]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/amd/display: Check hpd_gpio for NULL before accessing it
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 #include <drm/drm_dsc.h>
57
58 #include "i915_fixed.h"
59 #include "i915_params.h"
60 #include "i915_reg.h"
61 #include "i915_utils.h"
62
63 #include "intel_bios.h"
64 #include "intel_device_info.h"
65 #include "intel_display.h"
66 #include "intel_dpll_mgr.h"
67 #include "intel_lrc.h"
68 #include "intel_opregion.h"
69 #include "intel_ringbuffer.h"
70 #include "intel_uncore.h"
71 #include "intel_wopcm.h"
72 #include "intel_workarounds.h"
73 #include "intel_uc.h"
74
75 #include "i915_gem.h"
76 #include "i915_gem_context.h"
77 #include "i915_gem_fence_reg.h"
78 #include "i915_gem_object.h"
79 #include "i915_gem_gtt.h"
80 #include "i915_gpu_error.h"
81 #include "i915_request.h"
82 #include "i915_scheduler.h"
83 #include "i915_timeline.h"
84 #include "i915_vma.h"
85
86 #include "intel_gvt.h"
87
88 /* General customization:
89 */
90
91 #define DRIVER_NAME "i915"
92 #define DRIVER_DESC "Intel Graphics"
93 #define DRIVER_DATE "20181204"
94 #define DRIVER_TIMESTAMP 1543944377
95
96 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
97 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
98 * which may not necessarily be a user visible problem. This will either
99 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
100 * enable distros and users to tailor their preferred amount of i915 abrt
101 * spam.
102 */
103 #define I915_STATE_WARN(condition, format...) ({ \
104 int __ret_warn_on = !!(condition); \
105 if (unlikely(__ret_warn_on)) \
106 if (!WARN(i915_modparams.verbose_state_checks, format)) \
107 DRM_ERROR(format); \
108 unlikely(__ret_warn_on); \
109 })
110
111 #define I915_STATE_WARN_ON(x) \
112 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
113
114 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
115
116 bool __i915_inject_load_failure(const char *func, int line);
117 #define i915_inject_load_failure() \
118 __i915_inject_load_failure(__func__, __LINE__)
119
120 bool i915_error_injected(void);
121
122 #else
123
124 #define i915_inject_load_failure() false
125 #define i915_error_injected() false
126
127 #endif
128
129 #define i915_load_error(i915, fmt, ...) \
130 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
131 fmt, ##__VA_ARGS__)
132
133 enum hpd_pin {
134 HPD_NONE = 0,
135 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
136 HPD_CRT,
137 HPD_SDVO_B,
138 HPD_SDVO_C,
139 HPD_PORT_A,
140 HPD_PORT_B,
141 HPD_PORT_C,
142 HPD_PORT_D,
143 HPD_PORT_E,
144 HPD_PORT_F,
145 HPD_NUM_PINS
146 };
147
148 #define for_each_hpd_pin(__pin) \
149 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
150
151 /* Threshold == 5 for long IRQs, 50 for short */
152 #define HPD_STORM_DEFAULT_THRESHOLD 50
153
154 struct i915_hotplug {
155 struct work_struct hotplug_work;
156
157 struct {
158 unsigned long last_jiffies;
159 int count;
160 enum {
161 HPD_ENABLED = 0,
162 HPD_DISABLED = 1,
163 HPD_MARK_DISABLED = 2
164 } state;
165 } stats[HPD_NUM_PINS];
166 u32 event_bits;
167 struct delayed_work reenable_work;
168
169 u32 long_port_mask;
170 u32 short_port_mask;
171 struct work_struct dig_port_work;
172
173 struct work_struct poll_init_work;
174 bool poll_enabled;
175
176 unsigned int hpd_storm_threshold;
177 /* Whether or not to count short HPD IRQs in HPD storms */
178 u8 hpd_short_storm_enabled;
179
180 /*
181 * if we get a HPD irq from DP and a HPD irq from non-DP
182 * the non-DP HPD could block the workqueue on a mode config
183 * mutex getting, that userspace may have taken. However
184 * userspace is waiting on the DP workqueue to run which is
185 * blocked behind the non-DP one.
186 */
187 struct workqueue_struct *dp_wq;
188 };
189
190 #define I915_GEM_GPU_DOMAINS \
191 (I915_GEM_DOMAIN_RENDER | \
192 I915_GEM_DOMAIN_SAMPLER | \
193 I915_GEM_DOMAIN_COMMAND | \
194 I915_GEM_DOMAIN_INSTRUCTION | \
195 I915_GEM_DOMAIN_VERTEX)
196
197 struct drm_i915_private;
198 struct i915_mm_struct;
199 struct i915_mmu_object;
200
201 struct drm_i915_file_private {
202 struct drm_i915_private *dev_priv;
203 struct drm_file *file;
204
205 struct {
206 spinlock_t lock;
207 struct list_head request_list;
208 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
209 * chosen to prevent the CPU getting more than a frame ahead of the GPU
210 * (when using lax throttling for the frontbuffer). We also use it to
211 * offer free GPU waitboosts for severely congested workloads.
212 */
213 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
214 } mm;
215 struct idr context_idr;
216
217 struct intel_rps_client {
218 atomic_t boosts;
219 } rps_client;
220
221 unsigned int bsd_engine;
222
223 /*
224 * Every context ban increments per client ban score. Also
225 * hangs in short succession increments ban score. If ban threshold
226 * is reached, client is considered banned and submitting more work
227 * will fail. This is a stop gap measure to limit the badly behaving
228 * clients access to gpu. Note that unbannable contexts never increment
229 * the client ban score.
230 */
231 #define I915_CLIENT_SCORE_HANG_FAST 1
232 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
233 #define I915_CLIENT_SCORE_CONTEXT_BAN 3
234 #define I915_CLIENT_SCORE_BANNED 9
235 /** ban_score: Accumulated score of all ctx bans and fast hangs. */
236 atomic_t ban_score;
237 unsigned long hang_timestamp;
238 };
239
240 /* Interface history:
241 *
242 * 1.1: Original.
243 * 1.2: Add Power Management
244 * 1.3: Add vblank support
245 * 1.4: Fix cmdbuffer path, add heap destroy
246 * 1.5: Add vblank pipe configuration
247 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
248 * - Support vertical blank on secondary display pipe
249 */
250 #define DRIVER_MAJOR 1
251 #define DRIVER_MINOR 6
252 #define DRIVER_PATCHLEVEL 0
253
254 struct intel_overlay;
255 struct intel_overlay_error_state;
256
257 struct sdvo_device_mapping {
258 u8 initialized;
259 u8 dvo_port;
260 u8 slave_addr;
261 u8 dvo_wiring;
262 u8 i2c_pin;
263 u8 ddc_pin;
264 };
265
266 struct intel_connector;
267 struct intel_encoder;
268 struct intel_atomic_state;
269 struct intel_crtc_state;
270 struct intel_initial_plane_config;
271 struct intel_crtc;
272 struct intel_limit;
273 struct dpll;
274 struct intel_cdclk_state;
275
276 struct drm_i915_display_funcs {
277 void (*get_cdclk)(struct drm_i915_private *dev_priv,
278 struct intel_cdclk_state *cdclk_state);
279 void (*set_cdclk)(struct drm_i915_private *dev_priv,
280 const struct intel_cdclk_state *cdclk_state);
281 int (*get_fifo_size)(struct drm_i915_private *dev_priv,
282 enum i9xx_plane_id i9xx_plane);
283 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
284 int (*compute_intermediate_wm)(struct drm_device *dev,
285 struct intel_crtc *intel_crtc,
286 struct intel_crtc_state *newstate);
287 void (*initial_watermarks)(struct intel_atomic_state *state,
288 struct intel_crtc_state *cstate);
289 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
290 struct intel_crtc_state *cstate);
291 void (*optimize_watermarks)(struct intel_atomic_state *state,
292 struct intel_crtc_state *cstate);
293 int (*compute_global_watermarks)(struct drm_atomic_state *state);
294 void (*update_wm)(struct intel_crtc *crtc);
295 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
296 /* Returns the active state of the crtc, and if the crtc is active,
297 * fills out the pipe-config with the hw state. */
298 bool (*get_pipe_config)(struct intel_crtc *,
299 struct intel_crtc_state *);
300 void (*get_initial_plane_config)(struct intel_crtc *,
301 struct intel_initial_plane_config *);
302 int (*crtc_compute_clock)(struct intel_crtc *crtc,
303 struct intel_crtc_state *crtc_state);
304 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
305 struct drm_atomic_state *old_state);
306 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
307 struct drm_atomic_state *old_state);
308 void (*update_crtcs)(struct drm_atomic_state *state);
309 void (*audio_codec_enable)(struct intel_encoder *encoder,
310 const struct intel_crtc_state *crtc_state,
311 const struct drm_connector_state *conn_state);
312 void (*audio_codec_disable)(struct intel_encoder *encoder,
313 const struct intel_crtc_state *old_crtc_state,
314 const struct drm_connector_state *old_conn_state);
315 void (*fdi_link_train)(struct intel_crtc *crtc,
316 const struct intel_crtc_state *crtc_state);
317 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
318 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
319 /* clock updates for mode set */
320 /* cursor updates */
321 /* render clock increase/decrease */
322 /* display clock increase/decrease */
323 /* pll clock increase/decrease */
324
325 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
326 void (*load_luts)(struct drm_crtc_state *crtc_state);
327 };
328
329 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
330 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
331 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
332
333 struct intel_csr {
334 struct work_struct work;
335 const char *fw_path;
336 uint32_t required_version;
337 uint32_t max_fw_size; /* bytes */
338 uint32_t *dmc_payload;
339 uint32_t dmc_fw_size; /* dwords */
340 uint32_t version;
341 uint32_t mmio_count;
342 i915_reg_t mmioaddr[8];
343 uint32_t mmiodata[8];
344 uint32_t dc_state;
345 uint32_t allowed_dc_mask;
346 };
347
348 enum i915_cache_level {
349 I915_CACHE_NONE = 0,
350 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
351 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
352 caches, eg sampler/render caches, and the
353 large Last-Level-Cache. LLC is coherent with
354 the CPU, but L3 is only visible to the GPU. */
355 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
356 };
357
358 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
359
360 enum fb_op_origin {
361 ORIGIN_GTT,
362 ORIGIN_CPU,
363 ORIGIN_CS,
364 ORIGIN_FLIP,
365 ORIGIN_DIRTYFB,
366 };
367
368 struct intel_fbc {
369 /* This is always the inner lock when overlapping with struct_mutex and
370 * it's the outer lock when overlapping with stolen_lock. */
371 struct mutex lock;
372 unsigned threshold;
373 unsigned int possible_framebuffer_bits;
374 unsigned int busy_bits;
375 unsigned int visible_pipes_mask;
376 struct intel_crtc *crtc;
377
378 struct drm_mm_node compressed_fb;
379 struct drm_mm_node *compressed_llb;
380
381 bool false_color;
382
383 bool enabled;
384 bool active;
385 bool flip_pending;
386
387 bool underrun_detected;
388 struct work_struct underrun_work;
389
390 /*
391 * Due to the atomic rules we can't access some structures without the
392 * appropriate locking, so we cache information here in order to avoid
393 * these problems.
394 */
395 struct intel_fbc_state_cache {
396 struct i915_vma *vma;
397 unsigned long flags;
398
399 struct {
400 unsigned int mode_flags;
401 uint32_t hsw_bdw_pixel_rate;
402 } crtc;
403
404 struct {
405 unsigned int rotation;
406 int src_w;
407 int src_h;
408 bool visible;
409 /*
410 * Display surface base address adjustement for
411 * pageflips. Note that on gen4+ this only adjusts up
412 * to a tile, offsets within a tile are handled in
413 * the hw itself (with the TILEOFF register).
414 */
415 int adjusted_x;
416 int adjusted_y;
417
418 int y;
419
420 uint16_t pixel_blend_mode;
421 } plane;
422
423 struct {
424 const struct drm_format_info *format;
425 unsigned int stride;
426 } fb;
427 } state_cache;
428
429 /*
430 * This structure contains everything that's relevant to program the
431 * hardware registers. When we want to figure out if we need to disable
432 * and re-enable FBC for a new configuration we just check if there's
433 * something different in the struct. The genx_fbc_activate functions
434 * are supposed to read from it in order to program the registers.
435 */
436 struct intel_fbc_reg_params {
437 struct i915_vma *vma;
438 unsigned long flags;
439
440 struct {
441 enum pipe pipe;
442 enum i9xx_plane_id i9xx_plane;
443 unsigned int fence_y_offset;
444 } crtc;
445
446 struct {
447 const struct drm_format_info *format;
448 unsigned int stride;
449 } fb;
450
451 int cfb_size;
452 unsigned int gen9_wa_cfb_stride;
453 } params;
454
455 const char *no_fbc_reason;
456 };
457
458 /*
459 * HIGH_RR is the highest eDP panel refresh rate read from EDID
460 * LOW_RR is the lowest eDP panel refresh rate found from EDID
461 * parsing for same resolution.
462 */
463 enum drrs_refresh_rate_type {
464 DRRS_HIGH_RR,
465 DRRS_LOW_RR,
466 DRRS_MAX_RR, /* RR count */
467 };
468
469 enum drrs_support_type {
470 DRRS_NOT_SUPPORTED = 0,
471 STATIC_DRRS_SUPPORT = 1,
472 SEAMLESS_DRRS_SUPPORT = 2
473 };
474
475 struct intel_dp;
476 struct i915_drrs {
477 struct mutex mutex;
478 struct delayed_work work;
479 struct intel_dp *dp;
480 unsigned busy_frontbuffer_bits;
481 enum drrs_refresh_rate_type refresh_rate_type;
482 enum drrs_support_type type;
483 };
484
485 struct i915_psr {
486 struct mutex lock;
487
488 #define I915_PSR_DEBUG_MODE_MASK 0x0f
489 #define I915_PSR_DEBUG_DEFAULT 0x00
490 #define I915_PSR_DEBUG_DISABLE 0x01
491 #define I915_PSR_DEBUG_ENABLE 0x02
492 #define I915_PSR_DEBUG_FORCE_PSR1 0x03
493 #define I915_PSR_DEBUG_IRQ 0x10
494
495 u32 debug;
496 bool sink_support;
497 bool prepared, enabled;
498 struct intel_dp *dp;
499 enum pipe pipe;
500 bool active;
501 struct work_struct work;
502 unsigned busy_frontbuffer_bits;
503 bool sink_psr2_support;
504 bool link_standby;
505 bool colorimetry_support;
506 bool psr2_enabled;
507 u8 sink_sync_latency;
508 ktime_t last_entry_attempt;
509 ktime_t last_exit;
510 bool sink_not_reliable;
511 bool irq_aux_error;
512 };
513
514 enum intel_pch {
515 PCH_NONE = 0, /* No PCH present */
516 PCH_IBX, /* Ibexpeak PCH */
517 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
518 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
519 PCH_SPT, /* Sunrisepoint PCH */
520 PCH_KBP, /* Kaby Lake PCH */
521 PCH_CNP, /* Cannon Lake PCH */
522 PCH_ICP, /* Ice Lake PCH */
523 PCH_NOP, /* PCH without south display */
524 };
525
526 enum intel_sbi_destination {
527 SBI_ICLK,
528 SBI_MPHY,
529 };
530
531 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
532 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
533 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
534 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
535 #define QUIRK_INCREASE_T12_DELAY (1<<6)
536 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
537
538 struct intel_fbdev;
539 struct intel_fbc_work;
540
541 struct intel_gmbus {
542 struct i2c_adapter adapter;
543 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
544 u32 force_bit;
545 u32 reg0;
546 i915_reg_t gpio_reg;
547 struct i2c_algo_bit_data bit_algo;
548 struct drm_i915_private *dev_priv;
549 };
550
551 struct i915_suspend_saved_registers {
552 u32 saveDSPARB;
553 u32 saveFBC_CONTROL;
554 u32 saveCACHE_MODE_0;
555 u32 saveMI_ARB_STATE;
556 u32 saveSWF0[16];
557 u32 saveSWF1[16];
558 u32 saveSWF3[3];
559 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
560 u32 savePCH_PORT_HOTPLUG;
561 u16 saveGCDGMBUS;
562 };
563
564 struct vlv_s0ix_state {
565 /* GAM */
566 u32 wr_watermark;
567 u32 gfx_prio_ctrl;
568 u32 arb_mode;
569 u32 gfx_pend_tlb0;
570 u32 gfx_pend_tlb1;
571 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
572 u32 media_max_req_count;
573 u32 gfx_max_req_count;
574 u32 render_hwsp;
575 u32 ecochk;
576 u32 bsd_hwsp;
577 u32 blt_hwsp;
578 u32 tlb_rd_addr;
579
580 /* MBC */
581 u32 g3dctl;
582 u32 gsckgctl;
583 u32 mbctl;
584
585 /* GCP */
586 u32 ucgctl1;
587 u32 ucgctl3;
588 u32 rcgctl1;
589 u32 rcgctl2;
590 u32 rstctl;
591 u32 misccpctl;
592
593 /* GPM */
594 u32 gfxpause;
595 u32 rpdeuhwtc;
596 u32 rpdeuc;
597 u32 ecobus;
598 u32 pwrdwnupctl;
599 u32 rp_down_timeout;
600 u32 rp_deucsw;
601 u32 rcubmabdtmr;
602 u32 rcedata;
603 u32 spare2gh;
604
605 /* Display 1 CZ domain */
606 u32 gt_imr;
607 u32 gt_ier;
608 u32 pm_imr;
609 u32 pm_ier;
610 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
611
612 /* GT SA CZ domain */
613 u32 tilectl;
614 u32 gt_fifoctl;
615 u32 gtlc_wake_ctrl;
616 u32 gtlc_survive;
617 u32 pmwgicz;
618
619 /* Display 2 CZ domain */
620 u32 gu_ctl0;
621 u32 gu_ctl1;
622 u32 pcbr;
623 u32 clock_gate_dis2;
624 };
625
626 struct intel_rps_ei {
627 ktime_t ktime;
628 u32 render_c0;
629 u32 media_c0;
630 };
631
632 struct intel_rps {
633 /*
634 * work, interrupts_enabled and pm_iir are protected by
635 * dev_priv->irq_lock
636 */
637 struct work_struct work;
638 bool interrupts_enabled;
639 u32 pm_iir;
640
641 /* PM interrupt bits that should never be masked */
642 u32 pm_intrmsk_mbz;
643
644 /* Frequencies are stored in potentially platform dependent multiples.
645 * In other words, *_freq needs to be multiplied by X to be interesting.
646 * Soft limits are those which are used for the dynamic reclocking done
647 * by the driver (raise frequencies under heavy loads, and lower for
648 * lighter loads). Hard limits are those imposed by the hardware.
649 *
650 * A distinction is made for overclocking, which is never enabled by
651 * default, and is considered to be above the hard limit if it's
652 * possible at all.
653 */
654 u8 cur_freq; /* Current frequency (cached, may not == HW) */
655 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
656 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
657 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
658 u8 min_freq; /* AKA RPn. Minimum frequency */
659 u8 boost_freq; /* Frequency to request when wait boosting */
660 u8 idle_freq; /* Frequency to request when we are idle */
661 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
662 u8 rp1_freq; /* "less than" RP0 power/freqency */
663 u8 rp0_freq; /* Non-overclocked max frequency. */
664 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
665
666 int last_adj;
667
668 struct {
669 struct mutex mutex;
670
671 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
672 unsigned int interactive;
673
674 u8 up_threshold; /* Current %busy required to uplock */
675 u8 down_threshold; /* Current %busy required to downclock */
676 } power;
677
678 bool enabled;
679 atomic_t num_waiters;
680 atomic_t boosts;
681
682 /* manual wa residency calculations */
683 struct intel_rps_ei ei;
684 };
685
686 struct intel_rc6 {
687 bool enabled;
688 u64 prev_hw_residency[4];
689 u64 cur_residency[4];
690 };
691
692 struct intel_llc_pstate {
693 bool enabled;
694 };
695
696 struct intel_gen6_power_mgmt {
697 struct intel_rps rps;
698 struct intel_rc6 rc6;
699 struct intel_llc_pstate llc_pstate;
700 };
701
702 /* defined intel_pm.c */
703 extern spinlock_t mchdev_lock;
704
705 struct intel_ilk_power_mgmt {
706 u8 cur_delay;
707 u8 min_delay;
708 u8 max_delay;
709 u8 fmax;
710 u8 fstart;
711
712 u64 last_count1;
713 unsigned long last_time1;
714 unsigned long chipset_power;
715 u64 last_count2;
716 u64 last_time2;
717 unsigned long gfx_power;
718 u8 corr;
719
720 int c_m;
721 int r_t;
722 };
723
724 struct drm_i915_private;
725 struct i915_power_well;
726
727 struct i915_power_well_ops {
728 /*
729 * Synchronize the well's hw state to match the current sw state, for
730 * example enable/disable it based on the current refcount. Called
731 * during driver init and resume time, possibly after first calling
732 * the enable/disable handlers.
733 */
734 void (*sync_hw)(struct drm_i915_private *dev_priv,
735 struct i915_power_well *power_well);
736 /*
737 * Enable the well and resources that depend on it (for example
738 * interrupts located on the well). Called after the 0->1 refcount
739 * transition.
740 */
741 void (*enable)(struct drm_i915_private *dev_priv,
742 struct i915_power_well *power_well);
743 /*
744 * Disable the well and resources that depend on it. Called after
745 * the 1->0 refcount transition.
746 */
747 void (*disable)(struct drm_i915_private *dev_priv,
748 struct i915_power_well *power_well);
749 /* Returns the hw enabled state. */
750 bool (*is_enabled)(struct drm_i915_private *dev_priv,
751 struct i915_power_well *power_well);
752 };
753
754 struct i915_power_well_regs {
755 i915_reg_t bios;
756 i915_reg_t driver;
757 i915_reg_t kvmr;
758 i915_reg_t debug;
759 };
760
761 /* Power well structure for haswell */
762 struct i915_power_well_desc {
763 const char *name;
764 bool always_on;
765 u64 domains;
766 /* unique identifier for this power well */
767 enum i915_power_well_id id;
768 /*
769 * Arbitraty data associated with this power well. Platform and power
770 * well specific.
771 */
772 union {
773 struct {
774 /*
775 * request/status flag index in the PUNIT power well
776 * control/status registers.
777 */
778 u8 idx;
779 } vlv;
780 struct {
781 enum dpio_phy phy;
782 } bxt;
783 struct {
784 const struct i915_power_well_regs *regs;
785 /*
786 * request/status flag index in the power well
787 * constrol/status registers.
788 */
789 u8 idx;
790 /* Mask of pipes whose IRQ logic is backed by the pw */
791 u8 irq_pipe_mask;
792 /* The pw is backing the VGA functionality */
793 bool has_vga:1;
794 bool has_fuses:1;
795 /*
796 * The pw is for an ICL+ TypeC PHY port in
797 * Thunderbolt mode.
798 */
799 bool is_tc_tbt:1;
800 } hsw;
801 };
802 const struct i915_power_well_ops *ops;
803 };
804
805 struct i915_power_well {
806 const struct i915_power_well_desc *desc;
807 /* power well enable/disable usage count */
808 int count;
809 /* cached hw enabled state */
810 bool hw_enabled;
811 };
812
813 struct i915_power_domains {
814 /*
815 * Power wells needed for initialization at driver init and suspend
816 * time are on. They are kept on until after the first modeset.
817 */
818 bool initializing;
819 bool display_core_suspended;
820 int power_well_count;
821
822 struct mutex lock;
823 int domain_use_count[POWER_DOMAIN_NUM];
824 struct i915_power_well *power_wells;
825 };
826
827 #define MAX_L3_SLICES 2
828 struct intel_l3_parity {
829 u32 *remap_info[MAX_L3_SLICES];
830 struct work_struct error_work;
831 int which_slice;
832 };
833
834 struct i915_gem_mm {
835 /** Memory allocator for GTT stolen memory */
836 struct drm_mm stolen;
837 /** Protects the usage of the GTT stolen memory allocator. This is
838 * always the inner lock when overlapping with struct_mutex. */
839 struct mutex stolen_lock;
840
841 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
842 spinlock_t obj_lock;
843
844 /** List of all objects in gtt_space. Used to restore gtt
845 * mappings on resume */
846 struct list_head bound_list;
847 /**
848 * List of objects which are not bound to the GTT (thus
849 * are idle and not used by the GPU). These objects may or may
850 * not actually have any pages attached.
851 */
852 struct list_head unbound_list;
853
854 /** List of all objects in gtt_space, currently mmaped by userspace.
855 * All objects within this list must also be on bound_list.
856 */
857 struct list_head userfault_list;
858
859 /**
860 * List of objects which are pending destruction.
861 */
862 struct llist_head free_list;
863 struct work_struct free_work;
864 spinlock_t free_lock;
865 /**
866 * Count of objects pending destructions. Used to skip needlessly
867 * waiting on an RCU barrier if no objects are waiting to be freed.
868 */
869 atomic_t free_count;
870
871 /**
872 * Small stash of WC pages
873 */
874 struct pagestash wc_stash;
875
876 /**
877 * tmpfs instance used for shmem backed objects
878 */
879 struct vfsmount *gemfs;
880
881 /** PPGTT used for aliasing the PPGTT with the GTT */
882 struct i915_hw_ppgtt *aliasing_ppgtt;
883
884 struct notifier_block oom_notifier;
885 struct notifier_block vmap_notifier;
886 struct shrinker shrinker;
887
888 /** LRU list of objects with fence regs on them. */
889 struct list_head fence_list;
890
891 /**
892 * Workqueue to fault in userptr pages, flushed by the execbuf
893 * when required but otherwise left to userspace to try again
894 * on EAGAIN.
895 */
896 struct workqueue_struct *userptr_wq;
897
898 u64 unordered_timeline;
899
900 /* the indicator for dispatch video commands on two BSD rings */
901 atomic_t bsd_engine_dispatch_index;
902
903 /** Bit 6 swizzling required for X tiling */
904 uint32_t bit_6_swizzle_x;
905 /** Bit 6 swizzling required for Y tiling */
906 uint32_t bit_6_swizzle_y;
907
908 /* accounting, useful for userland debugging */
909 spinlock_t object_stat_lock;
910 u64 object_memory;
911 u32 object_count;
912 };
913
914 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
915
916 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
917 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
918
919 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
920 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
921
922 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */
923
924 struct ddi_vbt_port_info {
925 int max_tmds_clock;
926
927 /*
928 * This is an index in the HDMI/DVI DDI buffer translation table.
929 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
930 * populate this field.
931 */
932 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
933 uint8_t hdmi_level_shift;
934
935 uint8_t supports_dvi:1;
936 uint8_t supports_hdmi:1;
937 uint8_t supports_dp:1;
938 uint8_t supports_edp:1;
939
940 uint8_t alternate_aux_channel;
941 uint8_t alternate_ddc_pin;
942
943 uint8_t dp_boost_level;
944 uint8_t hdmi_boost_level;
945 int dp_max_link_rate; /* 0 for not limited by VBT */
946 };
947
948 enum psr_lines_to_wait {
949 PSR_0_LINES_TO_WAIT = 0,
950 PSR_1_LINE_TO_WAIT,
951 PSR_4_LINES_TO_WAIT,
952 PSR_8_LINES_TO_WAIT
953 };
954
955 struct intel_vbt_data {
956 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
957 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
958
959 /* Feature bits */
960 unsigned int int_tv_support:1;
961 unsigned int lvds_dither:1;
962 unsigned int int_crt_support:1;
963 unsigned int lvds_use_ssc:1;
964 unsigned int int_lvds_support:1;
965 unsigned int display_clock_mode:1;
966 unsigned int fdi_rx_polarity_inverted:1;
967 unsigned int panel_type:4;
968 int lvds_ssc_freq;
969 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
970 enum drm_panel_orientation orientation;
971
972 enum drrs_support_type drrs_type;
973
974 struct {
975 int rate;
976 int lanes;
977 int preemphasis;
978 int vswing;
979 bool low_vswing;
980 bool initialized;
981 int bpp;
982 struct edp_power_seq pps;
983 } edp;
984
985 struct {
986 bool enable;
987 bool full_link;
988 bool require_aux_wakeup;
989 int idle_frames;
990 enum psr_lines_to_wait lines_to_wait;
991 int tp1_wakeup_time_us;
992 int tp2_tp3_wakeup_time_us;
993 } psr;
994
995 struct {
996 u16 pwm_freq_hz;
997 bool present;
998 bool active_low_pwm;
999 u8 min_brightness; /* min_brightness/255 of max */
1000 u8 controller; /* brightness controller number */
1001 enum intel_backlight_type type;
1002 } backlight;
1003
1004 /* MIPI DSI */
1005 struct {
1006 u16 panel_id;
1007 struct mipi_config *config;
1008 struct mipi_pps_data *pps;
1009 u16 bl_ports;
1010 u16 cabc_ports;
1011 u8 seq_version;
1012 u32 size;
1013 u8 *data;
1014 const u8 *sequence[MIPI_SEQ_MAX];
1015 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1016 enum drm_panel_orientation orientation;
1017 } dsi;
1018
1019 int crt_ddc_pin;
1020
1021 int child_dev_num;
1022 struct child_device_config *child_dev;
1023
1024 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1025 struct sdvo_device_mapping sdvo_mappings[2];
1026 };
1027
1028 enum intel_ddb_partitioning {
1029 INTEL_DDB_PART_1_2,
1030 INTEL_DDB_PART_5_6, /* IVB+ */
1031 };
1032
1033 struct intel_wm_level {
1034 bool enable;
1035 uint32_t pri_val;
1036 uint32_t spr_val;
1037 uint32_t cur_val;
1038 uint32_t fbc_val;
1039 };
1040
1041 struct ilk_wm_values {
1042 uint32_t wm_pipe[3];
1043 uint32_t wm_lp[3];
1044 uint32_t wm_lp_spr[3];
1045 uint32_t wm_linetime[3];
1046 bool enable_fbc_wm;
1047 enum intel_ddb_partitioning partitioning;
1048 };
1049
1050 struct g4x_pipe_wm {
1051 uint16_t plane[I915_MAX_PLANES];
1052 uint16_t fbc;
1053 };
1054
1055 struct g4x_sr_wm {
1056 uint16_t plane;
1057 uint16_t cursor;
1058 uint16_t fbc;
1059 };
1060
1061 struct vlv_wm_ddl_values {
1062 uint8_t plane[I915_MAX_PLANES];
1063 };
1064
1065 struct vlv_wm_values {
1066 struct g4x_pipe_wm pipe[3];
1067 struct g4x_sr_wm sr;
1068 struct vlv_wm_ddl_values ddl[3];
1069 uint8_t level;
1070 bool cxsr;
1071 };
1072
1073 struct g4x_wm_values {
1074 struct g4x_pipe_wm pipe[2];
1075 struct g4x_sr_wm sr;
1076 struct g4x_sr_wm hpll;
1077 bool cxsr;
1078 bool hpll_en;
1079 bool fbc_en;
1080 };
1081
1082 struct skl_ddb_entry {
1083 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1084 };
1085
1086 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1087 {
1088 return entry->end - entry->start;
1089 }
1090
1091 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1092 const struct skl_ddb_entry *e2)
1093 {
1094 if (e1->start == e2->start && e1->end == e2->end)
1095 return true;
1096
1097 return false;
1098 }
1099
1100 struct skl_ddb_allocation {
1101 u8 enabled_slices; /* GEN11 has configurable 2 slices */
1102 };
1103
1104 struct skl_ddb_values {
1105 unsigned dirty_pipes;
1106 struct skl_ddb_allocation ddb;
1107 };
1108
1109 struct skl_wm_level {
1110 uint16_t plane_res_b;
1111 uint8_t plane_res_l;
1112 bool plane_en;
1113 };
1114
1115 /* Stores plane specific WM parameters */
1116 struct skl_wm_params {
1117 bool x_tiled, y_tiled;
1118 bool rc_surface;
1119 bool is_planar;
1120 uint32_t width;
1121 uint8_t cpp;
1122 uint32_t plane_pixel_rate;
1123 uint32_t y_min_scanlines;
1124 uint32_t plane_bytes_per_line;
1125 uint_fixed_16_16_t plane_blocks_per_line;
1126 uint_fixed_16_16_t y_tile_minimum;
1127 uint32_t linetime_us;
1128 uint32_t dbuf_block_size;
1129 };
1130
1131 /*
1132 * This struct helps tracking the state needed for runtime PM, which puts the
1133 * device in PCI D3 state. Notice that when this happens, nothing on the
1134 * graphics device works, even register access, so we don't get interrupts nor
1135 * anything else.
1136 *
1137 * Every piece of our code that needs to actually touch the hardware needs to
1138 * either call intel_runtime_pm_get or call intel_display_power_get with the
1139 * appropriate power domain.
1140 *
1141 * Our driver uses the autosuspend delay feature, which means we'll only really
1142 * suspend if we stay with zero refcount for a certain amount of time. The
1143 * default value is currently very conservative (see intel_runtime_pm_enable), but
1144 * it can be changed with the standard runtime PM files from sysfs.
1145 *
1146 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1147 * goes back to false exactly before we reenable the IRQs. We use this variable
1148 * to check if someone is trying to enable/disable IRQs while they're supposed
1149 * to be disabled. This shouldn't happen and we'll print some error messages in
1150 * case it happens.
1151 *
1152 * For more, read the Documentation/power/runtime_pm.txt.
1153 */
1154 struct i915_runtime_pm {
1155 atomic_t wakeref_count;
1156 bool suspended;
1157 bool irqs_enabled;
1158 };
1159
1160 enum intel_pipe_crc_source {
1161 INTEL_PIPE_CRC_SOURCE_NONE,
1162 INTEL_PIPE_CRC_SOURCE_PLANE1,
1163 INTEL_PIPE_CRC_SOURCE_PLANE2,
1164 INTEL_PIPE_CRC_SOURCE_PF,
1165 INTEL_PIPE_CRC_SOURCE_PIPE,
1166 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1167 INTEL_PIPE_CRC_SOURCE_TV,
1168 INTEL_PIPE_CRC_SOURCE_DP_B,
1169 INTEL_PIPE_CRC_SOURCE_DP_C,
1170 INTEL_PIPE_CRC_SOURCE_DP_D,
1171 INTEL_PIPE_CRC_SOURCE_AUTO,
1172 INTEL_PIPE_CRC_SOURCE_MAX,
1173 };
1174
1175 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1176 struct intel_pipe_crc {
1177 spinlock_t lock;
1178 int skipped;
1179 enum intel_pipe_crc_source source;
1180 };
1181
1182 struct i915_frontbuffer_tracking {
1183 spinlock_t lock;
1184
1185 /*
1186 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1187 * scheduled flips.
1188 */
1189 unsigned busy_bits;
1190 unsigned flip_bits;
1191 };
1192
1193 struct i915_virtual_gpu {
1194 bool active;
1195 u32 caps;
1196 };
1197
1198 /* used in computing the new watermarks state */
1199 struct intel_wm_config {
1200 unsigned int num_pipes_active;
1201 bool sprites_enabled;
1202 bool sprites_scaled;
1203 };
1204
1205 struct i915_oa_format {
1206 u32 format;
1207 int size;
1208 };
1209
1210 struct i915_oa_reg {
1211 i915_reg_t addr;
1212 u32 value;
1213 };
1214
1215 struct i915_oa_config {
1216 char uuid[UUID_STRING_LEN + 1];
1217 int id;
1218
1219 const struct i915_oa_reg *mux_regs;
1220 u32 mux_regs_len;
1221 const struct i915_oa_reg *b_counter_regs;
1222 u32 b_counter_regs_len;
1223 const struct i915_oa_reg *flex_regs;
1224 u32 flex_regs_len;
1225
1226 struct attribute_group sysfs_metric;
1227 struct attribute *attrs[2];
1228 struct device_attribute sysfs_metric_id;
1229
1230 atomic_t ref_count;
1231 };
1232
1233 struct i915_perf_stream;
1234
1235 /**
1236 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1237 */
1238 struct i915_perf_stream_ops {
1239 /**
1240 * @enable: Enables the collection of HW samples, either in response to
1241 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1242 * without `I915_PERF_FLAG_DISABLED`.
1243 */
1244 void (*enable)(struct i915_perf_stream *stream);
1245
1246 /**
1247 * @disable: Disables the collection of HW samples, either in response
1248 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1249 * the stream.
1250 */
1251 void (*disable)(struct i915_perf_stream *stream);
1252
1253 /**
1254 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1255 * once there is something ready to read() for the stream
1256 */
1257 void (*poll_wait)(struct i915_perf_stream *stream,
1258 struct file *file,
1259 poll_table *wait);
1260
1261 /**
1262 * @wait_unlocked: For handling a blocking read, wait until there is
1263 * something to ready to read() for the stream. E.g. wait on the same
1264 * wait queue that would be passed to poll_wait().
1265 */
1266 int (*wait_unlocked)(struct i915_perf_stream *stream);
1267
1268 /**
1269 * @read: Copy buffered metrics as records to userspace
1270 * **buf**: the userspace, destination buffer
1271 * **count**: the number of bytes to copy, requested by userspace
1272 * **offset**: zero at the start of the read, updated as the read
1273 * proceeds, it represents how many bytes have been copied so far and
1274 * the buffer offset for copying the next record.
1275 *
1276 * Copy as many buffered i915 perf samples and records for this stream
1277 * to userspace as will fit in the given buffer.
1278 *
1279 * Only write complete records; returning -%ENOSPC if there isn't room
1280 * for a complete record.
1281 *
1282 * Return any error condition that results in a short read such as
1283 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1284 * returning to userspace.
1285 */
1286 int (*read)(struct i915_perf_stream *stream,
1287 char __user *buf,
1288 size_t count,
1289 size_t *offset);
1290
1291 /**
1292 * @destroy: Cleanup any stream specific resources.
1293 *
1294 * The stream will always be disabled before this is called.
1295 */
1296 void (*destroy)(struct i915_perf_stream *stream);
1297 };
1298
1299 /**
1300 * struct i915_perf_stream - state for a single open stream FD
1301 */
1302 struct i915_perf_stream {
1303 /**
1304 * @dev_priv: i915 drm device
1305 */
1306 struct drm_i915_private *dev_priv;
1307
1308 /**
1309 * @link: Links the stream into ``&drm_i915_private->streams``
1310 */
1311 struct list_head link;
1312
1313 /**
1314 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1315 * properties given when opening a stream, representing the contents
1316 * of a single sample as read() by userspace.
1317 */
1318 u32 sample_flags;
1319
1320 /**
1321 * @sample_size: Considering the configured contents of a sample
1322 * combined with the required header size, this is the total size
1323 * of a single sample record.
1324 */
1325 int sample_size;
1326
1327 /**
1328 * @ctx: %NULL if measuring system-wide across all contexts or a
1329 * specific context that is being monitored.
1330 */
1331 struct i915_gem_context *ctx;
1332
1333 /**
1334 * @enabled: Whether the stream is currently enabled, considering
1335 * whether the stream was opened in a disabled state and based
1336 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1337 */
1338 bool enabled;
1339
1340 /**
1341 * @ops: The callbacks providing the implementation of this specific
1342 * type of configured stream.
1343 */
1344 const struct i915_perf_stream_ops *ops;
1345
1346 /**
1347 * @oa_config: The OA configuration used by the stream.
1348 */
1349 struct i915_oa_config *oa_config;
1350 };
1351
1352 /**
1353 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1354 */
1355 struct i915_oa_ops {
1356 /**
1357 * @is_valid_b_counter_reg: Validates register's address for
1358 * programming boolean counters for a particular platform.
1359 */
1360 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1361 u32 addr);
1362
1363 /**
1364 * @is_valid_mux_reg: Validates register's address for programming mux
1365 * for a particular platform.
1366 */
1367 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1368
1369 /**
1370 * @is_valid_flex_reg: Validates register's address for programming
1371 * flex EU filtering for a particular platform.
1372 */
1373 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1374
1375 /**
1376 * @enable_metric_set: Selects and applies any MUX configuration to set
1377 * up the Boolean and Custom (B/C) counters that are part of the
1378 * counter reports being sampled. May apply system constraints such as
1379 * disabling EU clock gating as required.
1380 */
1381 int (*enable_metric_set)(struct i915_perf_stream *stream);
1382
1383 /**
1384 * @disable_metric_set: Remove system constraints associated with using
1385 * the OA unit.
1386 */
1387 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1388
1389 /**
1390 * @oa_enable: Enable periodic sampling
1391 */
1392 void (*oa_enable)(struct i915_perf_stream *stream);
1393
1394 /**
1395 * @oa_disable: Disable periodic sampling
1396 */
1397 void (*oa_disable)(struct i915_perf_stream *stream);
1398
1399 /**
1400 * @read: Copy data from the circular OA buffer into a given userspace
1401 * buffer.
1402 */
1403 int (*read)(struct i915_perf_stream *stream,
1404 char __user *buf,
1405 size_t count,
1406 size_t *offset);
1407
1408 /**
1409 * @oa_hw_tail_read: read the OA tail pointer register
1410 *
1411 * In particular this enables us to share all the fiddly code for
1412 * handling the OA unit tail pointer race that affects multiple
1413 * generations.
1414 */
1415 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1416 };
1417
1418 struct intel_cdclk_state {
1419 unsigned int cdclk, vco, ref, bypass;
1420 u8 voltage_level;
1421 };
1422
1423 struct drm_i915_private {
1424 struct drm_device drm;
1425
1426 struct kmem_cache *objects;
1427 struct kmem_cache *vmas;
1428 struct kmem_cache *luts;
1429 struct kmem_cache *requests;
1430 struct kmem_cache *dependencies;
1431 struct kmem_cache *priorities;
1432
1433 const struct intel_device_info info;
1434 struct intel_driver_caps caps;
1435
1436 /**
1437 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1438 * end of stolen which we can optionally use to create GEM objects
1439 * backed by stolen memory. Note that stolen_usable_size tells us
1440 * exactly how much of this we are actually allowed to use, given that
1441 * some portion of it is in fact reserved for use by hardware functions.
1442 */
1443 struct resource dsm;
1444 /**
1445 * Reseved portion of Data Stolen Memory
1446 */
1447 struct resource dsm_reserved;
1448
1449 /*
1450 * Stolen memory is segmented in hardware with different portions
1451 * offlimits to certain functions.
1452 *
1453 * The drm_mm is initialised to the total accessible range, as found
1454 * from the PCI config. On Broadwell+, this is further restricted to
1455 * avoid the first page! The upper end of stolen memory is reserved for
1456 * hardware functions and similarly removed from the accessible range.
1457 */
1458 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */
1459
1460 void __iomem *regs;
1461
1462 struct intel_uncore uncore;
1463
1464 struct i915_virtual_gpu vgpu;
1465
1466 struct intel_gvt *gvt;
1467
1468 struct intel_wopcm wopcm;
1469
1470 struct intel_huc huc;
1471 struct intel_guc guc;
1472
1473 struct intel_csr csr;
1474
1475 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1476
1477 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1478 * controller on different i2c buses. */
1479 struct mutex gmbus_mutex;
1480
1481 /**
1482 * Base address of where the gmbus and gpio blocks are located (either
1483 * on PCH or on SoC for platforms without PCH).
1484 */
1485 uint32_t gpio_mmio_base;
1486
1487 /* MMIO base address for MIPI regs */
1488 uint32_t mipi_mmio_base;
1489
1490 uint32_t psr_mmio_base;
1491
1492 uint32_t pps_mmio_base;
1493
1494 wait_queue_head_t gmbus_wait_queue;
1495
1496 struct pci_dev *bridge_dev;
1497 struct intel_engine_cs *engine[I915_NUM_ENGINES];
1498 /* Context used internally to idle the GPU and setup initial state */
1499 struct i915_gem_context *kernel_context;
1500 /* Context only to be used for injecting preemption commands */
1501 struct i915_gem_context *preempt_context;
1502 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1503 [MAX_ENGINE_INSTANCE + 1];
1504
1505 struct resource mch_res;
1506
1507 /* protects the irq masks */
1508 spinlock_t irq_lock;
1509
1510 bool display_irqs_enabled;
1511
1512 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1513 struct pm_qos_request pm_qos;
1514
1515 /* Sideband mailbox protection */
1516 struct mutex sb_lock;
1517
1518 /** Cached value of IMR to avoid reads in updating the bitfield */
1519 union {
1520 u32 irq_mask;
1521 u32 de_irq_mask[I915_MAX_PIPES];
1522 };
1523 u32 gt_irq_mask;
1524 u32 pm_imr;
1525 u32 pm_ier;
1526 u32 pm_rps_events;
1527 u32 pm_guc_events;
1528 u32 pipestat_irq_mask[I915_MAX_PIPES];
1529
1530 struct i915_hotplug hotplug;
1531 struct intel_fbc fbc;
1532 struct i915_drrs drrs;
1533 struct intel_opregion opregion;
1534 struct intel_vbt_data vbt;
1535
1536 bool preserve_bios_swizzle;
1537
1538 /* overlay */
1539 struct intel_overlay *overlay;
1540
1541 /* backlight registers and fields in struct intel_panel */
1542 struct mutex backlight_lock;
1543
1544 /* LVDS info */
1545 bool no_aux_handshake;
1546
1547 /* protects panel power sequencer state */
1548 struct mutex pps_mutex;
1549
1550 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1551 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1552
1553 unsigned int fsb_freq, mem_freq, is_ddr3;
1554 unsigned int skl_preferred_vco_freq;
1555 unsigned int max_cdclk_freq;
1556
1557 unsigned int max_dotclk_freq;
1558 unsigned int rawclk_freq;
1559 unsigned int hpll_freq;
1560 unsigned int fdi_pll_freq;
1561 unsigned int czclk_freq;
1562
1563 struct {
1564 /*
1565 * The current logical cdclk state.
1566 * See intel_atomic_state.cdclk.logical
1567 *
1568 * For reading holding any crtc lock is sufficient,
1569 * for writing must hold all of them.
1570 */
1571 struct intel_cdclk_state logical;
1572 /*
1573 * The current actual cdclk state.
1574 * See intel_atomic_state.cdclk.actual
1575 */
1576 struct intel_cdclk_state actual;
1577 /* The current hardware cdclk state */
1578 struct intel_cdclk_state hw;
1579 } cdclk;
1580
1581 /**
1582 * wq - Driver workqueue for GEM.
1583 *
1584 * NOTE: Work items scheduled here are not allowed to grab any modeset
1585 * locks, for otherwise the flushing done in the pageflip code will
1586 * result in deadlocks.
1587 */
1588 struct workqueue_struct *wq;
1589
1590 /* ordered wq for modesets */
1591 struct workqueue_struct *modeset_wq;
1592
1593 /* Display functions */
1594 struct drm_i915_display_funcs display;
1595
1596 /* PCH chipset type */
1597 enum intel_pch pch_type;
1598 unsigned short pch_id;
1599
1600 unsigned long quirks;
1601
1602 struct drm_atomic_state *modeset_restore_state;
1603 struct drm_modeset_acquire_ctx reset_ctx;
1604
1605 struct i915_ggtt ggtt; /* VM representing the global address space */
1606
1607 struct i915_gem_mm mm;
1608 DECLARE_HASHTABLE(mm_structs, 7);
1609 struct mutex mm_lock;
1610
1611 struct intel_ppat ppat;
1612
1613 /* Kernel Modesetting */
1614
1615 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1616 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1617
1618 #ifdef CONFIG_DEBUG_FS
1619 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1620 #endif
1621
1622 /* dpll and cdclk state is protected by connection_mutex */
1623 int num_shared_dpll;
1624 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1625 const struct intel_dpll_mgr *dpll_mgr;
1626
1627 /*
1628 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1629 * Must be global rather than per dpll, because on some platforms
1630 * plls share registers.
1631 */
1632 struct mutex dpll_lock;
1633
1634 unsigned int active_crtcs;
1635 /* minimum acceptable cdclk for each pipe */
1636 int min_cdclk[I915_MAX_PIPES];
1637 /* minimum acceptable voltage level for each pipe */
1638 u8 min_voltage_level[I915_MAX_PIPES];
1639
1640 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1641
1642 struct i915_wa_list gt_wa_list;
1643
1644 struct i915_frontbuffer_tracking fb_tracking;
1645
1646 struct intel_atomic_helper {
1647 struct llist_head free_list;
1648 struct work_struct free_work;
1649 } atomic_helper;
1650
1651 u16 orig_clock;
1652
1653 bool mchbar_need_disable;
1654
1655 struct intel_l3_parity l3_parity;
1656
1657 /* Cannot be determined by PCIID. You must always read a register. */
1658 u32 edram_cap;
1659
1660 /*
1661 * Protects RPS/RC6 register access and PCU communication.
1662 * Must be taken after struct_mutex if nested. Note that
1663 * this lock may be held for long periods of time when
1664 * talking to hw - so only take it when talking to hw!
1665 */
1666 struct mutex pcu_lock;
1667
1668 /* gen6+ GT PM state */
1669 struct intel_gen6_power_mgmt gt_pm;
1670
1671 /* ilk-only ips/rps state. Everything in here is protected by the global
1672 * mchdev_lock in intel_pm.c */
1673 struct intel_ilk_power_mgmt ips;
1674
1675 struct i915_power_domains power_domains;
1676
1677 struct i915_psr psr;
1678
1679 struct i915_gpu_error gpu_error;
1680
1681 struct drm_i915_gem_object *vlv_pctx;
1682
1683 /* list of fbdev register on this device */
1684 struct intel_fbdev *fbdev;
1685 struct work_struct fbdev_suspend_work;
1686
1687 struct drm_property *broadcast_rgb_property;
1688 struct drm_property *force_audio_property;
1689
1690 /* hda/i915 audio component */
1691 struct i915_audio_component *audio_component;
1692 bool audio_component_registered;
1693 /**
1694 * av_mutex - mutex for audio/video sync
1695 *
1696 */
1697 struct mutex av_mutex;
1698
1699 struct {
1700 struct mutex mutex;
1701 struct list_head list;
1702 struct llist_head free_list;
1703 struct work_struct free_work;
1704
1705 /* The hw wants to have a stable context identifier for the
1706 * lifetime of the context (for OA, PASID, faults, etc).
1707 * This is limited in execlists to 21 bits.
1708 */
1709 struct ida hw_ida;
1710 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1711 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1712 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1713 struct list_head hw_id_list;
1714 } contexts;
1715
1716 u32 fdi_rx_config;
1717
1718 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1719 u32 chv_phy_control;
1720 /*
1721 * Shadows for CHV DPLL_MD regs to keep the state
1722 * checker somewhat working in the presence hardware
1723 * crappiness (can't read out DPLL_MD for pipes B & C).
1724 */
1725 u32 chv_dpll_md[I915_MAX_PIPES];
1726 u32 bxt_phy_grc;
1727
1728 u32 suspend_count;
1729 bool power_domains_suspended;
1730 struct i915_suspend_saved_registers regfile;
1731 struct vlv_s0ix_state vlv_s0ix_state;
1732
1733 enum {
1734 I915_SAGV_UNKNOWN = 0,
1735 I915_SAGV_DISABLED,
1736 I915_SAGV_ENABLED,
1737 I915_SAGV_NOT_CONTROLLED
1738 } sagv_status;
1739
1740 struct {
1741 /*
1742 * Raw watermark latency values:
1743 * in 0.1us units for WM0,
1744 * in 0.5us units for WM1+.
1745 */
1746 /* primary */
1747 uint16_t pri_latency[5];
1748 /* sprite */
1749 uint16_t spr_latency[5];
1750 /* cursor */
1751 uint16_t cur_latency[5];
1752 /*
1753 * Raw watermark memory latency values
1754 * for SKL for all 8 levels
1755 * in 1us units.
1756 */
1757 uint16_t skl_latency[8];
1758
1759 /* current hardware state */
1760 union {
1761 struct ilk_wm_values hw;
1762 struct skl_ddb_values skl_hw;
1763 struct vlv_wm_values vlv;
1764 struct g4x_wm_values g4x;
1765 };
1766
1767 uint8_t max_level;
1768
1769 /*
1770 * Should be held around atomic WM register writing; also
1771 * protects * intel_crtc->wm.active and
1772 * cstate->wm.need_postvbl_update.
1773 */
1774 struct mutex wm_mutex;
1775
1776 /*
1777 * Set during HW readout of watermarks/DDB. Some platforms
1778 * need to know when we're still using BIOS-provided values
1779 * (which we don't fully trust).
1780 */
1781 bool distrust_bios_wm;
1782 } wm;
1783
1784 struct dram_info {
1785 bool valid;
1786 bool is_16gb_dimm;
1787 u8 num_channels;
1788 enum dram_rank {
1789 I915_DRAM_RANK_INVALID = 0,
1790 I915_DRAM_RANK_SINGLE,
1791 I915_DRAM_RANK_DUAL
1792 } rank;
1793 u32 bandwidth_kbps;
1794 bool symmetric_memory;
1795 } dram_info;
1796
1797 struct i915_runtime_pm runtime_pm;
1798
1799 struct {
1800 bool initialized;
1801
1802 struct kobject *metrics_kobj;
1803 struct ctl_table_header *sysctl_header;
1804
1805 /*
1806 * Lock associated with adding/modifying/removing OA configs
1807 * in dev_priv->perf.metrics_idr.
1808 */
1809 struct mutex metrics_lock;
1810
1811 /*
1812 * List of dynamic configurations, you need to hold
1813 * dev_priv->perf.metrics_lock to access it.
1814 */
1815 struct idr metrics_idr;
1816
1817 /*
1818 * Lock associated with anything below within this structure
1819 * except exclusive_stream.
1820 */
1821 struct mutex lock;
1822 struct list_head streams;
1823
1824 struct {
1825 /*
1826 * The stream currently using the OA unit. If accessed
1827 * outside a syscall associated to its file
1828 * descriptor, you need to hold
1829 * dev_priv->drm.struct_mutex.
1830 */
1831 struct i915_perf_stream *exclusive_stream;
1832
1833 struct intel_context *pinned_ctx;
1834 u32 specific_ctx_id;
1835 u32 specific_ctx_id_mask;
1836
1837 struct hrtimer poll_check_timer;
1838 wait_queue_head_t poll_wq;
1839 bool pollin;
1840
1841 /**
1842 * For rate limiting any notifications of spurious
1843 * invalid OA reports
1844 */
1845 struct ratelimit_state spurious_report_rs;
1846
1847 bool periodic;
1848 int period_exponent;
1849
1850 struct i915_oa_config test_config;
1851
1852 struct {
1853 struct i915_vma *vma;
1854 u8 *vaddr;
1855 u32 last_ctx_id;
1856 int format;
1857 int format_size;
1858
1859 /**
1860 * Locks reads and writes to all head/tail state
1861 *
1862 * Consider: the head and tail pointer state
1863 * needs to be read consistently from a hrtimer
1864 * callback (atomic context) and read() fop
1865 * (user context) with tail pointer updates
1866 * happening in atomic context and head updates
1867 * in user context and the (unlikely)
1868 * possibility of read() errors needing to
1869 * reset all head/tail state.
1870 *
1871 * Note: Contention or performance aren't
1872 * currently a significant concern here
1873 * considering the relatively low frequency of
1874 * hrtimer callbacks (5ms period) and that
1875 * reads typically only happen in response to a
1876 * hrtimer event and likely complete before the
1877 * next callback.
1878 *
1879 * Note: This lock is not held *while* reading
1880 * and copying data to userspace so the value
1881 * of head observed in htrimer callbacks won't
1882 * represent any partial consumption of data.
1883 */
1884 spinlock_t ptr_lock;
1885
1886 /**
1887 * One 'aging' tail pointer and one 'aged'
1888 * tail pointer ready to used for reading.
1889 *
1890 * Initial values of 0xffffffff are invalid
1891 * and imply that an update is required
1892 * (and should be ignored by an attempted
1893 * read)
1894 */
1895 struct {
1896 u32 offset;
1897 } tails[2];
1898
1899 /**
1900 * Index for the aged tail ready to read()
1901 * data up to.
1902 */
1903 unsigned int aged_tail_idx;
1904
1905 /**
1906 * A monotonic timestamp for when the current
1907 * aging tail pointer was read; used to
1908 * determine when it is old enough to trust.
1909 */
1910 u64 aging_timestamp;
1911
1912 /**
1913 * Although we can always read back the head
1914 * pointer register, we prefer to avoid
1915 * trusting the HW state, just to avoid any
1916 * risk that some hardware condition could
1917 * somehow bump the head pointer unpredictably
1918 * and cause us to forward the wrong OA buffer
1919 * data to userspace.
1920 */
1921 u32 head;
1922 } oa_buffer;
1923
1924 u32 gen7_latched_oastatus1;
1925 u32 ctx_oactxctrl_offset;
1926 u32 ctx_flexeu0_offset;
1927
1928 /**
1929 * The RPT_ID/reason field for Gen8+ includes a bit
1930 * to determine if the CTX ID in the report is valid
1931 * but the specific bit differs between Gen 8 and 9
1932 */
1933 u32 gen8_valid_ctx_bit;
1934
1935 struct i915_oa_ops ops;
1936 const struct i915_oa_format *oa_formats;
1937 } oa;
1938 } perf;
1939
1940 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1941 struct {
1942 void (*resume)(struct drm_i915_private *);
1943 void (*cleanup_engine)(struct intel_engine_cs *engine);
1944
1945 struct list_head timelines;
1946
1947 struct list_head active_rings;
1948 struct list_head closed_vma;
1949 u32 active_requests;
1950 u32 request_serial;
1951
1952 /**
1953 * Is the GPU currently considered idle, or busy executing
1954 * userspace requests? Whilst idle, we allow runtime power
1955 * management to power down the hardware and display clocks.
1956 * In order to reduce the effect on performance, there
1957 * is a slight delay before we do so.
1958 */
1959 bool awake;
1960
1961 /**
1962 * The number of times we have woken up.
1963 */
1964 unsigned int epoch;
1965 #define I915_EPOCH_INVALID 0
1966
1967 /**
1968 * We leave the user IRQ off as much as possible,
1969 * but this means that requests will finish and never
1970 * be retired once the system goes idle. Set a timer to
1971 * fire periodically while the ring is running. When it
1972 * fires, go retire requests.
1973 */
1974 struct delayed_work retire_work;
1975
1976 /**
1977 * When we detect an idle GPU, we want to turn on
1978 * powersaving features. So once we see that there
1979 * are no more requests outstanding and no more
1980 * arrive within a small period of time, we fire
1981 * off the idle_work.
1982 */
1983 struct delayed_work idle_work;
1984
1985 ktime_t last_init_time;
1986
1987 struct i915_vma *scratch;
1988 } gt;
1989
1990 /* perform PHY state sanity checks? */
1991 bool chv_phy_assert[2];
1992
1993 bool ipc_enabled;
1994
1995 /* Used to save the pipe-to-encoder mapping for audio */
1996 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
1997
1998 /* necessary resource sharing with HDMI LPE audio driver. */
1999 struct {
2000 struct platform_device *platdev;
2001 int irq;
2002 } lpe_audio;
2003
2004 struct i915_pmu pmu;
2005
2006 /*
2007 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2008 * will be rejected. Instead look for a better place.
2009 */
2010 };
2011
2012 struct dram_channel_info {
2013 struct info {
2014 u8 size, width;
2015 enum dram_rank rank;
2016 } l_info, s_info;
2017 enum dram_rank rank;
2018 bool is_16gb_dimm;
2019 };
2020
2021 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2022 {
2023 return container_of(dev, struct drm_i915_private, drm);
2024 }
2025
2026 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2027 {
2028 return to_i915(dev_get_drvdata(kdev));
2029 }
2030
2031 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2032 {
2033 return container_of(wopcm, struct drm_i915_private, wopcm);
2034 }
2035
2036 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2037 {
2038 return container_of(guc, struct drm_i915_private, guc);
2039 }
2040
2041 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2042 {
2043 return container_of(huc, struct drm_i915_private, huc);
2044 }
2045
2046 /* Simple iterator over all initialised engines */
2047 #define for_each_engine(engine__, dev_priv__, id__) \
2048 for ((id__) = 0; \
2049 (id__) < I915_NUM_ENGINES; \
2050 (id__)++) \
2051 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2052
2053 /* Iterator over subset of engines selected by mask */
2054 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2055 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2056 (tmp__) ? \
2057 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2058 0;)
2059
2060 enum hdmi_force_audio {
2061 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2062 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2063 HDMI_AUDIO_AUTO, /* trust EDID */
2064 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2065 };
2066
2067 #define I915_GTT_OFFSET_NONE ((u32)-1)
2068
2069 /*
2070 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2071 * considered to be the frontbuffer for the given plane interface-wise. This
2072 * doesn't mean that the hw necessarily already scans it out, but that any
2073 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2074 *
2075 * We have one bit per pipe and per scanout plane type.
2076 */
2077 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2078 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2079 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2080 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2081 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2082 })
2083 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2084 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2085 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2086 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2087 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2088
2089 /*
2090 * Optimised SGL iterator for GEM objects
2091 */
2092 static __always_inline struct sgt_iter {
2093 struct scatterlist *sgp;
2094 union {
2095 unsigned long pfn;
2096 dma_addr_t dma;
2097 };
2098 unsigned int curr;
2099 unsigned int max;
2100 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2101 struct sgt_iter s = { .sgp = sgl };
2102
2103 if (s.sgp) {
2104 s.max = s.curr = s.sgp->offset;
2105 s.max += s.sgp->length;
2106 if (dma)
2107 s.dma = sg_dma_address(s.sgp);
2108 else
2109 s.pfn = page_to_pfn(sg_page(s.sgp));
2110 }
2111
2112 return s;
2113 }
2114
2115 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2116 {
2117 ++sg;
2118 if (unlikely(sg_is_chain(sg)))
2119 sg = sg_chain_ptr(sg);
2120 return sg;
2121 }
2122
2123 /**
2124 * __sg_next - return the next scatterlist entry in a list
2125 * @sg: The current sg entry
2126 *
2127 * Description:
2128 * If the entry is the last, return NULL; otherwise, step to the next
2129 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2130 * otherwise just return the pointer to the current element.
2131 **/
2132 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2133 {
2134 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2135 }
2136
2137 /**
2138 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2139 * @__dmap: DMA address (output)
2140 * @__iter: 'struct sgt_iter' (iterator state, internal)
2141 * @__sgt: sg_table to iterate over (input)
2142 */
2143 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2144 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2145 ((__dmap) = (__iter).dma + (__iter).curr); \
2146 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \
2147 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2148
2149 /**
2150 * for_each_sgt_page - iterate over the pages of the given sg_table
2151 * @__pp: page pointer (output)
2152 * @__iter: 'struct sgt_iter' (iterator state, internal)
2153 * @__sgt: sg_table to iterate over (input)
2154 */
2155 #define for_each_sgt_page(__pp, __iter, __sgt) \
2156 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2157 ((__pp) = (__iter).pfn == 0 ? NULL : \
2158 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2159 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2160 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2161
2162 bool i915_sg_trim(struct sg_table *orig_st);
2163
2164 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2165 {
2166 unsigned int page_sizes;
2167
2168 page_sizes = 0;
2169 while (sg) {
2170 GEM_BUG_ON(sg->offset);
2171 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2172 page_sizes |= sg->length;
2173 sg = __sg_next(sg);
2174 }
2175
2176 return page_sizes;
2177 }
2178
2179 static inline unsigned int i915_sg_segment_size(void)
2180 {
2181 unsigned int size = swiotlb_max_segment();
2182
2183 if (size == 0)
2184 return SCATTERLIST_MAX_SEGMENT;
2185
2186 size = rounddown(size, PAGE_SIZE);
2187 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2188 if (size < PAGE_SIZE)
2189 size = PAGE_SIZE;
2190
2191 return size;
2192 }
2193
2194 static inline const struct intel_device_info *
2195 intel_info(const struct drm_i915_private *dev_priv)
2196 {
2197 return &dev_priv->info;
2198 }
2199
2200 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2201 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps)
2202
2203 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2204 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2205
2206 #define REVID_FOREVER 0xff
2207 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2208
2209 #define INTEL_GEN_MASK(s, e) ( \
2210 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2211 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2212 GENMASK((e) - 1, (s) - 1))
2213
2214 /* Returns true if Gen is in inclusive range [Start, End] */
2215 #define IS_GEN(dev_priv, s, e) \
2216 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2217
2218 /*
2219 * Return true if revision is in range [since,until] inclusive.
2220 *
2221 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2222 */
2223 #define IS_REVID(p, since, until) \
2224 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2225
2226 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2227
2228 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2229 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2230 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2231 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2232 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2233 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2234 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2235 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2236 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2237 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2238 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2239 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2240 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2241 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2242 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2243 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2244 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2245 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2246 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2247 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2248 (dev_priv)->info.gt == 1)
2249 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2250 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2251 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2252 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2253 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2254 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2255 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2256 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2257 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2258 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2259 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2260 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2261 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2262 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2263 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2264 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2265 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2266 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2267 /* ULX machines are also considered ULT. */
2268 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2269 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2270 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2271 (dev_priv)->info.gt == 3)
2272 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2273 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2274 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2275 (dev_priv)->info.gt == 3)
2276 /* ULX machines are also considered ULT. */
2277 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2278 INTEL_DEVID(dev_priv) == 0x0A1E)
2279 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2280 INTEL_DEVID(dev_priv) == 0x1913 || \
2281 INTEL_DEVID(dev_priv) == 0x1916 || \
2282 INTEL_DEVID(dev_priv) == 0x1921 || \
2283 INTEL_DEVID(dev_priv) == 0x1926)
2284 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2285 INTEL_DEVID(dev_priv) == 0x1915 || \
2286 INTEL_DEVID(dev_priv) == 0x191E)
2287 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2288 INTEL_DEVID(dev_priv) == 0x5913 || \
2289 INTEL_DEVID(dev_priv) == 0x5916 || \
2290 INTEL_DEVID(dev_priv) == 0x5921 || \
2291 INTEL_DEVID(dev_priv) == 0x5926)
2292 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2293 INTEL_DEVID(dev_priv) == 0x5915 || \
2294 INTEL_DEVID(dev_priv) == 0x591E)
2295 #define IS_AML_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x591C || \
2296 INTEL_DEVID(dev_priv) == 0x87C0)
2297 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2298 (dev_priv)->info.gt == 2)
2299 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2300 (dev_priv)->info.gt == 3)
2301 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2302 (dev_priv)->info.gt == 4)
2303 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2304 (dev_priv)->info.gt == 2)
2305 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2306 (dev_priv)->info.gt == 3)
2307 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2308 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2309 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2310 (dev_priv)->info.gt == 2)
2311 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2312 (dev_priv)->info.gt == 3)
2313 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \
2314 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2315
2316 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2317
2318 #define SKL_REVID_A0 0x0
2319 #define SKL_REVID_B0 0x1
2320 #define SKL_REVID_C0 0x2
2321 #define SKL_REVID_D0 0x3
2322 #define SKL_REVID_E0 0x4
2323 #define SKL_REVID_F0 0x5
2324 #define SKL_REVID_G0 0x6
2325 #define SKL_REVID_H0 0x7
2326
2327 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2328
2329 #define BXT_REVID_A0 0x0
2330 #define BXT_REVID_A1 0x1
2331 #define BXT_REVID_B0 0x3
2332 #define BXT_REVID_B_LAST 0x8
2333 #define BXT_REVID_C0 0x9
2334
2335 #define IS_BXT_REVID(dev_priv, since, until) \
2336 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2337
2338 #define KBL_REVID_A0 0x0
2339 #define KBL_REVID_B0 0x1
2340 #define KBL_REVID_C0 0x2
2341 #define KBL_REVID_D0 0x3
2342 #define KBL_REVID_E0 0x4
2343
2344 #define IS_KBL_REVID(dev_priv, since, until) \
2345 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2346
2347 #define GLK_REVID_A0 0x0
2348 #define GLK_REVID_A1 0x1
2349
2350 #define IS_GLK_REVID(dev_priv, since, until) \
2351 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2352
2353 #define CNL_REVID_A0 0x0
2354 #define CNL_REVID_B0 0x1
2355 #define CNL_REVID_C0 0x2
2356
2357 #define IS_CNL_REVID(p, since, until) \
2358 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2359
2360 #define ICL_REVID_A0 0x0
2361 #define ICL_REVID_A2 0x1
2362 #define ICL_REVID_B0 0x3
2363 #define ICL_REVID_B2 0x4
2364 #define ICL_REVID_C0 0x5
2365
2366 #define IS_ICL_REVID(p, since, until) \
2367 (IS_ICELAKE(p) && IS_REVID(p, since, until))
2368
2369 /*
2370 * The genX designation typically refers to the render engine, so render
2371 * capability related checks should use IS_GEN, while display and other checks
2372 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2373 * chips, etc.).
2374 */
2375 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2376 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2377 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2378 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2379 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2380 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2381 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2382 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2383 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2384 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10)))
2385
2386 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2387 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2388 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2389
2390 #define ENGINE_MASK(id) BIT(id)
2391 #define RENDER_RING ENGINE_MASK(RCS)
2392 #define BSD_RING ENGINE_MASK(VCS)
2393 #define BLT_RING ENGINE_MASK(BCS)
2394 #define VEBOX_RING ENGINE_MASK(VECS)
2395 #define BSD2_RING ENGINE_MASK(VCS2)
2396 #define BSD3_RING ENGINE_MASK(VCS3)
2397 #define BSD4_RING ENGINE_MASK(VCS4)
2398 #define VEBOX2_RING ENGINE_MASK(VECS2)
2399 #define ALL_ENGINES (~0)
2400
2401 #define HAS_ENGINE(dev_priv, id) \
2402 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2403
2404 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2405 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2406 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2407 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2408
2409 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2410
2411 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2412 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2413 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2414 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2415 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2416
2417 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2418
2419 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2420 ((dev_priv)->info.has_logical_ring_contexts)
2421 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2422 ((dev_priv)->info.has_logical_ring_elsq)
2423 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2424 ((dev_priv)->info.has_logical_ring_preemption)
2425
2426 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2427
2428 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt)
2429 #define HAS_PPGTT(dev_priv) \
2430 (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2431 #define HAS_FULL_PPGTT(dev_priv) \
2432 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2433 #define HAS_FULL_48BIT_PPGTT(dev_priv) \
2434 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL)
2435
2436 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2437 GEM_BUG_ON((sizes) == 0); \
2438 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2439 })
2440
2441 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.display.has_overlay)
2442 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2443 ((dev_priv)->info.display.overlay_needs_physical)
2444
2445 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2446 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2447
2448 /* WaRsDisableCoarsePowerGating:skl,cnl */
2449 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2450 (IS_CANNONLAKE(dev_priv) || \
2451 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2452
2453 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2454 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2455 IS_GEMINILAKE(dev_priv) || \
2456 IS_KABYLAKE(dev_priv))
2457
2458 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2459 * rows, which changed the alignment requirements and fence programming.
2460 */
2461 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2462 !(IS_I915G(dev_priv) || \
2463 IS_I915GM(dev_priv)))
2464 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.display.supports_tv)
2465 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.display.has_hotplug)
2466
2467 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2468 #define HAS_FBC(dev_priv) ((dev_priv)->info.display.has_fbc)
2469 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2470
2471 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2472
2473 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.display.has_dp_mst)
2474
2475 #define HAS_DDI(dev_priv) ((dev_priv)->info.display.has_ddi)
2476 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2477 #define HAS_PSR(dev_priv) ((dev_priv)->info.display.has_psr)
2478
2479 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2480 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2481 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */
2482
2483 #define HAS_CSR(dev_priv) ((dev_priv)->info.display.has_csr)
2484
2485 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2486 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2487
2488 #define HAS_IPC(dev_priv) ((dev_priv)->info.display.has_ipc)
2489
2490 /*
2491 * For now, anything with a GuC requires uCode loading, and then supports
2492 * command submission once loaded. But these are logically independent
2493 * properties, so we have separate macros to test them.
2494 */
2495 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
2496 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
2497 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2498 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2499
2500 /* For now, anything with a GuC has also HuC */
2501 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv))
2502 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2503
2504 /* Having a GuC is not the same as using a GuC */
2505 #define USES_GUC(dev_priv) intel_uc_is_using_guc()
2506 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission()
2507 #define USES_HUC(dev_priv) intel_uc_is_using_huc()
2508
2509 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2510
2511 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
2512 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2513 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2514 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2515 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2516 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2517 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
2518 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
2519 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2520 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2521 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
2522 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
2523 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
2524 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480
2525 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2526 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2527 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2528
2529 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2530 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2531 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2532 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2533 #define HAS_PCH_CNP_LP(dev_priv) \
2534 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2535 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2536 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2537 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2538 #define HAS_PCH_LPT_LP(dev_priv) \
2539 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2540 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2541 #define HAS_PCH_LPT_H(dev_priv) \
2542 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2543 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2544 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2545 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2546 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2547 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2548
2549 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.display.has_gmch_display)
2550
2551 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2552
2553 /* DPF == dynamic parity feature */
2554 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2555 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2556 2 : HAS_L3_DPF(dev_priv))
2557
2558 #define GT_FREQUENCY_MULTIPLIER 50
2559 #define GEN9_FREQ_SCALER 3
2560
2561 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0)
2562
2563 #include "i915_trace.h"
2564
2565 static inline bool intel_vtd_active(void)
2566 {
2567 #ifdef CONFIG_INTEL_IOMMU
2568 if (intel_iommu_gfx_mapped)
2569 return true;
2570 #endif
2571 return false;
2572 }
2573
2574 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2575 {
2576 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2577 }
2578
2579 static inline bool
2580 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2581 {
2582 return IS_BROXTON(dev_priv) && intel_vtd_active();
2583 }
2584
2585 /* i915_drv.c */
2586 void __printf(3, 4)
2587 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2588 const char *fmt, ...);
2589
2590 #define i915_report_error(dev_priv, fmt, ...) \
2591 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2592
2593 #ifdef CONFIG_COMPAT
2594 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2595 unsigned long arg);
2596 #else
2597 #define i915_compat_ioctl NULL
2598 #endif
2599 extern const struct dev_pm_ops i915_pm_ops;
2600
2601 extern int i915_driver_load(struct pci_dev *pdev,
2602 const struct pci_device_id *ent);
2603 extern void i915_driver_unload(struct drm_device *dev);
2604 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2605 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2606
2607 extern void i915_reset(struct drm_i915_private *i915,
2608 unsigned int stalled_mask,
2609 const char *reason);
2610 extern int i915_reset_engine(struct intel_engine_cs *engine,
2611 const char *reason);
2612
2613 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2614 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2615 extern int intel_guc_reset_engine(struct intel_guc *guc,
2616 struct intel_engine_cs *engine);
2617 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2618 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2619 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2620 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2621 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2622 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2623 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2624
2625 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2626 int intel_engines_init(struct drm_i915_private *dev_priv);
2627
2628 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2629
2630 /* intel_hotplug.c */
2631 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2632 u32 pin_mask, u32 long_mask);
2633 void intel_hpd_init(struct drm_i915_private *dev_priv);
2634 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2635 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2636 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2637 enum port port);
2638 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2639 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2640
2641 /* i915_irq.c */
2642 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2643 {
2644 unsigned long delay;
2645
2646 if (unlikely(!i915_modparams.enable_hangcheck))
2647 return;
2648
2649 /* Don't continually defer the hangcheck so that it is always run at
2650 * least once after work has been scheduled on any ring. Otherwise,
2651 * we will ignore a hung ring if a second ring is kept busy.
2652 */
2653
2654 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2655 queue_delayed_work(system_long_wq,
2656 &dev_priv->gpu_error.hangcheck_work, delay);
2657 }
2658
2659 __printf(4, 5)
2660 void i915_handle_error(struct drm_i915_private *dev_priv,
2661 u32 engine_mask,
2662 unsigned long flags,
2663 const char *fmt, ...);
2664 #define I915_ERROR_CAPTURE BIT(0)
2665
2666 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2667 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2668 int intel_irq_install(struct drm_i915_private *dev_priv);
2669 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2670
2671 void i915_clear_error_registers(struct drm_i915_private *dev_priv);
2672
2673 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2674 {
2675 return dev_priv->gvt;
2676 }
2677
2678 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2679 {
2680 return dev_priv->vgpu.active;
2681 }
2682
2683 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2684 enum pipe pipe);
2685 void
2686 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2687 u32 status_mask);
2688
2689 void
2690 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2691 u32 status_mask);
2692
2693 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2694 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2695 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2696 uint32_t mask,
2697 uint32_t bits);
2698 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2699 uint32_t interrupt_mask,
2700 uint32_t enabled_irq_mask);
2701 static inline void
2702 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2703 {
2704 ilk_update_display_irq(dev_priv, bits, bits);
2705 }
2706 static inline void
2707 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2708 {
2709 ilk_update_display_irq(dev_priv, bits, 0);
2710 }
2711 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2712 enum pipe pipe,
2713 uint32_t interrupt_mask,
2714 uint32_t enabled_irq_mask);
2715 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2716 enum pipe pipe, uint32_t bits)
2717 {
2718 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2719 }
2720 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2721 enum pipe pipe, uint32_t bits)
2722 {
2723 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2724 }
2725 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2726 uint32_t interrupt_mask,
2727 uint32_t enabled_irq_mask);
2728 static inline void
2729 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2730 {
2731 ibx_display_interrupt_update(dev_priv, bits, bits);
2732 }
2733 static inline void
2734 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2735 {
2736 ibx_display_interrupt_update(dev_priv, bits, 0);
2737 }
2738
2739 /* i915_gem.c */
2740 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2741 struct drm_file *file_priv);
2742 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2743 struct drm_file *file_priv);
2744 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2745 struct drm_file *file_priv);
2746 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2747 struct drm_file *file_priv);
2748 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2749 struct drm_file *file_priv);
2750 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2751 struct drm_file *file_priv);
2752 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2753 struct drm_file *file_priv);
2754 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2755 struct drm_file *file_priv);
2756 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2757 struct drm_file *file_priv);
2758 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2759 struct drm_file *file_priv);
2760 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2761 struct drm_file *file);
2762 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2763 struct drm_file *file);
2764 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2765 struct drm_file *file_priv);
2766 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2767 struct drm_file *file_priv);
2768 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2769 struct drm_file *file_priv);
2770 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2771 struct drm_file *file_priv);
2772 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2773 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2774 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2775 struct drm_file *file);
2776 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2777 struct drm_file *file_priv);
2778 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2779 struct drm_file *file_priv);
2780 void i915_gem_sanitize(struct drm_i915_private *i915);
2781 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2782 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2783 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2784 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2785 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2786
2787 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2788 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2789 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2790 const struct drm_i915_gem_object_ops *ops);
2791 struct drm_i915_gem_object *
2792 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2793 struct drm_i915_gem_object *
2794 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2795 const void *data, size_t size);
2796 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2797 void i915_gem_free_object(struct drm_gem_object *obj);
2798
2799 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2800 {
2801 if (!atomic_read(&i915->mm.free_count))
2802 return;
2803
2804 /* A single pass should suffice to release all the freed objects (along
2805 * most call paths) , but be a little more paranoid in that freeing
2806 * the objects does take a little amount of time, during which the rcu
2807 * callbacks could have added new objects into the freed list, and
2808 * armed the work again.
2809 */
2810 do {
2811 rcu_barrier();
2812 } while (flush_work(&i915->mm.free_work));
2813 }
2814
2815 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2816 {
2817 /*
2818 * Similar to objects above (see i915_gem_drain_freed-objects), in
2819 * general we have workers that are armed by RCU and then rearm
2820 * themselves in their callbacks. To be paranoid, we need to
2821 * drain the workqueue a second time after waiting for the RCU
2822 * grace period so that we catch work queued via RCU from the first
2823 * pass. As neither drain_workqueue() nor flush_workqueue() report
2824 * a result, we make an assumption that we only don't require more
2825 * than 2 passes to catch all recursive RCU delayed work.
2826 *
2827 */
2828 int pass = 2;
2829 do {
2830 rcu_barrier();
2831 drain_workqueue(i915->wq);
2832 } while (--pass);
2833 }
2834
2835 struct i915_vma * __must_check
2836 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2837 const struct i915_ggtt_view *view,
2838 u64 size,
2839 u64 alignment,
2840 u64 flags);
2841
2842 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2843 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2844
2845 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2846
2847 static inline int __sg_page_count(const struct scatterlist *sg)
2848 {
2849 return sg->length >> PAGE_SHIFT;
2850 }
2851
2852 struct scatterlist *
2853 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2854 unsigned int n, unsigned int *offset);
2855
2856 struct page *
2857 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2858 unsigned int n);
2859
2860 struct page *
2861 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2862 unsigned int n);
2863
2864 dma_addr_t
2865 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2866 unsigned long n);
2867
2868 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2869 struct sg_table *pages,
2870 unsigned int sg_page_sizes);
2871 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2872
2873 static inline int __must_check
2874 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2875 {
2876 might_lock(&obj->mm.lock);
2877
2878 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2879 return 0;
2880
2881 return __i915_gem_object_get_pages(obj);
2882 }
2883
2884 static inline bool
2885 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2886 {
2887 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2888 }
2889
2890 static inline void
2891 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2892 {
2893 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2894
2895 atomic_inc(&obj->mm.pages_pin_count);
2896 }
2897
2898 static inline bool
2899 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2900 {
2901 return atomic_read(&obj->mm.pages_pin_count);
2902 }
2903
2904 static inline void
2905 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2906 {
2907 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2908 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2909
2910 atomic_dec(&obj->mm.pages_pin_count);
2911 }
2912
2913 static inline void
2914 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2915 {
2916 __i915_gem_object_unpin_pages(obj);
2917 }
2918
2919 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
2920 I915_MM_NORMAL = 0,
2921 I915_MM_SHRINKER
2922 };
2923
2924 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2925 enum i915_mm_subclass subclass);
2926 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
2927
2928 enum i915_map_type {
2929 I915_MAP_WB = 0,
2930 I915_MAP_WC,
2931 #define I915_MAP_OVERRIDE BIT(31)
2932 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
2933 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
2934 };
2935
2936 static inline enum i915_map_type
2937 i915_coherent_map_type(struct drm_i915_private *i915)
2938 {
2939 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
2940 }
2941
2942 /**
2943 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
2944 * @obj: the object to map into kernel address space
2945 * @type: the type of mapping, used to select pgprot_t
2946 *
2947 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
2948 * pages and then returns a contiguous mapping of the backing storage into
2949 * the kernel address space. Based on the @type of mapping, the PTE will be
2950 * set to either WriteBack or WriteCombine (via pgprot_t).
2951 *
2952 * The caller is responsible for calling i915_gem_object_unpin_map() when the
2953 * mapping is no longer required.
2954 *
2955 * Returns the pointer through which to access the mapped object, or an
2956 * ERR_PTR() on error.
2957 */
2958 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2959 enum i915_map_type type);
2960
2961 /**
2962 * i915_gem_object_unpin_map - releases an earlier mapping
2963 * @obj: the object to unmap
2964 *
2965 * After pinning the object and mapping its pages, once you are finished
2966 * with your access, call i915_gem_object_unpin_map() to release the pin
2967 * upon the mapping. Once the pin count reaches zero, that mapping may be
2968 * removed.
2969 */
2970 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
2971 {
2972 i915_gem_object_unpin_pages(obj);
2973 }
2974
2975 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2976 unsigned int *needs_clflush);
2977 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
2978 unsigned int *needs_clflush);
2979 #define CLFLUSH_BEFORE BIT(0)
2980 #define CLFLUSH_AFTER BIT(1)
2981 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
2982
2983 static inline void
2984 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
2985 {
2986 i915_gem_object_unpin_pages(obj);
2987 }
2988
2989 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
2990 int i915_gem_dumb_create(struct drm_file *file_priv,
2991 struct drm_device *dev,
2992 struct drm_mode_create_dumb *args);
2993 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
2994 uint32_t handle, uint64_t *offset);
2995 int i915_gem_mmap_gtt_version(void);
2996
2997 void i915_gem_track_fb(struct drm_i915_gem_object *old,
2998 struct drm_i915_gem_object *new,
2999 unsigned frontbuffer_bits);
3000
3001 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3002
3003 struct i915_request *
3004 i915_gem_find_active_request(struct intel_engine_cs *engine);
3005
3006 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3007 {
3008 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3009 }
3010
3011 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3012 {
3013 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3014 }
3015
3016 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3017 {
3018 return unlikely(test_bit(I915_WEDGED, &error->flags));
3019 }
3020
3021 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3022 {
3023 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3024 }
3025
3026 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3027 {
3028 return READ_ONCE(error->reset_count);
3029 }
3030
3031 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3032 struct intel_engine_cs *engine)
3033 {
3034 return READ_ONCE(error->reset_engine_count[engine->id]);
3035 }
3036
3037 struct i915_request *
3038 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3039 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3040 void i915_gem_reset(struct drm_i915_private *dev_priv,
3041 unsigned int stalled_mask);
3042 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3043 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3044 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3045 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3046 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3047 struct i915_request *request,
3048 bool stalled);
3049
3050 void i915_gem_init_mmio(struct drm_i915_private *i915);
3051 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3052 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3053 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3054 void i915_gem_fini(struct drm_i915_private *dev_priv);
3055 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3056 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3057 unsigned int flags, long timeout);
3058 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3059 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3060 void i915_gem_resume(struct drm_i915_private *dev_priv);
3061 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3062 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3063 unsigned int flags,
3064 long timeout,
3065 struct intel_rps_client *rps);
3066 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3067 unsigned int flags,
3068 const struct i915_sched_attr *attr);
3069 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3070
3071 int __must_check
3072 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3073 int __must_check
3074 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3075 int __must_check
3076 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3077 struct i915_vma * __must_check
3078 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3079 u32 alignment,
3080 const struct i915_ggtt_view *view,
3081 unsigned int flags);
3082 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3083 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3084 int align);
3085 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3086 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3087
3088 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3089 enum i915_cache_level cache_level);
3090
3091 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3092 struct dma_buf *dma_buf);
3093
3094 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3095 struct drm_gem_object *gem_obj, int flags);
3096
3097 static inline struct i915_hw_ppgtt *
3098 i915_vm_to_ppgtt(struct i915_address_space *vm)
3099 {
3100 return container_of(vm, struct i915_hw_ppgtt, vm);
3101 }
3102
3103 /* i915_gem_fence_reg.c */
3104 struct drm_i915_fence_reg *
3105 i915_reserve_fence(struct drm_i915_private *dev_priv);
3106 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3107
3108 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3109 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3110
3111 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3112 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3113 struct sg_table *pages);
3114 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3115 struct sg_table *pages);
3116
3117 static inline struct i915_gem_context *
3118 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3119 {
3120 return idr_find(&file_priv->context_idr, id);
3121 }
3122
3123 static inline struct i915_gem_context *
3124 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3125 {
3126 struct i915_gem_context *ctx;
3127
3128 rcu_read_lock();
3129 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3130 if (ctx && !kref_get_unless_zero(&ctx->ref))
3131 ctx = NULL;
3132 rcu_read_unlock();
3133
3134 return ctx;
3135 }
3136
3137 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3138 struct drm_file *file);
3139 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3140 struct drm_file *file);
3141 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3142 struct drm_file *file);
3143 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3144 struct i915_gem_context *ctx,
3145 uint32_t *reg_state);
3146
3147 /* i915_gem_evict.c */
3148 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3149 u64 min_size, u64 alignment,
3150 unsigned cache_level,
3151 u64 start, u64 end,
3152 unsigned flags);
3153 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3154 struct drm_mm_node *node,
3155 unsigned int flags);
3156 int i915_gem_evict_vm(struct i915_address_space *vm);
3157
3158 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3159
3160 /* belongs in i915_gem_gtt.h */
3161 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3162 {
3163 wmb();
3164 if (INTEL_GEN(dev_priv) < 6)
3165 intel_gtt_chipset_flush();
3166 }
3167
3168 /* i915_gem_stolen.c */
3169 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3170 struct drm_mm_node *node, u64 size,
3171 unsigned alignment);
3172 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3173 struct drm_mm_node *node, u64 size,
3174 unsigned alignment, u64 start,
3175 u64 end);
3176 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3177 struct drm_mm_node *node);
3178 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3179 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3180 struct drm_i915_gem_object *
3181 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3182 resource_size_t size);
3183 struct drm_i915_gem_object *
3184 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3185 resource_size_t stolen_offset,
3186 resource_size_t gtt_offset,
3187 resource_size_t size);
3188
3189 /* i915_gem_internal.c */
3190 struct drm_i915_gem_object *
3191 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3192 phys_addr_t size);
3193
3194 /* i915_gem_shrinker.c */
3195 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3196 unsigned long target,
3197 unsigned long *nr_scanned,
3198 unsigned flags);
3199 #define I915_SHRINK_PURGEABLE 0x1
3200 #define I915_SHRINK_UNBOUND 0x2
3201 #define I915_SHRINK_BOUND 0x4
3202 #define I915_SHRINK_ACTIVE 0x8
3203 #define I915_SHRINK_VMAPS 0x10
3204 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3205 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3206 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3207 void i915_gem_shrinker_taints_mutex(struct mutex *mutex);
3208
3209 /* i915_gem_tiling.c */
3210 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3211 {
3212 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3213
3214 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3215 i915_gem_object_is_tiled(obj);
3216 }
3217
3218 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3219 unsigned int tiling, unsigned int stride);
3220 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3221 unsigned int tiling, unsigned int stride);
3222
3223 /* i915_debugfs.c */
3224 #ifdef CONFIG_DEBUG_FS
3225 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3226 int i915_debugfs_connector_add(struct drm_connector *connector);
3227 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3228 #else
3229 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3230 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3231 { return 0; }
3232 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3233 #endif
3234
3235 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3236
3237 /* i915_cmd_parser.c */
3238 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3239 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3240 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3241 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3242 struct drm_i915_gem_object *batch_obj,
3243 struct drm_i915_gem_object *shadow_batch_obj,
3244 u32 batch_start_offset,
3245 u32 batch_len,
3246 bool is_master);
3247
3248 /* i915_perf.c */
3249 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3250 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3251 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3252 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3253
3254 /* i915_suspend.c */
3255 extern int i915_save_state(struct drm_i915_private *dev_priv);
3256 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3257
3258 /* i915_sysfs.c */
3259 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3260 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3261
3262 /* intel_lpe_audio.c */
3263 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3264 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3265 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3266 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3267 enum pipe pipe, enum port port,
3268 const void *eld, int ls_clock, bool dp_output);
3269
3270 /* intel_i2c.c */
3271 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3272 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3273 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3274 unsigned int pin);
3275 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3276
3277 extern struct i2c_adapter *
3278 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3279 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3280 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3281 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3282 {
3283 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3284 }
3285 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3286
3287 /* intel_bios.c */
3288 void intel_bios_init(struct drm_i915_private *dev_priv);
3289 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3290 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3291 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3292 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3293 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3294 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3295 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3296 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3297 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3298 enum port port);
3299 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3300 enum port port);
3301 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port);
3302
3303 /* intel_acpi.c */
3304 #ifdef CONFIG_ACPI
3305 extern void intel_register_dsm_handler(void);
3306 extern void intel_unregister_dsm_handler(void);
3307 #else
3308 static inline void intel_register_dsm_handler(void) { return; }
3309 static inline void intel_unregister_dsm_handler(void) { return; }
3310 #endif /* CONFIG_ACPI */
3311
3312 /* intel_device_info.c */
3313 static inline struct intel_device_info *
3314 mkwrite_device_info(struct drm_i915_private *dev_priv)
3315 {
3316 return (struct intel_device_info *)&dev_priv->info;
3317 }
3318
3319 /* modesetting */
3320 extern void intel_modeset_init_hw(struct drm_device *dev);
3321 extern int intel_modeset_init(struct drm_device *dev);
3322 extern void intel_modeset_cleanup(struct drm_device *dev);
3323 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3324 bool state);
3325 extern void intel_display_resume(struct drm_device *dev);
3326 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3327 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3328 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3329 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3330 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3331 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3332 bool interactive);
3333 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3334 bool enable);
3335 void intel_dsc_enable(struct intel_encoder *encoder,
3336 const struct intel_crtc_state *crtc_state);
3337 void intel_dsc_disable(const struct intel_crtc_state *crtc_state);
3338
3339 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3340 struct drm_file *file);
3341
3342 /* overlay */
3343 extern struct intel_overlay_error_state *
3344 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3345 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3346 struct intel_overlay_error_state *error);
3347
3348 extern struct intel_display_error_state *
3349 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3350 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3351 struct intel_display_error_state *error);
3352
3353 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3354 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3355 u32 val, int fast_timeout_us,
3356 int slow_timeout_ms);
3357 #define sandybridge_pcode_write(dev_priv, mbox, val) \
3358 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3359
3360 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3361 u32 reply_mask, u32 reply, int timeout_base_ms);
3362
3363 /* intel_sideband.c */
3364 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3365 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3366 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3367 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3368 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3369 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3370 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3371 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3372 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3373 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3374 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3375 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3376 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3377 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3378 enum intel_sbi_destination destination);
3379 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3380 enum intel_sbi_destination destination);
3381 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3382 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3383
3384 /* intel_dpio_phy.c */
3385 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3386 enum dpio_phy *phy, enum dpio_channel *ch);
3387 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3388 enum port port, u32 margin, u32 scale,
3389 u32 enable, u32 deemphasis);
3390 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3391 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3392 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3393 enum dpio_phy phy);
3394 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3395 enum dpio_phy phy);
3396 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3397 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3398 uint8_t lane_lat_optim_mask);
3399 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3400
3401 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3402 u32 deemph_reg_value, u32 margin_reg_value,
3403 bool uniq_trans_scale);
3404 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3405 const struct intel_crtc_state *crtc_state,
3406 bool reset);
3407 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3408 const struct intel_crtc_state *crtc_state);
3409 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3410 const struct intel_crtc_state *crtc_state);
3411 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3412 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3413 const struct intel_crtc_state *old_crtc_state);
3414
3415 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3416 u32 demph_reg_value, u32 preemph_reg_value,
3417 u32 uniqtranscale_reg_value, u32 tx3_demph);
3418 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3419 const struct intel_crtc_state *crtc_state);
3420 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3421 const struct intel_crtc_state *crtc_state);
3422 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3423 const struct intel_crtc_state *old_crtc_state);
3424
3425 /* intel_combo_phy.c */
3426 void icl_combo_phys_init(struct drm_i915_private *dev_priv);
3427 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3428 void cnl_combo_phys_init(struct drm_i915_private *dev_priv);
3429 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3430
3431 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3432 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3433 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3434 const i915_reg_t reg);
3435
3436 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3437
3438 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3439 const i915_reg_t reg)
3440 {
3441 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3442 }
3443
3444 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3445 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3446
3447 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3448 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3449 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3450 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3451
3452 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3453 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3454 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3455 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3456
3457 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3458 * will be implemented using 2 32-bit writes in an arbitrary order with
3459 * an arbitrary delay between them. This can cause the hardware to
3460 * act upon the intermediate value, possibly leading to corruption and
3461 * machine death. For this reason we do not support I915_WRITE64, or
3462 * dev_priv->uncore.funcs.mmio_writeq.
3463 *
3464 * When reading a 64-bit value as two 32-bit values, the delay may cause
3465 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3466 * occasionally a 64-bit register does not actualy support a full readq
3467 * and must be read using two 32-bit reads.
3468 *
3469 * You have been warned.
3470 */
3471 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3472
3473 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3474 u32 upper, lower, old_upper, loop = 0; \
3475 upper = I915_READ(upper_reg); \
3476 do { \
3477 old_upper = upper; \
3478 lower = I915_READ(lower_reg); \
3479 upper = I915_READ(upper_reg); \
3480 } while (upper != old_upper && loop++ < 2); \
3481 (u64)upper << 32 | lower; })
3482
3483 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3484 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3485
3486 #define __raw_read(x, s) \
3487 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3488 i915_reg_t reg) \
3489 { \
3490 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3491 }
3492
3493 #define __raw_write(x, s) \
3494 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3495 i915_reg_t reg, uint##x##_t val) \
3496 { \
3497 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3498 }
3499 __raw_read(8, b)
3500 __raw_read(16, w)
3501 __raw_read(32, l)
3502 __raw_read(64, q)
3503
3504 __raw_write(8, b)
3505 __raw_write(16, w)
3506 __raw_write(32, l)
3507 __raw_write(64, q)
3508
3509 #undef __raw_read
3510 #undef __raw_write
3511
3512 /* These are untraced mmio-accessors that are only valid to be used inside
3513 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3514 * controlled.
3515 *
3516 * Think twice, and think again, before using these.
3517 *
3518 * As an example, these accessors can possibly be used between:
3519 *
3520 * spin_lock_irq(&dev_priv->uncore.lock);
3521 * intel_uncore_forcewake_get__locked();
3522 *
3523 * and
3524 *
3525 * intel_uncore_forcewake_put__locked();
3526 * spin_unlock_irq(&dev_priv->uncore.lock);
3527 *
3528 *
3529 * Note: some registers may not need forcewake held, so
3530 * intel_uncore_forcewake_{get,put} can be omitted, see
3531 * intel_uncore_forcewake_for_reg().
3532 *
3533 * Certain architectures will die if the same cacheline is concurrently accessed
3534 * by different clients (e.g. on Ivybridge). Access to registers should
3535 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3536 * a more localised lock guarding all access to that bank of registers.
3537 */
3538 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3539 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3540 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3541 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3542
3543 /* "Broadcast RGB" property */
3544 #define INTEL_BROADCAST_RGB_AUTO 0
3545 #define INTEL_BROADCAST_RGB_FULL 1
3546 #define INTEL_BROADCAST_RGB_LIMITED 2
3547
3548 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3549 {
3550 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3551 return VLV_VGACNTRL;
3552 else if (INTEL_GEN(dev_priv) >= 5)
3553 return CPU_VGACNTRL;
3554 else
3555 return VGACNTRL;
3556 }
3557
3558 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3559 {
3560 unsigned long j = msecs_to_jiffies(m);
3561
3562 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3563 }
3564
3565 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3566 {
3567 /* nsecs_to_jiffies64() does not guard against overflow */
3568 if (NSEC_PER_SEC % HZ &&
3569 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3570 return MAX_JIFFY_OFFSET;
3571
3572 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3573 }
3574
3575 /*
3576 * If you need to wait X milliseconds between events A and B, but event B
3577 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3578 * when event A happened, then just before event B you call this function and
3579 * pass the timestamp as the first argument, and X as the second argument.
3580 */
3581 static inline void
3582 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3583 {
3584 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3585
3586 /*
3587 * Don't re-read the value of "jiffies" every time since it may change
3588 * behind our back and break the math.
3589 */
3590 tmp_jiffies = jiffies;
3591 target_jiffies = timestamp_jiffies +
3592 msecs_to_jiffies_timeout(to_wait_ms);
3593
3594 if (time_after(target_jiffies, tmp_jiffies)) {
3595 remaining_jiffies = target_jiffies - tmp_jiffies;
3596 while (remaining_jiffies)
3597 remaining_jiffies =
3598 schedule_timeout_uninterruptible(remaining_jiffies);
3599 }
3600 }
3601
3602 static inline bool
3603 __i915_request_irq_complete(const struct i915_request *rq)
3604 {
3605 struct intel_engine_cs *engine = rq->engine;
3606 u32 seqno;
3607
3608 /* Note that the engine may have wrapped around the seqno, and
3609 * so our request->global_seqno will be ahead of the hardware,
3610 * even though it completed the request before wrapping. We catch
3611 * this by kicking all the waiters before resetting the seqno
3612 * in hardware, and also signal the fence.
3613 */
3614 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3615 return true;
3616
3617 /* The request was dequeued before we were awoken. We check after
3618 * inspecting the hw to confirm that this was the same request
3619 * that generated the HWS update. The memory barriers within
3620 * the request execution are sufficient to ensure that a check
3621 * after reading the value from hw matches this request.
3622 */
3623 seqno = i915_request_global_seqno(rq);
3624 if (!seqno)
3625 return false;
3626
3627 /* Before we do the heavier coherent read of the seqno,
3628 * check the value (hopefully) in the CPU cacheline.
3629 */
3630 if (__i915_request_completed(rq, seqno))
3631 return true;
3632
3633 /* Ensure our read of the seqno is coherent so that we
3634 * do not "miss an interrupt" (i.e. if this is the last
3635 * request and the seqno write from the GPU is not visible
3636 * by the time the interrupt fires, we will see that the
3637 * request is incomplete and go back to sleep awaiting
3638 * another interrupt that will never come.)
3639 *
3640 * Strictly, we only need to do this once after an interrupt,
3641 * but it is easier and safer to do it every time the waiter
3642 * is woken.
3643 */
3644 if (engine->irq_seqno_barrier &&
3645 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3646 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3647
3648 /* The ordering of irq_posted versus applying the barrier
3649 * is crucial. The clearing of the current irq_posted must
3650 * be visible before we perform the barrier operation,
3651 * such that if a subsequent interrupt arrives, irq_posted
3652 * is reasserted and our task rewoken (which causes us to
3653 * do another __i915_request_irq_complete() immediately
3654 * and reapply the barrier). Conversely, if the clear
3655 * occurs after the barrier, then an interrupt that arrived
3656 * whilst we waited on the barrier would not trigger a
3657 * barrier on the next pass, and the read may not see the
3658 * seqno update.
3659 */
3660 engine->irq_seqno_barrier(engine);
3661
3662 /* If we consume the irq, but we are no longer the bottom-half,
3663 * the real bottom-half may not have serialised their own
3664 * seqno check with the irq-barrier (i.e. may have inspected
3665 * the seqno before we believe it coherent since they see
3666 * irq_posted == false but we are still running).
3667 */
3668 spin_lock_irq(&b->irq_lock);
3669 if (b->irq_wait && b->irq_wait->tsk != current)
3670 /* Note that if the bottom-half is changed as we
3671 * are sending the wake-up, the new bottom-half will
3672 * be woken by whomever made the change. We only have
3673 * to worry about when we steal the irq-posted for
3674 * ourself.
3675 */
3676 wake_up_process(b->irq_wait->tsk);
3677 spin_unlock_irq(&b->irq_lock);
3678
3679 if (__i915_request_completed(rq, seqno))
3680 return true;
3681 }
3682
3683 return false;
3684 }
3685
3686 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3687 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3688
3689 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3690 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3691 * perform the operation. To check beforehand, pass in the parameters to
3692 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3693 * you only need to pass in the minor offsets, page-aligned pointers are
3694 * always valid.
3695 *
3696 * For just checking for SSE4.1, in the foreknowledge that the future use
3697 * will be correctly aligned, just use i915_has_memcpy_from_wc().
3698 */
3699 #define i915_can_memcpy_from_wc(dst, src, len) \
3700 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3701
3702 #define i915_has_memcpy_from_wc() \
3703 i915_memcpy_from_wc(NULL, NULL, 0)
3704
3705 /* i915_mm.c */
3706 int remap_io_mapping(struct vm_area_struct *vma,
3707 unsigned long addr, unsigned long pfn, unsigned long size,
3708 struct io_mapping *iomap);
3709
3710 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3711 {
3712 if (INTEL_GEN(i915) >= 10)
3713 return CNL_HWS_CSB_WRITE_INDEX;
3714 else
3715 return I915_HWS_CSB_WRITE_INDEX;
3716 }
3717
3718 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3719 {
3720 return i915_ggtt_offset(i915->gt.scratch);
3721 }
3722
3723 #endif