]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43
44 #include "gt/intel_gt.h"
45 #include "gt/intel_gt_irq.h"
46 #include "gt/intel_gt_pm_irq.h"
47 #include "gt/intel_rps.h"
48
49 #include "i915_drv.h"
50 #include "i915_irq.h"
51 #include "i915_trace.h"
52 #include "intel_pm.h"
53
54 /**
55 * DOC: interrupt handling
56 *
57 * These functions provide the basic support for enabling and disabling the
58 * interrupt handling support. There's a lot more functionality in i915_irq.c
59 * and related files, but that will be described in separate chapters.
60 */
61
62 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
63
64 static const u32 hpd_ilk[HPD_NUM_PINS] = {
65 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
66 };
67
68 static const u32 hpd_ivb[HPD_NUM_PINS] = {
69 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
70 };
71
72 static const u32 hpd_bdw[HPD_NUM_PINS] = {
73 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
74 };
75
76 static const u32 hpd_ibx[HPD_NUM_PINS] = {
77 [HPD_CRT] = SDE_CRT_HOTPLUG,
78 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
79 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
80 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
81 [HPD_PORT_D] = SDE_PORTD_HOTPLUG,
82 };
83
84 static const u32 hpd_cpt[HPD_NUM_PINS] = {
85 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
86 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
87 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
88 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
89 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
90 };
91
92 static const u32 hpd_spt[HPD_NUM_PINS] = {
93 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
94 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
95 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
96 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
97 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
98 };
99
100 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
101 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
102 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
103 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
104 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
105 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
106 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
107 };
108
109 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
110 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
111 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
112 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
113 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
114 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
115 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
116 };
117
118 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
119 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
120 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
121 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
122 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
123 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
124 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
125 };
126
127 /* BXT hpd list */
128 static const u32 hpd_bxt[HPD_NUM_PINS] = {
129 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
130 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
131 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
132 };
133
134 static const u32 hpd_gen11[HPD_NUM_PINS] = {
135 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
136 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
137 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
138 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
139 };
140
141 static const u32 hpd_gen12[HPD_NUM_PINS] = {
142 [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
143 [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
144 [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
145 [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
146 [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
147 [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG,
148 };
149
150 static const u32 hpd_icp[HPD_NUM_PINS] = {
151 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
152 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
153 [HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
154 [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
155 [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
156 [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
157 };
158
159 static const u32 hpd_tgp[HPD_NUM_PINS] = {
160 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
161 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
162 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
163 [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
164 [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
165 [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
166 [HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
167 [HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
168 [HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
169 };
170
171 static void
172 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
173 {
174 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
175
176 drm_crtc_handle_vblank(&crtc->base);
177 }
178
179 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
180 i915_reg_t iir, i915_reg_t ier)
181 {
182 intel_uncore_write(uncore, imr, 0xffffffff);
183 intel_uncore_posting_read(uncore, imr);
184
185 intel_uncore_write(uncore, ier, 0);
186
187 /* IIR can theoretically queue up two events. Be paranoid. */
188 intel_uncore_write(uncore, iir, 0xffffffff);
189 intel_uncore_posting_read(uncore, iir);
190 intel_uncore_write(uncore, iir, 0xffffffff);
191 intel_uncore_posting_read(uncore, iir);
192 }
193
194 void gen2_irq_reset(struct intel_uncore *uncore)
195 {
196 intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
197 intel_uncore_posting_read16(uncore, GEN2_IMR);
198
199 intel_uncore_write16(uncore, GEN2_IER, 0);
200
201 /* IIR can theoretically queue up two events. Be paranoid. */
202 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
203 intel_uncore_posting_read16(uncore, GEN2_IIR);
204 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
205 intel_uncore_posting_read16(uncore, GEN2_IIR);
206 }
207
208 /*
209 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
210 */
211 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
212 {
213 u32 val = intel_uncore_read(uncore, reg);
214
215 if (val == 0)
216 return;
217
218 drm_WARN(&uncore->i915->drm, 1,
219 "Interrupt register 0x%x is not zero: 0x%08x\n",
220 i915_mmio_reg_offset(reg), val);
221 intel_uncore_write(uncore, reg, 0xffffffff);
222 intel_uncore_posting_read(uncore, reg);
223 intel_uncore_write(uncore, reg, 0xffffffff);
224 intel_uncore_posting_read(uncore, reg);
225 }
226
227 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
228 {
229 u16 val = intel_uncore_read16(uncore, GEN2_IIR);
230
231 if (val == 0)
232 return;
233
234 drm_WARN(&uncore->i915->drm, 1,
235 "Interrupt register 0x%x is not zero: 0x%08x\n",
236 i915_mmio_reg_offset(GEN2_IIR), val);
237 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
238 intel_uncore_posting_read16(uncore, GEN2_IIR);
239 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
240 intel_uncore_posting_read16(uncore, GEN2_IIR);
241 }
242
243 void gen3_irq_init(struct intel_uncore *uncore,
244 i915_reg_t imr, u32 imr_val,
245 i915_reg_t ier, u32 ier_val,
246 i915_reg_t iir)
247 {
248 gen3_assert_iir_is_zero(uncore, iir);
249
250 intel_uncore_write(uncore, ier, ier_val);
251 intel_uncore_write(uncore, imr, imr_val);
252 intel_uncore_posting_read(uncore, imr);
253 }
254
255 void gen2_irq_init(struct intel_uncore *uncore,
256 u32 imr_val, u32 ier_val)
257 {
258 gen2_assert_iir_is_zero(uncore);
259
260 intel_uncore_write16(uncore, GEN2_IER, ier_val);
261 intel_uncore_write16(uncore, GEN2_IMR, imr_val);
262 intel_uncore_posting_read16(uncore, GEN2_IMR);
263 }
264
265 /* For display hotplug interrupt */
266 static inline void
267 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
268 u32 mask,
269 u32 bits)
270 {
271 u32 val;
272
273 lockdep_assert_held(&dev_priv->irq_lock);
274 drm_WARN_ON(&dev_priv->drm, bits & ~mask);
275
276 val = I915_READ(PORT_HOTPLUG_EN);
277 val &= ~mask;
278 val |= bits;
279 I915_WRITE(PORT_HOTPLUG_EN, val);
280 }
281
282 /**
283 * i915_hotplug_interrupt_update - update hotplug interrupt enable
284 * @dev_priv: driver private
285 * @mask: bits to update
286 * @bits: bits to enable
287 * NOTE: the HPD enable bits are modified both inside and outside
288 * of an interrupt context. To avoid that read-modify-write cycles
289 * interfer, these bits are protected by a spinlock. Since this
290 * function is usually not called from a context where the lock is
291 * held already, this function acquires the lock itself. A non-locking
292 * version is also available.
293 */
294 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
295 u32 mask,
296 u32 bits)
297 {
298 spin_lock_irq(&dev_priv->irq_lock);
299 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
300 spin_unlock_irq(&dev_priv->irq_lock);
301 }
302
303 /**
304 * ilk_update_display_irq - update DEIMR
305 * @dev_priv: driver private
306 * @interrupt_mask: mask of interrupt bits to update
307 * @enabled_irq_mask: mask of interrupt bits to enable
308 */
309 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
310 u32 interrupt_mask,
311 u32 enabled_irq_mask)
312 {
313 u32 new_val;
314
315 lockdep_assert_held(&dev_priv->irq_lock);
316
317 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
318
319 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
320 return;
321
322 new_val = dev_priv->irq_mask;
323 new_val &= ~interrupt_mask;
324 new_val |= (~enabled_irq_mask & interrupt_mask);
325
326 if (new_val != dev_priv->irq_mask) {
327 dev_priv->irq_mask = new_val;
328 I915_WRITE(DEIMR, dev_priv->irq_mask);
329 POSTING_READ(DEIMR);
330 }
331 }
332
333 /**
334 * bdw_update_port_irq - update DE port interrupt
335 * @dev_priv: driver private
336 * @interrupt_mask: mask of interrupt bits to update
337 * @enabled_irq_mask: mask of interrupt bits to enable
338 */
339 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
340 u32 interrupt_mask,
341 u32 enabled_irq_mask)
342 {
343 u32 new_val;
344 u32 old_val;
345
346 lockdep_assert_held(&dev_priv->irq_lock);
347
348 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
349
350 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
351 return;
352
353 old_val = I915_READ(GEN8_DE_PORT_IMR);
354
355 new_val = old_val;
356 new_val &= ~interrupt_mask;
357 new_val |= (~enabled_irq_mask & interrupt_mask);
358
359 if (new_val != old_val) {
360 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
361 POSTING_READ(GEN8_DE_PORT_IMR);
362 }
363 }
364
365 /**
366 * bdw_update_pipe_irq - update DE pipe interrupt
367 * @dev_priv: driver private
368 * @pipe: pipe whose interrupt to update
369 * @interrupt_mask: mask of interrupt bits to update
370 * @enabled_irq_mask: mask of interrupt bits to enable
371 */
372 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
373 enum pipe pipe,
374 u32 interrupt_mask,
375 u32 enabled_irq_mask)
376 {
377 u32 new_val;
378
379 lockdep_assert_held(&dev_priv->irq_lock);
380
381 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
382
383 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
384 return;
385
386 new_val = dev_priv->de_irq_mask[pipe];
387 new_val &= ~interrupt_mask;
388 new_val |= (~enabled_irq_mask & interrupt_mask);
389
390 if (new_val != dev_priv->de_irq_mask[pipe]) {
391 dev_priv->de_irq_mask[pipe] = new_val;
392 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
393 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
394 }
395 }
396
397 /**
398 * ibx_display_interrupt_update - update SDEIMR
399 * @dev_priv: driver private
400 * @interrupt_mask: mask of interrupt bits to update
401 * @enabled_irq_mask: mask of interrupt bits to enable
402 */
403 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
404 u32 interrupt_mask,
405 u32 enabled_irq_mask)
406 {
407 u32 sdeimr = I915_READ(SDEIMR);
408 sdeimr &= ~interrupt_mask;
409 sdeimr |= (~enabled_irq_mask & interrupt_mask);
410
411 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
412
413 lockdep_assert_held(&dev_priv->irq_lock);
414
415 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
416 return;
417
418 I915_WRITE(SDEIMR, sdeimr);
419 POSTING_READ(SDEIMR);
420 }
421
422 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
423 enum pipe pipe)
424 {
425 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
426 u32 enable_mask = status_mask << 16;
427
428 lockdep_assert_held(&dev_priv->irq_lock);
429
430 if (INTEL_GEN(dev_priv) < 5)
431 goto out;
432
433 /*
434 * On pipe A we don't support the PSR interrupt yet,
435 * on pipe B and C the same bit MBZ.
436 */
437 if (drm_WARN_ON_ONCE(&dev_priv->drm,
438 status_mask & PIPE_A_PSR_STATUS_VLV))
439 return 0;
440 /*
441 * On pipe B and C we don't support the PSR interrupt yet, on pipe
442 * A the same bit is for perf counters which we don't use either.
443 */
444 if (drm_WARN_ON_ONCE(&dev_priv->drm,
445 status_mask & PIPE_B_PSR_STATUS_VLV))
446 return 0;
447
448 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
449 SPRITE0_FLIP_DONE_INT_EN_VLV |
450 SPRITE1_FLIP_DONE_INT_EN_VLV);
451 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
452 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
453 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
454 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
455
456 out:
457 drm_WARN_ONCE(&dev_priv->drm,
458 enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
459 status_mask & ~PIPESTAT_INT_STATUS_MASK,
460 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
461 pipe_name(pipe), enable_mask, status_mask);
462
463 return enable_mask;
464 }
465
466 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
467 enum pipe pipe, u32 status_mask)
468 {
469 i915_reg_t reg = PIPESTAT(pipe);
470 u32 enable_mask;
471
472 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
473 "pipe %c: status_mask=0x%x\n",
474 pipe_name(pipe), status_mask);
475
476 lockdep_assert_held(&dev_priv->irq_lock);
477 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
478
479 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
480 return;
481
482 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
483 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
484
485 I915_WRITE(reg, enable_mask | status_mask);
486 POSTING_READ(reg);
487 }
488
489 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
490 enum pipe pipe, u32 status_mask)
491 {
492 i915_reg_t reg = PIPESTAT(pipe);
493 u32 enable_mask;
494
495 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
496 "pipe %c: status_mask=0x%x\n",
497 pipe_name(pipe), status_mask);
498
499 lockdep_assert_held(&dev_priv->irq_lock);
500 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
501
502 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
503 return;
504
505 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
506 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
507
508 I915_WRITE(reg, enable_mask | status_mask);
509 POSTING_READ(reg);
510 }
511
512 static bool i915_has_asle(struct drm_i915_private *dev_priv)
513 {
514 if (!dev_priv->opregion.asle)
515 return false;
516
517 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
518 }
519
520 /**
521 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
522 * @dev_priv: i915 device private
523 */
524 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
525 {
526 if (!i915_has_asle(dev_priv))
527 return;
528
529 spin_lock_irq(&dev_priv->irq_lock);
530
531 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
532 if (INTEL_GEN(dev_priv) >= 4)
533 i915_enable_pipestat(dev_priv, PIPE_A,
534 PIPE_LEGACY_BLC_EVENT_STATUS);
535
536 spin_unlock_irq(&dev_priv->irq_lock);
537 }
538
539 /*
540 * This timing diagram depicts the video signal in and
541 * around the vertical blanking period.
542 *
543 * Assumptions about the fictitious mode used in this example:
544 * vblank_start >= 3
545 * vsync_start = vblank_start + 1
546 * vsync_end = vblank_start + 2
547 * vtotal = vblank_start + 3
548 *
549 * start of vblank:
550 * latch double buffered registers
551 * increment frame counter (ctg+)
552 * generate start of vblank interrupt (gen4+)
553 * |
554 * | frame start:
555 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
556 * | may be shifted forward 1-3 extra lines via PIPECONF
557 * | |
558 * | | start of vsync:
559 * | | generate vsync interrupt
560 * | | |
561 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
562 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
563 * ----va---> <-----------------vb--------------------> <--------va-------------
564 * | | <----vs-----> |
565 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
566 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
567 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
568 * | | |
569 * last visible pixel first visible pixel
570 * | increment frame counter (gen3/4)
571 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
572 *
573 * x = horizontal active
574 * _ = horizontal blanking
575 * hs = horizontal sync
576 * va = vertical active
577 * vb = vertical blanking
578 * vs = vertical sync
579 * vbs = vblank_start (number)
580 *
581 * Summary:
582 * - most events happen at the start of horizontal sync
583 * - frame start happens at the start of horizontal blank, 1-4 lines
584 * (depending on PIPECONF settings) after the start of vblank
585 * - gen3/4 pixel and frame counter are synchronized with the start
586 * of horizontal active on the first line of vertical active
587 */
588
589 /* Called from drm generic code, passed a 'crtc', which
590 * we use as a pipe index
591 */
592 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
593 {
594 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
595 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
596 const struct drm_display_mode *mode = &vblank->hwmode;
597 enum pipe pipe = to_intel_crtc(crtc)->pipe;
598 i915_reg_t high_frame, low_frame;
599 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
600 unsigned long irqflags;
601
602 /*
603 * On i965gm TV output the frame counter only works up to
604 * the point when we enable the TV encoder. After that the
605 * frame counter ceases to work and reads zero. We need a
606 * vblank wait before enabling the TV encoder and so we
607 * have to enable vblank interrupts while the frame counter
608 * is still in a working state. However the core vblank code
609 * does not like us returning non-zero frame counter values
610 * when we've told it that we don't have a working frame
611 * counter. Thus we must stop non-zero values leaking out.
612 */
613 if (!vblank->max_vblank_count)
614 return 0;
615
616 htotal = mode->crtc_htotal;
617 hsync_start = mode->crtc_hsync_start;
618 vbl_start = mode->crtc_vblank_start;
619 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
620 vbl_start = DIV_ROUND_UP(vbl_start, 2);
621
622 /* Convert to pixel count */
623 vbl_start *= htotal;
624
625 /* Start of vblank event occurs at start of hsync */
626 vbl_start -= htotal - hsync_start;
627
628 high_frame = PIPEFRAME(pipe);
629 low_frame = PIPEFRAMEPIXEL(pipe);
630
631 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
632
633 /*
634 * High & low register fields aren't synchronized, so make sure
635 * we get a low value that's stable across two reads of the high
636 * register.
637 */
638 do {
639 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
640 low = intel_de_read_fw(dev_priv, low_frame);
641 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
642 } while (high1 != high2);
643
644 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
645
646 high1 >>= PIPE_FRAME_HIGH_SHIFT;
647 pixel = low & PIPE_PIXEL_MASK;
648 low >>= PIPE_FRAME_LOW_SHIFT;
649
650 /*
651 * The frame counter increments at beginning of active.
652 * Cook up a vblank counter by also checking the pixel
653 * counter against vblank start.
654 */
655 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
656 }
657
658 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
659 {
660 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
661 enum pipe pipe = to_intel_crtc(crtc)->pipe;
662
663 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
664 }
665
666 /*
667 * On certain encoders on certain platforms, pipe
668 * scanline register will not work to get the scanline,
669 * since the timings are driven from the PORT or issues
670 * with scanline register updates.
671 * This function will use Framestamp and current
672 * timestamp registers to calculate the scanline.
673 */
674 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
675 {
676 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
677 struct drm_vblank_crtc *vblank =
678 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
679 const struct drm_display_mode *mode = &vblank->hwmode;
680 u32 vblank_start = mode->crtc_vblank_start;
681 u32 vtotal = mode->crtc_vtotal;
682 u32 htotal = mode->crtc_htotal;
683 u32 clock = mode->crtc_clock;
684 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
685
686 /*
687 * To avoid the race condition where we might cross into the
688 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
689 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
690 * during the same frame.
691 */
692 do {
693 /*
694 * This field provides read back of the display
695 * pipe frame time stamp. The time stamp value
696 * is sampled at every start of vertical blank.
697 */
698 scan_prev_time = intel_de_read_fw(dev_priv,
699 PIPE_FRMTMSTMP(crtc->pipe));
700
701 /*
702 * The TIMESTAMP_CTR register has the current
703 * time stamp value.
704 */
705 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
706
707 scan_post_time = intel_de_read_fw(dev_priv,
708 PIPE_FRMTMSTMP(crtc->pipe));
709 } while (scan_post_time != scan_prev_time);
710
711 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
712 clock), 1000 * htotal);
713 scanline = min(scanline, vtotal - 1);
714 scanline = (scanline + vblank_start) % vtotal;
715
716 return scanline;
717 }
718
719 /*
720 * intel_de_read_fw(), only for fast reads of display block, no need for
721 * forcewake etc.
722 */
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725 struct drm_device *dev = crtc->base.dev;
726 struct drm_i915_private *dev_priv = to_i915(dev);
727 const struct drm_display_mode *mode;
728 struct drm_vblank_crtc *vblank;
729 enum pipe pipe = crtc->pipe;
730 int position, vtotal;
731
732 if (!crtc->active)
733 return -1;
734
735 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
736 mode = &vblank->hwmode;
737
738 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
739 return __intel_get_crtc_scanline_from_timestamp(crtc);
740
741 vtotal = mode->crtc_vtotal;
742 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
743 vtotal /= 2;
744
745 if (IS_GEN(dev_priv, 2))
746 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
747 else
748 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
749
750 /*
751 * On HSW, the DSL reg (0x70000) appears to return 0 if we
752 * read it just before the start of vblank. So try it again
753 * so we don't accidentally end up spanning a vblank frame
754 * increment, causing the pipe_update_end() code to squak at us.
755 *
756 * The nature of this problem means we can't simply check the ISR
757 * bit and return the vblank start value; nor can we use the scanline
758 * debug register in the transcoder as it appears to have the same
759 * problem. We may need to extend this to include other platforms,
760 * but so far testing only shows the problem on HSW.
761 */
762 if (HAS_DDI(dev_priv) && !position) {
763 int i, temp;
764
765 for (i = 0; i < 100; i++) {
766 udelay(1);
767 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
768 if (temp != position) {
769 position = temp;
770 break;
771 }
772 }
773 }
774
775 /*
776 * See update_scanline_offset() for the details on the
777 * scanline_offset adjustment.
778 */
779 return (position + crtc->scanline_offset) % vtotal;
780 }
781
782 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
783 bool in_vblank_irq,
784 int *vpos, int *hpos,
785 ktime_t *stime, ktime_t *etime,
786 const struct drm_display_mode *mode)
787 {
788 struct drm_device *dev = _crtc->dev;
789 struct drm_i915_private *dev_priv = to_i915(dev);
790 struct intel_crtc *crtc = to_intel_crtc(_crtc);
791 enum pipe pipe = crtc->pipe;
792 int position;
793 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
794 unsigned long irqflags;
795 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
796 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
797 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
798
799 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
800 drm_dbg(&dev_priv->drm,
801 "trying to get scanoutpos for disabled "
802 "pipe %c\n", pipe_name(pipe));
803 return false;
804 }
805
806 htotal = mode->crtc_htotal;
807 hsync_start = mode->crtc_hsync_start;
808 vtotal = mode->crtc_vtotal;
809 vbl_start = mode->crtc_vblank_start;
810 vbl_end = mode->crtc_vblank_end;
811
812 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
813 vbl_start = DIV_ROUND_UP(vbl_start, 2);
814 vbl_end /= 2;
815 vtotal /= 2;
816 }
817
818 /*
819 * Lock uncore.lock, as we will do multiple timing critical raw
820 * register reads, potentially with preemption disabled, so the
821 * following code must not block on uncore.lock.
822 */
823 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
824
825 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
826
827 /* Get optional system timestamp before query. */
828 if (stime)
829 *stime = ktime_get();
830
831 if (use_scanline_counter) {
832 /* No obvious pixelcount register. Only query vertical
833 * scanout position from Display scan line register.
834 */
835 position = __intel_get_crtc_scanline(crtc);
836 } else {
837 /* Have access to pixelcount since start of frame.
838 * We can split this into vertical and horizontal
839 * scanout position.
840 */
841 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
842
843 /* convert to pixel counts */
844 vbl_start *= htotal;
845 vbl_end *= htotal;
846 vtotal *= htotal;
847
848 /*
849 * In interlaced modes, the pixel counter counts all pixels,
850 * so one field will have htotal more pixels. In order to avoid
851 * the reported position from jumping backwards when the pixel
852 * counter is beyond the length of the shorter field, just
853 * clamp the position the length of the shorter field. This
854 * matches how the scanline counter based position works since
855 * the scanline counter doesn't count the two half lines.
856 */
857 if (position >= vtotal)
858 position = vtotal - 1;
859
860 /*
861 * Start of vblank interrupt is triggered at start of hsync,
862 * just prior to the first active line of vblank. However we
863 * consider lines to start at the leading edge of horizontal
864 * active. So, should we get here before we've crossed into
865 * the horizontal active of the first line in vblank, we would
866 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
867 * always add htotal-hsync_start to the current pixel position.
868 */
869 position = (position + htotal - hsync_start) % vtotal;
870 }
871
872 /* Get optional system timestamp after query. */
873 if (etime)
874 *etime = ktime_get();
875
876 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
877
878 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
879
880 /*
881 * While in vblank, position will be negative
882 * counting up towards 0 at vbl_end. And outside
883 * vblank, position will be positive counting
884 * up since vbl_end.
885 */
886 if (position >= vbl_start)
887 position -= vbl_end;
888 else
889 position += vtotal - vbl_end;
890
891 if (use_scanline_counter) {
892 *vpos = position;
893 *hpos = 0;
894 } else {
895 *vpos = position / htotal;
896 *hpos = position - (*vpos * htotal);
897 }
898
899 return true;
900 }
901
902 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
903 ktime_t *vblank_time, bool in_vblank_irq)
904 {
905 return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
906 crtc, max_error, vblank_time, in_vblank_irq,
907 i915_get_crtc_scanoutpos);
908 }
909
910 int intel_get_crtc_scanline(struct intel_crtc *crtc)
911 {
912 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
913 unsigned long irqflags;
914 int position;
915
916 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
917 position = __intel_get_crtc_scanline(crtc);
918 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
919
920 return position;
921 }
922
923 /**
924 * ivb_parity_work - Workqueue called when a parity error interrupt
925 * occurred.
926 * @work: workqueue struct
927 *
928 * Doesn't actually do anything except notify userspace. As a consequence of
929 * this event, userspace should try to remap the bad rows since statistically
930 * it is likely the same row is more likely to go bad again.
931 */
932 static void ivb_parity_work(struct work_struct *work)
933 {
934 struct drm_i915_private *dev_priv =
935 container_of(work, typeof(*dev_priv), l3_parity.error_work);
936 struct intel_gt *gt = &dev_priv->gt;
937 u32 error_status, row, bank, subbank;
938 char *parity_event[6];
939 u32 misccpctl;
940 u8 slice = 0;
941
942 /* We must turn off DOP level clock gating to access the L3 registers.
943 * In order to prevent a get/put style interface, acquire struct mutex
944 * any time we access those registers.
945 */
946 mutex_lock(&dev_priv->drm.struct_mutex);
947
948 /* If we've screwed up tracking, just let the interrupt fire again */
949 if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
950 goto out;
951
952 misccpctl = I915_READ(GEN7_MISCCPCTL);
953 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
954 POSTING_READ(GEN7_MISCCPCTL);
955
956 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
957 i915_reg_t reg;
958
959 slice--;
960 if (drm_WARN_ON_ONCE(&dev_priv->drm,
961 slice >= NUM_L3_SLICES(dev_priv)))
962 break;
963
964 dev_priv->l3_parity.which_slice &= ~(1<<slice);
965
966 reg = GEN7_L3CDERRST1(slice);
967
968 error_status = I915_READ(reg);
969 row = GEN7_PARITY_ERROR_ROW(error_status);
970 bank = GEN7_PARITY_ERROR_BANK(error_status);
971 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
972
973 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
974 POSTING_READ(reg);
975
976 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
977 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
978 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
979 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
980 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
981 parity_event[5] = NULL;
982
983 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
984 KOBJ_CHANGE, parity_event);
985
986 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
987 slice, row, bank, subbank);
988
989 kfree(parity_event[4]);
990 kfree(parity_event[3]);
991 kfree(parity_event[2]);
992 kfree(parity_event[1]);
993 }
994
995 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
996
997 out:
998 drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
999 spin_lock_irq(&gt->irq_lock);
1000 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1001 spin_unlock_irq(&gt->irq_lock);
1002
1003 mutex_unlock(&dev_priv->drm.struct_mutex);
1004 }
1005
1006 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1007 {
1008 switch (pin) {
1009 case HPD_PORT_C:
1010 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1011 case HPD_PORT_D:
1012 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1013 case HPD_PORT_E:
1014 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1015 case HPD_PORT_F:
1016 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1017 default:
1018 return false;
1019 }
1020 }
1021
1022 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1023 {
1024 switch (pin) {
1025 case HPD_PORT_D:
1026 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1027 case HPD_PORT_E:
1028 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1029 case HPD_PORT_F:
1030 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1031 case HPD_PORT_G:
1032 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1033 case HPD_PORT_H:
1034 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1035 case HPD_PORT_I:
1036 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1037 default:
1038 return false;
1039 }
1040 }
1041
1042 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1043 {
1044 switch (pin) {
1045 case HPD_PORT_A:
1046 return val & PORTA_HOTPLUG_LONG_DETECT;
1047 case HPD_PORT_B:
1048 return val & PORTB_HOTPLUG_LONG_DETECT;
1049 case HPD_PORT_C:
1050 return val & PORTC_HOTPLUG_LONG_DETECT;
1051 default:
1052 return false;
1053 }
1054 }
1055
1056 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1057 {
1058 switch (pin) {
1059 case HPD_PORT_A:
1060 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1061 case HPD_PORT_B:
1062 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1063 case HPD_PORT_C:
1064 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1065 default:
1066 return false;
1067 }
1068 }
1069
1070 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1071 {
1072 switch (pin) {
1073 case HPD_PORT_C:
1074 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1075 case HPD_PORT_D:
1076 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1077 case HPD_PORT_E:
1078 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1079 case HPD_PORT_F:
1080 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1081 default:
1082 return false;
1083 }
1084 }
1085
1086 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1087 {
1088 switch (pin) {
1089 case HPD_PORT_D:
1090 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1091 case HPD_PORT_E:
1092 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1093 case HPD_PORT_F:
1094 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1095 case HPD_PORT_G:
1096 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1097 case HPD_PORT_H:
1098 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1099 case HPD_PORT_I:
1100 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1101 default:
1102 return false;
1103 }
1104 }
1105
1106 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1107 {
1108 switch (pin) {
1109 case HPD_PORT_E:
1110 return val & PORTE_HOTPLUG_LONG_DETECT;
1111 default:
1112 return false;
1113 }
1114 }
1115
1116 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1117 {
1118 switch (pin) {
1119 case HPD_PORT_A:
1120 return val & PORTA_HOTPLUG_LONG_DETECT;
1121 case HPD_PORT_B:
1122 return val & PORTB_HOTPLUG_LONG_DETECT;
1123 case HPD_PORT_C:
1124 return val & PORTC_HOTPLUG_LONG_DETECT;
1125 case HPD_PORT_D:
1126 return val & PORTD_HOTPLUG_LONG_DETECT;
1127 default:
1128 return false;
1129 }
1130 }
1131
1132 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1133 {
1134 switch (pin) {
1135 case HPD_PORT_A:
1136 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1137 default:
1138 return false;
1139 }
1140 }
1141
1142 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1143 {
1144 switch (pin) {
1145 case HPD_PORT_B:
1146 return val & PORTB_HOTPLUG_LONG_DETECT;
1147 case HPD_PORT_C:
1148 return val & PORTC_HOTPLUG_LONG_DETECT;
1149 case HPD_PORT_D:
1150 return val & PORTD_HOTPLUG_LONG_DETECT;
1151 default:
1152 return false;
1153 }
1154 }
1155
1156 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1157 {
1158 switch (pin) {
1159 case HPD_PORT_B:
1160 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1161 case HPD_PORT_C:
1162 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1163 case HPD_PORT_D:
1164 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1165 default:
1166 return false;
1167 }
1168 }
1169
1170 /*
1171 * Get a bit mask of pins that have triggered, and which ones may be long.
1172 * This can be called multiple times with the same masks to accumulate
1173 * hotplug detection results from several registers.
1174 *
1175 * Note that the caller is expected to zero out the masks initially.
1176 */
1177 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1178 u32 *pin_mask, u32 *long_mask,
1179 u32 hotplug_trigger, u32 dig_hotplug_reg,
1180 const u32 hpd[HPD_NUM_PINS],
1181 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1182 {
1183 enum hpd_pin pin;
1184
1185 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1186
1187 for_each_hpd_pin(pin) {
1188 if ((hpd[pin] & hotplug_trigger) == 0)
1189 continue;
1190
1191 *pin_mask |= BIT(pin);
1192
1193 if (long_pulse_detect(pin, dig_hotplug_reg))
1194 *long_mask |= BIT(pin);
1195 }
1196
1197 drm_dbg(&dev_priv->drm,
1198 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1199 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1200
1201 }
1202
1203 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1204 {
1205 wake_up_all(&dev_priv->gmbus_wait_queue);
1206 }
1207
1208 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1209 {
1210 wake_up_all(&dev_priv->gmbus_wait_queue);
1211 }
1212
1213 #if defined(CONFIG_DEBUG_FS)
1214 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1215 enum pipe pipe,
1216 u32 crc0, u32 crc1,
1217 u32 crc2, u32 crc3,
1218 u32 crc4)
1219 {
1220 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1221 struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1222 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1223
1224 trace_intel_pipe_crc(crtc, crcs);
1225
1226 spin_lock(&pipe_crc->lock);
1227 /*
1228 * For some not yet identified reason, the first CRC is
1229 * bonkers. So let's just wait for the next vblank and read
1230 * out the buggy result.
1231 *
1232 * On GEN8+ sometimes the second CRC is bonkers as well, so
1233 * don't trust that one either.
1234 */
1235 if (pipe_crc->skipped <= 0 ||
1236 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1237 pipe_crc->skipped++;
1238 spin_unlock(&pipe_crc->lock);
1239 return;
1240 }
1241 spin_unlock(&pipe_crc->lock);
1242
1243 drm_crtc_add_crc_entry(&crtc->base, true,
1244 drm_crtc_accurate_vblank_count(&crtc->base),
1245 crcs);
1246 }
1247 #else
1248 static inline void
1249 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1250 enum pipe pipe,
1251 u32 crc0, u32 crc1,
1252 u32 crc2, u32 crc3,
1253 u32 crc4) {}
1254 #endif
1255
1256
1257 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1258 enum pipe pipe)
1259 {
1260 display_pipe_crc_irq_handler(dev_priv, pipe,
1261 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1262 0, 0, 0, 0);
1263 }
1264
1265 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267 {
1268 display_pipe_crc_irq_handler(dev_priv, pipe,
1269 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1270 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1271 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1272 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1273 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1274 }
1275
1276 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1277 enum pipe pipe)
1278 {
1279 u32 res1, res2;
1280
1281 if (INTEL_GEN(dev_priv) >= 3)
1282 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1283 else
1284 res1 = 0;
1285
1286 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1287 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1288 else
1289 res2 = 0;
1290
1291 display_pipe_crc_irq_handler(dev_priv, pipe,
1292 I915_READ(PIPE_CRC_RES_RED(pipe)),
1293 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1294 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1295 res1, res2);
1296 }
1297
1298 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1299 {
1300 enum pipe pipe;
1301
1302 for_each_pipe(dev_priv, pipe) {
1303 I915_WRITE(PIPESTAT(pipe),
1304 PIPESTAT_INT_STATUS_MASK |
1305 PIPE_FIFO_UNDERRUN_STATUS);
1306
1307 dev_priv->pipestat_irq_mask[pipe] = 0;
1308 }
1309 }
1310
1311 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1312 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1313 {
1314 enum pipe pipe;
1315
1316 spin_lock(&dev_priv->irq_lock);
1317
1318 if (!dev_priv->display_irqs_enabled) {
1319 spin_unlock(&dev_priv->irq_lock);
1320 return;
1321 }
1322
1323 for_each_pipe(dev_priv, pipe) {
1324 i915_reg_t reg;
1325 u32 status_mask, enable_mask, iir_bit = 0;
1326
1327 /*
1328 * PIPESTAT bits get signalled even when the interrupt is
1329 * disabled with the mask bits, and some of the status bits do
1330 * not generate interrupts at all (like the underrun bit). Hence
1331 * we need to be careful that we only handle what we want to
1332 * handle.
1333 */
1334
1335 /* fifo underruns are filterered in the underrun handler. */
1336 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1337
1338 switch (pipe) {
1339 default:
1340 case PIPE_A:
1341 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1342 break;
1343 case PIPE_B:
1344 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1345 break;
1346 case PIPE_C:
1347 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1348 break;
1349 }
1350 if (iir & iir_bit)
1351 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1352
1353 if (!status_mask)
1354 continue;
1355
1356 reg = PIPESTAT(pipe);
1357 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1358 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1359
1360 /*
1361 * Clear the PIPE*STAT regs before the IIR
1362 *
1363 * Toggle the enable bits to make sure we get an
1364 * edge in the ISR pipe event bit if we don't clear
1365 * all the enabled status bits. Otherwise the edge
1366 * triggered IIR on i965/g4x wouldn't notice that
1367 * an interrupt is still pending.
1368 */
1369 if (pipe_stats[pipe]) {
1370 I915_WRITE(reg, pipe_stats[pipe]);
1371 I915_WRITE(reg, enable_mask);
1372 }
1373 }
1374 spin_unlock(&dev_priv->irq_lock);
1375 }
1376
1377 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1378 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1379 {
1380 enum pipe pipe;
1381
1382 for_each_pipe(dev_priv, pipe) {
1383 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1384 intel_handle_vblank(dev_priv, pipe);
1385
1386 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1387 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1388
1389 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1390 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1391 }
1392 }
1393
1394 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1395 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1396 {
1397 bool blc_event = false;
1398 enum pipe pipe;
1399
1400 for_each_pipe(dev_priv, pipe) {
1401 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1402 intel_handle_vblank(dev_priv, pipe);
1403
1404 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1405 blc_event = true;
1406
1407 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1408 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1409
1410 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1411 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1412 }
1413
1414 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1415 intel_opregion_asle_intr(dev_priv);
1416 }
1417
1418 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1419 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1420 {
1421 bool blc_event = false;
1422 enum pipe pipe;
1423
1424 for_each_pipe(dev_priv, pipe) {
1425 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1426 intel_handle_vblank(dev_priv, pipe);
1427
1428 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1429 blc_event = true;
1430
1431 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1432 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1433
1434 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1435 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1436 }
1437
1438 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1439 intel_opregion_asle_intr(dev_priv);
1440
1441 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1442 gmbus_irq_handler(dev_priv);
1443 }
1444
1445 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1446 u32 pipe_stats[I915_MAX_PIPES])
1447 {
1448 enum pipe pipe;
1449
1450 for_each_pipe(dev_priv, pipe) {
1451 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1452 intel_handle_vblank(dev_priv, pipe);
1453
1454 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1455 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1456
1457 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1458 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1459 }
1460
1461 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1462 gmbus_irq_handler(dev_priv);
1463 }
1464
1465 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1466 {
1467 u32 hotplug_status = 0, hotplug_status_mask;
1468 int i;
1469
1470 if (IS_G4X(dev_priv) ||
1471 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1472 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1473 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1474 else
1475 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1476
1477 /*
1478 * We absolutely have to clear all the pending interrupt
1479 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1480 * interrupt bit won't have an edge, and the i965/g4x
1481 * edge triggered IIR will not notice that an interrupt
1482 * is still pending. We can't use PORT_HOTPLUG_EN to
1483 * guarantee the edge as the act of toggling the enable
1484 * bits can itself generate a new hotplug interrupt :(
1485 */
1486 for (i = 0; i < 10; i++) {
1487 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1488
1489 if (tmp == 0)
1490 return hotplug_status;
1491
1492 hotplug_status |= tmp;
1493 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1494 }
1495
1496 drm_WARN_ONCE(&dev_priv->drm, 1,
1497 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1498 I915_READ(PORT_HOTPLUG_STAT));
1499
1500 return hotplug_status;
1501 }
1502
1503 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1504 u32 hotplug_status)
1505 {
1506 u32 pin_mask = 0, long_mask = 0;
1507
1508 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1509 IS_CHERRYVIEW(dev_priv)) {
1510 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1511
1512 if (hotplug_trigger) {
1513 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1514 hotplug_trigger, hotplug_trigger,
1515 hpd_status_g4x,
1516 i9xx_port_hotplug_long_detect);
1517
1518 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1519 }
1520
1521 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1522 dp_aux_irq_handler(dev_priv);
1523 } else {
1524 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1525
1526 if (hotplug_trigger) {
1527 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1528 hotplug_trigger, hotplug_trigger,
1529 hpd_status_i915,
1530 i9xx_port_hotplug_long_detect);
1531 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1532 }
1533 }
1534 }
1535
1536 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1537 {
1538 struct drm_i915_private *dev_priv = arg;
1539 irqreturn_t ret = IRQ_NONE;
1540
1541 if (!intel_irqs_enabled(dev_priv))
1542 return IRQ_NONE;
1543
1544 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1545 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1546
1547 do {
1548 u32 iir, gt_iir, pm_iir;
1549 u32 pipe_stats[I915_MAX_PIPES] = {};
1550 u32 hotplug_status = 0;
1551 u32 ier = 0;
1552
1553 gt_iir = I915_READ(GTIIR);
1554 pm_iir = I915_READ(GEN6_PMIIR);
1555 iir = I915_READ(VLV_IIR);
1556
1557 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1558 break;
1559
1560 ret = IRQ_HANDLED;
1561
1562 /*
1563 * Theory on interrupt generation, based on empirical evidence:
1564 *
1565 * x = ((VLV_IIR & VLV_IER) ||
1566 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1567 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1568 *
1569 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1570 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1571 * guarantee the CPU interrupt will be raised again even if we
1572 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1573 * bits this time around.
1574 */
1575 I915_WRITE(VLV_MASTER_IER, 0);
1576 ier = I915_READ(VLV_IER);
1577 I915_WRITE(VLV_IER, 0);
1578
1579 if (gt_iir)
1580 I915_WRITE(GTIIR, gt_iir);
1581 if (pm_iir)
1582 I915_WRITE(GEN6_PMIIR, pm_iir);
1583
1584 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1585 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1586
1587 /* Call regardless, as some status bits might not be
1588 * signalled in iir */
1589 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1590
1591 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1592 I915_LPE_PIPE_B_INTERRUPT))
1593 intel_lpe_audio_irq_handler(dev_priv);
1594
1595 /*
1596 * VLV_IIR is single buffered, and reflects the level
1597 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1598 */
1599 if (iir)
1600 I915_WRITE(VLV_IIR, iir);
1601
1602 I915_WRITE(VLV_IER, ier);
1603 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1604
1605 if (gt_iir)
1606 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1607 if (pm_iir)
1608 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1609
1610 if (hotplug_status)
1611 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1612
1613 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1614 } while (0);
1615
1616 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1617
1618 return ret;
1619 }
1620
1621 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1622 {
1623 struct drm_i915_private *dev_priv = arg;
1624 irqreturn_t ret = IRQ_NONE;
1625
1626 if (!intel_irqs_enabled(dev_priv))
1627 return IRQ_NONE;
1628
1629 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1630 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1631
1632 do {
1633 u32 master_ctl, iir;
1634 u32 pipe_stats[I915_MAX_PIPES] = {};
1635 u32 hotplug_status = 0;
1636 u32 ier = 0;
1637
1638 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1639 iir = I915_READ(VLV_IIR);
1640
1641 if (master_ctl == 0 && iir == 0)
1642 break;
1643
1644 ret = IRQ_HANDLED;
1645
1646 /*
1647 * Theory on interrupt generation, based on empirical evidence:
1648 *
1649 * x = ((VLV_IIR & VLV_IER) ||
1650 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1651 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1652 *
1653 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1654 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1655 * guarantee the CPU interrupt will be raised again even if we
1656 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1657 * bits this time around.
1658 */
1659 I915_WRITE(GEN8_MASTER_IRQ, 0);
1660 ier = I915_READ(VLV_IER);
1661 I915_WRITE(VLV_IER, 0);
1662
1663 gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1664
1665 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1666 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1667
1668 /* Call regardless, as some status bits might not be
1669 * signalled in iir */
1670 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1671
1672 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1673 I915_LPE_PIPE_B_INTERRUPT |
1674 I915_LPE_PIPE_C_INTERRUPT))
1675 intel_lpe_audio_irq_handler(dev_priv);
1676
1677 /*
1678 * VLV_IIR is single buffered, and reflects the level
1679 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1680 */
1681 if (iir)
1682 I915_WRITE(VLV_IIR, iir);
1683
1684 I915_WRITE(VLV_IER, ier);
1685 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1686
1687 if (hotplug_status)
1688 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1689
1690 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1691 } while (0);
1692
1693 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1694
1695 return ret;
1696 }
1697
1698 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1699 u32 hotplug_trigger,
1700 const u32 hpd[HPD_NUM_PINS])
1701 {
1702 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1703
1704 /*
1705 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1706 * unless we touch the hotplug register, even if hotplug_trigger is
1707 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1708 * errors.
1709 */
1710 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1711 if (!hotplug_trigger) {
1712 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1713 PORTD_HOTPLUG_STATUS_MASK |
1714 PORTC_HOTPLUG_STATUS_MASK |
1715 PORTB_HOTPLUG_STATUS_MASK;
1716 dig_hotplug_reg &= ~mask;
1717 }
1718
1719 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1720 if (!hotplug_trigger)
1721 return;
1722
1723 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
1724 dig_hotplug_reg, hpd,
1725 pch_port_hotplug_long_detect);
1726
1727 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1728 }
1729
1730 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1731 {
1732 enum pipe pipe;
1733 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1734
1735 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1736
1737 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1738 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1739 SDE_AUDIO_POWER_SHIFT);
1740 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1741 port_name(port));
1742 }
1743
1744 if (pch_iir & SDE_AUX_MASK)
1745 dp_aux_irq_handler(dev_priv);
1746
1747 if (pch_iir & SDE_GMBUS)
1748 gmbus_irq_handler(dev_priv);
1749
1750 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1751 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1752
1753 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1754 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1755
1756 if (pch_iir & SDE_POISON)
1757 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1758
1759 if (pch_iir & SDE_FDI_MASK) {
1760 for_each_pipe(dev_priv, pipe)
1761 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n",
1762 pipe_name(pipe),
1763 I915_READ(FDI_RX_IIR(pipe)));
1764 }
1765
1766 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1767 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1768
1769 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1770 drm_dbg(&dev_priv->drm,
1771 "PCH transcoder CRC error interrupt\n");
1772
1773 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1774 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1775
1776 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1777 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1778 }
1779
1780 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1781 {
1782 u32 err_int = I915_READ(GEN7_ERR_INT);
1783 enum pipe pipe;
1784
1785 if (err_int & ERR_INT_POISON)
1786 drm_err(&dev_priv->drm, "Poison interrupt\n");
1787
1788 for_each_pipe(dev_priv, pipe) {
1789 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1790 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1791
1792 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1793 if (IS_IVYBRIDGE(dev_priv))
1794 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1795 else
1796 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1797 }
1798 }
1799
1800 I915_WRITE(GEN7_ERR_INT, err_int);
1801 }
1802
1803 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1804 {
1805 u32 serr_int = I915_READ(SERR_INT);
1806 enum pipe pipe;
1807
1808 if (serr_int & SERR_INT_POISON)
1809 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1810
1811 for_each_pipe(dev_priv, pipe)
1812 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1813 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1814
1815 I915_WRITE(SERR_INT, serr_int);
1816 }
1817
1818 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1819 {
1820 enum pipe pipe;
1821 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1822
1823 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
1824
1825 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1826 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1827 SDE_AUDIO_POWER_SHIFT_CPT);
1828 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1829 port_name(port));
1830 }
1831
1832 if (pch_iir & SDE_AUX_MASK_CPT)
1833 dp_aux_irq_handler(dev_priv);
1834
1835 if (pch_iir & SDE_GMBUS_CPT)
1836 gmbus_irq_handler(dev_priv);
1837
1838 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1839 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1840
1841 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1842 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1843
1844 if (pch_iir & SDE_FDI_MASK_CPT) {
1845 for_each_pipe(dev_priv, pipe)
1846 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n",
1847 pipe_name(pipe),
1848 I915_READ(FDI_RX_IIR(pipe)));
1849 }
1850
1851 if (pch_iir & SDE_ERROR_CPT)
1852 cpt_serr_int_handler(dev_priv);
1853 }
1854
1855 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1856 {
1857 u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1858 u32 pin_mask = 0, long_mask = 0;
1859 bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1860 const u32 *pins;
1861
1862 if (HAS_PCH_TGP(dev_priv)) {
1863 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1864 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1865 tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1866 pins = hpd_tgp;
1867 } else if (HAS_PCH_JSP(dev_priv)) {
1868 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1869 tc_hotplug_trigger = 0;
1870 pins = hpd_tgp;
1871 } else if (HAS_PCH_MCC(dev_priv)) {
1872 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1873 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1874 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1875 pins = hpd_icp;
1876 } else {
1877 drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1878 "Unrecognized PCH type 0x%x\n",
1879 INTEL_PCH_TYPE(dev_priv));
1880
1881 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1882 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1883 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1884 pins = hpd_icp;
1885 }
1886
1887 if (ddi_hotplug_trigger) {
1888 u32 dig_hotplug_reg;
1889
1890 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1891 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1892
1893 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1894 ddi_hotplug_trigger,
1895 dig_hotplug_reg, pins,
1896 icp_ddi_port_hotplug_long_detect);
1897 }
1898
1899 if (tc_hotplug_trigger) {
1900 u32 dig_hotplug_reg;
1901
1902 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1903 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1904
1905 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1906 tc_hotplug_trigger,
1907 dig_hotplug_reg, pins,
1908 tc_port_hotplug_long_detect);
1909 }
1910
1911 if (pin_mask)
1912 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1913
1914 if (pch_iir & SDE_GMBUS_ICP)
1915 gmbus_irq_handler(dev_priv);
1916 }
1917
1918 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1919 {
1920 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1921 ~SDE_PORTE_HOTPLUG_SPT;
1922 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1923 u32 pin_mask = 0, long_mask = 0;
1924
1925 if (hotplug_trigger) {
1926 u32 dig_hotplug_reg;
1927
1928 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1929 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1930
1931 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932 hotplug_trigger, dig_hotplug_reg, hpd_spt,
1933 spt_port_hotplug_long_detect);
1934 }
1935
1936 if (hotplug2_trigger) {
1937 u32 dig_hotplug_reg;
1938
1939 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1940 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1941
1942 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1943 hotplug2_trigger, dig_hotplug_reg, hpd_spt,
1944 spt_port_hotplug2_long_detect);
1945 }
1946
1947 if (pin_mask)
1948 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1949
1950 if (pch_iir & SDE_GMBUS_CPT)
1951 gmbus_irq_handler(dev_priv);
1952 }
1953
1954 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1955 u32 hotplug_trigger,
1956 const u32 hpd[HPD_NUM_PINS])
1957 {
1958 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1959
1960 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1961 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1962
1963 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
1964 dig_hotplug_reg, hpd,
1965 ilk_port_hotplug_long_detect);
1966
1967 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1968 }
1969
1970 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
1971 u32 de_iir)
1972 {
1973 enum pipe pipe;
1974 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
1975
1976 if (hotplug_trigger)
1977 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
1978
1979 if (de_iir & DE_AUX_CHANNEL_A)
1980 dp_aux_irq_handler(dev_priv);
1981
1982 if (de_iir & DE_GSE)
1983 intel_opregion_asle_intr(dev_priv);
1984
1985 if (de_iir & DE_POISON)
1986 drm_err(&dev_priv->drm, "Poison interrupt\n");
1987
1988 for_each_pipe(dev_priv, pipe) {
1989 if (de_iir & DE_PIPE_VBLANK(pipe))
1990 intel_handle_vblank(dev_priv, pipe);
1991
1992 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1993 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1994
1995 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1996 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1997 }
1998
1999 /* check event from PCH */
2000 if (de_iir & DE_PCH_EVENT) {
2001 u32 pch_iir = I915_READ(SDEIIR);
2002
2003 if (HAS_PCH_CPT(dev_priv))
2004 cpt_irq_handler(dev_priv, pch_iir);
2005 else
2006 ibx_irq_handler(dev_priv, pch_iir);
2007
2008 /* should clear PCH hotplug event before clear CPU irq */
2009 I915_WRITE(SDEIIR, pch_iir);
2010 }
2011
2012 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2013 gen5_rps_irq_handler(&dev_priv->gt.rps);
2014 }
2015
2016 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2017 u32 de_iir)
2018 {
2019 enum pipe pipe;
2020 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2021
2022 if (hotplug_trigger)
2023 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2024
2025 if (de_iir & DE_ERR_INT_IVB)
2026 ivb_err_int_handler(dev_priv);
2027
2028 if (de_iir & DE_EDP_PSR_INT_HSW) {
2029 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2030
2031 intel_psr_irq_handler(dev_priv, psr_iir);
2032 I915_WRITE(EDP_PSR_IIR, psr_iir);
2033 }
2034
2035 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2036 dp_aux_irq_handler(dev_priv);
2037
2038 if (de_iir & DE_GSE_IVB)
2039 intel_opregion_asle_intr(dev_priv);
2040
2041 for_each_pipe(dev_priv, pipe) {
2042 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2043 intel_handle_vblank(dev_priv, pipe);
2044 }
2045
2046 /* check event from PCH */
2047 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2048 u32 pch_iir = I915_READ(SDEIIR);
2049
2050 cpt_irq_handler(dev_priv, pch_iir);
2051
2052 /* clear PCH hotplug event before clear CPU irq */
2053 I915_WRITE(SDEIIR, pch_iir);
2054 }
2055 }
2056
2057 /*
2058 * To handle irqs with the minimum potential races with fresh interrupts, we:
2059 * 1 - Disable Master Interrupt Control.
2060 * 2 - Find the source(s) of the interrupt.
2061 * 3 - Clear the Interrupt Identity bits (IIR).
2062 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2063 * 5 - Re-enable Master Interrupt Control.
2064 */
2065 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2066 {
2067 struct drm_i915_private *dev_priv = arg;
2068 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2069 irqreturn_t ret = IRQ_NONE;
2070
2071 if (!intel_irqs_enabled(dev_priv))
2072 return IRQ_NONE;
2073
2074 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2075 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2076
2077 /* disable master interrupt before clearing iir */
2078 de_ier = I915_READ(DEIER);
2079 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2080
2081 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2082 * interrupts will will be stored on its back queue, and then we'll be
2083 * able to process them after we restore SDEIER (as soon as we restore
2084 * it, we'll get an interrupt if SDEIIR still has something to process
2085 * due to its back queue). */
2086 if (!HAS_PCH_NOP(dev_priv)) {
2087 sde_ier = I915_READ(SDEIER);
2088 I915_WRITE(SDEIER, 0);
2089 }
2090
2091 /* Find, clear, then process each source of interrupt */
2092
2093 gt_iir = I915_READ(GTIIR);
2094 if (gt_iir) {
2095 I915_WRITE(GTIIR, gt_iir);
2096 ret = IRQ_HANDLED;
2097 if (INTEL_GEN(dev_priv) >= 6)
2098 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2099 else
2100 gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2101 }
2102
2103 de_iir = I915_READ(DEIIR);
2104 if (de_iir) {
2105 I915_WRITE(DEIIR, de_iir);
2106 ret = IRQ_HANDLED;
2107 if (INTEL_GEN(dev_priv) >= 7)
2108 ivb_display_irq_handler(dev_priv, de_iir);
2109 else
2110 ilk_display_irq_handler(dev_priv, de_iir);
2111 }
2112
2113 if (INTEL_GEN(dev_priv) >= 6) {
2114 u32 pm_iir = I915_READ(GEN6_PMIIR);
2115 if (pm_iir) {
2116 I915_WRITE(GEN6_PMIIR, pm_iir);
2117 ret = IRQ_HANDLED;
2118 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
2119 }
2120 }
2121
2122 I915_WRITE(DEIER, de_ier);
2123 if (!HAS_PCH_NOP(dev_priv))
2124 I915_WRITE(SDEIER, sde_ier);
2125
2126 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2127 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2128
2129 return ret;
2130 }
2131
2132 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2133 u32 hotplug_trigger,
2134 const u32 hpd[HPD_NUM_PINS])
2135 {
2136 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2137
2138 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2139 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2140
2141 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2142 dig_hotplug_reg, hpd,
2143 bxt_port_hotplug_long_detect);
2144
2145 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2146 }
2147
2148 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2149 {
2150 u32 pin_mask = 0, long_mask = 0;
2151 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2152 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2153 long_pulse_detect_func long_pulse_detect;
2154 const u32 *hpd;
2155
2156 if (INTEL_GEN(dev_priv) >= 12) {
2157 long_pulse_detect = gen12_port_hotplug_long_detect;
2158 hpd = hpd_gen12;
2159 } else {
2160 long_pulse_detect = gen11_port_hotplug_long_detect;
2161 hpd = hpd_gen11;
2162 }
2163
2164 if (trigger_tc) {
2165 u32 dig_hotplug_reg;
2166
2167 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2168 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2169
2170 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2171 dig_hotplug_reg, hpd, long_pulse_detect);
2172 }
2173
2174 if (trigger_tbt) {
2175 u32 dig_hotplug_reg;
2176
2177 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2178 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2179
2180 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2181 dig_hotplug_reg, hpd, long_pulse_detect);
2182 }
2183
2184 if (pin_mask)
2185 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2186 else
2187 drm_err(&dev_priv->drm,
2188 "Unexpected DE HPD interrupt 0x%08x\n", iir);
2189 }
2190
2191 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2192 {
2193 u32 mask;
2194
2195 if (INTEL_GEN(dev_priv) >= 12)
2196 return TGL_DE_PORT_AUX_DDIA |
2197 TGL_DE_PORT_AUX_DDIB |
2198 TGL_DE_PORT_AUX_DDIC |
2199 TGL_DE_PORT_AUX_USBC1 |
2200 TGL_DE_PORT_AUX_USBC2 |
2201 TGL_DE_PORT_AUX_USBC3 |
2202 TGL_DE_PORT_AUX_USBC4 |
2203 TGL_DE_PORT_AUX_USBC5 |
2204 TGL_DE_PORT_AUX_USBC6;
2205
2206
2207 mask = GEN8_AUX_CHANNEL_A;
2208 if (INTEL_GEN(dev_priv) >= 9)
2209 mask |= GEN9_AUX_CHANNEL_B |
2210 GEN9_AUX_CHANNEL_C |
2211 GEN9_AUX_CHANNEL_D;
2212
2213 if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2214 mask |= CNL_AUX_CHANNEL_F;
2215
2216 if (IS_GEN(dev_priv, 11))
2217 mask |= ICL_AUX_CHANNEL_E;
2218
2219 return mask;
2220 }
2221
2222 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2223 {
2224 if (INTEL_GEN(dev_priv) >= 11)
2225 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2226 else if (INTEL_GEN(dev_priv) >= 9)
2227 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2228 else
2229 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2230 }
2231
2232 static void
2233 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2234 {
2235 bool found = false;
2236
2237 if (iir & GEN8_DE_MISC_GSE) {
2238 intel_opregion_asle_intr(dev_priv);
2239 found = true;
2240 }
2241
2242 if (iir & GEN8_DE_EDP_PSR) {
2243 u32 psr_iir;
2244 i915_reg_t iir_reg;
2245
2246 if (INTEL_GEN(dev_priv) >= 12)
2247 iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2248 else
2249 iir_reg = EDP_PSR_IIR;
2250
2251 psr_iir = I915_READ(iir_reg);
2252 I915_WRITE(iir_reg, psr_iir);
2253
2254 if (psr_iir)
2255 found = true;
2256
2257 intel_psr_irq_handler(dev_priv, psr_iir);
2258 }
2259
2260 if (!found)
2261 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2262 }
2263
2264 static irqreturn_t
2265 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2266 {
2267 irqreturn_t ret = IRQ_NONE;
2268 u32 iir;
2269 enum pipe pipe;
2270
2271 if (master_ctl & GEN8_DE_MISC_IRQ) {
2272 iir = I915_READ(GEN8_DE_MISC_IIR);
2273 if (iir) {
2274 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2275 ret = IRQ_HANDLED;
2276 gen8_de_misc_irq_handler(dev_priv, iir);
2277 } else {
2278 drm_err(&dev_priv->drm,
2279 "The master control interrupt lied (DE MISC)!\n");
2280 }
2281 }
2282
2283 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2284 iir = I915_READ(GEN11_DE_HPD_IIR);
2285 if (iir) {
2286 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2287 ret = IRQ_HANDLED;
2288 gen11_hpd_irq_handler(dev_priv, iir);
2289 } else {
2290 drm_err(&dev_priv->drm,
2291 "The master control interrupt lied, (DE HPD)!\n");
2292 }
2293 }
2294
2295 if (master_ctl & GEN8_DE_PORT_IRQ) {
2296 iir = I915_READ(GEN8_DE_PORT_IIR);
2297 if (iir) {
2298 u32 tmp_mask;
2299 bool found = false;
2300
2301 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302 ret = IRQ_HANDLED;
2303
2304 if (iir & gen8_de_port_aux_mask(dev_priv)) {
2305 dp_aux_irq_handler(dev_priv);
2306 found = true;
2307 }
2308
2309 if (IS_GEN9_LP(dev_priv)) {
2310 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2311 if (tmp_mask) {
2312 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2313 hpd_bxt);
2314 found = true;
2315 }
2316 } else if (IS_BROADWELL(dev_priv)) {
2317 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2318 if (tmp_mask) {
2319 ilk_hpd_irq_handler(dev_priv,
2320 tmp_mask, hpd_bdw);
2321 found = true;
2322 }
2323 }
2324
2325 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2326 gmbus_irq_handler(dev_priv);
2327 found = true;
2328 }
2329
2330 if (!found)
2331 drm_err(&dev_priv->drm,
2332 "Unexpected DE Port interrupt\n");
2333 }
2334 else
2335 drm_err(&dev_priv->drm,
2336 "The master control interrupt lied (DE PORT)!\n");
2337 }
2338
2339 for_each_pipe(dev_priv, pipe) {
2340 u32 fault_errors;
2341
2342 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2343 continue;
2344
2345 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2346 if (!iir) {
2347 drm_err(&dev_priv->drm,
2348 "The master control interrupt lied (DE PIPE)!\n");
2349 continue;
2350 }
2351
2352 ret = IRQ_HANDLED;
2353 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2354
2355 if (iir & GEN8_PIPE_VBLANK)
2356 intel_handle_vblank(dev_priv, pipe);
2357
2358 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2359 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2360
2361 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2362 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2363
2364 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2365 if (fault_errors)
2366 drm_err(&dev_priv->drm,
2367 "Fault errors on pipe %c: 0x%08x\n",
2368 pipe_name(pipe),
2369 fault_errors);
2370 }
2371
2372 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2373 master_ctl & GEN8_DE_PCH_IRQ) {
2374 /*
2375 * FIXME(BDW): Assume for now that the new interrupt handling
2376 * scheme also closed the SDE interrupt handling race we've seen
2377 * on older pch-split platforms. But this needs testing.
2378 */
2379 iir = I915_READ(SDEIIR);
2380 if (iir) {
2381 I915_WRITE(SDEIIR, iir);
2382 ret = IRQ_HANDLED;
2383
2384 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2385 icp_irq_handler(dev_priv, iir);
2386 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2387 spt_irq_handler(dev_priv, iir);
2388 else
2389 cpt_irq_handler(dev_priv, iir);
2390 } else {
2391 /*
2392 * Like on previous PCH there seems to be something
2393 * fishy going on with forwarding PCH interrupts.
2394 */
2395 drm_dbg(&dev_priv->drm,
2396 "The master control interrupt lied (SDE)!\n");
2397 }
2398 }
2399
2400 return ret;
2401 }
2402
2403 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2404 {
2405 raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2406
2407 /*
2408 * Now with master disabled, get a sample of level indications
2409 * for this interrupt. Indications will be cleared on related acks.
2410 * New indications can and will light up during processing,
2411 * and will generate new interrupt after enabling master.
2412 */
2413 return raw_reg_read(regs, GEN8_MASTER_IRQ);
2414 }
2415
2416 static inline void gen8_master_intr_enable(void __iomem * const regs)
2417 {
2418 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2419 }
2420
2421 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2422 {
2423 struct drm_i915_private *dev_priv = arg;
2424 void __iomem * const regs = dev_priv->uncore.regs;
2425 u32 master_ctl;
2426
2427 if (!intel_irqs_enabled(dev_priv))
2428 return IRQ_NONE;
2429
2430 master_ctl = gen8_master_intr_disable(regs);
2431 if (!master_ctl) {
2432 gen8_master_intr_enable(regs);
2433 return IRQ_NONE;
2434 }
2435
2436 /* Find, queue (onto bottom-halves), then clear each source */
2437 gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2438
2439 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2440 if (master_ctl & ~GEN8_GT_IRQS) {
2441 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2442 gen8_de_irq_handler(dev_priv, master_ctl);
2443 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2444 }
2445
2446 gen8_master_intr_enable(regs);
2447
2448 return IRQ_HANDLED;
2449 }
2450
2451 static u32
2452 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2453 {
2454 void __iomem * const regs = gt->uncore->regs;
2455 u32 iir;
2456
2457 if (!(master_ctl & GEN11_GU_MISC_IRQ))
2458 return 0;
2459
2460 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2461 if (likely(iir))
2462 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2463
2464 return iir;
2465 }
2466
2467 static void
2468 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2469 {
2470 if (iir & GEN11_GU_MISC_GSE)
2471 intel_opregion_asle_intr(gt->i915);
2472 }
2473
2474 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2475 {
2476 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2477
2478 /*
2479 * Now with master disabled, get a sample of level indications
2480 * for this interrupt. Indications will be cleared on related acks.
2481 * New indications can and will light up during processing,
2482 * and will generate new interrupt after enabling master.
2483 */
2484 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2485 }
2486
2487 static inline void gen11_master_intr_enable(void __iomem * const regs)
2488 {
2489 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2490 }
2491
2492 static void
2493 gen11_display_irq_handler(struct drm_i915_private *i915)
2494 {
2495 void __iomem * const regs = i915->uncore.regs;
2496 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2497
2498 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2499 /*
2500 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2501 * for the display related bits.
2502 */
2503 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2504 gen8_de_irq_handler(i915, disp_ctl);
2505 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2506 GEN11_DISPLAY_IRQ_ENABLE);
2507
2508 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2509 }
2510
2511 static __always_inline irqreturn_t
2512 __gen11_irq_handler(struct drm_i915_private * const i915,
2513 u32 (*intr_disable)(void __iomem * const regs),
2514 void (*intr_enable)(void __iomem * const regs))
2515 {
2516 void __iomem * const regs = i915->uncore.regs;
2517 struct intel_gt *gt = &i915->gt;
2518 u32 master_ctl;
2519 u32 gu_misc_iir;
2520
2521 if (!intel_irqs_enabled(i915))
2522 return IRQ_NONE;
2523
2524 master_ctl = intr_disable(regs);
2525 if (!master_ctl) {
2526 intr_enable(regs);
2527 return IRQ_NONE;
2528 }
2529
2530 /* Find, queue (onto bottom-halves), then clear each source */
2531 gen11_gt_irq_handler(gt, master_ctl);
2532
2533 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2534 if (master_ctl & GEN11_DISPLAY_IRQ)
2535 gen11_display_irq_handler(i915);
2536
2537 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2538
2539 intr_enable(regs);
2540
2541 gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2542
2543 return IRQ_HANDLED;
2544 }
2545
2546 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2547 {
2548 return __gen11_irq_handler(arg,
2549 gen11_master_intr_disable,
2550 gen11_master_intr_enable);
2551 }
2552
2553 /* Called from drm generic code, passed 'crtc' which
2554 * we use as a pipe index
2555 */
2556 int i8xx_enable_vblank(struct drm_crtc *crtc)
2557 {
2558 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2559 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2560 unsigned long irqflags;
2561
2562 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2563 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2564 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2565
2566 return 0;
2567 }
2568
2569 int i915gm_enable_vblank(struct drm_crtc *crtc)
2570 {
2571 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2572
2573 /*
2574 * Vblank interrupts fail to wake the device up from C2+.
2575 * Disabling render clock gating during C-states avoids
2576 * the problem. There is a small power cost so we do this
2577 * only when vblank interrupts are actually enabled.
2578 */
2579 if (dev_priv->vblank_enabled++ == 0)
2580 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2581
2582 return i8xx_enable_vblank(crtc);
2583 }
2584
2585 int i965_enable_vblank(struct drm_crtc *crtc)
2586 {
2587 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2588 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2589 unsigned long irqflags;
2590
2591 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2592 i915_enable_pipestat(dev_priv, pipe,
2593 PIPE_START_VBLANK_INTERRUPT_STATUS);
2594 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2595
2596 return 0;
2597 }
2598
2599 int ilk_enable_vblank(struct drm_crtc *crtc)
2600 {
2601 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2602 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2603 unsigned long irqflags;
2604 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2605 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2606
2607 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2608 ilk_enable_display_irq(dev_priv, bit);
2609 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2610
2611 /* Even though there is no DMC, frame counter can get stuck when
2612 * PSR is active as no frames are generated.
2613 */
2614 if (HAS_PSR(dev_priv))
2615 drm_crtc_vblank_restore(crtc);
2616
2617 return 0;
2618 }
2619
2620 int bdw_enable_vblank(struct drm_crtc *crtc)
2621 {
2622 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2623 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2624 unsigned long irqflags;
2625
2626 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2627 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2628 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2629
2630 /* Even if there is no DMC, frame counter can get stuck when
2631 * PSR is active as no frames are generated, so check only for PSR.
2632 */
2633 if (HAS_PSR(dev_priv))
2634 drm_crtc_vblank_restore(crtc);
2635
2636 return 0;
2637 }
2638
2639 /* Called from drm generic code, passed 'crtc' which
2640 * we use as a pipe index
2641 */
2642 void i8xx_disable_vblank(struct drm_crtc *crtc)
2643 {
2644 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2645 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2646 unsigned long irqflags;
2647
2648 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2649 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2650 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2651 }
2652
2653 void i915gm_disable_vblank(struct drm_crtc *crtc)
2654 {
2655 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2656
2657 i8xx_disable_vblank(crtc);
2658
2659 if (--dev_priv->vblank_enabled == 0)
2660 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2661 }
2662
2663 void i965_disable_vblank(struct drm_crtc *crtc)
2664 {
2665 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2666 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2667 unsigned long irqflags;
2668
2669 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2670 i915_disable_pipestat(dev_priv, pipe,
2671 PIPE_START_VBLANK_INTERRUPT_STATUS);
2672 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2673 }
2674
2675 void ilk_disable_vblank(struct drm_crtc *crtc)
2676 {
2677 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2678 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2679 unsigned long irqflags;
2680 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2681 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2682
2683 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2684 ilk_disable_display_irq(dev_priv, bit);
2685 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2686 }
2687
2688 void bdw_disable_vblank(struct drm_crtc *crtc)
2689 {
2690 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2691 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2692 unsigned long irqflags;
2693
2694 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2695 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2696 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2697 }
2698
2699 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2700 {
2701 struct intel_uncore *uncore = &dev_priv->uncore;
2702
2703 if (HAS_PCH_NOP(dev_priv))
2704 return;
2705
2706 GEN3_IRQ_RESET(uncore, SDE);
2707
2708 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2709 I915_WRITE(SERR_INT, 0xffffffff);
2710 }
2711
2712 /*
2713 * SDEIER is also touched by the interrupt handler to work around missed PCH
2714 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2715 * instead we unconditionally enable all PCH interrupt sources here, but then
2716 * only unmask them as needed with SDEIMR.
2717 *
2718 * This function needs to be called before interrupts are enabled.
2719 */
2720 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2721 {
2722 if (HAS_PCH_NOP(dev_priv))
2723 return;
2724
2725 drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2726 I915_WRITE(SDEIER, 0xffffffff);
2727 POSTING_READ(SDEIER);
2728 }
2729
2730 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2731 {
2732 struct intel_uncore *uncore = &dev_priv->uncore;
2733
2734 if (IS_CHERRYVIEW(dev_priv))
2735 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2736 else
2737 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2738
2739 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2740 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2741
2742 i9xx_pipestat_irq_reset(dev_priv);
2743
2744 GEN3_IRQ_RESET(uncore, VLV_);
2745 dev_priv->irq_mask = ~0u;
2746 }
2747
2748 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2749 {
2750 struct intel_uncore *uncore = &dev_priv->uncore;
2751
2752 u32 pipestat_mask;
2753 u32 enable_mask;
2754 enum pipe pipe;
2755
2756 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2757
2758 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2759 for_each_pipe(dev_priv, pipe)
2760 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2761
2762 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2763 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2764 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2765 I915_LPE_PIPE_A_INTERRUPT |
2766 I915_LPE_PIPE_B_INTERRUPT;
2767
2768 if (IS_CHERRYVIEW(dev_priv))
2769 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2770 I915_LPE_PIPE_C_INTERRUPT;
2771
2772 drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2773
2774 dev_priv->irq_mask = ~enable_mask;
2775
2776 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2777 }
2778
2779 /* drm_dma.h hooks
2780 */
2781 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2782 {
2783 struct intel_uncore *uncore = &dev_priv->uncore;
2784
2785 GEN3_IRQ_RESET(uncore, DE);
2786 if (IS_GEN(dev_priv, 7))
2787 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2788
2789 if (IS_HASWELL(dev_priv)) {
2790 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2791 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2792 }
2793
2794 gen5_gt_irq_reset(&dev_priv->gt);
2795
2796 ibx_irq_reset(dev_priv);
2797 }
2798
2799 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2800 {
2801 I915_WRITE(VLV_MASTER_IER, 0);
2802 POSTING_READ(VLV_MASTER_IER);
2803
2804 gen5_gt_irq_reset(&dev_priv->gt);
2805
2806 spin_lock_irq(&dev_priv->irq_lock);
2807 if (dev_priv->display_irqs_enabled)
2808 vlv_display_irq_reset(dev_priv);
2809 spin_unlock_irq(&dev_priv->irq_lock);
2810 }
2811
2812 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2813 {
2814 struct intel_uncore *uncore = &dev_priv->uncore;
2815 enum pipe pipe;
2816
2817 gen8_master_intr_disable(dev_priv->uncore.regs);
2818
2819 gen8_gt_irq_reset(&dev_priv->gt);
2820
2821 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2822 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2823
2824 for_each_pipe(dev_priv, pipe)
2825 if (intel_display_power_is_enabled(dev_priv,
2826 POWER_DOMAIN_PIPE(pipe)))
2827 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2828
2829 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2830 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2831 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2832
2833 if (HAS_PCH_SPLIT(dev_priv))
2834 ibx_irq_reset(dev_priv);
2835 }
2836
2837 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2838 {
2839 struct intel_uncore *uncore = &dev_priv->uncore;
2840 enum pipe pipe;
2841
2842 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2843
2844 if (INTEL_GEN(dev_priv) >= 12) {
2845 enum transcoder trans;
2846
2847 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
2848 enum intel_display_power_domain domain;
2849
2850 domain = POWER_DOMAIN_TRANSCODER(trans);
2851 if (!intel_display_power_is_enabled(dev_priv, domain))
2852 continue;
2853
2854 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2855 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2856 }
2857 } else {
2858 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2859 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2860 }
2861
2862 for_each_pipe(dev_priv, pipe)
2863 if (intel_display_power_is_enabled(dev_priv,
2864 POWER_DOMAIN_PIPE(pipe)))
2865 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2866
2867 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2868 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2869 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2870
2871 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2872 GEN3_IRQ_RESET(uncore, SDE);
2873 }
2874
2875 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2876 {
2877 struct intel_uncore *uncore = &dev_priv->uncore;
2878
2879 gen11_master_intr_disable(dev_priv->uncore.regs);
2880
2881 gen11_gt_irq_reset(&dev_priv->gt);
2882 gen11_display_irq_reset(dev_priv);
2883
2884 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2885 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2886 }
2887
2888 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2889 u8 pipe_mask)
2890 {
2891 struct intel_uncore *uncore = &dev_priv->uncore;
2892
2893 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2894 enum pipe pipe;
2895
2896 spin_lock_irq(&dev_priv->irq_lock);
2897
2898 if (!intel_irqs_enabled(dev_priv)) {
2899 spin_unlock_irq(&dev_priv->irq_lock);
2900 return;
2901 }
2902
2903 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2904 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2905 dev_priv->de_irq_mask[pipe],
2906 ~dev_priv->de_irq_mask[pipe] | extra_ier);
2907
2908 spin_unlock_irq(&dev_priv->irq_lock);
2909 }
2910
2911 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2912 u8 pipe_mask)
2913 {
2914 struct intel_uncore *uncore = &dev_priv->uncore;
2915 enum pipe pipe;
2916
2917 spin_lock_irq(&dev_priv->irq_lock);
2918
2919 if (!intel_irqs_enabled(dev_priv)) {
2920 spin_unlock_irq(&dev_priv->irq_lock);
2921 return;
2922 }
2923
2924 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2925 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2926
2927 spin_unlock_irq(&dev_priv->irq_lock);
2928
2929 /* make sure we're done processing display irqs */
2930 intel_synchronize_irq(dev_priv);
2931 }
2932
2933 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2934 {
2935 struct intel_uncore *uncore = &dev_priv->uncore;
2936
2937 I915_WRITE(GEN8_MASTER_IRQ, 0);
2938 POSTING_READ(GEN8_MASTER_IRQ);
2939
2940 gen8_gt_irq_reset(&dev_priv->gt);
2941
2942 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2943
2944 spin_lock_irq(&dev_priv->irq_lock);
2945 if (dev_priv->display_irqs_enabled)
2946 vlv_display_irq_reset(dev_priv);
2947 spin_unlock_irq(&dev_priv->irq_lock);
2948 }
2949
2950 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2951 const u32 hpd[HPD_NUM_PINS])
2952 {
2953 struct intel_encoder *encoder;
2954 u32 enabled_irqs = 0;
2955
2956 for_each_intel_encoder(&dev_priv->drm, encoder)
2957 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
2958 enabled_irqs |= hpd[encoder->hpd_pin];
2959
2960 return enabled_irqs;
2961 }
2962
2963 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
2964 {
2965 u32 hotplug;
2966
2967 /*
2968 * Enable digital hotplug on the PCH, and configure the DP short pulse
2969 * duration to 2ms (which is the minimum in the Display Port spec).
2970 * The pulse duration bits are reserved on LPT+.
2971 */
2972 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2973 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
2974 PORTC_PULSE_DURATION_MASK |
2975 PORTD_PULSE_DURATION_MASK);
2976 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2977 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2978 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2979 /*
2980 * When CPU and PCH are on the same package, port A
2981 * HPD must be enabled in both north and south.
2982 */
2983 if (HAS_PCH_LPT_LP(dev_priv))
2984 hotplug |= PORTA_HOTPLUG_ENABLE;
2985 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2986 }
2987
2988 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
2989 {
2990 u32 hotplug_irqs, enabled_irqs;
2991
2992 if (HAS_PCH_IBX(dev_priv)) {
2993 hotplug_irqs = SDE_HOTPLUG_MASK;
2994 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
2995 } else {
2996 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2997 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
2998 }
2999
3000 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3001
3002 ibx_hpd_detection_setup(dev_priv);
3003 }
3004
3005 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3006 u32 ddi_hotplug_enable_mask,
3007 u32 tc_hotplug_enable_mask)
3008 {
3009 u32 hotplug;
3010
3011 hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3012 hotplug |= ddi_hotplug_enable_mask;
3013 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3014
3015 if (tc_hotplug_enable_mask) {
3016 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3017 hotplug |= tc_hotplug_enable_mask;
3018 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3019 }
3020 }
3021
3022 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3023 u32 sde_ddi_mask, u32 sde_tc_mask,
3024 u32 ddi_enable_mask, u32 tc_enable_mask,
3025 const u32 *pins)
3026 {
3027 u32 hotplug_irqs, enabled_irqs;
3028
3029 hotplug_irqs = sde_ddi_mask | sde_tc_mask;
3030 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, pins);
3031
3032 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3033
3034 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3035
3036 icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3037 }
3038
3039 /*
3040 * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3041 * equivalent of SDE.
3042 */
3043 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3044 {
3045 icp_hpd_irq_setup(dev_priv,
3046 SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3047 ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1),
3048 hpd_icp);
3049 }
3050
3051 /*
3052 * JSP behaves exactly the same as MCC above except that port C is mapped to
3053 * the DDI-C pins instead of the TC1 pins. This means we should follow TGP's
3054 * masks & tables rather than ICP's masks & tables.
3055 */
3056 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3057 {
3058 icp_hpd_irq_setup(dev_priv,
3059 SDE_DDI_MASK_TGP, 0,
3060 TGP_DDI_HPD_ENABLE_MASK, 0,
3061 hpd_tgp);
3062 }
3063
3064 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3065 {
3066 u32 hotplug;
3067
3068 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3069 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3070 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3071 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3072 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3073 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3074
3075 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3076 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3077 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3078 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3079 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3080 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3081 }
3082
3083 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3084 {
3085 u32 hotplug_irqs, enabled_irqs;
3086 const u32 *hpd;
3087 u32 val;
3088
3089 hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3090 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3091 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3092
3093 val = I915_READ(GEN11_DE_HPD_IMR);
3094 val &= ~hotplug_irqs;
3095 I915_WRITE(GEN11_DE_HPD_IMR, val);
3096 POSTING_READ(GEN11_DE_HPD_IMR);
3097
3098 gen11_hpd_detection_setup(dev_priv);
3099
3100 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3101 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3102 TGP_DDI_HPD_ENABLE_MASK,
3103 TGP_TC_HPD_ENABLE_MASK, hpd_tgp);
3104 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3105 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3106 ICP_DDI_HPD_ENABLE_MASK,
3107 ICP_TC_HPD_ENABLE_MASK, hpd_icp);
3108 }
3109
3110 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3111 {
3112 u32 val, hotplug;
3113
3114 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3115 if (HAS_PCH_CNP(dev_priv)) {
3116 val = I915_READ(SOUTH_CHICKEN1);
3117 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3118 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3119 I915_WRITE(SOUTH_CHICKEN1, val);
3120 }
3121
3122 /* Enable digital hotplug on the PCH */
3123 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3124 hotplug |= PORTA_HOTPLUG_ENABLE |
3125 PORTB_HOTPLUG_ENABLE |
3126 PORTC_HOTPLUG_ENABLE |
3127 PORTD_HOTPLUG_ENABLE;
3128 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3129
3130 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3131 hotplug |= PORTE_HOTPLUG_ENABLE;
3132 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3133 }
3134
3135 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3136 {
3137 u32 hotplug_irqs, enabled_irqs;
3138
3139 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3140 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3141
3142 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3143 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3144
3145 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3146
3147 spt_hpd_detection_setup(dev_priv);
3148 }
3149
3150 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3151 {
3152 u32 hotplug;
3153
3154 /*
3155 * Enable digital hotplug on the CPU, and configure the DP short pulse
3156 * duration to 2ms (which is the minimum in the Display Port spec)
3157 * The pulse duration bits are reserved on HSW+.
3158 */
3159 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3160 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3161 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3162 DIGITAL_PORTA_PULSE_DURATION_2ms;
3163 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3164 }
3165
3166 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3167 {
3168 u32 hotplug_irqs, enabled_irqs;
3169
3170 if (INTEL_GEN(dev_priv) >= 8) {
3171 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3172 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3173
3174 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3175 } else if (INTEL_GEN(dev_priv) >= 7) {
3176 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3177 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3178
3179 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3180 } else {
3181 hotplug_irqs = DE_DP_A_HOTPLUG;
3182 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3183
3184 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3185 }
3186
3187 ilk_hpd_detection_setup(dev_priv);
3188
3189 ibx_hpd_irq_setup(dev_priv);
3190 }
3191
3192 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3193 u32 enabled_irqs)
3194 {
3195 u32 hotplug;
3196
3197 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3198 hotplug |= PORTA_HOTPLUG_ENABLE |
3199 PORTB_HOTPLUG_ENABLE |
3200 PORTC_HOTPLUG_ENABLE;
3201
3202 drm_dbg_kms(&dev_priv->drm,
3203 "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3204 hotplug, enabled_irqs);
3205 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3206
3207 /*
3208 * For BXT invert bit has to be set based on AOB design
3209 * for HPD detection logic, update it based on VBT fields.
3210 */
3211 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3212 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3213 hotplug |= BXT_DDIA_HPD_INVERT;
3214 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3215 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3216 hotplug |= BXT_DDIB_HPD_INVERT;
3217 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3218 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3219 hotplug |= BXT_DDIC_HPD_INVERT;
3220
3221 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3222 }
3223
3224 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3225 {
3226 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3227 }
3228
3229 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3230 {
3231 u32 hotplug_irqs, enabled_irqs;
3232
3233 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3234 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3235
3236 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3237
3238 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3239 }
3240
3241 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3242 {
3243 u32 mask;
3244
3245 if (HAS_PCH_NOP(dev_priv))
3246 return;
3247
3248 if (HAS_PCH_IBX(dev_priv))
3249 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3250 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3251 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3252 else
3253 mask = SDE_GMBUS_CPT;
3254
3255 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3256 I915_WRITE(SDEIMR, ~mask);
3257
3258 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3259 HAS_PCH_LPT(dev_priv))
3260 ibx_hpd_detection_setup(dev_priv);
3261 else
3262 spt_hpd_detection_setup(dev_priv);
3263 }
3264
3265 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3266 {
3267 struct intel_uncore *uncore = &dev_priv->uncore;
3268 u32 display_mask, extra_mask;
3269
3270 if (INTEL_GEN(dev_priv) >= 7) {
3271 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3272 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3273 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3274 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3275 DE_DP_A_HOTPLUG_IVB);
3276 } else {
3277 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3278 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3279 DE_PIPEA_CRC_DONE | DE_POISON);
3280 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3281 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3282 DE_DP_A_HOTPLUG);
3283 }
3284
3285 if (IS_HASWELL(dev_priv)) {
3286 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3287 display_mask |= DE_EDP_PSR_INT_HSW;
3288 }
3289
3290 dev_priv->irq_mask = ~display_mask;
3291
3292 ibx_irq_pre_postinstall(dev_priv);
3293
3294 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3295 display_mask | extra_mask);
3296
3297 gen5_gt_irq_postinstall(&dev_priv->gt);
3298
3299 ilk_hpd_detection_setup(dev_priv);
3300
3301 ibx_irq_postinstall(dev_priv);
3302
3303 if (IS_IRONLAKE_M(dev_priv)) {
3304 /* Enable PCU event interrupts
3305 *
3306 * spinlocking not required here for correctness since interrupt
3307 * setup is guaranteed to run in single-threaded context. But we
3308 * need it to make the assert_spin_locked happy. */
3309 spin_lock_irq(&dev_priv->irq_lock);
3310 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3311 spin_unlock_irq(&dev_priv->irq_lock);
3312 }
3313 }
3314
3315 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3316 {
3317 lockdep_assert_held(&dev_priv->irq_lock);
3318
3319 if (dev_priv->display_irqs_enabled)
3320 return;
3321
3322 dev_priv->display_irqs_enabled = true;
3323
3324 if (intel_irqs_enabled(dev_priv)) {
3325 vlv_display_irq_reset(dev_priv);
3326 vlv_display_irq_postinstall(dev_priv);
3327 }
3328 }
3329
3330 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3331 {
3332 lockdep_assert_held(&dev_priv->irq_lock);
3333
3334 if (!dev_priv->display_irqs_enabled)
3335 return;
3336
3337 dev_priv->display_irqs_enabled = false;
3338
3339 if (intel_irqs_enabled(dev_priv))
3340 vlv_display_irq_reset(dev_priv);
3341 }
3342
3343
3344 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3345 {
3346 gen5_gt_irq_postinstall(&dev_priv->gt);
3347
3348 spin_lock_irq(&dev_priv->irq_lock);
3349 if (dev_priv->display_irqs_enabled)
3350 vlv_display_irq_postinstall(dev_priv);
3351 spin_unlock_irq(&dev_priv->irq_lock);
3352
3353 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3354 POSTING_READ(VLV_MASTER_IER);
3355 }
3356
3357 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3358 {
3359 struct intel_uncore *uncore = &dev_priv->uncore;
3360
3361 u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3362 GEN8_PIPE_CDCLK_CRC_DONE;
3363 u32 de_pipe_enables;
3364 u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3365 u32 de_port_enables;
3366 u32 de_misc_masked = GEN8_DE_EDP_PSR;
3367 enum pipe pipe;
3368
3369 if (INTEL_GEN(dev_priv) <= 10)
3370 de_misc_masked |= GEN8_DE_MISC_GSE;
3371
3372 if (IS_GEN9_LP(dev_priv))
3373 de_port_masked |= BXT_DE_PORT_GMBUS;
3374
3375 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3376 GEN8_PIPE_FIFO_UNDERRUN;
3377
3378 de_port_enables = de_port_masked;
3379 if (IS_GEN9_LP(dev_priv))
3380 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3381 else if (IS_BROADWELL(dev_priv))
3382 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3383
3384 if (INTEL_GEN(dev_priv) >= 12) {
3385 enum transcoder trans;
3386
3387 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
3388 enum intel_display_power_domain domain;
3389
3390 domain = POWER_DOMAIN_TRANSCODER(trans);
3391 if (!intel_display_power_is_enabled(dev_priv, domain))
3392 continue;
3393
3394 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3395 }
3396 } else {
3397 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3398 }
3399
3400 for_each_pipe(dev_priv, pipe) {
3401 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3402
3403 if (intel_display_power_is_enabled(dev_priv,
3404 POWER_DOMAIN_PIPE(pipe)))
3405 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3406 dev_priv->de_irq_mask[pipe],
3407 de_pipe_enables);
3408 }
3409
3410 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3411 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3412
3413 if (INTEL_GEN(dev_priv) >= 11) {
3414 u32 de_hpd_masked = 0;
3415 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3416 GEN11_DE_TBT_HOTPLUG_MASK;
3417
3418 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3419 de_hpd_enables);
3420 gen11_hpd_detection_setup(dev_priv);
3421 } else if (IS_GEN9_LP(dev_priv)) {
3422 bxt_hpd_detection_setup(dev_priv);
3423 } else if (IS_BROADWELL(dev_priv)) {
3424 ilk_hpd_detection_setup(dev_priv);
3425 }
3426 }
3427
3428 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3429 {
3430 if (HAS_PCH_SPLIT(dev_priv))
3431 ibx_irq_pre_postinstall(dev_priv);
3432
3433 gen8_gt_irq_postinstall(&dev_priv->gt);
3434 gen8_de_irq_postinstall(dev_priv);
3435
3436 if (HAS_PCH_SPLIT(dev_priv))
3437 ibx_irq_postinstall(dev_priv);
3438
3439 gen8_master_intr_enable(dev_priv->uncore.regs);
3440 }
3441
3442 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3443 {
3444 u32 mask = SDE_GMBUS_ICP;
3445
3446 drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3447 I915_WRITE(SDEIER, 0xffffffff);
3448 POSTING_READ(SDEIER);
3449
3450 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3451 I915_WRITE(SDEIMR, ~mask);
3452
3453 if (HAS_PCH_TGP(dev_priv))
3454 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3455 TGP_TC_HPD_ENABLE_MASK);
3456 else if (HAS_PCH_JSP(dev_priv))
3457 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3458 else if (HAS_PCH_MCC(dev_priv))
3459 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3460 ICP_TC_HPD_ENABLE(PORT_TC1));
3461 else
3462 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3463 ICP_TC_HPD_ENABLE_MASK);
3464 }
3465
3466 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3467 {
3468 struct intel_uncore *uncore = &dev_priv->uncore;
3469 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3470
3471 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3472 icp_irq_postinstall(dev_priv);
3473
3474 gen11_gt_irq_postinstall(&dev_priv->gt);
3475 gen8_de_irq_postinstall(dev_priv);
3476
3477 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3478
3479 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3480
3481 gen11_master_intr_enable(uncore->regs);
3482 POSTING_READ(GEN11_GFX_MSTR_IRQ);
3483 }
3484
3485 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3486 {
3487 gen8_gt_irq_postinstall(&dev_priv->gt);
3488
3489 spin_lock_irq(&dev_priv->irq_lock);
3490 if (dev_priv->display_irqs_enabled)
3491 vlv_display_irq_postinstall(dev_priv);
3492 spin_unlock_irq(&dev_priv->irq_lock);
3493
3494 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3495 POSTING_READ(GEN8_MASTER_IRQ);
3496 }
3497
3498 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3499 {
3500 struct intel_uncore *uncore = &dev_priv->uncore;
3501
3502 i9xx_pipestat_irq_reset(dev_priv);
3503
3504 GEN2_IRQ_RESET(uncore);
3505 }
3506
3507 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3508 {
3509 struct intel_uncore *uncore = &dev_priv->uncore;
3510 u16 enable_mask;
3511
3512 intel_uncore_write16(uncore,
3513 EMR,
3514 ~(I915_ERROR_PAGE_TABLE |
3515 I915_ERROR_MEMORY_REFRESH));
3516
3517 /* Unmask the interrupts that we always want on. */
3518 dev_priv->irq_mask =
3519 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3520 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3521 I915_MASTER_ERROR_INTERRUPT);
3522
3523 enable_mask =
3524 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3525 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3526 I915_MASTER_ERROR_INTERRUPT |
3527 I915_USER_INTERRUPT;
3528
3529 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3530
3531 /* Interrupt setup is already guaranteed to be single-threaded, this is
3532 * just to make the assert_spin_locked check happy. */
3533 spin_lock_irq(&dev_priv->irq_lock);
3534 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3535 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3536 spin_unlock_irq(&dev_priv->irq_lock);
3537 }
3538
3539 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3540 u16 *eir, u16 *eir_stuck)
3541 {
3542 struct intel_uncore *uncore = &i915->uncore;
3543 u16 emr;
3544
3545 *eir = intel_uncore_read16(uncore, EIR);
3546
3547 if (*eir)
3548 intel_uncore_write16(uncore, EIR, *eir);
3549
3550 *eir_stuck = intel_uncore_read16(uncore, EIR);
3551 if (*eir_stuck == 0)
3552 return;
3553
3554 /*
3555 * Toggle all EMR bits to make sure we get an edge
3556 * in the ISR master error bit if we don't clear
3557 * all the EIR bits. Otherwise the edge triggered
3558 * IIR on i965/g4x wouldn't notice that an interrupt
3559 * is still pending. Also some EIR bits can't be
3560 * cleared except by handling the underlying error
3561 * (or by a GPU reset) so we mask any bit that
3562 * remains set.
3563 */
3564 emr = intel_uncore_read16(uncore, EMR);
3565 intel_uncore_write16(uncore, EMR, 0xffff);
3566 intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3567 }
3568
3569 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3570 u16 eir, u16 eir_stuck)
3571 {
3572 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3573
3574 if (eir_stuck)
3575 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3576 eir_stuck);
3577 }
3578
3579 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3580 u32 *eir, u32 *eir_stuck)
3581 {
3582 u32 emr;
3583
3584 *eir = I915_READ(EIR);
3585
3586 I915_WRITE(EIR, *eir);
3587
3588 *eir_stuck = I915_READ(EIR);
3589 if (*eir_stuck == 0)
3590 return;
3591
3592 /*
3593 * Toggle all EMR bits to make sure we get an edge
3594 * in the ISR master error bit if we don't clear
3595 * all the EIR bits. Otherwise the edge triggered
3596 * IIR on i965/g4x wouldn't notice that an interrupt
3597 * is still pending. Also some EIR bits can't be
3598 * cleared except by handling the underlying error
3599 * (or by a GPU reset) so we mask any bit that
3600 * remains set.
3601 */
3602 emr = I915_READ(EMR);
3603 I915_WRITE(EMR, 0xffffffff);
3604 I915_WRITE(EMR, emr | *eir_stuck);
3605 }
3606
3607 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3608 u32 eir, u32 eir_stuck)
3609 {
3610 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3611
3612 if (eir_stuck)
3613 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3614 eir_stuck);
3615 }
3616
3617 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3618 {
3619 struct drm_i915_private *dev_priv = arg;
3620 irqreturn_t ret = IRQ_NONE;
3621
3622 if (!intel_irqs_enabled(dev_priv))
3623 return IRQ_NONE;
3624
3625 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3626 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3627
3628 do {
3629 u32 pipe_stats[I915_MAX_PIPES] = {};
3630 u16 eir = 0, eir_stuck = 0;
3631 u16 iir;
3632
3633 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3634 if (iir == 0)
3635 break;
3636
3637 ret = IRQ_HANDLED;
3638
3639 /* Call regardless, as some status bits might not be
3640 * signalled in iir */
3641 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3642
3643 if (iir & I915_MASTER_ERROR_INTERRUPT)
3644 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3645
3646 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3647
3648 if (iir & I915_USER_INTERRUPT)
3649 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3650
3651 if (iir & I915_MASTER_ERROR_INTERRUPT)
3652 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3653
3654 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3655 } while (0);
3656
3657 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3658
3659 return ret;
3660 }
3661
3662 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3663 {
3664 struct intel_uncore *uncore = &dev_priv->uncore;
3665
3666 if (I915_HAS_HOTPLUG(dev_priv)) {
3667 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3668 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3669 }
3670
3671 i9xx_pipestat_irq_reset(dev_priv);
3672
3673 GEN3_IRQ_RESET(uncore, GEN2_);
3674 }
3675
3676 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3677 {
3678 struct intel_uncore *uncore = &dev_priv->uncore;
3679 u32 enable_mask;
3680
3681 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3682 I915_ERROR_MEMORY_REFRESH));
3683
3684 /* Unmask the interrupts that we always want on. */
3685 dev_priv->irq_mask =
3686 ~(I915_ASLE_INTERRUPT |
3687 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3688 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3689 I915_MASTER_ERROR_INTERRUPT);
3690
3691 enable_mask =
3692 I915_ASLE_INTERRUPT |
3693 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3694 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3695 I915_MASTER_ERROR_INTERRUPT |
3696 I915_USER_INTERRUPT;
3697
3698 if (I915_HAS_HOTPLUG(dev_priv)) {
3699 /* Enable in IER... */
3700 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3701 /* and unmask in IMR */
3702 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3703 }
3704
3705 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3706
3707 /* Interrupt setup is already guaranteed to be single-threaded, this is
3708 * just to make the assert_spin_locked check happy. */
3709 spin_lock_irq(&dev_priv->irq_lock);
3710 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3711 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3712 spin_unlock_irq(&dev_priv->irq_lock);
3713
3714 i915_enable_asle_pipestat(dev_priv);
3715 }
3716
3717 static irqreturn_t i915_irq_handler(int irq, void *arg)
3718 {
3719 struct drm_i915_private *dev_priv = arg;
3720 irqreturn_t ret = IRQ_NONE;
3721
3722 if (!intel_irqs_enabled(dev_priv))
3723 return IRQ_NONE;
3724
3725 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3726 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3727
3728 do {
3729 u32 pipe_stats[I915_MAX_PIPES] = {};
3730 u32 eir = 0, eir_stuck = 0;
3731 u32 hotplug_status = 0;
3732 u32 iir;
3733
3734 iir = I915_READ(GEN2_IIR);
3735 if (iir == 0)
3736 break;
3737
3738 ret = IRQ_HANDLED;
3739
3740 if (I915_HAS_HOTPLUG(dev_priv) &&
3741 iir & I915_DISPLAY_PORT_INTERRUPT)
3742 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3743
3744 /* Call regardless, as some status bits might not be
3745 * signalled in iir */
3746 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3747
3748 if (iir & I915_MASTER_ERROR_INTERRUPT)
3749 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3750
3751 I915_WRITE(GEN2_IIR, iir);
3752
3753 if (iir & I915_USER_INTERRUPT)
3754 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3755
3756 if (iir & I915_MASTER_ERROR_INTERRUPT)
3757 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3758
3759 if (hotplug_status)
3760 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3761
3762 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3763 } while (0);
3764
3765 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3766
3767 return ret;
3768 }
3769
3770 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3771 {
3772 struct intel_uncore *uncore = &dev_priv->uncore;
3773
3774 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3775 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3776
3777 i9xx_pipestat_irq_reset(dev_priv);
3778
3779 GEN3_IRQ_RESET(uncore, GEN2_);
3780 }
3781
3782 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3783 {
3784 struct intel_uncore *uncore = &dev_priv->uncore;
3785 u32 enable_mask;
3786 u32 error_mask;
3787
3788 /*
3789 * Enable some error detection, note the instruction error mask
3790 * bit is reserved, so we leave it masked.
3791 */
3792 if (IS_G4X(dev_priv)) {
3793 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3794 GM45_ERROR_MEM_PRIV |
3795 GM45_ERROR_CP_PRIV |
3796 I915_ERROR_MEMORY_REFRESH);
3797 } else {
3798 error_mask = ~(I915_ERROR_PAGE_TABLE |
3799 I915_ERROR_MEMORY_REFRESH);
3800 }
3801 I915_WRITE(EMR, error_mask);
3802
3803 /* Unmask the interrupts that we always want on. */
3804 dev_priv->irq_mask =
3805 ~(I915_ASLE_INTERRUPT |
3806 I915_DISPLAY_PORT_INTERRUPT |
3807 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3808 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3809 I915_MASTER_ERROR_INTERRUPT);
3810
3811 enable_mask =
3812 I915_ASLE_INTERRUPT |
3813 I915_DISPLAY_PORT_INTERRUPT |
3814 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3815 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3816 I915_MASTER_ERROR_INTERRUPT |
3817 I915_USER_INTERRUPT;
3818
3819 if (IS_G4X(dev_priv))
3820 enable_mask |= I915_BSD_USER_INTERRUPT;
3821
3822 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3823
3824 /* Interrupt setup is already guaranteed to be single-threaded, this is
3825 * just to make the assert_spin_locked check happy. */
3826 spin_lock_irq(&dev_priv->irq_lock);
3827 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3828 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3829 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3830 spin_unlock_irq(&dev_priv->irq_lock);
3831
3832 i915_enable_asle_pipestat(dev_priv);
3833 }
3834
3835 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3836 {
3837 u32 hotplug_en;
3838
3839 lockdep_assert_held(&dev_priv->irq_lock);
3840
3841 /* Note HDMI and DP share hotplug bits */
3842 /* enable bits are the same for all generations */
3843 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3844 /* Programming the CRT detection parameters tends
3845 to generate a spurious hotplug event about three
3846 seconds later. So just do it once.
3847 */
3848 if (IS_G4X(dev_priv))
3849 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3850 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3851
3852 /* Ignore TV since it's buggy */
3853 i915_hotplug_interrupt_update_locked(dev_priv,
3854 HOTPLUG_INT_EN_MASK |
3855 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3856 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3857 hotplug_en);
3858 }
3859
3860 static irqreturn_t i965_irq_handler(int irq, void *arg)
3861 {
3862 struct drm_i915_private *dev_priv = arg;
3863 irqreturn_t ret = IRQ_NONE;
3864
3865 if (!intel_irqs_enabled(dev_priv))
3866 return IRQ_NONE;
3867
3868 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3869 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3870
3871 do {
3872 u32 pipe_stats[I915_MAX_PIPES] = {};
3873 u32 eir = 0, eir_stuck = 0;
3874 u32 hotplug_status = 0;
3875 u32 iir;
3876
3877 iir = I915_READ(GEN2_IIR);
3878 if (iir == 0)
3879 break;
3880
3881 ret = IRQ_HANDLED;
3882
3883 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3884 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3885
3886 /* Call regardless, as some status bits might not be
3887 * signalled in iir */
3888 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3889
3890 if (iir & I915_MASTER_ERROR_INTERRUPT)
3891 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3892
3893 I915_WRITE(GEN2_IIR, iir);
3894
3895 if (iir & I915_USER_INTERRUPT)
3896 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3897
3898 if (iir & I915_BSD_USER_INTERRUPT)
3899 intel_engine_signal_breadcrumbs(dev_priv->engine[VCS0]);
3900
3901 if (iir & I915_MASTER_ERROR_INTERRUPT)
3902 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3903
3904 if (hotplug_status)
3905 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3906
3907 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3908 } while (0);
3909
3910 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3911
3912 return ret;
3913 }
3914
3915 /**
3916 * intel_irq_init - initializes irq support
3917 * @dev_priv: i915 device instance
3918 *
3919 * This function initializes all the irq support including work items, timers
3920 * and all the vtables. It does not setup the interrupt itself though.
3921 */
3922 void intel_irq_init(struct drm_i915_private *dev_priv)
3923 {
3924 struct drm_device *dev = &dev_priv->drm;
3925 int i;
3926
3927 intel_hpd_init_work(dev_priv);
3928
3929 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3930 for (i = 0; i < MAX_L3_SLICES; ++i)
3931 dev_priv->l3_parity.remap_info[i] = NULL;
3932
3933 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3934 if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3935 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3936
3937 dev->vblank_disable_immediate = true;
3938
3939 /* Most platforms treat the display irq block as an always-on
3940 * power domain. vlv/chv can disable it at runtime and need
3941 * special care to avoid writing any of the display block registers
3942 * outside of the power domain. We defer setting up the display irqs
3943 * in this case to the runtime pm.
3944 */
3945 dev_priv->display_irqs_enabled = true;
3946 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3947 dev_priv->display_irqs_enabled = false;
3948
3949 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3950 /* If we have MST support, we want to avoid doing short HPD IRQ storm
3951 * detection, as short HPD storms will occur as a natural part of
3952 * sideband messaging with MST.
3953 * On older platforms however, IRQ storms can occur with both long and
3954 * short pulses, as seen on some G4x systems.
3955 */
3956 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
3957
3958 if (HAS_GMCH(dev_priv)) {
3959 if (I915_HAS_HOTPLUG(dev_priv))
3960 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3961 } else {
3962 if (HAS_PCH_JSP(dev_priv))
3963 dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
3964 else if (HAS_PCH_MCC(dev_priv))
3965 dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
3966 else if (INTEL_GEN(dev_priv) >= 11)
3967 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
3968 else if (IS_GEN9_LP(dev_priv))
3969 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
3970 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
3971 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
3972 else
3973 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
3974 }
3975 }
3976
3977 /**
3978 * intel_irq_fini - deinitializes IRQ support
3979 * @i915: i915 device instance
3980 *
3981 * This function deinitializes all the IRQ support.
3982 */
3983 void intel_irq_fini(struct drm_i915_private *i915)
3984 {
3985 int i;
3986
3987 for (i = 0; i < MAX_L3_SLICES; ++i)
3988 kfree(i915->l3_parity.remap_info[i]);
3989 }
3990
3991 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
3992 {
3993 if (HAS_GMCH(dev_priv)) {
3994 if (IS_CHERRYVIEW(dev_priv))
3995 return cherryview_irq_handler;
3996 else if (IS_VALLEYVIEW(dev_priv))
3997 return valleyview_irq_handler;
3998 else if (IS_GEN(dev_priv, 4))
3999 return i965_irq_handler;
4000 else if (IS_GEN(dev_priv, 3))
4001 return i915_irq_handler;
4002 else
4003 return i8xx_irq_handler;
4004 } else {
4005 if (INTEL_GEN(dev_priv) >= 11)
4006 return gen11_irq_handler;
4007 else if (INTEL_GEN(dev_priv) >= 8)
4008 return gen8_irq_handler;
4009 else
4010 return ilk_irq_handler;
4011 }
4012 }
4013
4014 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4015 {
4016 if (HAS_GMCH(dev_priv)) {
4017 if (IS_CHERRYVIEW(dev_priv))
4018 cherryview_irq_reset(dev_priv);
4019 else if (IS_VALLEYVIEW(dev_priv))
4020 valleyview_irq_reset(dev_priv);
4021 else if (IS_GEN(dev_priv, 4))
4022 i965_irq_reset(dev_priv);
4023 else if (IS_GEN(dev_priv, 3))
4024 i915_irq_reset(dev_priv);
4025 else
4026 i8xx_irq_reset(dev_priv);
4027 } else {
4028 if (INTEL_GEN(dev_priv) >= 11)
4029 gen11_irq_reset(dev_priv);
4030 else if (INTEL_GEN(dev_priv) >= 8)
4031 gen8_irq_reset(dev_priv);
4032 else
4033 ilk_irq_reset(dev_priv);
4034 }
4035 }
4036
4037 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4038 {
4039 if (HAS_GMCH(dev_priv)) {
4040 if (IS_CHERRYVIEW(dev_priv))
4041 cherryview_irq_postinstall(dev_priv);
4042 else if (IS_VALLEYVIEW(dev_priv))
4043 valleyview_irq_postinstall(dev_priv);
4044 else if (IS_GEN(dev_priv, 4))
4045 i965_irq_postinstall(dev_priv);
4046 else if (IS_GEN(dev_priv, 3))
4047 i915_irq_postinstall(dev_priv);
4048 else
4049 i8xx_irq_postinstall(dev_priv);
4050 } else {
4051 if (INTEL_GEN(dev_priv) >= 11)
4052 gen11_irq_postinstall(dev_priv);
4053 else if (INTEL_GEN(dev_priv) >= 8)
4054 gen8_irq_postinstall(dev_priv);
4055 else
4056 ilk_irq_postinstall(dev_priv);
4057 }
4058 }
4059
4060 /**
4061 * intel_irq_install - enables the hardware interrupt
4062 * @dev_priv: i915 device instance
4063 *
4064 * This function enables the hardware interrupt handling, but leaves the hotplug
4065 * handling still disabled. It is called after intel_irq_init().
4066 *
4067 * In the driver load and resume code we need working interrupts in a few places
4068 * but don't want to deal with the hassle of concurrent probe and hotplug
4069 * workers. Hence the split into this two-stage approach.
4070 */
4071 int intel_irq_install(struct drm_i915_private *dev_priv)
4072 {
4073 int irq = dev_priv->drm.pdev->irq;
4074 int ret;
4075
4076 /*
4077 * We enable some interrupt sources in our postinstall hooks, so mark
4078 * interrupts as enabled _before_ actually enabling them to avoid
4079 * special cases in our ordering checks.
4080 */
4081 dev_priv->runtime_pm.irqs_enabled = true;
4082
4083 dev_priv->drm.irq_enabled = true;
4084
4085 intel_irq_reset(dev_priv);
4086
4087 ret = request_irq(irq, intel_irq_handler(dev_priv),
4088 IRQF_SHARED, DRIVER_NAME, dev_priv);
4089 if (ret < 0) {
4090 dev_priv->drm.irq_enabled = false;
4091 return ret;
4092 }
4093
4094 intel_irq_postinstall(dev_priv);
4095
4096 return ret;
4097 }
4098
4099 /**
4100 * intel_irq_uninstall - finilizes all irq handling
4101 * @dev_priv: i915 device instance
4102 *
4103 * This stops interrupt and hotplug handling and unregisters and frees all
4104 * resources acquired in the init functions.
4105 */
4106 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4107 {
4108 int irq = dev_priv->drm.pdev->irq;
4109
4110 /*
4111 * FIXME we can get called twice during driver probe
4112 * error handling as well as during driver remove due to
4113 * intel_modeset_driver_remove() calling us out of sequence.
4114 * Would be nice if it didn't do that...
4115 */
4116 if (!dev_priv->drm.irq_enabled)
4117 return;
4118
4119 dev_priv->drm.irq_enabled = false;
4120
4121 intel_irq_reset(dev_priv);
4122
4123 free_irq(irq, dev_priv);
4124
4125 intel_hpd_cancel_work(dev_priv);
4126 dev_priv->runtime_pm.irqs_enabled = false;
4127 }
4128
4129 /**
4130 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4131 * @dev_priv: i915 device instance
4132 *
4133 * This function is used to disable interrupts at runtime, both in the runtime
4134 * pm and the system suspend/resume code.
4135 */
4136 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4137 {
4138 intel_irq_reset(dev_priv);
4139 dev_priv->runtime_pm.irqs_enabled = false;
4140 intel_synchronize_irq(dev_priv);
4141 }
4142
4143 /**
4144 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4145 * @dev_priv: i915 device instance
4146 *
4147 * This function is used to enable interrupts at runtime, both in the runtime
4148 * pm and the system suspend/resume code.
4149 */
4150 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4151 {
4152 dev_priv->runtime_pm.irqs_enabled = true;
4153 intel_irq_reset(dev_priv);
4154 intel_irq_postinstall(dev_priv);
4155 }
4156
4157 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4158 {
4159 /*
4160 * We only use drm_irq_uninstall() at unload and VT switch, so
4161 * this is the only thing we need to check.
4162 */
4163 return dev_priv->runtime_pm.irqs_enabled;
4164 }
4165
4166 void intel_synchronize_irq(struct drm_i915_private *i915)
4167 {
4168 synchronize_irq(i915->drm.pdev->irq);
4169 }