]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/i915_gem.c
de45b60516e61cbc376ffb2caebf1636fdf774dc
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
200 {
201 struct drm_i915_gem_object *obj;
202 int ret;
203 u32 handle;
204
205 size = roundup(size, PAGE_SIZE);
206 if (size == 0)
207 return -EINVAL;
208
209 /* Allocate the new object */
210 obj = i915_gem_alloc_object(dev, size);
211 if (obj == NULL)
212 return -ENOMEM;
213
214 ret = drm_gem_handle_create(file, &obj->base, &handle);
215 if (ret) {
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 kfree(obj);
219 return ret;
220 }
221
222 /* drop reference from allocate - handle holds it now */
223 drm_gem_object_unreference(&obj->base);
224 trace_i915_gem_object_create(obj);
225
226 *handle_p = handle;
227 return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234 {
235 /* have to work out size/pitch and return them */
236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245 {
246 return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250 * Creates a new mm object and returns a handle to it.
251 */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255 {
256 struct drm_i915_gem_create *args = data;
257
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274 {
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
299 int length)
300 {
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 char *vaddr;
331 int ret;
332
333 if (unlikely(page_do_bit17_swizzling))
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351 {
352 if (unlikely(swizzled)) {
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
404 {
405 char __user *user_data;
406 ssize_t remain;
407 loff_t offset;
408 int shmem_page_offset, page_length, ret = 0;
409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 int hit_slowpath = 0;
411 int prefaulted = 0;
412 int needs_clflush = 0;
413 struct scatterlist *sg;
414 int i;
415
416 user_data = (char __user *) (uintptr_t) args->data_ptr;
417 remain = args->size;
418
419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
433 }
434
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
441 offset = args->offset;
442
443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 struct page *page;
445
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
452 /* Operation in this page
453 *
454 * shmem_page_offset = offset within page in shmem file
455 * page_length = bytes to copy for this page
456 */
457 shmem_page_offset = offset_in_page(offset);
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
461
462 page = sg_page(sg);
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
471
472 hit_slowpath = 1;
473 mutex_unlock(&dev->struct_mutex);
474
475 if (!prefaulted) {
476 ret = fault_in_multipages_writeable(user_data, remain);
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
484
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
488
489 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492 mark_page_accessed(page);
493
494 if (ret)
495 goto out;
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 i915_gem_object_unpin_pages(obj);
504
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
510
511 return ret;
512 }
513
514 /**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 struct drm_file *file)
522 {
523 struct drm_i915_gem_pread *args = data;
524 struct drm_i915_gem_object *obj;
525 int ret = 0;
526
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
535 ret = i915_mutex_lock_interruptible(dev);
536 if (ret)
537 return ret;
538
539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 if (&obj->base == NULL) {
541 ret = -ENOENT;
542 goto unlock;
543 }
544
545 /* Bounds check source. */
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
548 ret = -EINVAL;
549 goto out;
550 }
551
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562 ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
573 */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
580 {
581 void __iomem *vaddr_atomic;
582 void *vaddr;
583 unsigned long unwritten;
584
585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 user_data, length);
590 io_mapping_unmap_atomic(vaddr_atomic);
591 return unwritten;
592 }
593
594 /**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
601 struct drm_i915_gem_pwrite *args,
602 struct drm_file *file)
603 {
604 drm_i915_private_t *dev_priv = dev->dev_private;
605 ssize_t remain;
606 loff_t offset, page_base;
607 char __user *user_data;
608 int page_offset, page_length, ret;
609
610 ret = i915_gem_object_pin(obj, 0, true, true);
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
624
625 offset = obj->gtt_offset + args->offset;
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
633 */
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
640 /* If we get a fault while copying data, then (presumably) our
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
643 */
644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
649
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
653 }
654
655 out_unpin:
656 i915_gem_object_unpin(obj);
657 out:
658 return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
671 {
672 char *vaddr;
673 int ret;
674
675 if (unlikely(page_do_bit17_swizzling))
676 return -EINVAL;
677
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
689
690 return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
701 {
702 char *vaddr;
703 int ret;
704
705 vaddr = kmap(page);
706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 user_data,
713 page_length);
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
722 kunmap(page);
723
724 return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
732 {
733 ssize_t remain;
734 loff_t offset;
735 char __user *user_data;
736 int shmem_page_offset, page_length, ret = 0;
737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 int hit_slowpath = 0;
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
741 int i;
742 struct scatterlist *sg;
743
744 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 remain = args->size;
746
747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
774 offset = args->offset;
775 obj->dirty = 1;
776
777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 struct page *page;
779 int partial_cacheline_write;
780
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
787 /* Operation in this page
788 *
789 * shmem_page_offset = offset within page in shmem file
790 * page_length = bytes to copy for this page
791 */
792 shmem_page_offset = offset_in_page(offset);
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
797
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
805 page = sg_page(sg);
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
815
816 hit_slowpath = 1;
817 mutex_unlock(&dev->struct_mutex);
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
822
823 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826 set_page_dirty(page);
827 mark_page_accessed(page);
828
829 if (ret)
830 goto out;
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out:
838 i915_gem_object_unpin_pages(obj);
839
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 i915_gem_chipset_flush(dev);
849 }
850 }
851
852 if (needs_clflush_after)
853 i915_gem_chipset_flush(dev);
854
855 return ret;
856 }
857
858 /**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 struct drm_file *file)
866 {
867 struct drm_i915_gem_pwrite *args = data;
868 struct drm_i915_gem_object *obj;
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
881 if (ret)
882 return -EFAULT;
883
884 ret = i915_mutex_lock_interruptible(dev);
885 if (ret)
886 return ret;
887
888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 if (&obj->base == NULL) {
890 ret = -ENOENT;
891 goto unlock;
892 }
893
894 /* Bounds check destination. */
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911 ret = -EFAULT;
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
918 if (obj->phys_obj) {
919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 goto out;
921 }
922
923 if (obj->cache_level == I915_CACHE_NONE &&
924 obj->tiling_mode == I915_TILING_NONE &&
925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
930 }
931
932 if (ret == -EFAULT || ret == -ENOSPC)
933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936 drm_gem_object_unreference(&obj->base);
937 unlock:
938 mutex_unlock(&dev->struct_mutex);
939 return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945 {
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969 }
970
971 /*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987 }
988
989 /**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001 {
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068 }
1069
1070 /**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103 {
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136 {
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
1179 */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 struct drm_file *file)
1183 {
1184 struct drm_i915_gem_set_domain *args = data;
1185 struct drm_i915_gem_object *obj;
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
1188 int ret;
1189
1190 /* Only handle setting domains to types used by the CPU. */
1191 if (write_domain & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 if (read_domains & I915_GEM_GPU_DOMAINS)
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 return ret;
1206
1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 if (&obj->base == NULL) {
1209 ret = -ENOENT;
1210 goto unlock;
1211 }
1212
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
1230 } else {
1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 }
1233
1234 unref:
1235 drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239 }
1240
1241 /**
1242 * Called when user space has done writes to this buffer
1243 */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 struct drm_file *file)
1247 {
1248 struct drm_i915_gem_sw_finish *args = data;
1249 struct drm_i915_gem_object *obj;
1250 int ret = 0;
1251
1252 ret = i915_mutex_lock_interruptible(dev);
1253 if (ret)
1254 return ret;
1255
1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 if (&obj->base == NULL) {
1258 ret = -ENOENT;
1259 goto unlock;
1260 }
1261
1262 /* Pinned buffers may be scanout, so flush the cache */
1263 if (obj->pin_count)
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266 drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270 }
1271
1272 /**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 struct drm_file *file)
1282 {
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
1285 unsigned long addr;
1286
1287 obj = drm_gem_object_lookup(dev, file, args->handle);
1288 if (obj == NULL)
1289 return -ENOENT;
1290
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
1299 addr = vm_mmap(obj->filp, 0, args->size,
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
1302 drm_gem_object_unreference_unlocked(obj);
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
1331 drm_i915_private_t *dev_priv = dev->dev_private;
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
1344
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347 /* Now bind it into the GTT if needed */
1348 ret = i915_gem_object_pin(obj, 0, true, false);
1349 if (ret)
1350 goto unlock;
1351
1352 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353 if (ret)
1354 goto unpin;
1355
1356 ret = i915_gem_object_get_fence(obj);
1357 if (ret)
1358 goto unpin;
1359
1360 obj->fault_mappable = true;
1361
1362 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1363 page_offset;
1364
1365 /* Finally, remap it using the new GTT offset */
1366 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1367 unpin:
1368 i915_gem_object_unpin(obj);
1369 unlock:
1370 mutex_unlock(&dev->struct_mutex);
1371 out:
1372 switch (ret) {
1373 case -EIO:
1374 /* If this -EIO is due to a gpu hang, give the reset code a
1375 * chance to clean up the mess. Otherwise return the proper
1376 * SIGBUS. */
1377 if (!atomic_read(&dev_priv->mm.wedged))
1378 return VM_FAULT_SIGBUS;
1379 case -EAGAIN:
1380 /* Give the error handler a chance to run and move the
1381 * objects off the GPU active list. Next time we service the
1382 * fault, we should be able to transition the page into the
1383 * GTT without touching the GPU (and so avoid further
1384 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385 * with coherency, just lost writes.
1386 */
1387 set_need_resched();
1388 case 0:
1389 case -ERESTARTSYS:
1390 case -EINTR:
1391 case -EBUSY:
1392 /*
1393 * EBUSY is ok: this just means that another thread
1394 * already did the job.
1395 */
1396 return VM_FAULT_NOPAGE;
1397 case -ENOMEM:
1398 return VM_FAULT_OOM;
1399 case -ENOSPC:
1400 return VM_FAULT_SIGBUS;
1401 default:
1402 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1403 return VM_FAULT_SIGBUS;
1404 }
1405 }
1406
1407 /**
1408 * i915_gem_release_mmap - remove physical page mappings
1409 * @obj: obj in question
1410 *
1411 * Preserve the reservation of the mmapping with the DRM core code, but
1412 * relinquish ownership of the pages back to the system.
1413 *
1414 * It is vital that we remove the page mapping if we have mapped a tiled
1415 * object through the GTT and then lose the fence register due to
1416 * resource pressure. Similarly if the object has been moved out of the
1417 * aperture, than pages mapped into userspace must be revoked. Removing the
1418 * mapping will then trigger a page fault on the next user access, allowing
1419 * fixup by i915_gem_fault().
1420 */
1421 void
1422 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1423 {
1424 if (!obj->fault_mappable)
1425 return;
1426
1427 if (obj->base.dev->dev_mapping)
1428 unmap_mapping_range(obj->base.dev->dev_mapping,
1429 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430 obj->base.size, 1);
1431
1432 obj->fault_mappable = false;
1433 }
1434
1435 static uint32_t
1436 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1437 {
1438 uint32_t gtt_size;
1439
1440 if (INTEL_INFO(dev)->gen >= 4 ||
1441 tiling_mode == I915_TILING_NONE)
1442 return size;
1443
1444 /* Previous chips need a power-of-two fence region when tiling */
1445 if (INTEL_INFO(dev)->gen == 3)
1446 gtt_size = 1024*1024;
1447 else
1448 gtt_size = 512*1024;
1449
1450 while (gtt_size < size)
1451 gtt_size <<= 1;
1452
1453 return gtt_size;
1454 }
1455
1456 /**
1457 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458 * @obj: object to check
1459 *
1460 * Return the required GTT alignment for an object, taking into account
1461 * potential fence register mapping.
1462 */
1463 static uint32_t
1464 i915_gem_get_gtt_alignment(struct drm_device *dev,
1465 uint32_t size,
1466 int tiling_mode)
1467 {
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
1472 if (INTEL_INFO(dev)->gen >= 4 ||
1473 tiling_mode == I915_TILING_NONE)
1474 return 4096;
1475
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 /**
1484 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485 * unfenced object
1486 * @dev: the device
1487 * @size: size of the object
1488 * @tiling_mode: tiling mode of the object
1489 *
1490 * Return the required GTT alignment for an object, only taking into account
1491 * unfenced tiled surface requirements.
1492 */
1493 uint32_t
1494 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495 uint32_t size,
1496 int tiling_mode)
1497 {
1498 /*
1499 * Minimum alignment is 4k (GTT page size) for sane hw.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1502 tiling_mode == I915_TILING_NONE)
1503 return 4096;
1504
1505 /* Previous hardware however needs to be aligned to a power-of-two
1506 * tile height. The simplest method for determining this is to reuse
1507 * the power-of-tile object size.
1508 */
1509 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1510 }
1511
1512 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513 {
1514 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515 int ret;
1516
1517 if (obj->base.map_list.map)
1518 return 0;
1519
1520 dev_priv->mm.shrinker_no_lock_stealing = true;
1521
1522 ret = drm_gem_create_mmap_offset(&obj->base);
1523 if (ret != -ENOSPC)
1524 goto out;
1525
1526 /* Badly fragmented mmap space? The only way we can recover
1527 * space is by destroying unwanted objects. We can't randomly release
1528 * mmap_offsets as userspace expects them to be persistent for the
1529 * lifetime of the objects. The closest we can is to release the
1530 * offsets on purgeable objects by truncating it and marking it purged,
1531 * which prevents userspace from ever using that object again.
1532 */
1533 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1534 ret = drm_gem_create_mmap_offset(&obj->base);
1535 if (ret != -ENOSPC)
1536 goto out;
1537
1538 i915_gem_shrink_all(dev_priv);
1539 ret = drm_gem_create_mmap_offset(&obj->base);
1540 out:
1541 dev_priv->mm.shrinker_no_lock_stealing = false;
1542
1543 return ret;
1544 }
1545
1546 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1547 {
1548 if (!obj->base.map_list.map)
1549 return;
1550
1551 drm_gem_free_mmap_offset(&obj->base);
1552 }
1553
1554 int
1555 i915_gem_mmap_gtt(struct drm_file *file,
1556 struct drm_device *dev,
1557 uint32_t handle,
1558 uint64_t *offset)
1559 {
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 struct drm_i915_gem_object *obj;
1562 int ret;
1563
1564 ret = i915_mutex_lock_interruptible(dev);
1565 if (ret)
1566 return ret;
1567
1568 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1569 if (&obj->base == NULL) {
1570 ret = -ENOENT;
1571 goto unlock;
1572 }
1573
1574 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1575 ret = -E2BIG;
1576 goto out;
1577 }
1578
1579 if (obj->madv != I915_MADV_WILLNEED) {
1580 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1581 ret = -EINVAL;
1582 goto out;
1583 }
1584
1585 ret = i915_gem_object_create_mmap_offset(obj);
1586 if (ret)
1587 goto out;
1588
1589 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1590
1591 out:
1592 drm_gem_object_unreference(&obj->base);
1593 unlock:
1594 mutex_unlock(&dev->struct_mutex);
1595 return ret;
1596 }
1597
1598 /**
1599 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1600 * @dev: DRM device
1601 * @data: GTT mapping ioctl data
1602 * @file: GEM object info
1603 *
1604 * Simply returns the fake offset to userspace so it can mmap it.
1605 * The mmap call will end up in drm_gem_mmap(), which will set things
1606 * up so we can get faults in the handler above.
1607 *
1608 * The fault handler will take care of binding the object into the GTT
1609 * (since it may have been evicted to make room for something), allocating
1610 * a fence register, and mapping the appropriate aperture address into
1611 * userspace.
1612 */
1613 int
1614 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1615 struct drm_file *file)
1616 {
1617 struct drm_i915_gem_mmap_gtt *args = data;
1618
1619 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1620 }
1621
1622 /* Immediately discard the backing storage */
1623 static void
1624 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1625 {
1626 struct inode *inode;
1627
1628 i915_gem_object_free_mmap_offset(obj);
1629
1630 if (obj->base.filp == NULL)
1631 return;
1632
1633 /* Our goal here is to return as much of the memory as
1634 * is possible back to the system as we are called from OOM.
1635 * To do this we must instruct the shmfs to drop all of its
1636 * backing pages, *now*.
1637 */
1638 inode = obj->base.filp->f_path.dentry->d_inode;
1639 shmem_truncate_range(inode, 0, (loff_t)-1);
1640
1641 obj->madv = __I915_MADV_PURGED;
1642 }
1643
1644 static inline int
1645 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1646 {
1647 return obj->madv == I915_MADV_DONTNEED;
1648 }
1649
1650 static void
1651 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1652 {
1653 int page_count = obj->base.size / PAGE_SIZE;
1654 struct scatterlist *sg;
1655 int ret, i;
1656
1657 BUG_ON(obj->madv == __I915_MADV_PURGED);
1658
1659 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1660 if (ret) {
1661 /* In the event of a disaster, abandon all caches and
1662 * hope for the best.
1663 */
1664 WARN_ON(ret != -EIO);
1665 i915_gem_clflush_object(obj);
1666 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1667 }
1668
1669 if (i915_gem_object_needs_bit17_swizzle(obj))
1670 i915_gem_object_save_bit_17_swizzle(obj);
1671
1672 if (obj->madv == I915_MADV_DONTNEED)
1673 obj->dirty = 0;
1674
1675 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1676 struct page *page = sg_page(sg);
1677
1678 if (obj->dirty)
1679 set_page_dirty(page);
1680
1681 if (obj->madv == I915_MADV_WILLNEED)
1682 mark_page_accessed(page);
1683
1684 page_cache_release(page);
1685 }
1686 obj->dirty = 0;
1687
1688 sg_free_table(obj->pages);
1689 kfree(obj->pages);
1690 }
1691
1692 static int
1693 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1694 {
1695 const struct drm_i915_gem_object_ops *ops = obj->ops;
1696
1697 if (obj->pages == NULL)
1698 return 0;
1699
1700 BUG_ON(obj->gtt_space);
1701
1702 if (obj->pages_pin_count)
1703 return -EBUSY;
1704
1705 /* ->put_pages might need to allocate memory for the bit17 swizzle
1706 * array, hence protect them from being reaped by removing them from gtt
1707 * lists early. */
1708 list_del(&obj->gtt_list);
1709
1710 ops->put_pages(obj);
1711 obj->pages = NULL;
1712
1713 if (i915_gem_object_is_purgeable(obj))
1714 i915_gem_object_truncate(obj);
1715
1716 return 0;
1717 }
1718
1719 static long
1720 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1721 bool purgeable_only)
1722 {
1723 struct drm_i915_gem_object *obj, *next;
1724 long count = 0;
1725
1726 list_for_each_entry_safe(obj, next,
1727 &dev_priv->mm.unbound_list,
1728 gtt_list) {
1729 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1730 i915_gem_object_put_pages(obj) == 0) {
1731 count += obj->base.size >> PAGE_SHIFT;
1732 if (count >= target)
1733 return count;
1734 }
1735 }
1736
1737 list_for_each_entry_safe(obj, next,
1738 &dev_priv->mm.inactive_list,
1739 mm_list) {
1740 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1741 i915_gem_object_unbind(obj) == 0 &&
1742 i915_gem_object_put_pages(obj) == 0) {
1743 count += obj->base.size >> PAGE_SHIFT;
1744 if (count >= target)
1745 return count;
1746 }
1747 }
1748
1749 return count;
1750 }
1751
1752 static long
1753 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1754 {
1755 return __i915_gem_shrink(dev_priv, target, true);
1756 }
1757
1758 static void
1759 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1760 {
1761 struct drm_i915_gem_object *obj, *next;
1762
1763 i915_gem_evict_everything(dev_priv->dev);
1764
1765 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1766 i915_gem_object_put_pages(obj);
1767 }
1768
1769 static int
1770 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1771 {
1772 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1773 int page_count, i;
1774 struct address_space *mapping;
1775 struct sg_table *st;
1776 struct scatterlist *sg;
1777 struct page *page;
1778 gfp_t gfp;
1779
1780 /* Assert that the object is not currently in any GPU domain. As it
1781 * wasn't in the GTT, there shouldn't be any way it could have been in
1782 * a GPU cache
1783 */
1784 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1785 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1786
1787 st = kmalloc(sizeof(*st), GFP_KERNEL);
1788 if (st == NULL)
1789 return -ENOMEM;
1790
1791 page_count = obj->base.size / PAGE_SIZE;
1792 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1793 sg_free_table(st);
1794 kfree(st);
1795 return -ENOMEM;
1796 }
1797
1798 /* Get the list of pages out of our struct file. They'll be pinned
1799 * at this point until we release them.
1800 *
1801 * Fail silently without starting the shrinker
1802 */
1803 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1804 gfp = mapping_gfp_mask(mapping);
1805 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1806 gfp &= ~(__GFP_IO | __GFP_WAIT);
1807 for_each_sg(st->sgl, sg, page_count, i) {
1808 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809 if (IS_ERR(page)) {
1810 i915_gem_purge(dev_priv, page_count);
1811 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1812 }
1813 if (IS_ERR(page)) {
1814 /* We've tried hard to allocate the memory by reaping
1815 * our own buffer, now let the real VM do its job and
1816 * go down in flames if truly OOM.
1817 */
1818 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1819 gfp |= __GFP_IO | __GFP_WAIT;
1820
1821 i915_gem_shrink_all(dev_priv);
1822 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1823 if (IS_ERR(page))
1824 goto err_pages;
1825
1826 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1827 gfp &= ~(__GFP_IO | __GFP_WAIT);
1828 }
1829
1830 sg_set_page(sg, page, PAGE_SIZE, 0);
1831 }
1832
1833 obj->pages = st;
1834
1835 if (i915_gem_object_needs_bit17_swizzle(obj))
1836 i915_gem_object_do_bit_17_swizzle(obj);
1837
1838 return 0;
1839
1840 err_pages:
1841 for_each_sg(st->sgl, sg, i, page_count)
1842 page_cache_release(sg_page(sg));
1843 sg_free_table(st);
1844 kfree(st);
1845 return PTR_ERR(page);
1846 }
1847
1848 /* Ensure that the associated pages are gathered from the backing storage
1849 * and pinned into our object. i915_gem_object_get_pages() may be called
1850 * multiple times before they are released by a single call to
1851 * i915_gem_object_put_pages() - once the pages are no longer referenced
1852 * either as a result of memory pressure (reaping pages under the shrinker)
1853 * or as the object is itself released.
1854 */
1855 int
1856 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1857 {
1858 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1859 const struct drm_i915_gem_object_ops *ops = obj->ops;
1860 int ret;
1861
1862 if (obj->pages)
1863 return 0;
1864
1865 BUG_ON(obj->pages_pin_count);
1866
1867 ret = ops->get_pages(obj);
1868 if (ret)
1869 return ret;
1870
1871 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1872 return 0;
1873 }
1874
1875 void
1876 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1877 struct intel_ring_buffer *ring)
1878 {
1879 struct drm_device *dev = obj->base.dev;
1880 struct drm_i915_private *dev_priv = dev->dev_private;
1881 u32 seqno = intel_ring_get_seqno(ring);
1882
1883 BUG_ON(ring == NULL);
1884 obj->ring = ring;
1885
1886 /* Add a reference if we're newly entering the active list. */
1887 if (!obj->active) {
1888 drm_gem_object_reference(&obj->base);
1889 obj->active = 1;
1890 }
1891
1892 /* Move from whatever list we were on to the tail of execution. */
1893 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1894 list_move_tail(&obj->ring_list, &ring->active_list);
1895
1896 obj->last_read_seqno = seqno;
1897
1898 if (obj->fenced_gpu_access) {
1899 obj->last_fenced_seqno = seqno;
1900
1901 /* Bump MRU to take account of the delayed flush */
1902 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1903 struct drm_i915_fence_reg *reg;
1904
1905 reg = &dev_priv->fence_regs[obj->fence_reg];
1906 list_move_tail(&reg->lru_list,
1907 &dev_priv->mm.fence_list);
1908 }
1909 }
1910 }
1911
1912 static void
1913 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1914 {
1915 struct drm_device *dev = obj->base.dev;
1916 struct drm_i915_private *dev_priv = dev->dev_private;
1917
1918 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1919 BUG_ON(!obj->active);
1920
1921 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1922
1923 list_del_init(&obj->ring_list);
1924 obj->ring = NULL;
1925
1926 obj->last_read_seqno = 0;
1927 obj->last_write_seqno = 0;
1928 obj->base.write_domain = 0;
1929
1930 obj->last_fenced_seqno = 0;
1931 obj->fenced_gpu_access = false;
1932
1933 obj->active = 0;
1934 drm_gem_object_unreference(&obj->base);
1935
1936 WARN_ON(i915_verify_lists(dev));
1937 }
1938
1939 static int
1940 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1941 {
1942 struct drm_i915_private *dev_priv = dev->dev_private;
1943 struct intel_ring_buffer *ring;
1944 int ret, i, j;
1945
1946 /* The hardware uses various monotonic 32-bit counters, if we
1947 * detect that they will wraparound we need to idle the GPU
1948 * and reset those counters.
1949 */
1950 ret = 0;
1951 for_each_ring(ring, dev_priv, i) {
1952 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1953 ret |= ring->sync_seqno[j] != 0;
1954 }
1955 if (ret == 0)
1956 return ret;
1957
1958 ret = i915_gpu_idle(dev);
1959 if (ret)
1960 return ret;
1961
1962 i915_gem_retire_requests(dev);
1963 for_each_ring(ring, dev_priv, i) {
1964 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1965 ring->sync_seqno[j] = 0;
1966 }
1967
1968 return 0;
1969 }
1970
1971 int
1972 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1973 {
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975
1976 /* reserve 0 for non-seqno */
1977 if (dev_priv->next_seqno == 0) {
1978 int ret = i915_gem_handle_seqno_wrap(dev);
1979 if (ret)
1980 return ret;
1981
1982 dev_priv->next_seqno = 1;
1983 }
1984
1985 *seqno = dev_priv->next_seqno++;
1986 return 0;
1987 }
1988
1989 int
1990 i915_add_request(struct intel_ring_buffer *ring,
1991 struct drm_file *file,
1992 u32 *out_seqno)
1993 {
1994 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1995 struct drm_i915_gem_request *request;
1996 u32 request_ring_position;
1997 int was_empty;
1998 int ret;
1999
2000 /*
2001 * Emit any outstanding flushes - execbuf can fail to emit the flush
2002 * after having emitted the batchbuffer command. Hence we need to fix
2003 * things up similar to emitting the lazy request. The difference here
2004 * is that the flush _must_ happen before the next request, no matter
2005 * what.
2006 */
2007 ret = intel_ring_flush_all_caches(ring);
2008 if (ret)
2009 return ret;
2010
2011 request = kmalloc(sizeof(*request), GFP_KERNEL);
2012 if (request == NULL)
2013 return -ENOMEM;
2014
2015
2016 /* Record the position of the start of the request so that
2017 * should we detect the updated seqno part-way through the
2018 * GPU processing the request, we never over-estimate the
2019 * position of the head.
2020 */
2021 request_ring_position = intel_ring_get_tail(ring);
2022
2023 ret = ring->add_request(ring);
2024 if (ret) {
2025 kfree(request);
2026 return ret;
2027 }
2028
2029 request->seqno = intel_ring_get_seqno(ring);
2030 request->ring = ring;
2031 request->tail = request_ring_position;
2032 request->emitted_jiffies = jiffies;
2033 was_empty = list_empty(&ring->request_list);
2034 list_add_tail(&request->list, &ring->request_list);
2035 request->file_priv = NULL;
2036
2037 if (file) {
2038 struct drm_i915_file_private *file_priv = file->driver_priv;
2039
2040 spin_lock(&file_priv->mm.lock);
2041 request->file_priv = file_priv;
2042 list_add_tail(&request->client_list,
2043 &file_priv->mm.request_list);
2044 spin_unlock(&file_priv->mm.lock);
2045 }
2046
2047 trace_i915_gem_request_add(ring, request->seqno);
2048 ring->outstanding_lazy_request = 0;
2049
2050 if (!dev_priv->mm.suspended) {
2051 if (i915_enable_hangcheck) {
2052 mod_timer(&dev_priv->hangcheck_timer,
2053 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2054 }
2055 if (was_empty) {
2056 queue_delayed_work(dev_priv->wq,
2057 &dev_priv->mm.retire_work,
2058 round_jiffies_up_relative(HZ));
2059 intel_mark_busy(dev_priv->dev);
2060 }
2061 }
2062
2063 if (out_seqno)
2064 *out_seqno = request->seqno;
2065 return 0;
2066 }
2067
2068 static inline void
2069 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2070 {
2071 struct drm_i915_file_private *file_priv = request->file_priv;
2072
2073 if (!file_priv)
2074 return;
2075
2076 spin_lock(&file_priv->mm.lock);
2077 if (request->file_priv) {
2078 list_del(&request->client_list);
2079 request->file_priv = NULL;
2080 }
2081 spin_unlock(&file_priv->mm.lock);
2082 }
2083
2084 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2085 struct intel_ring_buffer *ring)
2086 {
2087 while (!list_empty(&ring->request_list)) {
2088 struct drm_i915_gem_request *request;
2089
2090 request = list_first_entry(&ring->request_list,
2091 struct drm_i915_gem_request,
2092 list);
2093
2094 list_del(&request->list);
2095 i915_gem_request_remove_from_client(request);
2096 kfree(request);
2097 }
2098
2099 while (!list_empty(&ring->active_list)) {
2100 struct drm_i915_gem_object *obj;
2101
2102 obj = list_first_entry(&ring->active_list,
2103 struct drm_i915_gem_object,
2104 ring_list);
2105
2106 i915_gem_object_move_to_inactive(obj);
2107 }
2108 }
2109
2110 static void i915_gem_reset_fences(struct drm_device *dev)
2111 {
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113 int i;
2114
2115 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2116 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2117
2118 i915_gem_write_fence(dev, i, NULL);
2119
2120 if (reg->obj)
2121 i915_gem_object_fence_lost(reg->obj);
2122
2123 reg->pin_count = 0;
2124 reg->obj = NULL;
2125 INIT_LIST_HEAD(&reg->lru_list);
2126 }
2127
2128 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2129 }
2130
2131 void i915_gem_reset(struct drm_device *dev)
2132 {
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 struct drm_i915_gem_object *obj;
2135 struct intel_ring_buffer *ring;
2136 int i;
2137
2138 for_each_ring(ring, dev_priv, i)
2139 i915_gem_reset_ring_lists(dev_priv, ring);
2140
2141 /* Move everything out of the GPU domains to ensure we do any
2142 * necessary invalidation upon reuse.
2143 */
2144 list_for_each_entry(obj,
2145 &dev_priv->mm.inactive_list,
2146 mm_list)
2147 {
2148 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2149 }
2150
2151 /* The fence registers are invalidated so clear them out */
2152 i915_gem_reset_fences(dev);
2153 }
2154
2155 /**
2156 * This function clears the request list as sequence numbers are passed.
2157 */
2158 void
2159 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2160 {
2161 uint32_t seqno;
2162
2163 if (list_empty(&ring->request_list))
2164 return;
2165
2166 WARN_ON(i915_verify_lists(ring->dev));
2167
2168 seqno = ring->get_seqno(ring, true);
2169
2170 while (!list_empty(&ring->request_list)) {
2171 struct drm_i915_gem_request *request;
2172
2173 request = list_first_entry(&ring->request_list,
2174 struct drm_i915_gem_request,
2175 list);
2176
2177 if (!i915_seqno_passed(seqno, request->seqno))
2178 break;
2179
2180 trace_i915_gem_request_retire(ring, request->seqno);
2181 /* We know the GPU must have read the request to have
2182 * sent us the seqno + interrupt, so use the position
2183 * of tail of the request to update the last known position
2184 * of the GPU head.
2185 */
2186 ring->last_retired_head = request->tail;
2187
2188 list_del(&request->list);
2189 i915_gem_request_remove_from_client(request);
2190 kfree(request);
2191 }
2192
2193 /* Move any buffers on the active list that are no longer referenced
2194 * by the ringbuffer to the flushing/inactive lists as appropriate.
2195 */
2196 while (!list_empty(&ring->active_list)) {
2197 struct drm_i915_gem_object *obj;
2198
2199 obj = list_first_entry(&ring->active_list,
2200 struct drm_i915_gem_object,
2201 ring_list);
2202
2203 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2204 break;
2205
2206 i915_gem_object_move_to_inactive(obj);
2207 }
2208
2209 if (unlikely(ring->trace_irq_seqno &&
2210 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2211 ring->irq_put(ring);
2212 ring->trace_irq_seqno = 0;
2213 }
2214
2215 WARN_ON(i915_verify_lists(ring->dev));
2216 }
2217
2218 void
2219 i915_gem_retire_requests(struct drm_device *dev)
2220 {
2221 drm_i915_private_t *dev_priv = dev->dev_private;
2222 struct intel_ring_buffer *ring;
2223 int i;
2224
2225 for_each_ring(ring, dev_priv, i)
2226 i915_gem_retire_requests_ring(ring);
2227 }
2228
2229 static void
2230 i915_gem_retire_work_handler(struct work_struct *work)
2231 {
2232 drm_i915_private_t *dev_priv;
2233 struct drm_device *dev;
2234 struct intel_ring_buffer *ring;
2235 bool idle;
2236 int i;
2237
2238 dev_priv = container_of(work, drm_i915_private_t,
2239 mm.retire_work.work);
2240 dev = dev_priv->dev;
2241
2242 /* Come back later if the device is busy... */
2243 if (!mutex_trylock(&dev->struct_mutex)) {
2244 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2245 round_jiffies_up_relative(HZ));
2246 return;
2247 }
2248
2249 i915_gem_retire_requests(dev);
2250
2251 /* Send a periodic flush down the ring so we don't hold onto GEM
2252 * objects indefinitely.
2253 */
2254 idle = true;
2255 for_each_ring(ring, dev_priv, i) {
2256 if (ring->gpu_caches_dirty)
2257 i915_add_request(ring, NULL, NULL);
2258
2259 idle &= list_empty(&ring->request_list);
2260 }
2261
2262 if (!dev_priv->mm.suspended && !idle)
2263 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2264 round_jiffies_up_relative(HZ));
2265 if (idle)
2266 intel_mark_idle(dev);
2267
2268 mutex_unlock(&dev->struct_mutex);
2269 }
2270
2271 /**
2272 * Ensures that an object will eventually get non-busy by flushing any required
2273 * write domains, emitting any outstanding lazy request and retiring and
2274 * completed requests.
2275 */
2276 static int
2277 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2278 {
2279 int ret;
2280
2281 if (obj->active) {
2282 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2283 if (ret)
2284 return ret;
2285
2286 i915_gem_retire_requests_ring(obj->ring);
2287 }
2288
2289 return 0;
2290 }
2291
2292 /**
2293 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2294 * @DRM_IOCTL_ARGS: standard ioctl arguments
2295 *
2296 * Returns 0 if successful, else an error is returned with the remaining time in
2297 * the timeout parameter.
2298 * -ETIME: object is still busy after timeout
2299 * -ERESTARTSYS: signal interrupted the wait
2300 * -ENONENT: object doesn't exist
2301 * Also possible, but rare:
2302 * -EAGAIN: GPU wedged
2303 * -ENOMEM: damn
2304 * -ENODEV: Internal IRQ fail
2305 * -E?: The add request failed
2306 *
2307 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2308 * non-zero timeout parameter the wait ioctl will wait for the given number of
2309 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2310 * without holding struct_mutex the object may become re-busied before this
2311 * function completes. A similar but shorter * race condition exists in the busy
2312 * ioctl
2313 */
2314 int
2315 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2316 {
2317 struct drm_i915_gem_wait *args = data;
2318 struct drm_i915_gem_object *obj;
2319 struct intel_ring_buffer *ring = NULL;
2320 struct timespec timeout_stack, *timeout = NULL;
2321 u32 seqno = 0;
2322 int ret = 0;
2323
2324 if (args->timeout_ns >= 0) {
2325 timeout_stack = ns_to_timespec(args->timeout_ns);
2326 timeout = &timeout_stack;
2327 }
2328
2329 ret = i915_mutex_lock_interruptible(dev);
2330 if (ret)
2331 return ret;
2332
2333 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2334 if (&obj->base == NULL) {
2335 mutex_unlock(&dev->struct_mutex);
2336 return -ENOENT;
2337 }
2338
2339 /* Need to make sure the object gets inactive eventually. */
2340 ret = i915_gem_object_flush_active(obj);
2341 if (ret)
2342 goto out;
2343
2344 if (obj->active) {
2345 seqno = obj->last_read_seqno;
2346 ring = obj->ring;
2347 }
2348
2349 if (seqno == 0)
2350 goto out;
2351
2352 /* Do this after OLR check to make sure we make forward progress polling
2353 * on this IOCTL with a 0 timeout (like busy ioctl)
2354 */
2355 if (!args->timeout_ns) {
2356 ret = -ETIME;
2357 goto out;
2358 }
2359
2360 drm_gem_object_unreference(&obj->base);
2361 mutex_unlock(&dev->struct_mutex);
2362
2363 ret = __wait_seqno(ring, seqno, true, timeout);
2364 if (timeout) {
2365 WARN_ON(!timespec_valid(timeout));
2366 args->timeout_ns = timespec_to_ns(timeout);
2367 }
2368 return ret;
2369
2370 out:
2371 drm_gem_object_unreference(&obj->base);
2372 mutex_unlock(&dev->struct_mutex);
2373 return ret;
2374 }
2375
2376 /**
2377 * i915_gem_object_sync - sync an object to a ring.
2378 *
2379 * @obj: object which may be in use on another ring.
2380 * @to: ring we wish to use the object on. May be NULL.
2381 *
2382 * This code is meant to abstract object synchronization with the GPU.
2383 * Calling with NULL implies synchronizing the object with the CPU
2384 * rather than a particular GPU ring.
2385 *
2386 * Returns 0 if successful, else propagates up the lower layer error.
2387 */
2388 int
2389 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2390 struct intel_ring_buffer *to)
2391 {
2392 struct intel_ring_buffer *from = obj->ring;
2393 u32 seqno;
2394 int ret, idx;
2395
2396 if (from == NULL || to == from)
2397 return 0;
2398
2399 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2400 return i915_gem_object_wait_rendering(obj, false);
2401
2402 idx = intel_ring_sync_index(from, to);
2403
2404 seqno = obj->last_read_seqno;
2405 if (seqno <= from->sync_seqno[idx])
2406 return 0;
2407
2408 ret = i915_gem_check_olr(obj->ring, seqno);
2409 if (ret)
2410 return ret;
2411
2412 ret = to->sync_to(to, from, seqno);
2413 if (!ret)
2414 /* We use last_read_seqno because sync_to()
2415 * might have just caused seqno wrap under
2416 * the radar.
2417 */
2418 from->sync_seqno[idx] = obj->last_read_seqno;
2419
2420 return ret;
2421 }
2422
2423 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2424 {
2425 u32 old_write_domain, old_read_domains;
2426
2427 /* Act a barrier for all accesses through the GTT */
2428 mb();
2429
2430 /* Force a pagefault for domain tracking on next user access */
2431 i915_gem_release_mmap(obj);
2432
2433 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2434 return;
2435
2436 old_read_domains = obj->base.read_domains;
2437 old_write_domain = obj->base.write_domain;
2438
2439 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2440 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2441
2442 trace_i915_gem_object_change_domain(obj,
2443 old_read_domains,
2444 old_write_domain);
2445 }
2446
2447 /**
2448 * Unbinds an object from the GTT aperture.
2449 */
2450 int
2451 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2452 {
2453 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2454 int ret = 0;
2455
2456 if (obj->gtt_space == NULL)
2457 return 0;
2458
2459 if (obj->pin_count)
2460 return -EBUSY;
2461
2462 BUG_ON(obj->pages == NULL);
2463
2464 ret = i915_gem_object_finish_gpu(obj);
2465 if (ret)
2466 return ret;
2467 /* Continue on if we fail due to EIO, the GPU is hung so we
2468 * should be safe and we need to cleanup or else we might
2469 * cause memory corruption through use-after-free.
2470 */
2471
2472 i915_gem_object_finish_gtt(obj);
2473
2474 /* release the fence reg _after_ flushing */
2475 ret = i915_gem_object_put_fence(obj);
2476 if (ret)
2477 return ret;
2478
2479 trace_i915_gem_object_unbind(obj);
2480
2481 if (obj->has_global_gtt_mapping)
2482 i915_gem_gtt_unbind_object(obj);
2483 if (obj->has_aliasing_ppgtt_mapping) {
2484 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2485 obj->has_aliasing_ppgtt_mapping = 0;
2486 }
2487 i915_gem_gtt_finish_object(obj);
2488
2489 list_del(&obj->mm_list);
2490 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2491 /* Avoid an unnecessary call to unbind on rebind. */
2492 obj->map_and_fenceable = true;
2493
2494 drm_mm_put_block(obj->gtt_space);
2495 obj->gtt_space = NULL;
2496 obj->gtt_offset = 0;
2497
2498 return 0;
2499 }
2500
2501 int i915_gpu_idle(struct drm_device *dev)
2502 {
2503 drm_i915_private_t *dev_priv = dev->dev_private;
2504 struct intel_ring_buffer *ring;
2505 int ret, i;
2506
2507 /* Flush everything onto the inactive list. */
2508 for_each_ring(ring, dev_priv, i) {
2509 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2510 if (ret)
2511 return ret;
2512
2513 ret = intel_ring_idle(ring);
2514 if (ret)
2515 return ret;
2516 }
2517
2518 return 0;
2519 }
2520
2521 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2522 struct drm_i915_gem_object *obj)
2523 {
2524 drm_i915_private_t *dev_priv = dev->dev_private;
2525 uint64_t val;
2526
2527 if (obj) {
2528 u32 size = obj->gtt_space->size;
2529
2530 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2531 0xfffff000) << 32;
2532 val |= obj->gtt_offset & 0xfffff000;
2533 val |= (uint64_t)((obj->stride / 128) - 1) <<
2534 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2535
2536 if (obj->tiling_mode == I915_TILING_Y)
2537 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2538 val |= I965_FENCE_REG_VALID;
2539 } else
2540 val = 0;
2541
2542 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2543 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2544 }
2545
2546 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2547 struct drm_i915_gem_object *obj)
2548 {
2549 drm_i915_private_t *dev_priv = dev->dev_private;
2550 uint64_t val;
2551
2552 if (obj) {
2553 u32 size = obj->gtt_space->size;
2554
2555 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2556 0xfffff000) << 32;
2557 val |= obj->gtt_offset & 0xfffff000;
2558 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2559 if (obj->tiling_mode == I915_TILING_Y)
2560 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2561 val |= I965_FENCE_REG_VALID;
2562 } else
2563 val = 0;
2564
2565 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2566 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2567 }
2568
2569 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2570 struct drm_i915_gem_object *obj)
2571 {
2572 drm_i915_private_t *dev_priv = dev->dev_private;
2573 u32 val;
2574
2575 if (obj) {
2576 u32 size = obj->gtt_space->size;
2577 int pitch_val;
2578 int tile_width;
2579
2580 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2581 (size & -size) != size ||
2582 (obj->gtt_offset & (size - 1)),
2583 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2584 obj->gtt_offset, obj->map_and_fenceable, size);
2585
2586 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2587 tile_width = 128;
2588 else
2589 tile_width = 512;
2590
2591 /* Note: pitch better be a power of two tile widths */
2592 pitch_val = obj->stride / tile_width;
2593 pitch_val = ffs(pitch_val) - 1;
2594
2595 val = obj->gtt_offset;
2596 if (obj->tiling_mode == I915_TILING_Y)
2597 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2598 val |= I915_FENCE_SIZE_BITS(size);
2599 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2600 val |= I830_FENCE_REG_VALID;
2601 } else
2602 val = 0;
2603
2604 if (reg < 8)
2605 reg = FENCE_REG_830_0 + reg * 4;
2606 else
2607 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2608
2609 I915_WRITE(reg, val);
2610 POSTING_READ(reg);
2611 }
2612
2613 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2614 struct drm_i915_gem_object *obj)
2615 {
2616 drm_i915_private_t *dev_priv = dev->dev_private;
2617 uint32_t val;
2618
2619 if (obj) {
2620 u32 size = obj->gtt_space->size;
2621 uint32_t pitch_val;
2622
2623 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2624 (size & -size) != size ||
2625 (obj->gtt_offset & (size - 1)),
2626 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2627 obj->gtt_offset, size);
2628
2629 pitch_val = obj->stride / 128;
2630 pitch_val = ffs(pitch_val) - 1;
2631
2632 val = obj->gtt_offset;
2633 if (obj->tiling_mode == I915_TILING_Y)
2634 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2635 val |= I830_FENCE_SIZE_BITS(size);
2636 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2637 val |= I830_FENCE_REG_VALID;
2638 } else
2639 val = 0;
2640
2641 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2642 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2643 }
2644
2645 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2646 struct drm_i915_gem_object *obj)
2647 {
2648 switch (INTEL_INFO(dev)->gen) {
2649 case 7:
2650 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2651 case 5:
2652 case 4: i965_write_fence_reg(dev, reg, obj); break;
2653 case 3: i915_write_fence_reg(dev, reg, obj); break;
2654 case 2: i830_write_fence_reg(dev, reg, obj); break;
2655 default: break;
2656 }
2657 }
2658
2659 static inline int fence_number(struct drm_i915_private *dev_priv,
2660 struct drm_i915_fence_reg *fence)
2661 {
2662 return fence - dev_priv->fence_regs;
2663 }
2664
2665 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2666 struct drm_i915_fence_reg *fence,
2667 bool enable)
2668 {
2669 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2670 int reg = fence_number(dev_priv, fence);
2671
2672 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2673
2674 if (enable) {
2675 obj->fence_reg = reg;
2676 fence->obj = obj;
2677 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2678 } else {
2679 obj->fence_reg = I915_FENCE_REG_NONE;
2680 fence->obj = NULL;
2681 list_del_init(&fence->lru_list);
2682 }
2683 }
2684
2685 static int
2686 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2687 {
2688 if (obj->last_fenced_seqno) {
2689 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2690 if (ret)
2691 return ret;
2692
2693 obj->last_fenced_seqno = 0;
2694 }
2695
2696 /* Ensure that all CPU reads are completed before installing a fence
2697 * and all writes before removing the fence.
2698 */
2699 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2700 mb();
2701
2702 obj->fenced_gpu_access = false;
2703 return 0;
2704 }
2705
2706 int
2707 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2708 {
2709 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2710 int ret;
2711
2712 ret = i915_gem_object_flush_fence(obj);
2713 if (ret)
2714 return ret;
2715
2716 if (obj->fence_reg == I915_FENCE_REG_NONE)
2717 return 0;
2718
2719 i915_gem_object_update_fence(obj,
2720 &dev_priv->fence_regs[obj->fence_reg],
2721 false);
2722 i915_gem_object_fence_lost(obj);
2723
2724 return 0;
2725 }
2726
2727 static struct drm_i915_fence_reg *
2728 i915_find_fence_reg(struct drm_device *dev)
2729 {
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 struct drm_i915_fence_reg *reg, *avail;
2732 int i;
2733
2734 /* First try to find a free reg */
2735 avail = NULL;
2736 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2737 reg = &dev_priv->fence_regs[i];
2738 if (!reg->obj)
2739 return reg;
2740
2741 if (!reg->pin_count)
2742 avail = reg;
2743 }
2744
2745 if (avail == NULL)
2746 return NULL;
2747
2748 /* None available, try to steal one or wait for a user to finish */
2749 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2750 if (reg->pin_count)
2751 continue;
2752
2753 return reg;
2754 }
2755
2756 return NULL;
2757 }
2758
2759 /**
2760 * i915_gem_object_get_fence - set up fencing for an object
2761 * @obj: object to map through a fence reg
2762 *
2763 * When mapping objects through the GTT, userspace wants to be able to write
2764 * to them without having to worry about swizzling if the object is tiled.
2765 * This function walks the fence regs looking for a free one for @obj,
2766 * stealing one if it can't find any.
2767 *
2768 * It then sets up the reg based on the object's properties: address, pitch
2769 * and tiling format.
2770 *
2771 * For an untiled surface, this removes any existing fence.
2772 */
2773 int
2774 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2775 {
2776 struct drm_device *dev = obj->base.dev;
2777 struct drm_i915_private *dev_priv = dev->dev_private;
2778 bool enable = obj->tiling_mode != I915_TILING_NONE;
2779 struct drm_i915_fence_reg *reg;
2780 int ret;
2781
2782 /* Have we updated the tiling parameters upon the object and so
2783 * will need to serialise the write to the associated fence register?
2784 */
2785 if (obj->fence_dirty) {
2786 ret = i915_gem_object_flush_fence(obj);
2787 if (ret)
2788 return ret;
2789 }
2790
2791 /* Just update our place in the LRU if our fence is getting reused. */
2792 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2793 reg = &dev_priv->fence_regs[obj->fence_reg];
2794 if (!obj->fence_dirty) {
2795 list_move_tail(&reg->lru_list,
2796 &dev_priv->mm.fence_list);
2797 return 0;
2798 }
2799 } else if (enable) {
2800 reg = i915_find_fence_reg(dev);
2801 if (reg == NULL)
2802 return -EDEADLK;
2803
2804 if (reg->obj) {
2805 struct drm_i915_gem_object *old = reg->obj;
2806
2807 ret = i915_gem_object_flush_fence(old);
2808 if (ret)
2809 return ret;
2810
2811 i915_gem_object_fence_lost(old);
2812 }
2813 } else
2814 return 0;
2815
2816 i915_gem_object_update_fence(obj, reg, enable);
2817 obj->fence_dirty = false;
2818
2819 return 0;
2820 }
2821
2822 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2823 struct drm_mm_node *gtt_space,
2824 unsigned long cache_level)
2825 {
2826 struct drm_mm_node *other;
2827
2828 /* On non-LLC machines we have to be careful when putting differing
2829 * types of snoopable memory together to avoid the prefetcher
2830 * crossing memory domains and dieing.
2831 */
2832 if (HAS_LLC(dev))
2833 return true;
2834
2835 if (gtt_space == NULL)
2836 return true;
2837
2838 if (list_empty(&gtt_space->node_list))
2839 return true;
2840
2841 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2842 if (other->allocated && !other->hole_follows && other->color != cache_level)
2843 return false;
2844
2845 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2846 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2847 return false;
2848
2849 return true;
2850 }
2851
2852 static void i915_gem_verify_gtt(struct drm_device *dev)
2853 {
2854 #if WATCH_GTT
2855 struct drm_i915_private *dev_priv = dev->dev_private;
2856 struct drm_i915_gem_object *obj;
2857 int err = 0;
2858
2859 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2860 if (obj->gtt_space == NULL) {
2861 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2862 err++;
2863 continue;
2864 }
2865
2866 if (obj->cache_level != obj->gtt_space->color) {
2867 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2868 obj->gtt_space->start,
2869 obj->gtt_space->start + obj->gtt_space->size,
2870 obj->cache_level,
2871 obj->gtt_space->color);
2872 err++;
2873 continue;
2874 }
2875
2876 if (!i915_gem_valid_gtt_space(dev,
2877 obj->gtt_space,
2878 obj->cache_level)) {
2879 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2880 obj->gtt_space->start,
2881 obj->gtt_space->start + obj->gtt_space->size,
2882 obj->cache_level);
2883 err++;
2884 continue;
2885 }
2886 }
2887
2888 WARN_ON(err);
2889 #endif
2890 }
2891
2892 /**
2893 * Finds free space in the GTT aperture and binds the object there.
2894 */
2895 static int
2896 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2897 unsigned alignment,
2898 bool map_and_fenceable,
2899 bool nonblocking)
2900 {
2901 struct drm_device *dev = obj->base.dev;
2902 drm_i915_private_t *dev_priv = dev->dev_private;
2903 struct drm_mm_node *node;
2904 u32 size, fence_size, fence_alignment, unfenced_alignment;
2905 bool mappable, fenceable;
2906 int ret;
2907
2908 if (obj->madv != I915_MADV_WILLNEED) {
2909 DRM_ERROR("Attempting to bind a purgeable object\n");
2910 return -EINVAL;
2911 }
2912
2913 fence_size = i915_gem_get_gtt_size(dev,
2914 obj->base.size,
2915 obj->tiling_mode);
2916 fence_alignment = i915_gem_get_gtt_alignment(dev,
2917 obj->base.size,
2918 obj->tiling_mode);
2919 unfenced_alignment =
2920 i915_gem_get_unfenced_gtt_alignment(dev,
2921 obj->base.size,
2922 obj->tiling_mode);
2923
2924 if (alignment == 0)
2925 alignment = map_and_fenceable ? fence_alignment :
2926 unfenced_alignment;
2927 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2928 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2929 return -EINVAL;
2930 }
2931
2932 size = map_and_fenceable ? fence_size : obj->base.size;
2933
2934 /* If the object is bigger than the entire aperture, reject it early
2935 * before evicting everything in a vain attempt to find space.
2936 */
2937 if (obj->base.size >
2938 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2939 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2940 return -E2BIG;
2941 }
2942
2943 ret = i915_gem_object_get_pages(obj);
2944 if (ret)
2945 return ret;
2946
2947 i915_gem_object_pin_pages(obj);
2948
2949 node = kzalloc(sizeof(*node), GFP_KERNEL);
2950 if (node == NULL) {
2951 i915_gem_object_unpin_pages(obj);
2952 return -ENOMEM;
2953 }
2954
2955 search_free:
2956 if (map_and_fenceable)
2957 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2958 size, alignment, obj->cache_level,
2959 0, dev_priv->mm.gtt_mappable_end);
2960 else
2961 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2962 size, alignment, obj->cache_level);
2963 if (ret) {
2964 ret = i915_gem_evict_something(dev, size, alignment,
2965 obj->cache_level,
2966 map_and_fenceable,
2967 nonblocking);
2968 if (ret == 0)
2969 goto search_free;
2970
2971 i915_gem_object_unpin_pages(obj);
2972 kfree(node);
2973 return ret;
2974 }
2975 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2976 i915_gem_object_unpin_pages(obj);
2977 drm_mm_put_block(node);
2978 return -EINVAL;
2979 }
2980
2981 ret = i915_gem_gtt_prepare_object(obj);
2982 if (ret) {
2983 i915_gem_object_unpin_pages(obj);
2984 drm_mm_put_block(node);
2985 return ret;
2986 }
2987
2988 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2989 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2990
2991 obj->gtt_space = node;
2992 obj->gtt_offset = node->start;
2993
2994 fenceable =
2995 node->size == fence_size &&
2996 (node->start & (fence_alignment - 1)) == 0;
2997
2998 mappable =
2999 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3000
3001 obj->map_and_fenceable = mappable && fenceable;
3002
3003 i915_gem_object_unpin_pages(obj);
3004 trace_i915_gem_object_bind(obj, map_and_fenceable);
3005 i915_gem_verify_gtt(dev);
3006 return 0;
3007 }
3008
3009 void
3010 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3011 {
3012 /* If we don't have a page list set up, then we're not pinned
3013 * to GPU, and we can ignore the cache flush because it'll happen
3014 * again at bind time.
3015 */
3016 if (obj->pages == NULL)
3017 return;
3018
3019 /* If the GPU is snooping the contents of the CPU cache,
3020 * we do not need to manually clear the CPU cache lines. However,
3021 * the caches are only snooped when the render cache is
3022 * flushed/invalidated. As we always have to emit invalidations
3023 * and flushes when moving into and out of the RENDER domain, correct
3024 * snooping behaviour occurs naturally as the result of our domain
3025 * tracking.
3026 */
3027 if (obj->cache_level != I915_CACHE_NONE)
3028 return;
3029
3030 trace_i915_gem_object_clflush(obj);
3031
3032 drm_clflush_sg(obj->pages);
3033 }
3034
3035 /** Flushes the GTT write domain for the object if it's dirty. */
3036 static void
3037 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3038 {
3039 uint32_t old_write_domain;
3040
3041 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3042 return;
3043
3044 /* No actual flushing is required for the GTT write domain. Writes
3045 * to it immediately go to main memory as far as we know, so there's
3046 * no chipset flush. It also doesn't land in render cache.
3047 *
3048 * However, we do have to enforce the order so that all writes through
3049 * the GTT land before any writes to the device, such as updates to
3050 * the GATT itself.
3051 */
3052 wmb();
3053
3054 old_write_domain = obj->base.write_domain;
3055 obj->base.write_domain = 0;
3056
3057 trace_i915_gem_object_change_domain(obj,
3058 obj->base.read_domains,
3059 old_write_domain);
3060 }
3061
3062 /** Flushes the CPU write domain for the object if it's dirty. */
3063 static void
3064 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3065 {
3066 uint32_t old_write_domain;
3067
3068 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3069 return;
3070
3071 i915_gem_clflush_object(obj);
3072 i915_gem_chipset_flush(obj->base.dev);
3073 old_write_domain = obj->base.write_domain;
3074 obj->base.write_domain = 0;
3075
3076 trace_i915_gem_object_change_domain(obj,
3077 obj->base.read_domains,
3078 old_write_domain);
3079 }
3080
3081 /**
3082 * Moves a single object to the GTT read, and possibly write domain.
3083 *
3084 * This function returns when the move is complete, including waiting on
3085 * flushes to occur.
3086 */
3087 int
3088 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3089 {
3090 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3091 uint32_t old_write_domain, old_read_domains;
3092 int ret;
3093
3094 /* Not valid to be called on unbound objects. */
3095 if (obj->gtt_space == NULL)
3096 return -EINVAL;
3097
3098 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3099 return 0;
3100
3101 ret = i915_gem_object_wait_rendering(obj, !write);
3102 if (ret)
3103 return ret;
3104
3105 i915_gem_object_flush_cpu_write_domain(obj);
3106
3107 old_write_domain = obj->base.write_domain;
3108 old_read_domains = obj->base.read_domains;
3109
3110 /* It should now be out of any other write domains, and we can update
3111 * the domain values for our changes.
3112 */
3113 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3114 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3115 if (write) {
3116 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3117 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3118 obj->dirty = 1;
3119 }
3120
3121 trace_i915_gem_object_change_domain(obj,
3122 old_read_domains,
3123 old_write_domain);
3124
3125 /* And bump the LRU for this access */
3126 if (i915_gem_object_is_inactive(obj))
3127 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3128
3129 return 0;
3130 }
3131
3132 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3133 enum i915_cache_level cache_level)
3134 {
3135 struct drm_device *dev = obj->base.dev;
3136 drm_i915_private_t *dev_priv = dev->dev_private;
3137 int ret;
3138
3139 if (obj->cache_level == cache_level)
3140 return 0;
3141
3142 if (obj->pin_count) {
3143 DRM_DEBUG("can not change the cache level of pinned objects\n");
3144 return -EBUSY;
3145 }
3146
3147 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3148 ret = i915_gem_object_unbind(obj);
3149 if (ret)
3150 return ret;
3151 }
3152
3153 if (obj->gtt_space) {
3154 ret = i915_gem_object_finish_gpu(obj);
3155 if (ret)
3156 return ret;
3157
3158 i915_gem_object_finish_gtt(obj);
3159
3160 /* Before SandyBridge, you could not use tiling or fence
3161 * registers with snooped memory, so relinquish any fences
3162 * currently pointing to our region in the aperture.
3163 */
3164 if (INTEL_INFO(dev)->gen < 6) {
3165 ret = i915_gem_object_put_fence(obj);
3166 if (ret)
3167 return ret;
3168 }
3169
3170 if (obj->has_global_gtt_mapping)
3171 i915_gem_gtt_bind_object(obj, cache_level);
3172 if (obj->has_aliasing_ppgtt_mapping)
3173 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3174 obj, cache_level);
3175
3176 obj->gtt_space->color = cache_level;
3177 }
3178
3179 if (cache_level == I915_CACHE_NONE) {
3180 u32 old_read_domains, old_write_domain;
3181
3182 /* If we're coming from LLC cached, then we haven't
3183 * actually been tracking whether the data is in the
3184 * CPU cache or not, since we only allow one bit set
3185 * in obj->write_domain and have been skipping the clflushes.
3186 * Just set it to the CPU cache for now.
3187 */
3188 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3189 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3190
3191 old_read_domains = obj->base.read_domains;
3192 old_write_domain = obj->base.write_domain;
3193
3194 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3195 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3196
3197 trace_i915_gem_object_change_domain(obj,
3198 old_read_domains,
3199 old_write_domain);
3200 }
3201
3202 obj->cache_level = cache_level;
3203 i915_gem_verify_gtt(dev);
3204 return 0;
3205 }
3206
3207 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3208 struct drm_file *file)
3209 {
3210 struct drm_i915_gem_caching *args = data;
3211 struct drm_i915_gem_object *obj;
3212 int ret;
3213
3214 ret = i915_mutex_lock_interruptible(dev);
3215 if (ret)
3216 return ret;
3217
3218 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3219 if (&obj->base == NULL) {
3220 ret = -ENOENT;
3221 goto unlock;
3222 }
3223
3224 args->caching = obj->cache_level != I915_CACHE_NONE;
3225
3226 drm_gem_object_unreference(&obj->base);
3227 unlock:
3228 mutex_unlock(&dev->struct_mutex);
3229 return ret;
3230 }
3231
3232 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3233 struct drm_file *file)
3234 {
3235 struct drm_i915_gem_caching *args = data;
3236 struct drm_i915_gem_object *obj;
3237 enum i915_cache_level level;
3238 int ret;
3239
3240 switch (args->caching) {
3241 case I915_CACHING_NONE:
3242 level = I915_CACHE_NONE;
3243 break;
3244 case I915_CACHING_CACHED:
3245 level = I915_CACHE_LLC;
3246 break;
3247 default:
3248 return -EINVAL;
3249 }
3250
3251 ret = i915_mutex_lock_interruptible(dev);
3252 if (ret)
3253 return ret;
3254
3255 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3256 if (&obj->base == NULL) {
3257 ret = -ENOENT;
3258 goto unlock;
3259 }
3260
3261 ret = i915_gem_object_set_cache_level(obj, level);
3262
3263 drm_gem_object_unreference(&obj->base);
3264 unlock:
3265 mutex_unlock(&dev->struct_mutex);
3266 return ret;
3267 }
3268
3269 /*
3270 * Prepare buffer for display plane (scanout, cursors, etc).
3271 * Can be called from an uninterruptible phase (modesetting) and allows
3272 * any flushes to be pipelined (for pageflips).
3273 */
3274 int
3275 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3276 u32 alignment,
3277 struct intel_ring_buffer *pipelined)
3278 {
3279 u32 old_read_domains, old_write_domain;
3280 int ret;
3281
3282 if (pipelined != obj->ring) {
3283 ret = i915_gem_object_sync(obj, pipelined);
3284 if (ret)
3285 return ret;
3286 }
3287
3288 /* The display engine is not coherent with the LLC cache on gen6. As
3289 * a result, we make sure that the pinning that is about to occur is
3290 * done with uncached PTEs. This is lowest common denominator for all
3291 * chipsets.
3292 *
3293 * However for gen6+, we could do better by using the GFDT bit instead
3294 * of uncaching, which would allow us to flush all the LLC-cached data
3295 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3296 */
3297 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3298 if (ret)
3299 return ret;
3300
3301 /* As the user may map the buffer once pinned in the display plane
3302 * (e.g. libkms for the bootup splash), we have to ensure that we
3303 * always use map_and_fenceable for all scanout buffers.
3304 */
3305 ret = i915_gem_object_pin(obj, alignment, true, false);
3306 if (ret)
3307 return ret;
3308
3309 i915_gem_object_flush_cpu_write_domain(obj);
3310
3311 old_write_domain = obj->base.write_domain;
3312 old_read_domains = obj->base.read_domains;
3313
3314 /* It should now be out of any other write domains, and we can update
3315 * the domain values for our changes.
3316 */
3317 obj->base.write_domain = 0;
3318 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3319
3320 trace_i915_gem_object_change_domain(obj,
3321 old_read_domains,
3322 old_write_domain);
3323
3324 return 0;
3325 }
3326
3327 int
3328 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3329 {
3330 int ret;
3331
3332 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3333 return 0;
3334
3335 ret = i915_gem_object_wait_rendering(obj, false);
3336 if (ret)
3337 return ret;
3338
3339 /* Ensure that we invalidate the GPU's caches and TLBs. */
3340 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3341 return 0;
3342 }
3343
3344 /**
3345 * Moves a single object to the CPU read, and possibly write domain.
3346 *
3347 * This function returns when the move is complete, including waiting on
3348 * flushes to occur.
3349 */
3350 int
3351 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3352 {
3353 uint32_t old_write_domain, old_read_domains;
3354 int ret;
3355
3356 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3357 return 0;
3358
3359 ret = i915_gem_object_wait_rendering(obj, !write);
3360 if (ret)
3361 return ret;
3362
3363 i915_gem_object_flush_gtt_write_domain(obj);
3364
3365 old_write_domain = obj->base.write_domain;
3366 old_read_domains = obj->base.read_domains;
3367
3368 /* Flush the CPU cache if it's still invalid. */
3369 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3370 i915_gem_clflush_object(obj);
3371
3372 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3373 }
3374
3375 /* It should now be out of any other write domains, and we can update
3376 * the domain values for our changes.
3377 */
3378 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3379
3380 /* If we're writing through the CPU, then the GPU read domains will
3381 * need to be invalidated at next use.
3382 */
3383 if (write) {
3384 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3385 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3386 }
3387
3388 trace_i915_gem_object_change_domain(obj,
3389 old_read_domains,
3390 old_write_domain);
3391
3392 return 0;
3393 }
3394
3395 /* Throttle our rendering by waiting until the ring has completed our requests
3396 * emitted over 20 msec ago.
3397 *
3398 * Note that if we were to use the current jiffies each time around the loop,
3399 * we wouldn't escape the function with any frames outstanding if the time to
3400 * render a frame was over 20ms.
3401 *
3402 * This should get us reasonable parallelism between CPU and GPU but also
3403 * relatively low latency when blocking on a particular request to finish.
3404 */
3405 static int
3406 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3407 {
3408 struct drm_i915_private *dev_priv = dev->dev_private;
3409 struct drm_i915_file_private *file_priv = file->driver_priv;
3410 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3411 struct drm_i915_gem_request *request;
3412 struct intel_ring_buffer *ring = NULL;
3413 u32 seqno = 0;
3414 int ret;
3415
3416 if (atomic_read(&dev_priv->mm.wedged))
3417 return -EIO;
3418
3419 spin_lock(&file_priv->mm.lock);
3420 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3421 if (time_after_eq(request->emitted_jiffies, recent_enough))
3422 break;
3423
3424 ring = request->ring;
3425 seqno = request->seqno;
3426 }
3427 spin_unlock(&file_priv->mm.lock);
3428
3429 if (seqno == 0)
3430 return 0;
3431
3432 ret = __wait_seqno(ring, seqno, true, NULL);
3433 if (ret == 0)
3434 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3435
3436 return ret;
3437 }
3438
3439 int
3440 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3441 uint32_t alignment,
3442 bool map_and_fenceable,
3443 bool nonblocking)
3444 {
3445 int ret;
3446
3447 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3448 return -EBUSY;
3449
3450 if (obj->gtt_space != NULL) {
3451 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3452 (map_and_fenceable && !obj->map_and_fenceable)) {
3453 WARN(obj->pin_count,
3454 "bo is already pinned with incorrect alignment:"
3455 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3456 " obj->map_and_fenceable=%d\n",
3457 obj->gtt_offset, alignment,
3458 map_and_fenceable,
3459 obj->map_and_fenceable);
3460 ret = i915_gem_object_unbind(obj);
3461 if (ret)
3462 return ret;
3463 }
3464 }
3465
3466 if (obj->gtt_space == NULL) {
3467 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3468
3469 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3470 map_and_fenceable,
3471 nonblocking);
3472 if (ret)
3473 return ret;
3474
3475 if (!dev_priv->mm.aliasing_ppgtt)
3476 i915_gem_gtt_bind_object(obj, obj->cache_level);
3477 }
3478
3479 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3480 i915_gem_gtt_bind_object(obj, obj->cache_level);
3481
3482 obj->pin_count++;
3483 obj->pin_mappable |= map_and_fenceable;
3484
3485 return 0;
3486 }
3487
3488 void
3489 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3490 {
3491 BUG_ON(obj->pin_count == 0);
3492 BUG_ON(obj->gtt_space == NULL);
3493
3494 if (--obj->pin_count == 0)
3495 obj->pin_mappable = false;
3496 }
3497
3498 int
3499 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3500 struct drm_file *file)
3501 {
3502 struct drm_i915_gem_pin *args = data;
3503 struct drm_i915_gem_object *obj;
3504 int ret;
3505
3506 ret = i915_mutex_lock_interruptible(dev);
3507 if (ret)
3508 return ret;
3509
3510 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3511 if (&obj->base == NULL) {
3512 ret = -ENOENT;
3513 goto unlock;
3514 }
3515
3516 if (obj->madv != I915_MADV_WILLNEED) {
3517 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3518 ret = -EINVAL;
3519 goto out;
3520 }
3521
3522 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3523 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3524 args->handle);
3525 ret = -EINVAL;
3526 goto out;
3527 }
3528
3529 if (obj->user_pin_count == 0) {
3530 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3531 if (ret)
3532 goto out;
3533 }
3534
3535 obj->user_pin_count++;
3536 obj->pin_filp = file;
3537
3538 /* XXX - flush the CPU caches for pinned objects
3539 * as the X server doesn't manage domains yet
3540 */
3541 i915_gem_object_flush_cpu_write_domain(obj);
3542 args->offset = obj->gtt_offset;
3543 out:
3544 drm_gem_object_unreference(&obj->base);
3545 unlock:
3546 mutex_unlock(&dev->struct_mutex);
3547 return ret;
3548 }
3549
3550 int
3551 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3552 struct drm_file *file)
3553 {
3554 struct drm_i915_gem_pin *args = data;
3555 struct drm_i915_gem_object *obj;
3556 int ret;
3557
3558 ret = i915_mutex_lock_interruptible(dev);
3559 if (ret)
3560 return ret;
3561
3562 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3563 if (&obj->base == NULL) {
3564 ret = -ENOENT;
3565 goto unlock;
3566 }
3567
3568 if (obj->pin_filp != file) {
3569 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3570 args->handle);
3571 ret = -EINVAL;
3572 goto out;
3573 }
3574 obj->user_pin_count--;
3575 if (obj->user_pin_count == 0) {
3576 obj->pin_filp = NULL;
3577 i915_gem_object_unpin(obj);
3578 }
3579
3580 out:
3581 drm_gem_object_unreference(&obj->base);
3582 unlock:
3583 mutex_unlock(&dev->struct_mutex);
3584 return ret;
3585 }
3586
3587 int
3588 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3589 struct drm_file *file)
3590 {
3591 struct drm_i915_gem_busy *args = data;
3592 struct drm_i915_gem_object *obj;
3593 int ret;
3594
3595 ret = i915_mutex_lock_interruptible(dev);
3596 if (ret)
3597 return ret;
3598
3599 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3600 if (&obj->base == NULL) {
3601 ret = -ENOENT;
3602 goto unlock;
3603 }
3604
3605 /* Count all active objects as busy, even if they are currently not used
3606 * by the gpu. Users of this interface expect objects to eventually
3607 * become non-busy without any further actions, therefore emit any
3608 * necessary flushes here.
3609 */
3610 ret = i915_gem_object_flush_active(obj);
3611
3612 args->busy = obj->active;
3613 if (obj->ring) {
3614 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3615 args->busy |= intel_ring_flag(obj->ring) << 16;
3616 }
3617
3618 drm_gem_object_unreference(&obj->base);
3619 unlock:
3620 mutex_unlock(&dev->struct_mutex);
3621 return ret;
3622 }
3623
3624 int
3625 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3626 struct drm_file *file_priv)
3627 {
3628 return i915_gem_ring_throttle(dev, file_priv);
3629 }
3630
3631 int
3632 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3633 struct drm_file *file_priv)
3634 {
3635 struct drm_i915_gem_madvise *args = data;
3636 struct drm_i915_gem_object *obj;
3637 int ret;
3638
3639 switch (args->madv) {
3640 case I915_MADV_DONTNEED:
3641 case I915_MADV_WILLNEED:
3642 break;
3643 default:
3644 return -EINVAL;
3645 }
3646
3647 ret = i915_mutex_lock_interruptible(dev);
3648 if (ret)
3649 return ret;
3650
3651 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3652 if (&obj->base == NULL) {
3653 ret = -ENOENT;
3654 goto unlock;
3655 }
3656
3657 if (obj->pin_count) {
3658 ret = -EINVAL;
3659 goto out;
3660 }
3661
3662 if (obj->madv != __I915_MADV_PURGED)
3663 obj->madv = args->madv;
3664
3665 /* if the object is no longer attached, discard its backing storage */
3666 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3667 i915_gem_object_truncate(obj);
3668
3669 args->retained = obj->madv != __I915_MADV_PURGED;
3670
3671 out:
3672 drm_gem_object_unreference(&obj->base);
3673 unlock:
3674 mutex_unlock(&dev->struct_mutex);
3675 return ret;
3676 }
3677
3678 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3679 const struct drm_i915_gem_object_ops *ops)
3680 {
3681 INIT_LIST_HEAD(&obj->mm_list);
3682 INIT_LIST_HEAD(&obj->gtt_list);
3683 INIT_LIST_HEAD(&obj->ring_list);
3684 INIT_LIST_HEAD(&obj->exec_list);
3685
3686 obj->ops = ops;
3687
3688 obj->fence_reg = I915_FENCE_REG_NONE;
3689 obj->madv = I915_MADV_WILLNEED;
3690 /* Avoid an unnecessary call to unbind on the first bind. */
3691 obj->map_and_fenceable = true;
3692
3693 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3694 }
3695
3696 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3697 .get_pages = i915_gem_object_get_pages_gtt,
3698 .put_pages = i915_gem_object_put_pages_gtt,
3699 };
3700
3701 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3702 size_t size)
3703 {
3704 struct drm_i915_gem_object *obj;
3705 struct address_space *mapping;
3706 u32 mask;
3707
3708 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3709 if (obj == NULL)
3710 return NULL;
3711
3712 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3713 kfree(obj);
3714 return NULL;
3715 }
3716
3717 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3718 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3719 /* 965gm cannot relocate objects above 4GiB. */
3720 mask &= ~__GFP_HIGHMEM;
3721 mask |= __GFP_DMA32;
3722 }
3723
3724 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3725 mapping_set_gfp_mask(mapping, mask);
3726
3727 i915_gem_object_init(obj, &i915_gem_object_ops);
3728
3729 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3730 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3731
3732 if (HAS_LLC(dev)) {
3733 /* On some devices, we can have the GPU use the LLC (the CPU
3734 * cache) for about a 10% performance improvement
3735 * compared to uncached. Graphics requests other than
3736 * display scanout are coherent with the CPU in
3737 * accessing this cache. This means in this mode we
3738 * don't need to clflush on the CPU side, and on the
3739 * GPU side we only need to flush internal caches to
3740 * get data visible to the CPU.
3741 *
3742 * However, we maintain the display planes as UC, and so
3743 * need to rebind when first used as such.
3744 */
3745 obj->cache_level = I915_CACHE_LLC;
3746 } else
3747 obj->cache_level = I915_CACHE_NONE;
3748
3749 return obj;
3750 }
3751
3752 int i915_gem_init_object(struct drm_gem_object *obj)
3753 {
3754 BUG();
3755
3756 return 0;
3757 }
3758
3759 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3760 {
3761 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3762 struct drm_device *dev = obj->base.dev;
3763 drm_i915_private_t *dev_priv = dev->dev_private;
3764
3765 trace_i915_gem_object_destroy(obj);
3766
3767 if (obj->phys_obj)
3768 i915_gem_detach_phys_object(dev, obj);
3769
3770 obj->pin_count = 0;
3771 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3772 bool was_interruptible;
3773
3774 was_interruptible = dev_priv->mm.interruptible;
3775 dev_priv->mm.interruptible = false;
3776
3777 WARN_ON(i915_gem_object_unbind(obj));
3778
3779 dev_priv->mm.interruptible = was_interruptible;
3780 }
3781
3782 obj->pages_pin_count = 0;
3783 i915_gem_object_put_pages(obj);
3784 i915_gem_object_free_mmap_offset(obj);
3785
3786 BUG_ON(obj->pages);
3787
3788 if (obj->base.import_attach)
3789 drm_prime_gem_destroy(&obj->base, NULL);
3790
3791 drm_gem_object_release(&obj->base);
3792 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3793
3794 kfree(obj->bit_17);
3795 kfree(obj);
3796 }
3797
3798 int
3799 i915_gem_idle(struct drm_device *dev)
3800 {
3801 drm_i915_private_t *dev_priv = dev->dev_private;
3802 int ret;
3803
3804 mutex_lock(&dev->struct_mutex);
3805
3806 if (dev_priv->mm.suspended) {
3807 mutex_unlock(&dev->struct_mutex);
3808 return 0;
3809 }
3810
3811 ret = i915_gpu_idle(dev);
3812 if (ret) {
3813 mutex_unlock(&dev->struct_mutex);
3814 return ret;
3815 }
3816 i915_gem_retire_requests(dev);
3817
3818 /* Under UMS, be paranoid and evict. */
3819 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3820 i915_gem_evict_everything(dev);
3821
3822 i915_gem_reset_fences(dev);
3823
3824 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3825 * We need to replace this with a semaphore, or something.
3826 * And not confound mm.suspended!
3827 */
3828 dev_priv->mm.suspended = 1;
3829 del_timer_sync(&dev_priv->hangcheck_timer);
3830
3831 i915_kernel_lost_context(dev);
3832 i915_gem_cleanup_ringbuffer(dev);
3833
3834 mutex_unlock(&dev->struct_mutex);
3835
3836 /* Cancel the retire work handler, which should be idle now. */
3837 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3838
3839 return 0;
3840 }
3841
3842 void i915_gem_l3_remap(struct drm_device *dev)
3843 {
3844 drm_i915_private_t *dev_priv = dev->dev_private;
3845 u32 misccpctl;
3846 int i;
3847
3848 if (!HAS_L3_GPU_CACHE(dev))
3849 return;
3850
3851 if (!dev_priv->l3_parity.remap_info)
3852 return;
3853
3854 misccpctl = I915_READ(GEN7_MISCCPCTL);
3855 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3856 POSTING_READ(GEN7_MISCCPCTL);
3857
3858 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3859 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3860 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3861 DRM_DEBUG("0x%x was already programmed to %x\n",
3862 GEN7_L3LOG_BASE + i, remap);
3863 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3864 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3865 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3866 }
3867
3868 /* Make sure all the writes land before disabling dop clock gating */
3869 POSTING_READ(GEN7_L3LOG_BASE);
3870
3871 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3872 }
3873
3874 void i915_gem_init_swizzling(struct drm_device *dev)
3875 {
3876 drm_i915_private_t *dev_priv = dev->dev_private;
3877
3878 if (INTEL_INFO(dev)->gen < 5 ||
3879 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3880 return;
3881
3882 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3883 DISP_TILE_SURFACE_SWIZZLING);
3884
3885 if (IS_GEN5(dev))
3886 return;
3887
3888 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3889 if (IS_GEN6(dev))
3890 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3891 else
3892 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3893 }
3894
3895 static bool
3896 intel_enable_blt(struct drm_device *dev)
3897 {
3898 if (!HAS_BLT(dev))
3899 return false;
3900
3901 /* The blitter was dysfunctional on early prototypes */
3902 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3903 DRM_INFO("BLT not supported on this pre-production hardware;"
3904 " graphics performance will be degraded.\n");
3905 return false;
3906 }
3907
3908 return true;
3909 }
3910
3911 int
3912 i915_gem_init_hw(struct drm_device *dev)
3913 {
3914 drm_i915_private_t *dev_priv = dev->dev_private;
3915 int ret;
3916
3917 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3918 return -EIO;
3919
3920 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3921 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3922
3923 i915_gem_l3_remap(dev);
3924
3925 i915_gem_init_swizzling(dev);
3926
3927 ret = intel_init_render_ring_buffer(dev);
3928 if (ret)
3929 return ret;
3930
3931 if (HAS_BSD(dev)) {
3932 ret = intel_init_bsd_ring_buffer(dev);
3933 if (ret)
3934 goto cleanup_render_ring;
3935 }
3936
3937 if (intel_enable_blt(dev)) {
3938 ret = intel_init_blt_ring_buffer(dev);
3939 if (ret)
3940 goto cleanup_bsd_ring;
3941 }
3942
3943 dev_priv->next_seqno = 1;
3944
3945 /*
3946 * XXX: There was some w/a described somewhere suggesting loading
3947 * contexts before PPGTT.
3948 */
3949 i915_gem_context_init(dev);
3950 i915_gem_init_ppgtt(dev);
3951
3952 return 0;
3953
3954 cleanup_bsd_ring:
3955 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3956 cleanup_render_ring:
3957 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3958 return ret;
3959 }
3960
3961 static bool
3962 intel_enable_ppgtt(struct drm_device *dev)
3963 {
3964 if (i915_enable_ppgtt >= 0)
3965 return i915_enable_ppgtt;
3966
3967 #ifdef CONFIG_INTEL_IOMMU
3968 /* Disable ppgtt on SNB if VT-d is on. */
3969 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3970 return false;
3971 #endif
3972
3973 return true;
3974 }
3975
3976 int i915_gem_init(struct drm_device *dev)
3977 {
3978 struct drm_i915_private *dev_priv = dev->dev_private;
3979 unsigned long gtt_size, mappable_size;
3980 int ret;
3981
3982 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3983 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3984
3985 mutex_lock(&dev->struct_mutex);
3986 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3987 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3988 * aperture accordingly when using aliasing ppgtt. */
3989 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3990
3991 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3992
3993 ret = i915_gem_init_aliasing_ppgtt(dev);
3994 if (ret) {
3995 mutex_unlock(&dev->struct_mutex);
3996 return ret;
3997 }
3998 } else {
3999 /* Let GEM Manage all of the aperture.
4000 *
4001 * However, leave one page at the end still bound to the scratch
4002 * page. There are a number of places where the hardware
4003 * apparently prefetches past the end of the object, and we've
4004 * seen multiple hangs with the GPU head pointer stuck in a
4005 * batchbuffer bound at the last page of the aperture. One page
4006 * should be enough to keep any prefetching inside of the
4007 * aperture.
4008 */
4009 i915_gem_init_global_gtt(dev, 0, mappable_size,
4010 gtt_size);
4011 }
4012
4013 ret = i915_gem_init_hw(dev);
4014 mutex_unlock(&dev->struct_mutex);
4015 if (ret) {
4016 i915_gem_cleanup_aliasing_ppgtt(dev);
4017 return ret;
4018 }
4019
4020 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4021 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4022 dev_priv->dri1.allow_batchbuffer = 1;
4023 return 0;
4024 }
4025
4026 void
4027 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4028 {
4029 drm_i915_private_t *dev_priv = dev->dev_private;
4030 struct intel_ring_buffer *ring;
4031 int i;
4032
4033 for_each_ring(ring, dev_priv, i)
4034 intel_cleanup_ring_buffer(ring);
4035 }
4036
4037 int
4038 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4039 struct drm_file *file_priv)
4040 {
4041 drm_i915_private_t *dev_priv = dev->dev_private;
4042 int ret;
4043
4044 if (drm_core_check_feature(dev, DRIVER_MODESET))
4045 return 0;
4046
4047 if (atomic_read(&dev_priv->mm.wedged)) {
4048 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4049 atomic_set(&dev_priv->mm.wedged, 0);
4050 }
4051
4052 mutex_lock(&dev->struct_mutex);
4053 dev_priv->mm.suspended = 0;
4054
4055 ret = i915_gem_init_hw(dev);
4056 if (ret != 0) {
4057 mutex_unlock(&dev->struct_mutex);
4058 return ret;
4059 }
4060
4061 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4062 mutex_unlock(&dev->struct_mutex);
4063
4064 ret = drm_irq_install(dev);
4065 if (ret)
4066 goto cleanup_ringbuffer;
4067
4068 return 0;
4069
4070 cleanup_ringbuffer:
4071 mutex_lock(&dev->struct_mutex);
4072 i915_gem_cleanup_ringbuffer(dev);
4073 dev_priv->mm.suspended = 1;
4074 mutex_unlock(&dev->struct_mutex);
4075
4076 return ret;
4077 }
4078
4079 int
4080 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4081 struct drm_file *file_priv)
4082 {
4083 if (drm_core_check_feature(dev, DRIVER_MODESET))
4084 return 0;
4085
4086 drm_irq_uninstall(dev);
4087 return i915_gem_idle(dev);
4088 }
4089
4090 void
4091 i915_gem_lastclose(struct drm_device *dev)
4092 {
4093 int ret;
4094
4095 if (drm_core_check_feature(dev, DRIVER_MODESET))
4096 return;
4097
4098 ret = i915_gem_idle(dev);
4099 if (ret)
4100 DRM_ERROR("failed to idle hardware: %d\n", ret);
4101 }
4102
4103 static void
4104 init_ring_lists(struct intel_ring_buffer *ring)
4105 {
4106 INIT_LIST_HEAD(&ring->active_list);
4107 INIT_LIST_HEAD(&ring->request_list);
4108 }
4109
4110 void
4111 i915_gem_load(struct drm_device *dev)
4112 {
4113 int i;
4114 drm_i915_private_t *dev_priv = dev->dev_private;
4115
4116 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4117 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4118 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4119 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4120 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4121 for (i = 0; i < I915_NUM_RINGS; i++)
4122 init_ring_lists(&dev_priv->ring[i]);
4123 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4124 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4125 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4126 i915_gem_retire_work_handler);
4127 init_completion(&dev_priv->error_completion);
4128
4129 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4130 if (IS_GEN3(dev)) {
4131 I915_WRITE(MI_ARB_STATE,
4132 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4133 }
4134
4135 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4136
4137 /* Old X drivers will take 0-2 for front, back, depth buffers */
4138 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4139 dev_priv->fence_reg_start = 3;
4140
4141 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4142 dev_priv->num_fence_regs = 16;
4143 else
4144 dev_priv->num_fence_regs = 8;
4145
4146 /* Initialize fence registers to zero */
4147 i915_gem_reset_fences(dev);
4148
4149 i915_gem_detect_bit_6_swizzle(dev);
4150 init_waitqueue_head(&dev_priv->pending_flip_queue);
4151
4152 dev_priv->mm.interruptible = true;
4153
4154 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4155 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4156 register_shrinker(&dev_priv->mm.inactive_shrinker);
4157 }
4158
4159 /*
4160 * Create a physically contiguous memory object for this object
4161 * e.g. for cursor + overlay regs
4162 */
4163 static int i915_gem_init_phys_object(struct drm_device *dev,
4164 int id, int size, int align)
4165 {
4166 drm_i915_private_t *dev_priv = dev->dev_private;
4167 struct drm_i915_gem_phys_object *phys_obj;
4168 int ret;
4169
4170 if (dev_priv->mm.phys_objs[id - 1] || !size)
4171 return 0;
4172
4173 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4174 if (!phys_obj)
4175 return -ENOMEM;
4176
4177 phys_obj->id = id;
4178
4179 phys_obj->handle = drm_pci_alloc(dev, size, align);
4180 if (!phys_obj->handle) {
4181 ret = -ENOMEM;
4182 goto kfree_obj;
4183 }
4184 #ifdef CONFIG_X86
4185 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4186 #endif
4187
4188 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4189
4190 return 0;
4191 kfree_obj:
4192 kfree(phys_obj);
4193 return ret;
4194 }
4195
4196 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4197 {
4198 drm_i915_private_t *dev_priv = dev->dev_private;
4199 struct drm_i915_gem_phys_object *phys_obj;
4200
4201 if (!dev_priv->mm.phys_objs[id - 1])
4202 return;
4203
4204 phys_obj = dev_priv->mm.phys_objs[id - 1];
4205 if (phys_obj->cur_obj) {
4206 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4207 }
4208
4209 #ifdef CONFIG_X86
4210 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4211 #endif
4212 drm_pci_free(dev, phys_obj->handle);
4213 kfree(phys_obj);
4214 dev_priv->mm.phys_objs[id - 1] = NULL;
4215 }
4216
4217 void i915_gem_free_all_phys_object(struct drm_device *dev)
4218 {
4219 int i;
4220
4221 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4222 i915_gem_free_phys_object(dev, i);
4223 }
4224
4225 void i915_gem_detach_phys_object(struct drm_device *dev,
4226 struct drm_i915_gem_object *obj)
4227 {
4228 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4229 char *vaddr;
4230 int i;
4231 int page_count;
4232
4233 if (!obj->phys_obj)
4234 return;
4235 vaddr = obj->phys_obj->handle->vaddr;
4236
4237 page_count = obj->base.size / PAGE_SIZE;
4238 for (i = 0; i < page_count; i++) {
4239 struct page *page = shmem_read_mapping_page(mapping, i);
4240 if (!IS_ERR(page)) {
4241 char *dst = kmap_atomic(page);
4242 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4243 kunmap_atomic(dst);
4244
4245 drm_clflush_pages(&page, 1);
4246
4247 set_page_dirty(page);
4248 mark_page_accessed(page);
4249 page_cache_release(page);
4250 }
4251 }
4252 i915_gem_chipset_flush(dev);
4253
4254 obj->phys_obj->cur_obj = NULL;
4255 obj->phys_obj = NULL;
4256 }
4257
4258 int
4259 i915_gem_attach_phys_object(struct drm_device *dev,
4260 struct drm_i915_gem_object *obj,
4261 int id,
4262 int align)
4263 {
4264 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4265 drm_i915_private_t *dev_priv = dev->dev_private;
4266 int ret = 0;
4267 int page_count;
4268 int i;
4269
4270 if (id > I915_MAX_PHYS_OBJECT)
4271 return -EINVAL;
4272
4273 if (obj->phys_obj) {
4274 if (obj->phys_obj->id == id)
4275 return 0;
4276 i915_gem_detach_phys_object(dev, obj);
4277 }
4278
4279 /* create a new object */
4280 if (!dev_priv->mm.phys_objs[id - 1]) {
4281 ret = i915_gem_init_phys_object(dev, id,
4282 obj->base.size, align);
4283 if (ret) {
4284 DRM_ERROR("failed to init phys object %d size: %zu\n",
4285 id, obj->base.size);
4286 return ret;
4287 }
4288 }
4289
4290 /* bind to the object */
4291 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4292 obj->phys_obj->cur_obj = obj;
4293
4294 page_count = obj->base.size / PAGE_SIZE;
4295
4296 for (i = 0; i < page_count; i++) {
4297 struct page *page;
4298 char *dst, *src;
4299
4300 page = shmem_read_mapping_page(mapping, i);
4301 if (IS_ERR(page))
4302 return PTR_ERR(page);
4303
4304 src = kmap_atomic(page);
4305 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4306 memcpy(dst, src, PAGE_SIZE);
4307 kunmap_atomic(src);
4308
4309 mark_page_accessed(page);
4310 page_cache_release(page);
4311 }
4312
4313 return 0;
4314 }
4315
4316 static int
4317 i915_gem_phys_pwrite(struct drm_device *dev,
4318 struct drm_i915_gem_object *obj,
4319 struct drm_i915_gem_pwrite *args,
4320 struct drm_file *file_priv)
4321 {
4322 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4323 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4324
4325 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4326 unsigned long unwritten;
4327
4328 /* The physical object once assigned is fixed for the lifetime
4329 * of the obj, so we can safely drop the lock and continue
4330 * to access vaddr.
4331 */
4332 mutex_unlock(&dev->struct_mutex);
4333 unwritten = copy_from_user(vaddr, user_data, args->size);
4334 mutex_lock(&dev->struct_mutex);
4335 if (unwritten)
4336 return -EFAULT;
4337 }
4338
4339 i915_gem_chipset_flush(dev);
4340 return 0;
4341 }
4342
4343 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4344 {
4345 struct drm_i915_file_private *file_priv = file->driver_priv;
4346
4347 /* Clean up our request list when the client is going away, so that
4348 * later retire_requests won't dereference our soon-to-be-gone
4349 * file_priv.
4350 */
4351 spin_lock(&file_priv->mm.lock);
4352 while (!list_empty(&file_priv->mm.request_list)) {
4353 struct drm_i915_gem_request *request;
4354
4355 request = list_first_entry(&file_priv->mm.request_list,
4356 struct drm_i915_gem_request,
4357 client_list);
4358 list_del(&request->client_list);
4359 request->file_priv = NULL;
4360 }
4361 spin_unlock(&file_priv->mm.lock);
4362 }
4363
4364 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4365 {
4366 if (!mutex_is_locked(mutex))
4367 return false;
4368
4369 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4370 return mutex->owner == task;
4371 #else
4372 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4373 return false;
4374 #endif
4375 }
4376
4377 static int
4378 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4379 {
4380 struct drm_i915_private *dev_priv =
4381 container_of(shrinker,
4382 struct drm_i915_private,
4383 mm.inactive_shrinker);
4384 struct drm_device *dev = dev_priv->dev;
4385 struct drm_i915_gem_object *obj;
4386 int nr_to_scan = sc->nr_to_scan;
4387 bool unlock = true;
4388 int cnt;
4389
4390 if (!mutex_trylock(&dev->struct_mutex)) {
4391 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4392 return 0;
4393
4394 if (dev_priv->mm.shrinker_no_lock_stealing)
4395 return 0;
4396
4397 unlock = false;
4398 }
4399
4400 if (nr_to_scan) {
4401 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4402 if (nr_to_scan > 0)
4403 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4404 false);
4405 if (nr_to_scan > 0)
4406 i915_gem_shrink_all(dev_priv);
4407 }
4408
4409 cnt = 0;
4410 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4411 if (obj->pages_pin_count == 0)
4412 cnt += obj->base.size >> PAGE_SHIFT;
4413 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4414 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4415 cnt += obj->base.size >> PAGE_SHIFT;
4416
4417 if (unlock)
4418 mutex_unlock(&dev->struct_mutex);
4419 return cnt;
4420 }