]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'pm-5.1-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drm_vma_manager.h>
29 #include <drm/drm_pci.h>
30 #include <drm/i915_drm.h>
31 #include <linux/dma-fence-array.h>
32 #include <linux/kthread.h>
33 #include <linux/reservation.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/stop_machine.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 #include <linux/mman.h>
41
42 #include "i915_drv.h"
43 #include "i915_gem_clflush.h"
44 #include "i915_gemfs.h"
45 #include "i915_reset.h"
46 #include "i915_trace.h"
47 #include "i915_vgpu.h"
48
49 #include "intel_drv.h"
50 #include "intel_frontbuffer.h"
51 #include "intel_mocs.h"
52 #include "intel_workarounds.h"
53
54 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (obj->cache_dirty)
59 return false;
60
61 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
62 return true;
63
64 return obj->pin_global; /* currently in use by HW, keep flushed */
65 }
66
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69 struct drm_mm_node *node, u32 size)
70 {
71 memset(node, 0, sizeof(*node));
72 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
73 size, 0, I915_COLOR_UNEVICTABLE,
74 0, ggtt->mappable_end,
75 DRM_MM_INSERT_LOW);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 u64 size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 u64 size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 might_sleep();
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 !i915_reset_backoff(error),
117 I915_RESET_TIMEOUT);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 } else {
124 return 0;
125 }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130 struct drm_i915_private *dev_priv = to_i915(dev);
131 int ret;
132
133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
141 return 0;
142 }
143
144 static u32 __i915_gem_park(struct drm_i915_private *i915)
145 {
146 intel_wakeref_t wakeref;
147
148 GEM_TRACE("\n");
149
150 lockdep_assert_held(&i915->drm.struct_mutex);
151 GEM_BUG_ON(i915->gt.active_requests);
152 GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
153
154 if (!i915->gt.awake)
155 return I915_EPOCH_INVALID;
156
157 GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
158
159 /*
160 * Be paranoid and flush a concurrent interrupt to make sure
161 * we don't reactivate any irq tasklets after parking.
162 *
163 * FIXME: Note that even though we have waited for execlists to be idle,
164 * there may still be an in-flight interrupt even though the CSB
165 * is now empty. synchronize_irq() makes sure that a residual interrupt
166 * is completed before we continue, but it doesn't prevent the HW from
167 * raising a spurious interrupt later. To complete the shield we should
168 * coordinate disabling the CS irq with flushing the interrupts.
169 */
170 synchronize_irq(i915->drm.irq);
171
172 intel_engines_park(i915);
173 i915_timelines_park(i915);
174
175 i915_pmu_gt_parked(i915);
176 i915_vma_parked(i915);
177
178 wakeref = fetch_and_zero(&i915->gt.awake);
179 GEM_BUG_ON(!wakeref);
180
181 if (INTEL_GEN(i915) >= 6)
182 gen6_rps_idle(i915);
183
184 intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
185
186 return i915->gt.epoch;
187 }
188
189 void i915_gem_park(struct drm_i915_private *i915)
190 {
191 GEM_TRACE("\n");
192
193 lockdep_assert_held(&i915->drm.struct_mutex);
194 GEM_BUG_ON(i915->gt.active_requests);
195
196 if (!i915->gt.awake)
197 return;
198
199 /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
200 mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
201 }
202
203 void i915_gem_unpark(struct drm_i915_private *i915)
204 {
205 GEM_TRACE("\n");
206
207 lockdep_assert_held(&i915->drm.struct_mutex);
208 GEM_BUG_ON(!i915->gt.active_requests);
209 assert_rpm_wakelock_held(i915);
210
211 if (i915->gt.awake)
212 return;
213
214 /*
215 * It seems that the DMC likes to transition between the DC states a lot
216 * when there are no connected displays (no active power domains) during
217 * command submission.
218 *
219 * This activity has negative impact on the performance of the chip with
220 * huge latencies observed in the interrupt handler and elsewhere.
221 *
222 * Work around it by grabbing a GT IRQ power domain whilst there is any
223 * GT activity, preventing any DC state transitions.
224 */
225 i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
226 GEM_BUG_ON(!i915->gt.awake);
227
228 if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
229 i915->gt.epoch = 1;
230
231 intel_enable_gt_powersave(i915);
232 i915_update_gfx_val(i915);
233 if (INTEL_GEN(i915) >= 6)
234 gen6_rps_busy(i915);
235 i915_pmu_gt_unparked(i915);
236
237 intel_engines_unpark(i915);
238
239 i915_queue_hangcheck(i915);
240
241 queue_delayed_work(i915->wq,
242 &i915->gt.retire_work,
243 round_jiffies_up_relative(HZ));
244 }
245
246 int
247 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
248 struct drm_file *file)
249 {
250 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
251 struct drm_i915_gem_get_aperture *args = data;
252 struct i915_vma *vma;
253 u64 pinned;
254
255 mutex_lock(&ggtt->vm.mutex);
256
257 pinned = ggtt->vm.reserved;
258 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
259 if (i915_vma_is_pinned(vma))
260 pinned += vma->node.size;
261
262 mutex_unlock(&ggtt->vm.mutex);
263
264 args->aper_size = ggtt->vm.total;
265 args->aper_available_size = args->aper_size - pinned;
266
267 return 0;
268 }
269
270 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
271 {
272 struct address_space *mapping = obj->base.filp->f_mapping;
273 drm_dma_handle_t *phys;
274 struct sg_table *st;
275 struct scatterlist *sg;
276 char *vaddr;
277 int i;
278 int err;
279
280 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
281 return -EINVAL;
282
283 /* Always aligning to the object size, allows a single allocation
284 * to handle all possible callers, and given typical object sizes,
285 * the alignment of the buddy allocation will naturally match.
286 */
287 phys = drm_pci_alloc(obj->base.dev,
288 roundup_pow_of_two(obj->base.size),
289 roundup_pow_of_two(obj->base.size));
290 if (!phys)
291 return -ENOMEM;
292
293 vaddr = phys->vaddr;
294 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
295 struct page *page;
296 char *src;
297
298 page = shmem_read_mapping_page(mapping, i);
299 if (IS_ERR(page)) {
300 err = PTR_ERR(page);
301 goto err_phys;
302 }
303
304 src = kmap_atomic(page);
305 memcpy(vaddr, src, PAGE_SIZE);
306 drm_clflush_virt_range(vaddr, PAGE_SIZE);
307 kunmap_atomic(src);
308
309 put_page(page);
310 vaddr += PAGE_SIZE;
311 }
312
313 i915_gem_chipset_flush(to_i915(obj->base.dev));
314
315 st = kmalloc(sizeof(*st), GFP_KERNEL);
316 if (!st) {
317 err = -ENOMEM;
318 goto err_phys;
319 }
320
321 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
322 kfree(st);
323 err = -ENOMEM;
324 goto err_phys;
325 }
326
327 sg = st->sgl;
328 sg->offset = 0;
329 sg->length = obj->base.size;
330
331 sg_dma_address(sg) = phys->busaddr;
332 sg_dma_len(sg) = obj->base.size;
333
334 obj->phys_handle = phys;
335
336 __i915_gem_object_set_pages(obj, st, sg->length);
337
338 return 0;
339
340 err_phys:
341 drm_pci_free(obj->base.dev, phys);
342
343 return err;
344 }
345
346 static void __start_cpu_write(struct drm_i915_gem_object *obj)
347 {
348 obj->read_domains = I915_GEM_DOMAIN_CPU;
349 obj->write_domain = I915_GEM_DOMAIN_CPU;
350 if (cpu_write_needs_clflush(obj))
351 obj->cache_dirty = true;
352 }
353
354 static void
355 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
356 struct sg_table *pages,
357 bool needs_clflush)
358 {
359 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
360
361 if (obj->mm.madv == I915_MADV_DONTNEED)
362 obj->mm.dirty = false;
363
364 if (needs_clflush &&
365 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
366 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
367 drm_clflush_sg(pages);
368
369 __start_cpu_write(obj);
370 }
371
372 static void
373 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
374 struct sg_table *pages)
375 {
376 __i915_gem_object_release_shmem(obj, pages, false);
377
378 if (obj->mm.dirty) {
379 struct address_space *mapping = obj->base.filp->f_mapping;
380 char *vaddr = obj->phys_handle->vaddr;
381 int i;
382
383 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
384 struct page *page;
385 char *dst;
386
387 page = shmem_read_mapping_page(mapping, i);
388 if (IS_ERR(page))
389 continue;
390
391 dst = kmap_atomic(page);
392 drm_clflush_virt_range(vaddr, PAGE_SIZE);
393 memcpy(dst, vaddr, PAGE_SIZE);
394 kunmap_atomic(dst);
395
396 set_page_dirty(page);
397 if (obj->mm.madv == I915_MADV_WILLNEED)
398 mark_page_accessed(page);
399 put_page(page);
400 vaddr += PAGE_SIZE;
401 }
402 obj->mm.dirty = false;
403 }
404
405 sg_free_table(pages);
406 kfree(pages);
407
408 drm_pci_free(obj->base.dev, obj->phys_handle);
409 }
410
411 static void
412 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
413 {
414 i915_gem_object_unpin_pages(obj);
415 }
416
417 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
418 .get_pages = i915_gem_object_get_pages_phys,
419 .put_pages = i915_gem_object_put_pages_phys,
420 .release = i915_gem_object_release_phys,
421 };
422
423 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
424
425 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
426 {
427 struct i915_vma *vma;
428 LIST_HEAD(still_in_list);
429 int ret;
430
431 lockdep_assert_held(&obj->base.dev->struct_mutex);
432
433 /* Closed vma are removed from the obj->vma_list - but they may
434 * still have an active binding on the object. To remove those we
435 * must wait for all rendering to complete to the object (as unbinding
436 * must anyway), and retire the requests.
437 */
438 ret = i915_gem_object_set_to_cpu_domain(obj, false);
439 if (ret)
440 return ret;
441
442 spin_lock(&obj->vma.lock);
443 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
444 struct i915_vma,
445 obj_link))) {
446 list_move_tail(&vma->obj_link, &still_in_list);
447 spin_unlock(&obj->vma.lock);
448
449 ret = i915_vma_unbind(vma);
450
451 spin_lock(&obj->vma.lock);
452 }
453 list_splice(&still_in_list, &obj->vma.list);
454 spin_unlock(&obj->vma.lock);
455
456 return ret;
457 }
458
459 static long
460 i915_gem_object_wait_fence(struct dma_fence *fence,
461 unsigned int flags,
462 long timeout,
463 struct intel_rps_client *rps_client)
464 {
465 struct i915_request *rq;
466
467 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
468
469 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
470 return timeout;
471
472 if (!dma_fence_is_i915(fence))
473 return dma_fence_wait_timeout(fence,
474 flags & I915_WAIT_INTERRUPTIBLE,
475 timeout);
476
477 rq = to_request(fence);
478 if (i915_request_completed(rq))
479 goto out;
480
481 /*
482 * This client is about to stall waiting for the GPU. In many cases
483 * this is undesirable and limits the throughput of the system, as
484 * many clients cannot continue processing user input/output whilst
485 * blocked. RPS autotuning may take tens of milliseconds to respond
486 * to the GPU load and thus incurs additional latency for the client.
487 * We can circumvent that by promoting the GPU frequency to maximum
488 * before we wait. This makes the GPU throttle up much more quickly
489 * (good for benchmarks and user experience, e.g. window animations),
490 * but at a cost of spending more power processing the workload
491 * (bad for battery). Not all clients even want their results
492 * immediately and for them we should just let the GPU select its own
493 * frequency to maximise efficiency. To prevent a single client from
494 * forcing the clocks too high for the whole system, we only allow
495 * each client to waitboost once in a busy period.
496 */
497 if (rps_client && !i915_request_started(rq)) {
498 if (INTEL_GEN(rq->i915) >= 6)
499 gen6_rps_boost(rq, rps_client);
500 }
501
502 timeout = i915_request_wait(rq, flags, timeout);
503
504 out:
505 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
506 i915_request_retire_upto(rq);
507
508 return timeout;
509 }
510
511 static long
512 i915_gem_object_wait_reservation(struct reservation_object *resv,
513 unsigned int flags,
514 long timeout,
515 struct intel_rps_client *rps_client)
516 {
517 unsigned int seq = __read_seqcount_begin(&resv->seq);
518 struct dma_fence *excl;
519 bool prune_fences = false;
520
521 if (flags & I915_WAIT_ALL) {
522 struct dma_fence **shared;
523 unsigned int count, i;
524 int ret;
525
526 ret = reservation_object_get_fences_rcu(resv,
527 &excl, &count, &shared);
528 if (ret)
529 return ret;
530
531 for (i = 0; i < count; i++) {
532 timeout = i915_gem_object_wait_fence(shared[i],
533 flags, timeout,
534 rps_client);
535 if (timeout < 0)
536 break;
537
538 dma_fence_put(shared[i]);
539 }
540
541 for (; i < count; i++)
542 dma_fence_put(shared[i]);
543 kfree(shared);
544
545 /*
546 * If both shared fences and an exclusive fence exist,
547 * then by construction the shared fences must be later
548 * than the exclusive fence. If we successfully wait for
549 * all the shared fences, we know that the exclusive fence
550 * must all be signaled. If all the shared fences are
551 * signaled, we can prune the array and recover the
552 * floating references on the fences/requests.
553 */
554 prune_fences = count && timeout >= 0;
555 } else {
556 excl = reservation_object_get_excl_rcu(resv);
557 }
558
559 if (excl && timeout >= 0)
560 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
561 rps_client);
562
563 dma_fence_put(excl);
564
565 /*
566 * Opportunistically prune the fences iff we know they have *all* been
567 * signaled and that the reservation object has not been changed (i.e.
568 * no new fences have been added).
569 */
570 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
571 if (reservation_object_trylock(resv)) {
572 if (!__read_seqcount_retry(&resv->seq, seq))
573 reservation_object_add_excl_fence(resv, NULL);
574 reservation_object_unlock(resv);
575 }
576 }
577
578 return timeout;
579 }
580
581 static void __fence_set_priority(struct dma_fence *fence,
582 const struct i915_sched_attr *attr)
583 {
584 struct i915_request *rq;
585 struct intel_engine_cs *engine;
586
587 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
588 return;
589
590 rq = to_request(fence);
591 engine = rq->engine;
592
593 local_bh_disable();
594 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
595 if (engine->schedule)
596 engine->schedule(rq, attr);
597 rcu_read_unlock();
598 local_bh_enable(); /* kick the tasklets if queues were reprioritised */
599 }
600
601 static void fence_set_priority(struct dma_fence *fence,
602 const struct i915_sched_attr *attr)
603 {
604 /* Recurse once into a fence-array */
605 if (dma_fence_is_array(fence)) {
606 struct dma_fence_array *array = to_dma_fence_array(fence);
607 int i;
608
609 for (i = 0; i < array->num_fences; i++)
610 __fence_set_priority(array->fences[i], attr);
611 } else {
612 __fence_set_priority(fence, attr);
613 }
614 }
615
616 int
617 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
618 unsigned int flags,
619 const struct i915_sched_attr *attr)
620 {
621 struct dma_fence *excl;
622
623 if (flags & I915_WAIT_ALL) {
624 struct dma_fence **shared;
625 unsigned int count, i;
626 int ret;
627
628 ret = reservation_object_get_fences_rcu(obj->resv,
629 &excl, &count, &shared);
630 if (ret)
631 return ret;
632
633 for (i = 0; i < count; i++) {
634 fence_set_priority(shared[i], attr);
635 dma_fence_put(shared[i]);
636 }
637
638 kfree(shared);
639 } else {
640 excl = reservation_object_get_excl_rcu(obj->resv);
641 }
642
643 if (excl) {
644 fence_set_priority(excl, attr);
645 dma_fence_put(excl);
646 }
647 return 0;
648 }
649
650 /**
651 * Waits for rendering to the object to be completed
652 * @obj: i915 gem object
653 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
654 * @timeout: how long to wait
655 * @rps_client: client (user process) to charge for any waitboosting
656 */
657 int
658 i915_gem_object_wait(struct drm_i915_gem_object *obj,
659 unsigned int flags,
660 long timeout,
661 struct intel_rps_client *rps_client)
662 {
663 might_sleep();
664 GEM_BUG_ON(timeout < 0);
665
666 timeout = i915_gem_object_wait_reservation(obj->resv,
667 flags, timeout,
668 rps_client);
669 return timeout < 0 ? timeout : 0;
670 }
671
672 static struct intel_rps_client *to_rps_client(struct drm_file *file)
673 {
674 struct drm_i915_file_private *fpriv = file->driver_priv;
675
676 return &fpriv->rps_client;
677 }
678
679 static int
680 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
681 struct drm_i915_gem_pwrite *args,
682 struct drm_file *file)
683 {
684 void *vaddr = obj->phys_handle->vaddr + args->offset;
685 char __user *user_data = u64_to_user_ptr(args->data_ptr);
686
687 /* We manually control the domain here and pretend that it
688 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
689 */
690 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
691 if (copy_from_user(vaddr, user_data, args->size))
692 return -EFAULT;
693
694 drm_clflush_virt_range(vaddr, args->size);
695 i915_gem_chipset_flush(to_i915(obj->base.dev));
696
697 intel_fb_obj_flush(obj, ORIGIN_CPU);
698 return 0;
699 }
700
701 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
702 {
703 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
704 }
705
706 void i915_gem_object_free(struct drm_i915_gem_object *obj)
707 {
708 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
709 kmem_cache_free(dev_priv->objects, obj);
710 }
711
712 static int
713 i915_gem_create(struct drm_file *file,
714 struct drm_i915_private *dev_priv,
715 u64 size,
716 u32 *handle_p)
717 {
718 struct drm_i915_gem_object *obj;
719 int ret;
720 u32 handle;
721
722 size = roundup(size, PAGE_SIZE);
723 if (size == 0)
724 return -EINVAL;
725
726 /* Allocate the new object */
727 obj = i915_gem_object_create(dev_priv, size);
728 if (IS_ERR(obj))
729 return PTR_ERR(obj);
730
731 ret = drm_gem_handle_create(file, &obj->base, &handle);
732 /* drop reference from allocate - handle holds it now */
733 i915_gem_object_put(obj);
734 if (ret)
735 return ret;
736
737 *handle_p = handle;
738 return 0;
739 }
740
741 int
742 i915_gem_dumb_create(struct drm_file *file,
743 struct drm_device *dev,
744 struct drm_mode_create_dumb *args)
745 {
746 /* have to work out size/pitch and return them */
747 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
748 args->size = args->pitch * args->height;
749 return i915_gem_create(file, to_i915(dev),
750 args->size, &args->handle);
751 }
752
753 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
754 {
755 return !(obj->cache_level == I915_CACHE_NONE ||
756 obj->cache_level == I915_CACHE_WT);
757 }
758
759 /**
760 * Creates a new mm object and returns a handle to it.
761 * @dev: drm device pointer
762 * @data: ioctl data blob
763 * @file: drm file pointer
764 */
765 int
766 i915_gem_create_ioctl(struct drm_device *dev, void *data,
767 struct drm_file *file)
768 {
769 struct drm_i915_private *dev_priv = to_i915(dev);
770 struct drm_i915_gem_create *args = data;
771
772 i915_gem_flush_free_objects(dev_priv);
773
774 return i915_gem_create(file, dev_priv,
775 args->size, &args->handle);
776 }
777
778 static inline enum fb_op_origin
779 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
780 {
781 return (domain == I915_GEM_DOMAIN_GTT ?
782 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
783 }
784
785 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
786 {
787 intel_wakeref_t wakeref;
788
789 /*
790 * No actual flushing is required for the GTT write domain for reads
791 * from the GTT domain. Writes to it "immediately" go to main memory
792 * as far as we know, so there's no chipset flush. It also doesn't
793 * land in the GPU render cache.
794 *
795 * However, we do have to enforce the order so that all writes through
796 * the GTT land before any writes to the device, such as updates to
797 * the GATT itself.
798 *
799 * We also have to wait a bit for the writes to land from the GTT.
800 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
801 * timing. This issue has only been observed when switching quickly
802 * between GTT writes and CPU reads from inside the kernel on recent hw,
803 * and it appears to only affect discrete GTT blocks (i.e. on LLC
804 * system agents we cannot reproduce this behaviour, until Cannonlake
805 * that was!).
806 */
807
808 wmb();
809
810 if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
811 return;
812
813 i915_gem_chipset_flush(dev_priv);
814
815 with_intel_runtime_pm(dev_priv, wakeref) {
816 spin_lock_irq(&dev_priv->uncore.lock);
817
818 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
819
820 spin_unlock_irq(&dev_priv->uncore.lock);
821 }
822 }
823
824 static void
825 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
826 {
827 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
828 struct i915_vma *vma;
829
830 if (!(obj->write_domain & flush_domains))
831 return;
832
833 switch (obj->write_domain) {
834 case I915_GEM_DOMAIN_GTT:
835 i915_gem_flush_ggtt_writes(dev_priv);
836
837 intel_fb_obj_flush(obj,
838 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
839
840 for_each_ggtt_vma(vma, obj) {
841 if (vma->iomap)
842 continue;
843
844 i915_vma_unset_ggtt_write(vma);
845 }
846 break;
847
848 case I915_GEM_DOMAIN_WC:
849 wmb();
850 break;
851
852 case I915_GEM_DOMAIN_CPU:
853 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
854 break;
855
856 case I915_GEM_DOMAIN_RENDER:
857 if (gpu_write_needs_clflush(obj))
858 obj->cache_dirty = true;
859 break;
860 }
861
862 obj->write_domain = 0;
863 }
864
865 /*
866 * Pins the specified object's pages and synchronizes the object with
867 * GPU accesses. Sets needs_clflush to non-zero if the caller should
868 * flush the object from the CPU cache.
869 */
870 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
871 unsigned int *needs_clflush)
872 {
873 int ret;
874
875 lockdep_assert_held(&obj->base.dev->struct_mutex);
876
877 *needs_clflush = 0;
878 if (!i915_gem_object_has_struct_page(obj))
879 return -ENODEV;
880
881 ret = i915_gem_object_wait(obj,
882 I915_WAIT_INTERRUPTIBLE |
883 I915_WAIT_LOCKED,
884 MAX_SCHEDULE_TIMEOUT,
885 NULL);
886 if (ret)
887 return ret;
888
889 ret = i915_gem_object_pin_pages(obj);
890 if (ret)
891 return ret;
892
893 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
894 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
895 ret = i915_gem_object_set_to_cpu_domain(obj, false);
896 if (ret)
897 goto err_unpin;
898 else
899 goto out;
900 }
901
902 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
903
904 /* If we're not in the cpu read domain, set ourself into the gtt
905 * read domain and manually flush cachelines (if required). This
906 * optimizes for the case when the gpu will dirty the data
907 * anyway again before the next pread happens.
908 */
909 if (!obj->cache_dirty &&
910 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
911 *needs_clflush = CLFLUSH_BEFORE;
912
913 out:
914 /* return with the pages pinned */
915 return 0;
916
917 err_unpin:
918 i915_gem_object_unpin_pages(obj);
919 return ret;
920 }
921
922 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
923 unsigned int *needs_clflush)
924 {
925 int ret;
926
927 lockdep_assert_held(&obj->base.dev->struct_mutex);
928
929 *needs_clflush = 0;
930 if (!i915_gem_object_has_struct_page(obj))
931 return -ENODEV;
932
933 ret = i915_gem_object_wait(obj,
934 I915_WAIT_INTERRUPTIBLE |
935 I915_WAIT_LOCKED |
936 I915_WAIT_ALL,
937 MAX_SCHEDULE_TIMEOUT,
938 NULL);
939 if (ret)
940 return ret;
941
942 ret = i915_gem_object_pin_pages(obj);
943 if (ret)
944 return ret;
945
946 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
947 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
948 ret = i915_gem_object_set_to_cpu_domain(obj, true);
949 if (ret)
950 goto err_unpin;
951 else
952 goto out;
953 }
954
955 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
956
957 /* If we're not in the cpu write domain, set ourself into the
958 * gtt write domain and manually flush cachelines (as required).
959 * This optimizes for the case when the gpu will use the data
960 * right away and we therefore have to clflush anyway.
961 */
962 if (!obj->cache_dirty) {
963 *needs_clflush |= CLFLUSH_AFTER;
964
965 /*
966 * Same trick applies to invalidate partially written
967 * cachelines read before writing.
968 */
969 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
970 *needs_clflush |= CLFLUSH_BEFORE;
971 }
972
973 out:
974 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
975 obj->mm.dirty = true;
976 /* return with the pages pinned */
977 return 0;
978
979 err_unpin:
980 i915_gem_object_unpin_pages(obj);
981 return ret;
982 }
983
984 static int
985 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
986 bool needs_clflush)
987 {
988 char *vaddr;
989 int ret;
990
991 vaddr = kmap(page);
992
993 if (needs_clflush)
994 drm_clflush_virt_range(vaddr + offset, len);
995
996 ret = __copy_to_user(user_data, vaddr + offset, len);
997
998 kunmap(page);
999
1000 return ret ? -EFAULT : 0;
1001 }
1002
1003 static int
1004 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1005 struct drm_i915_gem_pread *args)
1006 {
1007 char __user *user_data;
1008 u64 remain;
1009 unsigned int needs_clflush;
1010 unsigned int idx, offset;
1011 int ret;
1012
1013 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1014 if (ret)
1015 return ret;
1016
1017 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1018 mutex_unlock(&obj->base.dev->struct_mutex);
1019 if (ret)
1020 return ret;
1021
1022 remain = args->size;
1023 user_data = u64_to_user_ptr(args->data_ptr);
1024 offset = offset_in_page(args->offset);
1025 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1026 struct page *page = i915_gem_object_get_page(obj, idx);
1027 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1028
1029 ret = shmem_pread(page, offset, length, user_data,
1030 needs_clflush);
1031 if (ret)
1032 break;
1033
1034 remain -= length;
1035 user_data += length;
1036 offset = 0;
1037 }
1038
1039 i915_gem_obj_finish_shmem_access(obj);
1040 return ret;
1041 }
1042
1043 static inline bool
1044 gtt_user_read(struct io_mapping *mapping,
1045 loff_t base, int offset,
1046 char __user *user_data, int length)
1047 {
1048 void __iomem *vaddr;
1049 unsigned long unwritten;
1050
1051 /* We can use the cpu mem copy function because this is X86. */
1052 vaddr = io_mapping_map_atomic_wc(mapping, base);
1053 unwritten = __copy_to_user_inatomic(user_data,
1054 (void __force *)vaddr + offset,
1055 length);
1056 io_mapping_unmap_atomic(vaddr);
1057 if (unwritten) {
1058 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1059 unwritten = copy_to_user(user_data,
1060 (void __force *)vaddr + offset,
1061 length);
1062 io_mapping_unmap(vaddr);
1063 }
1064 return unwritten;
1065 }
1066
1067 static int
1068 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1069 const struct drm_i915_gem_pread *args)
1070 {
1071 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1072 struct i915_ggtt *ggtt = &i915->ggtt;
1073 intel_wakeref_t wakeref;
1074 struct drm_mm_node node;
1075 struct i915_vma *vma;
1076 void __user *user_data;
1077 u64 remain, offset;
1078 int ret;
1079
1080 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1081 if (ret)
1082 return ret;
1083
1084 wakeref = intel_runtime_pm_get(i915);
1085 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1086 PIN_MAPPABLE |
1087 PIN_NONFAULT |
1088 PIN_NONBLOCK);
1089 if (!IS_ERR(vma)) {
1090 node.start = i915_ggtt_offset(vma);
1091 node.allocated = false;
1092 ret = i915_vma_put_fence(vma);
1093 if (ret) {
1094 i915_vma_unpin(vma);
1095 vma = ERR_PTR(ret);
1096 }
1097 }
1098 if (IS_ERR(vma)) {
1099 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1100 if (ret)
1101 goto out_unlock;
1102 GEM_BUG_ON(!node.allocated);
1103 }
1104
1105 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1106 if (ret)
1107 goto out_unpin;
1108
1109 mutex_unlock(&i915->drm.struct_mutex);
1110
1111 user_data = u64_to_user_ptr(args->data_ptr);
1112 remain = args->size;
1113 offset = args->offset;
1114
1115 while (remain > 0) {
1116 /* Operation in this page
1117 *
1118 * page_base = page offset within aperture
1119 * page_offset = offset within page
1120 * page_length = bytes to copy for this page
1121 */
1122 u32 page_base = node.start;
1123 unsigned page_offset = offset_in_page(offset);
1124 unsigned page_length = PAGE_SIZE - page_offset;
1125 page_length = remain < page_length ? remain : page_length;
1126 if (node.allocated) {
1127 wmb();
1128 ggtt->vm.insert_page(&ggtt->vm,
1129 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1130 node.start, I915_CACHE_NONE, 0);
1131 wmb();
1132 } else {
1133 page_base += offset & PAGE_MASK;
1134 }
1135
1136 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1137 user_data, page_length)) {
1138 ret = -EFAULT;
1139 break;
1140 }
1141
1142 remain -= page_length;
1143 user_data += page_length;
1144 offset += page_length;
1145 }
1146
1147 mutex_lock(&i915->drm.struct_mutex);
1148 out_unpin:
1149 if (node.allocated) {
1150 wmb();
1151 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1152 remove_mappable_node(&node);
1153 } else {
1154 i915_vma_unpin(vma);
1155 }
1156 out_unlock:
1157 intel_runtime_pm_put(i915, wakeref);
1158 mutex_unlock(&i915->drm.struct_mutex);
1159
1160 return ret;
1161 }
1162
1163 /**
1164 * Reads data from the object referenced by handle.
1165 * @dev: drm device pointer
1166 * @data: ioctl data blob
1167 * @file: drm file pointer
1168 *
1169 * On error, the contents of *data are undefined.
1170 */
1171 int
1172 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1173 struct drm_file *file)
1174 {
1175 struct drm_i915_gem_pread *args = data;
1176 struct drm_i915_gem_object *obj;
1177 int ret;
1178
1179 if (args->size == 0)
1180 return 0;
1181
1182 if (!access_ok(u64_to_user_ptr(args->data_ptr),
1183 args->size))
1184 return -EFAULT;
1185
1186 obj = i915_gem_object_lookup(file, args->handle);
1187 if (!obj)
1188 return -ENOENT;
1189
1190 /* Bounds check source. */
1191 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1192 ret = -EINVAL;
1193 goto out;
1194 }
1195
1196 trace_i915_gem_object_pread(obj, args->offset, args->size);
1197
1198 ret = i915_gem_object_wait(obj,
1199 I915_WAIT_INTERRUPTIBLE,
1200 MAX_SCHEDULE_TIMEOUT,
1201 to_rps_client(file));
1202 if (ret)
1203 goto out;
1204
1205 ret = i915_gem_object_pin_pages(obj);
1206 if (ret)
1207 goto out;
1208
1209 ret = i915_gem_shmem_pread(obj, args);
1210 if (ret == -EFAULT || ret == -ENODEV)
1211 ret = i915_gem_gtt_pread(obj, args);
1212
1213 i915_gem_object_unpin_pages(obj);
1214 out:
1215 i915_gem_object_put(obj);
1216 return ret;
1217 }
1218
1219 /* This is the fast write path which cannot handle
1220 * page faults in the source data
1221 */
1222
1223 static inline bool
1224 ggtt_write(struct io_mapping *mapping,
1225 loff_t base, int offset,
1226 char __user *user_data, int length)
1227 {
1228 void __iomem *vaddr;
1229 unsigned long unwritten;
1230
1231 /* We can use the cpu mem copy function because this is X86. */
1232 vaddr = io_mapping_map_atomic_wc(mapping, base);
1233 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1234 user_data, length);
1235 io_mapping_unmap_atomic(vaddr);
1236 if (unwritten) {
1237 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1238 unwritten = copy_from_user((void __force *)vaddr + offset,
1239 user_data, length);
1240 io_mapping_unmap(vaddr);
1241 }
1242
1243 return unwritten;
1244 }
1245
1246 /**
1247 * This is the fast pwrite path, where we copy the data directly from the
1248 * user into the GTT, uncached.
1249 * @obj: i915 GEM object
1250 * @args: pwrite arguments structure
1251 */
1252 static int
1253 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1254 const struct drm_i915_gem_pwrite *args)
1255 {
1256 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1257 struct i915_ggtt *ggtt = &i915->ggtt;
1258 intel_wakeref_t wakeref;
1259 struct drm_mm_node node;
1260 struct i915_vma *vma;
1261 u64 remain, offset;
1262 void __user *user_data;
1263 int ret;
1264
1265 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1266 if (ret)
1267 return ret;
1268
1269 if (i915_gem_object_has_struct_page(obj)) {
1270 /*
1271 * Avoid waking the device up if we can fallback, as
1272 * waking/resuming is very slow (worst-case 10-100 ms
1273 * depending on PCI sleeps and our own resume time).
1274 * This easily dwarfs any performance advantage from
1275 * using the cache bypass of indirect GGTT access.
1276 */
1277 wakeref = intel_runtime_pm_get_if_in_use(i915);
1278 if (!wakeref) {
1279 ret = -EFAULT;
1280 goto out_unlock;
1281 }
1282 } else {
1283 /* No backing pages, no fallback, we must force GGTT access */
1284 wakeref = intel_runtime_pm_get(i915);
1285 }
1286
1287 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1288 PIN_MAPPABLE |
1289 PIN_NONFAULT |
1290 PIN_NONBLOCK);
1291 if (!IS_ERR(vma)) {
1292 node.start = i915_ggtt_offset(vma);
1293 node.allocated = false;
1294 ret = i915_vma_put_fence(vma);
1295 if (ret) {
1296 i915_vma_unpin(vma);
1297 vma = ERR_PTR(ret);
1298 }
1299 }
1300 if (IS_ERR(vma)) {
1301 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1302 if (ret)
1303 goto out_rpm;
1304 GEM_BUG_ON(!node.allocated);
1305 }
1306
1307 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1308 if (ret)
1309 goto out_unpin;
1310
1311 mutex_unlock(&i915->drm.struct_mutex);
1312
1313 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1314
1315 user_data = u64_to_user_ptr(args->data_ptr);
1316 offset = args->offset;
1317 remain = args->size;
1318 while (remain) {
1319 /* Operation in this page
1320 *
1321 * page_base = page offset within aperture
1322 * page_offset = offset within page
1323 * page_length = bytes to copy for this page
1324 */
1325 u32 page_base = node.start;
1326 unsigned int page_offset = offset_in_page(offset);
1327 unsigned int page_length = PAGE_SIZE - page_offset;
1328 page_length = remain < page_length ? remain : page_length;
1329 if (node.allocated) {
1330 wmb(); /* flush the write before we modify the GGTT */
1331 ggtt->vm.insert_page(&ggtt->vm,
1332 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1333 node.start, I915_CACHE_NONE, 0);
1334 wmb(); /* flush modifications to the GGTT (insert_page) */
1335 } else {
1336 page_base += offset & PAGE_MASK;
1337 }
1338 /* If we get a fault while copying data, then (presumably) our
1339 * source page isn't available. Return the error and we'll
1340 * retry in the slow path.
1341 * If the object is non-shmem backed, we retry again with the
1342 * path that handles page fault.
1343 */
1344 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1345 user_data, page_length)) {
1346 ret = -EFAULT;
1347 break;
1348 }
1349
1350 remain -= page_length;
1351 user_data += page_length;
1352 offset += page_length;
1353 }
1354 intel_fb_obj_flush(obj, ORIGIN_CPU);
1355
1356 mutex_lock(&i915->drm.struct_mutex);
1357 out_unpin:
1358 if (node.allocated) {
1359 wmb();
1360 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1361 remove_mappable_node(&node);
1362 } else {
1363 i915_vma_unpin(vma);
1364 }
1365 out_rpm:
1366 intel_runtime_pm_put(i915, wakeref);
1367 out_unlock:
1368 mutex_unlock(&i915->drm.struct_mutex);
1369 return ret;
1370 }
1371
1372 /* Per-page copy function for the shmem pwrite fastpath.
1373 * Flushes invalid cachelines before writing to the target if
1374 * needs_clflush_before is set and flushes out any written cachelines after
1375 * writing if needs_clflush is set.
1376 */
1377 static int
1378 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1379 bool needs_clflush_before,
1380 bool needs_clflush_after)
1381 {
1382 char *vaddr;
1383 int ret;
1384
1385 vaddr = kmap(page);
1386
1387 if (needs_clflush_before)
1388 drm_clflush_virt_range(vaddr + offset, len);
1389
1390 ret = __copy_from_user(vaddr + offset, user_data, len);
1391 if (!ret && needs_clflush_after)
1392 drm_clflush_virt_range(vaddr + offset, len);
1393
1394 kunmap(page);
1395
1396 return ret ? -EFAULT : 0;
1397 }
1398
1399 static int
1400 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1401 const struct drm_i915_gem_pwrite *args)
1402 {
1403 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1404 void __user *user_data;
1405 u64 remain;
1406 unsigned int partial_cacheline_write;
1407 unsigned int needs_clflush;
1408 unsigned int offset, idx;
1409 int ret;
1410
1411 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1412 if (ret)
1413 return ret;
1414
1415 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1416 mutex_unlock(&i915->drm.struct_mutex);
1417 if (ret)
1418 return ret;
1419
1420 /* If we don't overwrite a cacheline completely we need to be
1421 * careful to have up-to-date data by first clflushing. Don't
1422 * overcomplicate things and flush the entire patch.
1423 */
1424 partial_cacheline_write = 0;
1425 if (needs_clflush & CLFLUSH_BEFORE)
1426 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1427
1428 user_data = u64_to_user_ptr(args->data_ptr);
1429 remain = args->size;
1430 offset = offset_in_page(args->offset);
1431 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1432 struct page *page = i915_gem_object_get_page(obj, idx);
1433 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1434
1435 ret = shmem_pwrite(page, offset, length, user_data,
1436 (offset | length) & partial_cacheline_write,
1437 needs_clflush & CLFLUSH_AFTER);
1438 if (ret)
1439 break;
1440
1441 remain -= length;
1442 user_data += length;
1443 offset = 0;
1444 }
1445
1446 intel_fb_obj_flush(obj, ORIGIN_CPU);
1447 i915_gem_obj_finish_shmem_access(obj);
1448 return ret;
1449 }
1450
1451 /**
1452 * Writes data to the object referenced by handle.
1453 * @dev: drm device
1454 * @data: ioctl data blob
1455 * @file: drm file
1456 *
1457 * On error, the contents of the buffer that were to be modified are undefined.
1458 */
1459 int
1460 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1461 struct drm_file *file)
1462 {
1463 struct drm_i915_gem_pwrite *args = data;
1464 struct drm_i915_gem_object *obj;
1465 int ret;
1466
1467 if (args->size == 0)
1468 return 0;
1469
1470 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1471 return -EFAULT;
1472
1473 obj = i915_gem_object_lookup(file, args->handle);
1474 if (!obj)
1475 return -ENOENT;
1476
1477 /* Bounds check destination. */
1478 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1479 ret = -EINVAL;
1480 goto err;
1481 }
1482
1483 /* Writes not allowed into this read-only object */
1484 if (i915_gem_object_is_readonly(obj)) {
1485 ret = -EINVAL;
1486 goto err;
1487 }
1488
1489 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1490
1491 ret = -ENODEV;
1492 if (obj->ops->pwrite)
1493 ret = obj->ops->pwrite(obj, args);
1494 if (ret != -ENODEV)
1495 goto err;
1496
1497 ret = i915_gem_object_wait(obj,
1498 I915_WAIT_INTERRUPTIBLE |
1499 I915_WAIT_ALL,
1500 MAX_SCHEDULE_TIMEOUT,
1501 to_rps_client(file));
1502 if (ret)
1503 goto err;
1504
1505 ret = i915_gem_object_pin_pages(obj);
1506 if (ret)
1507 goto err;
1508
1509 ret = -EFAULT;
1510 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1511 * it would end up going through the fenced access, and we'll get
1512 * different detiling behavior between reading and writing.
1513 * pread/pwrite currently are reading and writing from the CPU
1514 * perspective, requiring manual detiling by the client.
1515 */
1516 if (!i915_gem_object_has_struct_page(obj) ||
1517 cpu_write_needs_clflush(obj))
1518 /* Note that the gtt paths might fail with non-page-backed user
1519 * pointers (e.g. gtt mappings when moving data between
1520 * textures). Fallback to the shmem path in that case.
1521 */
1522 ret = i915_gem_gtt_pwrite_fast(obj, args);
1523
1524 if (ret == -EFAULT || ret == -ENOSPC) {
1525 if (obj->phys_handle)
1526 ret = i915_gem_phys_pwrite(obj, args, file);
1527 else
1528 ret = i915_gem_shmem_pwrite(obj, args);
1529 }
1530
1531 i915_gem_object_unpin_pages(obj);
1532 err:
1533 i915_gem_object_put(obj);
1534 return ret;
1535 }
1536
1537 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1538 {
1539 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540 struct list_head *list;
1541 struct i915_vma *vma;
1542
1543 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1544
1545 mutex_lock(&i915->ggtt.vm.mutex);
1546 for_each_ggtt_vma(vma, obj) {
1547 if (!drm_mm_node_allocated(&vma->node))
1548 continue;
1549
1550 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1551 }
1552 mutex_unlock(&i915->ggtt.vm.mutex);
1553
1554 spin_lock(&i915->mm.obj_lock);
1555 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1556 list_move_tail(&obj->mm.link, list);
1557 spin_unlock(&i915->mm.obj_lock);
1558 }
1559
1560 /**
1561 * Called when user space prepares to use an object with the CPU, either
1562 * through the mmap ioctl's mapping or a GTT mapping.
1563 * @dev: drm device
1564 * @data: ioctl data blob
1565 * @file: drm file
1566 */
1567 int
1568 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1569 struct drm_file *file)
1570 {
1571 struct drm_i915_gem_set_domain *args = data;
1572 struct drm_i915_gem_object *obj;
1573 u32 read_domains = args->read_domains;
1574 u32 write_domain = args->write_domain;
1575 int err;
1576
1577 /* Only handle setting domains to types used by the CPU. */
1578 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1579 return -EINVAL;
1580
1581 /* Having something in the write domain implies it's in the read
1582 * domain, and only that read domain. Enforce that in the request.
1583 */
1584 if (write_domain != 0 && read_domains != write_domain)
1585 return -EINVAL;
1586
1587 obj = i915_gem_object_lookup(file, args->handle);
1588 if (!obj)
1589 return -ENOENT;
1590
1591 /* Try to flush the object off the GPU without holding the lock.
1592 * We will repeat the flush holding the lock in the normal manner
1593 * to catch cases where we are gazumped.
1594 */
1595 err = i915_gem_object_wait(obj,
1596 I915_WAIT_INTERRUPTIBLE |
1597 I915_WAIT_PRIORITY |
1598 (write_domain ? I915_WAIT_ALL : 0),
1599 MAX_SCHEDULE_TIMEOUT,
1600 to_rps_client(file));
1601 if (err)
1602 goto out;
1603
1604 /*
1605 * Proxy objects do not control access to the backing storage, ergo
1606 * they cannot be used as a means to manipulate the cache domain
1607 * tracking for that backing storage. The proxy object is always
1608 * considered to be outside of any cache domain.
1609 */
1610 if (i915_gem_object_is_proxy(obj)) {
1611 err = -ENXIO;
1612 goto out;
1613 }
1614
1615 /*
1616 * Flush and acquire obj->pages so that we are coherent through
1617 * direct access in memory with previous cached writes through
1618 * shmemfs and that our cache domain tracking remains valid.
1619 * For example, if the obj->filp was moved to swap without us
1620 * being notified and releasing the pages, we would mistakenly
1621 * continue to assume that the obj remained out of the CPU cached
1622 * domain.
1623 */
1624 err = i915_gem_object_pin_pages(obj);
1625 if (err)
1626 goto out;
1627
1628 err = i915_mutex_lock_interruptible(dev);
1629 if (err)
1630 goto out_unpin;
1631
1632 if (read_domains & I915_GEM_DOMAIN_WC)
1633 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1634 else if (read_domains & I915_GEM_DOMAIN_GTT)
1635 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1636 else
1637 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1638
1639 /* And bump the LRU for this access */
1640 i915_gem_object_bump_inactive_ggtt(obj);
1641
1642 mutex_unlock(&dev->struct_mutex);
1643
1644 if (write_domain != 0)
1645 intel_fb_obj_invalidate(obj,
1646 fb_write_origin(obj, write_domain));
1647
1648 out_unpin:
1649 i915_gem_object_unpin_pages(obj);
1650 out:
1651 i915_gem_object_put(obj);
1652 return err;
1653 }
1654
1655 /**
1656 * Called when user space has done writes to this buffer
1657 * @dev: drm device
1658 * @data: ioctl data blob
1659 * @file: drm file
1660 */
1661 int
1662 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1663 struct drm_file *file)
1664 {
1665 struct drm_i915_gem_sw_finish *args = data;
1666 struct drm_i915_gem_object *obj;
1667
1668 obj = i915_gem_object_lookup(file, args->handle);
1669 if (!obj)
1670 return -ENOENT;
1671
1672 /*
1673 * Proxy objects are barred from CPU access, so there is no
1674 * need to ban sw_finish as it is a nop.
1675 */
1676
1677 /* Pinned buffers may be scanout, so flush the cache */
1678 i915_gem_object_flush_if_display(obj);
1679 i915_gem_object_put(obj);
1680
1681 return 0;
1682 }
1683
1684 static inline bool
1685 __vma_matches(struct vm_area_struct *vma, struct file *filp,
1686 unsigned long addr, unsigned long size)
1687 {
1688 if (vma->vm_file != filp)
1689 return false;
1690
1691 return vma->vm_start == addr &&
1692 (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1693 }
1694
1695 /**
1696 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1697 * it is mapped to.
1698 * @dev: drm device
1699 * @data: ioctl data blob
1700 * @file: drm file
1701 *
1702 * While the mapping holds a reference on the contents of the object, it doesn't
1703 * imply a ref on the object itself.
1704 *
1705 * IMPORTANT:
1706 *
1707 * DRM driver writers who look a this function as an example for how to do GEM
1708 * mmap support, please don't implement mmap support like here. The modern way
1709 * to implement DRM mmap support is with an mmap offset ioctl (like
1710 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1711 * That way debug tooling like valgrind will understand what's going on, hiding
1712 * the mmap call in a driver private ioctl will break that. The i915 driver only
1713 * does cpu mmaps this way because we didn't know better.
1714 */
1715 int
1716 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1717 struct drm_file *file)
1718 {
1719 struct drm_i915_gem_mmap *args = data;
1720 struct drm_i915_gem_object *obj;
1721 unsigned long addr;
1722
1723 if (args->flags & ~(I915_MMAP_WC))
1724 return -EINVAL;
1725
1726 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1727 return -ENODEV;
1728
1729 obj = i915_gem_object_lookup(file, args->handle);
1730 if (!obj)
1731 return -ENOENT;
1732
1733 /* prime objects have no backing filp to GEM mmap
1734 * pages from.
1735 */
1736 if (!obj->base.filp) {
1737 addr = -ENXIO;
1738 goto err;
1739 }
1740
1741 if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
1742 addr = -EINVAL;
1743 goto err;
1744 }
1745
1746 addr = vm_mmap(obj->base.filp, 0, args->size,
1747 PROT_READ | PROT_WRITE, MAP_SHARED,
1748 args->offset);
1749 if (IS_ERR_VALUE(addr))
1750 goto err;
1751
1752 if (args->flags & I915_MMAP_WC) {
1753 struct mm_struct *mm = current->mm;
1754 struct vm_area_struct *vma;
1755
1756 if (down_write_killable(&mm->mmap_sem)) {
1757 addr = -EINTR;
1758 goto err;
1759 }
1760 vma = find_vma(mm, addr);
1761 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1762 vma->vm_page_prot =
1763 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1764 else
1765 addr = -ENOMEM;
1766 up_write(&mm->mmap_sem);
1767 if (IS_ERR_VALUE(addr))
1768 goto err;
1769
1770 /* This may race, but that's ok, it only gets set */
1771 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1772 }
1773 i915_gem_object_put(obj);
1774
1775 args->addr_ptr = (u64)addr;
1776 return 0;
1777
1778 err:
1779 i915_gem_object_put(obj);
1780 return addr;
1781 }
1782
1783 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1784 {
1785 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1786 }
1787
1788 /**
1789 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1790 *
1791 * A history of the GTT mmap interface:
1792 *
1793 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1794 * aligned and suitable for fencing, and still fit into the available
1795 * mappable space left by the pinned display objects. A classic problem
1796 * we called the page-fault-of-doom where we would ping-pong between
1797 * two objects that could not fit inside the GTT and so the memcpy
1798 * would page one object in at the expense of the other between every
1799 * single byte.
1800 *
1801 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1802 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1803 * object is too large for the available space (or simply too large
1804 * for the mappable aperture!), a view is created instead and faulted
1805 * into userspace. (This view is aligned and sized appropriately for
1806 * fenced access.)
1807 *
1808 * 2 - Recognise WC as a separate cache domain so that we can flush the
1809 * delayed writes via GTT before performing direct access via WC.
1810 *
1811 * Restrictions:
1812 *
1813 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1814 * hangs on some architectures, corruption on others. An attempt to service
1815 * a GTT page fault from a snoopable object will generate a SIGBUS.
1816 *
1817 * * the object must be able to fit into RAM (physical memory, though no
1818 * limited to the mappable aperture).
1819 *
1820 *
1821 * Caveats:
1822 *
1823 * * a new GTT page fault will synchronize rendering from the GPU and flush
1824 * all data to system memory. Subsequent access will not be synchronized.
1825 *
1826 * * all mappings are revoked on runtime device suspend.
1827 *
1828 * * there are only 8, 16 or 32 fence registers to share between all users
1829 * (older machines require fence register for display and blitter access
1830 * as well). Contention of the fence registers will cause the previous users
1831 * to be unmapped and any new access will generate new page faults.
1832 *
1833 * * running out of memory while servicing a fault may generate a SIGBUS,
1834 * rather than the expected SIGSEGV.
1835 */
1836 int i915_gem_mmap_gtt_version(void)
1837 {
1838 return 2;
1839 }
1840
1841 static inline struct i915_ggtt_view
1842 compute_partial_view(const struct drm_i915_gem_object *obj,
1843 pgoff_t page_offset,
1844 unsigned int chunk)
1845 {
1846 struct i915_ggtt_view view;
1847
1848 if (i915_gem_object_is_tiled(obj))
1849 chunk = roundup(chunk, tile_row_pages(obj));
1850
1851 view.type = I915_GGTT_VIEW_PARTIAL;
1852 view.partial.offset = rounddown(page_offset, chunk);
1853 view.partial.size =
1854 min_t(unsigned int, chunk,
1855 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1856
1857 /* If the partial covers the entire object, just create a normal VMA. */
1858 if (chunk >= obj->base.size >> PAGE_SHIFT)
1859 view.type = I915_GGTT_VIEW_NORMAL;
1860
1861 return view;
1862 }
1863
1864 /**
1865 * i915_gem_fault - fault a page into the GTT
1866 * @vmf: fault info
1867 *
1868 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1869 * from userspace. The fault handler takes care of binding the object to
1870 * the GTT (if needed), allocating and programming a fence register (again,
1871 * only if needed based on whether the old reg is still valid or the object
1872 * is tiled) and inserting a new PTE into the faulting process.
1873 *
1874 * Note that the faulting process may involve evicting existing objects
1875 * from the GTT and/or fence registers to make room. So performance may
1876 * suffer if the GTT working set is large or there are few fence registers
1877 * left.
1878 *
1879 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1880 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1881 */
1882 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1883 {
1884 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1885 struct vm_area_struct *area = vmf->vma;
1886 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1887 struct drm_device *dev = obj->base.dev;
1888 struct drm_i915_private *dev_priv = to_i915(dev);
1889 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1890 bool write = area->vm_flags & VM_WRITE;
1891 intel_wakeref_t wakeref;
1892 struct i915_vma *vma;
1893 pgoff_t page_offset;
1894 int ret;
1895
1896 /* Sanity check that we allow writing into this object */
1897 if (i915_gem_object_is_readonly(obj) && write)
1898 return VM_FAULT_SIGBUS;
1899
1900 /* We don't use vmf->pgoff since that has the fake offset */
1901 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1902
1903 trace_i915_gem_object_fault(obj, page_offset, true, write);
1904
1905 /* Try to flush the object off the GPU first without holding the lock.
1906 * Upon acquiring the lock, we will perform our sanity checks and then
1907 * repeat the flush holding the lock in the normal manner to catch cases
1908 * where we are gazumped.
1909 */
1910 ret = i915_gem_object_wait(obj,
1911 I915_WAIT_INTERRUPTIBLE,
1912 MAX_SCHEDULE_TIMEOUT,
1913 NULL);
1914 if (ret)
1915 goto err;
1916
1917 ret = i915_gem_object_pin_pages(obj);
1918 if (ret)
1919 goto err;
1920
1921 wakeref = intel_runtime_pm_get(dev_priv);
1922
1923 ret = i915_mutex_lock_interruptible(dev);
1924 if (ret)
1925 goto err_rpm;
1926
1927 /* Access to snoopable pages through the GTT is incoherent. */
1928 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1929 ret = -EFAULT;
1930 goto err_unlock;
1931 }
1932
1933
1934 /* Now pin it into the GTT as needed */
1935 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1936 PIN_MAPPABLE |
1937 PIN_NONBLOCK |
1938 PIN_NONFAULT);
1939 if (IS_ERR(vma)) {
1940 /* Use a partial view if it is bigger than available space */
1941 struct i915_ggtt_view view =
1942 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1943 unsigned int flags;
1944
1945 flags = PIN_MAPPABLE;
1946 if (view.type == I915_GGTT_VIEW_NORMAL)
1947 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
1948
1949 /*
1950 * Userspace is now writing through an untracked VMA, abandon
1951 * all hope that the hardware is able to track future writes.
1952 */
1953 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1954
1955 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
1956 if (IS_ERR(vma) && !view.type) {
1957 flags = PIN_MAPPABLE;
1958 view.type = I915_GGTT_VIEW_PARTIAL;
1959 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
1960 }
1961 }
1962 if (IS_ERR(vma)) {
1963 ret = PTR_ERR(vma);
1964 goto err_unlock;
1965 }
1966
1967 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1968 if (ret)
1969 goto err_unpin;
1970
1971 ret = i915_vma_pin_fence(vma);
1972 if (ret)
1973 goto err_unpin;
1974
1975 /* Finally, remap it using the new GTT offset */
1976 ret = remap_io_mapping(area,
1977 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979 min_t(u64, vma->size, area->vm_end - area->vm_start),
1980 &ggtt->iomap);
1981 if (ret)
1982 goto err_fence;
1983
1984 /* Mark as being mmapped into userspace for later revocation */
1985 assert_rpm_wakelock_held(dev_priv);
1986 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988 GEM_BUG_ON(!obj->userfault_count);
1989
1990 i915_vma_set_ggtt_write(vma);
1991
1992 err_fence:
1993 i915_vma_unpin_fence(vma);
1994 err_unpin:
1995 __i915_vma_unpin(vma);
1996 err_unlock:
1997 mutex_unlock(&dev->struct_mutex);
1998 err_rpm:
1999 intel_runtime_pm_put(dev_priv, wakeref);
2000 i915_gem_object_unpin_pages(obj);
2001 err:
2002 switch (ret) {
2003 case -EIO:
2004 /*
2005 * We eat errors when the gpu is terminally wedged to avoid
2006 * userspace unduly crashing (gl has no provisions for mmaps to
2007 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008 * and so needs to be reported.
2009 */
2010 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2011 return VM_FAULT_SIGBUS;
2012 /* else: fall through */
2013 case -EAGAIN:
2014 /*
2015 * EAGAIN means the gpu is hung and we'll wait for the error
2016 * handler to reset everything when re-faulting in
2017 * i915_mutex_lock_interruptible.
2018 */
2019 case 0:
2020 case -ERESTARTSYS:
2021 case -EINTR:
2022 case -EBUSY:
2023 /*
2024 * EBUSY is ok: this just means that another thread
2025 * already did the job.
2026 */
2027 return VM_FAULT_NOPAGE;
2028 case -ENOMEM:
2029 return VM_FAULT_OOM;
2030 case -ENOSPC:
2031 case -EFAULT:
2032 return VM_FAULT_SIGBUS;
2033 default:
2034 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2035 return VM_FAULT_SIGBUS;
2036 }
2037 }
2038
2039 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2040 {
2041 struct i915_vma *vma;
2042
2043 GEM_BUG_ON(!obj->userfault_count);
2044
2045 obj->userfault_count = 0;
2046 list_del(&obj->userfault_link);
2047 drm_vma_node_unmap(&obj->base.vma_node,
2048 obj->base.dev->anon_inode->i_mapping);
2049
2050 for_each_ggtt_vma(vma, obj)
2051 i915_vma_unset_userfault(vma);
2052 }
2053
2054 /**
2055 * i915_gem_release_mmap - remove physical page mappings
2056 * @obj: obj in question
2057 *
2058 * Preserve the reservation of the mmapping with the DRM core code, but
2059 * relinquish ownership of the pages back to the system.
2060 *
2061 * It is vital that we remove the page mapping if we have mapped a tiled
2062 * object through the GTT and then lose the fence register due to
2063 * resource pressure. Similarly if the object has been moved out of the
2064 * aperture, than pages mapped into userspace must be revoked. Removing the
2065 * mapping will then trigger a page fault on the next user access, allowing
2066 * fixup by i915_gem_fault().
2067 */
2068 void
2069 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2070 {
2071 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2072 intel_wakeref_t wakeref;
2073
2074 /* Serialisation between user GTT access and our code depends upon
2075 * revoking the CPU's PTE whilst the mutex is held. The next user
2076 * pagefault then has to wait until we release the mutex.
2077 *
2078 * Note that RPM complicates somewhat by adding an additional
2079 * requirement that operations to the GGTT be made holding the RPM
2080 * wakeref.
2081 */
2082 lockdep_assert_held(&i915->drm.struct_mutex);
2083 wakeref = intel_runtime_pm_get(i915);
2084
2085 if (!obj->userfault_count)
2086 goto out;
2087
2088 __i915_gem_object_release_mmap(obj);
2089
2090 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2091 * memory transactions from userspace before we return. The TLB
2092 * flushing implied above by changing the PTE above *should* be
2093 * sufficient, an extra barrier here just provides us with a bit
2094 * of paranoid documentation about our requirement to serialise
2095 * memory writes before touching registers / GSM.
2096 */
2097 wmb();
2098
2099 out:
2100 intel_runtime_pm_put(i915, wakeref);
2101 }
2102
2103 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2104 {
2105 struct drm_i915_gem_object *obj, *on;
2106 int i;
2107
2108 /*
2109 * Only called during RPM suspend. All users of the userfault_list
2110 * must be holding an RPM wakeref to ensure that this can not
2111 * run concurrently with themselves (and use the struct_mutex for
2112 * protection between themselves).
2113 */
2114
2115 list_for_each_entry_safe(obj, on,
2116 &dev_priv->mm.userfault_list, userfault_link)
2117 __i915_gem_object_release_mmap(obj);
2118
2119 /* The fence will be lost when the device powers down. If any were
2120 * in use by hardware (i.e. they are pinned), we should not be powering
2121 * down! All other fences will be reacquired by the user upon waking.
2122 */
2123 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2124 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2125
2126 /* Ideally we want to assert that the fence register is not
2127 * live at this point (i.e. that no piece of code will be
2128 * trying to write through fence + GTT, as that both violates
2129 * our tracking of activity and associated locking/barriers,
2130 * but also is illegal given that the hw is powered down).
2131 *
2132 * Previously we used reg->pin_count as a "liveness" indicator.
2133 * That is not sufficient, and we need a more fine-grained
2134 * tool if we want to have a sanity check here.
2135 */
2136
2137 if (!reg->vma)
2138 continue;
2139
2140 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2141 reg->dirty = true;
2142 }
2143 }
2144
2145 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2146 {
2147 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2148 int err;
2149
2150 err = drm_gem_create_mmap_offset(&obj->base);
2151 if (likely(!err))
2152 return 0;
2153
2154 /* Attempt to reap some mmap space from dead objects */
2155 do {
2156 err = i915_gem_wait_for_idle(dev_priv,
2157 I915_WAIT_INTERRUPTIBLE,
2158 MAX_SCHEDULE_TIMEOUT);
2159 if (err)
2160 break;
2161
2162 i915_gem_drain_freed_objects(dev_priv);
2163 err = drm_gem_create_mmap_offset(&obj->base);
2164 if (!err)
2165 break;
2166
2167 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2168
2169 return err;
2170 }
2171
2172 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2173 {
2174 drm_gem_free_mmap_offset(&obj->base);
2175 }
2176
2177 int
2178 i915_gem_mmap_gtt(struct drm_file *file,
2179 struct drm_device *dev,
2180 u32 handle,
2181 u64 *offset)
2182 {
2183 struct drm_i915_gem_object *obj;
2184 int ret;
2185
2186 obj = i915_gem_object_lookup(file, handle);
2187 if (!obj)
2188 return -ENOENT;
2189
2190 ret = i915_gem_object_create_mmap_offset(obj);
2191 if (ret == 0)
2192 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2193
2194 i915_gem_object_put(obj);
2195 return ret;
2196 }
2197
2198 /**
2199 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2200 * @dev: DRM device
2201 * @data: GTT mapping ioctl data
2202 * @file: GEM object info
2203 *
2204 * Simply returns the fake offset to userspace so it can mmap it.
2205 * The mmap call will end up in drm_gem_mmap(), which will set things
2206 * up so we can get faults in the handler above.
2207 *
2208 * The fault handler will take care of binding the object into the GTT
2209 * (since it may have been evicted to make room for something), allocating
2210 * a fence register, and mapping the appropriate aperture address into
2211 * userspace.
2212 */
2213 int
2214 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2215 struct drm_file *file)
2216 {
2217 struct drm_i915_gem_mmap_gtt *args = data;
2218
2219 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2220 }
2221
2222 /* Immediately discard the backing storage */
2223 static void
2224 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2225 {
2226 i915_gem_object_free_mmap_offset(obj);
2227
2228 if (obj->base.filp == NULL)
2229 return;
2230
2231 /* Our goal here is to return as much of the memory as
2232 * is possible back to the system as we are called from OOM.
2233 * To do this we must instruct the shmfs to drop all of its
2234 * backing pages, *now*.
2235 */
2236 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2237 obj->mm.madv = __I915_MADV_PURGED;
2238 obj->mm.pages = ERR_PTR(-EFAULT);
2239 }
2240
2241 /* Try to discard unwanted pages */
2242 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2243 {
2244 struct address_space *mapping;
2245
2246 lockdep_assert_held(&obj->mm.lock);
2247 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2248
2249 switch (obj->mm.madv) {
2250 case I915_MADV_DONTNEED:
2251 i915_gem_object_truncate(obj);
2252 case __I915_MADV_PURGED:
2253 return;
2254 }
2255
2256 if (obj->base.filp == NULL)
2257 return;
2258
2259 mapping = obj->base.filp->f_mapping,
2260 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2261 }
2262
2263 /*
2264 * Move pages to appropriate lru and release the pagevec, decrementing the
2265 * ref count of those pages.
2266 */
2267 static void check_release_pagevec(struct pagevec *pvec)
2268 {
2269 check_move_unevictable_pages(pvec);
2270 __pagevec_release(pvec);
2271 cond_resched();
2272 }
2273
2274 static void
2275 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2276 struct sg_table *pages)
2277 {
2278 struct sgt_iter sgt_iter;
2279 struct pagevec pvec;
2280 struct page *page;
2281
2282 __i915_gem_object_release_shmem(obj, pages, true);
2283
2284 i915_gem_gtt_finish_pages(obj, pages);
2285
2286 if (i915_gem_object_needs_bit17_swizzle(obj))
2287 i915_gem_object_save_bit_17_swizzle(obj, pages);
2288
2289 mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
2290
2291 pagevec_init(&pvec);
2292 for_each_sgt_page(page, sgt_iter, pages) {
2293 if (obj->mm.dirty)
2294 set_page_dirty(page);
2295
2296 if (obj->mm.madv == I915_MADV_WILLNEED)
2297 mark_page_accessed(page);
2298
2299 if (!pagevec_add(&pvec, page))
2300 check_release_pagevec(&pvec);
2301 }
2302 if (pagevec_count(&pvec))
2303 check_release_pagevec(&pvec);
2304 obj->mm.dirty = false;
2305
2306 sg_free_table(pages);
2307 kfree(pages);
2308 }
2309
2310 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2311 {
2312 struct radix_tree_iter iter;
2313 void __rcu **slot;
2314
2315 rcu_read_lock();
2316 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2317 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2318 rcu_read_unlock();
2319 }
2320
2321 static struct sg_table *
2322 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2323 {
2324 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2325 struct sg_table *pages;
2326
2327 pages = fetch_and_zero(&obj->mm.pages);
2328 if (IS_ERR_OR_NULL(pages))
2329 return pages;
2330
2331 spin_lock(&i915->mm.obj_lock);
2332 list_del(&obj->mm.link);
2333 spin_unlock(&i915->mm.obj_lock);
2334
2335 if (obj->mm.mapping) {
2336 void *ptr;
2337
2338 ptr = page_mask_bits(obj->mm.mapping);
2339 if (is_vmalloc_addr(ptr))
2340 vunmap(ptr);
2341 else
2342 kunmap(kmap_to_page(ptr));
2343
2344 obj->mm.mapping = NULL;
2345 }
2346
2347 __i915_gem_object_reset_page_iter(obj);
2348 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2349
2350 return pages;
2351 }
2352
2353 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2354 enum i915_mm_subclass subclass)
2355 {
2356 struct sg_table *pages;
2357 int ret;
2358
2359 if (i915_gem_object_has_pinned_pages(obj))
2360 return -EBUSY;
2361
2362 GEM_BUG_ON(obj->bind_count);
2363
2364 /* May be called by shrinker from within get_pages() (on another bo) */
2365 mutex_lock_nested(&obj->mm.lock, subclass);
2366 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
2367 ret = -EBUSY;
2368 goto unlock;
2369 }
2370
2371 /*
2372 * ->put_pages might need to allocate memory for the bit17 swizzle
2373 * array, hence protect them from being reaped by removing them from gtt
2374 * lists early.
2375 */
2376 pages = __i915_gem_object_unset_pages(obj);
2377
2378 /*
2379 * XXX Temporary hijinx to avoid updating all backends to handle
2380 * NULL pages. In the future, when we have more asynchronous
2381 * get_pages backends we should be better able to handle the
2382 * cancellation of the async task in a more uniform manner.
2383 */
2384 if (!pages && !i915_gem_object_needs_async_cancel(obj))
2385 pages = ERR_PTR(-EINVAL);
2386
2387 if (!IS_ERR(pages))
2388 obj->ops->put_pages(obj, pages);
2389
2390 ret = 0;
2391 unlock:
2392 mutex_unlock(&obj->mm.lock);
2393
2394 return ret;
2395 }
2396
2397 bool i915_sg_trim(struct sg_table *orig_st)
2398 {
2399 struct sg_table new_st;
2400 struct scatterlist *sg, *new_sg;
2401 unsigned int i;
2402
2403 if (orig_st->nents == orig_st->orig_nents)
2404 return false;
2405
2406 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2407 return false;
2408
2409 new_sg = new_st.sgl;
2410 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2411 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2412 sg_dma_address(new_sg) = sg_dma_address(sg);
2413 sg_dma_len(new_sg) = sg_dma_len(sg);
2414
2415 new_sg = sg_next(new_sg);
2416 }
2417 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2418
2419 sg_free_table(orig_st);
2420
2421 *orig_st = new_st;
2422 return true;
2423 }
2424
2425 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2426 {
2427 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2428 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2429 unsigned long i;
2430 struct address_space *mapping;
2431 struct sg_table *st;
2432 struct scatterlist *sg;
2433 struct sgt_iter sgt_iter;
2434 struct page *page;
2435 unsigned long last_pfn = 0; /* suppress gcc warning */
2436 unsigned int max_segment = i915_sg_segment_size();
2437 unsigned int sg_page_sizes;
2438 struct pagevec pvec;
2439 gfp_t noreclaim;
2440 int ret;
2441
2442 /*
2443 * Assert that the object is not currently in any GPU domain. As it
2444 * wasn't in the GTT, there shouldn't be any way it could have been in
2445 * a GPU cache
2446 */
2447 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2448 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2449
2450 /*
2451 * If there's no chance of allocating enough pages for the whole
2452 * object, bail early.
2453 */
2454 if (page_count > totalram_pages())
2455 return -ENOMEM;
2456
2457 st = kmalloc(sizeof(*st), GFP_KERNEL);
2458 if (st == NULL)
2459 return -ENOMEM;
2460
2461 rebuild_st:
2462 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2463 kfree(st);
2464 return -ENOMEM;
2465 }
2466
2467 /*
2468 * Get the list of pages out of our struct file. They'll be pinned
2469 * at this point until we release them.
2470 *
2471 * Fail silently without starting the shrinker
2472 */
2473 mapping = obj->base.filp->f_mapping;
2474 mapping_set_unevictable(mapping);
2475 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2476 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2477
2478 sg = st->sgl;
2479 st->nents = 0;
2480 sg_page_sizes = 0;
2481 for (i = 0; i < page_count; i++) {
2482 const unsigned int shrink[] = {
2483 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2484 0,
2485 }, *s = shrink;
2486 gfp_t gfp = noreclaim;
2487
2488 do {
2489 cond_resched();
2490 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2491 if (likely(!IS_ERR(page)))
2492 break;
2493
2494 if (!*s) {
2495 ret = PTR_ERR(page);
2496 goto err_sg;
2497 }
2498
2499 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2500
2501 /*
2502 * We've tried hard to allocate the memory by reaping
2503 * our own buffer, now let the real VM do its job and
2504 * go down in flames if truly OOM.
2505 *
2506 * However, since graphics tend to be disposable,
2507 * defer the oom here by reporting the ENOMEM back
2508 * to userspace.
2509 */
2510 if (!*s) {
2511 /* reclaim and warn, but no oom */
2512 gfp = mapping_gfp_mask(mapping);
2513
2514 /*
2515 * Our bo are always dirty and so we require
2516 * kswapd to reclaim our pages (direct reclaim
2517 * does not effectively begin pageout of our
2518 * buffers on its own). However, direct reclaim
2519 * only waits for kswapd when under allocation
2520 * congestion. So as a result __GFP_RECLAIM is
2521 * unreliable and fails to actually reclaim our
2522 * dirty pages -- unless you try over and over
2523 * again with !__GFP_NORETRY. However, we still
2524 * want to fail this allocation rather than
2525 * trigger the out-of-memory killer and for
2526 * this we want __GFP_RETRY_MAYFAIL.
2527 */
2528 gfp |= __GFP_RETRY_MAYFAIL;
2529 }
2530 } while (1);
2531
2532 if (!i ||
2533 sg->length >= max_segment ||
2534 page_to_pfn(page) != last_pfn + 1) {
2535 if (i) {
2536 sg_page_sizes |= sg->length;
2537 sg = sg_next(sg);
2538 }
2539 st->nents++;
2540 sg_set_page(sg, page, PAGE_SIZE, 0);
2541 } else {
2542 sg->length += PAGE_SIZE;
2543 }
2544 last_pfn = page_to_pfn(page);
2545
2546 /* Check that the i965g/gm workaround works. */
2547 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2548 }
2549 if (sg) { /* loop terminated early; short sg table */
2550 sg_page_sizes |= sg->length;
2551 sg_mark_end(sg);
2552 }
2553
2554 /* Trim unused sg entries to avoid wasting memory. */
2555 i915_sg_trim(st);
2556
2557 ret = i915_gem_gtt_prepare_pages(obj, st);
2558 if (ret) {
2559 /*
2560 * DMA remapping failed? One possible cause is that
2561 * it could not reserve enough large entries, asking
2562 * for PAGE_SIZE chunks instead may be helpful.
2563 */
2564 if (max_segment > PAGE_SIZE) {
2565 for_each_sgt_page(page, sgt_iter, st)
2566 put_page(page);
2567 sg_free_table(st);
2568
2569 max_segment = PAGE_SIZE;
2570 goto rebuild_st;
2571 } else {
2572 dev_warn(&dev_priv->drm.pdev->dev,
2573 "Failed to DMA remap %lu pages\n",
2574 page_count);
2575 goto err_pages;
2576 }
2577 }
2578
2579 if (i915_gem_object_needs_bit17_swizzle(obj))
2580 i915_gem_object_do_bit_17_swizzle(obj, st);
2581
2582 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2583
2584 return 0;
2585
2586 err_sg:
2587 sg_mark_end(sg);
2588 err_pages:
2589 mapping_clear_unevictable(mapping);
2590 pagevec_init(&pvec);
2591 for_each_sgt_page(page, sgt_iter, st) {
2592 if (!pagevec_add(&pvec, page))
2593 check_release_pagevec(&pvec);
2594 }
2595 if (pagevec_count(&pvec))
2596 check_release_pagevec(&pvec);
2597 sg_free_table(st);
2598 kfree(st);
2599
2600 /*
2601 * shmemfs first checks if there is enough memory to allocate the page
2602 * and reports ENOSPC should there be insufficient, along with the usual
2603 * ENOMEM for a genuine allocation failure.
2604 *
2605 * We use ENOSPC in our driver to mean that we have run out of aperture
2606 * space and so want to translate the error from shmemfs back to our
2607 * usual understanding of ENOMEM.
2608 */
2609 if (ret == -ENOSPC)
2610 ret = -ENOMEM;
2611
2612 return ret;
2613 }
2614
2615 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2616 struct sg_table *pages,
2617 unsigned int sg_page_sizes)
2618 {
2619 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2620 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2621 int i;
2622
2623 lockdep_assert_held(&obj->mm.lock);
2624
2625 obj->mm.get_page.sg_pos = pages->sgl;
2626 obj->mm.get_page.sg_idx = 0;
2627
2628 obj->mm.pages = pages;
2629
2630 if (i915_gem_object_is_tiled(obj) &&
2631 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2632 GEM_BUG_ON(obj->mm.quirked);
2633 __i915_gem_object_pin_pages(obj);
2634 obj->mm.quirked = true;
2635 }
2636
2637 GEM_BUG_ON(!sg_page_sizes);
2638 obj->mm.page_sizes.phys = sg_page_sizes;
2639
2640 /*
2641 * Calculate the supported page-sizes which fit into the given
2642 * sg_page_sizes. This will give us the page-sizes which we may be able
2643 * to use opportunistically when later inserting into the GTT. For
2644 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2645 * 64K or 4K pages, although in practice this will depend on a number of
2646 * other factors.
2647 */
2648 obj->mm.page_sizes.sg = 0;
2649 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2650 if (obj->mm.page_sizes.phys & ~0u << i)
2651 obj->mm.page_sizes.sg |= BIT(i);
2652 }
2653 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2654
2655 spin_lock(&i915->mm.obj_lock);
2656 list_add(&obj->mm.link, &i915->mm.unbound_list);
2657 spin_unlock(&i915->mm.obj_lock);
2658 }
2659
2660 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2661 {
2662 int err;
2663
2664 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2665 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2666 return -EFAULT;
2667 }
2668
2669 err = obj->ops->get_pages(obj);
2670 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2671
2672 return err;
2673 }
2674
2675 /* Ensure that the associated pages are gathered from the backing storage
2676 * and pinned into our object. i915_gem_object_pin_pages() may be called
2677 * multiple times before they are released by a single call to
2678 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2679 * either as a result of memory pressure (reaping pages under the shrinker)
2680 * or as the object is itself released.
2681 */
2682 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2683 {
2684 int err;
2685
2686 err = mutex_lock_interruptible(&obj->mm.lock);
2687 if (err)
2688 return err;
2689
2690 if (unlikely(!i915_gem_object_has_pages(obj))) {
2691 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2692
2693 err = ____i915_gem_object_get_pages(obj);
2694 if (err)
2695 goto unlock;
2696
2697 smp_mb__before_atomic();
2698 }
2699 atomic_inc(&obj->mm.pages_pin_count);
2700
2701 unlock:
2702 mutex_unlock(&obj->mm.lock);
2703 return err;
2704 }
2705
2706 /* The 'mapping' part of i915_gem_object_pin_map() below */
2707 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2708 enum i915_map_type type)
2709 {
2710 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2711 struct sg_table *sgt = obj->mm.pages;
2712 struct sgt_iter sgt_iter;
2713 struct page *page;
2714 struct page *stack_pages[32];
2715 struct page **pages = stack_pages;
2716 unsigned long i = 0;
2717 pgprot_t pgprot;
2718 void *addr;
2719
2720 /* A single page can always be kmapped */
2721 if (n_pages == 1 && type == I915_MAP_WB)
2722 return kmap(sg_page(sgt->sgl));
2723
2724 if (n_pages > ARRAY_SIZE(stack_pages)) {
2725 /* Too big for stack -- allocate temporary array instead */
2726 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2727 if (!pages)
2728 return NULL;
2729 }
2730
2731 for_each_sgt_page(page, sgt_iter, sgt)
2732 pages[i++] = page;
2733
2734 /* Check that we have the expected number of pages */
2735 GEM_BUG_ON(i != n_pages);
2736
2737 switch (type) {
2738 default:
2739 MISSING_CASE(type);
2740 /* fallthrough to use PAGE_KERNEL anyway */
2741 case I915_MAP_WB:
2742 pgprot = PAGE_KERNEL;
2743 break;
2744 case I915_MAP_WC:
2745 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2746 break;
2747 }
2748 addr = vmap(pages, n_pages, 0, pgprot);
2749
2750 if (pages != stack_pages)
2751 kvfree(pages);
2752
2753 return addr;
2754 }
2755
2756 /* get, pin, and map the pages of the object into kernel space */
2757 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2758 enum i915_map_type type)
2759 {
2760 enum i915_map_type has_type;
2761 bool pinned;
2762 void *ptr;
2763 int ret;
2764
2765 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2766 return ERR_PTR(-ENXIO);
2767
2768 ret = mutex_lock_interruptible(&obj->mm.lock);
2769 if (ret)
2770 return ERR_PTR(ret);
2771
2772 pinned = !(type & I915_MAP_OVERRIDE);
2773 type &= ~I915_MAP_OVERRIDE;
2774
2775 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2776 if (unlikely(!i915_gem_object_has_pages(obj))) {
2777 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2778
2779 ret = ____i915_gem_object_get_pages(obj);
2780 if (ret)
2781 goto err_unlock;
2782
2783 smp_mb__before_atomic();
2784 }
2785 atomic_inc(&obj->mm.pages_pin_count);
2786 pinned = false;
2787 }
2788 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2789
2790 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2791 if (ptr && has_type != type) {
2792 if (pinned) {
2793 ret = -EBUSY;
2794 goto err_unpin;
2795 }
2796
2797 if (is_vmalloc_addr(ptr))
2798 vunmap(ptr);
2799 else
2800 kunmap(kmap_to_page(ptr));
2801
2802 ptr = obj->mm.mapping = NULL;
2803 }
2804
2805 if (!ptr) {
2806 ptr = i915_gem_object_map(obj, type);
2807 if (!ptr) {
2808 ret = -ENOMEM;
2809 goto err_unpin;
2810 }
2811
2812 obj->mm.mapping = page_pack_bits(ptr, type);
2813 }
2814
2815 out_unlock:
2816 mutex_unlock(&obj->mm.lock);
2817 return ptr;
2818
2819 err_unpin:
2820 atomic_dec(&obj->mm.pages_pin_count);
2821 err_unlock:
2822 ptr = ERR_PTR(ret);
2823 goto out_unlock;
2824 }
2825
2826 static int
2827 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2828 const struct drm_i915_gem_pwrite *arg)
2829 {
2830 struct address_space *mapping = obj->base.filp->f_mapping;
2831 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2832 u64 remain, offset;
2833 unsigned int pg;
2834
2835 /* Before we instantiate/pin the backing store for our use, we
2836 * can prepopulate the shmemfs filp efficiently using a write into
2837 * the pagecache. We avoid the penalty of instantiating all the
2838 * pages, important if the user is just writing to a few and never
2839 * uses the object on the GPU, and using a direct write into shmemfs
2840 * allows it to avoid the cost of retrieving a page (either swapin
2841 * or clearing-before-use) before it is overwritten.
2842 */
2843 if (i915_gem_object_has_pages(obj))
2844 return -ENODEV;
2845
2846 if (obj->mm.madv != I915_MADV_WILLNEED)
2847 return -EFAULT;
2848
2849 /* Before the pages are instantiated the object is treated as being
2850 * in the CPU domain. The pages will be clflushed as required before
2851 * use, and we can freely write into the pages directly. If userspace
2852 * races pwrite with any other operation; corruption will ensue -
2853 * that is userspace's prerogative!
2854 */
2855
2856 remain = arg->size;
2857 offset = arg->offset;
2858 pg = offset_in_page(offset);
2859
2860 do {
2861 unsigned int len, unwritten;
2862 struct page *page;
2863 void *data, *vaddr;
2864 int err;
2865
2866 len = PAGE_SIZE - pg;
2867 if (len > remain)
2868 len = remain;
2869
2870 err = pagecache_write_begin(obj->base.filp, mapping,
2871 offset, len, 0,
2872 &page, &data);
2873 if (err < 0)
2874 return err;
2875
2876 vaddr = kmap(page);
2877 unwritten = copy_from_user(vaddr + pg, user_data, len);
2878 kunmap(page);
2879
2880 err = pagecache_write_end(obj->base.filp, mapping,
2881 offset, len, len - unwritten,
2882 page, data);
2883 if (err < 0)
2884 return err;
2885
2886 if (unwritten)
2887 return -EFAULT;
2888
2889 remain -= len;
2890 user_data += len;
2891 offset += len;
2892 pg = 0;
2893 } while (remain);
2894
2895 return 0;
2896 }
2897
2898 static bool match_ring(struct i915_request *rq)
2899 {
2900 struct drm_i915_private *dev_priv = rq->i915;
2901 u32 ring = I915_READ(RING_START(rq->engine->mmio_base));
2902
2903 return ring == i915_ggtt_offset(rq->ring->vma);
2904 }
2905
2906 struct i915_request *
2907 i915_gem_find_active_request(struct intel_engine_cs *engine)
2908 {
2909 struct i915_request *request, *active = NULL;
2910 unsigned long flags;
2911
2912 /*
2913 * We are called by the error capture, reset and to dump engine
2914 * state at random points in time. In particular, note that neither is
2915 * crucially ordered with an interrupt. After a hang, the GPU is dead
2916 * and we assume that no more writes can happen (we waited long enough
2917 * for all writes that were in transaction to be flushed) - adding an
2918 * extra delay for a recent interrupt is pointless. Hence, we do
2919 * not need an engine->irq_seqno_barrier() before the seqno reads.
2920 * At all other times, we must assume the GPU is still running, but
2921 * we only care about the snapshot of this moment.
2922 */
2923 spin_lock_irqsave(&engine->timeline.lock, flags);
2924 list_for_each_entry(request, &engine->timeline.requests, link) {
2925 if (i915_request_completed(request))
2926 continue;
2927
2928 if (!i915_request_started(request))
2929 break;
2930
2931 /* More than one preemptible request may match! */
2932 if (!match_ring(request))
2933 break;
2934
2935 active = request;
2936 break;
2937 }
2938 spin_unlock_irqrestore(&engine->timeline.lock, flags);
2939
2940 return active;
2941 }
2942
2943 static void
2944 i915_gem_retire_work_handler(struct work_struct *work)
2945 {
2946 struct drm_i915_private *dev_priv =
2947 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2948 struct drm_device *dev = &dev_priv->drm;
2949
2950 /* Come back later if the device is busy... */
2951 if (mutex_trylock(&dev->struct_mutex)) {
2952 i915_retire_requests(dev_priv);
2953 mutex_unlock(&dev->struct_mutex);
2954 }
2955
2956 /*
2957 * Keep the retire handler running until we are finally idle.
2958 * We do not need to do this test under locking as in the worst-case
2959 * we queue the retire worker once too often.
2960 */
2961 if (READ_ONCE(dev_priv->gt.awake))
2962 queue_delayed_work(dev_priv->wq,
2963 &dev_priv->gt.retire_work,
2964 round_jiffies_up_relative(HZ));
2965 }
2966
2967 static void shrink_caches(struct drm_i915_private *i915)
2968 {
2969 /*
2970 * kmem_cache_shrink() discards empty slabs and reorders partially
2971 * filled slabs to prioritise allocating from the mostly full slabs,
2972 * with the aim of reducing fragmentation.
2973 */
2974 kmem_cache_shrink(i915->priorities);
2975 kmem_cache_shrink(i915->dependencies);
2976 kmem_cache_shrink(i915->requests);
2977 kmem_cache_shrink(i915->luts);
2978 kmem_cache_shrink(i915->vmas);
2979 kmem_cache_shrink(i915->objects);
2980 }
2981
2982 struct sleep_rcu_work {
2983 union {
2984 struct rcu_head rcu;
2985 struct work_struct work;
2986 };
2987 struct drm_i915_private *i915;
2988 unsigned int epoch;
2989 };
2990
2991 static inline bool
2992 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
2993 {
2994 /*
2995 * There is a small chance that the epoch wrapped since we started
2996 * sleeping. If we assume that epoch is at least a u32, then it will
2997 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
2998 */
2999 return epoch == READ_ONCE(i915->gt.epoch);
3000 }
3001
3002 static void __sleep_work(struct work_struct *work)
3003 {
3004 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3005 struct drm_i915_private *i915 = s->i915;
3006 unsigned int epoch = s->epoch;
3007
3008 kfree(s);
3009 if (same_epoch(i915, epoch))
3010 shrink_caches(i915);
3011 }
3012
3013 static void __sleep_rcu(struct rcu_head *rcu)
3014 {
3015 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3016 struct drm_i915_private *i915 = s->i915;
3017
3018 destroy_rcu_head(&s->rcu);
3019
3020 if (same_epoch(i915, s->epoch)) {
3021 INIT_WORK(&s->work, __sleep_work);
3022 queue_work(i915->wq, &s->work);
3023 } else {
3024 kfree(s);
3025 }
3026 }
3027
3028 static inline bool
3029 new_requests_since_last_retire(const struct drm_i915_private *i915)
3030 {
3031 return (READ_ONCE(i915->gt.active_requests) ||
3032 work_pending(&i915->gt.idle_work.work));
3033 }
3034
3035 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3036 {
3037 struct intel_engine_cs *engine;
3038 enum intel_engine_id id;
3039
3040 if (i915_terminally_wedged(&i915->gpu_error))
3041 return;
3042
3043 GEM_BUG_ON(i915->gt.active_requests);
3044 for_each_engine(engine, i915, id) {
3045 GEM_BUG_ON(__i915_active_request_peek(&engine->timeline.last_request));
3046 GEM_BUG_ON(engine->last_retired_context !=
3047 to_intel_context(i915->kernel_context, engine));
3048 }
3049 }
3050
3051 static void
3052 i915_gem_idle_work_handler(struct work_struct *work)
3053 {
3054 struct drm_i915_private *dev_priv =
3055 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3056 unsigned int epoch = I915_EPOCH_INVALID;
3057 bool rearm_hangcheck;
3058
3059 if (!READ_ONCE(dev_priv->gt.awake))
3060 return;
3061
3062 if (READ_ONCE(dev_priv->gt.active_requests))
3063 return;
3064
3065 /*
3066 * Flush out the last user context, leaving only the pinned
3067 * kernel context resident. When we are idling on the kernel_context,
3068 * no more new requests (with a context switch) are emitted and we
3069 * can finally rest. A consequence is that the idle work handler is
3070 * always called at least twice before idling (and if the system is
3071 * idle that implies a round trip through the retire worker).
3072 */
3073 mutex_lock(&dev_priv->drm.struct_mutex);
3074 i915_gem_switch_to_kernel_context(dev_priv);
3075 mutex_unlock(&dev_priv->drm.struct_mutex);
3076
3077 GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3078 READ_ONCE(dev_priv->gt.active_requests));
3079
3080 /*
3081 * Wait for last execlists context complete, but bail out in case a
3082 * new request is submitted. As we don't trust the hardware, we
3083 * continue on if the wait times out. This is necessary to allow
3084 * the machine to suspend even if the hardware dies, and we will
3085 * try to recover in resume (after depriving the hardware of power,
3086 * it may be in a better mmod).
3087 */
3088 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3089 intel_engines_are_idle(dev_priv),
3090 I915_IDLE_ENGINES_TIMEOUT * 1000,
3091 10, 500);
3092
3093 rearm_hangcheck =
3094 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3095
3096 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3097 /* Currently busy, come back later */
3098 mod_delayed_work(dev_priv->wq,
3099 &dev_priv->gt.idle_work,
3100 msecs_to_jiffies(50));
3101 goto out_rearm;
3102 }
3103
3104 /*
3105 * New request retired after this work handler started, extend active
3106 * period until next instance of the work.
3107 */
3108 if (new_requests_since_last_retire(dev_priv))
3109 goto out_unlock;
3110
3111 epoch = __i915_gem_park(dev_priv);
3112
3113 assert_kernel_context_is_current(dev_priv);
3114
3115 rearm_hangcheck = false;
3116 out_unlock:
3117 mutex_unlock(&dev_priv->drm.struct_mutex);
3118
3119 out_rearm:
3120 if (rearm_hangcheck) {
3121 GEM_BUG_ON(!dev_priv->gt.awake);
3122 i915_queue_hangcheck(dev_priv);
3123 }
3124
3125 /*
3126 * When we are idle, it is an opportune time to reap our caches.
3127 * However, we have many objects that utilise RCU and the ordered
3128 * i915->wq that this work is executing on. To try and flush any
3129 * pending frees now we are idle, we first wait for an RCU grace
3130 * period, and then queue a task (that will run last on the wq) to
3131 * shrink and re-optimize the caches.
3132 */
3133 if (same_epoch(dev_priv, epoch)) {
3134 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3135 if (s) {
3136 init_rcu_head(&s->rcu);
3137 s->i915 = dev_priv;
3138 s->epoch = epoch;
3139 call_rcu(&s->rcu, __sleep_rcu);
3140 }
3141 }
3142 }
3143
3144 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3145 {
3146 struct drm_i915_private *i915 = to_i915(gem->dev);
3147 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3148 struct drm_i915_file_private *fpriv = file->driver_priv;
3149 struct i915_lut_handle *lut, *ln;
3150
3151 mutex_lock(&i915->drm.struct_mutex);
3152
3153 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3154 struct i915_gem_context *ctx = lut->ctx;
3155 struct i915_vma *vma;
3156
3157 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3158 if (ctx->file_priv != fpriv)
3159 continue;
3160
3161 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3162 GEM_BUG_ON(vma->obj != obj);
3163
3164 /* We allow the process to have multiple handles to the same
3165 * vma, in the same fd namespace, by virtue of flink/open.
3166 */
3167 GEM_BUG_ON(!vma->open_count);
3168 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3169 i915_vma_close(vma);
3170
3171 list_del(&lut->obj_link);
3172 list_del(&lut->ctx_link);
3173
3174 kmem_cache_free(i915->luts, lut);
3175 __i915_gem_object_release_unless_active(obj);
3176 }
3177
3178 mutex_unlock(&i915->drm.struct_mutex);
3179 }
3180
3181 static unsigned long to_wait_timeout(s64 timeout_ns)
3182 {
3183 if (timeout_ns < 0)
3184 return MAX_SCHEDULE_TIMEOUT;
3185
3186 if (timeout_ns == 0)
3187 return 0;
3188
3189 return nsecs_to_jiffies_timeout(timeout_ns);
3190 }
3191
3192 /**
3193 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3194 * @dev: drm device pointer
3195 * @data: ioctl data blob
3196 * @file: drm file pointer
3197 *
3198 * Returns 0 if successful, else an error is returned with the remaining time in
3199 * the timeout parameter.
3200 * -ETIME: object is still busy after timeout
3201 * -ERESTARTSYS: signal interrupted the wait
3202 * -ENONENT: object doesn't exist
3203 * Also possible, but rare:
3204 * -EAGAIN: incomplete, restart syscall
3205 * -ENOMEM: damn
3206 * -ENODEV: Internal IRQ fail
3207 * -E?: The add request failed
3208 *
3209 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3210 * non-zero timeout parameter the wait ioctl will wait for the given number of
3211 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3212 * without holding struct_mutex the object may become re-busied before this
3213 * function completes. A similar but shorter * race condition exists in the busy
3214 * ioctl
3215 */
3216 int
3217 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3218 {
3219 struct drm_i915_gem_wait *args = data;
3220 struct drm_i915_gem_object *obj;
3221 ktime_t start;
3222 long ret;
3223
3224 if (args->flags != 0)
3225 return -EINVAL;
3226
3227 obj = i915_gem_object_lookup(file, args->bo_handle);
3228 if (!obj)
3229 return -ENOENT;
3230
3231 start = ktime_get();
3232
3233 ret = i915_gem_object_wait(obj,
3234 I915_WAIT_INTERRUPTIBLE |
3235 I915_WAIT_PRIORITY |
3236 I915_WAIT_ALL,
3237 to_wait_timeout(args->timeout_ns),
3238 to_rps_client(file));
3239
3240 if (args->timeout_ns > 0) {
3241 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3242 if (args->timeout_ns < 0)
3243 args->timeout_ns = 0;
3244
3245 /*
3246 * Apparently ktime isn't accurate enough and occasionally has a
3247 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3248 * things up to make the test happy. We allow up to 1 jiffy.
3249 *
3250 * This is a regression from the timespec->ktime conversion.
3251 */
3252 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3253 args->timeout_ns = 0;
3254
3255 /* Asked to wait beyond the jiffie/scheduler precision? */
3256 if (ret == -ETIME && args->timeout_ns)
3257 ret = -EAGAIN;
3258 }
3259
3260 i915_gem_object_put(obj);
3261 return ret;
3262 }
3263
3264 static int wait_for_engines(struct drm_i915_private *i915)
3265 {
3266 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3267 dev_err(i915->drm.dev,
3268 "Failed to idle engines, declaring wedged!\n");
3269 GEM_TRACE_DUMP();
3270 i915_gem_set_wedged(i915);
3271 return -EIO;
3272 }
3273
3274 return 0;
3275 }
3276
3277 static long
3278 wait_for_timelines(struct drm_i915_private *i915,
3279 unsigned int flags, long timeout)
3280 {
3281 struct i915_gt_timelines *gt = &i915->gt.timelines;
3282 struct i915_timeline *tl;
3283
3284 if (!READ_ONCE(i915->gt.active_requests))
3285 return timeout;
3286
3287 mutex_lock(&gt->mutex);
3288 list_for_each_entry(tl, &gt->active_list, link) {
3289 struct i915_request *rq;
3290
3291 rq = i915_active_request_get_unlocked(&tl->last_request);
3292 if (!rq)
3293 continue;
3294
3295 mutex_unlock(&gt->mutex);
3296
3297 /*
3298 * "Race-to-idle".
3299 *
3300 * Switching to the kernel context is often used a synchronous
3301 * step prior to idling, e.g. in suspend for flushing all
3302 * current operations to memory before sleeping. These we
3303 * want to complete as quickly as possible to avoid prolonged
3304 * stalls, so allow the gpu to boost to maximum clocks.
3305 */
3306 if (flags & I915_WAIT_FOR_IDLE_BOOST)
3307 gen6_rps_boost(rq, NULL);
3308
3309 timeout = i915_request_wait(rq, flags, timeout);
3310 i915_request_put(rq);
3311 if (timeout < 0)
3312 return timeout;
3313
3314 /* restart after reacquiring the lock */
3315 mutex_lock(&gt->mutex);
3316 tl = list_entry(&gt->active_list, typeof(*tl), link);
3317 }
3318 mutex_unlock(&gt->mutex);
3319
3320 return timeout;
3321 }
3322
3323 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3324 unsigned int flags, long timeout)
3325 {
3326 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3327 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3328 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3329
3330 /* If the device is asleep, we have no requests outstanding */
3331 if (!READ_ONCE(i915->gt.awake))
3332 return 0;
3333
3334 timeout = wait_for_timelines(i915, flags, timeout);
3335 if (timeout < 0)
3336 return timeout;
3337
3338 if (flags & I915_WAIT_LOCKED) {
3339 int err;
3340
3341 lockdep_assert_held(&i915->drm.struct_mutex);
3342
3343 if (GEM_SHOW_DEBUG() && !timeout) {
3344 /* Presume that timeout was non-zero to begin with! */
3345 dev_warn(&i915->drm.pdev->dev,
3346 "Missed idle-completion interrupt!\n");
3347 GEM_TRACE_DUMP();
3348 }
3349
3350 err = wait_for_engines(i915);
3351 if (err)
3352 return err;
3353
3354 i915_retire_requests(i915);
3355 GEM_BUG_ON(i915->gt.active_requests);
3356 }
3357
3358 return 0;
3359 }
3360
3361 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3362 {
3363 /*
3364 * We manually flush the CPU domain so that we can override and
3365 * force the flush for the display, and perform it asyncrhonously.
3366 */
3367 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3368 if (obj->cache_dirty)
3369 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3370 obj->write_domain = 0;
3371 }
3372
3373 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3374 {
3375 if (!READ_ONCE(obj->pin_global))
3376 return;
3377
3378 mutex_lock(&obj->base.dev->struct_mutex);
3379 __i915_gem_object_flush_for_display(obj);
3380 mutex_unlock(&obj->base.dev->struct_mutex);
3381 }
3382
3383 /**
3384 * Moves a single object to the WC read, and possibly write domain.
3385 * @obj: object to act on
3386 * @write: ask for write access or read only
3387 *
3388 * This function returns when the move is complete, including waiting on
3389 * flushes to occur.
3390 */
3391 int
3392 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3393 {
3394 int ret;
3395
3396 lockdep_assert_held(&obj->base.dev->struct_mutex);
3397
3398 ret = i915_gem_object_wait(obj,
3399 I915_WAIT_INTERRUPTIBLE |
3400 I915_WAIT_LOCKED |
3401 (write ? I915_WAIT_ALL : 0),
3402 MAX_SCHEDULE_TIMEOUT,
3403 NULL);
3404 if (ret)
3405 return ret;
3406
3407 if (obj->write_domain == I915_GEM_DOMAIN_WC)
3408 return 0;
3409
3410 /* Flush and acquire obj->pages so that we are coherent through
3411 * direct access in memory with previous cached writes through
3412 * shmemfs and that our cache domain tracking remains valid.
3413 * For example, if the obj->filp was moved to swap without us
3414 * being notified and releasing the pages, we would mistakenly
3415 * continue to assume that the obj remained out of the CPU cached
3416 * domain.
3417 */
3418 ret = i915_gem_object_pin_pages(obj);
3419 if (ret)
3420 return ret;
3421
3422 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3423
3424 /* Serialise direct access to this object with the barriers for
3425 * coherent writes from the GPU, by effectively invalidating the
3426 * WC domain upon first access.
3427 */
3428 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3429 mb();
3430
3431 /* It should now be out of any other write domains, and we can update
3432 * the domain values for our changes.
3433 */
3434 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3435 obj->read_domains |= I915_GEM_DOMAIN_WC;
3436 if (write) {
3437 obj->read_domains = I915_GEM_DOMAIN_WC;
3438 obj->write_domain = I915_GEM_DOMAIN_WC;
3439 obj->mm.dirty = true;
3440 }
3441
3442 i915_gem_object_unpin_pages(obj);
3443 return 0;
3444 }
3445
3446 /**
3447 * Moves a single object to the GTT read, and possibly write domain.
3448 * @obj: object to act on
3449 * @write: ask for write access or read only
3450 *
3451 * This function returns when the move is complete, including waiting on
3452 * flushes to occur.
3453 */
3454 int
3455 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3456 {
3457 int ret;
3458
3459 lockdep_assert_held(&obj->base.dev->struct_mutex);
3460
3461 ret = i915_gem_object_wait(obj,
3462 I915_WAIT_INTERRUPTIBLE |
3463 I915_WAIT_LOCKED |
3464 (write ? I915_WAIT_ALL : 0),
3465 MAX_SCHEDULE_TIMEOUT,
3466 NULL);
3467 if (ret)
3468 return ret;
3469
3470 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3471 return 0;
3472
3473 /* Flush and acquire obj->pages so that we are coherent through
3474 * direct access in memory with previous cached writes through
3475 * shmemfs and that our cache domain tracking remains valid.
3476 * For example, if the obj->filp was moved to swap without us
3477 * being notified and releasing the pages, we would mistakenly
3478 * continue to assume that the obj remained out of the CPU cached
3479 * domain.
3480 */
3481 ret = i915_gem_object_pin_pages(obj);
3482 if (ret)
3483 return ret;
3484
3485 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3486
3487 /* Serialise direct access to this object with the barriers for
3488 * coherent writes from the GPU, by effectively invalidating the
3489 * GTT domain upon first access.
3490 */
3491 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3492 mb();
3493
3494 /* It should now be out of any other write domains, and we can update
3495 * the domain values for our changes.
3496 */
3497 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3498 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3499 if (write) {
3500 obj->read_domains = I915_GEM_DOMAIN_GTT;
3501 obj->write_domain = I915_GEM_DOMAIN_GTT;
3502 obj->mm.dirty = true;
3503 }
3504
3505 i915_gem_object_unpin_pages(obj);
3506 return 0;
3507 }
3508
3509 /**
3510 * Changes the cache-level of an object across all VMA.
3511 * @obj: object to act on
3512 * @cache_level: new cache level to set for the object
3513 *
3514 * After this function returns, the object will be in the new cache-level
3515 * across all GTT and the contents of the backing storage will be coherent,
3516 * with respect to the new cache-level. In order to keep the backing storage
3517 * coherent for all users, we only allow a single cache level to be set
3518 * globally on the object and prevent it from being changed whilst the
3519 * hardware is reading from the object. That is if the object is currently
3520 * on the scanout it will be set to uncached (or equivalent display
3521 * cache coherency) and all non-MOCS GPU access will also be uncached so
3522 * that all direct access to the scanout remains coherent.
3523 */
3524 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3525 enum i915_cache_level cache_level)
3526 {
3527 struct i915_vma *vma;
3528 int ret;
3529
3530 lockdep_assert_held(&obj->base.dev->struct_mutex);
3531
3532 if (obj->cache_level == cache_level)
3533 return 0;
3534
3535 /* Inspect the list of currently bound VMA and unbind any that would
3536 * be invalid given the new cache-level. This is principally to
3537 * catch the issue of the CS prefetch crossing page boundaries and
3538 * reading an invalid PTE on older architectures.
3539 */
3540 restart:
3541 list_for_each_entry(vma, &obj->vma.list, obj_link) {
3542 if (!drm_mm_node_allocated(&vma->node))
3543 continue;
3544
3545 if (i915_vma_is_pinned(vma)) {
3546 DRM_DEBUG("can not change the cache level of pinned objects\n");
3547 return -EBUSY;
3548 }
3549
3550 if (!i915_vma_is_closed(vma) &&
3551 i915_gem_valid_gtt_space(vma, cache_level))
3552 continue;
3553
3554 ret = i915_vma_unbind(vma);
3555 if (ret)
3556 return ret;
3557
3558 /* As unbinding may affect other elements in the
3559 * obj->vma_list (due to side-effects from retiring
3560 * an active vma), play safe and restart the iterator.
3561 */
3562 goto restart;
3563 }
3564
3565 /* We can reuse the existing drm_mm nodes but need to change the
3566 * cache-level on the PTE. We could simply unbind them all and
3567 * rebind with the correct cache-level on next use. However since
3568 * we already have a valid slot, dma mapping, pages etc, we may as
3569 * rewrite the PTE in the belief that doing so tramples upon less
3570 * state and so involves less work.
3571 */
3572 if (obj->bind_count) {
3573 /* Before we change the PTE, the GPU must not be accessing it.
3574 * If we wait upon the object, we know that all the bound
3575 * VMA are no longer active.
3576 */
3577 ret = i915_gem_object_wait(obj,
3578 I915_WAIT_INTERRUPTIBLE |
3579 I915_WAIT_LOCKED |
3580 I915_WAIT_ALL,
3581 MAX_SCHEDULE_TIMEOUT,
3582 NULL);
3583 if (ret)
3584 return ret;
3585
3586 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3587 cache_level != I915_CACHE_NONE) {
3588 /* Access to snoopable pages through the GTT is
3589 * incoherent and on some machines causes a hard
3590 * lockup. Relinquish the CPU mmaping to force
3591 * userspace to refault in the pages and we can
3592 * then double check if the GTT mapping is still
3593 * valid for that pointer access.
3594 */
3595 i915_gem_release_mmap(obj);
3596
3597 /* As we no longer need a fence for GTT access,
3598 * we can relinquish it now (and so prevent having
3599 * to steal a fence from someone else on the next
3600 * fence request). Note GPU activity would have
3601 * dropped the fence as all snoopable access is
3602 * supposed to be linear.
3603 */
3604 for_each_ggtt_vma(vma, obj) {
3605 ret = i915_vma_put_fence(vma);
3606 if (ret)
3607 return ret;
3608 }
3609 } else {
3610 /* We either have incoherent backing store and
3611 * so no GTT access or the architecture is fully
3612 * coherent. In such cases, existing GTT mmaps
3613 * ignore the cache bit in the PTE and we can
3614 * rewrite it without confusing the GPU or having
3615 * to force userspace to fault back in its mmaps.
3616 */
3617 }
3618
3619 list_for_each_entry(vma, &obj->vma.list, obj_link) {
3620 if (!drm_mm_node_allocated(&vma->node))
3621 continue;
3622
3623 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3624 if (ret)
3625 return ret;
3626 }
3627 }
3628
3629 list_for_each_entry(vma, &obj->vma.list, obj_link)
3630 vma->node.color = cache_level;
3631 i915_gem_object_set_cache_coherency(obj, cache_level);
3632 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3633
3634 return 0;
3635 }
3636
3637 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3638 struct drm_file *file)
3639 {
3640 struct drm_i915_gem_caching *args = data;
3641 struct drm_i915_gem_object *obj;
3642 int err = 0;
3643
3644 rcu_read_lock();
3645 obj = i915_gem_object_lookup_rcu(file, args->handle);
3646 if (!obj) {
3647 err = -ENOENT;
3648 goto out;
3649 }
3650
3651 switch (obj->cache_level) {
3652 case I915_CACHE_LLC:
3653 case I915_CACHE_L3_LLC:
3654 args->caching = I915_CACHING_CACHED;
3655 break;
3656
3657 case I915_CACHE_WT:
3658 args->caching = I915_CACHING_DISPLAY;
3659 break;
3660
3661 default:
3662 args->caching = I915_CACHING_NONE;
3663 break;
3664 }
3665 out:
3666 rcu_read_unlock();
3667 return err;
3668 }
3669
3670 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3671 struct drm_file *file)
3672 {
3673 struct drm_i915_private *i915 = to_i915(dev);
3674 struct drm_i915_gem_caching *args = data;
3675 struct drm_i915_gem_object *obj;
3676 enum i915_cache_level level;
3677 int ret = 0;
3678
3679 switch (args->caching) {
3680 case I915_CACHING_NONE:
3681 level = I915_CACHE_NONE;
3682 break;
3683 case I915_CACHING_CACHED:
3684 /*
3685 * Due to a HW issue on BXT A stepping, GPU stores via a
3686 * snooped mapping may leave stale data in a corresponding CPU
3687 * cacheline, whereas normally such cachelines would get
3688 * invalidated.
3689 */
3690 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3691 return -ENODEV;
3692
3693 level = I915_CACHE_LLC;
3694 break;
3695 case I915_CACHING_DISPLAY:
3696 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3697 break;
3698 default:
3699 return -EINVAL;
3700 }
3701
3702 obj = i915_gem_object_lookup(file, args->handle);
3703 if (!obj)
3704 return -ENOENT;
3705
3706 /*
3707 * The caching mode of proxy object is handled by its generator, and
3708 * not allowed to be changed by userspace.
3709 */
3710 if (i915_gem_object_is_proxy(obj)) {
3711 ret = -ENXIO;
3712 goto out;
3713 }
3714
3715 if (obj->cache_level == level)
3716 goto out;
3717
3718 ret = i915_gem_object_wait(obj,
3719 I915_WAIT_INTERRUPTIBLE,
3720 MAX_SCHEDULE_TIMEOUT,
3721 to_rps_client(file));
3722 if (ret)
3723 goto out;
3724
3725 ret = i915_mutex_lock_interruptible(dev);
3726 if (ret)
3727 goto out;
3728
3729 ret = i915_gem_object_set_cache_level(obj, level);
3730 mutex_unlock(&dev->struct_mutex);
3731
3732 out:
3733 i915_gem_object_put(obj);
3734 return ret;
3735 }
3736
3737 /*
3738 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
3739 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
3740 * (for pageflips). We only flush the caches while preparing the buffer for
3741 * display, the callers are responsible for frontbuffer flush.
3742 */
3743 struct i915_vma *
3744 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3745 u32 alignment,
3746 const struct i915_ggtt_view *view,
3747 unsigned int flags)
3748 {
3749 struct i915_vma *vma;
3750 int ret;
3751
3752 lockdep_assert_held(&obj->base.dev->struct_mutex);
3753
3754 /* Mark the global pin early so that we account for the
3755 * display coherency whilst setting up the cache domains.
3756 */
3757 obj->pin_global++;
3758
3759 /* The display engine is not coherent with the LLC cache on gen6. As
3760 * a result, we make sure that the pinning that is about to occur is
3761 * done with uncached PTEs. This is lowest common denominator for all
3762 * chipsets.
3763 *
3764 * However for gen6+, we could do better by using the GFDT bit instead
3765 * of uncaching, which would allow us to flush all the LLC-cached data
3766 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3767 */
3768 ret = i915_gem_object_set_cache_level(obj,
3769 HAS_WT(to_i915(obj->base.dev)) ?
3770 I915_CACHE_WT : I915_CACHE_NONE);
3771 if (ret) {
3772 vma = ERR_PTR(ret);
3773 goto err_unpin_global;
3774 }
3775
3776 /* As the user may map the buffer once pinned in the display plane
3777 * (e.g. libkms for the bootup splash), we have to ensure that we
3778 * always use map_and_fenceable for all scanout buffers. However,
3779 * it may simply be too big to fit into mappable, in which case
3780 * put it anyway and hope that userspace can cope (but always first
3781 * try to preserve the existing ABI).
3782 */
3783 vma = ERR_PTR(-ENOSPC);
3784 if ((flags & PIN_MAPPABLE) == 0 &&
3785 (!view || view->type == I915_GGTT_VIEW_NORMAL))
3786 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3787 flags |
3788 PIN_MAPPABLE |
3789 PIN_NONBLOCK);
3790 if (IS_ERR(vma))
3791 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3792 if (IS_ERR(vma))
3793 goto err_unpin_global;
3794
3795 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3796
3797 __i915_gem_object_flush_for_display(obj);
3798
3799 /* It should now be out of any other write domains, and we can update
3800 * the domain values for our changes.
3801 */
3802 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3803
3804 return vma;
3805
3806 err_unpin_global:
3807 obj->pin_global--;
3808 return vma;
3809 }
3810
3811 void
3812 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3813 {
3814 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3815
3816 if (WARN_ON(vma->obj->pin_global == 0))
3817 return;
3818
3819 if (--vma->obj->pin_global == 0)
3820 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3821
3822 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3823 i915_gem_object_bump_inactive_ggtt(vma->obj);
3824
3825 i915_vma_unpin(vma);
3826 }
3827
3828 /**
3829 * Moves a single object to the CPU read, and possibly write domain.
3830 * @obj: object to act on
3831 * @write: requesting write or read-only access
3832 *
3833 * This function returns when the move is complete, including waiting on
3834 * flushes to occur.
3835 */
3836 int
3837 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3838 {
3839 int ret;
3840
3841 lockdep_assert_held(&obj->base.dev->struct_mutex);
3842
3843 ret = i915_gem_object_wait(obj,
3844 I915_WAIT_INTERRUPTIBLE |
3845 I915_WAIT_LOCKED |
3846 (write ? I915_WAIT_ALL : 0),
3847 MAX_SCHEDULE_TIMEOUT,
3848 NULL);
3849 if (ret)
3850 return ret;
3851
3852 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3853
3854 /* Flush the CPU cache if it's still invalid. */
3855 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3856 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3857 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3858 }
3859
3860 /* It should now be out of any other write domains, and we can update
3861 * the domain values for our changes.
3862 */
3863 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3864
3865 /* If we're writing through the CPU, then the GPU read domains will
3866 * need to be invalidated at next use.
3867 */
3868 if (write)
3869 __start_cpu_write(obj);
3870
3871 return 0;
3872 }
3873
3874 /* Throttle our rendering by waiting until the ring has completed our requests
3875 * emitted over 20 msec ago.
3876 *
3877 * Note that if we were to use the current jiffies each time around the loop,
3878 * we wouldn't escape the function with any frames outstanding if the time to
3879 * render a frame was over 20ms.
3880 *
3881 * This should get us reasonable parallelism between CPU and GPU but also
3882 * relatively low latency when blocking on a particular request to finish.
3883 */
3884 static int
3885 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3886 {
3887 struct drm_i915_private *dev_priv = to_i915(dev);
3888 struct drm_i915_file_private *file_priv = file->driver_priv;
3889 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3890 struct i915_request *request, *target = NULL;
3891 long ret;
3892
3893 /* ABI: return -EIO if already wedged */
3894 if (i915_terminally_wedged(&dev_priv->gpu_error))
3895 return -EIO;
3896
3897 spin_lock(&file_priv->mm.lock);
3898 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3899 if (time_after_eq(request->emitted_jiffies, recent_enough))
3900 break;
3901
3902 if (target) {
3903 list_del(&target->client_link);
3904 target->file_priv = NULL;
3905 }
3906
3907 target = request;
3908 }
3909 if (target)
3910 i915_request_get(target);
3911 spin_unlock(&file_priv->mm.lock);
3912
3913 if (target == NULL)
3914 return 0;
3915
3916 ret = i915_request_wait(target,
3917 I915_WAIT_INTERRUPTIBLE,
3918 MAX_SCHEDULE_TIMEOUT);
3919 i915_request_put(target);
3920
3921 return ret < 0 ? ret : 0;
3922 }
3923
3924 struct i915_vma *
3925 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3926 const struct i915_ggtt_view *view,
3927 u64 size,
3928 u64 alignment,
3929 u64 flags)
3930 {
3931 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3932 struct i915_address_space *vm = &dev_priv->ggtt.vm;
3933 struct i915_vma *vma;
3934 int ret;
3935
3936 lockdep_assert_held(&obj->base.dev->struct_mutex);
3937
3938 if (flags & PIN_MAPPABLE &&
3939 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3940 /* If the required space is larger than the available
3941 * aperture, we will not able to find a slot for the
3942 * object and unbinding the object now will be in
3943 * vain. Worse, doing so may cause us to ping-pong
3944 * the object in and out of the Global GTT and
3945 * waste a lot of cycles under the mutex.
3946 */
3947 if (obj->base.size > dev_priv->ggtt.mappable_end)
3948 return ERR_PTR(-E2BIG);
3949
3950 /* If NONBLOCK is set the caller is optimistically
3951 * trying to cache the full object within the mappable
3952 * aperture, and *must* have a fallback in place for
3953 * situations where we cannot bind the object. We
3954 * can be a little more lax here and use the fallback
3955 * more often to avoid costly migrations of ourselves
3956 * and other objects within the aperture.
3957 *
3958 * Half-the-aperture is used as a simple heuristic.
3959 * More interesting would to do search for a free
3960 * block prior to making the commitment to unbind.
3961 * That caters for the self-harm case, and with a
3962 * little more heuristics (e.g. NOFAULT, NOEVICT)
3963 * we could try to minimise harm to others.
3964 */
3965 if (flags & PIN_NONBLOCK &&
3966 obj->base.size > dev_priv->ggtt.mappable_end / 2)
3967 return ERR_PTR(-ENOSPC);
3968 }
3969
3970 vma = i915_vma_instance(obj, vm, view);
3971 if (unlikely(IS_ERR(vma)))
3972 return vma;
3973
3974 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3975 if (flags & PIN_NONBLOCK) {
3976 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
3977 return ERR_PTR(-ENOSPC);
3978
3979 if (flags & PIN_MAPPABLE &&
3980 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3981 return ERR_PTR(-ENOSPC);
3982 }
3983
3984 WARN(i915_vma_is_pinned(vma),
3985 "bo is already pinned in ggtt with incorrect alignment:"
3986 " offset=%08x, req.alignment=%llx,"
3987 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3988 i915_ggtt_offset(vma), alignment,
3989 !!(flags & PIN_MAPPABLE),
3990 i915_vma_is_map_and_fenceable(vma));
3991 ret = i915_vma_unbind(vma);
3992 if (ret)
3993 return ERR_PTR(ret);
3994 }
3995
3996 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3997 if (ret)
3998 return ERR_PTR(ret);
3999
4000 return vma;
4001 }
4002
4003 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4004 {
4005 /* Note that we could alias engines in the execbuf API, but
4006 * that would be very unwise as it prevents userspace from
4007 * fine control over engine selection. Ahem.
4008 *
4009 * This should be something like EXEC_MAX_ENGINE instead of
4010 * I915_NUM_ENGINES.
4011 */
4012 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4013 return 0x10000 << id;
4014 }
4015
4016 static __always_inline unsigned int __busy_write_id(unsigned int id)
4017 {
4018 /* The uABI guarantees an active writer is also amongst the read
4019 * engines. This would be true if we accessed the activity tracking
4020 * under the lock, but as we perform the lookup of the object and
4021 * its activity locklessly we can not guarantee that the last_write
4022 * being active implies that we have set the same engine flag from
4023 * last_read - hence we always set both read and write busy for
4024 * last_write.
4025 */
4026 return id | __busy_read_flag(id);
4027 }
4028
4029 static __always_inline unsigned int
4030 __busy_set_if_active(const struct dma_fence *fence,
4031 unsigned int (*flag)(unsigned int id))
4032 {
4033 struct i915_request *rq;
4034
4035 /* We have to check the current hw status of the fence as the uABI
4036 * guarantees forward progress. We could rely on the idle worker
4037 * to eventually flush us, but to minimise latency just ask the
4038 * hardware.
4039 *
4040 * Note we only report on the status of native fences.
4041 */
4042 if (!dma_fence_is_i915(fence))
4043 return 0;
4044
4045 /* opencode to_request() in order to avoid const warnings */
4046 rq = container_of(fence, struct i915_request, fence);
4047 if (i915_request_completed(rq))
4048 return 0;
4049
4050 return flag(rq->engine->uabi_id);
4051 }
4052
4053 static __always_inline unsigned int
4054 busy_check_reader(const struct dma_fence *fence)
4055 {
4056 return __busy_set_if_active(fence, __busy_read_flag);
4057 }
4058
4059 static __always_inline unsigned int
4060 busy_check_writer(const struct dma_fence *fence)
4061 {
4062 if (!fence)
4063 return 0;
4064
4065 return __busy_set_if_active(fence, __busy_write_id);
4066 }
4067
4068 int
4069 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4070 struct drm_file *file)
4071 {
4072 struct drm_i915_gem_busy *args = data;
4073 struct drm_i915_gem_object *obj;
4074 struct reservation_object_list *list;
4075 unsigned int seq;
4076 int err;
4077
4078 err = -ENOENT;
4079 rcu_read_lock();
4080 obj = i915_gem_object_lookup_rcu(file, args->handle);
4081 if (!obj)
4082 goto out;
4083
4084 /* A discrepancy here is that we do not report the status of
4085 * non-i915 fences, i.e. even though we may report the object as idle,
4086 * a call to set-domain may still stall waiting for foreign rendering.
4087 * This also means that wait-ioctl may report an object as busy,
4088 * where busy-ioctl considers it idle.
4089 *
4090 * We trade the ability to warn of foreign fences to report on which
4091 * i915 engines are active for the object.
4092 *
4093 * Alternatively, we can trade that extra information on read/write
4094 * activity with
4095 * args->busy =
4096 * !reservation_object_test_signaled_rcu(obj->resv, true);
4097 * to report the overall busyness. This is what the wait-ioctl does.
4098 *
4099 */
4100 retry:
4101 seq = raw_read_seqcount(&obj->resv->seq);
4102
4103 /* Translate the exclusive fence to the READ *and* WRITE engine */
4104 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4105
4106 /* Translate shared fences to READ set of engines */
4107 list = rcu_dereference(obj->resv->fence);
4108 if (list) {
4109 unsigned int shared_count = list->shared_count, i;
4110
4111 for (i = 0; i < shared_count; ++i) {
4112 struct dma_fence *fence =
4113 rcu_dereference(list->shared[i]);
4114
4115 args->busy |= busy_check_reader(fence);
4116 }
4117 }
4118
4119 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4120 goto retry;
4121
4122 err = 0;
4123 out:
4124 rcu_read_unlock();
4125 return err;
4126 }
4127
4128 int
4129 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4130 struct drm_file *file_priv)
4131 {
4132 return i915_gem_ring_throttle(dev, file_priv);
4133 }
4134
4135 int
4136 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4137 struct drm_file *file_priv)
4138 {
4139 struct drm_i915_private *dev_priv = to_i915(dev);
4140 struct drm_i915_gem_madvise *args = data;
4141 struct drm_i915_gem_object *obj;
4142 int err;
4143
4144 switch (args->madv) {
4145 case I915_MADV_DONTNEED:
4146 case I915_MADV_WILLNEED:
4147 break;
4148 default:
4149 return -EINVAL;
4150 }
4151
4152 obj = i915_gem_object_lookup(file_priv, args->handle);
4153 if (!obj)
4154 return -ENOENT;
4155
4156 err = mutex_lock_interruptible(&obj->mm.lock);
4157 if (err)
4158 goto out;
4159
4160 if (i915_gem_object_has_pages(obj) &&
4161 i915_gem_object_is_tiled(obj) &&
4162 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4163 if (obj->mm.madv == I915_MADV_WILLNEED) {
4164 GEM_BUG_ON(!obj->mm.quirked);
4165 __i915_gem_object_unpin_pages(obj);
4166 obj->mm.quirked = false;
4167 }
4168 if (args->madv == I915_MADV_WILLNEED) {
4169 GEM_BUG_ON(obj->mm.quirked);
4170 __i915_gem_object_pin_pages(obj);
4171 obj->mm.quirked = true;
4172 }
4173 }
4174
4175 if (obj->mm.madv != __I915_MADV_PURGED)
4176 obj->mm.madv = args->madv;
4177
4178 /* if the object is no longer attached, discard its backing storage */
4179 if (obj->mm.madv == I915_MADV_DONTNEED &&
4180 !i915_gem_object_has_pages(obj))
4181 i915_gem_object_truncate(obj);
4182
4183 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4184 mutex_unlock(&obj->mm.lock);
4185
4186 out:
4187 i915_gem_object_put(obj);
4188 return err;
4189 }
4190
4191 static void
4192 frontbuffer_retire(struct i915_active_request *active,
4193 struct i915_request *request)
4194 {
4195 struct drm_i915_gem_object *obj =
4196 container_of(active, typeof(*obj), frontbuffer_write);
4197
4198 intel_fb_obj_flush(obj, ORIGIN_CS);
4199 }
4200
4201 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4202 const struct drm_i915_gem_object_ops *ops)
4203 {
4204 mutex_init(&obj->mm.lock);
4205
4206 spin_lock_init(&obj->vma.lock);
4207 INIT_LIST_HEAD(&obj->vma.list);
4208
4209 INIT_LIST_HEAD(&obj->lut_list);
4210 INIT_LIST_HEAD(&obj->batch_pool_link);
4211
4212 init_rcu_head(&obj->rcu);
4213
4214 obj->ops = ops;
4215
4216 reservation_object_init(&obj->__builtin_resv);
4217 obj->resv = &obj->__builtin_resv;
4218
4219 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4220 i915_active_request_init(&obj->frontbuffer_write,
4221 NULL, frontbuffer_retire);
4222
4223 obj->mm.madv = I915_MADV_WILLNEED;
4224 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4225 mutex_init(&obj->mm.get_page.lock);
4226
4227 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4228 }
4229
4230 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4231 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4232 I915_GEM_OBJECT_IS_SHRINKABLE,
4233
4234 .get_pages = i915_gem_object_get_pages_gtt,
4235 .put_pages = i915_gem_object_put_pages_gtt,
4236
4237 .pwrite = i915_gem_object_pwrite_gtt,
4238 };
4239
4240 static int i915_gem_object_create_shmem(struct drm_device *dev,
4241 struct drm_gem_object *obj,
4242 size_t size)
4243 {
4244 struct drm_i915_private *i915 = to_i915(dev);
4245 unsigned long flags = VM_NORESERVE;
4246 struct file *filp;
4247
4248 drm_gem_private_object_init(dev, obj, size);
4249
4250 if (i915->mm.gemfs)
4251 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4252 flags);
4253 else
4254 filp = shmem_file_setup("i915", size, flags);
4255
4256 if (IS_ERR(filp))
4257 return PTR_ERR(filp);
4258
4259 obj->filp = filp;
4260
4261 return 0;
4262 }
4263
4264 struct drm_i915_gem_object *
4265 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4266 {
4267 struct drm_i915_gem_object *obj;
4268 struct address_space *mapping;
4269 unsigned int cache_level;
4270 gfp_t mask;
4271 int ret;
4272
4273 /* There is a prevalence of the assumption that we fit the object's
4274 * page count inside a 32bit _signed_ variable. Let's document this and
4275 * catch if we ever need to fix it. In the meantime, if you do spot
4276 * such a local variable, please consider fixing!
4277 */
4278 if (size >> PAGE_SHIFT > INT_MAX)
4279 return ERR_PTR(-E2BIG);
4280
4281 if (overflows_type(size, obj->base.size))
4282 return ERR_PTR(-E2BIG);
4283
4284 obj = i915_gem_object_alloc(dev_priv);
4285 if (obj == NULL)
4286 return ERR_PTR(-ENOMEM);
4287
4288 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4289 if (ret)
4290 goto fail;
4291
4292 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4293 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4294 /* 965gm cannot relocate objects above 4GiB. */
4295 mask &= ~__GFP_HIGHMEM;
4296 mask |= __GFP_DMA32;
4297 }
4298
4299 mapping = obj->base.filp->f_mapping;
4300 mapping_set_gfp_mask(mapping, mask);
4301 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4302
4303 i915_gem_object_init(obj, &i915_gem_object_ops);
4304
4305 obj->write_domain = I915_GEM_DOMAIN_CPU;
4306 obj->read_domains = I915_GEM_DOMAIN_CPU;
4307
4308 if (HAS_LLC(dev_priv))
4309 /* On some devices, we can have the GPU use the LLC (the CPU
4310 * cache) for about a 10% performance improvement
4311 * compared to uncached. Graphics requests other than
4312 * display scanout are coherent with the CPU in
4313 * accessing this cache. This means in this mode we
4314 * don't need to clflush on the CPU side, and on the
4315 * GPU side we only need to flush internal caches to
4316 * get data visible to the CPU.
4317 *
4318 * However, we maintain the display planes as UC, and so
4319 * need to rebind when first used as such.
4320 */
4321 cache_level = I915_CACHE_LLC;
4322 else
4323 cache_level = I915_CACHE_NONE;
4324
4325 i915_gem_object_set_cache_coherency(obj, cache_level);
4326
4327 trace_i915_gem_object_create(obj);
4328
4329 return obj;
4330
4331 fail:
4332 i915_gem_object_free(obj);
4333 return ERR_PTR(ret);
4334 }
4335
4336 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4337 {
4338 /* If we are the last user of the backing storage (be it shmemfs
4339 * pages or stolen etc), we know that the pages are going to be
4340 * immediately released. In this case, we can then skip copying
4341 * back the contents from the GPU.
4342 */
4343
4344 if (obj->mm.madv != I915_MADV_WILLNEED)
4345 return false;
4346
4347 if (obj->base.filp == NULL)
4348 return true;
4349
4350 /* At first glance, this looks racy, but then again so would be
4351 * userspace racing mmap against close. However, the first external
4352 * reference to the filp can only be obtained through the
4353 * i915_gem_mmap_ioctl() which safeguards us against the user
4354 * acquiring such a reference whilst we are in the middle of
4355 * freeing the object.
4356 */
4357 return atomic_long_read(&obj->base.filp->f_count) == 1;
4358 }
4359
4360 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4361 struct llist_node *freed)
4362 {
4363 struct drm_i915_gem_object *obj, *on;
4364 intel_wakeref_t wakeref;
4365
4366 wakeref = intel_runtime_pm_get(i915);
4367 llist_for_each_entry_safe(obj, on, freed, freed) {
4368 struct i915_vma *vma, *vn;
4369
4370 trace_i915_gem_object_destroy(obj);
4371
4372 mutex_lock(&i915->drm.struct_mutex);
4373
4374 GEM_BUG_ON(i915_gem_object_is_active(obj));
4375 list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
4376 GEM_BUG_ON(i915_vma_is_active(vma));
4377 vma->flags &= ~I915_VMA_PIN_MASK;
4378 i915_vma_destroy(vma);
4379 }
4380 GEM_BUG_ON(!list_empty(&obj->vma.list));
4381 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4382
4383 /* This serializes freeing with the shrinker. Since the free
4384 * is delayed, first by RCU then by the workqueue, we want the
4385 * shrinker to be able to free pages of unreferenced objects,
4386 * or else we may oom whilst there are plenty of deferred
4387 * freed objects.
4388 */
4389 if (i915_gem_object_has_pages(obj)) {
4390 spin_lock(&i915->mm.obj_lock);
4391 list_del_init(&obj->mm.link);
4392 spin_unlock(&i915->mm.obj_lock);
4393 }
4394
4395 mutex_unlock(&i915->drm.struct_mutex);
4396
4397 GEM_BUG_ON(obj->bind_count);
4398 GEM_BUG_ON(obj->userfault_count);
4399 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4400 GEM_BUG_ON(!list_empty(&obj->lut_list));
4401
4402 if (obj->ops->release)
4403 obj->ops->release(obj);
4404
4405 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4406 atomic_set(&obj->mm.pages_pin_count, 0);
4407 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4408 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4409
4410 if (obj->base.import_attach)
4411 drm_prime_gem_destroy(&obj->base, NULL);
4412
4413 reservation_object_fini(&obj->__builtin_resv);
4414 drm_gem_object_release(&obj->base);
4415 i915_gem_info_remove_obj(i915, obj->base.size);
4416
4417 kfree(obj->bit_17);
4418 i915_gem_object_free(obj);
4419
4420 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4421 atomic_dec(&i915->mm.free_count);
4422
4423 if (on)
4424 cond_resched();
4425 }
4426 intel_runtime_pm_put(i915, wakeref);
4427 }
4428
4429 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4430 {
4431 struct llist_node *freed;
4432
4433 /* Free the oldest, most stale object to keep the free_list short */
4434 freed = NULL;
4435 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4436 /* Only one consumer of llist_del_first() allowed */
4437 spin_lock(&i915->mm.free_lock);
4438 freed = llist_del_first(&i915->mm.free_list);
4439 spin_unlock(&i915->mm.free_lock);
4440 }
4441 if (unlikely(freed)) {
4442 freed->next = NULL;
4443 __i915_gem_free_objects(i915, freed);
4444 }
4445 }
4446
4447 static void __i915_gem_free_work(struct work_struct *work)
4448 {
4449 struct drm_i915_private *i915 =
4450 container_of(work, struct drm_i915_private, mm.free_work);
4451 struct llist_node *freed;
4452
4453 /*
4454 * All file-owned VMA should have been released by this point through
4455 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4456 * However, the object may also be bound into the global GTT (e.g.
4457 * older GPUs without per-process support, or for direct access through
4458 * the GTT either for the user or for scanout). Those VMA still need to
4459 * unbound now.
4460 */
4461
4462 spin_lock(&i915->mm.free_lock);
4463 while ((freed = llist_del_all(&i915->mm.free_list))) {
4464 spin_unlock(&i915->mm.free_lock);
4465
4466 __i915_gem_free_objects(i915, freed);
4467 if (need_resched())
4468 return;
4469
4470 spin_lock(&i915->mm.free_lock);
4471 }
4472 spin_unlock(&i915->mm.free_lock);
4473 }
4474
4475 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4476 {
4477 struct drm_i915_gem_object *obj =
4478 container_of(head, typeof(*obj), rcu);
4479 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4480
4481 /*
4482 * We reuse obj->rcu for the freed list, so we had better not treat
4483 * it like a rcu_head from this point forwards. And we expect all
4484 * objects to be freed via this path.
4485 */
4486 destroy_rcu_head(&obj->rcu);
4487
4488 /*
4489 * Since we require blocking on struct_mutex to unbind the freed
4490 * object from the GPU before releasing resources back to the
4491 * system, we can not do that directly from the RCU callback (which may
4492 * be a softirq context), but must instead then defer that work onto a
4493 * kthread. We use the RCU callback rather than move the freed object
4494 * directly onto the work queue so that we can mix between using the
4495 * worker and performing frees directly from subsequent allocations for
4496 * crude but effective memory throttling.
4497 */
4498 if (llist_add(&obj->freed, &i915->mm.free_list))
4499 queue_work(i915->wq, &i915->mm.free_work);
4500 }
4501
4502 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4503 {
4504 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4505
4506 if (obj->mm.quirked)
4507 __i915_gem_object_unpin_pages(obj);
4508
4509 if (discard_backing_storage(obj))
4510 obj->mm.madv = I915_MADV_DONTNEED;
4511
4512 /*
4513 * Before we free the object, make sure any pure RCU-only
4514 * read-side critical sections are complete, e.g.
4515 * i915_gem_busy_ioctl(). For the corresponding synchronized
4516 * lookup see i915_gem_object_lookup_rcu().
4517 */
4518 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4519 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4520 }
4521
4522 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4523 {
4524 lockdep_assert_held(&obj->base.dev->struct_mutex);
4525
4526 if (!i915_gem_object_has_active_reference(obj) &&
4527 i915_gem_object_is_active(obj))
4528 i915_gem_object_set_active_reference(obj);
4529 else
4530 i915_gem_object_put(obj);
4531 }
4532
4533 void i915_gem_sanitize(struct drm_i915_private *i915)
4534 {
4535 intel_wakeref_t wakeref;
4536
4537 GEM_TRACE("\n");
4538
4539 wakeref = intel_runtime_pm_get(i915);
4540 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4541
4542 /*
4543 * As we have just resumed the machine and woken the device up from
4544 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
4545 * back to defaults, recovering from whatever wedged state we left it
4546 * in and so worth trying to use the device once more.
4547 */
4548 if (i915_terminally_wedged(&i915->gpu_error))
4549 i915_gem_unset_wedged(i915);
4550
4551 /*
4552 * If we inherit context state from the BIOS or earlier occupants
4553 * of the GPU, the GPU may be in an inconsistent state when we
4554 * try to take over. The only way to remove the earlier state
4555 * is by resetting. However, resetting on earlier gen is tricky as
4556 * it may impact the display and we are uncertain about the stability
4557 * of the reset, so this could be applied to even earlier gen.
4558 */
4559 intel_engines_sanitize(i915, false);
4560
4561 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4562 intel_runtime_pm_put(i915, wakeref);
4563
4564 mutex_lock(&i915->drm.struct_mutex);
4565 i915_gem_contexts_lost(i915);
4566 mutex_unlock(&i915->drm.struct_mutex);
4567 }
4568
4569 int i915_gem_suspend(struct drm_i915_private *i915)
4570 {
4571 intel_wakeref_t wakeref;
4572 int ret;
4573
4574 GEM_TRACE("\n");
4575
4576 wakeref = intel_runtime_pm_get(i915);
4577 intel_suspend_gt_powersave(i915);
4578
4579 flush_workqueue(i915->wq);
4580
4581 mutex_lock(&i915->drm.struct_mutex);
4582
4583 /*
4584 * We have to flush all the executing contexts to main memory so
4585 * that they can saved in the hibernation image. To ensure the last
4586 * context image is coherent, we have to switch away from it. That
4587 * leaves the i915->kernel_context still active when
4588 * we actually suspend, and its image in memory may not match the GPU
4589 * state. Fortunately, the kernel_context is disposable and we do
4590 * not rely on its state.
4591 */
4592 if (!i915_terminally_wedged(&i915->gpu_error)) {
4593 ret = i915_gem_switch_to_kernel_context(i915);
4594 if (ret)
4595 goto err_unlock;
4596
4597 ret = i915_gem_wait_for_idle(i915,
4598 I915_WAIT_INTERRUPTIBLE |
4599 I915_WAIT_LOCKED |
4600 I915_WAIT_FOR_IDLE_BOOST,
4601 MAX_SCHEDULE_TIMEOUT);
4602 if (ret && ret != -EIO)
4603 goto err_unlock;
4604
4605 assert_kernel_context_is_current(i915);
4606 }
4607 i915_retire_requests(i915); /* ensure we flush after wedging */
4608
4609 mutex_unlock(&i915->drm.struct_mutex);
4610 i915_reset_flush(i915);
4611
4612 drain_delayed_work(&i915->gt.retire_work);
4613
4614 /*
4615 * As the idle_work is rearming if it detects a race, play safe and
4616 * repeat the flush until it is definitely idle.
4617 */
4618 drain_delayed_work(&i915->gt.idle_work);
4619
4620 intel_uc_suspend(i915);
4621
4622 /*
4623 * Assert that we successfully flushed all the work and
4624 * reset the GPU back to its idle, low power state.
4625 */
4626 WARN_ON(i915->gt.awake);
4627 if (WARN_ON(!intel_engines_are_idle(i915)))
4628 i915_gem_set_wedged(i915); /* no hope, discard everything */
4629
4630 intel_runtime_pm_put(i915, wakeref);
4631 return 0;
4632
4633 err_unlock:
4634 mutex_unlock(&i915->drm.struct_mutex);
4635 intel_runtime_pm_put(i915, wakeref);
4636 return ret;
4637 }
4638
4639 void i915_gem_suspend_late(struct drm_i915_private *i915)
4640 {
4641 struct drm_i915_gem_object *obj;
4642 struct list_head *phases[] = {
4643 &i915->mm.unbound_list,
4644 &i915->mm.bound_list,
4645 NULL
4646 }, **phase;
4647
4648 /*
4649 * Neither the BIOS, ourselves or any other kernel
4650 * expects the system to be in execlists mode on startup,
4651 * so we need to reset the GPU back to legacy mode. And the only
4652 * known way to disable logical contexts is through a GPU reset.
4653 *
4654 * So in order to leave the system in a known default configuration,
4655 * always reset the GPU upon unload and suspend. Afterwards we then
4656 * clean up the GEM state tracking, flushing off the requests and
4657 * leaving the system in a known idle state.
4658 *
4659 * Note that is of the upmost importance that the GPU is idle and
4660 * all stray writes are flushed *before* we dismantle the backing
4661 * storage for the pinned objects.
4662 *
4663 * However, since we are uncertain that resetting the GPU on older
4664 * machines is a good idea, we don't - just in case it leaves the
4665 * machine in an unusable condition.
4666 */
4667
4668 mutex_lock(&i915->drm.struct_mutex);
4669 for (phase = phases; *phase; phase++) {
4670 list_for_each_entry(obj, *phase, mm.link)
4671 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
4672 }
4673 mutex_unlock(&i915->drm.struct_mutex);
4674
4675 intel_uc_sanitize(i915);
4676 i915_gem_sanitize(i915);
4677 }
4678
4679 void i915_gem_resume(struct drm_i915_private *i915)
4680 {
4681 GEM_TRACE("\n");
4682
4683 WARN_ON(i915->gt.awake);
4684
4685 mutex_lock(&i915->drm.struct_mutex);
4686 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4687
4688 i915_gem_restore_gtt_mappings(i915);
4689 i915_gem_restore_fences(i915);
4690
4691 /*
4692 * As we didn't flush the kernel context before suspend, we cannot
4693 * guarantee that the context image is complete. So let's just reset
4694 * it and start again.
4695 */
4696 i915->gt.resume(i915);
4697
4698 if (i915_gem_init_hw(i915))
4699 goto err_wedged;
4700
4701 intel_uc_resume(i915);
4702
4703 /* Always reload a context for powersaving. */
4704 if (i915_gem_switch_to_kernel_context(i915))
4705 goto err_wedged;
4706
4707 out_unlock:
4708 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4709 mutex_unlock(&i915->drm.struct_mutex);
4710 return;
4711
4712 err_wedged:
4713 if (!i915_terminally_wedged(&i915->gpu_error)) {
4714 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
4715 i915_gem_set_wedged(i915);
4716 }
4717 goto out_unlock;
4718 }
4719
4720 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4721 {
4722 if (INTEL_GEN(dev_priv) < 5 ||
4723 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4724 return;
4725
4726 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4727 DISP_TILE_SURFACE_SWIZZLING);
4728
4729 if (IS_GEN(dev_priv, 5))
4730 return;
4731
4732 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4733 if (IS_GEN(dev_priv, 6))
4734 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4735 else if (IS_GEN(dev_priv, 7))
4736 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4737 else if (IS_GEN(dev_priv, 8))
4738 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4739 else
4740 BUG();
4741 }
4742
4743 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4744 {
4745 I915_WRITE(RING_CTL(base), 0);
4746 I915_WRITE(RING_HEAD(base), 0);
4747 I915_WRITE(RING_TAIL(base), 0);
4748 I915_WRITE(RING_START(base), 0);
4749 }
4750
4751 static void init_unused_rings(struct drm_i915_private *dev_priv)
4752 {
4753 if (IS_I830(dev_priv)) {
4754 init_unused_ring(dev_priv, PRB1_BASE);
4755 init_unused_ring(dev_priv, SRB0_BASE);
4756 init_unused_ring(dev_priv, SRB1_BASE);
4757 init_unused_ring(dev_priv, SRB2_BASE);
4758 init_unused_ring(dev_priv, SRB3_BASE);
4759 } else if (IS_GEN(dev_priv, 2)) {
4760 init_unused_ring(dev_priv, SRB0_BASE);
4761 init_unused_ring(dev_priv, SRB1_BASE);
4762 } else if (IS_GEN(dev_priv, 3)) {
4763 init_unused_ring(dev_priv, PRB1_BASE);
4764 init_unused_ring(dev_priv, PRB2_BASE);
4765 }
4766 }
4767
4768 static int __i915_gem_restart_engines(void *data)
4769 {
4770 struct drm_i915_private *i915 = data;
4771 struct intel_engine_cs *engine;
4772 enum intel_engine_id id;
4773 int err;
4774
4775 for_each_engine(engine, i915, id) {
4776 err = engine->init_hw(engine);
4777 if (err) {
4778 DRM_ERROR("Failed to restart %s (%d)\n",
4779 engine->name, err);
4780 return err;
4781 }
4782 }
4783
4784 return 0;
4785 }
4786
4787 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4788 {
4789 int ret;
4790
4791 dev_priv->gt.last_init_time = ktime_get();
4792
4793 /* Double layer security blanket, see i915_gem_init() */
4794 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4795
4796 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4797 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4798
4799 if (IS_HASWELL(dev_priv))
4800 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4801 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4802
4803 /* Apply the GT workarounds... */
4804 intel_gt_apply_workarounds(dev_priv);
4805 /* ...and determine whether they are sticking. */
4806 intel_gt_verify_workarounds(dev_priv, "init");
4807
4808 i915_gem_init_swizzling(dev_priv);
4809
4810 /*
4811 * At least 830 can leave some of the unused rings
4812 * "active" (ie. head != tail) after resume which
4813 * will prevent c3 entry. Makes sure all unused rings
4814 * are totally idle.
4815 */
4816 init_unused_rings(dev_priv);
4817
4818 BUG_ON(!dev_priv->kernel_context);
4819 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
4820 ret = -EIO;
4821 goto out;
4822 }
4823
4824 ret = i915_ppgtt_init_hw(dev_priv);
4825 if (ret) {
4826 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4827 goto out;
4828 }
4829
4830 ret = intel_wopcm_init_hw(&dev_priv->wopcm);
4831 if (ret) {
4832 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
4833 goto out;
4834 }
4835
4836 /* We can't enable contexts until all firmware is loaded */
4837 ret = intel_uc_init_hw(dev_priv);
4838 if (ret) {
4839 DRM_ERROR("Enabling uc failed (%d)\n", ret);
4840 goto out;
4841 }
4842
4843 intel_mocs_init_l3cc_table(dev_priv);
4844
4845 /* Only when the HW is re-initialised, can we replay the requests */
4846 ret = __i915_gem_restart_engines(dev_priv);
4847 if (ret)
4848 goto cleanup_uc;
4849
4850 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4851
4852 return 0;
4853
4854 cleanup_uc:
4855 intel_uc_fini_hw(dev_priv);
4856 out:
4857 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4858
4859 return ret;
4860 }
4861
4862 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
4863 {
4864 struct i915_gem_context *ctx;
4865 struct intel_engine_cs *engine;
4866 enum intel_engine_id id;
4867 int err;
4868
4869 /*
4870 * As we reset the gpu during very early sanitisation, the current
4871 * register state on the GPU should reflect its defaults values.
4872 * We load a context onto the hw (with restore-inhibit), then switch
4873 * over to a second context to save that default register state. We
4874 * can then prime every new context with that state so they all start
4875 * from the same default HW values.
4876 */
4877
4878 ctx = i915_gem_context_create_kernel(i915, 0);
4879 if (IS_ERR(ctx))
4880 return PTR_ERR(ctx);
4881
4882 for_each_engine(engine, i915, id) {
4883 struct i915_request *rq;
4884
4885 rq = i915_request_alloc(engine, ctx);
4886 if (IS_ERR(rq)) {
4887 err = PTR_ERR(rq);
4888 goto out_ctx;
4889 }
4890
4891 err = 0;
4892 if (engine->init_context)
4893 err = engine->init_context(rq);
4894
4895 i915_request_add(rq);
4896 if (err)
4897 goto err_active;
4898 }
4899
4900 err = i915_gem_switch_to_kernel_context(i915);
4901 if (err)
4902 goto err_active;
4903
4904 if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
4905 i915_gem_set_wedged(i915);
4906 err = -EIO; /* Caller will declare us wedged */
4907 goto err_active;
4908 }
4909
4910 assert_kernel_context_is_current(i915);
4911
4912 /*
4913 * Immediately park the GPU so that we enable powersaving and
4914 * treat it as idle. The next time we issue a request, we will
4915 * unpark and start using the engine->pinned_default_state, otherwise
4916 * it is in limbo and an early reset may fail.
4917 */
4918 __i915_gem_park(i915);
4919
4920 for_each_engine(engine, i915, id) {
4921 struct i915_vma *state;
4922 void *vaddr;
4923
4924 GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
4925
4926 state = to_intel_context(ctx, engine)->state;
4927 if (!state)
4928 continue;
4929
4930 /*
4931 * As we will hold a reference to the logical state, it will
4932 * not be torn down with the context, and importantly the
4933 * object will hold onto its vma (making it possible for a
4934 * stray GTT write to corrupt our defaults). Unmap the vma
4935 * from the GTT to prevent such accidents and reclaim the
4936 * space.
4937 */
4938 err = i915_vma_unbind(state);
4939 if (err)
4940 goto err_active;
4941
4942 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
4943 if (err)
4944 goto err_active;
4945
4946 engine->default_state = i915_gem_object_get(state->obj);
4947
4948 /* Check we can acquire the image of the context state */
4949 vaddr = i915_gem_object_pin_map(engine->default_state,
4950 I915_MAP_FORCE_WB);
4951 if (IS_ERR(vaddr)) {
4952 err = PTR_ERR(vaddr);
4953 goto err_active;
4954 }
4955
4956 i915_gem_object_unpin_map(engine->default_state);
4957 }
4958
4959 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
4960 unsigned int found = intel_engines_has_context_isolation(i915);
4961
4962 /*
4963 * Make sure that classes with multiple engine instances all
4964 * share the same basic configuration.
4965 */
4966 for_each_engine(engine, i915, id) {
4967 unsigned int bit = BIT(engine->uabi_class);
4968 unsigned int expected = engine->default_state ? bit : 0;
4969
4970 if ((found & bit) != expected) {
4971 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
4972 engine->uabi_class, engine->name);
4973 }
4974 }
4975 }
4976
4977 out_ctx:
4978 i915_gem_context_set_closed(ctx);
4979 i915_gem_context_put(ctx);
4980 return err;
4981
4982 err_active:
4983 /*
4984 * If we have to abandon now, we expect the engines to be idle
4985 * and ready to be torn-down. First try to flush any remaining
4986 * request, ensure we are pointing at the kernel context and
4987 * then remove it.
4988 */
4989 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
4990 goto out_ctx;
4991
4992 if (WARN_ON(i915_gem_wait_for_idle(i915,
4993 I915_WAIT_LOCKED,
4994 MAX_SCHEDULE_TIMEOUT)))
4995 goto out_ctx;
4996
4997 i915_gem_contexts_lost(i915);
4998 goto out_ctx;
4999 }
5000
5001 static int
5002 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
5003 {
5004 struct drm_i915_gem_object *obj;
5005 struct i915_vma *vma;
5006 int ret;
5007
5008 obj = i915_gem_object_create_stolen(i915, size);
5009 if (!obj)
5010 obj = i915_gem_object_create_internal(i915, size);
5011 if (IS_ERR(obj)) {
5012 DRM_ERROR("Failed to allocate scratch page\n");
5013 return PTR_ERR(obj);
5014 }
5015
5016 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
5017 if (IS_ERR(vma)) {
5018 ret = PTR_ERR(vma);
5019 goto err_unref;
5020 }
5021
5022 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
5023 if (ret)
5024 goto err_unref;
5025
5026 i915->gt.scratch = vma;
5027 return 0;
5028
5029 err_unref:
5030 i915_gem_object_put(obj);
5031 return ret;
5032 }
5033
5034 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
5035 {
5036 i915_vma_unpin_and_release(&i915->gt.scratch, 0);
5037 }
5038
5039 int i915_gem_init(struct drm_i915_private *dev_priv)
5040 {
5041 int ret;
5042
5043 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5044 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5045 mkwrite_device_info(dev_priv)->page_sizes =
5046 I915_GTT_PAGE_SIZE_4K;
5047
5048 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5049
5050 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5051 dev_priv->gt.resume = intel_lr_context_resume;
5052 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5053 } else {
5054 dev_priv->gt.resume = intel_legacy_submission_resume;
5055 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5056 }
5057
5058 i915_timelines_init(dev_priv);
5059
5060 ret = i915_gem_init_userptr(dev_priv);
5061 if (ret)
5062 return ret;
5063
5064 ret = intel_uc_init_misc(dev_priv);
5065 if (ret)
5066 return ret;
5067
5068 ret = intel_wopcm_init(&dev_priv->wopcm);
5069 if (ret)
5070 goto err_uc_misc;
5071
5072 /* This is just a security blanket to placate dragons.
5073 * On some systems, we very sporadically observe that the first TLBs
5074 * used by the CS may be stale, despite us poking the TLB reset. If
5075 * we hold the forcewake during initialisation these problems
5076 * just magically go away.
5077 */
5078 mutex_lock(&dev_priv->drm.struct_mutex);
5079 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5080
5081 ret = i915_gem_init_ggtt(dev_priv);
5082 if (ret) {
5083 GEM_BUG_ON(ret == -EIO);
5084 goto err_unlock;
5085 }
5086
5087 ret = i915_gem_init_scratch(dev_priv,
5088 IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
5089 if (ret) {
5090 GEM_BUG_ON(ret == -EIO);
5091 goto err_ggtt;
5092 }
5093
5094 ret = i915_gem_contexts_init(dev_priv);
5095 if (ret) {
5096 GEM_BUG_ON(ret == -EIO);
5097 goto err_scratch;
5098 }
5099
5100 ret = intel_engines_init(dev_priv);
5101 if (ret) {
5102 GEM_BUG_ON(ret == -EIO);
5103 goto err_context;
5104 }
5105
5106 intel_init_gt_powersave(dev_priv);
5107
5108 ret = intel_uc_init(dev_priv);
5109 if (ret)
5110 goto err_pm;
5111
5112 ret = i915_gem_init_hw(dev_priv);
5113 if (ret)
5114 goto err_uc_init;
5115
5116 /*
5117 * Despite its name intel_init_clock_gating applies both display
5118 * clock gating workarounds; GT mmio workarounds and the occasional
5119 * GT power context workaround. Worse, sometimes it includes a context
5120 * register workaround which we need to apply before we record the
5121 * default HW state for all contexts.
5122 *
5123 * FIXME: break up the workarounds and apply them at the right time!
5124 */
5125 intel_init_clock_gating(dev_priv);
5126
5127 ret = __intel_engines_record_defaults(dev_priv);
5128 if (ret)
5129 goto err_init_hw;
5130
5131 if (i915_inject_load_failure()) {
5132 ret = -ENODEV;
5133 goto err_init_hw;
5134 }
5135
5136 if (i915_inject_load_failure()) {
5137 ret = -EIO;
5138 goto err_init_hw;
5139 }
5140
5141 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5142 mutex_unlock(&dev_priv->drm.struct_mutex);
5143
5144 return 0;
5145
5146 /*
5147 * Unwinding is complicated by that we want to handle -EIO to mean
5148 * disable GPU submission but keep KMS alive. We want to mark the
5149 * HW as irrevisibly wedged, but keep enough state around that the
5150 * driver doesn't explode during runtime.
5151 */
5152 err_init_hw:
5153 mutex_unlock(&dev_priv->drm.struct_mutex);
5154
5155 WARN_ON(i915_gem_suspend(dev_priv));
5156 i915_gem_suspend_late(dev_priv);
5157
5158 i915_gem_drain_workqueue(dev_priv);
5159
5160 mutex_lock(&dev_priv->drm.struct_mutex);
5161 intel_uc_fini_hw(dev_priv);
5162 err_uc_init:
5163 intel_uc_fini(dev_priv);
5164 err_pm:
5165 if (ret != -EIO) {
5166 intel_cleanup_gt_powersave(dev_priv);
5167 i915_gem_cleanup_engines(dev_priv);
5168 }
5169 err_context:
5170 if (ret != -EIO)
5171 i915_gem_contexts_fini(dev_priv);
5172 err_scratch:
5173 i915_gem_fini_scratch(dev_priv);
5174 err_ggtt:
5175 err_unlock:
5176 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5177 mutex_unlock(&dev_priv->drm.struct_mutex);
5178
5179 err_uc_misc:
5180 intel_uc_fini_misc(dev_priv);
5181
5182 if (ret != -EIO) {
5183 i915_gem_cleanup_userptr(dev_priv);
5184 i915_timelines_fini(dev_priv);
5185 }
5186
5187 if (ret == -EIO) {
5188 mutex_lock(&dev_priv->drm.struct_mutex);
5189
5190 /*
5191 * Allow engine initialisation to fail by marking the GPU as
5192 * wedged. But we only want to do this where the GPU is angry,
5193 * for all other failure, such as an allocation failure, bail.
5194 */
5195 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5196 i915_load_error(dev_priv,
5197 "Failed to initialize GPU, declaring it wedged!\n");
5198 i915_gem_set_wedged(dev_priv);
5199 }
5200
5201 /* Minimal basic recovery for KMS */
5202 ret = i915_ggtt_enable_hw(dev_priv);
5203 i915_gem_restore_gtt_mappings(dev_priv);
5204 i915_gem_restore_fences(dev_priv);
5205 intel_init_clock_gating(dev_priv);
5206
5207 mutex_unlock(&dev_priv->drm.struct_mutex);
5208 }
5209
5210 i915_gem_drain_freed_objects(dev_priv);
5211 return ret;
5212 }
5213
5214 void i915_gem_fini(struct drm_i915_private *dev_priv)
5215 {
5216 i915_gem_suspend_late(dev_priv);
5217 intel_disable_gt_powersave(dev_priv);
5218
5219 /* Flush any outstanding unpin_work. */
5220 i915_gem_drain_workqueue(dev_priv);
5221
5222 mutex_lock(&dev_priv->drm.struct_mutex);
5223 intel_uc_fini_hw(dev_priv);
5224 intel_uc_fini(dev_priv);
5225 i915_gem_cleanup_engines(dev_priv);
5226 i915_gem_contexts_fini(dev_priv);
5227 i915_gem_fini_scratch(dev_priv);
5228 mutex_unlock(&dev_priv->drm.struct_mutex);
5229
5230 intel_wa_list_free(&dev_priv->gt_wa_list);
5231
5232 intel_cleanup_gt_powersave(dev_priv);
5233
5234 intel_uc_fini_misc(dev_priv);
5235 i915_gem_cleanup_userptr(dev_priv);
5236 i915_timelines_fini(dev_priv);
5237
5238 i915_gem_drain_freed_objects(dev_priv);
5239
5240 WARN_ON(!list_empty(&dev_priv->contexts.list));
5241 }
5242
5243 void i915_gem_init_mmio(struct drm_i915_private *i915)
5244 {
5245 i915_gem_sanitize(i915);
5246 }
5247
5248 void
5249 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5250 {
5251 struct intel_engine_cs *engine;
5252 enum intel_engine_id id;
5253
5254 for_each_engine(engine, dev_priv, id)
5255 dev_priv->gt.cleanup_engine(engine);
5256 }
5257
5258 void
5259 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5260 {
5261 int i;
5262
5263 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5264 !IS_CHERRYVIEW(dev_priv))
5265 dev_priv->num_fence_regs = 32;
5266 else if (INTEL_GEN(dev_priv) >= 4 ||
5267 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5268 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5269 dev_priv->num_fence_regs = 16;
5270 else
5271 dev_priv->num_fence_regs = 8;
5272
5273 if (intel_vgpu_active(dev_priv))
5274 dev_priv->num_fence_regs =
5275 I915_READ(vgtif_reg(avail_rs.fence_num));
5276
5277 /* Initialize fence registers to zero */
5278 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5279 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5280
5281 fence->i915 = dev_priv;
5282 fence->id = i;
5283 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5284 }
5285 i915_gem_restore_fences(dev_priv);
5286
5287 i915_gem_detect_bit_6_swizzle(dev_priv);
5288 }
5289
5290 static void i915_gem_init__mm(struct drm_i915_private *i915)
5291 {
5292 spin_lock_init(&i915->mm.object_stat_lock);
5293 spin_lock_init(&i915->mm.obj_lock);
5294 spin_lock_init(&i915->mm.free_lock);
5295
5296 init_llist_head(&i915->mm.free_list);
5297
5298 INIT_LIST_HEAD(&i915->mm.unbound_list);
5299 INIT_LIST_HEAD(&i915->mm.bound_list);
5300 INIT_LIST_HEAD(&i915->mm.fence_list);
5301 INIT_LIST_HEAD(&i915->mm.userfault_list);
5302
5303 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5304 }
5305
5306 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5307 {
5308 int err = -ENOMEM;
5309
5310 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5311 if (!dev_priv->objects)
5312 goto err_out;
5313
5314 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5315 if (!dev_priv->vmas)
5316 goto err_objects;
5317
5318 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5319 if (!dev_priv->luts)
5320 goto err_vmas;
5321
5322 dev_priv->requests = KMEM_CACHE(i915_request,
5323 SLAB_HWCACHE_ALIGN |
5324 SLAB_RECLAIM_ACCOUNT |
5325 SLAB_TYPESAFE_BY_RCU);
5326 if (!dev_priv->requests)
5327 goto err_luts;
5328
5329 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5330 SLAB_HWCACHE_ALIGN |
5331 SLAB_RECLAIM_ACCOUNT);
5332 if (!dev_priv->dependencies)
5333 goto err_requests;
5334
5335 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5336 if (!dev_priv->priorities)
5337 goto err_dependencies;
5338
5339 INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5340 INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5341
5342 i915_gem_init__mm(dev_priv);
5343
5344 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5345 i915_gem_retire_work_handler);
5346 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5347 i915_gem_idle_work_handler);
5348 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5349 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5350 mutex_init(&dev_priv->gpu_error.wedge_mutex);
5351
5352 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5353
5354 spin_lock_init(&dev_priv->fb_tracking.lock);
5355
5356 err = i915_gemfs_init(dev_priv);
5357 if (err)
5358 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5359
5360 return 0;
5361
5362 err_dependencies:
5363 kmem_cache_destroy(dev_priv->dependencies);
5364 err_requests:
5365 kmem_cache_destroy(dev_priv->requests);
5366 err_luts:
5367 kmem_cache_destroy(dev_priv->luts);
5368 err_vmas:
5369 kmem_cache_destroy(dev_priv->vmas);
5370 err_objects:
5371 kmem_cache_destroy(dev_priv->objects);
5372 err_out:
5373 return err;
5374 }
5375
5376 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5377 {
5378 i915_gem_drain_freed_objects(dev_priv);
5379 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5380 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5381 WARN_ON(dev_priv->mm.object_count);
5382
5383 kmem_cache_destroy(dev_priv->priorities);
5384 kmem_cache_destroy(dev_priv->dependencies);
5385 kmem_cache_destroy(dev_priv->requests);
5386 kmem_cache_destroy(dev_priv->luts);
5387 kmem_cache_destroy(dev_priv->vmas);
5388 kmem_cache_destroy(dev_priv->objects);
5389
5390 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5391 rcu_barrier();
5392
5393 i915_gemfs_fini(dev_priv);
5394 }
5395
5396 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5397 {
5398 /* Discard all purgeable objects, let userspace recover those as
5399 * required after resuming.
5400 */
5401 i915_gem_shrink_all(dev_priv);
5402
5403 return 0;
5404 }
5405
5406 int i915_gem_freeze_late(struct drm_i915_private *i915)
5407 {
5408 struct drm_i915_gem_object *obj;
5409 struct list_head *phases[] = {
5410 &i915->mm.unbound_list,
5411 &i915->mm.bound_list,
5412 NULL
5413 }, **phase;
5414
5415 /*
5416 * Called just before we write the hibernation image.
5417 *
5418 * We need to update the domain tracking to reflect that the CPU
5419 * will be accessing all the pages to create and restore from the
5420 * hibernation, and so upon restoration those pages will be in the
5421 * CPU domain.
5422 *
5423 * To make sure the hibernation image contains the latest state,
5424 * we update that state just before writing out the image.
5425 *
5426 * To try and reduce the hibernation image, we manually shrink
5427 * the objects as well, see i915_gem_freeze()
5428 */
5429
5430 i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5431 i915_gem_drain_freed_objects(i915);
5432
5433 mutex_lock(&i915->drm.struct_mutex);
5434 for (phase = phases; *phase; phase++) {
5435 list_for_each_entry(obj, *phase, mm.link)
5436 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5437 }
5438 mutex_unlock(&i915->drm.struct_mutex);
5439
5440 return 0;
5441 }
5442
5443 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5444 {
5445 struct drm_i915_file_private *file_priv = file->driver_priv;
5446 struct i915_request *request;
5447
5448 /* Clean up our request list when the client is going away, so that
5449 * later retire_requests won't dereference our soon-to-be-gone
5450 * file_priv.
5451 */
5452 spin_lock(&file_priv->mm.lock);
5453 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5454 request->file_priv = NULL;
5455 spin_unlock(&file_priv->mm.lock);
5456 }
5457
5458 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5459 {
5460 struct drm_i915_file_private *file_priv;
5461 int ret;
5462
5463 DRM_DEBUG("\n");
5464
5465 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5466 if (!file_priv)
5467 return -ENOMEM;
5468
5469 file->driver_priv = file_priv;
5470 file_priv->dev_priv = i915;
5471 file_priv->file = file;
5472
5473 spin_lock_init(&file_priv->mm.lock);
5474 INIT_LIST_HEAD(&file_priv->mm.request_list);
5475
5476 file_priv->bsd_engine = -1;
5477 file_priv->hang_timestamp = jiffies;
5478
5479 ret = i915_gem_context_open(i915, file);
5480 if (ret)
5481 kfree(file_priv);
5482
5483 return ret;
5484 }
5485
5486 /**
5487 * i915_gem_track_fb - update frontbuffer tracking
5488 * @old: current GEM buffer for the frontbuffer slots
5489 * @new: new GEM buffer for the frontbuffer slots
5490 * @frontbuffer_bits: bitmask of frontbuffer slots
5491 *
5492 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5493 * from @old and setting them in @new. Both @old and @new can be NULL.
5494 */
5495 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5496 struct drm_i915_gem_object *new,
5497 unsigned frontbuffer_bits)
5498 {
5499 /* Control of individual bits within the mask are guarded by
5500 * the owning plane->mutex, i.e. we can never see concurrent
5501 * manipulation of individual bits. But since the bitfield as a whole
5502 * is updated using RMW, we need to use atomics in order to update
5503 * the bits.
5504 */
5505 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5506 BITS_PER_TYPE(atomic_t));
5507
5508 if (old) {
5509 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5510 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5511 }
5512
5513 if (new) {
5514 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5515 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5516 }
5517 }
5518
5519 /* Allocate a new GEM object and fill it with the supplied data */
5520 struct drm_i915_gem_object *
5521 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5522 const void *data, size_t size)
5523 {
5524 struct drm_i915_gem_object *obj;
5525 struct file *file;
5526 size_t offset;
5527 int err;
5528
5529 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5530 if (IS_ERR(obj))
5531 return obj;
5532
5533 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5534
5535 file = obj->base.filp;
5536 offset = 0;
5537 do {
5538 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5539 struct page *page;
5540 void *pgdata, *vaddr;
5541
5542 err = pagecache_write_begin(file, file->f_mapping,
5543 offset, len, 0,
5544 &page, &pgdata);
5545 if (err < 0)
5546 goto fail;
5547
5548 vaddr = kmap(page);
5549 memcpy(vaddr, data, len);
5550 kunmap(page);
5551
5552 err = pagecache_write_end(file, file->f_mapping,
5553 offset, len, len,
5554 page, pgdata);
5555 if (err < 0)
5556 goto fail;
5557
5558 size -= len;
5559 data += len;
5560 offset += len;
5561 } while (size);
5562
5563 return obj;
5564
5565 fail:
5566 i915_gem_object_put(obj);
5567 return ERR_PTR(err);
5568 }
5569
5570 struct scatterlist *
5571 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5572 unsigned int n,
5573 unsigned int *offset)
5574 {
5575 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5576 struct scatterlist *sg;
5577 unsigned int idx, count;
5578
5579 might_sleep();
5580 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5581 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5582
5583 /* As we iterate forward through the sg, we record each entry in a
5584 * radixtree for quick repeated (backwards) lookups. If we have seen
5585 * this index previously, we will have an entry for it.
5586 *
5587 * Initial lookup is O(N), but this is amortized to O(1) for
5588 * sequential page access (where each new request is consecutive
5589 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5590 * i.e. O(1) with a large constant!
5591 */
5592 if (n < READ_ONCE(iter->sg_idx))
5593 goto lookup;
5594
5595 mutex_lock(&iter->lock);
5596
5597 /* We prefer to reuse the last sg so that repeated lookup of this
5598 * (or the subsequent) sg are fast - comparing against the last
5599 * sg is faster than going through the radixtree.
5600 */
5601
5602 sg = iter->sg_pos;
5603 idx = iter->sg_idx;
5604 count = __sg_page_count(sg);
5605
5606 while (idx + count <= n) {
5607 void *entry;
5608 unsigned long i;
5609 int ret;
5610
5611 /* If we cannot allocate and insert this entry, or the
5612 * individual pages from this range, cancel updating the
5613 * sg_idx so that on this lookup we are forced to linearly
5614 * scan onwards, but on future lookups we will try the
5615 * insertion again (in which case we need to be careful of
5616 * the error return reporting that we have already inserted
5617 * this index).
5618 */
5619 ret = radix_tree_insert(&iter->radix, idx, sg);
5620 if (ret && ret != -EEXIST)
5621 goto scan;
5622
5623 entry = xa_mk_value(idx);
5624 for (i = 1; i < count; i++) {
5625 ret = radix_tree_insert(&iter->radix, idx + i, entry);
5626 if (ret && ret != -EEXIST)
5627 goto scan;
5628 }
5629
5630 idx += count;
5631 sg = ____sg_next(sg);
5632 count = __sg_page_count(sg);
5633 }
5634
5635 scan:
5636 iter->sg_pos = sg;
5637 iter->sg_idx = idx;
5638
5639 mutex_unlock(&iter->lock);
5640
5641 if (unlikely(n < idx)) /* insertion completed by another thread */
5642 goto lookup;
5643
5644 /* In case we failed to insert the entry into the radixtree, we need
5645 * to look beyond the current sg.
5646 */
5647 while (idx + count <= n) {
5648 idx += count;
5649 sg = ____sg_next(sg);
5650 count = __sg_page_count(sg);
5651 }
5652
5653 *offset = n - idx;
5654 return sg;
5655
5656 lookup:
5657 rcu_read_lock();
5658
5659 sg = radix_tree_lookup(&iter->radix, n);
5660 GEM_BUG_ON(!sg);
5661
5662 /* If this index is in the middle of multi-page sg entry,
5663 * the radix tree will contain a value entry that points
5664 * to the start of that range. We will return the pointer to
5665 * the base page and the offset of this page within the
5666 * sg entry's range.
5667 */
5668 *offset = 0;
5669 if (unlikely(xa_is_value(sg))) {
5670 unsigned long base = xa_to_value(sg);
5671
5672 sg = radix_tree_lookup(&iter->radix, base);
5673 GEM_BUG_ON(!sg);
5674
5675 *offset = n - base;
5676 }
5677
5678 rcu_read_unlock();
5679
5680 return sg;
5681 }
5682
5683 struct page *
5684 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5685 {
5686 struct scatterlist *sg;
5687 unsigned int offset;
5688
5689 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5690
5691 sg = i915_gem_object_get_sg(obj, n, &offset);
5692 return nth_page(sg_page(sg), offset);
5693 }
5694
5695 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5696 struct page *
5697 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5698 unsigned int n)
5699 {
5700 struct page *page;
5701
5702 page = i915_gem_object_get_page(obj, n);
5703 if (!obj->mm.dirty)
5704 set_page_dirty(page);
5705
5706 return page;
5707 }
5708
5709 dma_addr_t
5710 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5711 unsigned long n)
5712 {
5713 struct scatterlist *sg;
5714 unsigned int offset;
5715
5716 sg = i915_gem_object_get_sg(obj, n, &offset);
5717 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5718 }
5719
5720 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5721 {
5722 struct sg_table *pages;
5723 int err;
5724
5725 if (align > obj->base.size)
5726 return -EINVAL;
5727
5728 if (obj->ops == &i915_gem_phys_ops)
5729 return 0;
5730
5731 if (obj->ops != &i915_gem_object_ops)
5732 return -EINVAL;
5733
5734 err = i915_gem_object_unbind(obj);
5735 if (err)
5736 return err;
5737
5738 mutex_lock(&obj->mm.lock);
5739
5740 if (obj->mm.madv != I915_MADV_WILLNEED) {
5741 err = -EFAULT;
5742 goto err_unlock;
5743 }
5744
5745 if (obj->mm.quirked) {
5746 err = -EFAULT;
5747 goto err_unlock;
5748 }
5749
5750 if (obj->mm.mapping) {
5751 err = -EBUSY;
5752 goto err_unlock;
5753 }
5754
5755 pages = __i915_gem_object_unset_pages(obj);
5756
5757 obj->ops = &i915_gem_phys_ops;
5758
5759 err = ____i915_gem_object_get_pages(obj);
5760 if (err)
5761 goto err_xfer;
5762
5763 /* Perma-pin (until release) the physical set of pages */
5764 __i915_gem_object_pin_pages(obj);
5765
5766 if (!IS_ERR_OR_NULL(pages))
5767 i915_gem_object_ops.put_pages(obj, pages);
5768 mutex_unlock(&obj->mm.lock);
5769 return 0;
5770
5771 err_xfer:
5772 obj->ops = &i915_gem_object_ops;
5773 if (!IS_ERR_OR_NULL(pages)) {
5774 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
5775
5776 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
5777 }
5778 err_unlock:
5779 mutex_unlock(&obj->mm.lock);
5780 return err;
5781 }
5782
5783 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5784 #include "selftests/scatterlist.c"
5785 #include "selftests/mock_gem_device.c"
5786 #include "selftests/huge_gem_object.c"
5787 #include "selftests/huge_pages.c"
5788 #include "selftests/i915_gem_object.c"
5789 #include "selftests/i915_gem_coherency.c"
5790 #include "selftests/i915_gem.c"
5791 #endif