single sample record.
1471 */
1472 int sample_size;
1473
1474 /**
1475 * @ctx: %NULL if measuring system-wide across all contexts or a
1476 * specific context that is being monitored.
1477 */
1478 struct i915_gem_context *ctx;
1479
1480 /**
1481 * @enabled: Whether the stream is currently enabled, considering
1482 * whether the stream was opened in a disabled state and based
1483 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1484 */
1485 bool enabled;
1486
1487 /**
1488 * @ops: The callbacks providing the implementation of this specific
1489 * type of configured stream.
1490 */
1491 const struct i915_perf_stream_ops *ops;
1492
1493 /**
1494 * @oa_config: The OA configuration used by the stream.
1495 */
1496 struct i915_oa_config *oa_config;
1497 };
1498
1499 /**
1500 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1501 */
1502 struct i915_oa_ops {
1503 /**
1504 * @is_valid_b_counter_reg: Validates register's address for
1505 * programming boolean counters for a particular platform.
1506 */
1507 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1508 u32 addr);
1509
1510 /**
1511 * @is_valid_mux_reg: Validates register's address for programming mux
1512 * for a particular platform.
1513 */
1514 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1515
1516 /**
1517 * @is_valid_flex_reg: Validates register's address for programming
1518 * flex EU filtering for a particular platform.
1519 */
1520 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1521
1522 /**
1523 * @init_oa_buffer: Resets the head and tail pointers of the
1524 * circular buffer for periodic OA reports.
1525 *
1526 * Called when first opening a stream for OA metrics, but also may be
1527 * called in response to an OA buffer overflow or other error
1528 * condition.
1529 *
1530 * Note it may be necessary to clear the full OA buffer here as part of
1531 * maintaining the invariable that new reports must be written to
1532 * zeroed memory for us to be able to reliable detect if an expected
1533 * report has not yet landed in memory. (At least on Haswell the OA
1534 * buffer tail pointer is not synchronized with reports being visible
1535 * to the CPU)
1536 */
1537 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1538
1539 /**
1540 * @enable_metric_set: Selects and applies any MUX configuration to set
1541 * up the Boolean and Custom (B/C) counters that are part of the
1542 * counter reports being sampled. May apply system constraints such as
1543 * disabling EU clock gating as required.
1544 */
1545 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1546 const struct i915_oa_config *oa_config);
1547
1548 /**
1549 * @disable_metric_set: Remove system constraints associated with using
1550 * the OA unit.
1551 */
1552 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1553
1554 /**
1555 * @oa_enable: Enable periodic sampling
1556 */
1557 void (*oa_enable)(struct drm_i915_private *dev_priv);
1558
1559 /**
1560 * @oa_disable: Disable periodic sampling
1561 */
1562 void (*oa_disable)(struct drm_i915_private *dev_priv);
1563
1564 /**
1565 * @read: Copy data from the circular OA buffer into a given userspace
1566 * buffer.
1567 */
1568 int (*read)(struct i915_perf_stream *stream,
1569 char __user *buf,
1570 size_t count,
1571 size_t *offset);
1572
1573 /**
1574 * @oa_hw_tail_read: read the OA tail pointer register
1575 *
1576 * In particular this enables us to share all the fiddly code for
1577 * handling the OA unit tail pointer race that affects multiple
1578 * generations.
1579 */
1580 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1581 };
1582
1583 struct intel_cdclk_state {
1584 unsigned int cdclk, vco, ref, bypass;
1585 u8 voltage_level;
1586 };
1587
1588 struct drm_i915_private {
1589 struct drm_device drm;
1590
1591 struct kmem_cache *objects;
1592 struct kmem_cache *vmas;
1593 struct kmem_cache *luts;
1594 struct kmem_cache *requests;
1595 struct kmem_cache *dependencies;
1596 struct kmem_cache *priorities;
1597
1598 const struct intel_device_info info;
1599 struct intel_driver_caps caps;
1600
1601 /**
1602 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1603 * end of stolen which we can optionally use to create GEM objects
1604 * backed by stolen memory. Note that stolen_usable_size tells us
1605 * exactly how much of this we are actually allowed to use, given that
1606 * some portion of it is in fact reserved for use by hardware functions.
1607 */
1608 struct resource dsm;
1609 /**
1610 * Reseved portion of Data Stolen Memory
1611 */
1612 struct resource dsm_reserved;
1613
1614 /*
1615 * Stolen memory is segmented in hardware with different portions
1616 * offlimits to certain functions.
1617 *
1618 * The drm_mm is initialised to the total accessible range, as found
1619 * from the PCI config. On Broadwell+, this is further restricted to
1620 * avoid the first page! The upper end of stolen memory is reserved for
1621 * hardware functions and similarly removed from the accessible range.
1622 */
1623 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */
1624
1625 void __iomem *regs;
1626
1627 struct intel_uncore uncore;
1628
1629 struct i915_virtual_gpu vgpu;
1630
1631 struct intel_gvt *gvt;
1632
1633 struct intel_wopcm wopcm;
1634
1635 struct intel_huc huc;
1636 struct intel_guc guc;
1637
1638 struct intel_csr csr;
1639
1640 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1641
1642 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1643 * controller on different i2c buses. */
1644 struct mutex gmbus_mutex;
1645
1646 /**
1647 * Base address of where the gmbus and gpio blocks are located (either
1648 * on PCH or on SoC for platforms without PCH).
1649 */
1650 uint32_t gpio_mmio_base;
1651
1652 /* MMIO base address for MIPI regs */
1653 uint32_t mipi_mmio_base;
1654
1655 uint32_t psr_mmio_base;
1656
1657 uint32_t pps_mmio_base;
1658
1659 wait_queue_head_t gmbus_wait_queue;
1660
1661 struct pci_dev *bridge_dev;
1662 struct intel_engine_cs *engine[I915_NUM_ENGINES];
1663 /* Context used internally to idle the GPU and setup initial state */
1664 struct i915_gem_context *kernel_context;
1665 /* Context only to be used for injecting preemption commands */
1666 struct i915_gem_context *preempt_context;
1667 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1668 [MAX_ENGINE_INSTANCE + 1];
1669
1670 struct resource mch_res;
1671
1672 /* protects the irq masks */
1673 spinlock_t irq_lock;
1674
1675 bool display_irqs_enabled;
1676
1677 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1678 struct pm_qos_request pm_qos;
1679
1680 /* Sideband mailbox protection */
1681 struct mutex sb_lock;
1682
1683 /** Cached value of IMR to avoid reads in updating the bitfield */
1684 union {
1685 u32 irq_mask;
1686 u32 de_irq_mask[I915_MAX_PIPES];
1687 };
1688 u32 gt_irq_mask;
1689 u32 pm_imr;
1690 u32 pm_ier;
1691 u32 pm_rps_events;
1692 u32 pm_guc_events;
1693 u32 pipestat_irq_mask[I915_MAX_PIPES];
1694
1695 struct i915_hotplug hotplug;
1696 struct intel_fbc fbc;
1697 struct i915_drrs drrs;
1698 struct intel_opregion opregion;
1699 struct intel_vbt_data vbt;
1700
1701 bool preserve_bios_swizzle;
1702
1703 /* overlay */
1704 struct intel_overlay *overlay;
1705
1706 /* backlight registers and fields in struct intel_panel */
1707 struct mutex backlight_lock;
1708
1709 /* LVDS info */
1710 bool no_aux_handshake;
1711
1712 /* protects panel power sequencer state */
1713 struct mutex pps_mutex;
1714
1715 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1716 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1717
1718 unsigned int fsb_freq, mem_freq, is_ddr3;
1719 unsigned int skl_preferred_vco_freq;
1720 unsigned int max_cdclk_freq;
1721
1722 unsigned int max_dotclk_freq;
1723 unsigned int rawclk_freq;
1724 unsigned int hpll_freq;
1725 unsigned int fdi_pll_freq;
1726 unsigned int czclk_freq;
1727
1728 struct {
1729 /*
1730 * The current logical cdclk state.
1731 * See intel_atomic_state.cdclk.logical
1732 *
1733 * For reading holding any crtc lock is sufficient,
1734 * for writing must hold all of them.
1735 */
1736 struct intel_cdclk_state logical;
1737 /*
1738 * The current actual cdclk state.
1739 * See intel_atomic_state.cdclk.actual
1740 */
1741 struct intel_cdclk_state actual;
1742 /* The current hardware cdclk state */
1743 struct intel_cdclk_state hw;
1744 } cdclk;
1745
1746 /**
1747 * wq - Driver workqueue for GEM.
1748 *
1749 * NOTE: Work items scheduled here are not allowed to grab any modeset
1750 * locks, for otherwise the flushing done in the pageflip code will
1751 * result in deadlocks.
1752 */
1753 struct workqueue_struct *wq;
1754
1755 /* ordered wq for modesets */
1756 struct workqueue_struct *modeset_wq;
1757
1758 /* Display functions */
1759 struct drm_i915_display_funcs display;
1760
1761 /* PCH chipset type */
1762 enum intel_pch pch_type;
1763 unsigned short pch_id;
1764
1765 unsigned long quirks;
1766
1767 struct drm_atomic_state *modeset_restore_state;
1768 struct drm_modeset_acquire_ctx reset_ctx;
1769
1770 struct i915_ggtt ggtt; /* VM representing the global address space */
1771
1772 struct i915_gem_mm mm;
1773 DECLARE_HASHTABLE(mm_structs, 7);
1774 struct mutex mm_lock;
1775
1776 struct intel_ppat ppat;
1777
1778 /* Kernel Modesetting */
1779
1780 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1781 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1782
1783 #ifdef CONFIG_DEBUG_FS
1784 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1785 #endif
1786
1787 /* dpll and cdclk state is protected by connection_mutex */
1788 int num_shared_dpll;
1789 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1790 const struct intel_dpll_mgr *dpll_mgr;
1791
1792 /*
1793 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1794 * Must be global rather than per dpll, because on some platforms
1795 * plls share registers.
1796 */
1797 struct mutex dpll_lock;
1798
1799 unsigned int active_crtcs;
1800 /* minimum acceptable cdclk for each pipe */
1801 int min_cdclk[I915_MAX_PIPES];
1802 /* minimum acceptable voltage level for each pipe */
1803 u8 min_voltage_level[I915_MAX_PIPES];
1804
1805 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1806
1807 struct i915_workarounds workarounds;
1808
1809 struct i915_frontbuffer_tracking fb_tracking;
1810
1811 struct intel_atomic_helper {
1812 struct llist_head free_list;
1813 struct work_struct free_work;
1814 } atomic_helper;
1815
1816 u16 orig_clock;
1817
1818 bool mchbar_need_disable;
1819
1820 struct intel_l3_parity l3_parity;
1821
1822 /* Cannot be determined by PCIID. You must always read a register. */
1823 u32 edram_cap;
1824
1825 /*
1826 * Protects RPS/RC6 register access and PCU communication.
1827 * Must be taken after struct_mutex if nested. Note that
1828 * this lock may be held for long periods of time when
1829 * talking to hw - so only take it when talking to hw!
1830 */
1831 struct mutex pcu_lock;
1832
1833 /* gen6+ GT PM state */
1834 struct intel_gen6_power_mgmt gt_pm;
1835
1836 /* ilk-only ips/rps state. Everything in here is protected by the global
1837 * mchdev_lock in intel_pm.c */
1838 struct intel_ilk_power_mgmt ips;
1839
1840 struct i915_power_domains power_domains;
1841
1842 struct i915_psr psr;
1843
1844 struct i915_gpu_error gpu_error;
1845
1846 struct drm_i915_gem_object *vlv_pctx;
1847
1848 /* list of fbdev register on this device */
1849 struct intel_fbdev *fbdev;
1850 struct work_struct fbdev_suspend_work;
1851
1852 struct drm_property *broadcast_rgb_property;
1853 struct drm_property *force_audio_property;
1854
1855 /* hda/i915 audio component */
1856 struct i915_audio_component *audio_component;
1857 bool audio_component_registered;
1858 /**
1859 * av_mutex - mutex for audio/video sync
1860 *
1861 */
1862 struct mutex av_mutex;
1863
1864 struct {
1865 struct mutex mutex;
1866 struct list_head list;
1867 struct llist_head free_list;
1868 struct work_struct free_work;
1869
1870 /* The hw wants to have a stable context identifier for the
1871 * lifetime of the context (for OA, PASID, faults, etc).
1872 * This is limited in execlists to 21 bits.
1873 */
1874 struct ida hw_ida;
1875 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1876 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1877 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1878 struct list_head hw_id_list;
1879 } contexts;
1880
1881 u32 fdi_rx_config;
1882
1883 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1884 u32 chv_phy_control;
1885 /*
1886 * Shadows for CHV DPLL_MD regs to keep the state
1887 * checker somewhat working in the presence hardware
1888 * crappiness (can't read out DPLL_MD for pipes B & C).
1889 */
1890 u32 chv_dpll_md[I915_MAX_PIPES];
1891 u32 bxt_phy_grc;
1892
1893 u32 suspend_count;
1894 bool power_domains_suspended;
1895 struct i915_suspend_saved_registers regfile;
1896 struct vlv_s0ix_state vlv_s0ix_state;
1897
1898 enum {
1899 I915_SAGV_UNKNOWN = 0,
1900 I915_SAGV_DISABLED,
1901 I915_SAGV_ENABLED,
1902 I915_SAGV_NOT_CONTROLLED
1903 } sagv_status;
1904
1905 struct {
1906 /*
1907 * Raw watermark latency values:
1908 * in 0.1us units for WM0,
1909 * in 0.5us units for WM1+.
1910 */
1911 /* primary */
1912 uint16_t pri_latency[5];
1913 /* sprite */
1914 uint16_t spr_latency[5];
1915 /* cursor */
1916 uint16_t cur_latency[5];
1917 /*
1918 * Raw watermark memory latency values
1919 * for SKL for all 8 levels
1920 * in 1us units.
1921 */
1922 uint16_t skl_latency[8];
1923
1924 /* current hardware state */
1925 union {
1926 struct ilk_wm_values hw;
1927 struct skl_ddb_values skl_hw;
1928 struct vlv_wm_values vlv;
1929 struct g4x_wm_values g4x;
1930 };
1931
1932 uint8_t max_level;
1933
1934 /*
1935 * Should be held around atomic WM register writing; also
1936 * protects * intel_crtc->wm.active and
1937 * cstate->wm.need_postvbl_update.
1938 */
1939 struct mutex wm_mutex;
1940
1941 /*
1942 * Set during HW readout of watermarks/DDB. Some platforms
1943 * need to know when we're still using BIOS-provided values
1944 * (which we don't fully trust).
1945 */
1946 bool distrust_bios_wm;
1947 } wm;
1948
1949 struct dram_info {
1950 bool valid;
1951 bool valid_dimm;
1952 bool is_16gb_dimm;
1953 u8 num_channels;
1954 enum dram_rank {
1955 I915_DRAM_RANK_INVALID = 0,
1956 I915_DRAM_RANK_SINGLE,
1957 I915_DRAM_RANK_DUAL
1958 } rank;
1959 u32 bandwidth_kbps;
1960 bool symmetric_memory;
1961 } dram_info;
1962
1963 struct i915_runtime_pm runtime_pm;
1964
1965 struct {
1966 bool initialized;
1967
1968 struct kobject *metrics_kobj;
1969 struct ctl_table_header *sysctl_header;
1970
1971 /*
1972 * Lock associated with adding/modifying/removing OA configs
1973 * in dev_priv->perf.metrics_idr.
1974 */
1975 struct mutex metrics_lock;
1976
1977 /*
1978 * List of dynamic configurations, you need to hold
1979 * dev_priv->perf.metrics_lock to access it.
1980 */
1981 struct idr metrics_idr;
1982
1983 /*
1984 * Lock associated with anything below within this structure
1985 * except exclusive_stream.
1986 */
1987 struct mutex lock;
1988 struct list_head streams;
1989
1990 struct {
1991 /*
1992 * The stream currently using the OA unit. If accessed
1993 * outside a syscall associated to its file
1994 * descriptor, you need to hold
1995 * dev_priv->drm.struct_mutex.
1996 */
1997 struct i915_perf_stream *exclusive_stream;
1998
1999 struct intel_context *pinned_ctx;
2000 u32 specific_ctx_id;
2001 u32 specific_ctx_id_mask;
2002
2003 struct hrtimer poll_check_timer;
2004 wait_queue_head_t poll_wq;
2005 bool pollin;
2006
2007 /**
2008 * For rate limiting any notifications of spurious
2009 * invalid OA reports
2010 */
2011 struct ratelimit_state spurious_report_rs;
2012
2013 bool periodic;
2014 int period_exponent;
2015
2016 struct i915_oa_config test_config;
2017
2018 struct {
2019 struct i915_vma *vma;
2020 u8 *vaddr;
2021 u32 last_ctx_id;
2022 int format;
2023 int format_size;
2024
2025 /**
2026 * Locks reads and writes to all head/tail state
2027 *
2028 * Consider: the head and tail pointer state
2029 * needs to be read consistently from a hrtimer
2030 * callback (atomic context) and read() fop
2031 * (user context) with tail pointer updates
2032 * happening in atomic context and head updates
2033 * in user context and the (unlikely)
2034 * possibility of read() errors needing to
2035 * reset all head/tail state.
2036 *
2037 * Note: Contention or performance aren't
2038 * currently a significant concern here
2039 * considering the relatively low frequency of
2040 * hrtimer callbacks (5ms period) and that
2041 * reads typically only happen in response to a
2042 * hrtimer event and likely complete before the
2043 * next callback.
2044 *
2045 * Note: This lock is not held *while* reading
2046 * and copying data to userspace so the value
2047 * of head observed in htrimer callbacks won't
2048 * represent any partial consumption of data.
2049 */
2050 spinlock_t ptr_lock;
2051
2052 /**
2053 * One 'aging' tail pointer and one 'aged'
2054 * tail pointer ready to used for reading.
2055 *
2056 * Initial values of 0xffffffff are invalid
2057 * and imply that an update is required
2058 * (and should be ignored by an attempted
2059 * read)
2060 */
2061 struct {
2062 u32 offset;
2063 } tails[2];
2064
2065 /**
2066 * Index for the aged tail ready to read()
2067 * data up to.
2068 */
2069 unsigned int aged_tail_idx;
2070
2071 /**
2072 * A monotonic timestamp for when the current
2073 * aging tail pointer was read; used to
2074 * determine when it is old enough to trust.
2075 */
2076 u64 aging_timestamp;
2077
2078 /**
2079 * Although we can always read back the head
2080 * pointer register, we prefer to avoid
2081 * trusting the HW state, just to avoid any
2082 * risk that some hardware condition could
2083 * somehow bump the head pointer unpredictably
2084 * and cause us to forward the wrong OA buffer
2085 * data to userspace.
2086 */
2087 u32 head;
2088 } oa_buffer;
2089
2090 u32 gen7_latched_oastatus1;
2091 u32 ctx_oactxctrl_offset;
2092 u32 ctx_flexeu0_offset;
2093
2094 /**
2095 * The RPT_ID/reason field for Gen8+ includes a bit
2096 * to determine if the CTX ID in the report is valid
2097 * but the specific bit differs between Gen 8 and 9
2098 */
2099 u32 gen8_valid_ctx_bit;
2100
2101 struct i915_oa_ops ops;
2102 const struct i915_oa_format *oa_formats;
2103 } oa;
2104 } perf;
2105
2106 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2107 struct {
2108 void (*resume)(struct drm_i915_private *);
2109 void (*cleanup_engine)(struct intel_engine_cs *engine);
2110
2111 struct list_head timelines;
2112
2113 struct list_head active_rings;
2114 struct list_head closed_vma;
2115 u32 active_requests;
2116 u32 request_serial;
2117
2118 /**
2119 * Is the GPU currently considered idle, or busy executing
2120 * userspace requests? Whilst idle, we allow runtime power
2121 * management to power down the hardware and display clocks.
2122 * In order to reduce the effect on performance, there
2123 * is a slight delay before we do so.
2124 */
2125 bool awake;
2126
2127 /**
2128 * The number of times we have woken up.
2129 */
2130 unsigned int epoch;
2131 #define I915_EPOCH_INVALID 0
2132
2133 /**
2134 * We leave the user IRQ off as much as possible,
2135 * but this means that requests will finish and never
2136 * be retired once the system goes idle. Set a timer to
2137 * fire periodically while the ring is running. When it
2138 * fires, go retire requests.
2139 */
2140 struct delayed_work retire_work;
2141
2142 /**
2143 * When we detect an idle GPU, we want to turn on
2144 * powersaving features. So once we see that there
2145 * are no more requests outstanding and no more
2146 * arrive within a small period of time, we fire
2147 * off the idle_work.
2148 */
2149 struct delayed_work idle_work;
2150
2151 ktime_t last_init_time;
2152 } gt;
2153
2154 /* perform PHY state sanity checks? */
2155 bool chv_phy_assert[2];
2156
2157 bool ipc_enabled;
2158
2159 /* Used to save the pipe-to-encoder mapping for audio */
2160 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2161
2162 /* necessary resource sharing with HDMI LPE audio driver. */
2163 struct {
2164 struct platform_device *platdev;
2165 int irq;
2166 } lpe_audio;
2167
2168 struct i915_pmu pmu;
2169
2170 /*
2171 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2172 * will be rejected. Instead look for a better place.
2173 */
2174 };
2175
2176 struct dram_channel_info {
2177 struct info {
2178 u8 size, width;
2179 enum dram_rank rank;
2180 } l_info, s_info;
2181 enum dram_rank rank;
2182 bool is_16gb_dimm;
2183 };
2184
2185 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2186 {
2187 return container_of(dev, struct drm_i915_private, drm);
2188 }
2189
2190 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2191 {
2192 return to_i915(dev_get_drvdata(kdev));
2193 }
2194
2195 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2196 {
2197 return container_of(wopcm, struct drm_i915_private, wopcm);
2198 }
2199
2200 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2201 {
2202 return container_of(guc, struct drm_i915_private, guc);
2203 }
2204
2205 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2206 {
2207 return container_of(huc, struct drm_i915_private, huc);
2208 }
2209
2210 /* Simple iterator over all initialised engines */
2211 #define for_each_engine(engine__, dev_priv__, id__) \
2212 for ((id__) = 0; \
2213 (id__) < I915_NUM_ENGINES; \
2214 (id__)++) \
2215 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2216
2217 /* Iterator over subset of engines selected by mask */
2218 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2219 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2220 (tmp__) ? \
2221 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2222 0;)
2223
2224 enum hdmi_force_audio {
2225 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2226 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2227 HDMI_AUDIO_AUTO, /* trust EDID */
2228 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2229 };
2230
2231 #define I915_GTT_OFFSET_NONE ((u32)-1)
2232
2233 /*
2234 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2235 * considered to be the frontbuffer for the given plane interface-wise. This
2236 * doesn't mean that the hw necessarily already scans it out, but that any
2237 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2238 *
2239 * We have one bit per pipe and per scanout plane type.
2240 */
2241 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2242 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2243 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2244 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2245 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2246 })
2247 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2248 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2249 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2250 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2251 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2252
2253 /*
2254 * Optimised SGL iterator for GEM objects
2255 */
2256 static __always_inline struct sgt_iter {
2257 struct scatterlist *sgp;
2258 union {
2259 unsigned long pfn;
2260 dma_addr_t dma;
2261 };
2262 unsigned int curr;
2263 unsigned int max;
2264 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2265 struct sgt_iter s = { .sgp = sgl };
2266
2267 if (s.sgp) {
2268 s.max = s.curr = s.sgp->offset;
2269 s.max += s.sgp->length;
2270 if (dma)
2271 s.dma = sg_dma_address(s.sgp);
2272 else
2273 s.pfn = page_to_pfn(sg_page(s.sgp));
2274 }
2275
2276 return s;
2277 }
2278
2279 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2280 {
2281 ++sg;
2282 if (unlikely(sg_is_chain(sg)))
2283 sg = sg_chain_ptr(sg);
2284 return sg;
2285 }
2286
2287 /**
2288 * __sg_next - return the next scatterlist entry in a list
2289 * @sg: The current sg entry
2290 *
2291 * Description:
2292 * If the entry is the last, return NULL; otherwise, step to the next
2293 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2294 * otherwise just return the pointer to the current element.
2295 **/
2296 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2297 {
2298 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2299 }
2300
2301 /**
2302 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2303 * @__dmap: DMA address (output)
2304 * @__iter: 'struct sgt_iter' (iterator state, internal)
2305 * @__sgt: sg_table to iterate over (input)
2306 */
2307 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2308 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2309 ((__dmap) = (__iter).dma + (__iter).curr); \
2310 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \
2311 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2312
2313 /**
2314 * for_each_sgt_page - iterate over the pages of the given sg_table
2315 * @__pp: page pointer (output)
2316 * @__iter: 'struct sgt_iter' (iterator state, internal)
2317 * @__sgt: sg_table to iterate over (input)
2318 */
2319 #define for_each_sgt_page(__pp, __iter, __sgt) \
2320 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2321 ((__pp) = (__iter).pfn == 0 ? NULL : \
2322 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2323 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2324 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2325
2326 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2327 {
2328 unsigned int page_sizes;
2329
2330 page_sizes = 0;
2331 while (sg) {
2332 GEM_BUG_ON(sg->offset);
2333 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2334 page_sizes |= sg->length;
2335 sg = __sg_next(sg);
2336 }
2337
2338 return page_sizes;
2339 }
2340
2341 static inline unsigned int i915_sg_segment_size(void)
2342 {
2343 unsigned int size = swiotlb_max_segment();
2344
2345 if (size == 0)
2346 return SCATTERLIST_MAX_SEGMENT;
2347
2348 size = rounddown(size, PAGE_SIZE);
2349 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2350 if (size < PAGE_SIZE)
2351 size = PAGE_SIZE;
2352
2353 return size;
2354 }
2355
2356 static inline const struct intel_device_info *
2357 intel_info(const struct drm_i915_private *dev_priv)
2358 {
2359 return &dev_priv->info;
2360 }
2361
2362 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2363 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps)
2364
2365 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2366 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2367
2368 #define REVID_FOREVER 0xff
2369 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2370
2371 #define GEN_FOREVER (0)
2372
2373 #define INTEL_GEN_MASK(s, e) ( \
2374 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2375 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2376 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2377 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2378 )
2379
2380 /*
2381 * Returns true if Gen is in inclusive range [Start, End].
2382 *
2383 * Use GEN_FOREVER for unbound start and or end.
2384 */
2385 #define IS_GEN(dev_priv, s, e) \
2386 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2387
2388 /*
2389 * Return true if revision is in range [since,until] inclusive.
2390 *
2391 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2392 */
2393 #define IS_REVID(p, since, until) \
2394 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2395
2396 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2397
2398 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2399 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2400 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2401 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2402 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2403 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2404 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2405 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2406 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2407 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2408 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2409 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2410 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2411 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2412 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2413 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2414 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2415 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2416 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2417 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2418 (dev_priv)->info.gt == 1)
2419 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2420 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2421 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2422 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2423 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2424 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2425 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2426 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2427 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2428 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2429 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2430 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2431 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2432 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2433 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2434 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2435 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2436 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2437 /* ULX machines are also considered ULT. */
2438 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2439 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2440 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2441 (dev_priv)->info.gt == 3)
2442 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2443 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2444 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2445 (dev_priv)->info.gt == 3)
2446 /* ULX machines are also considered ULT. */
2447 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2448 INTEL_DEVID(dev_priv) == 0x0A1E)
2449 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2450 INTEL_DEVID(dev_priv) == 0x1913 || \
2451 INTEL_DEVID(dev_priv) == 0x1916 || \
2452 INTEL_DEVID(dev_priv) == 0x1921 || \
2453 INTEL_DEVID(dev_priv) == 0x1926)
2454 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2455 INTEL_DEVID(dev_priv) == 0x1915 || \
2456 INTEL_DEVID(dev_priv) == 0x191E)
2457 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2458 INTEL_DEVID(dev_priv) == 0x5913 || \
2459 INTEL_DEVID(dev_priv) == 0x5916 || \
2460 INTEL_DEVID(dev_priv) == 0x5921 || \
2461 INTEL_DEVID(dev_priv) == 0x5926)
2462 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2463 INTEL_DEVID(dev_priv) == 0x5915 || \
2464 INTEL_DEVID(dev_priv) == 0x591E)
2465 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2466 (dev_priv)->info.gt == 2)
2467 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2468 (dev_priv)->info.gt == 3)
2469 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2470 (dev_priv)->info.gt == 4)
2471 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2472 (dev_priv)->info.gt == 2)
2473 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2474 (dev_priv)->info.gt == 3)
2475 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2476 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2477 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2478 (dev_priv)->info.gt == 2)
2479 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2480 (dev_priv)->info.gt == 3)
2481 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \
2482 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2483
2484 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2485
2486 #define SKL_REVID_A0 0x0
2487 #define SKL_REVID_B0 0x1
2488 #define SKL_REVID_C0 0x2
2489 #define SKL_REVID_D0 0x3
2490 #define SKL_REVID_E0 0x4
2491 #define SKL_REVID_F0 0x5
2492 #define SKL_REVID_G0 0x6
2493 #define SKL_REVID_H0 0x7
2494
2495 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2496
2497 #define BXT_REVID_A0 0x0
2498 #define BXT_REVID_A1 0x1
2499 #define BXT_REVID_B0 0x3
2500 #define BXT_REVID_B_LAST 0x8
2501 #define BXT_REVID_C0 0x9
2502
2503 #define IS_BXT_REVID(dev_priv, since, until) \
2504 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2505
2506 #define KBL_REVID_A0 0x0
2507 #define KBL_REVID_B0 0x1
2508 #define KBL_REVID_C0 0x2
2509 #define KBL_REVID_D0 0x3
2510 #define KBL_REVID_E0 0x4
2511
2512 #define IS_KBL_REVID(dev_priv, since, until) \
2513 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2514
2515 #define GLK_REVID_A0 0x0
2516 #define GLK_REVID_A1 0x1
2517
2518 #define IS_GLK_REVID(dev_priv, since, until) \
2519 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2520
2521 #define CNL_REVID_A0 0x0
2522 #define CNL_REVID_B0 0x1
2523 #define CNL_REVID_C0 0x2
2524
2525 #define IS_CNL_REVID(p, since, until) \
2526 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2527
2528 #define ICL_REVID_A0 0x0
2529 #define ICL_REVID_A2 0x1
2530 #define ICL_REVID_B0 0x3
2531 #define ICL_REVID_B2 0x4
2532 #define ICL_REVID_C0 0x5
2533
2534 #define IS_ICL_REVID(p, since, until) \
2535 (IS_ICELAKE(p) && IS_REVID(p, since, until))
2536
2537 /*
2538 * The genX designation typically refers to the render engine, so render
2539 * capability related checks should use IS_GEN, while display and other checks
2540 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2541 * chips, etc.).
2542 */
2543 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2544 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2545 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2546 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2547 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2548 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2549 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2550 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2551 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2552 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10)))
2553
2554 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2555 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2556 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2557
2558 #define ENGINE_MASK(id) BIT(id)
2559 #define RENDER_RING ENGINE_MASK(RCS)
2560 #define BSD_RING ENGINE_MASK(VCS)
2561 #define BLT_RING ENGINE_MASK(BCS)
2562 #define VEBOX_RING ENGINE_MASK(VECS)
2563 #define BSD2_RING ENGINE_MASK(VCS2)
2564 #define BSD3_RING ENGINE_MASK(VCS3)
2565 #define BSD4_RING ENGINE_MASK(VCS4)
2566 #define VEBOX2_RING ENGINE_MASK(VECS2)
2567 #define ALL_ENGINES (~0)
2568
2569 #define HAS_ENGINE(dev_priv, id) \
2570 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2571
2572 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2573 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2574 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2575 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2576
2577 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2578
2579 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2580 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2581 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2582 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2583 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2584
2585 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2586
2587 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2588 ((dev_priv)->info.has_logical_ring_contexts)
2589 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2590 ((dev_priv)->info.has_logical_ring_elsq)
2591 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2592 ((dev_priv)->info.has_logical_ring_preemption)
2593
2594 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2595
2596 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt)
2597 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2)
2598 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
2599 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2600 GEM_BUG_ON((sizes) == 0); \
2601 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2602 })
2603
2604 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2605 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2606 ((dev_priv)->info.overlay_needs_physical)
2607
2608 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2609 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2610
2611 /* WaRsDisableCoarsePowerGating:skl,cnl */
2612 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2613 (IS_CANNONLAKE(dev_priv) || \
2614 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2615
2616 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2617 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2618 IS_GEMINILAKE(dev_priv) || \
2619 IS_KABYLAKE(dev_priv))
2620
2621 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2622 * rows, which changed the alignment requirements and fence programming.
2623 */
2624 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2625 !(IS_I915G(dev_priv) || \
2626 IS_I915GM(dev_priv)))
2627 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2628 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2629
2630 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2631 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2632 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2633
2634 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2635
2636 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2637
2638 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2639 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2640 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2641
2642 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2643 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2644 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */
2645
2646 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2647
2648 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2649 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2650
2651 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
2652
2653 /*
2654 * For now, anything with a GuC requires uCode loading, and then supports
2655 * command submission once loaded. But these are logically independent
2656 * properties, so we have separate macros to test them.
2657 */
2658 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
2659 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
2660 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2661 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2662
2663 /* For now, anything with a GuC has also HuC */
2664 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv))
2665 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2666
2667 /* Having a GuC is not the same as using a GuC */
2668 #define USES_GUC(dev_priv) intel_uc_is_using_guc()
2669 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission()
2670 #define USES_HUC(dev_priv) intel_uc_is_using_huc()
2671
2672 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2673
2674 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
2675 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2676 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2677 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2678 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2679 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2680 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
2681 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
2682 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2683 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2684 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
2685 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
2686 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
2687 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480
2688 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2689 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2690 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2691
2692 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2693 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2694 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2695 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2696 #define HAS_PCH_CNP_LP(dev_priv) \
2697 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2698 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2699 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2700 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2701 #define HAS_PCH_LPT_LP(dev_priv) \
2702 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2703 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2704 #define HAS_PCH_LPT_H(dev_priv) \
2705 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2706 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2707 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2708 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2709 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2710 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2711
2712 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2713
2714 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2715
2716 /* DPF == dynamic parity feature */
2717 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2718 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2719 2 : HAS_L3_DPF(dev_priv))
2720
2721 #define GT_FREQUENCY_MULTIPLIER 50
2722 #define GEN9_FREQ_SCALER 3
2723
2724 #include "i915_trace.h"
2725
2726 static inline bool intel_vtd_active(void)
2727 {
2728 #ifdef CONFIG_INTEL_IOMMU
2729 if (intel_iommu_gfx_mapped)
2730 return true;
2731 #endif
2732 return false;
2733 }
2734
2735 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2736 {
2737 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2738 }
2739
2740 static inline bool
2741 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2742 {
2743 return IS_BROXTON(dev_priv) && intel_vtd_active();
2744 }
2745
2746 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2747 int enable_ppgtt);
2748
2749 /* i915_drv.c */
2750 void __printf(3, 4)
2751 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2752 const char *fmt, ...);
2753
2754 #define i915_report_error(dev_priv, fmt, ...) \
2755 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2756
2757 #ifdef CONFIG_COMPAT
2758 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2759 unsigned long arg);
2760 #else
2761 #define i915_compat_ioctl NULL
2762 #endif
2763 extern const struct dev_pm_ops i915_pm_ops;
2764
2765 extern int i915_driver_load(struct pci_dev *pdev,
2766 const struct pci_device_id *ent);
2767 extern void i915_driver_unload(struct drm_device *dev);
2768 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2769 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2770
2771 extern void i915_reset(struct drm_i915_private *i915,
2772 unsigned int stalled_mask,
2773 const char *reason);
2774 extern int i915_reset_engine(struct intel_engine_cs *engine,
2775 const char *reason);
2776
2777 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2778 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2779 extern int intel_guc_reset_engine(struct intel_guc *guc,
2780 struct intel_engine_cs *engine);
2781 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2782 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2783 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2784 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2785 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2786 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2787 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2788
2789 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2790 int intel_engines_init(struct drm_i915_private *dev_priv);
2791
2792 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2793
2794 /* intel_hotplug.c */
2795 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2796 u32 pin_mask, u32 long_mask);
2797 void intel_hpd_init(struct drm_i915_private *dev_priv);
2798 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2799 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2800 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2801 enum port port);
2802 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2803 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2804
2805 /* i915_irq.c */
2806 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2807 {
2808 unsigned long delay;
2809
2810 if (unlikely(!i915_modparams.enable_hangcheck))
2811 return;
2812
2813 /* Don't continually defer the hangcheck so that it is always run at
2814 * least once after work has been scheduled on any ring. Otherwise,
2815 * we will ignore a hung ring if a second ring is kept busy.
2816 */
2817
2818 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2819 queue_delayed_work(system_long_wq,
2820 &dev_priv->gpu_error.hangcheck_work, delay);
2821 }
2822
2823 __printf(4, 5)
2824 void i915_handle_error(struct drm_i915_private *dev_priv,
2825 u32 engine_mask,
2826 unsigned long flags,
2827 const char *fmt, ...);
2828 #define I915_ERROR_CAPTURE BIT(0)
2829
2830 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2831 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2832 int intel_irq_install(struct drm_i915_private *dev_priv);
2833 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2834
2835 void i915_clear_error_registers(struct drm_i915_private *dev_priv);
2836
2837 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2838 {
2839 return dev_priv->gvt;
2840 }
2841
2842 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2843 {
2844 return dev_priv->vgpu.active;
2845 }
2846
2847 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2848 enum pipe pipe);
2849 void
2850 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2851 u32 status_mask);
2852
2853 void
2854 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2855 u32 status_mask);
2856
2857 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2858 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2859 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2860 uint32_t mask,
2861 uint32_t bits);
2862 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2863 uint32_t interrupt_mask,
2864 uint32_t enabled_irq_mask);
2865 static inline void
2866 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2867 {
2868 ilk_update_display_irq(dev_priv, bits, bits);
2869 }
2870 static inline void
2871 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2872 {
2873 ilk_update_display_irq(dev_priv, bits, 0);
2874 }
2875 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2876 enum pipe pipe,
2877 uint32_t interrupt_mask,
2878 uint32_t enabled_irq_mask);
2879 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2880 enum pipe pipe, uint32_t bits)
2881 {
2882 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2883 }
2884 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2885 enum pipe pipe, uint32_t bits)
2886 {
2887 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2888 }
2889 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2890 uint32_t interrupt_mask,
2891 uint32_t enabled_irq_mask);
2892 static inline void
2893 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2894 {
2895 ibx_display_interrupt_update(dev_priv, bits, bits);
2896 }
2897 static inline void
2898 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2899 {
2900 ibx_display_interrupt_update(dev_priv, bits, 0);
2901 }
2902
2903 /* i915_gem.c */
2904 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2905 struct drm_file *file_priv);
2906 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2907 struct drm_file *file_priv);
2908 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2909 struct drm_file *file_priv);
2910 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2911 struct drm_file *file_priv);
2912 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2913 struct drm_file *file_priv);
2914 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2915 struct drm_file *file_priv);
2916 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2917 struct drm_file *file_priv);
2918 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2919 struct drm_file *file_priv);
2920 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2921 struct drm_file *file_priv);
2922 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2923 struct drm_file *file_priv);
2924 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2925 struct drm_file *file);
2926 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2927 struct drm_file *file);
2928 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2929 struct drm_file *file_priv);
2930 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2931 struct drm_file *file_priv);
2932 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2933 struct drm_file *file_priv);
2934 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2935 struct drm_file *file_priv);
2936 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2937 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2938 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2939 struct drm_file *file);
2940 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2941 struct drm_file *file_priv);
2942 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2943 struct drm_file *file_priv);
2944 void i915_gem_sanitize(struct drm_i915_private *i915);
2945 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2946 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2947 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2948 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2949 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2950
2951 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2952 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2953 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2954 const struct drm_i915_gem_object_ops *ops);
2955 struct drm_i915_gem_object *
2956 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2957 struct drm_i915_gem_object *
2958 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2959 const void *data, size_t size);
2960 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2961 void i915_gem_free_object(struct drm_gem_object *obj);
2962
2963 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2964 {
2965 if (!atomic_read(&i915->mm.free_count))
2966 return;
2967
2968 /* A single pass should suffice to release all the freed objects (along
2969 * most call paths) , but be a little more paranoid in that freeing
2970 * the objects does take a little amount of time, during which the rcu
2971 * callbacks could have added new objects into the freed list, and
2972 * armed the work again.
2973 */
2974 do {
2975 rcu_barrier();
2976 } while (flush_work(&i915->mm.free_work));
2977 }
2978
2979 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2980 {
2981 /*
2982 * Similar to objects above (see i915_gem_drain_freed-objects), in
2983 * general we have workers that are armed by RCU and then rearm
2984 * themselves in their callbacks. To be paranoid, we need to
2985 * drain the workqueue a second time after waiting for the RCU
2986 * grace period so that we catch work queued via RCU from the first
2987 * pass. As neither drain_workqueue() nor flush_workqueue() report
2988 * a result, we make an assumption that we only don't require more
2989 * than 2 passes to catch all recursive RCU delayed work.
2990 *
2991 */
2992 int pass = 2;
2993 do {
2994 rcu_barrier();
2995 drain_workqueue(i915->wq);
2996 } while (--pass);
2997 }
2998
2999 struct i915_vma * __must_check
3000 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3001 const struct i915_ggtt_view *view,
3002 u64 size,
3003 u64 alignment,
3004 u64 flags);
3005
3006 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3007 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3008
3009 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3010
3011 static inline int __sg_page_count(const struct scatterlist *sg)
3012 {
3013 return sg->length >> PAGE_SHIFT;
3014 }
3015
3016 struct scatterlist *
3017 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3018 unsigned int n, unsigned int *offset);
3019
3020 struct page *
3021 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3022 unsigned int n);
3023
3024 struct page *
3025 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3026 unsigned int n);
3027
3028 dma_addr_t
3029 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3030 unsigned long n);
3031
3032 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3033 struct sg_table *pages,
3034 unsigned int sg_page_sizes);
3035 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3036
3037 static inline int __must_check
3038 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3039 {
3040 might_lock(&obj->mm.lock);
3041
3042 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3043 return 0;
3044
3045 return __i915_gem_object_get_pages(obj);
3046 }
3047
3048 static inline bool
3049 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3050 {
3051 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3052 }
3053
3054 static inline void
3055 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3056 {
3057 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3058
3059 atomic_inc(&obj->mm.pages_pin_count);
3060 }
3061
3062 static inline bool
3063 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3064 {
3065 return atomic_read(&obj->mm.pages_pin_count);
3066 }
3067
3068 static inline void
3069 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3070 {
3071 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3072 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3073
3074 atomic_dec(&obj->mm.pages_pin_count);
3075 }
3076
3077 static inline void
3078 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3079 {
3080 __i915_gem_object_unpin_pages(obj);
3081 }
3082
3083 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3084 I915_MM_NORMAL = 0,
3085 I915_MM_SHRINKER
3086 };
3087
3088 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3089 enum i915_mm_subclass subclass);
3090 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3091
3092 enum i915_map_type {
3093 I915_MAP_WB = 0,
3094 I915_MAP_WC,
3095 #define I915_MAP_OVERRIDE BIT(31)
3096 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3097 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3098 };
3099
3100 static inline enum i915_map_type
3101 i915_coherent_map_type(struct drm_i915_private *i915)
3102 {
3103 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
3104 }
3105
3106 /**
3107 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3108 * @obj: the object to map into kernel address space
3109 * @type: the type of mapping, used to select pgprot_t
3110 *
3111 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3112 * pages and then returns a contiguous mapping of the backing storage into
3113 * the kernel address space. Based on the @type of mapping, the PTE will be
3114 * set to either WriteBack or WriteCombine (via pgprot_t).
3115 *
3116 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3117 * mapping is no longer required.
3118 *
3119 * Returns the pointer through which to access the mapped object, or an
3120 * ERR_PTR() on error.
3121 */
3122 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3123 enum i915_map_type type);
3124
3125 /**
3126 * i915_gem_object_unpin_map - releases an earlier mapping
3127 * @obj: the object to unmap
3128 *
3129 * After pinning the object and mapping its pages, once you are finished
3130 * with your access, call i915_gem_object_unpin_map() to release the pin
3131 * upon the mapping. Once the pin count reaches zero, that mapping may be
3132 * removed.
3133 */
3134 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3135 {
3136 i915_gem_object_unpin_pages(obj);
3137 }
3138
3139 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3140 unsigned int *needs_clflush);
3141 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3142 unsigned int *needs_clflush);
3143 #define CLFLUSH_BEFORE BIT(0)
3144 #define CLFLUSH_AFTER BIT(1)
3145 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3146
3147 static inline void
3148 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3149 {
3150 i915_gem_object_unpin_pages(obj);
3151 }
3152
3153 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3154 int i915_gem_dumb_create(struct drm_file *file_priv,
3155 struct drm_device *dev,
3156 struct drm_mode_create_dumb *args);
3157 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3158 uint32_t handle, uint64_t *offset);
3159 int i915_gem_mmap_gtt_version(void);
3160
3161 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3162 struct drm_i915_gem_object *new,
3163 unsigned frontbuffer_bits);
3164
3165 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3166
3167 struct i915_request *
3168 i915_gem_find_active_request(struct intel_engine_cs *engine);
3169
3170 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3171 {
3172 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3173 }
3174
3175 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3176 {
3177 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3178 }
3179
3180 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3181 {
3182 return unlikely(test_bit(I915_WEDGED, &error->flags));
3183 }
3184
3185 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3186 {
3187 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3188 }
3189
3190 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3191 {
3192 return READ_ONCE(error->reset_count);
3193 }
3194
3195 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3196 struct intel_engine_cs *engine)
3197 {
3198 return READ_ONCE(error->reset_engine_count[engine->id]);
3199 }
3200
3201 struct i915_request *
3202 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3203 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3204 void i915_gem_reset(struct drm_i915_private *dev_priv,
3205 unsigned int stalled_mask);
3206 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3207 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3208 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3209 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3210 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3211 struct i915_request *request,
3212 bool stalled);
3213
3214 void i915_gem_init_mmio(struct drm_i915_private *i915);
3215 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3216 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3217 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3218 void i915_gem_fini(struct drm_i915_private *dev_priv);
3219 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3220 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3221 unsigned int flags, long timeout);
3222 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3223 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3224 void i915_gem_resume(struct drm_i915_private *dev_priv);
3225 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3226 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3227 unsigned int flags,
3228 long timeout,
3229 struct intel_rps_client *rps);
3230 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3231 unsigned int flags,
3232 const struct i915_sched_attr *attr);
3233 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3234
3235 int __must_check
3236 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3237 int __must_check
3238 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3239 int __must_check
3240 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3241 struct i915_vma * __must_check
3242 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3243 u32 alignment,
3244 const struct i915_ggtt_view *view,
3245 unsigned int flags);
3246 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3247 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3248 int align);
3249 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3250 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3251
3252 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3253 enum i915_cache_level cache_level);
3254
3255 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3256 struct dma_buf *dma_buf);
3257
3258 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3259 struct drm_gem_object *gem_obj, int flags);
3260
3261 static inline struct i915_hw_ppgtt *
3262 i915_vm_to_ppgtt(struct i915_address_space *vm)
3263 {
3264 return container_of(vm, struct i915_hw_ppgtt, vm);
3265 }
3266
3267 /* i915_gem_fence_reg.c */
3268 struct drm_i915_fence_reg *
3269 i915_reserve_fence(struct drm_i915_private *dev_priv);
3270 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3271
3272 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3273 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3274
3275 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3276 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3277 struct sg_table *pages);
3278 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3279 struct sg_table *pages);
3280
3281 static inline struct i915_gem_context *
3282 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3283 {
3284 return idr_find(&file_priv->context_idr, id);
3285 }
3286
3287 static inline struct i915_gem_context *
3288 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3289 {
3290 struct i915_gem_context *ctx;
3291
3292 rcu_read_lock();
3293 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3294 if (ctx && !kref_get_unless_zero(&ctx->ref))
3295 ctx = NULL;
3296 rcu_read_unlock();
3297
3298 return ctx;
3299 }
3300
3301 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3302 struct drm_file *file);
3303 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3304 struct drm_file *file);
3305 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3306 struct drm_file *file);
3307 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3308 struct i915_gem_context *ctx,
3309 uint32_t *reg_state);
3310
3311 /* i915_gem_evict.c */
3312 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3313 u64 min_size, u64 alignment,
3314 unsigned cache_level,
3315 u64 start, u64 end,
3316 unsigned flags);
3317 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3318 struct drm_mm_node *node,
3319 unsigned int flags);
3320 int i915_gem_evict_vm(struct i915_address_space *vm);
3321
3322 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3323
3324 /* belongs in i915_gem_gtt.h */
3325 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3326 {
3327 wmb();
3328 if (INTEL_GEN(dev_priv) < 6)
3329 intel_gtt_chipset_flush();
3330 }
3331
3332 /* i915_gem_stolen.c */
3333 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3334 struct drm_mm_node *node, u64 size,
3335 unsigned alignment);
3336 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3337 struct drm_mm_node *node, u64 size,
3338 unsigned alignment, u64 start,
3339 u64 end);
3340 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3341 struct drm_mm_node *node);
3342 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3343 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3344 struct drm_i915_gem_object *
3345 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3346 resource_size_t size);
3347 struct drm_i915_gem_object *
3348 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3349 resource_size_t stolen_offset,
3350 resource_size_t gtt_offset,
3351 resource_size_t size);
3352
3353 /* i915_gem_internal.c */
3354 struct drm_i915_gem_object *
3355 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3356 phys_addr_t size);
3357
3358 /* i915_gem_shrinker.c */
3359 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3360 unsigned long target,
3361 unsigned long *nr_scanned,
3362 unsigned flags);
3363 #define I915_SHRINK_PURGEABLE 0x1
3364 #define I915_SHRINK_UNBOUND 0x2
3365 #define I915_SHRINK_BOUND 0x4
3366 #define I915_SHRINK_ACTIVE 0x8
3367 #define I915_SHRINK_VMAPS 0x10
3368 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3369 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3370 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3371 void i915_gem_shrinker_taints_mutex(struct mutex *mutex);
3372
3373 /* i915_gem_tiling.c */
3374 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3375 {
3376 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3377
3378 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3379 i915_gem_object_is_tiled(obj);
3380 }
3381
3382 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3383 unsigned int tiling, unsigned int stride);
3384 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3385 unsigned int tiling, unsigned int stride);
3386
3387 /* i915_debugfs.c */
3388 #ifdef CONFIG_DEBUG_FS
3389 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3390 int i915_debugfs_connector_add(struct drm_connector *connector);
3391 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3392 #else
3393 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3394 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3395 { return 0; }
3396 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3397 #endif
3398
3399 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3400
3401 /* i915_cmd_parser.c */
3402 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3403 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3404 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3405 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3406 struct drm_i915_gem_object *batch_obj,
3407 struct drm_i915_gem_object *shadow_batch_obj,
3408 u32 batch_start_offset,
3409 u32 batch_len,
3410 bool is_master);
3411
3412 /* i915_perf.c */
3413 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3414 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3415 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3416 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3417
3418 /* i915_suspend.c */
3419 extern int i915_save_state(struct drm_i915_private *dev_priv);
3420 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3421
3422 /* i915_sysfs.c */
3423 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3424 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3425
3426 /* intel_lpe_audio.c */
3427 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3428 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3429 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3430 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3431 enum pipe pipe, enum port port,
3432 const void *eld, int ls_clock, bool dp_output);
3433
3434 /* intel_i2c.c */
3435 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3436 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3437 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3438 unsigned int pin);
3439 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3440
3441 extern struct i2c_adapter *
3442 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3443 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3444 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3445 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3446 {
3447 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3448 }
3449 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3450
3451 /* intel_bios.c */
3452 void intel_bios_init(struct drm_i915_private *dev_priv);
3453 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3454 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3455 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3456 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3457 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3458 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3459 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3460 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3461 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3462 enum port port);
3463 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3464 enum port port);
3465
3466 /* intel_acpi.c */
3467 #ifdef CONFIG_ACPI
3468 extern void intel_register_dsm_handler(void);
3469 extern void intel_unregister_dsm_handler(void);
3470 #else
3471 static inline void intel_register_dsm_handler(void) { return; }
3472 static inline void intel_unregister_dsm_handler(void) { return; }
3473 #endif /* CONFIG_ACPI */
3474
3475 /* intel_device_info.c */
3476 static inline struct intel_device_info *
3477 mkwrite_device_info(struct drm_i915_private *dev_priv)
3478 {
3479 return (struct intel_device_info *)&dev_priv->info;
3480 }
3481
3482 /* modesetting */
3483 extern void intel_modeset_init_hw(struct drm_device *dev);
3484 extern int intel_modeset_init(struct drm_device *dev);
3485 extern void intel_modeset_cleanup(struct drm_device *dev);
3486 extern int intel_connector_register(struct drm_connector *);
3487 extern void intel_connector_unregister(struct drm_connector *);
3488 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3489 bool state);
3490 extern void intel_display_resume(struct drm_device *dev);
3491 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3492 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3493 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3494 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3495 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3496 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3497 bool interactive);
3498 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3499 bool enable);
3500
3501 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3502 struct drm_file *file);
3503
3504 /* overlay */
3505 extern struct intel_overlay_error_state *
3506 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3507 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3508 struct intel_overlay_error_state *error);
3509
3510 extern struct intel_display_error_state *
3511 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3512 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3513 struct intel_display_error_state *error);
3514
3515 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3516 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3517 u32 val, int fast_timeout_us,
3518 int slow_timeout_ms);
3519 #define sandybridge_pcode_write(dev_priv, mbox, val) \
3520 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3521
3522 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3523 u32 reply_mask, u32 reply, int timeout_base_ms);
3524
3525 /* intel_sideband.c */
3526 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3527 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3528 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3529 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3530 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3531 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3532 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3533 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3534 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3535 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3536 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3537 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3538 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3539 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3540 enum intel_sbi_destination destination);
3541 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3542 enum intel_sbi_destination destination);
3543 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3544 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3545
3546 /* intel_dpio_phy.c */
3547 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3548 enum dpio_phy *phy, enum dpio_channel *ch);
3549 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3550 enum port port, u32 margin, u32 scale,
3551 u32 enable, u32 deemphasis);
3552 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3553 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3554 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3555 enum dpio_phy phy);
3556 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3557 enum dpio_phy phy);
3558 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3559 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3560 uint8_t lane_lat_optim_mask);
3561 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3562
3563 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3564 u32 deemph_reg_value, u32 margin_reg_value,
3565 bool uniq_trans_scale);
3566 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3567 const struct intel_crtc_state *crtc_state,
3568 bool reset);
3569 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3570 const struct intel_crtc_state *crtc_state);
3571 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3572 const struct intel_crtc_state *crtc_state);
3573 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3574 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3575 const struct intel_crtc_state *old_crtc_state);
3576
3577 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3578 u32 demph_reg_value, u32 preemph_reg_value,
3579 u32 uniqtranscale_reg_value, u32 tx3_demph);
3580 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3581 const struct intel_crtc_state *crtc_state);
3582 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3583 const struct intel_crtc_state *crtc_state);
3584 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3585 const struct intel_crtc_state *old_crtc_state);
3586
3587 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3588 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3589 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3590 const i915_reg_t reg);
3591
3592 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3593
3594 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3595 const i915_reg_t reg)
3596 {
3597 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3598 }
3599
3600 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3601 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3602
3603 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3604 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3605 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3606 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3607
3608 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3609 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3610 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3611 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3612
3613 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3614 * will be implemented using 2 32-bit writes in an arbitrary order with
3615 * an arbitrary delay between them. This can cause the hardware to
3616 * act upon the intermediate value, possibly leading to corruption and
3617 * machine death. For this reason we do not support I915_WRITE64, or
3618 * dev_priv->uncore.funcs.mmio_writeq.
3619 *
3620 * When reading a 64-bit value as two 32-bit values, the delay may cause
3621 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3622 * occasionally a 64-bit register does not actualy support a full readq
3623 * and must be read using two 32-bit reads.
3624 *
3625 * You have been warned.
3626 */
3627 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3628
3629 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3630 u32 upper, lower, old_upper, loop = 0; \
3631 upper = I915_READ(upper_reg); \
3632 do { \
3633 old_upper = upper; \
3634 lower = I915_READ(lower_reg); \
3635 upper = I915_READ(upper_reg); \
3636 } while (upper != old_upper && loop++ < 2); \
3637 (u64)upper << 32 | lower; })
3638
3639 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3640 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3641
3642 #define __raw_read(x, s) \
3643 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3644 i915_reg_t reg) \
3645 { \
3646 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3647 }
3648
3649 #define __raw_write(x, s) \
3650 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3651 i915_reg_t reg, uint##x##_t val) \
3652 { \
3653 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3654 }
3655 __raw_read(8, b)
3656 __raw_read(16, w)
3657 __raw_read(32, l)
3658 __raw_read(64, q)
3659
3660 __raw_write(8, b)
3661 __raw_write(16, w)
3662 __raw_write(32, l)
3663 __raw_write(64, q)
3664
3665 #undef __raw_read
3666 #undef __raw_write
3667
3668 /* These are untraced mmio-accessors that are only valid to be used inside
3669 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3670 * controlled.
3671 *
3672 * Think twice, and think again, before using these.
3673 *
3674 * As an example, these accessors can possibly be used between:
3675 *
3676 * spin_lock_irq(&dev_priv->uncore.lock);
3677 * intel_uncore_forcewake_get__locked();
3678 *
3679 * and
3680 *
3681 * intel_uncore_forcewake_put__locked();
3682 * spin_unlock_irq(&dev_priv->uncore.lock);
3683 *
3684 *
3685 * Note: some registers may not need forcewake held, so
3686 * intel_uncore_forcewake_{get,put} can be omitted, see
3687 * intel_uncore_forcewake_for_reg().
3688 *
3689 * Certain architectures will die if the same cacheline is concurrently accessed
3690 * by different clients (e.g. on Ivybridge). Access to registers should
3691 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3692 * a more localised lock guarding all access to that bank of registers.
3693 */
3694 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3695 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3696 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3697 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3698
3699 /* "Broadcast RGB" property */
3700 #define INTEL_BROADCAST_RGB_AUTO 0
3701 #define INTEL_BROADCAST_RGB_FULL 1
3702 #define INTEL_BROADCAST_RGB_LIMITED 2
3703
3704 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3705 {
3706 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3707 return VLV_VGACNTRL;
3708 else if (INTEL_GEN(dev_priv) >= 5)
3709 return CPU_VGACNTRL;
3710 else
3711 return VGACNTRL;
3712 }
3713
3714 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3715 {
3716 unsigned long j = msecs_to_jiffies(m);
3717
3718 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3719 }
3720
3721 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3722 {
3723 /* nsecs_to_jiffies64() does not guard against overflow */
3724 if (NSEC_PER_SEC % HZ &&
3725 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3726 return MAX_JIFFY_OFFSET;
3727
3728 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3729 }
3730
3731 /*
3732 * If you need to wait X milliseconds between events A and B, but event B
3733 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3734 * when event A happened, then just before event B you call this function and
3735 * pass the timestamp as the first argument, and X as the second argument.
3736 */
3737 static inline void
3738 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3739 {
3740 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3741
3742 /*
3743 * Don't re-read the value of "jiffies" every time since it may change
3744 * behind our back and break the math.
3745 */
3746 tmp_jiffies = jiffies;
3747 target_jiffies = timestamp_jiffies +
3748 msecs_to_jiffies_timeout(to_wait_ms);
3749
3750 if (time_after(target_jiffies, tmp_jiffies)) {
3751 remaining_jiffies = target_jiffies - tmp_jiffies;
3752 while (remaining_jiffies)
3753 remaining_jiffies =
3754 schedule_timeout_uninterruptible(remaining_jiffies);
3755 }
3756 }
3757
3758 static inline bool
3759 __i915_request_irq_complete(const struct i915_request *rq)
3760 {
3761 struct intel_engine_cs *engine = rq->engine;
3762 u32 seqno;
3763
3764 /* Note that the engine may have wrapped around the seqno, and
3765 * so our request->global_seqno will be ahead of the hardware,
3766 * even though it completed the request before wrapping. We catch
3767 * this by kicking all the waiters before resetting the seqno
3768 * in hardware, and also signal the fence.
3769 */
3770 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3771 return true;
3772
3773 /* The request was dequeued before we were awoken. We check after
3774 * inspecting the hw to confirm that this was the same request
3775 * that generated the HWS update. The memory barriers within
3776 * the request execution are sufficient to ensure that a check
3777 * after reading the value from hw matches this request.
3778 */
3779 seqno = i915_request_global_seqno(rq);
3780 if (!seqno)
3781 return false;
3782
3783 /* Before we do the heavier coherent read of the seqno,
3784 * check the value (hopefully) in the CPU cacheline.
3785 */
3786 if (__i915_request_completed(rq, seqno))
3787 return true;
3788
3789 /* Ensure our read of the seqno is coherent so that we
3790 * do not "miss an interrupt" (i.e. if this is the last
3791 * request and the seqno write from the GPU is not visible
3792 * by the time the interrupt fires, we will see that the
3793 * request is incomplete and go back to sleep awaiting
3794 * another interrupt that will never come.)
3795 *
3796 * Strictly, we only need to do this once after an interrupt,
3797 * but it is easier and safer to do it every time the waiter
3798 * is woken.
3799 */
3800 if (engine->irq_seqno_barrier &&
3801 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3802 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3803
3804 /* The ordering of irq_posted versus applying the barrier
3805 * is crucial. The clearing of the current irq_posted must
3806 * be visible before we perform the barrier operation,
3807 * such that if a subsequent interrupt arrives, irq_posted
3808 * is reasserted and our task rewoken (which causes us to
3809 * do another __i915_request_irq_complete() immediately
3810 * and reapply the barrier). Conversely, if the clear
3811 * occurs after the barrier, then an interrupt that arrived
3812 * whilst we waited on the barrier would not trigger a
3813 * barrier on the next pass, and the read may not see the
3814 * seqno update.
3815 */
3816 engine->irq_seqno_barrier(engine);
3817
3818 /* If we consume the irq, but we are no longer the bottom-half,
3819 * the real bottom-half may not have serialised their own
3820 * seqno check with the irq-barrier (i.e. may have inspected
3821 * the seqno before we believe it coherent since they see
3822 * irq_posted == false but we are still running).
3823 */
3824 spin_lock_irq(&b->irq_lock);
3825 if (b->irq_wait && b->irq_wait->tsk != current)
3826 /* Note that if the bottom-half is changed as we
3827 * are sending the wake-up, the new bottom-half will
3828 * be woken by whomever made the change. We only have
3829 * to worry about when we steal the irq-posted for
3830 * ourself.
3831 */
3832 wake_up_process(b->irq_wait->tsk);
3833 spin_unlock_irq(&b->irq_lock);
3834
3835 if (__i915_request_completed(rq, seqno))
3836 return true;
3837 }
3838
3839 return false;
3840 }
3841
3842 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3843 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3844
3845 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3846 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3847 * perform the operation. To check beforehand, pass in the parameters to
3848 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3849 * you only need to pass in the minor offsets, page-aligned pointers are
3850 * always valid.
3851 *
3852 * For just checking for SSE4.1, in the foreknowledge that the future use
3853 * will be correctly aligned, just use i915_has_memcpy_from_wc().
3854 */
3855 #define i915_can_memcpy_from_wc(dst, src, len) \
3856 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3857
3858 #define i915_has_memcpy_from_wc() \
3859 i915_memcpy_from_wc(NULL, NULL, 0)
3860
3861 /* i915_mm.c */
3862 int remap_io_mapping(struct vm_area_struct *vma,
3863 unsigned long addr, unsigned long pfn, unsigned long size,
3864 struct io_mapping *iomap);
3865
3866 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3867 {
3868 if (INTEL_GEN(i915) >= 10)
3869 return CNL_HWS_CSB_WRITE_INDEX;
3870 else
3871 return I915_HWS_CSB_WRITE_INDEX;
3872 }
3873
3874 #endif