]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/i915_perf.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / i915_perf.c
1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_regs.h"
210 #include "gt/intel_lrc.h"
211 #include "gt/intel_lrc_reg.h"
212 #include "gt/intel_rc6.h"
213 #include "gt/intel_ring.h"
214 #include "gt/uc/intel_guc_slpc.h"
215
216 #include "i915_drv.h"
217 #include "i915_file_private.h"
218 #include "i915_perf.h"
219 #include "i915_perf_oa_regs.h"
220 #include "i915_reg.h"
221
222 /* HW requires this to be a power of two, between 128k and 16M, though driver
223 * is currently generally designed assuming the largest 16M size is used such
224 * that the overflow cases are unlikely in normal operation.
225 */
226 #define OA_BUFFER_SIZE SZ_16M
227
228 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
229
230 /**
231 * DOC: OA Tail Pointer Race
232 *
233 * There's a HW race condition between OA unit tail pointer register updates and
234 * writes to memory whereby the tail pointer can sometimes get ahead of what's
235 * been written out to the OA buffer so far (in terms of what's visible to the
236 * CPU).
237 *
238 * Although this can be observed explicitly while copying reports to userspace
239 * by checking for a zeroed report-id field in tail reports, we want to account
240 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
241 * redundant read() attempts.
242 *
243 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
244 * in the OA buffer, starting from the tail reported by the HW until we find a
245 * report with its first 2 dwords not 0 meaning its previous report is
246 * completely in memory and ready to be read. Those dwords are also set to 0
247 * once read and the whole buffer is cleared upon OA buffer initialization. The
248 * first dword is the reason for this report while the second is the timestamp,
249 * making the chances of having those 2 fields at 0 fairly unlikely. A more
250 * detailed explanation is available in oa_buffer_check_unlocked().
251 *
252 * Most of the implementation details for this workaround are in
253 * oa_buffer_check_unlocked() and _append_oa_reports()
254 *
255 * Note for posterity: previously the driver used to define an effective tail
256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258 * This was flawed considering that the OA unit may also automatically generate
259 * non-periodic reports (such as on context switch) or the OA unit may be
260 * enabled without any periodic sampling.
261 */
262 #define OA_TAIL_MARGIN_NSEC 100000ULL
263 #define INVALID_TAIL_PTR 0xffffffff
264
265 /* The default frequency for checking whether the OA unit has written new
266 * reports to the circular OA buffer...
267 */
268 #define DEFAULT_POLL_FREQUENCY_HZ 200
269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
270
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272 static u32 i915_perf_stream_paranoid = true;
273
274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
275 * of the 64bit timestamp bits to trigger reports from) but there's currently
276 * no known use case for sampling as infrequently as once per 47 thousand years.
277 *
278 * Since the timestamps included in OA reports are only 32bits it seems
279 * reasonable to limit the OA exponent where it's still possible to account for
280 * overflow in OA report timestamps.
281 */
282 #define OA_EXPONENT_MAX 31
283
284 #define INVALID_CTX_ID 0xffffffff
285
286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
287 #define OAREPORT_REASON_MASK 0x3f
288 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
289 #define OAREPORT_REASON_SHIFT 19
290 #define OAREPORT_REASON_TIMER (1<<0)
291 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
292 #define OAREPORT_REASON_CLK_RATIO (1<<5)
293
294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
295
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297 *
298 * The highest sampling frequency we can theoretically program the OA unit
299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300 *
301 * Initialized just before we register the sysctl parameter.
302 */
303 static int oa_sample_rate_hard_limit;
304
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306 * allow that by default unless root...
307 *
308 * The default threshold of 100000Hz is based on perf's similar
309 * kernel.perf_event_max_sample_rate sysctl parameter.
310 */
311 static u32 i915_oa_max_sample_rate = 100000;
312
313 /* XXX: beware if future OA HW adds new report formats that the current
314 * code assumes all reports have a power-of-two size and ~(size - 1) can
315 * be used as a mask to align the OA tail pointer.
316 */
317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
318 [I915_OA_FORMAT_A13] = { 0, 64 },
319 [I915_OA_FORMAT_A29] = { 1, 128 },
320 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
323 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
324 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
325 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
326 [I915_OA_FORMAT_A12] = { 0, 64 },
327 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
328 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
330 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 },
331 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT },
332 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT },
333 };
334
335 static const u32 mtl_oa_base[] = {
336 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
337 };
338
339 #define SAMPLE_OA_REPORT (1<<0)
340
341 /**
342 * struct perf_open_properties - for validated properties given to open a stream
343 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344 * @single_context: Whether a single or all gpu contexts should be monitored
345 * @hold_preemption: Whether the preemption is disabled for the filtered
346 * context
347 * @ctx_handle: A gem ctx handle for use with @single_context
348 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
349 * @oa_format: An OA unit HW report format
350 * @oa_periodic: Whether to enable periodic OA unit sampling
351 * @oa_period_exponent: The OA unit sampling period is derived from this
352 * @engine: The engine (typically rcs0) being monitored by the OA unit
353 * @has_sseu: Whether @sseu was specified by userspace
354 * @sseu: internal SSEU configuration computed either from the userspace
355 * specified configuration in the opening parameters or a default value
356 * (see get_default_sseu_config())
357 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
358 * data availability
359 *
360 * As read_properties_unlocked() enumerates and validates the properties given
361 * to open a stream of metrics the configuration is built up in the structure
362 * which starts out zero initialized.
363 */
364 struct perf_open_properties {
365 u32 sample_flags;
366
367 u64 single_context:1;
368 u64 hold_preemption:1;
369 u64 ctx_handle;
370
371 /* OA sampling state */
372 int metrics_set;
373 int oa_format;
374 bool oa_periodic;
375 int oa_period_exponent;
376
377 struct intel_engine_cs *engine;
378
379 bool has_sseu;
380 struct intel_sseu sseu;
381
382 u64 poll_oa_period;
383 };
384
385 struct i915_oa_config_bo {
386 struct llist_node node;
387
388 struct i915_oa_config *oa_config;
389 struct i915_vma *vma;
390 };
391
392 static struct ctl_table_header *sysctl_header;
393
394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
395
396 void i915_oa_config_release(struct kref *ref)
397 {
398 struct i915_oa_config *oa_config =
399 container_of(ref, typeof(*oa_config), ref);
400
401 kfree(oa_config->flex_regs);
402 kfree(oa_config->b_counter_regs);
403 kfree(oa_config->mux_regs);
404
405 kfree_rcu(oa_config, rcu);
406 }
407
408 struct i915_oa_config *
409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
410 {
411 struct i915_oa_config *oa_config;
412
413 rcu_read_lock();
414 oa_config = idr_find(&perf->metrics_idr, metrics_set);
415 if (oa_config)
416 oa_config = i915_oa_config_get(oa_config);
417 rcu_read_unlock();
418
419 return oa_config;
420 }
421
422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
423 {
424 i915_oa_config_put(oa_bo->oa_config);
425 i915_vma_put(oa_bo->vma);
426 kfree(oa_bo);
427 }
428
429 static inline const
430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
431 {
432 return &stream->engine->oa_group->regs;
433 }
434
435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
436 {
437 struct intel_uncore *uncore = stream->uncore;
438
439 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
440 GEN12_OAG_OATAILPTR_MASK;
441 }
442
443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
444 {
445 struct intel_uncore *uncore = stream->uncore;
446
447 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
448 }
449
450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
451 {
452 struct intel_uncore *uncore = stream->uncore;
453 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
454
455 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
456 }
457
458 #define oa_report_header_64bit(__s) \
459 ((__s)->oa_buffer.format->header == HDR_64_BIT)
460
461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
462 {
463 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
464 }
465
466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
467 {
468 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
469 (GRAPHICS_VER(stream->perf->i915) == 12 ?
470 OAREPORT_REASON_MASK_EXTENDED :
471 OAREPORT_REASON_MASK);
472 }
473
474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
475 {
476 if (oa_report_header_64bit(stream))
477 *(u64 *)report = 0;
478 else
479 *report = 0;
480 }
481
482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
483 {
484 return !(oa_report_id(stream, report) &
485 stream->perf->gen8_valid_ctx_bit) &&
486 GRAPHICS_VER(stream->perf->i915) <= 11;
487 }
488
489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490 {
491 return oa_report_header_64bit(stream) ?
492 *((u64 *)report + 1) :
493 *((u32 *)report + 1);
494 }
495
496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497 {
498 if (oa_report_header_64bit(stream))
499 *(u64 *)&report[2] = 0;
500 else
501 report[1] = 0;
502 }
503
504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505 {
506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507
508 return ctx_id & stream->specific_ctx_id_mask;
509 }
510
511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512 {
513 if (oa_report_header_64bit(stream))
514 report[4] = INVALID_CTX_ID;
515 else
516 report[2] = INVALID_CTX_ID;
517 }
518
519 /**
520 * oa_buffer_check_unlocked - check for data and update tail ptr state
521 * @stream: i915 stream instance
522 *
523 * This is either called via fops (for blocking reads in user ctx) or the poll
524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525 * if there is data available for userspace to read.
526 *
527 * This function is central to providing a workaround for the OA unit tail
528 * pointer having a race with respect to what data is visible to the CPU.
529 * It is responsible for reading tail pointers from the hardware and giving
530 * the pointers time to 'age' before they are made available for reading.
531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532 *
533 * Besides returning true when there is data available to read() this function
534 * also updates the tail in the oa_buffer object.
535 *
536 * Note: It's safe to read OA config state here unlocked, assuming that this is
537 * only called while the stream is enabled, while the global OA configuration
538 * can't be modified.
539 *
540 * Returns: %true if the OA buffer contains data, else %false
541 */
542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
543 {
544 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
545 int report_size = stream->oa_buffer.format->size;
546 u32 head, tail, read_tail;
547 unsigned long flags;
548 bool pollin;
549 u32 hw_tail;
550 u32 partial_report_size;
551
552 /* We have to consider the (unlikely) possibility that read() errors
553 * could result in an OA buffer reset which might reset the head and
554 * tail state.
555 */
556 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
557
558 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
559
560 /* The tail pointer increases in 64 byte increments, not in report_size
561 * steps. Also the report size may not be a power of 2. Compute
562 * potentially partially landed report in the OA buffer
563 */
564 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
565 partial_report_size %= report_size;
566
567 /* Subtract partial amount off the tail */
568 hw_tail = OA_TAKEN(hw_tail, partial_report_size);
569
570 /* NB: The head we observe here might effectively be a little
571 * out of date. If a read() is in progress, the head could be
572 * anywhere between this head and stream->oa_buffer.tail.
573 */
574 head = stream->oa_buffer.head - gtt_offset;
575 read_tail = stream->oa_buffer.tail - gtt_offset;
576
577 tail = hw_tail;
578
579 /* Walk the stream backward until we find a report with report
580 * id and timestmap not at 0. Since the circular buffer pointers
581 * progress by increments of 64 bytes and that reports can be up
582 * to 256 bytes long, we can't tell whether a report has fully
583 * landed in memory before the report id and timestamp of the
584 * following report have effectively landed.
585 *
586 * This is assuming that the writes of the OA unit land in
587 * memory in the order they were written to.
588 * If not : (╯°□°)╯︵ ┻━┻
589 */
590 while (OA_TAKEN(tail, read_tail) >= report_size) {
591 void *report = stream->oa_buffer.vaddr + tail;
592
593 if (oa_report_id(stream, report) ||
594 oa_timestamp(stream, report))
595 break;
596
597 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
598 }
599
600 if (OA_TAKEN(hw_tail, tail) > report_size &&
601 __ratelimit(&stream->perf->tail_pointer_race))
602 drm_notice(&stream->uncore->i915->drm,
603 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
604 head, tail, hw_tail);
605
606 stream->oa_buffer.tail = gtt_offset + tail;
607
608 pollin = OA_TAKEN(stream->oa_buffer.tail,
609 stream->oa_buffer.head) >= report_size;
610
611 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
612
613 return pollin;
614 }
615
616 /**
617 * append_oa_status - Appends a status record to a userspace read() buffer.
618 * @stream: An i915-perf stream opened for OA metrics
619 * @buf: destination buffer given by userspace
620 * @count: the number of bytes userspace wants to read
621 * @offset: (inout): the current position for writing into @buf
622 * @type: The kind of status to report to userspace
623 *
624 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
625 * into the userspace read() buffer.
626 *
627 * The @buf @offset will only be updated on success.
628 *
629 * Returns: 0 on success, negative error code on failure.
630 */
631 static int append_oa_status(struct i915_perf_stream *stream,
632 char __user *buf,
633 size_t count,
634 size_t *offset,
635 enum drm_i915_perf_record_type type)
636 {
637 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
638
639 if ((count - *offset) < header.size)
640 return -ENOSPC;
641
642 if (copy_to_user(buf + *offset, &header, sizeof(header)))
643 return -EFAULT;
644
645 (*offset) += header.size;
646
647 return 0;
648 }
649
650 /**
651 * append_oa_sample - Copies single OA report into userspace read() buffer.
652 * @stream: An i915-perf stream opened for OA metrics
653 * @buf: destination buffer given by userspace
654 * @count: the number of bytes userspace wants to read
655 * @offset: (inout): the current position for writing into @buf
656 * @report: A single OA report to (optionally) include as part of the sample
657 *
658 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
659 * properties when opening a stream, tracked as `stream->sample_flags`. This
660 * function copies the requested components of a single sample to the given
661 * read() @buf.
662 *
663 * The @buf @offset will only be updated on success.
664 *
665 * Returns: 0 on success, negative error code on failure.
666 */
667 static int append_oa_sample(struct i915_perf_stream *stream,
668 char __user *buf,
669 size_t count,
670 size_t *offset,
671 const u8 *report)
672 {
673 int report_size = stream->oa_buffer.format->size;
674 struct drm_i915_perf_record_header header;
675 int report_size_partial;
676 u8 *oa_buf_end;
677
678 header.type = DRM_I915_PERF_RECORD_SAMPLE;
679 header.pad = 0;
680 header.size = stream->sample_size;
681
682 if ((count - *offset) < header.size)
683 return -ENOSPC;
684
685 buf += *offset;
686 if (copy_to_user(buf, &header, sizeof(header)))
687 return -EFAULT;
688 buf += sizeof(header);
689
690 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
691 report_size_partial = oa_buf_end - report;
692
693 if (report_size_partial < report_size) {
694 if (copy_to_user(buf, report, report_size_partial))
695 return -EFAULT;
696 buf += report_size_partial;
697
698 if (copy_to_user(buf, stream->oa_buffer.vaddr,
699 report_size - report_size_partial))
700 return -EFAULT;
701 } else if (copy_to_user(buf, report, report_size)) {
702 return -EFAULT;
703 }
704
705 (*offset) += header.size;
706
707 return 0;
708 }
709
710 /**
711 * gen8_append_oa_reports - Copies all buffered OA reports into
712 * userspace read() buffer.
713 * @stream: An i915-perf stream opened for OA metrics
714 * @buf: destination buffer given by userspace
715 * @count: the number of bytes userspace wants to read
716 * @offset: (inout): the current position for writing into @buf
717 *
718 * Notably any error condition resulting in a short read (-%ENOSPC or
719 * -%EFAULT) will be returned even though one or more records may
720 * have been successfully copied. In this case it's up to the caller
721 * to decide if the error should be squashed before returning to
722 * userspace.
723 *
724 * Note: reports are consumed from the head, and appended to the
725 * tail, so the tail chases the head?... If you think that's mad
726 * and back-to-front you're not alone, but this follows the
727 * Gen PRM naming convention.
728 *
729 * Returns: 0 on success, negative error code on failure.
730 */
731 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
732 char __user *buf,
733 size_t count,
734 size_t *offset)
735 {
736 struct intel_uncore *uncore = stream->uncore;
737 int report_size = stream->oa_buffer.format->size;
738 u8 *oa_buf_base = stream->oa_buffer.vaddr;
739 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
740 u32 mask = (OA_BUFFER_SIZE - 1);
741 size_t start_offset = *offset;
742 unsigned long flags;
743 u32 head, tail;
744 int ret = 0;
745
746 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
747 return -EIO;
748
749 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
750
751 head = stream->oa_buffer.head;
752 tail = stream->oa_buffer.tail;
753
754 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
755
756 /*
757 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
758 * while indexing relative to oa_buf_base.
759 */
760 head -= gtt_offset;
761 tail -= gtt_offset;
762
763 /*
764 * An out of bounds or misaligned head or tail pointer implies a driver
765 * bug since we validate + align the tail pointers we read from the
766 * hardware and we are in full control of the head pointer which should
767 * only be incremented by multiples of the report size.
768 */
769 if (drm_WARN_ONCE(&uncore->i915->drm,
770 head > OA_BUFFER_SIZE ||
771 tail > OA_BUFFER_SIZE,
772 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
773 head, tail))
774 return -EIO;
775
776
777 for (/* none */;
778 OA_TAKEN(tail, head);
779 head = (head + report_size) & mask) {
780 u8 *report = oa_buf_base + head;
781 u32 *report32 = (void *)report;
782 u32 ctx_id;
783 u64 reason;
784
785 /*
786 * The reason field includes flags identifying what
787 * triggered this specific report (mostly timer
788 * triggered or e.g. due to a context switch).
789 *
790 * In MMIO triggered reports, some platforms do not set the
791 * reason bit in this field and it is valid to have a reason
792 * field of zero.
793 */
794 reason = oa_report_reason(stream, report);
795 ctx_id = oa_context_id(stream, report32);
796
797 /*
798 * Squash whatever is in the CTX_ID field if it's marked as
799 * invalid to be sure we avoid false-positive, single-context
800 * filtering below...
801 *
802 * Note: that we don't clear the valid_ctx_bit so userspace can
803 * understand that the ID has been squashed by the kernel.
804 */
805 if (oa_report_ctx_invalid(stream, report)) {
806 ctx_id = INVALID_CTX_ID;
807 oa_context_id_squash(stream, report32);
808 }
809
810 /*
811 * NB: For Gen 8 the OA unit no longer supports clock gating
812 * off for a specific context and the kernel can't securely
813 * stop the counters from updating as system-wide / global
814 * values.
815 *
816 * Automatic reports now include a context ID so reports can be
817 * filtered on the cpu but it's not worth trying to
818 * automatically subtract/hide counter progress for other
819 * contexts while filtering since we can't stop userspace
820 * issuing MI_REPORT_PERF_COUNT commands which would still
821 * provide a side-band view of the real values.
822 *
823 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
824 * to normalize counters for a single filtered context then it
825 * needs be forwarded bookend context-switch reports so that it
826 * can track switches in between MI_REPORT_PERF_COUNT commands
827 * and can itself subtract/ignore the progress of counters
828 * associated with other contexts. Note that the hardware
829 * automatically triggers reports when switching to a new
830 * context which are tagged with the ID of the newly active
831 * context. To avoid the complexity (and likely fragility) of
832 * reading ahead while parsing reports to try and minimize
833 * forwarding redundant context switch reports (i.e. between
834 * other, unrelated contexts) we simply elect to forward them
835 * all.
836 *
837 * We don't rely solely on the reason field to identify context
838 * switches since it's not-uncommon for periodic samples to
839 * identify a switch before any 'context switch' report.
840 */
841 if (!stream->ctx ||
842 stream->specific_ctx_id == ctx_id ||
843 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
844 reason & OAREPORT_REASON_CTX_SWITCH) {
845
846 /*
847 * While filtering for a single context we avoid
848 * leaking the IDs of other contexts.
849 */
850 if (stream->ctx &&
851 stream->specific_ctx_id != ctx_id) {
852 oa_context_id_squash(stream, report32);
853 }
854
855 ret = append_oa_sample(stream, buf, count, offset,
856 report);
857 if (ret)
858 break;
859
860 stream->oa_buffer.last_ctx_id = ctx_id;
861 }
862
863 if (is_power_of_2(report_size)) {
864 /*
865 * Clear out the report id and timestamp as a means
866 * to detect unlanded reports.
867 */
868 oa_report_id_clear(stream, report32);
869 oa_timestamp_clear(stream, report32);
870 } else {
871 u8 *oa_buf_end = stream->oa_buffer.vaddr +
872 OA_BUFFER_SIZE;
873 u32 part = oa_buf_end - (u8 *)report32;
874
875 /* Zero out the entire report */
876 if (report_size <= part) {
877 memset(report32, 0, report_size);
878 } else {
879 memset(report32, 0, part);
880 memset(oa_buf_base, 0, report_size - part);
881 }
882 }
883 }
884
885 if (start_offset != *offset) {
886 i915_reg_t oaheadptr;
887
888 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
889 __oa_regs(stream)->oa_head_ptr :
890 GEN8_OAHEADPTR;
891
892 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
893
894 /*
895 * We removed the gtt_offset for the copy loop above, indexing
896 * relative to oa_buf_base so put back here...
897 */
898 head += gtt_offset;
899 intel_uncore_write(uncore, oaheadptr,
900 head & GEN12_OAG_OAHEADPTR_MASK);
901 stream->oa_buffer.head = head;
902
903 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
904 }
905
906 return ret;
907 }
908
909 /**
910 * gen8_oa_read - copy status records then buffered OA reports
911 * @stream: An i915-perf stream opened for OA metrics
912 * @buf: destination buffer given by userspace
913 * @count: the number of bytes userspace wants to read
914 * @offset: (inout): the current position for writing into @buf
915 *
916 * Checks OA unit status registers and if necessary appends corresponding
917 * status records for userspace (such as for a buffer full condition) and then
918 * initiate appending any buffered OA reports.
919 *
920 * Updates @offset according to the number of bytes successfully copied into
921 * the userspace buffer.
922 *
923 * NB: some data may be successfully copied to the userspace buffer
924 * even if an error is returned, and this is reflected in the
925 * updated @offset.
926 *
927 * Returns: zero on success or a negative error code
928 */
929 static int gen8_oa_read(struct i915_perf_stream *stream,
930 char __user *buf,
931 size_t count,
932 size_t *offset)
933 {
934 struct intel_uncore *uncore = stream->uncore;
935 u32 oastatus;
936 i915_reg_t oastatus_reg;
937 int ret;
938
939 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
940 return -EIO;
941
942 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
943 __oa_regs(stream)->oa_status :
944 GEN8_OASTATUS;
945
946 oastatus = intel_uncore_read(uncore, oastatus_reg);
947
948 /*
949 * We treat OABUFFER_OVERFLOW as a significant error:
950 *
951 * Although theoretically we could handle this more gracefully
952 * sometimes, some Gens don't correctly suppress certain
953 * automatically triggered reports in this condition and so we
954 * have to assume that old reports are now being trampled
955 * over.
956 *
957 * Considering how we don't currently give userspace control
958 * over the OA buffer size and always configure a large 16MB
959 * buffer, then a buffer overflow does anyway likely indicate
960 * that something has gone quite badly wrong.
961 */
962 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
963 ret = append_oa_status(stream, buf, count, offset,
964 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
965 if (ret)
966 return ret;
967
968 drm_dbg(&stream->perf->i915->drm,
969 "OA buffer overflow (exponent = %d): force restart\n",
970 stream->period_exponent);
971
972 stream->perf->ops.oa_disable(stream);
973 stream->perf->ops.oa_enable(stream);
974
975 /*
976 * Note: .oa_enable() is expected to re-init the oabuffer and
977 * reset GEN8_OASTATUS for us
978 */
979 oastatus = intel_uncore_read(uncore, oastatus_reg);
980 }
981
982 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
983 ret = append_oa_status(stream, buf, count, offset,
984 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
985 if (ret)
986 return ret;
987
988 intel_uncore_rmw(uncore, oastatus_reg,
989 GEN8_OASTATUS_COUNTER_OVERFLOW |
990 GEN8_OASTATUS_REPORT_LOST,
991 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
992 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
993 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
994 }
995
996 return gen8_append_oa_reports(stream, buf, count, offset);
997 }
998
999 /**
1000 * gen7_append_oa_reports - Copies all buffered OA reports into
1001 * userspace read() buffer.
1002 * @stream: An i915-perf stream opened for OA metrics
1003 * @buf: destination buffer given by userspace
1004 * @count: the number of bytes userspace wants to read
1005 * @offset: (inout): the current position for writing into @buf
1006 *
1007 * Notably any error condition resulting in a short read (-%ENOSPC or
1008 * -%EFAULT) will be returned even though one or more records may
1009 * have been successfully copied. In this case it's up to the caller
1010 * to decide if the error should be squashed before returning to
1011 * userspace.
1012 *
1013 * Note: reports are consumed from the head, and appended to the
1014 * tail, so the tail chases the head?... If you think that's mad
1015 * and back-to-front you're not alone, but this follows the
1016 * Gen PRM naming convention.
1017 *
1018 * Returns: 0 on success, negative error code on failure.
1019 */
1020 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1021 char __user *buf,
1022 size_t count,
1023 size_t *offset)
1024 {
1025 struct intel_uncore *uncore = stream->uncore;
1026 int report_size = stream->oa_buffer.format->size;
1027 u8 *oa_buf_base = stream->oa_buffer.vaddr;
1028 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1029 u32 mask = (OA_BUFFER_SIZE - 1);
1030 size_t start_offset = *offset;
1031 unsigned long flags;
1032 u32 head, tail;
1033 int ret = 0;
1034
1035 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1036 return -EIO;
1037
1038 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1039
1040 head = stream->oa_buffer.head;
1041 tail = stream->oa_buffer.tail;
1042
1043 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1044
1045 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1046 * while indexing relative to oa_buf_base.
1047 */
1048 head -= gtt_offset;
1049 tail -= gtt_offset;
1050
1051 /* An out of bounds or misaligned head or tail pointer implies a driver
1052 * bug since we validate + align the tail pointers we read from the
1053 * hardware and we are in full control of the head pointer which should
1054 * only be incremented by multiples of the report size (notably also
1055 * all a power of two).
1056 */
1057 if (drm_WARN_ONCE(&uncore->i915->drm,
1058 head > OA_BUFFER_SIZE || head % report_size ||
1059 tail > OA_BUFFER_SIZE || tail % report_size,
1060 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1061 head, tail))
1062 return -EIO;
1063
1064
1065 for (/* none */;
1066 OA_TAKEN(tail, head);
1067 head = (head + report_size) & mask) {
1068 u8 *report = oa_buf_base + head;
1069 u32 *report32 = (void *)report;
1070
1071 /* All the report sizes factor neatly into the buffer
1072 * size so we never expect to see a report split
1073 * between the beginning and end of the buffer.
1074 *
1075 * Given the initial alignment check a misalignment
1076 * here would imply a driver bug that would result
1077 * in an overrun.
1078 */
1079 if (drm_WARN_ON(&uncore->i915->drm,
1080 (OA_BUFFER_SIZE - head) < report_size)) {
1081 drm_err(&uncore->i915->drm,
1082 "Spurious OA head ptr: non-integral report offset\n");
1083 break;
1084 }
1085
1086 /* The report-ID field for periodic samples includes
1087 * some undocumented flags related to what triggered
1088 * the report and is never expected to be zero so we
1089 * can check that the report isn't invalid before
1090 * copying it to userspace...
1091 */
1092 if (report32[0] == 0) {
1093 if (__ratelimit(&stream->perf->spurious_report_rs))
1094 drm_notice(&uncore->i915->drm,
1095 "Skipping spurious, invalid OA report\n");
1096 continue;
1097 }
1098
1099 ret = append_oa_sample(stream, buf, count, offset, report);
1100 if (ret)
1101 break;
1102
1103 /* Clear out the first 2 dwords as a mean to detect unlanded
1104 * reports.
1105 */
1106 report32[0] = 0;
1107 report32[1] = 0;
1108 }
1109
1110 if (start_offset != *offset) {
1111 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1112
1113 /* We removed the gtt_offset for the copy loop above, indexing
1114 * relative to oa_buf_base so put back here...
1115 */
1116 head += gtt_offset;
1117
1118 intel_uncore_write(uncore, GEN7_OASTATUS2,
1119 (head & GEN7_OASTATUS2_HEAD_MASK) |
1120 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1121 stream->oa_buffer.head = head;
1122
1123 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1124 }
1125
1126 return ret;
1127 }
1128
1129 /**
1130 * gen7_oa_read - copy status records then buffered OA reports
1131 * @stream: An i915-perf stream opened for OA metrics
1132 * @buf: destination buffer given by userspace
1133 * @count: the number of bytes userspace wants to read
1134 * @offset: (inout): the current position for writing into @buf
1135 *
1136 * Checks Gen 7 specific OA unit status registers and if necessary appends
1137 * corresponding status records for userspace (such as for a buffer full
1138 * condition) and then initiate appending any buffered OA reports.
1139 *
1140 * Updates @offset according to the number of bytes successfully copied into
1141 * the userspace buffer.
1142 *
1143 * Returns: zero on success or a negative error code
1144 */
1145 static int gen7_oa_read(struct i915_perf_stream *stream,
1146 char __user *buf,
1147 size_t count,
1148 size_t *offset)
1149 {
1150 struct intel_uncore *uncore = stream->uncore;
1151 u32 oastatus1;
1152 int ret;
1153
1154 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1155 return -EIO;
1156
1157 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1158
1159 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1160 * bits while the OA unit is enabled (while the tail pointer
1161 * may be updated asynchronously) so we ignore status bits
1162 * that have already been reported to userspace.
1163 */
1164 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1165
1166 /* We treat OABUFFER_OVERFLOW as a significant error:
1167 *
1168 * - The status can be interpreted to mean that the buffer is
1169 * currently full (with a higher precedence than OA_TAKEN()
1170 * which will start to report a near-empty buffer after an
1171 * overflow) but it's awkward that we can't clear the status
1172 * on Haswell, so without a reset we won't be able to catch
1173 * the state again.
1174 *
1175 * - Since it also implies the HW has started overwriting old
1176 * reports it may also affect our sanity checks for invalid
1177 * reports when copying to userspace that assume new reports
1178 * are being written to cleared memory.
1179 *
1180 * - In the future we may want to introduce a flight recorder
1181 * mode where the driver will automatically maintain a safe
1182 * guard band between head/tail, avoiding this overflow
1183 * condition, but we avoid the added driver complexity for
1184 * now.
1185 */
1186 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1187 ret = append_oa_status(stream, buf, count, offset,
1188 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1189 if (ret)
1190 return ret;
1191
1192 drm_dbg(&stream->perf->i915->drm,
1193 "OA buffer overflow (exponent = %d): force restart\n",
1194 stream->period_exponent);
1195
1196 stream->perf->ops.oa_disable(stream);
1197 stream->perf->ops.oa_enable(stream);
1198
1199 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1200 }
1201
1202 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1203 ret = append_oa_status(stream, buf, count, offset,
1204 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1205 if (ret)
1206 return ret;
1207 stream->perf->gen7_latched_oastatus1 |=
1208 GEN7_OASTATUS1_REPORT_LOST;
1209 }
1210
1211 return gen7_append_oa_reports(stream, buf, count, offset);
1212 }
1213
1214 /**
1215 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1216 * @stream: An i915-perf stream opened for OA metrics
1217 *
1218 * Called when userspace tries to read() from a blocking stream FD opened
1219 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1220 * OA buffer and wakes us.
1221 *
1222 * Note: it's acceptable to have this return with some false positives
1223 * since any subsequent read handling will return -EAGAIN if there isn't
1224 * really data ready for userspace yet.
1225 *
1226 * Returns: zero on success or a negative error code
1227 */
1228 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1229 {
1230 /* We would wait indefinitely if periodic sampling is not enabled */
1231 if (!stream->periodic)
1232 return -EIO;
1233
1234 return wait_event_interruptible(stream->poll_wq,
1235 oa_buffer_check_unlocked(stream));
1236 }
1237
1238 /**
1239 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1240 * @stream: An i915-perf stream opened for OA metrics
1241 * @file: An i915 perf stream file
1242 * @wait: poll() state table
1243 *
1244 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1245 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1246 * when it sees data ready to read in the circular OA buffer.
1247 */
1248 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1249 struct file *file,
1250 poll_table *wait)
1251 {
1252 poll_wait(file, &stream->poll_wq, wait);
1253 }
1254
1255 /**
1256 * i915_oa_read - just calls through to &i915_oa_ops->read
1257 * @stream: An i915-perf stream opened for OA metrics
1258 * @buf: destination buffer given by userspace
1259 * @count: the number of bytes userspace wants to read
1260 * @offset: (inout): the current position for writing into @buf
1261 *
1262 * Updates @offset according to the number of bytes successfully copied into
1263 * the userspace buffer.
1264 *
1265 * Returns: zero on success or a negative error code
1266 */
1267 static int i915_oa_read(struct i915_perf_stream *stream,
1268 char __user *buf,
1269 size_t count,
1270 size_t *offset)
1271 {
1272 return stream->perf->ops.read(stream, buf, count, offset);
1273 }
1274
1275 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1276 {
1277 struct i915_gem_engines_iter it;
1278 struct i915_gem_context *ctx = stream->ctx;
1279 struct intel_context *ce;
1280 struct i915_gem_ww_ctx ww;
1281 int err = -ENODEV;
1282
1283 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1284 if (ce->engine != stream->engine) /* first match! */
1285 continue;
1286
1287 err = 0;
1288 break;
1289 }
1290 i915_gem_context_unlock_engines(ctx);
1291
1292 if (err)
1293 return ERR_PTR(err);
1294
1295 i915_gem_ww_ctx_init(&ww, true);
1296 retry:
1297 /*
1298 * As the ID is the gtt offset of the context's vma we
1299 * pin the vma to ensure the ID remains fixed.
1300 */
1301 err = intel_context_pin_ww(ce, &ww);
1302 if (err == -EDEADLK) {
1303 err = i915_gem_ww_ctx_backoff(&ww);
1304 if (!err)
1305 goto retry;
1306 }
1307 i915_gem_ww_ctx_fini(&ww);
1308
1309 if (err)
1310 return ERR_PTR(err);
1311
1312 stream->pinned_ctx = ce;
1313 return stream->pinned_ctx;
1314 }
1315
1316 static int
1317 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1318 {
1319 u32 *cs, cmd;
1320
1321 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1322 if (GRAPHICS_VER(rq->i915) >= 8)
1323 cmd++;
1324
1325 cs = intel_ring_begin(rq, 4);
1326 if (IS_ERR(cs))
1327 return PTR_ERR(cs);
1328
1329 *cs++ = cmd;
1330 *cs++ = i915_mmio_reg_offset(reg);
1331 *cs++ = ggtt_offset;
1332 *cs++ = 0;
1333
1334 intel_ring_advance(rq, cs);
1335
1336 return 0;
1337 }
1338
1339 static int
1340 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1341 {
1342 struct i915_request *rq;
1343 int err;
1344
1345 rq = i915_request_create(ce);
1346 if (IS_ERR(rq))
1347 return PTR_ERR(rq);
1348
1349 i915_request_get(rq);
1350
1351 err = __store_reg_to_mem(rq, reg, ggtt_offset);
1352
1353 i915_request_add(rq);
1354 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1355 err = -ETIME;
1356
1357 i915_request_put(rq);
1358
1359 return err;
1360 }
1361
1362 static int
1363 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1364 {
1365 struct i915_vma *scratch;
1366 u32 *val;
1367 int err;
1368
1369 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1370 if (IS_ERR(scratch))
1371 return PTR_ERR(scratch);
1372
1373 err = i915_vma_sync(scratch);
1374 if (err)
1375 goto err_scratch;
1376
1377 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1378 i915_ggtt_offset(scratch));
1379 if (err)
1380 goto err_scratch;
1381
1382 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1383 if (IS_ERR(val)) {
1384 err = PTR_ERR(val);
1385 goto err_scratch;
1386 }
1387
1388 *ctx_id = *val;
1389 i915_gem_object_unpin_map(scratch->obj);
1390
1391 err_scratch:
1392 i915_vma_unpin_and_release(&scratch, 0);
1393 return err;
1394 }
1395
1396 /*
1397 * For execlist mode of submission, pick an unused context id
1398 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1399 * XXX_MAX_CONTEXT_HW_ID is used by idle context
1400 *
1401 * For GuC mode of submission read context id from the upper dword of the
1402 * EXECLIST_STATUS register. Note that we read this value only once and expect
1403 * that the value stays fixed for the entire OA use case. There are cases where
1404 * GuC KMD implementation may deregister a context to reuse it's context id, but
1405 * we prevent that from happening to the OA context by pinning it.
1406 */
1407 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1408 {
1409 u32 ctx_id, mask;
1410 int ret;
1411
1412 if (intel_engine_uses_guc(stream->engine)) {
1413 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1414 if (ret)
1415 return ret;
1416
1417 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1418 (GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1419 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1420 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1421 (XEHP_SW_CTX_ID_SHIFT - 32);
1422
1423 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1424 (XEHP_SW_CTX_ID_SHIFT - 32);
1425 } else {
1426 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1427 (GEN11_SW_CTX_ID_SHIFT - 32);
1428
1429 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1430 (GEN11_SW_CTX_ID_SHIFT - 32);
1431 }
1432 stream->specific_ctx_id = ctx_id & mask;
1433 stream->specific_ctx_id_mask = mask;
1434
1435 return 0;
1436 }
1437
1438 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1439 {
1440 u32 idx = *offset;
1441 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1442 bool found = false;
1443
1444 idx++;
1445 for (; idx < len; idx += 2) {
1446 if (state[idx] == reg) {
1447 found = true;
1448 break;
1449 }
1450 }
1451
1452 *offset = idx;
1453 return found;
1454 }
1455
1456 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1457 {
1458 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1459 u32 *state = ce->lrc_reg_state;
1460
1461 if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1462 return U32_MAX;
1463
1464 for (offset = 0; offset < len; ) {
1465 if (IS_MI_LRI_CMD(state[offset])) {
1466 /*
1467 * We expect reg-value pairs in MI_LRI command, so
1468 * MI_LRI_LEN() should be even, if not, issue a warning.
1469 */
1470 drm_WARN_ON(&ce->engine->i915->drm,
1471 MI_LRI_LEN(state[offset]) & 0x1);
1472
1473 if (oa_find_reg_in_lri(state, reg, &offset, len))
1474 break;
1475 } else {
1476 offset++;
1477 }
1478 }
1479
1480 return offset < len ? offset : U32_MAX;
1481 }
1482
1483 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1484 {
1485 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1486 struct i915_perf *perf = &ce->engine->i915->perf;
1487 u32 offset = perf->ctx_oactxctrl_offset;
1488
1489 /* Do this only once. Failure is stored as offset of U32_MAX */
1490 if (offset)
1491 goto exit;
1492
1493 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1494 perf->ctx_oactxctrl_offset = offset;
1495
1496 drm_dbg(&ce->engine->i915->drm,
1497 "%s oa ctx control at 0x%08x dword offset\n",
1498 ce->engine->name, offset);
1499
1500 exit:
1501 return offset && offset != U32_MAX ? 0 : -ENODEV;
1502 }
1503
1504 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1505 {
1506 return engine->class == RENDER_CLASS;
1507 }
1508
1509 /**
1510 * oa_get_render_ctx_id - determine and hold ctx hw id
1511 * @stream: An i915-perf stream opened for OA metrics
1512 *
1513 * Determine the render context hw id, and ensure it remains fixed for the
1514 * lifetime of the stream. This ensures that we don't have to worry about
1515 * updating the context ID in OACONTROL on the fly.
1516 *
1517 * Returns: zero on success or a negative error code
1518 */
1519 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1520 {
1521 struct intel_context *ce;
1522 int ret = 0;
1523
1524 ce = oa_pin_context(stream);
1525 if (IS_ERR(ce))
1526 return PTR_ERR(ce);
1527
1528 if (engine_supports_mi_query(stream->engine) &&
1529 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1530 /*
1531 * We are enabling perf query here. If we don't find the context
1532 * offset here, just return an error.
1533 */
1534 ret = set_oa_ctx_ctrl_offset(ce);
1535 if (ret) {
1536 intel_context_unpin(ce);
1537 drm_err(&stream->perf->i915->drm,
1538 "Enabling perf query failed for %s\n",
1539 stream->engine->name);
1540 return ret;
1541 }
1542 }
1543
1544 switch (GRAPHICS_VER(ce->engine->i915)) {
1545 case 7: {
1546 /*
1547 * On Haswell we don't do any post processing of the reports
1548 * and don't need to use the mask.
1549 */
1550 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1551 stream->specific_ctx_id_mask = 0;
1552 break;
1553 }
1554
1555 case 8:
1556 case 9:
1557 if (intel_engine_uses_guc(ce->engine)) {
1558 /*
1559 * When using GuC, the context descriptor we write in
1560 * i915 is read by GuC and rewritten before it's
1561 * actually written into the hardware. The LRCA is
1562 * what is put into the context id field of the
1563 * context descriptor by GuC. Because it's aligned to
1564 * a page, the lower 12bits are always at 0 and
1565 * dropped by GuC. They won't be part of the context
1566 * ID in the OA reports, so squash those lower bits.
1567 */
1568 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1569
1570 /*
1571 * GuC uses the top bit to signal proxy submission, so
1572 * ignore that bit.
1573 */
1574 stream->specific_ctx_id_mask =
1575 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1576 } else {
1577 stream->specific_ctx_id_mask =
1578 (1U << GEN8_CTX_ID_WIDTH) - 1;
1579 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1580 }
1581 break;
1582
1583 case 11:
1584 case 12:
1585 ret = gen12_get_render_context_id(stream);
1586 break;
1587
1588 default:
1589 MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1590 }
1591
1592 ce->tag = stream->specific_ctx_id;
1593
1594 drm_dbg(&stream->perf->i915->drm,
1595 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1596 stream->specific_ctx_id,
1597 stream->specific_ctx_id_mask);
1598
1599 return ret;
1600 }
1601
1602 /**
1603 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1604 * @stream: An i915-perf stream opened for OA metrics
1605 *
1606 * In case anything needed doing to ensure the context HW ID would remain valid
1607 * for the lifetime of the stream, then that can be undone here.
1608 */
1609 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1610 {
1611 struct intel_context *ce;
1612
1613 ce = fetch_and_zero(&stream->pinned_ctx);
1614 if (ce) {
1615 ce->tag = 0; /* recomputed on next submission after parking */
1616 intel_context_unpin(ce);
1617 }
1618
1619 stream->specific_ctx_id = INVALID_CTX_ID;
1620 stream->specific_ctx_id_mask = 0;
1621 }
1622
1623 static void
1624 free_oa_buffer(struct i915_perf_stream *stream)
1625 {
1626 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1627 I915_VMA_RELEASE_MAP);
1628
1629 stream->oa_buffer.vaddr = NULL;
1630 }
1631
1632 static void
1633 free_oa_configs(struct i915_perf_stream *stream)
1634 {
1635 struct i915_oa_config_bo *oa_bo, *tmp;
1636
1637 i915_oa_config_put(stream->oa_config);
1638 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1639 free_oa_config_bo(oa_bo);
1640 }
1641
1642 static void
1643 free_noa_wait(struct i915_perf_stream *stream)
1644 {
1645 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1646 }
1647
1648 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1649 {
1650 return engine->oa_group;
1651 }
1652
1653 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1654 {
1655 return engine->oa_group && engine->oa_group->type == type;
1656 }
1657
1658 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1659 {
1660 struct i915_perf *perf = stream->perf;
1661 struct intel_gt *gt = stream->engine->gt;
1662 struct i915_perf_group *g = stream->engine->oa_group;
1663
1664 if (WARN_ON(stream != g->exclusive_stream))
1665 return;
1666
1667 /*
1668 * Unset exclusive_stream first, it will be checked while disabling
1669 * the metric set on gen8+.
1670 *
1671 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1672 */
1673 WRITE_ONCE(g->exclusive_stream, NULL);
1674 perf->ops.disable_metric_set(stream);
1675
1676 free_oa_buffer(stream);
1677
1678 /*
1679 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1680 */
1681 if (stream->override_gucrc)
1682 drm_WARN_ON(&gt->i915->drm,
1683 intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1684
1685 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1686 intel_engine_pm_put(stream->engine);
1687
1688 if (stream->ctx)
1689 oa_put_render_ctx_id(stream);
1690
1691 free_oa_configs(stream);
1692 free_noa_wait(stream);
1693
1694 if (perf->spurious_report_rs.missed) {
1695 drm_notice(&gt->i915->drm,
1696 "%d spurious OA report notices suppressed due to ratelimiting\n",
1697 perf->spurious_report_rs.missed);
1698 }
1699 }
1700
1701 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1702 {
1703 struct intel_uncore *uncore = stream->uncore;
1704 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1705 unsigned long flags;
1706
1707 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1708
1709 /* Pre-DevBDW: OABUFFER must be set with counters off,
1710 * before OASTATUS1, but after OASTATUS2
1711 */
1712 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1713 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1714 stream->oa_buffer.head = gtt_offset;
1715
1716 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1717
1718 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1719 gtt_offset | OABUFFER_SIZE_16M);
1720
1721 /* Mark that we need updated tail pointers to read from... */
1722 stream->oa_buffer.tail = gtt_offset;
1723
1724 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1725
1726 /* On Haswell we have to track which OASTATUS1 flags we've
1727 * already seen since they can't be cleared while periodic
1728 * sampling is enabled.
1729 */
1730 stream->perf->gen7_latched_oastatus1 = 0;
1731
1732 /* NB: although the OA buffer will initially be allocated
1733 * zeroed via shmfs (and so this memset is redundant when
1734 * first allocating), we may re-init the OA buffer, either
1735 * when re-enabling a stream or in error/reset paths.
1736 *
1737 * The reason we clear the buffer for each re-init is for the
1738 * sanity check in gen7_append_oa_reports() that looks at the
1739 * report-id field to make sure it's non-zero which relies on
1740 * the assumption that new reports are being written to zeroed
1741 * memory...
1742 */
1743 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1744 }
1745
1746 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1747 {
1748 struct intel_uncore *uncore = stream->uncore;
1749 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1750 unsigned long flags;
1751
1752 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1753
1754 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1755 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1756 stream->oa_buffer.head = gtt_offset;
1757
1758 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1759
1760 /*
1761 * PRM says:
1762 *
1763 * "This MMIO must be set before the OATAILPTR
1764 * register and after the OAHEADPTR register. This is
1765 * to enable proper functionality of the overflow
1766 * bit."
1767 */
1768 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1769 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1770 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1771
1772 /* Mark that we need updated tail pointers to read from... */
1773 stream->oa_buffer.tail = gtt_offset;
1774
1775 /*
1776 * Reset state used to recognise context switches, affecting which
1777 * reports we will forward to userspace while filtering for a single
1778 * context.
1779 */
1780 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1781
1782 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1783
1784 /*
1785 * NB: although the OA buffer will initially be allocated
1786 * zeroed via shmfs (and so this memset is redundant when
1787 * first allocating), we may re-init the OA buffer, either
1788 * when re-enabling a stream or in error/reset paths.
1789 *
1790 * The reason we clear the buffer for each re-init is for the
1791 * sanity check in gen8_append_oa_reports() that looks at the
1792 * reason field to make sure it's non-zero which relies on
1793 * the assumption that new reports are being written to zeroed
1794 * memory...
1795 */
1796 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1797 }
1798
1799 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1800 {
1801 struct intel_uncore *uncore = stream->uncore;
1802 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1803 unsigned long flags;
1804
1805 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1806
1807 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1808 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1809 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1810 stream->oa_buffer.head = gtt_offset;
1811
1812 /*
1813 * PRM says:
1814 *
1815 * "This MMIO must be set before the OATAILPTR
1816 * register and after the OAHEADPTR register. This is
1817 * to enable proper functionality of the overflow
1818 * bit."
1819 */
1820 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1821 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1822 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1823 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1824
1825 /* Mark that we need updated tail pointers to read from... */
1826 stream->oa_buffer.tail = gtt_offset;
1827
1828 /*
1829 * Reset state used to recognise context switches, affecting which
1830 * reports we will forward to userspace while filtering for a single
1831 * context.
1832 */
1833 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1834
1835 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1836
1837 /*
1838 * NB: although the OA buffer will initially be allocated
1839 * zeroed via shmfs (and so this memset is redundant when
1840 * first allocating), we may re-init the OA buffer, either
1841 * when re-enabling a stream or in error/reset paths.
1842 *
1843 * The reason we clear the buffer for each re-init is for the
1844 * sanity check in gen8_append_oa_reports() that looks at the
1845 * reason field to make sure it's non-zero which relies on
1846 * the assumption that new reports are being written to zeroed
1847 * memory...
1848 */
1849 memset(stream->oa_buffer.vaddr, 0,
1850 stream->oa_buffer.vma->size);
1851 }
1852
1853 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1854 {
1855 struct drm_i915_private *i915 = stream->perf->i915;
1856 struct intel_gt *gt = stream->engine->gt;
1857 struct drm_i915_gem_object *bo;
1858 struct i915_vma *vma;
1859 int ret;
1860
1861 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1862 return -ENODEV;
1863
1864 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1865 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1866
1867 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1868 if (IS_ERR(bo)) {
1869 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1870 return PTR_ERR(bo);
1871 }
1872
1873 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1874
1875 /* PreHSW required 512K alignment, HSW requires 16M */
1876 vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1877 if (IS_ERR(vma)) {
1878 ret = PTR_ERR(vma);
1879 goto err_unref;
1880 }
1881
1882 /*
1883 * PreHSW required 512K alignment.
1884 * HSW and onwards, align to requested size of OA buffer.
1885 */
1886 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1887 if (ret) {
1888 drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1889 goto err_unref;
1890 }
1891
1892 stream->oa_buffer.vma = vma;
1893
1894 stream->oa_buffer.vaddr =
1895 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1896 if (IS_ERR(stream->oa_buffer.vaddr)) {
1897 ret = PTR_ERR(stream->oa_buffer.vaddr);
1898 goto err_unpin;
1899 }
1900
1901 return 0;
1902
1903 err_unpin:
1904 __i915_vma_unpin(vma);
1905
1906 err_unref:
1907 i915_gem_object_put(bo);
1908
1909 stream->oa_buffer.vaddr = NULL;
1910 stream->oa_buffer.vma = NULL;
1911
1912 return ret;
1913 }
1914
1915 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1916 bool save, i915_reg_t reg, u32 offset,
1917 u32 dword_count)
1918 {
1919 u32 cmd;
1920 u32 d;
1921
1922 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1923 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1924 if (GRAPHICS_VER(stream->perf->i915) >= 8)
1925 cmd++;
1926
1927 for (d = 0; d < dword_count; d++) {
1928 *cs++ = cmd;
1929 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1930 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1931 *cs++ = 0;
1932 }
1933
1934 return cs;
1935 }
1936
1937 static int alloc_noa_wait(struct i915_perf_stream *stream)
1938 {
1939 struct drm_i915_private *i915 = stream->perf->i915;
1940 struct intel_gt *gt = stream->engine->gt;
1941 struct drm_i915_gem_object *bo;
1942 struct i915_vma *vma;
1943 const u64 delay_ticks = 0xffffffffffffffff -
1944 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1945 atomic64_read(&stream->perf->noa_programming_delay));
1946 const u32 base = stream->engine->mmio_base;
1947 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1948 u32 *batch, *ts0, *cs, *jump;
1949 struct i915_gem_ww_ctx ww;
1950 int ret, i;
1951 enum {
1952 START_TS,
1953 NOW_TS,
1954 DELTA_TS,
1955 JUMP_PREDICATE,
1956 DELTA_TARGET,
1957 N_CS_GPR
1958 };
1959 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1960 MI_PREDICATE_RESULT_2_ENGINE(base) :
1961 MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1962
1963 /*
1964 * gt->scratch was being used to save/restore the GPR registers, but on
1965 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1966 * causes an engine hang. Instead allocate an additional page here to
1967 * save/restore GPR registers
1968 */
1969 bo = i915_gem_object_create_internal(i915, 8192);
1970 if (IS_ERR(bo)) {
1971 drm_err(&i915->drm,
1972 "Failed to allocate NOA wait batchbuffer\n");
1973 return PTR_ERR(bo);
1974 }
1975
1976 i915_gem_ww_ctx_init(&ww, true);
1977 retry:
1978 ret = i915_gem_object_lock(bo, &ww);
1979 if (ret)
1980 goto out_ww;
1981
1982 /*
1983 * We pin in GGTT because we jump into this buffer now because
1984 * multiple OA config BOs will have a jump to this address and it
1985 * needs to be fixed during the lifetime of the i915/perf stream.
1986 */
1987 vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1988 if (IS_ERR(vma)) {
1989 ret = PTR_ERR(vma);
1990 goto out_ww;
1991 }
1992
1993 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1994 if (ret)
1995 goto out_ww;
1996
1997 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1998 if (IS_ERR(batch)) {
1999 ret = PTR_ERR(batch);
2000 goto err_unpin;
2001 }
2002
2003 stream->noa_wait = vma;
2004
2005 #define GPR_SAVE_OFFSET 4096
2006 #define PREDICATE_SAVE_OFFSET 4160
2007
2008 /* Save registers. */
2009 for (i = 0; i < N_CS_GPR; i++)
2010 cs = save_restore_register(
2011 stream, cs, true /* save */, CS_GPR(i),
2012 GPR_SAVE_OFFSET + 8 * i, 2);
2013 cs = save_restore_register(
2014 stream, cs, true /* save */, mi_predicate_result,
2015 PREDICATE_SAVE_OFFSET, 1);
2016
2017 /* First timestamp snapshot location. */
2018 ts0 = cs;
2019
2020 /*
2021 * Initial snapshot of the timestamp register to implement the wait.
2022 * We work with 32b values, so clear out the top 32b bits of the
2023 * register because the ALU works 64bits.
2024 */
2025 *cs++ = MI_LOAD_REGISTER_IMM(1);
2026 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2027 *cs++ = 0;
2028 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2029 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2030 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2031
2032 /*
2033 * This is the location we're going to jump back into until the
2034 * required amount of time has passed.
2035 */
2036 jump = cs;
2037
2038 /*
2039 * Take another snapshot of the timestamp register. Take care to clear
2040 * up the top 32bits of CS_GPR(1) as we're using it for other
2041 * operations below.
2042 */
2043 *cs++ = MI_LOAD_REGISTER_IMM(1);
2044 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2045 *cs++ = 0;
2046 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2047 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2048 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2049
2050 /*
2051 * Do a diff between the 2 timestamps and store the result back into
2052 * CS_GPR(1).
2053 */
2054 *cs++ = MI_MATH(5);
2055 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2056 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2057 *cs++ = MI_MATH_SUB;
2058 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2059 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2060
2061 /*
2062 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2063 * timestamp have rolled over the 32bits) into the predicate register
2064 * to be used for the predicated jump.
2065 */
2066 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2067 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2068 *cs++ = i915_mmio_reg_offset(mi_predicate_result);
2069
2070 if (HAS_MI_SET_PREDICATE(i915))
2071 *cs++ = MI_SET_PREDICATE | 1;
2072
2073 /* Restart from the beginning if we had timestamps roll over. */
2074 *cs++ = (GRAPHICS_VER(i915) < 8 ?
2075 MI_BATCH_BUFFER_START :
2076 MI_BATCH_BUFFER_START_GEN8) |
2077 MI_BATCH_PREDICATE;
2078 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2079 *cs++ = 0;
2080
2081 if (HAS_MI_SET_PREDICATE(i915))
2082 *cs++ = MI_SET_PREDICATE;
2083
2084 /*
2085 * Now add the diff between to previous timestamps and add it to :
2086 * (((1 * << 64) - 1) - delay_ns)
2087 *
2088 * When the Carry Flag contains 1 this means the elapsed time is
2089 * longer than the expected delay, and we can exit the wait loop.
2090 */
2091 *cs++ = MI_LOAD_REGISTER_IMM(2);
2092 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2093 *cs++ = lower_32_bits(delay_ticks);
2094 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2095 *cs++ = upper_32_bits(delay_ticks);
2096
2097 *cs++ = MI_MATH(4);
2098 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2099 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2100 *cs++ = MI_MATH_ADD;
2101 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2102
2103 *cs++ = MI_ARB_CHECK;
2104
2105 /*
2106 * Transfer the result into the predicate register to be used for the
2107 * predicated jump.
2108 */
2109 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2110 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2111 *cs++ = i915_mmio_reg_offset(mi_predicate_result);
2112
2113 if (HAS_MI_SET_PREDICATE(i915))
2114 *cs++ = MI_SET_PREDICATE | 1;
2115
2116 /* Predicate the jump. */
2117 *cs++ = (GRAPHICS_VER(i915) < 8 ?
2118 MI_BATCH_BUFFER_START :
2119 MI_BATCH_BUFFER_START_GEN8) |
2120 MI_BATCH_PREDICATE;
2121 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2122 *cs++ = 0;
2123
2124 if (HAS_MI_SET_PREDICATE(i915))
2125 *cs++ = MI_SET_PREDICATE;
2126
2127 /* Restore registers. */
2128 for (i = 0; i < N_CS_GPR; i++)
2129 cs = save_restore_register(
2130 stream, cs, false /* restore */, CS_GPR(i),
2131 GPR_SAVE_OFFSET + 8 * i, 2);
2132 cs = save_restore_register(
2133 stream, cs, false /* restore */, mi_predicate_result,
2134 PREDICATE_SAVE_OFFSET, 1);
2135
2136 /* And return to the ring. */
2137 *cs++ = MI_BATCH_BUFFER_END;
2138
2139 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2140
2141 i915_gem_object_flush_map(bo);
2142 __i915_gem_object_release_map(bo);
2143
2144 goto out_ww;
2145
2146 err_unpin:
2147 i915_vma_unpin_and_release(&vma, 0);
2148 out_ww:
2149 if (ret == -EDEADLK) {
2150 ret = i915_gem_ww_ctx_backoff(&ww);
2151 if (!ret)
2152 goto retry;
2153 }
2154 i915_gem_ww_ctx_fini(&ww);
2155 if (ret)
2156 i915_gem_object_put(bo);
2157 return ret;
2158 }
2159
2160 static u32 *write_cs_mi_lri(u32 *cs,
2161 const struct i915_oa_reg *reg_data,
2162 u32 n_regs)
2163 {
2164 u32 i;
2165
2166 for (i = 0; i < n_regs; i++) {
2167 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2168 u32 n_lri = min_t(u32,
2169 n_regs - i,
2170 MI_LOAD_REGISTER_IMM_MAX_REGS);
2171
2172 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2173 }
2174 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2175 *cs++ = reg_data[i].value;
2176 }
2177
2178 return cs;
2179 }
2180
2181 static int num_lri_dwords(int num_regs)
2182 {
2183 int count = 0;
2184
2185 if (num_regs > 0) {
2186 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2187 count += num_regs * 2;
2188 }
2189
2190 return count;
2191 }
2192
2193 static struct i915_oa_config_bo *
2194 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2195 struct i915_oa_config *oa_config)
2196 {
2197 struct drm_i915_gem_object *obj;
2198 struct i915_oa_config_bo *oa_bo;
2199 struct i915_gem_ww_ctx ww;
2200 size_t config_length = 0;
2201 u32 *cs;
2202 int err;
2203
2204 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2205 if (!oa_bo)
2206 return ERR_PTR(-ENOMEM);
2207
2208 config_length += num_lri_dwords(oa_config->mux_regs_len);
2209 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2210 config_length += num_lri_dwords(oa_config->flex_regs_len);
2211 config_length += 3; /* MI_BATCH_BUFFER_START */
2212 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2213
2214 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2215 if (IS_ERR(obj)) {
2216 err = PTR_ERR(obj);
2217 goto err_free;
2218 }
2219
2220 i915_gem_ww_ctx_init(&ww, true);
2221 retry:
2222 err = i915_gem_object_lock(obj, &ww);
2223 if (err)
2224 goto out_ww;
2225
2226 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2227 if (IS_ERR(cs)) {
2228 err = PTR_ERR(cs);
2229 goto out_ww;
2230 }
2231
2232 cs = write_cs_mi_lri(cs,
2233 oa_config->mux_regs,
2234 oa_config->mux_regs_len);
2235 cs = write_cs_mi_lri(cs,
2236 oa_config->b_counter_regs,
2237 oa_config->b_counter_regs_len);
2238 cs = write_cs_mi_lri(cs,
2239 oa_config->flex_regs,
2240 oa_config->flex_regs_len);
2241
2242 /* Jump into the active wait. */
2243 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2244 MI_BATCH_BUFFER_START :
2245 MI_BATCH_BUFFER_START_GEN8);
2246 *cs++ = i915_ggtt_offset(stream->noa_wait);
2247 *cs++ = 0;
2248
2249 i915_gem_object_flush_map(obj);
2250 __i915_gem_object_release_map(obj);
2251
2252 oa_bo->vma = i915_vma_instance(obj,
2253 &stream->engine->gt->ggtt->vm,
2254 NULL);
2255 if (IS_ERR(oa_bo->vma)) {
2256 err = PTR_ERR(oa_bo->vma);
2257 goto out_ww;
2258 }
2259
2260 oa_bo->oa_config = i915_oa_config_get(oa_config);
2261 llist_add(&oa_bo->node, &stream->oa_config_bos);
2262
2263 out_ww:
2264 if (err == -EDEADLK) {
2265 err = i915_gem_ww_ctx_backoff(&ww);
2266 if (!err)
2267 goto retry;
2268 }
2269 i915_gem_ww_ctx_fini(&ww);
2270
2271 if (err)
2272 i915_gem_object_put(obj);
2273 err_free:
2274 if (err) {
2275 kfree(oa_bo);
2276 return ERR_PTR(err);
2277 }
2278 return oa_bo;
2279 }
2280
2281 static struct i915_vma *
2282 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2283 {
2284 struct i915_oa_config_bo *oa_bo;
2285
2286 /*
2287 * Look for the buffer in the already allocated BOs attached
2288 * to the stream.
2289 */
2290 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2291 if (oa_bo->oa_config == oa_config &&
2292 memcmp(oa_bo->oa_config->uuid,
2293 oa_config->uuid,
2294 sizeof(oa_config->uuid)) == 0)
2295 goto out;
2296 }
2297
2298 oa_bo = alloc_oa_config_buffer(stream, oa_config);
2299 if (IS_ERR(oa_bo))
2300 return ERR_CAST(oa_bo);
2301
2302 out:
2303 return i915_vma_get(oa_bo->vma);
2304 }
2305
2306 static int
2307 emit_oa_config(struct i915_perf_stream *stream,
2308 struct i915_oa_config *oa_config,
2309 struct intel_context *ce,
2310 struct i915_active *active)
2311 {
2312 struct i915_request *rq;
2313 struct i915_vma *vma;
2314 struct i915_gem_ww_ctx ww;
2315 int err;
2316
2317 vma = get_oa_vma(stream, oa_config);
2318 if (IS_ERR(vma))
2319 return PTR_ERR(vma);
2320
2321 i915_gem_ww_ctx_init(&ww, true);
2322 retry:
2323 err = i915_gem_object_lock(vma->obj, &ww);
2324 if (err)
2325 goto err;
2326
2327 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2328 if (err)
2329 goto err;
2330
2331 intel_engine_pm_get(ce->engine);
2332 rq = i915_request_create(ce);
2333 intel_engine_pm_put(ce->engine);
2334 if (IS_ERR(rq)) {
2335 err = PTR_ERR(rq);
2336 goto err_vma_unpin;
2337 }
2338
2339 if (!IS_ERR_OR_NULL(active)) {
2340 /* After all individual context modifications */
2341 err = i915_request_await_active(rq, active,
2342 I915_ACTIVE_AWAIT_ACTIVE);
2343 if (err)
2344 goto err_add_request;
2345
2346 err = i915_active_add_request(active, rq);
2347 if (err)
2348 goto err_add_request;
2349 }
2350
2351 err = i915_vma_move_to_active(vma, rq, 0);
2352 if (err)
2353 goto err_add_request;
2354
2355 err = rq->engine->emit_bb_start(rq,
2356 i915_vma_offset(vma), 0,
2357 I915_DISPATCH_SECURE);
2358 if (err)
2359 goto err_add_request;
2360
2361 err_add_request:
2362 i915_request_add(rq);
2363 err_vma_unpin:
2364 i915_vma_unpin(vma);
2365 err:
2366 if (err == -EDEADLK) {
2367 err = i915_gem_ww_ctx_backoff(&ww);
2368 if (!err)
2369 goto retry;
2370 }
2371
2372 i915_gem_ww_ctx_fini(&ww);
2373 i915_vma_put(vma);
2374 return err;
2375 }
2376
2377 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2378 {
2379 return stream->pinned_ctx ?: stream->engine->kernel_context;
2380 }
2381
2382 static int
2383 hsw_enable_metric_set(struct i915_perf_stream *stream,
2384 struct i915_active *active)
2385 {
2386 struct intel_uncore *uncore = stream->uncore;
2387
2388 /*
2389 * PRM:
2390 *
2391 * OA unit is using “crclk” for its functionality. When trunk
2392 * level clock gating takes place, OA clock would be gated,
2393 * unable to count the events from non-render clock domain.
2394 * Render clock gating must be disabled when OA is enabled to
2395 * count the events from non-render domain. Unit level clock
2396 * gating for RCS should also be disabled.
2397 */
2398 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2399 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2400 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2401 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2402
2403 return emit_oa_config(stream,
2404 stream->oa_config, oa_context(stream),
2405 active);
2406 }
2407
2408 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2409 {
2410 struct intel_uncore *uncore = stream->uncore;
2411
2412 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2413 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2414 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2415 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2416
2417 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2418 }
2419
2420 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2421 i915_reg_t reg)
2422 {
2423 u32 mmio = i915_mmio_reg_offset(reg);
2424 int i;
2425
2426 /*
2427 * This arbitrary default will select the 'EU FPU0 Pipeline
2428 * Active' event. In the future it's anticipated that there
2429 * will be an explicit 'No Event' we can select, but not yet...
2430 */
2431 if (!oa_config)
2432 return 0;
2433
2434 for (i = 0; i < oa_config->flex_regs_len; i++) {
2435 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2436 return oa_config->flex_regs[i].value;
2437 }
2438
2439 return 0;
2440 }
2441 /*
2442 * NB: It must always remain pointer safe to run this even if the OA unit
2443 * has been disabled.
2444 *
2445 * It's fine to put out-of-date values into these per-context registers
2446 * in the case that the OA unit has been disabled.
2447 */
2448 static void
2449 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2450 const struct i915_perf_stream *stream)
2451 {
2452 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2453 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2454 /* The MMIO offsets for Flex EU registers aren't contiguous */
2455 static const i915_reg_t flex_regs[] = {
2456 EU_PERF_CNTL0,
2457 EU_PERF_CNTL1,
2458 EU_PERF_CNTL2,
2459 EU_PERF_CNTL3,
2460 EU_PERF_CNTL4,
2461 EU_PERF_CNTL5,
2462 EU_PERF_CNTL6,
2463 };
2464 u32 *reg_state = ce->lrc_reg_state;
2465 int i;
2466
2467 reg_state[ctx_oactxctrl + 1] =
2468 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2469 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2470 GEN8_OA_COUNTER_RESUME;
2471
2472 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2473 reg_state[ctx_flexeu0 + i * 2 + 1] =
2474 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2475 }
2476
2477 struct flex {
2478 i915_reg_t reg;
2479 u32 offset;
2480 u32 value;
2481 };
2482
2483 static int
2484 gen8_store_flex(struct i915_request *rq,
2485 struct intel_context *ce,
2486 const struct flex *flex, unsigned int count)
2487 {
2488 u32 offset;
2489 u32 *cs;
2490
2491 cs = intel_ring_begin(rq, 4 * count);
2492 if (IS_ERR(cs))
2493 return PTR_ERR(cs);
2494
2495 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2496 do {
2497 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2498 *cs++ = offset + flex->offset * sizeof(u32);
2499 *cs++ = 0;
2500 *cs++ = flex->value;
2501 } while (flex++, --count);
2502
2503 intel_ring_advance(rq, cs);
2504
2505 return 0;
2506 }
2507
2508 static int
2509 gen8_load_flex(struct i915_request *rq,
2510 struct intel_context *ce,
2511 const struct flex *flex, unsigned int count)
2512 {
2513 u32 *cs;
2514
2515 GEM_BUG_ON(!count || count > 63);
2516
2517 cs = intel_ring_begin(rq, 2 * count + 2);
2518 if (IS_ERR(cs))
2519 return PTR_ERR(cs);
2520
2521 *cs++ = MI_LOAD_REGISTER_IMM(count);
2522 do {
2523 *cs++ = i915_mmio_reg_offset(flex->reg);
2524 *cs++ = flex->value;
2525 } while (flex++, --count);
2526 *cs++ = MI_NOOP;
2527
2528 intel_ring_advance(rq, cs);
2529
2530 return 0;
2531 }
2532
2533 static int gen8_modify_context(struct intel_context *ce,
2534 const struct flex *flex, unsigned int count)
2535 {
2536 struct i915_request *rq;
2537 int err;
2538
2539 rq = intel_engine_create_kernel_request(ce->engine);
2540 if (IS_ERR(rq))
2541 return PTR_ERR(rq);
2542
2543 /* Serialise with the remote context */
2544 err = intel_context_prepare_remote_request(ce, rq);
2545 if (err == 0)
2546 err = gen8_store_flex(rq, ce, flex, count);
2547
2548 i915_request_add(rq);
2549 return err;
2550 }
2551
2552 static int
2553 gen8_modify_self(struct intel_context *ce,
2554 const struct flex *flex, unsigned int count,
2555 struct i915_active *active)
2556 {
2557 struct i915_request *rq;
2558 int err;
2559
2560 intel_engine_pm_get(ce->engine);
2561 rq = i915_request_create(ce);
2562 intel_engine_pm_put(ce->engine);
2563 if (IS_ERR(rq))
2564 return PTR_ERR(rq);
2565
2566 if (!IS_ERR_OR_NULL(active)) {
2567 err = i915_active_add_request(active, rq);
2568 if (err)
2569 goto err_add_request;
2570 }
2571
2572 err = gen8_load_flex(rq, ce, flex, count);
2573 if (err)
2574 goto err_add_request;
2575
2576 err_add_request:
2577 i915_request_add(rq);
2578 return err;
2579 }
2580
2581 static int gen8_configure_context(struct i915_perf_stream *stream,
2582 struct i915_gem_context *ctx,
2583 struct flex *flex, unsigned int count)
2584 {
2585 struct i915_gem_engines_iter it;
2586 struct intel_context *ce;
2587 int err = 0;
2588
2589 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2590 GEM_BUG_ON(ce == ce->engine->kernel_context);
2591
2592 if (ce->engine->class != RENDER_CLASS)
2593 continue;
2594
2595 /* Otherwise OA settings will be set upon first use */
2596 if (!intel_context_pin_if_active(ce))
2597 continue;
2598
2599 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2600 err = gen8_modify_context(ce, flex, count);
2601
2602 intel_context_unpin(ce);
2603 if (err)
2604 break;
2605 }
2606 i915_gem_context_unlock_engines(ctx);
2607
2608 return err;
2609 }
2610
2611 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2612 struct i915_active *active)
2613 {
2614 int err;
2615 struct intel_context *ce = stream->pinned_ctx;
2616 u32 format = stream->oa_buffer.format->format;
2617 u32 offset = stream->perf->ctx_oactxctrl_offset;
2618 struct flex regs_context[] = {
2619 {
2620 GEN8_OACTXCONTROL,
2621 offset + 1,
2622 active ? GEN8_OA_COUNTER_RESUME : 0,
2623 },
2624 };
2625 /* Offsets in regs_lri are not used since this configuration is only
2626 * applied using LRI. Initialize the correct offsets for posterity.
2627 */
2628 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2629 struct flex regs_lri[] = {
2630 {
2631 GEN12_OAR_OACONTROL,
2632 GEN12_OAR_OACONTROL_OFFSET + 1,
2633 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2634 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2635 },
2636 {
2637 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2638 CTX_CONTEXT_CONTROL,
2639 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2640 active ?
2641 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2642 0)
2643 },
2644 };
2645
2646 /* Modify the context image of pinned context with regs_context */
2647 err = intel_context_lock_pinned(ce);
2648 if (err)
2649 return err;
2650
2651 err = gen8_modify_context(ce, regs_context,
2652 ARRAY_SIZE(regs_context));
2653 intel_context_unlock_pinned(ce);
2654 if (err)
2655 return err;
2656
2657 /* Apply regs_lri using LRI with pinned context */
2658 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2659 }
2660
2661 /*
2662 * Manages updating the per-context aspects of the OA stream
2663 * configuration across all contexts.
2664 *
2665 * The awkward consideration here is that OACTXCONTROL controls the
2666 * exponent for periodic sampling which is primarily used for system
2667 * wide profiling where we'd like a consistent sampling period even in
2668 * the face of context switches.
2669 *
2670 * Our approach of updating the register state context (as opposed to
2671 * say using a workaround batch buffer) ensures that the hardware
2672 * won't automatically reload an out-of-date timer exponent even
2673 * transiently before a WA BB could be parsed.
2674 *
2675 * This function needs to:
2676 * - Ensure the currently running context's per-context OA state is
2677 * updated
2678 * - Ensure that all existing contexts will have the correct per-context
2679 * OA state if they are scheduled for use.
2680 * - Ensure any new contexts will be initialized with the correct
2681 * per-context OA state.
2682 *
2683 * Note: it's only the RCS/Render context that has any OA state.
2684 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2685 */
2686 static int
2687 oa_configure_all_contexts(struct i915_perf_stream *stream,
2688 struct flex *regs,
2689 size_t num_regs,
2690 struct i915_active *active)
2691 {
2692 struct drm_i915_private *i915 = stream->perf->i915;
2693 struct intel_engine_cs *engine;
2694 struct intel_gt *gt = stream->engine->gt;
2695 struct i915_gem_context *ctx, *cn;
2696 int err;
2697
2698 lockdep_assert_held(&gt->perf.lock);
2699
2700 /*
2701 * The OA register config is setup through the context image. This image
2702 * might be written to by the GPU on context switch (in particular on
2703 * lite-restore). This means we can't safely update a context's image,
2704 * if this context is scheduled/submitted to run on the GPU.
2705 *
2706 * We could emit the OA register config through the batch buffer but
2707 * this might leave small interval of time where the OA unit is
2708 * configured at an invalid sampling period.
2709 *
2710 * Note that since we emit all requests from a single ring, there
2711 * is still an implicit global barrier here that may cause a high
2712 * priority context to wait for an otherwise independent low priority
2713 * context. Contexts idle at the time of reconfiguration are not
2714 * trapped behind the barrier.
2715 */
2716 spin_lock(&i915->gem.contexts.lock);
2717 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2718 if (!kref_get_unless_zero(&ctx->ref))
2719 continue;
2720
2721 spin_unlock(&i915->gem.contexts.lock);
2722
2723 err = gen8_configure_context(stream, ctx, regs, num_regs);
2724 if (err) {
2725 i915_gem_context_put(ctx);
2726 return err;
2727 }
2728
2729 spin_lock(&i915->gem.contexts.lock);
2730 list_safe_reset_next(ctx, cn, link);
2731 i915_gem_context_put(ctx);
2732 }
2733 spin_unlock(&i915->gem.contexts.lock);
2734
2735 /*
2736 * After updating all other contexts, we need to modify ourselves.
2737 * If we don't modify the kernel_context, we do not get events while
2738 * idle.
2739 */
2740 for_each_uabi_engine(engine, i915) {
2741 struct intel_context *ce = engine->kernel_context;
2742
2743 if (engine->class != RENDER_CLASS)
2744 continue;
2745
2746 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2747
2748 err = gen8_modify_self(ce, regs, num_regs, active);
2749 if (err)
2750 return err;
2751 }
2752
2753 return 0;
2754 }
2755
2756 static int
2757 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2758 const struct i915_oa_config *oa_config,
2759 struct i915_active *active)
2760 {
2761 struct flex regs[] = {
2762 {
2763 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2764 CTX_R_PWR_CLK_STATE,
2765 },
2766 };
2767
2768 if (stream->engine->class != RENDER_CLASS)
2769 return 0;
2770
2771 return oa_configure_all_contexts(stream,
2772 regs, ARRAY_SIZE(regs),
2773 active);
2774 }
2775
2776 static int
2777 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2778 const struct i915_oa_config *oa_config,
2779 struct i915_active *active)
2780 {
2781 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2782 /* The MMIO offsets for Flex EU registers aren't contiguous */
2783 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2784 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2785 struct flex regs[] = {
2786 {
2787 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2788 CTX_R_PWR_CLK_STATE,
2789 },
2790 {
2791 GEN8_OACTXCONTROL,
2792 ctx_oactxctrl + 1,
2793 },
2794 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2795 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2796 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2797 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2798 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2799 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2800 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2801 };
2802 #undef ctx_flexeuN
2803 int i;
2804
2805 regs[1].value =
2806 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2807 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2808 GEN8_OA_COUNTER_RESUME;
2809
2810 for (i = 2; i < ARRAY_SIZE(regs); i++)
2811 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2812
2813 return oa_configure_all_contexts(stream,
2814 regs, ARRAY_SIZE(regs),
2815 active);
2816 }
2817
2818 static int
2819 gen8_enable_metric_set(struct i915_perf_stream *stream,
2820 struct i915_active *active)
2821 {
2822 struct intel_uncore *uncore = stream->uncore;
2823 struct i915_oa_config *oa_config = stream->oa_config;
2824 int ret;
2825
2826 /*
2827 * We disable slice/unslice clock ratio change reports on SKL since
2828 * they are too noisy. The HW generates a lot of redundant reports
2829 * where the ratio hasn't really changed causing a lot of redundant
2830 * work to processes and increasing the chances we'll hit buffer
2831 * overruns.
2832 *
2833 * Although we don't currently use the 'disable overrun' OABUFFER
2834 * feature it's worth noting that clock ratio reports have to be
2835 * disabled before considering to use that feature since the HW doesn't
2836 * correctly block these reports.
2837 *
2838 * Currently none of the high-level metrics we have depend on knowing
2839 * this ratio to normalize.
2840 *
2841 * Note: This register is not power context saved and restored, but
2842 * that's OK considering that we disable RC6 while the OA unit is
2843 * enabled.
2844 *
2845 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2846 * be read back from automatically triggered reports, as part of the
2847 * RPT_ID field.
2848 */
2849 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2850 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2851 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2852 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2853 }
2854
2855 /*
2856 * Update all contexts prior writing the mux configurations as we need
2857 * to make sure all slices/subslices are ON before writing to NOA
2858 * registers.
2859 */
2860 ret = lrc_configure_all_contexts(stream, oa_config, active);
2861 if (ret)
2862 return ret;
2863
2864 return emit_oa_config(stream,
2865 stream->oa_config, oa_context(stream),
2866 active);
2867 }
2868
2869 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2870 {
2871 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2872 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2873 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2874 }
2875
2876 static int
2877 gen12_enable_metric_set(struct i915_perf_stream *stream,
2878 struct i915_active *active)
2879 {
2880 struct drm_i915_private *i915 = stream->perf->i915;
2881 struct intel_uncore *uncore = stream->uncore;
2882 struct i915_oa_config *oa_config = stream->oa_config;
2883 bool periodic = stream->periodic;
2884 u32 period_exponent = stream->period_exponent;
2885 u32 sqcnt1;
2886 int ret;
2887
2888 /*
2889 * Wa_1508761755:xehpsdv, dg2
2890 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2891 * Disable thread stall DOP gating and EU DOP gating.
2892 */
2893 if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2894 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2895 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2896 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2897 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2898 }
2899
2900 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2901 /* Disable clk ratio reports, like previous Gens. */
2902 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2903 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2904 /*
2905 * If the user didn't require OA reports, instruct
2906 * the hardware not to emit ctx switch reports.
2907 */
2908 oag_report_ctx_switches(stream));
2909
2910 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2911 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2912 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2913 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2914 : 0);
2915
2916 /*
2917 * Initialize Super Queue Internal Cnt Register
2918 * Set PMON Enable in order to collect valid metrics.
2919 * Enable byets per clock reporting in OA for XEHPSDV onward.
2920 */
2921 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2922 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2923
2924 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2925
2926 /*
2927 * Update all contexts prior writing the mux configurations as we need
2928 * to make sure all slices/subslices are ON before writing to NOA
2929 * registers.
2930 */
2931 ret = gen12_configure_all_contexts(stream, oa_config, active);
2932 if (ret)
2933 return ret;
2934
2935 /*
2936 * For Gen12, performance counters are context
2937 * saved/restored. Only enable it for the context that
2938 * requested this.
2939 */
2940 if (stream->ctx) {
2941 ret = gen12_configure_oar_context(stream, active);
2942 if (ret)
2943 return ret;
2944 }
2945
2946 return emit_oa_config(stream,
2947 stream->oa_config, oa_context(stream),
2948 active);
2949 }
2950
2951 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2952 {
2953 struct intel_uncore *uncore = stream->uncore;
2954
2955 /* Reset all contexts' slices/subslices configurations. */
2956 lrc_configure_all_contexts(stream, NULL, NULL);
2957
2958 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2959 }
2960
2961 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2962 {
2963 struct intel_uncore *uncore = stream->uncore;
2964
2965 /* Reset all contexts' slices/subslices configurations. */
2966 lrc_configure_all_contexts(stream, NULL, NULL);
2967
2968 /* Make sure we disable noa to save power. */
2969 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2970 }
2971
2972 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2973 {
2974 struct intel_uncore *uncore = stream->uncore;
2975 struct drm_i915_private *i915 = stream->perf->i915;
2976 u32 sqcnt1;
2977
2978 /*
2979 * Wa_1508761755:xehpsdv, dg2
2980 * Enable thread stall DOP gating and EU DOP gating.
2981 */
2982 if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2983 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2984 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2985 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2986 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2987 }
2988
2989 /* Reset all contexts' slices/subslices configurations. */
2990 gen12_configure_all_contexts(stream, NULL, NULL);
2991
2992 /* disable the context save/restore or OAR counters */
2993 if (stream->ctx)
2994 gen12_configure_oar_context(stream, NULL);
2995
2996 /* Make sure we disable noa to save power. */
2997 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2998
2999 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
3000 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
3001
3002 /* Reset PMON Enable to save power. */
3003 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
3004 }
3005
3006 static void gen7_oa_enable(struct i915_perf_stream *stream)
3007 {
3008 struct intel_uncore *uncore = stream->uncore;
3009 struct i915_gem_context *ctx = stream->ctx;
3010 u32 ctx_id = stream->specific_ctx_id;
3011 bool periodic = stream->periodic;
3012 u32 period_exponent = stream->period_exponent;
3013 u32 report_format = stream->oa_buffer.format->format;
3014
3015 /*
3016 * Reset buf pointers so we don't forward reports from before now.
3017 *
3018 * Think carefully if considering trying to avoid this, since it
3019 * also ensures status flags and the buffer itself are cleared
3020 * in error paths, and we have checks for invalid reports based
3021 * on the assumption that certain fields are written to zeroed
3022 * memory which this helps maintains.
3023 */
3024 gen7_init_oa_buffer(stream);
3025
3026 intel_uncore_write(uncore, GEN7_OACONTROL,
3027 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3028 (period_exponent <<
3029 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3030 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3031 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3032 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3033 GEN7_OACONTROL_ENABLE);
3034 }
3035
3036 static void gen8_oa_enable(struct i915_perf_stream *stream)
3037 {
3038 struct intel_uncore *uncore = stream->uncore;
3039 u32 report_format = stream->oa_buffer.format->format;
3040
3041 /*
3042 * Reset buf pointers so we don't forward reports from before now.
3043 *
3044 * Think carefully if considering trying to avoid this, since it
3045 * also ensures status flags and the buffer itself are cleared
3046 * in error paths, and we have checks for invalid reports based
3047 * on the assumption that certain fields are written to zeroed
3048 * memory which this helps maintains.
3049 */
3050 gen8_init_oa_buffer(stream);
3051
3052 /*
3053 * Note: we don't rely on the hardware to perform single context
3054 * filtering and instead filter on the cpu based on the context-id
3055 * field of reports
3056 */
3057 intel_uncore_write(uncore, GEN8_OACONTROL,
3058 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3059 GEN8_OA_COUNTER_ENABLE);
3060 }
3061
3062 static void gen12_oa_enable(struct i915_perf_stream *stream)
3063 {
3064 const struct i915_perf_regs *regs;
3065 u32 val;
3066
3067 /*
3068 * If we don't want OA reports from the OA buffer, then we don't even
3069 * need to program the OAG unit.
3070 */
3071 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3072 return;
3073
3074 gen12_init_oa_buffer(stream);
3075
3076 regs = __oa_regs(stream);
3077 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3078 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3079
3080 intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3081 }
3082
3083 /**
3084 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3085 * @stream: An i915 perf stream opened for OA metrics
3086 *
3087 * [Re]enables hardware periodic sampling according to the period configured
3088 * when opening the stream. This also starts a hrtimer that will periodically
3089 * check for data in the circular OA buffer for notifying userspace (e.g.
3090 * during a read() or poll()).
3091 */
3092 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3093 {
3094 stream->pollin = false;
3095
3096 stream->perf->ops.oa_enable(stream);
3097
3098 if (stream->sample_flags & SAMPLE_OA_REPORT)
3099 hrtimer_start(&stream->poll_check_timer,
3100 ns_to_ktime(stream->poll_oa_period),
3101 HRTIMER_MODE_REL_PINNED);
3102 }
3103
3104 static void gen7_oa_disable(struct i915_perf_stream *stream)
3105 {
3106 struct intel_uncore *uncore = stream->uncore;
3107
3108 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3109 if (intel_wait_for_register(uncore,
3110 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3111 50))
3112 drm_err(&stream->perf->i915->drm,
3113 "wait for OA to be disabled timed out\n");
3114 }
3115
3116 static void gen8_oa_disable(struct i915_perf_stream *stream)
3117 {
3118 struct intel_uncore *uncore = stream->uncore;
3119
3120 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3121 if (intel_wait_for_register(uncore,
3122 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3123 50))
3124 drm_err(&stream->perf->i915->drm,
3125 "wait for OA to be disabled timed out\n");
3126 }
3127
3128 static void gen12_oa_disable(struct i915_perf_stream *stream)
3129 {
3130 struct intel_uncore *uncore = stream->uncore;
3131
3132 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3133 if (intel_wait_for_register(uncore,
3134 __oa_regs(stream)->oa_ctrl,
3135 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3136 50))
3137 drm_err(&stream->perf->i915->drm,
3138 "wait for OA to be disabled timed out\n");
3139
3140 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3141 if (intel_wait_for_register(uncore,
3142 GEN12_OA_TLB_INV_CR,
3143 1, 0,
3144 50))
3145 drm_err(&stream->perf->i915->drm,
3146 "wait for OA tlb invalidate timed out\n");
3147 }
3148
3149 /**
3150 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3151 * @stream: An i915 perf stream opened for OA metrics
3152 *
3153 * Stops the OA unit from periodically writing counter reports into the
3154 * circular OA buffer. This also stops the hrtimer that periodically checks for
3155 * data in the circular OA buffer, for notifying userspace.
3156 */
3157 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3158 {
3159 stream->perf->ops.oa_disable(stream);
3160
3161 if (stream->sample_flags & SAMPLE_OA_REPORT)
3162 hrtimer_cancel(&stream->poll_check_timer);
3163 }
3164
3165 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3166 .destroy = i915_oa_stream_destroy,
3167 .enable = i915_oa_stream_enable,
3168 .disable = i915_oa_stream_disable,
3169 .wait_unlocked = i915_oa_wait_unlocked,
3170 .poll_wait = i915_oa_poll_wait,
3171 .read = i915_oa_read,
3172 };
3173
3174 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3175 {
3176 struct i915_active *active;
3177 int err;
3178
3179 active = i915_active_create();
3180 if (!active)
3181 return -ENOMEM;
3182
3183 err = stream->perf->ops.enable_metric_set(stream, active);
3184 if (err == 0)
3185 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3186
3187 i915_active_put(active);
3188 return err;
3189 }
3190
3191 static void
3192 get_default_sseu_config(struct intel_sseu *out_sseu,
3193 struct intel_engine_cs *engine)
3194 {
3195 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3196
3197 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3198
3199 if (GRAPHICS_VER(engine->i915) == 11) {
3200 /*
3201 * We only need subslice count so it doesn't matter which ones
3202 * we select - just turn off low bits in the amount of half of
3203 * all available subslices per slice.
3204 */
3205 out_sseu->subslice_mask =
3206 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3207 out_sseu->slice_mask = 0x1;
3208 }
3209 }
3210
3211 static int
3212 get_sseu_config(struct intel_sseu *out_sseu,
3213 struct intel_engine_cs *engine,
3214 const struct drm_i915_gem_context_param_sseu *drm_sseu)
3215 {
3216 if (drm_sseu->engine.engine_class != engine->uabi_class ||
3217 drm_sseu->engine.engine_instance != engine->uabi_instance)
3218 return -EINVAL;
3219
3220 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3221 }
3222
3223 /*
3224 * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3225 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3226 * cases, return the adjusted CS timestamp frequency to the user.
3227 */
3228 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3229 {
3230 /*
3231 * Wa_18013179988:dg2
3232 * Wa_14015846243:mtl
3233 */
3234 if (IS_DG2(i915) || IS_METEORLAKE(i915)) {
3235 intel_wakeref_t wakeref;
3236 u32 reg, shift;
3237
3238 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3239 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3240
3241 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3242 reg);
3243
3244 return to_gt(i915)->clock_frequency << (3 - shift);
3245 }
3246
3247 return to_gt(i915)->clock_frequency;
3248 }
3249
3250 /**
3251 * i915_oa_stream_init - validate combined props for OA stream and init
3252 * @stream: An i915 perf stream
3253 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3254 * @props: The property state that configures stream (individually validated)
3255 *
3256 * While read_properties_unlocked() validates properties in isolation it
3257 * doesn't ensure that the combination necessarily makes sense.
3258 *
3259 * At this point it has been determined that userspace wants a stream of
3260 * OA metrics, but still we need to further validate the combined
3261 * properties are OK.
3262 *
3263 * If the configuration makes sense then we can allocate memory for
3264 * a circular OA buffer and apply the requested metric set configuration.
3265 *
3266 * Returns: zero on success or a negative error code.
3267 */
3268 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3269 struct drm_i915_perf_open_param *param,
3270 struct perf_open_properties *props)
3271 {
3272 struct drm_i915_private *i915 = stream->perf->i915;
3273 struct i915_perf *perf = stream->perf;
3274 struct i915_perf_group *g;
3275 struct intel_gt *gt;
3276 int ret;
3277
3278 if (!props->engine) {
3279 drm_dbg(&stream->perf->i915->drm,
3280 "OA engine not specified\n");
3281 return -EINVAL;
3282 }
3283 gt = props->engine->gt;
3284 g = props->engine->oa_group;
3285
3286 /*
3287 * If the sysfs metrics/ directory wasn't registered for some
3288 * reason then don't let userspace try their luck with config
3289 * IDs
3290 */
3291 if (!perf->metrics_kobj) {
3292 drm_dbg(&stream->perf->i915->drm,
3293 "OA metrics weren't advertised via sysfs\n");
3294 return -EINVAL;
3295 }
3296
3297 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3298 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3299 drm_dbg(&stream->perf->i915->drm,
3300 "Only OA report sampling supported\n");
3301 return -EINVAL;
3302 }
3303
3304 if (!perf->ops.enable_metric_set) {
3305 drm_dbg(&stream->perf->i915->drm,
3306 "OA unit not supported\n");
3307 return -ENODEV;
3308 }
3309
3310 /*
3311 * To avoid the complexity of having to accurately filter
3312 * counter reports and marshal to the appropriate client
3313 * we currently only allow exclusive access
3314 */
3315 if (g->exclusive_stream) {
3316 drm_dbg(&stream->perf->i915->drm,
3317 "OA unit already in use\n");
3318 return -EBUSY;
3319 }
3320
3321 if (!props->oa_format) {
3322 drm_dbg(&stream->perf->i915->drm,
3323 "OA report format not specified\n");
3324 return -EINVAL;
3325 }
3326
3327 stream->engine = props->engine;
3328 stream->uncore = stream->engine->gt->uncore;
3329
3330 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3331
3332 stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3333 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3334 return -EINVAL;
3335
3336 stream->sample_flags = props->sample_flags;
3337 stream->sample_size += stream->oa_buffer.format->size;
3338
3339 stream->hold_preemption = props->hold_preemption;
3340
3341 stream->periodic = props->oa_periodic;
3342 if (stream->periodic)
3343 stream->period_exponent = props->oa_period_exponent;
3344
3345 if (stream->ctx) {
3346 ret = oa_get_render_ctx_id(stream);
3347 if (ret) {
3348 drm_dbg(&stream->perf->i915->drm,
3349 "Invalid context id to filter with\n");
3350 return ret;
3351 }
3352 }
3353
3354 ret = alloc_noa_wait(stream);
3355 if (ret) {
3356 drm_dbg(&stream->perf->i915->drm,
3357 "Unable to allocate NOA wait batch buffer\n");
3358 goto err_noa_wait_alloc;
3359 }
3360
3361 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3362 if (!stream->oa_config) {
3363 drm_dbg(&stream->perf->i915->drm,
3364 "Invalid OA config id=%i\n", props->metrics_set);
3365 ret = -EINVAL;
3366 goto err_config;
3367 }
3368
3369 /* PRM - observability performance counters:
3370 *
3371 * OACONTROL, performance counter enable, note:
3372 *
3373 * "When this bit is set, in order to have coherent counts,
3374 * RC6 power state and trunk clock gating must be disabled.
3375 * This can be achieved by programming MMIO registers as
3376 * 0xA094=0 and 0xA090[31]=1"
3377 *
3378 * In our case we are expecting that taking pm + FORCEWAKE
3379 * references will effectively disable RC6.
3380 */
3381 intel_engine_pm_get(stream->engine);
3382 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3383
3384 /*
3385 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3386 * OA to lose the configuration state. Prevent this by overriding GUCRC
3387 * mode.
3388 */
3389 if (intel_uc_uses_guc_rc(&gt->uc) &&
3390 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3391 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3392 ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3393 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3394 if (ret) {
3395 drm_dbg(&stream->perf->i915->drm,
3396 "Unable to override gucrc mode\n");
3397 goto err_gucrc;
3398 }
3399
3400 stream->override_gucrc = true;
3401 }
3402
3403 ret = alloc_oa_buffer(stream);
3404 if (ret)
3405 goto err_oa_buf_alloc;
3406
3407 stream->ops = &i915_oa_stream_ops;
3408
3409 stream->engine->gt->perf.sseu = props->sseu;
3410 WRITE_ONCE(g->exclusive_stream, stream);
3411
3412 ret = i915_perf_stream_enable_sync(stream);
3413 if (ret) {
3414 drm_dbg(&stream->perf->i915->drm,
3415 "Unable to enable metric set\n");
3416 goto err_enable;
3417 }
3418
3419 drm_dbg(&stream->perf->i915->drm,
3420 "opening stream oa config uuid=%s\n",
3421 stream->oa_config->uuid);
3422
3423 hrtimer_init(&stream->poll_check_timer,
3424 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3425 stream->poll_check_timer.function = oa_poll_check_timer_cb;
3426 init_waitqueue_head(&stream->poll_wq);
3427 spin_lock_init(&stream->oa_buffer.ptr_lock);
3428 mutex_init(&stream->lock);
3429
3430 return 0;
3431
3432 err_enable:
3433 WRITE_ONCE(g->exclusive_stream, NULL);
3434 perf->ops.disable_metric_set(stream);
3435
3436 free_oa_buffer(stream);
3437
3438 err_oa_buf_alloc:
3439 if (stream->override_gucrc)
3440 intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc);
3441
3442 err_gucrc:
3443 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3444 intel_engine_pm_put(stream->engine);
3445
3446 free_oa_configs(stream);
3447
3448 err_config:
3449 free_noa_wait(stream);
3450
3451 err_noa_wait_alloc:
3452 if (stream->ctx)
3453 oa_put_render_ctx_id(stream);
3454
3455 return ret;
3456 }
3457
3458 void i915_oa_init_reg_state(const struct intel_context *ce,
3459 const struct intel_engine_cs *engine)
3460 {
3461 struct i915_perf_stream *stream;
3462
3463 if (engine->class != RENDER_CLASS)
3464 return;
3465
3466 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3467 stream = READ_ONCE(engine->oa_group->exclusive_stream);
3468 if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3469 gen8_update_reg_state_unlocked(ce, stream);
3470 }
3471
3472 /**
3473 * i915_perf_read - handles read() FOP for i915 perf stream FDs
3474 * @file: An i915 perf stream file
3475 * @buf: destination buffer given by userspace
3476 * @count: the number of bytes userspace wants to read
3477 * @ppos: (inout) file seek position (unused)
3478 *
3479 * The entry point for handling a read() on a stream file descriptor from
3480 * userspace. Most of the work is left to the i915_perf_read_locked() and
3481 * &i915_perf_stream_ops->read but to save having stream implementations (of
3482 * which we might have multiple later) we handle blocking read here.
3483 *
3484 * We can also consistently treat trying to read from a disabled stream
3485 * as an IO error so implementations can assume the stream is enabled
3486 * while reading.
3487 *
3488 * Returns: The number of bytes copied or a negative error code on failure.
3489 */
3490 static ssize_t i915_perf_read(struct file *file,
3491 char __user *buf,
3492 size_t count,
3493 loff_t *ppos)
3494 {
3495 struct i915_perf_stream *stream = file->private_data;
3496 size_t offset = 0;
3497 int ret;
3498
3499 /* To ensure it's handled consistently we simply treat all reads of a
3500 * disabled stream as an error. In particular it might otherwise lead
3501 * to a deadlock for blocking file descriptors...
3502 */
3503 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3504 return -EIO;
3505
3506 if (!(file->f_flags & O_NONBLOCK)) {
3507 /* There's the small chance of false positives from
3508 * stream->ops->wait_unlocked.
3509 *
3510 * E.g. with single context filtering since we only wait until
3511 * oabuffer has >= 1 report we don't immediately know whether
3512 * any reports really belong to the current context
3513 */
3514 do {
3515 ret = stream->ops->wait_unlocked(stream);
3516 if (ret)
3517 return ret;
3518
3519 mutex_lock(&stream->lock);
3520 ret = stream->ops->read(stream, buf, count, &offset);
3521 mutex_unlock(&stream->lock);
3522 } while (!offset && !ret);
3523 } else {
3524 mutex_lock(&stream->lock);
3525 ret = stream->ops->read(stream, buf, count, &offset);
3526 mutex_unlock(&stream->lock);
3527 }
3528
3529 /* We allow the poll checking to sometimes report false positive EPOLLIN
3530 * events where we might actually report EAGAIN on read() if there's
3531 * not really any data available. In this situation though we don't
3532 * want to enter a busy loop between poll() reporting a EPOLLIN event
3533 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3534 * effectively ensures we back off until the next hrtimer callback
3535 * before reporting another EPOLLIN event.
3536 * The exception to this is if ops->read() returned -ENOSPC which means
3537 * that more OA data is available than could fit in the user provided
3538 * buffer. In this case we want the next poll() call to not block.
3539 */
3540 if (ret != -ENOSPC)
3541 stream->pollin = false;
3542
3543 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3544 return offset ?: (ret ?: -EAGAIN);
3545 }
3546
3547 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3548 {
3549 struct i915_perf_stream *stream =
3550 container_of(hrtimer, typeof(*stream), poll_check_timer);
3551
3552 if (oa_buffer_check_unlocked(stream)) {
3553 stream->pollin = true;
3554 wake_up(&stream->poll_wq);
3555 }
3556
3557 hrtimer_forward_now(hrtimer,
3558 ns_to_ktime(stream->poll_oa_period));
3559
3560 return HRTIMER_RESTART;
3561 }
3562
3563 /**
3564 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3565 * @stream: An i915 perf stream
3566 * @file: An i915 perf stream file
3567 * @wait: poll() state table
3568 *
3569 * For handling userspace polling on an i915 perf stream, this calls through to
3570 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3571 * will be woken for new stream data.
3572 *
3573 * Returns: any poll events that are ready without sleeping
3574 */
3575 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3576 struct file *file,
3577 poll_table *wait)
3578 {
3579 __poll_t events = 0;
3580
3581 stream->ops->poll_wait(stream, file, wait);
3582
3583 /* Note: we don't explicitly check whether there's something to read
3584 * here since this path may be very hot depending on what else
3585 * userspace is polling, or on the timeout in use. We rely solely on
3586 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3587 * samples to read.
3588 */
3589 if (stream->pollin)
3590 events |= EPOLLIN;
3591
3592 return events;
3593 }
3594
3595 /**
3596 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3597 * @file: An i915 perf stream file
3598 * @wait: poll() state table
3599 *
3600 * For handling userspace polling on an i915 perf stream, this ensures
3601 * poll_wait() gets called with a wait queue that will be woken for new stream
3602 * data.
3603 *
3604 * Note: Implementation deferred to i915_perf_poll_locked()
3605 *
3606 * Returns: any poll events that are ready without sleeping
3607 */
3608 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3609 {
3610 struct i915_perf_stream *stream = file->private_data;
3611 __poll_t ret;
3612
3613 mutex_lock(&stream->lock);
3614 ret = i915_perf_poll_locked(stream, file, wait);
3615 mutex_unlock(&stream->lock);
3616
3617 return ret;
3618 }
3619
3620 /**
3621 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3622 * @stream: A disabled i915 perf stream
3623 *
3624 * [Re]enables the associated capture of data for this stream.
3625 *
3626 * If a stream was previously enabled then there's currently no intention
3627 * to provide userspace any guarantee about the preservation of previously
3628 * buffered data.
3629 */
3630 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3631 {
3632 if (stream->enabled)
3633 return;
3634
3635 /* Allow stream->ops->enable() to refer to this */
3636 stream->enabled = true;
3637
3638 if (stream->ops->enable)
3639 stream->ops->enable(stream);
3640
3641 if (stream->hold_preemption)
3642 intel_context_set_nopreempt(stream->pinned_ctx);
3643 }
3644
3645 /**
3646 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3647 * @stream: An enabled i915 perf stream
3648 *
3649 * Disables the associated capture of data for this stream.
3650 *
3651 * The intention is that disabling an re-enabling a stream will ideally be
3652 * cheaper than destroying and re-opening a stream with the same configuration,
3653 * though there are no formal guarantees about what state or buffered data
3654 * must be retained between disabling and re-enabling a stream.
3655 *
3656 * Note: while a stream is disabled it's considered an error for userspace
3657 * to attempt to read from the stream (-EIO).
3658 */
3659 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3660 {
3661 if (!stream->enabled)
3662 return;
3663
3664 /* Allow stream->ops->disable() to refer to this */
3665 stream->enabled = false;
3666
3667 if (stream->hold_preemption)
3668 intel_context_clear_nopreempt(stream->pinned_ctx);
3669
3670 if (stream->ops->disable)
3671 stream->ops->disable(stream);
3672 }
3673
3674 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3675 unsigned long metrics_set)
3676 {
3677 struct i915_oa_config *config;
3678 long ret = stream->oa_config->id;
3679
3680 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3681 if (!config)
3682 return -EINVAL;
3683
3684 if (config != stream->oa_config) {
3685 int err;
3686
3687 /*
3688 * If OA is bound to a specific context, emit the
3689 * reconfiguration inline from that context. The update
3690 * will then be ordered with respect to submission on that
3691 * context.
3692 *
3693 * When set globally, we use a low priority kernel context,
3694 * so it will effectively take effect when idle.
3695 */
3696 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3697 if (!err)
3698 config = xchg(&stream->oa_config, config);
3699 else
3700 ret = err;
3701 }
3702
3703 i915_oa_config_put(config);
3704
3705 return ret;
3706 }
3707
3708 /**
3709 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3710 * @stream: An i915 perf stream
3711 * @cmd: the ioctl request
3712 * @arg: the ioctl data
3713 *
3714 * Returns: zero on success or a negative error code. Returns -EINVAL for
3715 * an unknown ioctl request.
3716 */
3717 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3718 unsigned int cmd,
3719 unsigned long arg)
3720 {
3721 switch (cmd) {
3722 case I915_PERF_IOCTL_ENABLE:
3723 i915_perf_enable_locked(stream);
3724 return 0;
3725 case I915_PERF_IOCTL_DISABLE:
3726 i915_perf_disable_locked(stream);
3727 return 0;
3728 case I915_PERF_IOCTL_CONFIG:
3729 return i915_perf_config_locked(stream, arg);
3730 }
3731
3732 return -EINVAL;
3733 }
3734
3735 /**
3736 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3737 * @file: An i915 perf stream file
3738 * @cmd: the ioctl request
3739 * @arg: the ioctl data
3740 *
3741 * Implementation deferred to i915_perf_ioctl_locked().
3742 *
3743 * Returns: zero on success or a negative error code. Returns -EINVAL for
3744 * an unknown ioctl request.
3745 */
3746 static long i915_perf_ioctl(struct file *file,
3747 unsigned int cmd,
3748 unsigned long arg)
3749 {
3750 struct i915_perf_stream *stream = file->private_data;
3751 long ret;
3752
3753 mutex_lock(&stream->lock);
3754 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3755 mutex_unlock(&stream->lock);
3756
3757 return ret;
3758 }
3759
3760 /**
3761 * i915_perf_destroy_locked - destroy an i915 perf stream
3762 * @stream: An i915 perf stream
3763 *
3764 * Frees all resources associated with the given i915 perf @stream, disabling
3765 * any associated data capture in the process.
3766 *
3767 * Note: The &gt->perf.lock mutex has been taken to serialize
3768 * with any non-file-operation driver hooks.
3769 */
3770 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3771 {
3772 if (stream->enabled)
3773 i915_perf_disable_locked(stream);
3774
3775 if (stream->ops->destroy)
3776 stream->ops->destroy(stream);
3777
3778 if (stream->ctx)
3779 i915_gem_context_put(stream->ctx);
3780
3781 kfree(stream);
3782 }
3783
3784 /**
3785 * i915_perf_release - handles userspace close() of a stream file
3786 * @inode: anonymous inode associated with file
3787 * @file: An i915 perf stream file
3788 *
3789 * Cleans up any resources associated with an open i915 perf stream file.
3790 *
3791 * NB: close() can't really fail from the userspace point of view.
3792 *
3793 * Returns: zero on success or a negative error code.
3794 */
3795 static int i915_perf_release(struct inode *inode, struct file *file)
3796 {
3797 struct i915_perf_stream *stream = file->private_data;
3798 struct i915_perf *perf = stream->perf;
3799 struct intel_gt *gt = stream->engine->gt;
3800
3801 /*
3802 * Within this call, we know that the fd is being closed and we have no
3803 * other user of stream->lock. Use the perf lock to destroy the stream
3804 * here.
3805 */
3806 mutex_lock(&gt->perf.lock);
3807 i915_perf_destroy_locked(stream);
3808 mutex_unlock(&gt->perf.lock);
3809
3810 /* Release the reference the perf stream kept on the driver. */
3811 drm_dev_put(&perf->i915->drm);
3812
3813 return 0;
3814 }
3815
3816
3817 static const struct file_operations fops = {
3818 .owner = THIS_MODULE,
3819 .llseek = no_llseek,
3820 .release = i915_perf_release,
3821 .poll = i915_perf_poll,
3822 .read = i915_perf_read,
3823 .unlocked_ioctl = i915_perf_ioctl,
3824 /* Our ioctl have no arguments, so it's safe to use the same function
3825 * to handle 32bits compatibility.
3826 */
3827 .compat_ioctl = i915_perf_ioctl,
3828 };
3829
3830
3831 /**
3832 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3833 * @perf: i915 perf instance
3834 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3835 * @props: individually validated u64 property value pairs
3836 * @file: drm file
3837 *
3838 * See i915_perf_ioctl_open() for interface details.
3839 *
3840 * Implements further stream config validation and stream initialization on
3841 * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3842 * taken to serialize with any non-file-operation driver hooks.
3843 *
3844 * Note: at this point the @props have only been validated in isolation and
3845 * it's still necessary to validate that the combination of properties makes
3846 * sense.
3847 *
3848 * In the case where userspace is interested in OA unit metrics then further
3849 * config validation and stream initialization details will be handled by
3850 * i915_oa_stream_init(). The code here should only validate config state that
3851 * will be relevant to all stream types / backends.
3852 *
3853 * Returns: zero on success or a negative error code.
3854 */
3855 static int
3856 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3857 struct drm_i915_perf_open_param *param,
3858 struct perf_open_properties *props,
3859 struct drm_file *file)
3860 {
3861 struct i915_gem_context *specific_ctx = NULL;
3862 struct i915_perf_stream *stream = NULL;
3863 unsigned long f_flags = 0;
3864 bool privileged_op = true;
3865 int stream_fd;
3866 int ret;
3867
3868 if (props->single_context) {
3869 u32 ctx_handle = props->ctx_handle;
3870 struct drm_i915_file_private *file_priv = file->driver_priv;
3871
3872 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3873 if (IS_ERR(specific_ctx)) {
3874 drm_dbg(&perf->i915->drm,
3875 "Failed to look up context with ID %u for opening perf stream\n",
3876 ctx_handle);
3877 ret = PTR_ERR(specific_ctx);
3878 goto err;
3879 }
3880 }
3881
3882 /*
3883 * On Haswell the OA unit supports clock gating off for a specific
3884 * context and in this mode there's no visibility of metrics for the
3885 * rest of the system, which we consider acceptable for a
3886 * non-privileged client.
3887 *
3888 * For Gen8->11 the OA unit no longer supports clock gating off for a
3889 * specific context and the kernel can't securely stop the counters
3890 * from updating as system-wide / global values. Even though we can
3891 * filter reports based on the included context ID we can't block
3892 * clients from seeing the raw / global counter values via
3893 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3894 * enable the OA unit by default.
3895 *
3896 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3897 * per context basis. So we can relax requirements there if the user
3898 * doesn't request global stream access (i.e. query based sampling
3899 * using MI_RECORD_PERF_COUNT.
3900 */
3901 if (IS_HASWELL(perf->i915) && specific_ctx)
3902 privileged_op = false;
3903 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3904 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3905 privileged_op = false;
3906
3907 if (props->hold_preemption) {
3908 if (!props->single_context) {
3909 drm_dbg(&perf->i915->drm,
3910 "preemption disable with no context\n");
3911 ret = -EINVAL;
3912 goto err;
3913 }
3914 privileged_op = true;
3915 }
3916
3917 /*
3918 * Asking for SSEU configuration is a priviliged operation.
3919 */
3920 if (props->has_sseu)
3921 privileged_op = true;
3922 else
3923 get_default_sseu_config(&props->sseu, props->engine);
3924
3925 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3926 * we check a dev.i915.perf_stream_paranoid sysctl option
3927 * to determine if it's ok to access system wide OA counters
3928 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3929 */
3930 if (privileged_op &&
3931 i915_perf_stream_paranoid && !perfmon_capable()) {
3932 drm_dbg(&perf->i915->drm,
3933 "Insufficient privileges to open i915 perf stream\n");
3934 ret = -EACCES;
3935 goto err_ctx;
3936 }
3937
3938 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3939 if (!stream) {
3940 ret = -ENOMEM;
3941 goto err_ctx;
3942 }
3943
3944 stream->perf = perf;
3945 stream->ctx = specific_ctx;
3946 stream->poll_oa_period = props->poll_oa_period;
3947
3948 ret = i915_oa_stream_init(stream, param, props);
3949 if (ret)
3950 goto err_alloc;
3951
3952 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3953 * to have _stream_init check the combination of sample flags more
3954 * thoroughly, but still this is the expected result at this point.
3955 */
3956 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3957 ret = -ENODEV;
3958 goto err_flags;
3959 }
3960
3961 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3962 f_flags |= O_CLOEXEC;
3963 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3964 f_flags |= O_NONBLOCK;
3965
3966 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3967 if (stream_fd < 0) {
3968 ret = stream_fd;
3969 goto err_flags;
3970 }
3971
3972 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3973 i915_perf_enable_locked(stream);
3974
3975 /* Take a reference on the driver that will be kept with stream_fd
3976 * until its release.
3977 */
3978 drm_dev_get(&perf->i915->drm);
3979
3980 return stream_fd;
3981
3982 err_flags:
3983 if (stream->ops->destroy)
3984 stream->ops->destroy(stream);
3985 err_alloc:
3986 kfree(stream);
3987 err_ctx:
3988 if (specific_ctx)
3989 i915_gem_context_put(specific_ctx);
3990 err:
3991 return ret;
3992 }
3993
3994 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3995 {
3996 u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3997 u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3998
3999 return div_u64(nom + den - 1, den);
4000 }
4001
4002 static __always_inline bool
4003 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
4004 {
4005 return test_bit(format, perf->format_mask);
4006 }
4007
4008 static __always_inline void
4009 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
4010 {
4011 __set_bit(format, perf->format_mask);
4012 }
4013
4014 /**
4015 * read_properties_unlocked - validate + copy userspace stream open properties
4016 * @perf: i915 perf instance
4017 * @uprops: The array of u64 key value pairs given by userspace
4018 * @n_props: The number of key value pairs expected in @uprops
4019 * @props: The stream configuration built up while validating properties
4020 *
4021 * Note this function only validates properties in isolation it doesn't
4022 * validate that the combination of properties makes sense or that all
4023 * properties necessary for a particular kind of stream have been set.
4024 *
4025 * Note that there currently aren't any ordering requirements for properties so
4026 * we shouldn't validate or assume anything about ordering here. This doesn't
4027 * rule out defining new properties with ordering requirements in the future.
4028 */
4029 static int read_properties_unlocked(struct i915_perf *perf,
4030 u64 __user *uprops,
4031 u32 n_props,
4032 struct perf_open_properties *props)
4033 {
4034 struct drm_i915_gem_context_param_sseu user_sseu;
4035 const struct i915_oa_format *f;
4036 u64 __user *uprop = uprops;
4037 bool config_instance = false;
4038 bool config_class = false;
4039 bool config_sseu = false;
4040 u8 class, instance;
4041 u32 i;
4042 int ret;
4043
4044 memset(props, 0, sizeof(struct perf_open_properties));
4045 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4046
4047 /* Considering that ID = 0 is reserved and assuming that we don't
4048 * (currently) expect any configurations to ever specify duplicate
4049 * values for a particular property ID then the last _PROP_MAX value is
4050 * one greater than the maximum number of properties we expect to get
4051 * from userspace.
4052 */
4053 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4054 drm_dbg(&perf->i915->drm,
4055 "Invalid number of i915 perf properties given\n");
4056 return -EINVAL;
4057 }
4058
4059 /* Defaults when class:instance is not passed */
4060 class = I915_ENGINE_CLASS_RENDER;
4061 instance = 0;
4062
4063 for (i = 0; i < n_props; i++) {
4064 u64 oa_period, oa_freq_hz;
4065 u64 id, value;
4066
4067 ret = get_user(id, uprop);
4068 if (ret)
4069 return ret;
4070
4071 ret = get_user(value, uprop + 1);
4072 if (ret)
4073 return ret;
4074
4075 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4076 drm_dbg(&perf->i915->drm,
4077 "Unknown i915 perf property ID\n");
4078 return -EINVAL;
4079 }
4080
4081 switch ((enum drm_i915_perf_property_id)id) {
4082 case DRM_I915_PERF_PROP_CTX_HANDLE:
4083 props->single_context = 1;
4084 props->ctx_handle = value;
4085 break;
4086 case DRM_I915_PERF_PROP_SAMPLE_OA:
4087 if (value)
4088 props->sample_flags |= SAMPLE_OA_REPORT;
4089 break;
4090 case DRM_I915_PERF_PROP_OA_METRICS_SET:
4091 if (value == 0) {
4092 drm_dbg(&perf->i915->drm,
4093 "Unknown OA metric set ID\n");
4094 return -EINVAL;
4095 }
4096 props->metrics_set = value;
4097 break;
4098 case DRM_I915_PERF_PROP_OA_FORMAT:
4099 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4100 drm_dbg(&perf->i915->drm,
4101 "Out-of-range OA report format %llu\n",
4102 value);
4103 return -EINVAL;
4104 }
4105 if (!oa_format_valid(perf, value)) {
4106 drm_dbg(&perf->i915->drm,
4107 "Unsupported OA report format %llu\n",
4108 value);
4109 return -EINVAL;
4110 }
4111 props->oa_format = value;
4112 break;
4113 case DRM_I915_PERF_PROP_OA_EXPONENT:
4114 if (value > OA_EXPONENT_MAX) {
4115 drm_dbg(&perf->i915->drm,
4116 "OA timer exponent too high (> %u)\n",
4117 OA_EXPONENT_MAX);
4118 return -EINVAL;
4119 }
4120
4121 /* Theoretically we can program the OA unit to sample
4122 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4123 * for BXT. We don't allow such high sampling
4124 * frequencies by default unless root.
4125 */
4126
4127 BUILD_BUG_ON(sizeof(oa_period) != 8);
4128 oa_period = oa_exponent_to_ns(perf, value);
4129
4130 /* This check is primarily to ensure that oa_period <=
4131 * UINT32_MAX (before passing to do_div which only
4132 * accepts a u32 denominator), but we can also skip
4133 * checking anything < 1Hz which implicitly can't be
4134 * limited via an integer oa_max_sample_rate.
4135 */
4136 if (oa_period <= NSEC_PER_SEC) {
4137 u64 tmp = NSEC_PER_SEC;
4138 do_div(tmp, oa_period);
4139 oa_freq_hz = tmp;
4140 } else
4141 oa_freq_hz = 0;
4142
4143 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4144 drm_dbg(&perf->i915->drm,
4145 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4146 i915_oa_max_sample_rate);
4147 return -EACCES;
4148 }
4149
4150 props->oa_periodic = true;
4151 props->oa_period_exponent = value;
4152 break;
4153 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4154 props->hold_preemption = !!value;
4155 break;
4156 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4157 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4158 drm_dbg(&perf->i915->drm,
4159 "SSEU config not supported on gfx %x\n",
4160 GRAPHICS_VER_FULL(perf->i915));
4161 return -ENODEV;
4162 }
4163
4164 if (copy_from_user(&user_sseu,
4165 u64_to_user_ptr(value),
4166 sizeof(user_sseu))) {
4167 drm_dbg(&perf->i915->drm,
4168 "Unable to copy global sseu parameter\n");
4169 return -EFAULT;
4170 }
4171 config_sseu = true;
4172 break;
4173 }
4174 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4175 if (value < 100000 /* 100us */) {
4176 drm_dbg(&perf->i915->drm,
4177 "OA availability timer too small (%lluns < 100us)\n",
4178 value);
4179 return -EINVAL;
4180 }
4181 props->poll_oa_period = value;
4182 break;
4183 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4184 class = (u8)value;
4185 config_class = true;
4186 break;
4187 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4188 instance = (u8)value;
4189 config_instance = true;
4190 break;
4191 default:
4192 MISSING_CASE(id);
4193 return -EINVAL;
4194 }
4195
4196 uprop += 2;
4197 }
4198
4199 if ((config_class && !config_instance) ||
4200 (config_instance && !config_class)) {
4201 drm_dbg(&perf->i915->drm,
4202 "OA engine-class and engine-instance parameters must be passed together\n");
4203 return -EINVAL;
4204 }
4205
4206 props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4207 if (!props->engine) {
4208 drm_dbg(&perf->i915->drm,
4209 "OA engine class and instance invalid %d:%d\n",
4210 class, instance);
4211 return -EINVAL;
4212 }
4213
4214 if (!engine_supports_oa(props->engine)) {
4215 drm_dbg(&perf->i915->drm,
4216 "Engine not supported by OA %d:%d\n",
4217 class, instance);
4218 return -EINVAL;
4219 }
4220
4221 /*
4222 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4223 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4224 * does not work as expected.
4225 */
4226 if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) &&
4227 props->engine->oa_group->type == TYPE_OAM &&
4228 intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4229 drm_dbg(&perf->i915->drm,
4230 "OAM requires media C6 to be disabled in BIOS\n");
4231 return -EINVAL;
4232 }
4233
4234 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4235 f = &perf->oa_formats[i];
4236 if (!engine_supports_oa_format(props->engine, f->type)) {
4237 drm_dbg(&perf->i915->drm,
4238 "Invalid OA format %d for class %d\n",
4239 f->type, props->engine->class);
4240 return -EINVAL;
4241 }
4242
4243 if (config_sseu) {
4244 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4245 if (ret) {
4246 drm_dbg(&perf->i915->drm,
4247 "Invalid SSEU configuration\n");
4248 return ret;
4249 }
4250 props->has_sseu = true;
4251 }
4252
4253 return 0;
4254 }
4255
4256 /**
4257 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4258 * @dev: drm device
4259 * @data: ioctl data copied from userspace (unvalidated)
4260 * @file: drm file
4261 *
4262 * Validates the stream open parameters given by userspace including flags
4263 * and an array of u64 key, value pair properties.
4264 *
4265 * Very little is assumed up front about the nature of the stream being
4266 * opened (for instance we don't assume it's for periodic OA unit metrics). An
4267 * i915-perf stream is expected to be a suitable interface for other forms of
4268 * buffered data written by the GPU besides periodic OA metrics.
4269 *
4270 * Note we copy the properties from userspace outside of the i915 perf
4271 * mutex to avoid an awkward lockdep with mmap_lock.
4272 *
4273 * Most of the implementation details are handled by
4274 * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4275 * mutex for serializing with any non-file-operation driver hooks.
4276 *
4277 * Return: A newly opened i915 Perf stream file descriptor or negative
4278 * error code on failure.
4279 */
4280 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4281 struct drm_file *file)
4282 {
4283 struct i915_perf *perf = &to_i915(dev)->perf;
4284 struct drm_i915_perf_open_param *param = data;
4285 struct intel_gt *gt;
4286 struct perf_open_properties props;
4287 u32 known_open_flags;
4288 int ret;
4289
4290 if (!perf->i915) {
4291 drm_dbg(&perf->i915->drm,
4292 "i915 perf interface not available for this system\n");
4293 return -ENOTSUPP;
4294 }
4295
4296 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4297 I915_PERF_FLAG_FD_NONBLOCK |
4298 I915_PERF_FLAG_DISABLED;
4299 if (param->flags & ~known_open_flags) {
4300 drm_dbg(&perf->i915->drm,
4301 "Unknown drm_i915_perf_open_param flag\n");
4302 return -EINVAL;
4303 }
4304
4305 ret = read_properties_unlocked(perf,
4306 u64_to_user_ptr(param->properties_ptr),
4307 param->num_properties,
4308 &props);
4309 if (ret)
4310 return ret;
4311
4312 gt = props.engine->gt;
4313
4314 mutex_lock(&gt->perf.lock);
4315 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4316 mutex_unlock(&gt->perf.lock);
4317
4318 return ret;
4319 }
4320
4321 /**
4322 * i915_perf_register - exposes i915-perf to userspace
4323 * @i915: i915 device instance
4324 *
4325 * In particular OA metric sets are advertised under a sysfs metrics/
4326 * directory allowing userspace to enumerate valid IDs that can be
4327 * used to open an i915-perf stream.
4328 */
4329 void i915_perf_register(struct drm_i915_private *i915)
4330 {
4331 struct i915_perf *perf = &i915->perf;
4332 struct intel_gt *gt = to_gt(i915);
4333
4334 if (!perf->i915)
4335 return;
4336
4337 /* To be sure we're synchronized with an attempted
4338 * i915_perf_open_ioctl(); considering that we register after
4339 * being exposed to userspace.
4340 */
4341 mutex_lock(&gt->perf.lock);
4342
4343 perf->metrics_kobj =
4344 kobject_create_and_add("metrics",
4345 &i915->drm.primary->kdev->kobj);
4346
4347 mutex_unlock(&gt->perf.lock);
4348 }
4349
4350 /**
4351 * i915_perf_unregister - hide i915-perf from userspace
4352 * @i915: i915 device instance
4353 *
4354 * i915-perf state cleanup is split up into an 'unregister' and
4355 * 'deinit' phase where the interface is first hidden from
4356 * userspace by i915_perf_unregister() before cleaning up
4357 * remaining state in i915_perf_fini().
4358 */
4359 void i915_perf_unregister(struct drm_i915_private *i915)
4360 {
4361 struct i915_perf *perf = &i915->perf;
4362
4363 if (!perf->metrics_kobj)
4364 return;
4365
4366 kobject_put(perf->metrics_kobj);
4367 perf->metrics_kobj = NULL;
4368 }
4369
4370 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4371 {
4372 static const i915_reg_t flex_eu_regs[] = {
4373 EU_PERF_CNTL0,
4374 EU_PERF_CNTL1,
4375 EU_PERF_CNTL2,
4376 EU_PERF_CNTL3,
4377 EU_PERF_CNTL4,
4378 EU_PERF_CNTL5,
4379 EU_PERF_CNTL6,
4380 };
4381 int i;
4382
4383 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4384 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4385 return true;
4386 }
4387 return false;
4388 }
4389
4390 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4391 {
4392 while (table->start || table->end) {
4393 if (addr >= table->start && addr <= table->end)
4394 return true;
4395
4396 table++;
4397 }
4398
4399 return false;
4400 }
4401
4402 #define REG_EQUAL(addr, mmio) \
4403 ((addr) == i915_mmio_reg_offset(mmio))
4404
4405 static const struct i915_range gen7_oa_b_counters[] = {
4406 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */
4407 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */
4408 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */
4409 {}
4410 };
4411
4412 static const struct i915_range gen12_oa_b_counters[] = {
4413 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */
4414 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */
4415 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */
4416 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */
4417 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */
4418 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */
4419 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */
4420 {}
4421 };
4422
4423 static const struct i915_range mtl_oam_b_counters[] = {
4424 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */
4425 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */
4426 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */
4427 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */
4428 {}
4429 };
4430
4431 static const struct i915_range xehp_oa_b_counters[] = {
4432 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */
4433 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */
4434 {}
4435 };
4436
4437 static const struct i915_range gen7_oa_mux_regs[] = {
4438 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */
4439 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */
4440 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */
4441 {}
4442 };
4443
4444 static const struct i915_range hsw_oa_mux_regs[] = {
4445 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4446 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4447 { .start = 0x25100, .end = 0x2ff90 },
4448 {}
4449 };
4450
4451 static const struct i915_range chv_oa_mux_regs[] = {
4452 { .start = 0x182300, .end = 0x1823a4 },
4453 {}
4454 };
4455
4456 static const struct i915_range gen8_oa_mux_regs[] = {
4457 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4458 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
4459 {}
4460 };
4461
4462 static const struct i915_range gen11_oa_mux_regs[] = {
4463 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */
4464 {}
4465 };
4466
4467 static const struct i915_range gen12_oa_mux_regs[] = {
4468 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
4469 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
4470 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
4471 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
4472 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
4473 {}
4474 };
4475
4476 /*
4477 * Ref: 14010536224:
4478 * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4479 */
4480 static const struct i915_range mtl_oa_mux_regs[] = {
4481 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
4482 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
4483 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
4484 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
4485 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */
4486 {}
4487 };
4488
4489 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4490 {
4491 return reg_in_range_table(addr, gen7_oa_b_counters);
4492 }
4493
4494 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4495 {
4496 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4497 reg_in_range_table(addr, gen8_oa_mux_regs);
4498 }
4499
4500 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4501 {
4502 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4503 reg_in_range_table(addr, gen8_oa_mux_regs) ||
4504 reg_in_range_table(addr, gen11_oa_mux_regs);
4505 }
4506
4507 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4508 {
4509 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4510 reg_in_range_table(addr, hsw_oa_mux_regs);
4511 }
4512
4513 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4514 {
4515 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4516 reg_in_range_table(addr, chv_oa_mux_regs);
4517 }
4518
4519 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4520 {
4521 return reg_in_range_table(addr, gen12_oa_b_counters);
4522 }
4523
4524 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4525 {
4526 if (HAS_OAM(perf->i915) &&
4527 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4528 return reg_in_range_table(addr, mtl_oam_b_counters);
4529
4530 return false;
4531 }
4532
4533 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4534 {
4535 return reg_in_range_table(addr, xehp_oa_b_counters) ||
4536 reg_in_range_table(addr, gen12_oa_b_counters) ||
4537 mtl_is_valid_oam_b_counter_addr(perf, addr);
4538 }
4539
4540 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4541 {
4542 if (IS_METEORLAKE(perf->i915))
4543 return reg_in_range_table(addr, mtl_oa_mux_regs);
4544 else
4545 return reg_in_range_table(addr, gen12_oa_mux_regs);
4546 }
4547
4548 static u32 mask_reg_value(u32 reg, u32 val)
4549 {
4550 /* HALF_SLICE_CHICKEN2 is programmed with a the
4551 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4552 * programmed by userspace doesn't change this.
4553 */
4554 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4555 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4556
4557 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4558 * indicated by its name and a bunch of selection fields used by OA
4559 * configs.
4560 */
4561 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4562 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4563
4564 return val;
4565 }
4566
4567 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4568 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4569 u32 __user *regs,
4570 u32 n_regs)
4571 {
4572 struct i915_oa_reg *oa_regs;
4573 int err;
4574 u32 i;
4575
4576 if (!n_regs)
4577 return NULL;
4578
4579 /* No is_valid function means we're not allowing any register to be programmed. */
4580 GEM_BUG_ON(!is_valid);
4581 if (!is_valid)
4582 return ERR_PTR(-EINVAL);
4583
4584 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4585 if (!oa_regs)
4586 return ERR_PTR(-ENOMEM);
4587
4588 for (i = 0; i < n_regs; i++) {
4589 u32 addr, value;
4590
4591 err = get_user(addr, regs);
4592 if (err)
4593 goto addr_err;
4594
4595 if (!is_valid(perf, addr)) {
4596 drm_dbg(&perf->i915->drm,
4597 "Invalid oa_reg address: %X\n", addr);
4598 err = -EINVAL;
4599 goto addr_err;
4600 }
4601
4602 err = get_user(value, regs + 1);
4603 if (err)
4604 goto addr_err;
4605
4606 oa_regs[i].addr = _MMIO(addr);
4607 oa_regs[i].value = mask_reg_value(addr, value);
4608
4609 regs += 2;
4610 }
4611
4612 return oa_regs;
4613
4614 addr_err:
4615 kfree(oa_regs);
4616 return ERR_PTR(err);
4617 }
4618
4619 static ssize_t show_dynamic_id(struct kobject *kobj,
4620 struct kobj_attribute *attr,
4621 char *buf)
4622 {
4623 struct i915_oa_config *oa_config =
4624 container_of(attr, typeof(*oa_config), sysfs_metric_id);
4625
4626 return sprintf(buf, "%d\n", oa_config->id);
4627 }
4628
4629 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4630 struct i915_oa_config *oa_config)
4631 {
4632 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4633 oa_config->sysfs_metric_id.attr.name = "id";
4634 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4635 oa_config->sysfs_metric_id.show = show_dynamic_id;
4636 oa_config->sysfs_metric_id.store = NULL;
4637
4638 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4639 oa_config->attrs[1] = NULL;
4640
4641 oa_config->sysfs_metric.name = oa_config->uuid;
4642 oa_config->sysfs_metric.attrs = oa_config->attrs;
4643
4644 return sysfs_create_group(perf->metrics_kobj,
4645 &oa_config->sysfs_metric);
4646 }
4647
4648 /**
4649 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4650 * @dev: drm device
4651 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4652 * userspace (unvalidated)
4653 * @file: drm file
4654 *
4655 * Validates the submitted OA register to be saved into a new OA config that
4656 * can then be used for programming the OA unit and its NOA network.
4657 *
4658 * Returns: A new allocated config number to be used with the perf open ioctl
4659 * or a negative error code on failure.
4660 */
4661 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4662 struct drm_file *file)
4663 {
4664 struct i915_perf *perf = &to_i915(dev)->perf;
4665 struct drm_i915_perf_oa_config *args = data;
4666 struct i915_oa_config *oa_config, *tmp;
4667 struct i915_oa_reg *regs;
4668 int err, id;
4669
4670 if (!perf->i915) {
4671 drm_dbg(&perf->i915->drm,
4672 "i915 perf interface not available for this system\n");
4673 return -ENOTSUPP;
4674 }
4675
4676 if (!perf->metrics_kobj) {
4677 drm_dbg(&perf->i915->drm,
4678 "OA metrics weren't advertised via sysfs\n");
4679 return -EINVAL;
4680 }
4681
4682 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4683 drm_dbg(&perf->i915->drm,
4684 "Insufficient privileges to add i915 OA config\n");
4685 return -EACCES;
4686 }
4687
4688 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4689 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4690 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4691 drm_dbg(&perf->i915->drm,
4692 "No OA registers given\n");
4693 return -EINVAL;
4694 }
4695
4696 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4697 if (!oa_config) {
4698 drm_dbg(&perf->i915->drm,
4699 "Failed to allocate memory for the OA config\n");
4700 return -ENOMEM;
4701 }
4702
4703 oa_config->perf = perf;
4704 kref_init(&oa_config->ref);
4705
4706 if (!uuid_is_valid(args->uuid)) {
4707 drm_dbg(&perf->i915->drm,
4708 "Invalid uuid format for OA config\n");
4709 err = -EINVAL;
4710 goto reg_err;
4711 }
4712
4713 /* Last character in oa_config->uuid will be 0 because oa_config is
4714 * kzalloc.
4715 */
4716 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4717
4718 oa_config->mux_regs_len = args->n_mux_regs;
4719 regs = alloc_oa_regs(perf,
4720 perf->ops.is_valid_mux_reg,
4721 u64_to_user_ptr(args->mux_regs_ptr),
4722 args->n_mux_regs);
4723
4724 if (IS_ERR(regs)) {
4725 drm_dbg(&perf->i915->drm,
4726 "Failed to create OA config for mux_regs\n");
4727 err = PTR_ERR(regs);
4728 goto reg_err;
4729 }
4730 oa_config->mux_regs = regs;
4731
4732 oa_config->b_counter_regs_len = args->n_boolean_regs;
4733 regs = alloc_oa_regs(perf,
4734 perf->ops.is_valid_b_counter_reg,
4735 u64_to_user_ptr(args->boolean_regs_ptr),
4736 args->n_boolean_regs);
4737
4738 if (IS_ERR(regs)) {
4739 drm_dbg(&perf->i915->drm,
4740 "Failed to create OA config for b_counter_regs\n");
4741 err = PTR_ERR(regs);
4742 goto reg_err;
4743 }
4744 oa_config->b_counter_regs = regs;
4745
4746 if (GRAPHICS_VER(perf->i915) < 8) {
4747 if (args->n_flex_regs != 0) {
4748 err = -EINVAL;
4749 goto reg_err;
4750 }
4751 } else {
4752 oa_config->flex_regs_len = args->n_flex_regs;
4753 regs = alloc_oa_regs(perf,
4754 perf->ops.is_valid_flex_reg,
4755 u64_to_user_ptr(args->flex_regs_ptr),
4756 args->n_flex_regs);
4757
4758 if (IS_ERR(regs)) {
4759 drm_dbg(&perf->i915->drm,
4760 "Failed to create OA config for flex_regs\n");
4761 err = PTR_ERR(regs);
4762 goto reg_err;
4763 }
4764 oa_config->flex_regs = regs;
4765 }
4766
4767 err = mutex_lock_interruptible(&perf->metrics_lock);
4768 if (err)
4769 goto reg_err;
4770
4771 /* We shouldn't have too many configs, so this iteration shouldn't be
4772 * too costly.
4773 */
4774 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4775 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4776 drm_dbg(&perf->i915->drm,
4777 "OA config already exists with this uuid\n");
4778 err = -EADDRINUSE;
4779 goto sysfs_err;
4780 }
4781 }
4782
4783 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4784 if (err) {
4785 drm_dbg(&perf->i915->drm,
4786 "Failed to create sysfs entry for OA config\n");
4787 goto sysfs_err;
4788 }
4789
4790 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4791 oa_config->id = idr_alloc(&perf->metrics_idr,
4792 oa_config, 2,
4793 0, GFP_KERNEL);
4794 if (oa_config->id < 0) {
4795 drm_dbg(&perf->i915->drm,
4796 "Failed to create sysfs entry for OA config\n");
4797 err = oa_config->id;
4798 goto sysfs_err;
4799 }
4800 id = oa_config->id;
4801
4802 drm_dbg(&perf->i915->drm,
4803 "Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4804 mutex_unlock(&perf->metrics_lock);
4805
4806 return id;
4807
4808 sysfs_err:
4809 mutex_unlock(&perf->metrics_lock);
4810 reg_err:
4811 i915_oa_config_put(oa_config);
4812 drm_dbg(&perf->i915->drm,
4813 "Failed to add new OA config\n");
4814 return err;
4815 }
4816
4817 /**
4818 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4819 * @dev: drm device
4820 * @data: ioctl data (pointer to u64 integer) copied from userspace
4821 * @file: drm file
4822 *
4823 * Configs can be removed while being used, the will stop appearing in sysfs
4824 * and their content will be freed when the stream using the config is closed.
4825 *
4826 * Returns: 0 on success or a negative error code on failure.
4827 */
4828 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4829 struct drm_file *file)
4830 {
4831 struct i915_perf *perf = &to_i915(dev)->perf;
4832 u64 *arg = data;
4833 struct i915_oa_config *oa_config;
4834 int ret;
4835
4836 if (!perf->i915) {
4837 drm_dbg(&perf->i915->drm,
4838 "i915 perf interface not available for this system\n");
4839 return -ENOTSUPP;
4840 }
4841
4842 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4843 drm_dbg(&perf->i915->drm,
4844 "Insufficient privileges to remove i915 OA config\n");
4845 return -EACCES;
4846 }
4847
4848 ret = mutex_lock_interruptible(&perf->metrics_lock);
4849 if (ret)
4850 return ret;
4851
4852 oa_config = idr_find(&perf->metrics_idr, *arg);
4853 if (!oa_config) {
4854 drm_dbg(&perf->i915->drm,
4855 "Failed to remove unknown OA config\n");
4856 ret = -ENOENT;
4857 goto err_unlock;
4858 }
4859
4860 GEM_BUG_ON(*arg != oa_config->id);
4861
4862 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4863
4864 idr_remove(&perf->metrics_idr, *arg);
4865
4866 mutex_unlock(&perf->metrics_lock);
4867
4868 drm_dbg(&perf->i915->drm,
4869 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4870
4871 i915_oa_config_put(oa_config);
4872
4873 return 0;
4874
4875 err_unlock:
4876 mutex_unlock(&perf->metrics_lock);
4877 return ret;
4878 }
4879
4880 static struct ctl_table oa_table[] = {
4881 {
4882 .procname = "perf_stream_paranoid",
4883 .data = &i915_perf_stream_paranoid,
4884 .maxlen = sizeof(i915_perf_stream_paranoid),
4885 .mode = 0644,
4886 .proc_handler = proc_dointvec_minmax,
4887 .extra1 = SYSCTL_ZERO,
4888 .extra2 = SYSCTL_ONE,
4889 },
4890 {
4891 .procname = "oa_max_sample_rate",
4892 .data = &i915_oa_max_sample_rate,
4893 .maxlen = sizeof(i915_oa_max_sample_rate),
4894 .mode = 0644,
4895 .proc_handler = proc_dointvec_minmax,
4896 .extra1 = SYSCTL_ZERO,
4897 .extra2 = &oa_sample_rate_hard_limit,
4898 },
4899 {}
4900 };
4901
4902 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4903 {
4904 return 1;
4905 }
4906
4907 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4908 {
4909 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4910 /*
4911 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4912 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4913 */
4914 drm_WARN_ON(&engine->i915->drm,
4915 engine->gt->type != GT_MEDIA);
4916
4917 return PERF_GROUP_OAM_SAMEDIA_0;
4918 }
4919
4920 return PERF_GROUP_INVALID;
4921 }
4922
4923 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4924 {
4925 switch (engine->class) {
4926 case RENDER_CLASS:
4927 return PERF_GROUP_OAG;
4928
4929 case VIDEO_DECODE_CLASS:
4930 case VIDEO_ENHANCEMENT_CLASS:
4931 return __oam_engine_group(engine);
4932
4933 default:
4934 return PERF_GROUP_INVALID;
4935 }
4936 }
4937
4938 static struct i915_perf_regs __oam_regs(u32 base)
4939 {
4940 return (struct i915_perf_regs) {
4941 base,
4942 GEN12_OAM_HEAD_POINTER(base),
4943 GEN12_OAM_TAIL_POINTER(base),
4944 GEN12_OAM_BUFFER(base),
4945 GEN12_OAM_CONTEXT_CONTROL(base),
4946 GEN12_OAM_CONTROL(base),
4947 GEN12_OAM_DEBUG(base),
4948 GEN12_OAM_STATUS(base),
4949 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4950 };
4951 }
4952
4953 static struct i915_perf_regs __oag_regs(void)
4954 {
4955 return (struct i915_perf_regs) {
4956 0,
4957 GEN12_OAG_OAHEADPTR,
4958 GEN12_OAG_OATAILPTR,
4959 GEN12_OAG_OABUFFER,
4960 GEN12_OAG_OAGLBCTXCTRL,
4961 GEN12_OAG_OACONTROL,
4962 GEN12_OAG_OA_DEBUG,
4963 GEN12_OAG_OASTATUS,
4964 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4965 };
4966 }
4967
4968 static void oa_init_groups(struct intel_gt *gt)
4969 {
4970 int i, num_groups = gt->perf.num_perf_groups;
4971
4972 for (i = 0; i < num_groups; i++) {
4973 struct i915_perf_group *g = &gt->perf.group[i];
4974
4975 /* Fused off engines can result in a group with num_engines == 0 */
4976 if (g->num_engines == 0)
4977 continue;
4978
4979 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4980 g->regs = __oag_regs();
4981 g->type = TYPE_OAG;
4982 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4983 g->regs = __oam_regs(mtl_oa_base[i]);
4984 g->type = TYPE_OAM;
4985 }
4986 }
4987 }
4988
4989 static int oa_init_gt(struct intel_gt *gt)
4990 {
4991 u32 num_groups = num_perf_groups_per_gt(gt);
4992 struct intel_engine_cs *engine;
4993 struct i915_perf_group *g;
4994 intel_engine_mask_t tmp;
4995
4996 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4997 if (!g)
4998 return -ENOMEM;
4999
5000 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
5001 u32 index = __oa_engine_group(engine);
5002
5003 engine->oa_group = NULL;
5004 if (index < num_groups) {
5005 g[index].num_engines++;
5006 engine->oa_group = &g[index];
5007 }
5008 }
5009
5010 gt->perf.num_perf_groups = num_groups;
5011 gt->perf.group = g;
5012
5013 oa_init_groups(gt);
5014
5015 return 0;
5016 }
5017
5018 static int oa_init_engine_groups(struct i915_perf *perf)
5019 {
5020 struct intel_gt *gt;
5021 int i, ret;
5022
5023 for_each_gt(gt, perf->i915, i) {
5024 ret = oa_init_gt(gt);
5025 if (ret)
5026 return ret;
5027 }
5028
5029 return 0;
5030 }
5031
5032 static void oa_init_supported_formats(struct i915_perf *perf)
5033 {
5034 struct drm_i915_private *i915 = perf->i915;
5035 enum intel_platform platform = INTEL_INFO(i915)->platform;
5036
5037 switch (platform) {
5038 case INTEL_HASWELL:
5039 oa_format_add(perf, I915_OA_FORMAT_A13);
5040 oa_format_add(perf, I915_OA_FORMAT_A13);
5041 oa_format_add(perf, I915_OA_FORMAT_A29);
5042 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
5043 oa_format_add(perf, I915_OA_FORMAT_B4_C8);
5044 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
5045 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
5046 oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5047 break;
5048
5049 case INTEL_BROADWELL:
5050 case INTEL_CHERRYVIEW:
5051 case INTEL_SKYLAKE:
5052 case INTEL_BROXTON:
5053 case INTEL_KABYLAKE:
5054 case INTEL_GEMINILAKE:
5055 case INTEL_COFFEELAKE:
5056 case INTEL_COMETLAKE:
5057 case INTEL_ICELAKE:
5058 case INTEL_ELKHARTLAKE:
5059 case INTEL_JASPERLAKE:
5060 case INTEL_TIGERLAKE:
5061 case INTEL_ROCKETLAKE:
5062 case INTEL_DG1:
5063 case INTEL_ALDERLAKE_S:
5064 case INTEL_ALDERLAKE_P:
5065 oa_format_add(perf, I915_OA_FORMAT_A12);
5066 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
5067 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5068 oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5069 break;
5070
5071 case INTEL_DG2:
5072 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5073 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5074 break;
5075
5076 case INTEL_METEORLAKE:
5077 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5078 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5079 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5080 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5081 break;
5082
5083 default:
5084 MISSING_CASE(platform);
5085 }
5086 }
5087
5088 static void i915_perf_init_info(struct drm_i915_private *i915)
5089 {
5090 struct i915_perf *perf = &i915->perf;
5091
5092 switch (GRAPHICS_VER(i915)) {
5093 case 8:
5094 perf->ctx_oactxctrl_offset = 0x120;
5095 perf->ctx_flexeu0_offset = 0x2ce;
5096 perf->gen8_valid_ctx_bit = BIT(25);
5097 break;
5098 case 9:
5099 perf->ctx_oactxctrl_offset = 0x128;
5100 perf->ctx_flexeu0_offset = 0x3de;
5101 perf->gen8_valid_ctx_bit = BIT(16);
5102 break;
5103 case 11:
5104 perf->ctx_oactxctrl_offset = 0x124;
5105 perf->ctx_flexeu0_offset = 0x78e;
5106 perf->gen8_valid_ctx_bit = BIT(16);
5107 break;
5108 case 12:
5109 /*
5110 * Calculate offset at runtime in oa_pin_context for gen12 and
5111 * cache the value in perf->ctx_oactxctrl_offset.
5112 */
5113 break;
5114 default:
5115 MISSING_CASE(GRAPHICS_VER(i915));
5116 }
5117 }
5118
5119 /**
5120 * i915_perf_init - initialize i915-perf state on module bind
5121 * @i915: i915 device instance
5122 *
5123 * Initializes i915-perf state without exposing anything to userspace.
5124 *
5125 * Note: i915-perf initialization is split into an 'init' and 'register'
5126 * phase with the i915_perf_register() exposing state to userspace.
5127 */
5128 int i915_perf_init(struct drm_i915_private *i915)
5129 {
5130 struct i915_perf *perf = &i915->perf;
5131
5132 perf->oa_formats = oa_formats;
5133 if (IS_HASWELL(i915)) {
5134 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5135 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5136 perf->ops.is_valid_flex_reg = NULL;
5137 perf->ops.enable_metric_set = hsw_enable_metric_set;
5138 perf->ops.disable_metric_set = hsw_disable_metric_set;
5139 perf->ops.oa_enable = gen7_oa_enable;
5140 perf->ops.oa_disable = gen7_oa_disable;
5141 perf->ops.read = gen7_oa_read;
5142 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5143 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5144 /* Note: that although we could theoretically also support the
5145 * legacy ringbuffer mode on BDW (and earlier iterations of
5146 * this driver, before upstreaming did this) it didn't seem
5147 * worth the complexity to maintain now that BDW+ enable
5148 * execlist mode by default.
5149 */
5150 perf->ops.read = gen8_oa_read;
5151 i915_perf_init_info(i915);
5152
5153 if (IS_GRAPHICS_VER(i915, 8, 9)) {
5154 perf->ops.is_valid_b_counter_reg =
5155 gen7_is_valid_b_counter_addr;
5156 perf->ops.is_valid_mux_reg =
5157 gen8_is_valid_mux_addr;
5158 perf->ops.is_valid_flex_reg =
5159 gen8_is_valid_flex_addr;
5160
5161 if (IS_CHERRYVIEW(i915)) {
5162 perf->ops.is_valid_mux_reg =
5163 chv_is_valid_mux_addr;
5164 }
5165
5166 perf->ops.oa_enable = gen8_oa_enable;
5167 perf->ops.oa_disable = gen8_oa_disable;
5168 perf->ops.enable_metric_set = gen8_enable_metric_set;
5169 perf->ops.disable_metric_set = gen8_disable_metric_set;
5170 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5171 } else if (GRAPHICS_VER(i915) == 11) {
5172 perf->ops.is_valid_b_counter_reg =
5173 gen7_is_valid_b_counter_addr;
5174 perf->ops.is_valid_mux_reg =
5175 gen11_is_valid_mux_addr;
5176 perf->ops.is_valid_flex_reg =
5177 gen8_is_valid_flex_addr;
5178
5179 perf->ops.oa_enable = gen8_oa_enable;
5180 perf->ops.oa_disable = gen8_oa_disable;
5181 perf->ops.enable_metric_set = gen8_enable_metric_set;
5182 perf->ops.disable_metric_set = gen11_disable_metric_set;
5183 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5184 } else if (GRAPHICS_VER(i915) == 12) {
5185 perf->ops.is_valid_b_counter_reg =
5186 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5187 xehp_is_valid_b_counter_addr :
5188 gen12_is_valid_b_counter_addr;
5189 perf->ops.is_valid_mux_reg =
5190 gen12_is_valid_mux_addr;
5191 perf->ops.is_valid_flex_reg =
5192 gen8_is_valid_flex_addr;
5193
5194 perf->ops.oa_enable = gen12_oa_enable;
5195 perf->ops.oa_disable = gen12_oa_disable;
5196 perf->ops.enable_metric_set = gen12_enable_metric_set;
5197 perf->ops.disable_metric_set = gen12_disable_metric_set;
5198 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5199 }
5200 }
5201
5202 if (perf->ops.enable_metric_set) {
5203 struct intel_gt *gt;
5204 int i, ret;
5205
5206 for_each_gt(gt, i915, i)
5207 mutex_init(&gt->perf.lock);
5208
5209 /* Choose a representative limit */
5210 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5211
5212 mutex_init(&perf->metrics_lock);
5213 idr_init_base(&perf->metrics_idr, 1);
5214
5215 /* We set up some ratelimit state to potentially throttle any
5216 * _NOTES about spurious, invalid OA reports which we don't
5217 * forward to userspace.
5218 *
5219 * We print a _NOTE about any throttling when closing the
5220 * stream instead of waiting until driver _fini which no one
5221 * would ever see.
5222 *
5223 * Using the same limiting factors as printk_ratelimit()
5224 */
5225 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5226 /* Since we use a DRM_NOTE for spurious reports it would be
5227 * inconsistent to let __ratelimit() automatically print a
5228 * warning for throttling.
5229 */
5230 ratelimit_set_flags(&perf->spurious_report_rs,
5231 RATELIMIT_MSG_ON_RELEASE);
5232
5233 ratelimit_state_init(&perf->tail_pointer_race,
5234 5 * HZ, 10);
5235 ratelimit_set_flags(&perf->tail_pointer_race,
5236 RATELIMIT_MSG_ON_RELEASE);
5237
5238 atomic64_set(&perf->noa_programming_delay,
5239 500 * 1000 /* 500us */);
5240
5241 perf->i915 = i915;
5242
5243 ret = oa_init_engine_groups(perf);
5244 if (ret) {
5245 drm_err(&i915->drm,
5246 "OA initialization failed %d\n", ret);
5247 return ret;
5248 }
5249
5250 oa_init_supported_formats(perf);
5251 }
5252
5253 return 0;
5254 }
5255
5256 static int destroy_config(int id, void *p, void *data)
5257 {
5258 i915_oa_config_put(p);
5259 return 0;
5260 }
5261
5262 int i915_perf_sysctl_register(void)
5263 {
5264 sysctl_header = register_sysctl("dev/i915", oa_table);
5265 return 0;
5266 }
5267
5268 void i915_perf_sysctl_unregister(void)
5269 {
5270 unregister_sysctl_table(sysctl_header);
5271 }
5272
5273 /**
5274 * i915_perf_fini - Counter part to i915_perf_init()
5275 * @i915: i915 device instance
5276 */
5277 void i915_perf_fini(struct drm_i915_private *i915)
5278 {
5279 struct i915_perf *perf = &i915->perf;
5280 struct intel_gt *gt;
5281 int i;
5282
5283 if (!perf->i915)
5284 return;
5285
5286 for_each_gt(gt, perf->i915, i)
5287 kfree(gt->perf.group);
5288
5289 idr_for_each(&perf->metrics_idr, destroy_config, perf);
5290 idr_destroy(&perf->metrics_idr);
5291
5292 memset(&perf->ops, 0, sizeof(perf->ops));
5293 perf->i915 = NULL;
5294 }
5295
5296 /**
5297 * i915_perf_ioctl_version - Version of the i915-perf subsystem
5298 * @i915: The i915 device
5299 *
5300 * This version number is used by userspace to detect available features.
5301 */
5302 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5303 {
5304 /*
5305 * 1: Initial version
5306 * I915_PERF_IOCTL_ENABLE
5307 * I915_PERF_IOCTL_DISABLE
5308 *
5309 * 2: Added runtime modification of OA config.
5310 * I915_PERF_IOCTL_CONFIG
5311 *
5312 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5313 * preemption on a particular context so that performance data is
5314 * accessible from a delta of MI_RPC reports without looking at the
5315 * OA buffer.
5316 *
5317 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5318 * be run for the duration of the performance recording based on
5319 * their SSEU configuration.
5320 *
5321 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5322 * interval for the hrtimer used to check for OA data.
5323 *
5324 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5325 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5326 *
5327 * 7: Add support for video decode and enhancement classes.
5328 */
5329
5330 /*
5331 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5332 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5333 * to indicate that OA media is not supported.
5334 */
5335 if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) {
5336 struct intel_gt *gt;
5337 int i;
5338
5339 for_each_gt(gt, i915, i) {
5340 if (gt->type == GT_MEDIA &&
5341 intel_check_bios_c6_setup(&gt->rc6))
5342 return 6;
5343 }
5344 }
5345
5346 return 7;
5347 }
5348
5349 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5350 #include "selftests/i915_perf.c"
5351 #endif