]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_perf.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_perf.c
1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
204
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207 #include "oa/i915_oa_hsw.h"
208 #include "oa/i915_oa_bdw.h"
209 #include "oa/i915_oa_chv.h"
210 #include "oa/i915_oa_sklgt2.h"
211 #include "oa/i915_oa_sklgt3.h"
212 #include "oa/i915_oa_sklgt4.h"
213 #include "oa/i915_oa_bxt.h"
214 #include "oa/i915_oa_kblgt2.h"
215 #include "oa/i915_oa_kblgt3.h"
216 #include "oa/i915_oa_glk.h"
217 #include "oa/i915_oa_cflgt2.h"
218 #include "oa/i915_oa_cflgt3.h"
219 #include "oa/i915_oa_cnl.h"
220 #include "oa/i915_oa_icl.h"
221 #include "oa/i915_oa_tgl.h"
222
223 /* HW requires this to be a power of two, between 128k and 16M, though driver
224 * is currently generally designed assuming the largest 16M size is used such
225 * that the overflow cases are unlikely in normal operation.
226 */
227 #define OA_BUFFER_SIZE SZ_16M
228
229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
230
231 /**
232 * DOC: OA Tail Pointer Race
233 *
234 * There's a HW race condition between OA unit tail pointer register updates and
235 * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 * been written out to the OA buffer so far (in terms of what's visible to the
237 * CPU).
238 *
239 * Although this can be observed explicitly while copying reports to userspace
240 * by checking for a zeroed report-id field in tail reports, we want to account
241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
242 * read() attempts.
243 *
244 * In effect we define a tail pointer for reading that lags the real tail
245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
246 * time for the corresponding reports to become visible to the CPU.
247 *
248 * To manage this we actually track two tail pointers:
249 * 1) An 'aging' tail with an associated timestamp that is tracked until we
250 * can trust the corresponding data is visible to the CPU; at which point
251 * it is considered 'aged'.
252 * 2) An 'aged' tail that can be used for read()ing.
253 *
254 * The two separate pointers let us decouple read()s from tail pointer aging.
255 *
256 * The tail pointers are checked and updated at a limited rate within a hrtimer
257 * callback (the same callback that is used for delivering EPOLLIN events)
258 *
259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
260 * indicates that an updated tail pointer is needed.
261 *
262 * Most of the implementation details for this workaround are in
263 * oa_buffer_check_unlocked() and _append_oa_reports()
264 *
265 * Note for posterity: previously the driver used to define an effective tail
266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
268 * This was flawed considering that the OA unit may also automatically generate
269 * non-periodic reports (such as on context switch) or the OA unit may be
270 * enabled without any periodic sampling.
271 */
272 #define OA_TAIL_MARGIN_NSEC 100000ULL
273 #define INVALID_TAIL_PTR 0xffffffff
274
275 /* frequency for checking whether the OA unit has written new reports to the
276 * circular OA buffer...
277 */
278 #define POLL_FREQUENCY 200
279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
280
281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
282 static u32 i915_perf_stream_paranoid = true;
283
284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
285 * of the 64bit timestamp bits to trigger reports from) but there's currently
286 * no known use case for sampling as infrequently as once per 47 thousand years.
287 *
288 * Since the timestamps included in OA reports are only 32bits it seems
289 * reasonable to limit the OA exponent where it's still possible to account for
290 * overflow in OA report timestamps.
291 */
292 #define OA_EXPONENT_MAX 31
293
294 #define INVALID_CTX_ID 0xffffffff
295
296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
297 #define OAREPORT_REASON_MASK 0x3f
298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
299 #define OAREPORT_REASON_SHIFT 19
300 #define OAREPORT_REASON_TIMER (1<<0)
301 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
302 #define OAREPORT_REASON_CLK_RATIO (1<<5)
303
304
305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
306 *
307 * The highest sampling frequency we can theoretically program the OA unit
308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
309 *
310 * Initialized just before we register the sysctl parameter.
311 */
312 static int oa_sample_rate_hard_limit;
313
314 /* Theoretically we can program the OA unit to sample every 160ns but don't
315 * allow that by default unless root...
316 *
317 * The default threshold of 100000Hz is based on perf's similar
318 * kernel.perf_event_max_sample_rate sysctl parameter.
319 */
320 static u32 i915_oa_max_sample_rate = 100000;
321
322 /* XXX: beware if future OA HW adds new report formats that the current
323 * code assumes all reports have a power-of-two size and ~(size - 1) can
324 * be used as a mask to align the OA tail pointer.
325 */
326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
327 [I915_OA_FORMAT_A13] = { 0, 64 },
328 [I915_OA_FORMAT_A29] = { 1, 128 },
329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
331 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
334 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
335 };
336
337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
338 [I915_OA_FORMAT_A12] = { 0, 64 },
339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
341 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
342 };
343
344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
346 };
347
348 #define SAMPLE_OA_REPORT (1<<0)
349
350 /**
351 * struct perf_open_properties - for validated properties given to open a stream
352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
353 * @single_context: Whether a single or all gpu contexts should be monitored
354 * @hold_preemption: Whether the preemption is disabled for the filtered
355 * context
356 * @ctx_handle: A gem ctx handle for use with @single_context
357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
358 * @oa_format: An OA unit HW report format
359 * @oa_periodic: Whether to enable periodic OA unit sampling
360 * @oa_period_exponent: The OA unit sampling period is derived from this
361 * @engine: The engine (typically rcs0) being monitored by the OA unit
362 *
363 * As read_properties_unlocked() enumerates and validates the properties given
364 * to open a stream of metrics the configuration is built up in the structure
365 * which starts out zero initialized.
366 */
367 struct perf_open_properties {
368 u32 sample_flags;
369
370 u64 single_context:1;
371 u64 hold_preemption:1;
372 u64 ctx_handle;
373
374 /* OA sampling state */
375 int metrics_set;
376 int oa_format;
377 bool oa_periodic;
378 int oa_period_exponent;
379
380 struct intel_engine_cs *engine;
381 };
382
383 struct i915_oa_config_bo {
384 struct llist_node node;
385
386 struct i915_oa_config *oa_config;
387 struct i915_vma *vma;
388 };
389
390 static struct ctl_table_header *sysctl_header;
391
392 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
393
394 void i915_oa_config_release(struct kref *ref)
395 {
396 struct i915_oa_config *oa_config =
397 container_of(ref, typeof(*oa_config), ref);
398
399 kfree(oa_config->flex_regs);
400 kfree(oa_config->b_counter_regs);
401 kfree(oa_config->mux_regs);
402
403 kfree_rcu(oa_config, rcu);
404 }
405
406 struct i915_oa_config *
407 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
408 {
409 struct i915_oa_config *oa_config;
410
411 rcu_read_lock();
412 if (metrics_set == 1)
413 oa_config = &perf->test_config;
414 else
415 oa_config = idr_find(&perf->metrics_idr, metrics_set);
416 if (oa_config)
417 oa_config = i915_oa_config_get(oa_config);
418 rcu_read_unlock();
419
420 return oa_config;
421 }
422
423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
424 {
425 i915_oa_config_put(oa_bo->oa_config);
426 i915_vma_put(oa_bo->vma);
427 kfree(oa_bo);
428 }
429
430 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
431 {
432 struct intel_uncore *uncore = stream->uncore;
433
434 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
435 GEN12_OAG_OATAILPTR_MASK;
436 }
437
438 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
439 {
440 struct intel_uncore *uncore = stream->uncore;
441
442 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
443 }
444
445 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
446 {
447 struct intel_uncore *uncore = stream->uncore;
448 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
449
450 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
451 }
452
453 /**
454 * oa_buffer_check_unlocked - check for data and update tail ptr state
455 * @stream: i915 stream instance
456 *
457 * This is either called via fops (for blocking reads in user ctx) or the poll
458 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
459 * if there is data available for userspace to read.
460 *
461 * This function is central to providing a workaround for the OA unit tail
462 * pointer having a race with respect to what data is visible to the CPU.
463 * It is responsible for reading tail pointers from the hardware and giving
464 * the pointers time to 'age' before they are made available for reading.
465 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
466 *
467 * Besides returning true when there is data available to read() this function
468 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
469 * and .aged_tail_idx state used for reading.
470 *
471 * Note: It's safe to read OA config state here unlocked, assuming that this is
472 * only called while the stream is enabled, while the global OA configuration
473 * can't be modified.
474 *
475 * Returns: %true if the OA buffer contains data, else %false
476 */
477 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
478 {
479 int report_size = stream->oa_buffer.format_size;
480 unsigned long flags;
481 unsigned int aged_idx;
482 u32 head, hw_tail, aged_tail, aging_tail;
483 u64 now;
484
485 /* We have to consider the (unlikely) possibility that read() errors
486 * could result in an OA buffer reset which might reset the head,
487 * tails[] and aged_tail state.
488 */
489 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
490
491 /* NB: The head we observe here might effectively be a little out of
492 * date (between head and tails[aged_idx].offset if there is currently
493 * a read() in progress.
494 */
495 head = stream->oa_buffer.head;
496
497 aged_idx = stream->oa_buffer.aged_tail_idx;
498 aged_tail = stream->oa_buffer.tails[aged_idx].offset;
499 aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
500
501 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
502
503 /* The tail pointer increases in 64 byte increments,
504 * not in report_size steps...
505 */
506 hw_tail &= ~(report_size - 1);
507
508 now = ktime_get_mono_fast_ns();
509
510 /* Update the aged tail
511 *
512 * Flip the tail pointer available for read()s once the aging tail is
513 * old enough to trust that the corresponding data will be visible to
514 * the CPU...
515 *
516 * Do this before updating the aging pointer in case we may be able to
517 * immediately start aging a new pointer too (if new data has become
518 * available) without needing to wait for a later hrtimer callback.
519 */
520 if (aging_tail != INVALID_TAIL_PTR &&
521 ((now - stream->oa_buffer.aging_timestamp) >
522 OA_TAIL_MARGIN_NSEC)) {
523
524 aged_idx ^= 1;
525 stream->oa_buffer.aged_tail_idx = aged_idx;
526
527 aged_tail = aging_tail;
528
529 /* Mark that we need a new pointer to start aging... */
530 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
531 aging_tail = INVALID_TAIL_PTR;
532 }
533
534 /* Update the aging tail
535 *
536 * We throttle aging tail updates until we have a new tail that
537 * represents >= one report more data than is already available for
538 * reading. This ensures there will be enough data for a successful
539 * read once this new pointer has aged and ensures we will give the new
540 * pointer time to age.
541 */
542 if (aging_tail == INVALID_TAIL_PTR &&
543 (aged_tail == INVALID_TAIL_PTR ||
544 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
545 struct i915_vma *vma = stream->oa_buffer.vma;
546 u32 gtt_offset = i915_ggtt_offset(vma);
547
548 /* Be paranoid and do a bounds check on the pointer read back
549 * from hardware, just in case some spurious hardware condition
550 * could put the tail out of bounds...
551 */
552 if (hw_tail >= gtt_offset &&
553 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
554 stream->oa_buffer.tails[!aged_idx].offset =
555 aging_tail = hw_tail;
556 stream->oa_buffer.aging_timestamp = now;
557 } else {
558 drm_err(&stream->perf->i915->drm,
559 "Ignoring spurious out of range OA buffer tail pointer = %x\n",
560 hw_tail);
561 }
562 }
563
564 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
565
566 return aged_tail == INVALID_TAIL_PTR ?
567 false : OA_TAKEN(aged_tail, head) >= report_size;
568 }
569
570 /**
571 * append_oa_status - Appends a status record to a userspace read() buffer.
572 * @stream: An i915-perf stream opened for OA metrics
573 * @buf: destination buffer given by userspace
574 * @count: the number of bytes userspace wants to read
575 * @offset: (inout): the current position for writing into @buf
576 * @type: The kind of status to report to userspace
577 *
578 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
579 * into the userspace read() buffer.
580 *
581 * The @buf @offset will only be updated on success.
582 *
583 * Returns: 0 on success, negative error code on failure.
584 */
585 static int append_oa_status(struct i915_perf_stream *stream,
586 char __user *buf,
587 size_t count,
588 size_t *offset,
589 enum drm_i915_perf_record_type type)
590 {
591 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
592
593 if ((count - *offset) < header.size)
594 return -ENOSPC;
595
596 if (copy_to_user(buf + *offset, &header, sizeof(header)))
597 return -EFAULT;
598
599 (*offset) += header.size;
600
601 return 0;
602 }
603
604 /**
605 * append_oa_sample - Copies single OA report into userspace read() buffer.
606 * @stream: An i915-perf stream opened for OA metrics
607 * @buf: destination buffer given by userspace
608 * @count: the number of bytes userspace wants to read
609 * @offset: (inout): the current position for writing into @buf
610 * @report: A single OA report to (optionally) include as part of the sample
611 *
612 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
613 * properties when opening a stream, tracked as `stream->sample_flags`. This
614 * function copies the requested components of a single sample to the given
615 * read() @buf.
616 *
617 * The @buf @offset will only be updated on success.
618 *
619 * Returns: 0 on success, negative error code on failure.
620 */
621 static int append_oa_sample(struct i915_perf_stream *stream,
622 char __user *buf,
623 size_t count,
624 size_t *offset,
625 const u8 *report)
626 {
627 int report_size = stream->oa_buffer.format_size;
628 struct drm_i915_perf_record_header header;
629 u32 sample_flags = stream->sample_flags;
630
631 header.type = DRM_I915_PERF_RECORD_SAMPLE;
632 header.pad = 0;
633 header.size = stream->sample_size;
634
635 if ((count - *offset) < header.size)
636 return -ENOSPC;
637
638 buf += *offset;
639 if (copy_to_user(buf, &header, sizeof(header)))
640 return -EFAULT;
641 buf += sizeof(header);
642
643 if (sample_flags & SAMPLE_OA_REPORT) {
644 if (copy_to_user(buf, report, report_size))
645 return -EFAULT;
646 }
647
648 (*offset) += header.size;
649
650 return 0;
651 }
652
653 /**
654 * Copies all buffered OA reports into userspace read() buffer.
655 * @stream: An i915-perf stream opened for OA metrics
656 * @buf: destination buffer given by userspace
657 * @count: the number of bytes userspace wants to read
658 * @offset: (inout): the current position for writing into @buf
659 *
660 * Notably any error condition resulting in a short read (-%ENOSPC or
661 * -%EFAULT) will be returned even though one or more records may
662 * have been successfully copied. In this case it's up to the caller
663 * to decide if the error should be squashed before returning to
664 * userspace.
665 *
666 * Note: reports are consumed from the head, and appended to the
667 * tail, so the tail chases the head?... If you think that's mad
668 * and back-to-front you're not alone, but this follows the
669 * Gen PRM naming convention.
670 *
671 * Returns: 0 on success, negative error code on failure.
672 */
673 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
674 char __user *buf,
675 size_t count,
676 size_t *offset)
677 {
678 struct intel_uncore *uncore = stream->uncore;
679 int report_size = stream->oa_buffer.format_size;
680 u8 *oa_buf_base = stream->oa_buffer.vaddr;
681 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
682 u32 mask = (OA_BUFFER_SIZE - 1);
683 size_t start_offset = *offset;
684 unsigned long flags;
685 unsigned int aged_tail_idx;
686 u32 head, tail;
687 u32 taken;
688 int ret = 0;
689
690 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
691 return -EIO;
692
693 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
694
695 head = stream->oa_buffer.head;
696 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
697 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
698
699 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
700
701 /*
702 * An invalid tail pointer here means we're still waiting for the poll
703 * hrtimer callback to give us a pointer
704 */
705 if (tail == INVALID_TAIL_PTR)
706 return -EAGAIN;
707
708 /*
709 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
710 * while indexing relative to oa_buf_base.
711 */
712 head -= gtt_offset;
713 tail -= gtt_offset;
714
715 /*
716 * An out of bounds or misaligned head or tail pointer implies a driver
717 * bug since we validate + align the tail pointers we read from the
718 * hardware and we are in full control of the head pointer which should
719 * only be incremented by multiples of the report size (notably also
720 * all a power of two).
721 */
722 if (drm_WARN_ONCE(&uncore->i915->drm,
723 head > OA_BUFFER_SIZE || head % report_size ||
724 tail > OA_BUFFER_SIZE || tail % report_size,
725 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
726 head, tail))
727 return -EIO;
728
729
730 for (/* none */;
731 (taken = OA_TAKEN(tail, head));
732 head = (head + report_size) & mask) {
733 u8 *report = oa_buf_base + head;
734 u32 *report32 = (void *)report;
735 u32 ctx_id;
736 u32 reason;
737
738 /*
739 * All the report sizes factor neatly into the buffer
740 * size so we never expect to see a report split
741 * between the beginning and end of the buffer.
742 *
743 * Given the initial alignment check a misalignment
744 * here would imply a driver bug that would result
745 * in an overrun.
746 */
747 if (drm_WARN_ON(&uncore->i915->drm,
748 (OA_BUFFER_SIZE - head) < report_size)) {
749 drm_err(&uncore->i915->drm,
750 "Spurious OA head ptr: non-integral report offset\n");
751 break;
752 }
753
754 /*
755 * The reason field includes flags identifying what
756 * triggered this specific report (mostly timer
757 * triggered or e.g. due to a context switch).
758 *
759 * This field is never expected to be zero so we can
760 * check that the report isn't invalid before copying
761 * it to userspace...
762 */
763 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
764 (IS_GEN(stream->perf->i915, 12) ?
765 OAREPORT_REASON_MASK_EXTENDED :
766 OAREPORT_REASON_MASK));
767 if (reason == 0) {
768 if (__ratelimit(&stream->perf->spurious_report_rs))
769 DRM_NOTE("Skipping spurious, invalid OA report\n");
770 continue;
771 }
772
773 ctx_id = report32[2] & stream->specific_ctx_id_mask;
774
775 /*
776 * Squash whatever is in the CTX_ID field if it's marked as
777 * invalid to be sure we avoid false-positive, single-context
778 * filtering below...
779 *
780 * Note: that we don't clear the valid_ctx_bit so userspace can
781 * understand that the ID has been squashed by the kernel.
782 */
783 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
784 INTEL_GEN(stream->perf->i915) <= 11)
785 ctx_id = report32[2] = INVALID_CTX_ID;
786
787 /*
788 * NB: For Gen 8 the OA unit no longer supports clock gating
789 * off for a specific context and the kernel can't securely
790 * stop the counters from updating as system-wide / global
791 * values.
792 *
793 * Automatic reports now include a context ID so reports can be
794 * filtered on the cpu but it's not worth trying to
795 * automatically subtract/hide counter progress for other
796 * contexts while filtering since we can't stop userspace
797 * issuing MI_REPORT_PERF_COUNT commands which would still
798 * provide a side-band view of the real values.
799 *
800 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
801 * to normalize counters for a single filtered context then it
802 * needs be forwarded bookend context-switch reports so that it
803 * can track switches in between MI_REPORT_PERF_COUNT commands
804 * and can itself subtract/ignore the progress of counters
805 * associated with other contexts. Note that the hardware
806 * automatically triggers reports when switching to a new
807 * context which are tagged with the ID of the newly active
808 * context. To avoid the complexity (and likely fragility) of
809 * reading ahead while parsing reports to try and minimize
810 * forwarding redundant context switch reports (i.e. between
811 * other, unrelated contexts) we simply elect to forward them
812 * all.
813 *
814 * We don't rely solely on the reason field to identify context
815 * switches since it's not-uncommon for periodic samples to
816 * identify a switch before any 'context switch' report.
817 */
818 if (!stream->perf->exclusive_stream->ctx ||
819 stream->specific_ctx_id == ctx_id ||
820 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
821 reason & OAREPORT_REASON_CTX_SWITCH) {
822
823 /*
824 * While filtering for a single context we avoid
825 * leaking the IDs of other contexts.
826 */
827 if (stream->perf->exclusive_stream->ctx &&
828 stream->specific_ctx_id != ctx_id) {
829 report32[2] = INVALID_CTX_ID;
830 }
831
832 ret = append_oa_sample(stream, buf, count, offset,
833 report);
834 if (ret)
835 break;
836
837 stream->oa_buffer.last_ctx_id = ctx_id;
838 }
839
840 /*
841 * The above reason field sanity check is based on
842 * the assumption that the OA buffer is initially
843 * zeroed and we reset the field after copying so the
844 * check is still meaningful once old reports start
845 * being overwritten.
846 */
847 report32[0] = 0;
848 }
849
850 if (start_offset != *offset) {
851 i915_reg_t oaheadptr;
852
853 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
854 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
855
856 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
857
858 /*
859 * We removed the gtt_offset for the copy loop above, indexing
860 * relative to oa_buf_base so put back here...
861 */
862 head += gtt_offset;
863 intel_uncore_write(uncore, oaheadptr,
864 head & GEN12_OAG_OAHEADPTR_MASK);
865 stream->oa_buffer.head = head;
866
867 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
868 }
869
870 return ret;
871 }
872
873 /**
874 * gen8_oa_read - copy status records then buffered OA reports
875 * @stream: An i915-perf stream opened for OA metrics
876 * @buf: destination buffer given by userspace
877 * @count: the number of bytes userspace wants to read
878 * @offset: (inout): the current position for writing into @buf
879 *
880 * Checks OA unit status registers and if necessary appends corresponding
881 * status records for userspace (such as for a buffer full condition) and then
882 * initiate appending any buffered OA reports.
883 *
884 * Updates @offset according to the number of bytes successfully copied into
885 * the userspace buffer.
886 *
887 * NB: some data may be successfully copied to the userspace buffer
888 * even if an error is returned, and this is reflected in the
889 * updated @offset.
890 *
891 * Returns: zero on success or a negative error code
892 */
893 static int gen8_oa_read(struct i915_perf_stream *stream,
894 char __user *buf,
895 size_t count,
896 size_t *offset)
897 {
898 struct intel_uncore *uncore = stream->uncore;
899 u32 oastatus;
900 i915_reg_t oastatus_reg;
901 int ret;
902
903 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
904 return -EIO;
905
906 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
907 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
908
909 oastatus = intel_uncore_read(uncore, oastatus_reg);
910
911 /*
912 * We treat OABUFFER_OVERFLOW as a significant error:
913 *
914 * Although theoretically we could handle this more gracefully
915 * sometimes, some Gens don't correctly suppress certain
916 * automatically triggered reports in this condition and so we
917 * have to assume that old reports are now being trampled
918 * over.
919 *
920 * Considering how we don't currently give userspace control
921 * over the OA buffer size and always configure a large 16MB
922 * buffer, then a buffer overflow does anyway likely indicate
923 * that something has gone quite badly wrong.
924 */
925 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
926 ret = append_oa_status(stream, buf, count, offset,
927 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
928 if (ret)
929 return ret;
930
931 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
932 stream->period_exponent);
933
934 stream->perf->ops.oa_disable(stream);
935 stream->perf->ops.oa_enable(stream);
936
937 /*
938 * Note: .oa_enable() is expected to re-init the oabuffer and
939 * reset GEN8_OASTATUS for us
940 */
941 oastatus = intel_uncore_read(uncore, oastatus_reg);
942 }
943
944 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
945 ret = append_oa_status(stream, buf, count, offset,
946 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
947 if (ret)
948 return ret;
949 intel_uncore_write(uncore, oastatus_reg,
950 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
951 }
952
953 return gen8_append_oa_reports(stream, buf, count, offset);
954 }
955
956 /**
957 * Copies all buffered OA reports into userspace read() buffer.
958 * @stream: An i915-perf stream opened for OA metrics
959 * @buf: destination buffer given by userspace
960 * @count: the number of bytes userspace wants to read
961 * @offset: (inout): the current position for writing into @buf
962 *
963 * Notably any error condition resulting in a short read (-%ENOSPC or
964 * -%EFAULT) will be returned even though one or more records may
965 * have been successfully copied. In this case it's up to the caller
966 * to decide if the error should be squashed before returning to
967 * userspace.
968 *
969 * Note: reports are consumed from the head, and appended to the
970 * tail, so the tail chases the head?... If you think that's mad
971 * and back-to-front you're not alone, but this follows the
972 * Gen PRM naming convention.
973 *
974 * Returns: 0 on success, negative error code on failure.
975 */
976 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
977 char __user *buf,
978 size_t count,
979 size_t *offset)
980 {
981 struct intel_uncore *uncore = stream->uncore;
982 int report_size = stream->oa_buffer.format_size;
983 u8 *oa_buf_base = stream->oa_buffer.vaddr;
984 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
985 u32 mask = (OA_BUFFER_SIZE - 1);
986 size_t start_offset = *offset;
987 unsigned long flags;
988 unsigned int aged_tail_idx;
989 u32 head, tail;
990 u32 taken;
991 int ret = 0;
992
993 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
994 return -EIO;
995
996 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
997
998 head = stream->oa_buffer.head;
999 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
1000 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
1001
1002 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1003
1004 /* An invalid tail pointer here means we're still waiting for the poll
1005 * hrtimer callback to give us a pointer
1006 */
1007 if (tail == INVALID_TAIL_PTR)
1008 return -EAGAIN;
1009
1010 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1011 * while indexing relative to oa_buf_base.
1012 */
1013 head -= gtt_offset;
1014 tail -= gtt_offset;
1015
1016 /* An out of bounds or misaligned head or tail pointer implies a driver
1017 * bug since we validate + align the tail pointers we read from the
1018 * hardware and we are in full control of the head pointer which should
1019 * only be incremented by multiples of the report size (notably also
1020 * all a power of two).
1021 */
1022 if (drm_WARN_ONCE(&uncore->i915->drm,
1023 head > OA_BUFFER_SIZE || head % report_size ||
1024 tail > OA_BUFFER_SIZE || tail % report_size,
1025 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1026 head, tail))
1027 return -EIO;
1028
1029
1030 for (/* none */;
1031 (taken = OA_TAKEN(tail, head));
1032 head = (head + report_size) & mask) {
1033 u8 *report = oa_buf_base + head;
1034 u32 *report32 = (void *)report;
1035
1036 /* All the report sizes factor neatly into the buffer
1037 * size so we never expect to see a report split
1038 * between the beginning and end of the buffer.
1039 *
1040 * Given the initial alignment check a misalignment
1041 * here would imply a driver bug that would result
1042 * in an overrun.
1043 */
1044 if (drm_WARN_ON(&uncore->i915->drm,
1045 (OA_BUFFER_SIZE - head) < report_size)) {
1046 drm_err(&uncore->i915->drm,
1047 "Spurious OA head ptr: non-integral report offset\n");
1048 break;
1049 }
1050
1051 /* The report-ID field for periodic samples includes
1052 * some undocumented flags related to what triggered
1053 * the report and is never expected to be zero so we
1054 * can check that the report isn't invalid before
1055 * copying it to userspace...
1056 */
1057 if (report32[0] == 0) {
1058 if (__ratelimit(&stream->perf->spurious_report_rs))
1059 DRM_NOTE("Skipping spurious, invalid OA report\n");
1060 continue;
1061 }
1062
1063 ret = append_oa_sample(stream, buf, count, offset, report);
1064 if (ret)
1065 break;
1066
1067 /* The above report-id field sanity check is based on
1068 * the assumption that the OA buffer is initially
1069 * zeroed and we reset the field after copying so the
1070 * check is still meaningful once old reports start
1071 * being overwritten.
1072 */
1073 report32[0] = 0;
1074 }
1075
1076 if (start_offset != *offset) {
1077 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1078
1079 /* We removed the gtt_offset for the copy loop above, indexing
1080 * relative to oa_buf_base so put back here...
1081 */
1082 head += gtt_offset;
1083
1084 intel_uncore_write(uncore, GEN7_OASTATUS2,
1085 (head & GEN7_OASTATUS2_HEAD_MASK) |
1086 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1087 stream->oa_buffer.head = head;
1088
1089 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1090 }
1091
1092 return ret;
1093 }
1094
1095 /**
1096 * gen7_oa_read - copy status records then buffered OA reports
1097 * @stream: An i915-perf stream opened for OA metrics
1098 * @buf: destination buffer given by userspace
1099 * @count: the number of bytes userspace wants to read
1100 * @offset: (inout): the current position for writing into @buf
1101 *
1102 * Checks Gen 7 specific OA unit status registers and if necessary appends
1103 * corresponding status records for userspace (such as for a buffer full
1104 * condition) and then initiate appending any buffered OA reports.
1105 *
1106 * Updates @offset according to the number of bytes successfully copied into
1107 * the userspace buffer.
1108 *
1109 * Returns: zero on success or a negative error code
1110 */
1111 static int gen7_oa_read(struct i915_perf_stream *stream,
1112 char __user *buf,
1113 size_t count,
1114 size_t *offset)
1115 {
1116 struct intel_uncore *uncore = stream->uncore;
1117 u32 oastatus1;
1118 int ret;
1119
1120 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1121 return -EIO;
1122
1123 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1124
1125 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1126 * bits while the OA unit is enabled (while the tail pointer
1127 * may be updated asynchronously) so we ignore status bits
1128 * that have already been reported to userspace.
1129 */
1130 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1131
1132 /* We treat OABUFFER_OVERFLOW as a significant error:
1133 *
1134 * - The status can be interpreted to mean that the buffer is
1135 * currently full (with a higher precedence than OA_TAKEN()
1136 * which will start to report a near-empty buffer after an
1137 * overflow) but it's awkward that we can't clear the status
1138 * on Haswell, so without a reset we won't be able to catch
1139 * the state again.
1140 *
1141 * - Since it also implies the HW has started overwriting old
1142 * reports it may also affect our sanity checks for invalid
1143 * reports when copying to userspace that assume new reports
1144 * are being written to cleared memory.
1145 *
1146 * - In the future we may want to introduce a flight recorder
1147 * mode where the driver will automatically maintain a safe
1148 * guard band between head/tail, avoiding this overflow
1149 * condition, but we avoid the added driver complexity for
1150 * now.
1151 */
1152 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1153 ret = append_oa_status(stream, buf, count, offset,
1154 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1155 if (ret)
1156 return ret;
1157
1158 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1159 stream->period_exponent);
1160
1161 stream->perf->ops.oa_disable(stream);
1162 stream->perf->ops.oa_enable(stream);
1163
1164 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1165 }
1166
1167 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1168 ret = append_oa_status(stream, buf, count, offset,
1169 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1170 if (ret)
1171 return ret;
1172 stream->perf->gen7_latched_oastatus1 |=
1173 GEN7_OASTATUS1_REPORT_LOST;
1174 }
1175
1176 return gen7_append_oa_reports(stream, buf, count, offset);
1177 }
1178
1179 /**
1180 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1181 * @stream: An i915-perf stream opened for OA metrics
1182 *
1183 * Called when userspace tries to read() from a blocking stream FD opened
1184 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1185 * OA buffer and wakes us.
1186 *
1187 * Note: it's acceptable to have this return with some false positives
1188 * since any subsequent read handling will return -EAGAIN if there isn't
1189 * really data ready for userspace yet.
1190 *
1191 * Returns: zero on success or a negative error code
1192 */
1193 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1194 {
1195 /* We would wait indefinitely if periodic sampling is not enabled */
1196 if (!stream->periodic)
1197 return -EIO;
1198
1199 return wait_event_interruptible(stream->poll_wq,
1200 oa_buffer_check_unlocked(stream));
1201 }
1202
1203 /**
1204 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1205 * @stream: An i915-perf stream opened for OA metrics
1206 * @file: An i915 perf stream file
1207 * @wait: poll() state table
1208 *
1209 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1210 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1211 * when it sees data ready to read in the circular OA buffer.
1212 */
1213 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1214 struct file *file,
1215 poll_table *wait)
1216 {
1217 poll_wait(file, &stream->poll_wq, wait);
1218 }
1219
1220 /**
1221 * i915_oa_read - just calls through to &i915_oa_ops->read
1222 * @stream: An i915-perf stream opened for OA metrics
1223 * @buf: destination buffer given by userspace
1224 * @count: the number of bytes userspace wants to read
1225 * @offset: (inout): the current position for writing into @buf
1226 *
1227 * Updates @offset according to the number of bytes successfully copied into
1228 * the userspace buffer.
1229 *
1230 * Returns: zero on success or a negative error code
1231 */
1232 static int i915_oa_read(struct i915_perf_stream *stream,
1233 char __user *buf,
1234 size_t count,
1235 size_t *offset)
1236 {
1237 return stream->perf->ops.read(stream, buf, count, offset);
1238 }
1239
1240 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1241 {
1242 struct i915_gem_engines_iter it;
1243 struct i915_gem_context *ctx = stream->ctx;
1244 struct intel_context *ce;
1245 int err;
1246
1247 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1248 if (ce->engine != stream->engine) /* first match! */
1249 continue;
1250
1251 /*
1252 * As the ID is the gtt offset of the context's vma we
1253 * pin the vma to ensure the ID remains fixed.
1254 */
1255 err = intel_context_pin(ce);
1256 if (err == 0) {
1257 stream->pinned_ctx = ce;
1258 break;
1259 }
1260 }
1261 i915_gem_context_unlock_engines(ctx);
1262
1263 return stream->pinned_ctx;
1264 }
1265
1266 /**
1267 * oa_get_render_ctx_id - determine and hold ctx hw id
1268 * @stream: An i915-perf stream opened for OA metrics
1269 *
1270 * Determine the render context hw id, and ensure it remains fixed for the
1271 * lifetime of the stream. This ensures that we don't have to worry about
1272 * updating the context ID in OACONTROL on the fly.
1273 *
1274 * Returns: zero on success or a negative error code
1275 */
1276 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1277 {
1278 struct intel_context *ce;
1279
1280 ce = oa_pin_context(stream);
1281 if (IS_ERR(ce))
1282 return PTR_ERR(ce);
1283
1284 switch (INTEL_GEN(ce->engine->i915)) {
1285 case 7: {
1286 /*
1287 * On Haswell we don't do any post processing of the reports
1288 * and don't need to use the mask.
1289 */
1290 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1291 stream->specific_ctx_id_mask = 0;
1292 break;
1293 }
1294
1295 case 8:
1296 case 9:
1297 case 10:
1298 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1299 stream->specific_ctx_id_mask =
1300 (1U << GEN8_CTX_ID_WIDTH) - 1;
1301 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1302 } else {
1303 /*
1304 * When using GuC, the context descriptor we write in
1305 * i915 is read by GuC and rewritten before it's
1306 * actually written into the hardware. The LRCA is
1307 * what is put into the context id field of the
1308 * context descriptor by GuC. Because it's aligned to
1309 * a page, the lower 12bits are always at 0 and
1310 * dropped by GuC. They won't be part of the context
1311 * ID in the OA reports, so squash those lower bits.
1312 */
1313 stream->specific_ctx_id =
1314 lower_32_bits(ce->lrc_desc) >> 12;
1315
1316 /*
1317 * GuC uses the top bit to signal proxy submission, so
1318 * ignore that bit.
1319 */
1320 stream->specific_ctx_id_mask =
1321 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1322 }
1323 break;
1324
1325 case 11:
1326 case 12: {
1327 stream->specific_ctx_id_mask =
1328 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1329 /*
1330 * Pick an unused context id
1331 * 0 - (NUM_CONTEXT_TAG - 1) are used by other contexts
1332 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1333 */
1334 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1335 BUILD_BUG_ON((GEN12_MAX_CONTEXT_HW_ID - 1) < NUM_CONTEXT_TAG);
1336 break;
1337 }
1338
1339 default:
1340 MISSING_CASE(INTEL_GEN(ce->engine->i915));
1341 }
1342
1343 ce->tag = stream->specific_ctx_id;
1344
1345 drm_dbg(&stream->perf->i915->drm,
1346 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1347 stream->specific_ctx_id,
1348 stream->specific_ctx_id_mask);
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1355 * @stream: An i915-perf stream opened for OA metrics
1356 *
1357 * In case anything needed doing to ensure the context HW ID would remain valid
1358 * for the lifetime of the stream, then that can be undone here.
1359 */
1360 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1361 {
1362 struct intel_context *ce;
1363
1364 ce = fetch_and_zero(&stream->pinned_ctx);
1365 if (ce) {
1366 ce->tag = 0; /* recomputed on next submission after parking */
1367 intel_context_unpin(ce);
1368 }
1369
1370 stream->specific_ctx_id = INVALID_CTX_ID;
1371 stream->specific_ctx_id_mask = 0;
1372 }
1373
1374 static void
1375 free_oa_buffer(struct i915_perf_stream *stream)
1376 {
1377 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1378 I915_VMA_RELEASE_MAP);
1379
1380 stream->oa_buffer.vaddr = NULL;
1381 }
1382
1383 static void
1384 free_oa_configs(struct i915_perf_stream *stream)
1385 {
1386 struct i915_oa_config_bo *oa_bo, *tmp;
1387
1388 i915_oa_config_put(stream->oa_config);
1389 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1390 free_oa_config_bo(oa_bo);
1391 }
1392
1393 static void
1394 free_noa_wait(struct i915_perf_stream *stream)
1395 {
1396 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1397 }
1398
1399 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1400 {
1401 struct i915_perf *perf = stream->perf;
1402
1403 BUG_ON(stream != perf->exclusive_stream);
1404
1405 /*
1406 * Unset exclusive_stream first, it will be checked while disabling
1407 * the metric set on gen8+.
1408 *
1409 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1410 */
1411 WRITE_ONCE(perf->exclusive_stream, NULL);
1412 perf->ops.disable_metric_set(stream);
1413
1414 free_oa_buffer(stream);
1415
1416 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1417 intel_engine_pm_put(stream->engine);
1418
1419 if (stream->ctx)
1420 oa_put_render_ctx_id(stream);
1421
1422 free_oa_configs(stream);
1423 free_noa_wait(stream);
1424
1425 if (perf->spurious_report_rs.missed) {
1426 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1427 perf->spurious_report_rs.missed);
1428 }
1429 }
1430
1431 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1432 {
1433 struct intel_uncore *uncore = stream->uncore;
1434 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1435 unsigned long flags;
1436
1437 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1438
1439 /* Pre-DevBDW: OABUFFER must be set with counters off,
1440 * before OASTATUS1, but after OASTATUS2
1441 */
1442 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1443 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1444 stream->oa_buffer.head = gtt_offset;
1445
1446 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1447
1448 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1449 gtt_offset | OABUFFER_SIZE_16M);
1450
1451 /* Mark that we need updated tail pointers to read from... */
1452 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1453 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1454
1455 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1456
1457 /* On Haswell we have to track which OASTATUS1 flags we've
1458 * already seen since they can't be cleared while periodic
1459 * sampling is enabled.
1460 */
1461 stream->perf->gen7_latched_oastatus1 = 0;
1462
1463 /* NB: although the OA buffer will initially be allocated
1464 * zeroed via shmfs (and so this memset is redundant when
1465 * first allocating), we may re-init the OA buffer, either
1466 * when re-enabling a stream or in error/reset paths.
1467 *
1468 * The reason we clear the buffer for each re-init is for the
1469 * sanity check in gen7_append_oa_reports() that looks at the
1470 * report-id field to make sure it's non-zero which relies on
1471 * the assumption that new reports are being written to zeroed
1472 * memory...
1473 */
1474 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1475
1476 stream->pollin = false;
1477 }
1478
1479 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1480 {
1481 struct intel_uncore *uncore = stream->uncore;
1482 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1483 unsigned long flags;
1484
1485 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1486
1487 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1488 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1489 stream->oa_buffer.head = gtt_offset;
1490
1491 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1492
1493 /*
1494 * PRM says:
1495 *
1496 * "This MMIO must be set before the OATAILPTR
1497 * register and after the OAHEADPTR register. This is
1498 * to enable proper functionality of the overflow
1499 * bit."
1500 */
1501 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1502 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1503 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1504
1505 /* Mark that we need updated tail pointers to read from... */
1506 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1507 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1508
1509 /*
1510 * Reset state used to recognise context switches, affecting which
1511 * reports we will forward to userspace while filtering for a single
1512 * context.
1513 */
1514 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1515
1516 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1517
1518 /*
1519 * NB: although the OA buffer will initially be allocated
1520 * zeroed via shmfs (and so this memset is redundant when
1521 * first allocating), we may re-init the OA buffer, either
1522 * when re-enabling a stream or in error/reset paths.
1523 *
1524 * The reason we clear the buffer for each re-init is for the
1525 * sanity check in gen8_append_oa_reports() that looks at the
1526 * reason field to make sure it's non-zero which relies on
1527 * the assumption that new reports are being written to zeroed
1528 * memory...
1529 */
1530 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1531
1532 stream->pollin = false;
1533 }
1534
1535 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1536 {
1537 struct intel_uncore *uncore = stream->uncore;
1538 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1539 unsigned long flags;
1540
1541 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1542
1543 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1544 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1545 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1546 stream->oa_buffer.head = gtt_offset;
1547
1548 /*
1549 * PRM says:
1550 *
1551 * "This MMIO must be set before the OATAILPTR
1552 * register and after the OAHEADPTR register. This is
1553 * to enable proper functionality of the overflow
1554 * bit."
1555 */
1556 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1557 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1558 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1559 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1560
1561 /* Mark that we need updated tail pointers to read from... */
1562 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1563 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1564
1565 /*
1566 * Reset state used to recognise context switches, affecting which
1567 * reports we will forward to userspace while filtering for a single
1568 * context.
1569 */
1570 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1571
1572 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1573
1574 /*
1575 * NB: although the OA buffer will initially be allocated
1576 * zeroed via shmfs (and so this memset is redundant when
1577 * first allocating), we may re-init the OA buffer, either
1578 * when re-enabling a stream or in error/reset paths.
1579 *
1580 * The reason we clear the buffer for each re-init is for the
1581 * sanity check in gen8_append_oa_reports() that looks at the
1582 * reason field to make sure it's non-zero which relies on
1583 * the assumption that new reports are being written to zeroed
1584 * memory...
1585 */
1586 memset(stream->oa_buffer.vaddr, 0,
1587 stream->oa_buffer.vma->size);
1588
1589 stream->pollin = false;
1590 }
1591
1592 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1593 {
1594 struct drm_i915_private *i915 = stream->perf->i915;
1595 struct drm_i915_gem_object *bo;
1596 struct i915_vma *vma;
1597 int ret;
1598
1599 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1600 return -ENODEV;
1601
1602 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1603 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1604
1605 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1606 if (IS_ERR(bo)) {
1607 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1608 return PTR_ERR(bo);
1609 }
1610
1611 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1612
1613 /* PreHSW required 512K alignment, HSW requires 16M */
1614 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1615 if (IS_ERR(vma)) {
1616 ret = PTR_ERR(vma);
1617 goto err_unref;
1618 }
1619 stream->oa_buffer.vma = vma;
1620
1621 stream->oa_buffer.vaddr =
1622 i915_gem_object_pin_map(bo, I915_MAP_WB);
1623 if (IS_ERR(stream->oa_buffer.vaddr)) {
1624 ret = PTR_ERR(stream->oa_buffer.vaddr);
1625 goto err_unpin;
1626 }
1627
1628 return 0;
1629
1630 err_unpin:
1631 __i915_vma_unpin(vma);
1632
1633 err_unref:
1634 i915_gem_object_put(bo);
1635
1636 stream->oa_buffer.vaddr = NULL;
1637 stream->oa_buffer.vma = NULL;
1638
1639 return ret;
1640 }
1641
1642 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1643 bool save, i915_reg_t reg, u32 offset,
1644 u32 dword_count)
1645 {
1646 u32 cmd;
1647 u32 d;
1648
1649 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1650 if (INTEL_GEN(stream->perf->i915) >= 8)
1651 cmd++;
1652
1653 for (d = 0; d < dword_count; d++) {
1654 *cs++ = cmd;
1655 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1656 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1657 offset) + 4 * d;
1658 *cs++ = 0;
1659 }
1660
1661 return cs;
1662 }
1663
1664 static int alloc_noa_wait(struct i915_perf_stream *stream)
1665 {
1666 struct drm_i915_private *i915 = stream->perf->i915;
1667 struct drm_i915_gem_object *bo;
1668 struct i915_vma *vma;
1669 const u64 delay_ticks = 0xffffffffffffffff -
1670 DIV64_U64_ROUND_UP(
1671 atomic64_read(&stream->perf->noa_programming_delay) *
1672 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
1673 1000000ull);
1674 const u32 base = stream->engine->mmio_base;
1675 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1676 u32 *batch, *ts0, *cs, *jump;
1677 int ret, i;
1678 enum {
1679 START_TS,
1680 NOW_TS,
1681 DELTA_TS,
1682 JUMP_PREDICATE,
1683 DELTA_TARGET,
1684 N_CS_GPR
1685 };
1686
1687 bo = i915_gem_object_create_internal(i915, 4096);
1688 if (IS_ERR(bo)) {
1689 drm_err(&i915->drm,
1690 "Failed to allocate NOA wait batchbuffer\n");
1691 return PTR_ERR(bo);
1692 }
1693
1694 /*
1695 * We pin in GGTT because we jump into this buffer now because
1696 * multiple OA config BOs will have a jump to this address and it
1697 * needs to be fixed during the lifetime of the i915/perf stream.
1698 */
1699 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1700 if (IS_ERR(vma)) {
1701 ret = PTR_ERR(vma);
1702 goto err_unref;
1703 }
1704
1705 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1706 if (IS_ERR(batch)) {
1707 ret = PTR_ERR(batch);
1708 goto err_unpin;
1709 }
1710
1711 /* Save registers. */
1712 for (i = 0; i < N_CS_GPR; i++)
1713 cs = save_restore_register(
1714 stream, cs, true /* save */, CS_GPR(i),
1715 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1716 cs = save_restore_register(
1717 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1718 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1719
1720 /* First timestamp snapshot location. */
1721 ts0 = cs;
1722
1723 /*
1724 * Initial snapshot of the timestamp register to implement the wait.
1725 * We work with 32b values, so clear out the top 32b bits of the
1726 * register because the ALU works 64bits.
1727 */
1728 *cs++ = MI_LOAD_REGISTER_IMM(1);
1729 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1730 *cs++ = 0;
1731 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1732 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1733 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1734
1735 /*
1736 * This is the location we're going to jump back into until the
1737 * required amount of time has passed.
1738 */
1739 jump = cs;
1740
1741 /*
1742 * Take another snapshot of the timestamp register. Take care to clear
1743 * up the top 32bits of CS_GPR(1) as we're using it for other
1744 * operations below.
1745 */
1746 *cs++ = MI_LOAD_REGISTER_IMM(1);
1747 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1748 *cs++ = 0;
1749 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1750 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1751 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1752
1753 /*
1754 * Do a diff between the 2 timestamps and store the result back into
1755 * CS_GPR(1).
1756 */
1757 *cs++ = MI_MATH(5);
1758 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1759 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1760 *cs++ = MI_MATH_SUB;
1761 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1762 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1763
1764 /*
1765 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1766 * timestamp have rolled over the 32bits) into the predicate register
1767 * to be used for the predicated jump.
1768 */
1769 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1770 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1771 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1772
1773 /* Restart from the beginning if we had timestamps roll over. */
1774 *cs++ = (INTEL_GEN(i915) < 8 ?
1775 MI_BATCH_BUFFER_START :
1776 MI_BATCH_BUFFER_START_GEN8) |
1777 MI_BATCH_PREDICATE;
1778 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1779 *cs++ = 0;
1780
1781 /*
1782 * Now add the diff between to previous timestamps and add it to :
1783 * (((1 * << 64) - 1) - delay_ns)
1784 *
1785 * When the Carry Flag contains 1 this means the elapsed time is
1786 * longer than the expected delay, and we can exit the wait loop.
1787 */
1788 *cs++ = MI_LOAD_REGISTER_IMM(2);
1789 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1790 *cs++ = lower_32_bits(delay_ticks);
1791 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1792 *cs++ = upper_32_bits(delay_ticks);
1793
1794 *cs++ = MI_MATH(4);
1795 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1796 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1797 *cs++ = MI_MATH_ADD;
1798 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1799
1800 *cs++ = MI_ARB_CHECK;
1801
1802 /*
1803 * Transfer the result into the predicate register to be used for the
1804 * predicated jump.
1805 */
1806 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1807 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1808 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1809
1810 /* Predicate the jump. */
1811 *cs++ = (INTEL_GEN(i915) < 8 ?
1812 MI_BATCH_BUFFER_START :
1813 MI_BATCH_BUFFER_START_GEN8) |
1814 MI_BATCH_PREDICATE;
1815 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1816 *cs++ = 0;
1817
1818 /* Restore registers. */
1819 for (i = 0; i < N_CS_GPR; i++)
1820 cs = save_restore_register(
1821 stream, cs, false /* restore */, CS_GPR(i),
1822 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1823 cs = save_restore_register(
1824 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1825 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1826
1827 /* And return to the ring. */
1828 *cs++ = MI_BATCH_BUFFER_END;
1829
1830 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1831
1832 i915_gem_object_flush_map(bo);
1833 i915_gem_object_unpin_map(bo);
1834
1835 stream->noa_wait = vma;
1836 return 0;
1837
1838 err_unpin:
1839 i915_vma_unpin_and_release(&vma, 0);
1840 err_unref:
1841 i915_gem_object_put(bo);
1842 return ret;
1843 }
1844
1845 static u32 *write_cs_mi_lri(u32 *cs,
1846 const struct i915_oa_reg *reg_data,
1847 u32 n_regs)
1848 {
1849 u32 i;
1850
1851 for (i = 0; i < n_regs; i++) {
1852 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1853 u32 n_lri = min_t(u32,
1854 n_regs - i,
1855 MI_LOAD_REGISTER_IMM_MAX_REGS);
1856
1857 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1858 }
1859 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1860 *cs++ = reg_data[i].value;
1861 }
1862
1863 return cs;
1864 }
1865
1866 static int num_lri_dwords(int num_regs)
1867 {
1868 int count = 0;
1869
1870 if (num_regs > 0) {
1871 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1872 count += num_regs * 2;
1873 }
1874
1875 return count;
1876 }
1877
1878 static struct i915_oa_config_bo *
1879 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1880 struct i915_oa_config *oa_config)
1881 {
1882 struct drm_i915_gem_object *obj;
1883 struct i915_oa_config_bo *oa_bo;
1884 size_t config_length = 0;
1885 u32 *cs;
1886 int err;
1887
1888 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1889 if (!oa_bo)
1890 return ERR_PTR(-ENOMEM);
1891
1892 config_length += num_lri_dwords(oa_config->mux_regs_len);
1893 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1894 config_length += num_lri_dwords(oa_config->flex_regs_len);
1895 config_length += 3; /* MI_BATCH_BUFFER_START */
1896 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1897
1898 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1899 if (IS_ERR(obj)) {
1900 err = PTR_ERR(obj);
1901 goto err_free;
1902 }
1903
1904 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1905 if (IS_ERR(cs)) {
1906 err = PTR_ERR(cs);
1907 goto err_oa_bo;
1908 }
1909
1910 cs = write_cs_mi_lri(cs,
1911 oa_config->mux_regs,
1912 oa_config->mux_regs_len);
1913 cs = write_cs_mi_lri(cs,
1914 oa_config->b_counter_regs,
1915 oa_config->b_counter_regs_len);
1916 cs = write_cs_mi_lri(cs,
1917 oa_config->flex_regs,
1918 oa_config->flex_regs_len);
1919
1920 /* Jump into the active wait. */
1921 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1922 MI_BATCH_BUFFER_START :
1923 MI_BATCH_BUFFER_START_GEN8);
1924 *cs++ = i915_ggtt_offset(stream->noa_wait);
1925 *cs++ = 0;
1926
1927 i915_gem_object_flush_map(obj);
1928 i915_gem_object_unpin_map(obj);
1929
1930 oa_bo->vma = i915_vma_instance(obj,
1931 &stream->engine->gt->ggtt->vm,
1932 NULL);
1933 if (IS_ERR(oa_bo->vma)) {
1934 err = PTR_ERR(oa_bo->vma);
1935 goto err_oa_bo;
1936 }
1937
1938 oa_bo->oa_config = i915_oa_config_get(oa_config);
1939 llist_add(&oa_bo->node, &stream->oa_config_bos);
1940
1941 return oa_bo;
1942
1943 err_oa_bo:
1944 i915_gem_object_put(obj);
1945 err_free:
1946 kfree(oa_bo);
1947 return ERR_PTR(err);
1948 }
1949
1950 static struct i915_vma *
1951 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1952 {
1953 struct i915_oa_config_bo *oa_bo;
1954
1955 /*
1956 * Look for the buffer in the already allocated BOs attached
1957 * to the stream.
1958 */
1959 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1960 if (oa_bo->oa_config == oa_config &&
1961 memcmp(oa_bo->oa_config->uuid,
1962 oa_config->uuid,
1963 sizeof(oa_config->uuid)) == 0)
1964 goto out;
1965 }
1966
1967 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1968 if (IS_ERR(oa_bo))
1969 return ERR_CAST(oa_bo);
1970
1971 out:
1972 return i915_vma_get(oa_bo->vma);
1973 }
1974
1975 static struct i915_request *
1976 emit_oa_config(struct i915_perf_stream *stream,
1977 struct i915_oa_config *oa_config,
1978 struct intel_context *ce)
1979 {
1980 struct i915_request *rq;
1981 struct i915_vma *vma;
1982 int err;
1983
1984 vma = get_oa_vma(stream, oa_config);
1985 if (IS_ERR(vma))
1986 return ERR_CAST(vma);
1987
1988 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1989 if (err)
1990 goto err_vma_put;
1991
1992 intel_engine_pm_get(ce->engine);
1993 rq = i915_request_create(ce);
1994 intel_engine_pm_put(ce->engine);
1995 if (IS_ERR(rq)) {
1996 err = PTR_ERR(rq);
1997 goto err_vma_unpin;
1998 }
1999
2000 i915_vma_lock(vma);
2001 err = i915_request_await_object(rq, vma->obj, 0);
2002 if (!err)
2003 err = i915_vma_move_to_active(vma, rq, 0);
2004 i915_vma_unlock(vma);
2005 if (err)
2006 goto err_add_request;
2007
2008 err = rq->engine->emit_bb_start(rq,
2009 vma->node.start, 0,
2010 I915_DISPATCH_SECURE);
2011 if (err)
2012 goto err_add_request;
2013
2014 i915_request_get(rq);
2015 err_add_request:
2016 i915_request_add(rq);
2017 err_vma_unpin:
2018 i915_vma_unpin(vma);
2019 err_vma_put:
2020 i915_vma_put(vma);
2021 return err ? ERR_PTR(err) : rq;
2022 }
2023
2024 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2025 {
2026 return stream->pinned_ctx ?: stream->engine->kernel_context;
2027 }
2028
2029 static struct i915_request *
2030 hsw_enable_metric_set(struct i915_perf_stream *stream)
2031 {
2032 struct intel_uncore *uncore = stream->uncore;
2033
2034 /*
2035 * PRM:
2036 *
2037 * OA unit is using “crclk” for its functionality. When trunk
2038 * level clock gating takes place, OA clock would be gated,
2039 * unable to count the events from non-render clock domain.
2040 * Render clock gating must be disabled when OA is enabled to
2041 * count the events from non-render domain. Unit level clock
2042 * gating for RCS should also be disabled.
2043 */
2044 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2045 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2046 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2047 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2048
2049 return emit_oa_config(stream, stream->oa_config, oa_context(stream));
2050 }
2051
2052 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2053 {
2054 struct intel_uncore *uncore = stream->uncore;
2055
2056 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2057 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2058 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2059 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2060
2061 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2062 }
2063
2064 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2065 i915_reg_t reg)
2066 {
2067 u32 mmio = i915_mmio_reg_offset(reg);
2068 int i;
2069
2070 /*
2071 * This arbitrary default will select the 'EU FPU0 Pipeline
2072 * Active' event. In the future it's anticipated that there
2073 * will be an explicit 'No Event' we can select, but not yet...
2074 */
2075 if (!oa_config)
2076 return 0;
2077
2078 for (i = 0; i < oa_config->flex_regs_len; i++) {
2079 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2080 return oa_config->flex_regs[i].value;
2081 }
2082
2083 return 0;
2084 }
2085 /*
2086 * NB: It must always remain pointer safe to run this even if the OA unit
2087 * has been disabled.
2088 *
2089 * It's fine to put out-of-date values into these per-context registers
2090 * in the case that the OA unit has been disabled.
2091 */
2092 static void
2093 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2094 const struct i915_perf_stream *stream)
2095 {
2096 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2097 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2098 /* The MMIO offsets for Flex EU registers aren't contiguous */
2099 i915_reg_t flex_regs[] = {
2100 EU_PERF_CNTL0,
2101 EU_PERF_CNTL1,
2102 EU_PERF_CNTL2,
2103 EU_PERF_CNTL3,
2104 EU_PERF_CNTL4,
2105 EU_PERF_CNTL5,
2106 EU_PERF_CNTL6,
2107 };
2108 u32 *reg_state = ce->lrc_reg_state;
2109 int i;
2110
2111 reg_state[ctx_oactxctrl + 1] =
2112 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2113 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2114 GEN8_OA_COUNTER_RESUME;
2115
2116 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2117 reg_state[ctx_flexeu0 + i * 2 + 1] =
2118 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2119
2120 reg_state[CTX_R_PWR_CLK_STATE] =
2121 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
2122 }
2123
2124 struct flex {
2125 i915_reg_t reg;
2126 u32 offset;
2127 u32 value;
2128 };
2129
2130 static int
2131 gen8_store_flex(struct i915_request *rq,
2132 struct intel_context *ce,
2133 const struct flex *flex, unsigned int count)
2134 {
2135 u32 offset;
2136 u32 *cs;
2137
2138 cs = intel_ring_begin(rq, 4 * count);
2139 if (IS_ERR(cs))
2140 return PTR_ERR(cs);
2141
2142 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
2143 do {
2144 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2145 *cs++ = offset + flex->offset * sizeof(u32);
2146 *cs++ = 0;
2147 *cs++ = flex->value;
2148 } while (flex++, --count);
2149
2150 intel_ring_advance(rq, cs);
2151
2152 return 0;
2153 }
2154
2155 static int
2156 gen8_load_flex(struct i915_request *rq,
2157 struct intel_context *ce,
2158 const struct flex *flex, unsigned int count)
2159 {
2160 u32 *cs;
2161
2162 GEM_BUG_ON(!count || count > 63);
2163
2164 cs = intel_ring_begin(rq, 2 * count + 2);
2165 if (IS_ERR(cs))
2166 return PTR_ERR(cs);
2167
2168 *cs++ = MI_LOAD_REGISTER_IMM(count);
2169 do {
2170 *cs++ = i915_mmio_reg_offset(flex->reg);
2171 *cs++ = flex->value;
2172 } while (flex++, --count);
2173 *cs++ = MI_NOOP;
2174
2175 intel_ring_advance(rq, cs);
2176
2177 return 0;
2178 }
2179
2180 static int gen8_modify_context(struct intel_context *ce,
2181 const struct flex *flex, unsigned int count)
2182 {
2183 struct i915_request *rq;
2184 int err;
2185
2186 rq = intel_engine_create_kernel_request(ce->engine);
2187 if (IS_ERR(rq))
2188 return PTR_ERR(rq);
2189
2190 /* Serialise with the remote context */
2191 err = intel_context_prepare_remote_request(ce, rq);
2192 if (err == 0)
2193 err = gen8_store_flex(rq, ce, flex, count);
2194
2195 i915_request_add(rq);
2196 return err;
2197 }
2198
2199 static int gen8_modify_self(struct intel_context *ce,
2200 const struct flex *flex, unsigned int count)
2201 {
2202 struct i915_request *rq;
2203 int err;
2204
2205 intel_engine_pm_get(ce->engine);
2206 rq = i915_request_create(ce);
2207 intel_engine_pm_put(ce->engine);
2208 if (IS_ERR(rq))
2209 return PTR_ERR(rq);
2210
2211 err = gen8_load_flex(rq, ce, flex, count);
2212
2213 i915_request_add(rq);
2214 return err;
2215 }
2216
2217 static int gen8_configure_context(struct i915_gem_context *ctx,
2218 struct flex *flex, unsigned int count)
2219 {
2220 struct i915_gem_engines_iter it;
2221 struct intel_context *ce;
2222 int err = 0;
2223
2224 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2225 GEM_BUG_ON(ce == ce->engine->kernel_context);
2226
2227 if (ce->engine->class != RENDER_CLASS)
2228 continue;
2229
2230 /* Otherwise OA settings will be set upon first use */
2231 if (!intel_context_pin_if_active(ce))
2232 continue;
2233
2234 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2235 err = gen8_modify_context(ce, flex, count);
2236
2237 intel_context_unpin(ce);
2238 if (err)
2239 break;
2240 }
2241 i915_gem_context_unlock_engines(ctx);
2242
2243 return err;
2244 }
2245
2246 static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable)
2247 {
2248 int err;
2249 struct intel_context *ce = stream->pinned_ctx;
2250 u32 format = stream->oa_buffer.format;
2251 struct flex regs_context[] = {
2252 {
2253 GEN8_OACTXCONTROL,
2254 stream->perf->ctx_oactxctrl_offset + 1,
2255 enable ? GEN8_OA_COUNTER_RESUME : 0,
2256 },
2257 };
2258 /* Offsets in regs_lri are not used since this configuration is only
2259 * applied using LRI. Initialize the correct offsets for posterity.
2260 */
2261 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2262 struct flex regs_lri[] = {
2263 {
2264 GEN12_OAR_OACONTROL,
2265 GEN12_OAR_OACONTROL_OFFSET + 1,
2266 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2267 (enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2268 },
2269 {
2270 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2271 CTX_CONTEXT_CONTROL,
2272 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2273 enable ?
2274 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2275 0)
2276 },
2277 };
2278
2279 /* Modify the context image of pinned context with regs_context*/
2280 err = intel_context_lock_pinned(ce);
2281 if (err)
2282 return err;
2283
2284 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2285 intel_context_unlock_pinned(ce);
2286 if (err)
2287 return err;
2288
2289 /* Apply regs_lri using LRI with pinned context */
2290 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri));
2291 }
2292
2293 /*
2294 * Manages updating the per-context aspects of the OA stream
2295 * configuration across all contexts.
2296 *
2297 * The awkward consideration here is that OACTXCONTROL controls the
2298 * exponent for periodic sampling which is primarily used for system
2299 * wide profiling where we'd like a consistent sampling period even in
2300 * the face of context switches.
2301 *
2302 * Our approach of updating the register state context (as opposed to
2303 * say using a workaround batch buffer) ensures that the hardware
2304 * won't automatically reload an out-of-date timer exponent even
2305 * transiently before a WA BB could be parsed.
2306 *
2307 * This function needs to:
2308 * - Ensure the currently running context's per-context OA state is
2309 * updated
2310 * - Ensure that all existing contexts will have the correct per-context
2311 * OA state if they are scheduled for use.
2312 * - Ensure any new contexts will be initialized with the correct
2313 * per-context OA state.
2314 *
2315 * Note: it's only the RCS/Render context that has any OA state.
2316 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2317 */
2318 static int oa_configure_all_contexts(struct i915_perf_stream *stream,
2319 struct flex *regs,
2320 size_t num_regs)
2321 {
2322 struct drm_i915_private *i915 = stream->perf->i915;
2323 struct intel_engine_cs *engine;
2324 struct i915_gem_context *ctx, *cn;
2325 int err;
2326
2327 lockdep_assert_held(&stream->perf->lock);
2328
2329 /*
2330 * The OA register config is setup through the context image. This image
2331 * might be written to by the GPU on context switch (in particular on
2332 * lite-restore). This means we can't safely update a context's image,
2333 * if this context is scheduled/submitted to run on the GPU.
2334 *
2335 * We could emit the OA register config through the batch buffer but
2336 * this might leave small interval of time where the OA unit is
2337 * configured at an invalid sampling period.
2338 *
2339 * Note that since we emit all requests from a single ring, there
2340 * is still an implicit global barrier here that may cause a high
2341 * priority context to wait for an otherwise independent low priority
2342 * context. Contexts idle at the time of reconfiguration are not
2343 * trapped behind the barrier.
2344 */
2345 spin_lock(&i915->gem.contexts.lock);
2346 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2347 if (!kref_get_unless_zero(&ctx->ref))
2348 continue;
2349
2350 spin_unlock(&i915->gem.contexts.lock);
2351
2352 err = gen8_configure_context(ctx, regs, num_regs);
2353 if (err) {
2354 i915_gem_context_put(ctx);
2355 return err;
2356 }
2357
2358 spin_lock(&i915->gem.contexts.lock);
2359 list_safe_reset_next(ctx, cn, link);
2360 i915_gem_context_put(ctx);
2361 }
2362 spin_unlock(&i915->gem.contexts.lock);
2363
2364 /*
2365 * After updating all other contexts, we need to modify ourselves.
2366 * If we don't modify the kernel_context, we do not get events while
2367 * idle.
2368 */
2369 for_each_uabi_engine(engine, i915) {
2370 struct intel_context *ce = engine->kernel_context;
2371
2372 if (engine->class != RENDER_CLASS)
2373 continue;
2374
2375 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
2376
2377 err = gen8_modify_self(ce, regs, num_regs);
2378 if (err)
2379 return err;
2380 }
2381
2382 return 0;
2383 }
2384
2385 static int gen12_configure_all_contexts(struct i915_perf_stream *stream,
2386 const struct i915_oa_config *oa_config)
2387 {
2388 struct flex regs[] = {
2389 {
2390 GEN8_R_PWR_CLK_STATE,
2391 CTX_R_PWR_CLK_STATE,
2392 },
2393 };
2394
2395 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
2396 }
2397
2398 static int lrc_configure_all_contexts(struct i915_perf_stream *stream,
2399 const struct i915_oa_config *oa_config)
2400 {
2401 /* The MMIO offsets for Flex EU registers aren't contiguous */
2402 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2403 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2404 struct flex regs[] = {
2405 {
2406 GEN8_R_PWR_CLK_STATE,
2407 CTX_R_PWR_CLK_STATE,
2408 },
2409 {
2410 GEN8_OACTXCONTROL,
2411 stream->perf->ctx_oactxctrl_offset + 1,
2412 },
2413 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2414 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2415 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2416 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2417 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2418 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2419 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2420 };
2421 #undef ctx_flexeuN
2422 int i;
2423
2424 regs[1].value =
2425 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2426 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2427 GEN8_OA_COUNTER_RESUME;
2428
2429 for (i = 2; i < ARRAY_SIZE(regs); i++)
2430 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2431
2432 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
2433 }
2434
2435 static struct i915_request *
2436 gen8_enable_metric_set(struct i915_perf_stream *stream)
2437 {
2438 struct intel_uncore *uncore = stream->uncore;
2439 struct i915_oa_config *oa_config = stream->oa_config;
2440 int ret;
2441
2442 /*
2443 * We disable slice/unslice clock ratio change reports on SKL since
2444 * they are too noisy. The HW generates a lot of redundant reports
2445 * where the ratio hasn't really changed causing a lot of redundant
2446 * work to processes and increasing the chances we'll hit buffer
2447 * overruns.
2448 *
2449 * Although we don't currently use the 'disable overrun' OABUFFER
2450 * feature it's worth noting that clock ratio reports have to be
2451 * disabled before considering to use that feature since the HW doesn't
2452 * correctly block these reports.
2453 *
2454 * Currently none of the high-level metrics we have depend on knowing
2455 * this ratio to normalize.
2456 *
2457 * Note: This register is not power context saved and restored, but
2458 * that's OK considering that we disable RC6 while the OA unit is
2459 * enabled.
2460 *
2461 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2462 * be read back from automatically triggered reports, as part of the
2463 * RPT_ID field.
2464 */
2465 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2466 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2467 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2468 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2469 }
2470
2471 /*
2472 * Update all contexts prior writing the mux configurations as we need
2473 * to make sure all slices/subslices are ON before writing to NOA
2474 * registers.
2475 */
2476 ret = lrc_configure_all_contexts(stream, oa_config);
2477 if (ret)
2478 return ERR_PTR(ret);
2479
2480 return emit_oa_config(stream, oa_config, oa_context(stream));
2481 }
2482
2483 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2484 {
2485 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2486 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2487 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2488 }
2489
2490 static struct i915_request *
2491 gen12_enable_metric_set(struct i915_perf_stream *stream)
2492 {
2493 struct intel_uncore *uncore = stream->uncore;
2494 struct i915_oa_config *oa_config = stream->oa_config;
2495 bool periodic = stream->periodic;
2496 u32 period_exponent = stream->period_exponent;
2497 int ret;
2498
2499 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2500 /* Disable clk ratio reports, like previous Gens. */
2501 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2502 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2503 /*
2504 * If the user didn't require OA reports, instruct
2505 * the hardware not to emit ctx switch reports.
2506 */
2507 oag_report_ctx_switches(stream));
2508
2509 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2510 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2511 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2512 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2513 : 0);
2514
2515 /*
2516 * Update all contexts prior writing the mux configurations as we need
2517 * to make sure all slices/subslices are ON before writing to NOA
2518 * registers.
2519 */
2520 ret = gen12_configure_all_contexts(stream, oa_config);
2521 if (ret)
2522 return ERR_PTR(ret);
2523
2524 /*
2525 * For Gen12, performance counters are context
2526 * saved/restored. Only enable it for the context that
2527 * requested this.
2528 */
2529 if (stream->ctx) {
2530 ret = gen12_configure_oar_context(stream, true);
2531 if (ret)
2532 return ERR_PTR(ret);
2533 }
2534
2535 return emit_oa_config(stream, oa_config, oa_context(stream));
2536 }
2537
2538 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2539 {
2540 struct intel_uncore *uncore = stream->uncore;
2541
2542 /* Reset all contexts' slices/subslices configurations. */
2543 lrc_configure_all_contexts(stream, NULL);
2544
2545 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2546 }
2547
2548 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2549 {
2550 struct intel_uncore *uncore = stream->uncore;
2551
2552 /* Reset all contexts' slices/subslices configurations. */
2553 lrc_configure_all_contexts(stream, NULL);
2554
2555 /* Make sure we disable noa to save power. */
2556 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2557 }
2558
2559 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2560 {
2561 struct intel_uncore *uncore = stream->uncore;
2562
2563 /* Reset all contexts' slices/subslices configurations. */
2564 gen12_configure_all_contexts(stream, NULL);
2565
2566 /* disable the context save/restore or OAR counters */
2567 if (stream->ctx)
2568 gen12_configure_oar_context(stream, false);
2569
2570 /* Make sure we disable noa to save power. */
2571 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2572 }
2573
2574 static void gen7_oa_enable(struct i915_perf_stream *stream)
2575 {
2576 struct intel_uncore *uncore = stream->uncore;
2577 struct i915_gem_context *ctx = stream->ctx;
2578 u32 ctx_id = stream->specific_ctx_id;
2579 bool periodic = stream->periodic;
2580 u32 period_exponent = stream->period_exponent;
2581 u32 report_format = stream->oa_buffer.format;
2582
2583 /*
2584 * Reset buf pointers so we don't forward reports from before now.
2585 *
2586 * Think carefully if considering trying to avoid this, since it
2587 * also ensures status flags and the buffer itself are cleared
2588 * in error paths, and we have checks for invalid reports based
2589 * on the assumption that certain fields are written to zeroed
2590 * memory which this helps maintains.
2591 */
2592 gen7_init_oa_buffer(stream);
2593
2594 intel_uncore_write(uncore, GEN7_OACONTROL,
2595 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2596 (period_exponent <<
2597 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2598 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2599 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2600 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2601 GEN7_OACONTROL_ENABLE);
2602 }
2603
2604 static void gen8_oa_enable(struct i915_perf_stream *stream)
2605 {
2606 struct intel_uncore *uncore = stream->uncore;
2607 u32 report_format = stream->oa_buffer.format;
2608
2609 /*
2610 * Reset buf pointers so we don't forward reports from before now.
2611 *
2612 * Think carefully if considering trying to avoid this, since it
2613 * also ensures status flags and the buffer itself are cleared
2614 * in error paths, and we have checks for invalid reports based
2615 * on the assumption that certain fields are written to zeroed
2616 * memory which this helps maintains.
2617 */
2618 gen8_init_oa_buffer(stream);
2619
2620 /*
2621 * Note: we don't rely on the hardware to perform single context
2622 * filtering and instead filter on the cpu based on the context-id
2623 * field of reports
2624 */
2625 intel_uncore_write(uncore, GEN8_OACONTROL,
2626 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2627 GEN8_OA_COUNTER_ENABLE);
2628 }
2629
2630 static void gen12_oa_enable(struct i915_perf_stream *stream)
2631 {
2632 struct intel_uncore *uncore = stream->uncore;
2633 u32 report_format = stream->oa_buffer.format;
2634
2635 /*
2636 * If we don't want OA reports from the OA buffer, then we don't even
2637 * need to program the OAG unit.
2638 */
2639 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2640 return;
2641
2642 gen12_init_oa_buffer(stream);
2643
2644 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2645 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2646 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2647 }
2648
2649 /**
2650 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2651 * @stream: An i915 perf stream opened for OA metrics
2652 *
2653 * [Re]enables hardware periodic sampling according to the period configured
2654 * when opening the stream. This also starts a hrtimer that will periodically
2655 * check for data in the circular OA buffer for notifying userspace (e.g.
2656 * during a read() or poll()).
2657 */
2658 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2659 {
2660 stream->perf->ops.oa_enable(stream);
2661
2662 if (stream->periodic)
2663 hrtimer_start(&stream->poll_check_timer,
2664 ns_to_ktime(POLL_PERIOD),
2665 HRTIMER_MODE_REL_PINNED);
2666 }
2667
2668 static void gen7_oa_disable(struct i915_perf_stream *stream)
2669 {
2670 struct intel_uncore *uncore = stream->uncore;
2671
2672 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2673 if (intel_wait_for_register(uncore,
2674 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2675 50))
2676 drm_err(&stream->perf->i915->drm,
2677 "wait for OA to be disabled timed out\n");
2678 }
2679
2680 static void gen8_oa_disable(struct i915_perf_stream *stream)
2681 {
2682 struct intel_uncore *uncore = stream->uncore;
2683
2684 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2685 if (intel_wait_for_register(uncore,
2686 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2687 50))
2688 drm_err(&stream->perf->i915->drm,
2689 "wait for OA to be disabled timed out\n");
2690 }
2691
2692 static void gen12_oa_disable(struct i915_perf_stream *stream)
2693 {
2694 struct intel_uncore *uncore = stream->uncore;
2695
2696 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2697 if (intel_wait_for_register(uncore,
2698 GEN12_OAG_OACONTROL,
2699 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2700 50))
2701 drm_err(&stream->perf->i915->drm,
2702 "wait for OA to be disabled timed out\n");
2703
2704 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2705 if (intel_wait_for_register(uncore,
2706 GEN12_OA_TLB_INV_CR,
2707 1, 0,
2708 50))
2709 drm_err(&stream->perf->i915->drm,
2710 "wait for OA tlb invalidate timed out\n");
2711 }
2712
2713 /**
2714 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2715 * @stream: An i915 perf stream opened for OA metrics
2716 *
2717 * Stops the OA unit from periodically writing counter reports into the
2718 * circular OA buffer. This also stops the hrtimer that periodically checks for
2719 * data in the circular OA buffer, for notifying userspace.
2720 */
2721 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2722 {
2723 stream->perf->ops.oa_disable(stream);
2724
2725 if (stream->periodic)
2726 hrtimer_cancel(&stream->poll_check_timer);
2727 }
2728
2729 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2730 .destroy = i915_oa_stream_destroy,
2731 .enable = i915_oa_stream_enable,
2732 .disable = i915_oa_stream_disable,
2733 .wait_unlocked = i915_oa_wait_unlocked,
2734 .poll_wait = i915_oa_poll_wait,
2735 .read = i915_oa_read,
2736 };
2737
2738 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2739 {
2740 struct i915_request *rq;
2741
2742 rq = stream->perf->ops.enable_metric_set(stream);
2743 if (IS_ERR(rq))
2744 return PTR_ERR(rq);
2745
2746 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
2747 i915_request_put(rq);
2748
2749 return 0;
2750 }
2751
2752 /**
2753 * i915_oa_stream_init - validate combined props for OA stream and init
2754 * @stream: An i915 perf stream
2755 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2756 * @props: The property state that configures stream (individually validated)
2757 *
2758 * While read_properties_unlocked() validates properties in isolation it
2759 * doesn't ensure that the combination necessarily makes sense.
2760 *
2761 * At this point it has been determined that userspace wants a stream of
2762 * OA metrics, but still we need to further validate the combined
2763 * properties are OK.
2764 *
2765 * If the configuration makes sense then we can allocate memory for
2766 * a circular OA buffer and apply the requested metric set configuration.
2767 *
2768 * Returns: zero on success or a negative error code.
2769 */
2770 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2771 struct drm_i915_perf_open_param *param,
2772 struct perf_open_properties *props)
2773 {
2774 struct drm_i915_private *i915 = stream->perf->i915;
2775 struct i915_perf *perf = stream->perf;
2776 int format_size;
2777 int ret;
2778
2779 if (!props->engine) {
2780 DRM_DEBUG("OA engine not specified\n");
2781 return -EINVAL;
2782 }
2783
2784 /*
2785 * If the sysfs metrics/ directory wasn't registered for some
2786 * reason then don't let userspace try their luck with config
2787 * IDs
2788 */
2789 if (!perf->metrics_kobj) {
2790 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2791 return -EINVAL;
2792 }
2793
2794 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2795 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2796 DRM_DEBUG("Only OA report sampling supported\n");
2797 return -EINVAL;
2798 }
2799
2800 if (!perf->ops.enable_metric_set) {
2801 DRM_DEBUG("OA unit not supported\n");
2802 return -ENODEV;
2803 }
2804
2805 /*
2806 * To avoid the complexity of having to accurately filter
2807 * counter reports and marshal to the appropriate client
2808 * we currently only allow exclusive access
2809 */
2810 if (perf->exclusive_stream) {
2811 DRM_DEBUG("OA unit already in use\n");
2812 return -EBUSY;
2813 }
2814
2815 if (!props->oa_format) {
2816 DRM_DEBUG("OA report format not specified\n");
2817 return -EINVAL;
2818 }
2819
2820 stream->engine = props->engine;
2821 stream->uncore = stream->engine->gt->uncore;
2822
2823 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2824
2825 format_size = perf->oa_formats[props->oa_format].size;
2826
2827 stream->sample_flags = props->sample_flags;
2828 stream->sample_size += format_size;
2829
2830 stream->oa_buffer.format_size = format_size;
2831 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2832 return -EINVAL;
2833
2834 stream->hold_preemption = props->hold_preemption;
2835
2836 stream->oa_buffer.format =
2837 perf->oa_formats[props->oa_format].format;
2838
2839 stream->periodic = props->oa_periodic;
2840 if (stream->periodic)
2841 stream->period_exponent = props->oa_period_exponent;
2842
2843 if (stream->ctx) {
2844 ret = oa_get_render_ctx_id(stream);
2845 if (ret) {
2846 DRM_DEBUG("Invalid context id to filter with\n");
2847 return ret;
2848 }
2849 }
2850
2851 ret = alloc_noa_wait(stream);
2852 if (ret) {
2853 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2854 goto err_noa_wait_alloc;
2855 }
2856
2857 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2858 if (!stream->oa_config) {
2859 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2860 ret = -EINVAL;
2861 goto err_config;
2862 }
2863
2864 /* PRM - observability performance counters:
2865 *
2866 * OACONTROL, performance counter enable, note:
2867 *
2868 * "When this bit is set, in order to have coherent counts,
2869 * RC6 power state and trunk clock gating must be disabled.
2870 * This can be achieved by programming MMIO registers as
2871 * 0xA094=0 and 0xA090[31]=1"
2872 *
2873 * In our case we are expecting that taking pm + FORCEWAKE
2874 * references will effectively disable RC6.
2875 */
2876 intel_engine_pm_get(stream->engine);
2877 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2878
2879 ret = alloc_oa_buffer(stream);
2880 if (ret)
2881 goto err_oa_buf_alloc;
2882
2883 stream->ops = &i915_oa_stream_ops;
2884 WRITE_ONCE(perf->exclusive_stream, stream);
2885
2886 ret = i915_perf_stream_enable_sync(stream);
2887 if (ret) {
2888 DRM_DEBUG("Unable to enable metric set\n");
2889 goto err_enable;
2890 }
2891
2892 DRM_DEBUG("opening stream oa config uuid=%s\n",
2893 stream->oa_config->uuid);
2894
2895 hrtimer_init(&stream->poll_check_timer,
2896 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2897 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2898 init_waitqueue_head(&stream->poll_wq);
2899 spin_lock_init(&stream->oa_buffer.ptr_lock);
2900
2901 return 0;
2902
2903 err_enable:
2904 WRITE_ONCE(perf->exclusive_stream, NULL);
2905 perf->ops.disable_metric_set(stream);
2906
2907 free_oa_buffer(stream);
2908
2909 err_oa_buf_alloc:
2910 free_oa_configs(stream);
2911
2912 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2913 intel_engine_pm_put(stream->engine);
2914
2915 err_config:
2916 free_noa_wait(stream);
2917
2918 err_noa_wait_alloc:
2919 if (stream->ctx)
2920 oa_put_render_ctx_id(stream);
2921
2922 return ret;
2923 }
2924
2925 void i915_oa_init_reg_state(const struct intel_context *ce,
2926 const struct intel_engine_cs *engine)
2927 {
2928 struct i915_perf_stream *stream;
2929
2930 if (engine->class != RENDER_CLASS)
2931 return;
2932
2933 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2934 stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2935 /*
2936 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller
2937 * is already doing that, so nothing to be done for gen12 here.
2938 */
2939 if (stream && INTEL_GEN(stream->perf->i915) < 12)
2940 gen8_update_reg_state_unlocked(ce, stream);
2941 }
2942
2943 /**
2944 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2945 * @file: An i915 perf stream file
2946 * @buf: destination buffer given by userspace
2947 * @count: the number of bytes userspace wants to read
2948 * @ppos: (inout) file seek position (unused)
2949 *
2950 * The entry point for handling a read() on a stream file descriptor from
2951 * userspace. Most of the work is left to the i915_perf_read_locked() and
2952 * &i915_perf_stream_ops->read but to save having stream implementations (of
2953 * which we might have multiple later) we handle blocking read here.
2954 *
2955 * We can also consistently treat trying to read from a disabled stream
2956 * as an IO error so implementations can assume the stream is enabled
2957 * while reading.
2958 *
2959 * Returns: The number of bytes copied or a negative error code on failure.
2960 */
2961 static ssize_t i915_perf_read(struct file *file,
2962 char __user *buf,
2963 size_t count,
2964 loff_t *ppos)
2965 {
2966 struct i915_perf_stream *stream = file->private_data;
2967 struct i915_perf *perf = stream->perf;
2968 size_t offset = 0;
2969 int ret;
2970
2971 /* To ensure it's handled consistently we simply treat all reads of a
2972 * disabled stream as an error. In particular it might otherwise lead
2973 * to a deadlock for blocking file descriptors...
2974 */
2975 if (!stream->enabled)
2976 return -EIO;
2977
2978 if (!(file->f_flags & O_NONBLOCK)) {
2979 /* There's the small chance of false positives from
2980 * stream->ops->wait_unlocked.
2981 *
2982 * E.g. with single context filtering since we only wait until
2983 * oabuffer has >= 1 report we don't immediately know whether
2984 * any reports really belong to the current context
2985 */
2986 do {
2987 ret = stream->ops->wait_unlocked(stream);
2988 if (ret)
2989 return ret;
2990
2991 mutex_lock(&perf->lock);
2992 ret = stream->ops->read(stream, buf, count, &offset);
2993 mutex_unlock(&perf->lock);
2994 } while (!offset && !ret);
2995 } else {
2996 mutex_lock(&perf->lock);
2997 ret = stream->ops->read(stream, buf, count, &offset);
2998 mutex_unlock(&perf->lock);
2999 }
3000
3001 /* We allow the poll checking to sometimes report false positive EPOLLIN
3002 * events where we might actually report EAGAIN on read() if there's
3003 * not really any data available. In this situation though we don't
3004 * want to enter a busy loop between poll() reporting a EPOLLIN event
3005 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3006 * effectively ensures we back off until the next hrtimer callback
3007 * before reporting another EPOLLIN event.
3008 * The exception to this is if ops->read() returned -ENOSPC which means
3009 * that more OA data is available than could fit in the user provided
3010 * buffer. In this case we want the next poll() call to not block.
3011 */
3012 if (ret != -ENOSPC)
3013 stream->pollin = false;
3014
3015 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3016 return offset ?: (ret ?: -EAGAIN);
3017 }
3018
3019 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3020 {
3021 struct i915_perf_stream *stream =
3022 container_of(hrtimer, typeof(*stream), poll_check_timer);
3023
3024 if (oa_buffer_check_unlocked(stream)) {
3025 stream->pollin = true;
3026 wake_up(&stream->poll_wq);
3027 }
3028
3029 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
3030
3031 return HRTIMER_RESTART;
3032 }
3033
3034 /**
3035 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3036 * @stream: An i915 perf stream
3037 * @file: An i915 perf stream file
3038 * @wait: poll() state table
3039 *
3040 * For handling userspace polling on an i915 perf stream, this calls through to
3041 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3042 * will be woken for new stream data.
3043 *
3044 * Note: The &perf->lock mutex has been taken to serialize
3045 * with any non-file-operation driver hooks.
3046 *
3047 * Returns: any poll events that are ready without sleeping
3048 */
3049 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3050 struct file *file,
3051 poll_table *wait)
3052 {
3053 __poll_t events = 0;
3054
3055 stream->ops->poll_wait(stream, file, wait);
3056
3057 /* Note: we don't explicitly check whether there's something to read
3058 * here since this path may be very hot depending on what else
3059 * userspace is polling, or on the timeout in use. We rely solely on
3060 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3061 * samples to read.
3062 */
3063 if (stream->pollin)
3064 events |= EPOLLIN;
3065
3066 return events;
3067 }
3068
3069 /**
3070 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3071 * @file: An i915 perf stream file
3072 * @wait: poll() state table
3073 *
3074 * For handling userspace polling on an i915 perf stream, this ensures
3075 * poll_wait() gets called with a wait queue that will be woken for new stream
3076 * data.
3077 *
3078 * Note: Implementation deferred to i915_perf_poll_locked()
3079 *
3080 * Returns: any poll events that are ready without sleeping
3081 */
3082 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3083 {
3084 struct i915_perf_stream *stream = file->private_data;
3085 struct i915_perf *perf = stream->perf;
3086 __poll_t ret;
3087
3088 mutex_lock(&perf->lock);
3089 ret = i915_perf_poll_locked(stream, file, wait);
3090 mutex_unlock(&perf->lock);
3091
3092 return ret;
3093 }
3094
3095 /**
3096 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3097 * @stream: A disabled i915 perf stream
3098 *
3099 * [Re]enables the associated capture of data for this stream.
3100 *
3101 * If a stream was previously enabled then there's currently no intention
3102 * to provide userspace any guarantee about the preservation of previously
3103 * buffered data.
3104 */
3105 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3106 {
3107 if (stream->enabled)
3108 return;
3109
3110 /* Allow stream->ops->enable() to refer to this */
3111 stream->enabled = true;
3112
3113 if (stream->ops->enable)
3114 stream->ops->enable(stream);
3115
3116 if (stream->hold_preemption)
3117 intel_context_set_nopreempt(stream->pinned_ctx);
3118 }
3119
3120 /**
3121 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3122 * @stream: An enabled i915 perf stream
3123 *
3124 * Disables the associated capture of data for this stream.
3125 *
3126 * The intention is that disabling an re-enabling a stream will ideally be
3127 * cheaper than destroying and re-opening a stream with the same configuration,
3128 * though there are no formal guarantees about what state or buffered data
3129 * must be retained between disabling and re-enabling a stream.
3130 *
3131 * Note: while a stream is disabled it's considered an error for userspace
3132 * to attempt to read from the stream (-EIO).
3133 */
3134 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3135 {
3136 if (!stream->enabled)
3137 return;
3138
3139 /* Allow stream->ops->disable() to refer to this */
3140 stream->enabled = false;
3141
3142 if (stream->hold_preemption)
3143 intel_context_clear_nopreempt(stream->pinned_ctx);
3144
3145 if (stream->ops->disable)
3146 stream->ops->disable(stream);
3147 }
3148
3149 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3150 unsigned long metrics_set)
3151 {
3152 struct i915_oa_config *config;
3153 long ret = stream->oa_config->id;
3154
3155 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3156 if (!config)
3157 return -EINVAL;
3158
3159 if (config != stream->oa_config) {
3160 struct i915_request *rq;
3161
3162 /*
3163 * If OA is bound to a specific context, emit the
3164 * reconfiguration inline from that context. The update
3165 * will then be ordered with respect to submission on that
3166 * context.
3167 *
3168 * When set globally, we use a low priority kernel context,
3169 * so it will effectively take effect when idle.
3170 */
3171 rq = emit_oa_config(stream, config, oa_context(stream));
3172 if (!IS_ERR(rq)) {
3173 config = xchg(&stream->oa_config, config);
3174 i915_request_put(rq);
3175 } else {
3176 ret = PTR_ERR(rq);
3177 }
3178 }
3179
3180 i915_oa_config_put(config);
3181
3182 return ret;
3183 }
3184
3185 /**
3186 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3187 * @stream: An i915 perf stream
3188 * @cmd: the ioctl request
3189 * @arg: the ioctl data
3190 *
3191 * Note: The &perf->lock mutex has been taken to serialize
3192 * with any non-file-operation driver hooks.
3193 *
3194 * Returns: zero on success or a negative error code. Returns -EINVAL for
3195 * an unknown ioctl request.
3196 */
3197 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3198 unsigned int cmd,
3199 unsigned long arg)
3200 {
3201 switch (cmd) {
3202 case I915_PERF_IOCTL_ENABLE:
3203 i915_perf_enable_locked(stream);
3204 return 0;
3205 case I915_PERF_IOCTL_DISABLE:
3206 i915_perf_disable_locked(stream);
3207 return 0;
3208 case I915_PERF_IOCTL_CONFIG:
3209 return i915_perf_config_locked(stream, arg);
3210 }
3211
3212 return -EINVAL;
3213 }
3214
3215 /**
3216 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3217 * @file: An i915 perf stream file
3218 * @cmd: the ioctl request
3219 * @arg: the ioctl data
3220 *
3221 * Implementation deferred to i915_perf_ioctl_locked().
3222 *
3223 * Returns: zero on success or a negative error code. Returns -EINVAL for
3224 * an unknown ioctl request.
3225 */
3226 static long i915_perf_ioctl(struct file *file,
3227 unsigned int cmd,
3228 unsigned long arg)
3229 {
3230 struct i915_perf_stream *stream = file->private_data;
3231 struct i915_perf *perf = stream->perf;
3232 long ret;
3233
3234 mutex_lock(&perf->lock);
3235 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3236 mutex_unlock(&perf->lock);
3237
3238 return ret;
3239 }
3240
3241 /**
3242 * i915_perf_destroy_locked - destroy an i915 perf stream
3243 * @stream: An i915 perf stream
3244 *
3245 * Frees all resources associated with the given i915 perf @stream, disabling
3246 * any associated data capture in the process.
3247 *
3248 * Note: The &perf->lock mutex has been taken to serialize
3249 * with any non-file-operation driver hooks.
3250 */
3251 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3252 {
3253 if (stream->enabled)
3254 i915_perf_disable_locked(stream);
3255
3256 if (stream->ops->destroy)
3257 stream->ops->destroy(stream);
3258
3259 if (stream->ctx)
3260 i915_gem_context_put(stream->ctx);
3261
3262 kfree(stream);
3263 }
3264
3265 /**
3266 * i915_perf_release - handles userspace close() of a stream file
3267 * @inode: anonymous inode associated with file
3268 * @file: An i915 perf stream file
3269 *
3270 * Cleans up any resources associated with an open i915 perf stream file.
3271 *
3272 * NB: close() can't really fail from the userspace point of view.
3273 *
3274 * Returns: zero on success or a negative error code.
3275 */
3276 static int i915_perf_release(struct inode *inode, struct file *file)
3277 {
3278 struct i915_perf_stream *stream = file->private_data;
3279 struct i915_perf *perf = stream->perf;
3280
3281 mutex_lock(&perf->lock);
3282 i915_perf_destroy_locked(stream);
3283 mutex_unlock(&perf->lock);
3284
3285 /* Release the reference the perf stream kept on the driver. */
3286 drm_dev_put(&perf->i915->drm);
3287
3288 return 0;
3289 }
3290
3291
3292 static const struct file_operations fops = {
3293 .owner = THIS_MODULE,
3294 .llseek = no_llseek,
3295 .release = i915_perf_release,
3296 .poll = i915_perf_poll,
3297 .read = i915_perf_read,
3298 .unlocked_ioctl = i915_perf_ioctl,
3299 /* Our ioctl have no arguments, so it's safe to use the same function
3300 * to handle 32bits compatibility.
3301 */
3302 .compat_ioctl = i915_perf_ioctl,
3303 };
3304
3305
3306 /**
3307 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3308 * @perf: i915 perf instance
3309 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3310 * @props: individually validated u64 property value pairs
3311 * @file: drm file
3312 *
3313 * See i915_perf_ioctl_open() for interface details.
3314 *
3315 * Implements further stream config validation and stream initialization on
3316 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3317 * taken to serialize with any non-file-operation driver hooks.
3318 *
3319 * Note: at this point the @props have only been validated in isolation and
3320 * it's still necessary to validate that the combination of properties makes
3321 * sense.
3322 *
3323 * In the case where userspace is interested in OA unit metrics then further
3324 * config validation and stream initialization details will be handled by
3325 * i915_oa_stream_init(). The code here should only validate config state that
3326 * will be relevant to all stream types / backends.
3327 *
3328 * Returns: zero on success or a negative error code.
3329 */
3330 static int
3331 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3332 struct drm_i915_perf_open_param *param,
3333 struct perf_open_properties *props,
3334 struct drm_file *file)
3335 {
3336 struct i915_gem_context *specific_ctx = NULL;
3337 struct i915_perf_stream *stream = NULL;
3338 unsigned long f_flags = 0;
3339 bool privileged_op = true;
3340 int stream_fd;
3341 int ret;
3342
3343 if (props->single_context) {
3344 u32 ctx_handle = props->ctx_handle;
3345 struct drm_i915_file_private *file_priv = file->driver_priv;
3346
3347 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3348 if (!specific_ctx) {
3349 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3350 ctx_handle);
3351 ret = -ENOENT;
3352 goto err;
3353 }
3354 }
3355
3356 /*
3357 * On Haswell the OA unit supports clock gating off for a specific
3358 * context and in this mode there's no visibility of metrics for the
3359 * rest of the system, which we consider acceptable for a
3360 * non-privileged client.
3361 *
3362 * For Gen8->11 the OA unit no longer supports clock gating off for a
3363 * specific context and the kernel can't securely stop the counters
3364 * from updating as system-wide / global values. Even though we can
3365 * filter reports based on the included context ID we can't block
3366 * clients from seeing the raw / global counter values via
3367 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3368 * enable the OA unit by default.
3369 *
3370 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3371 * per context basis. So we can relax requirements there if the user
3372 * doesn't request global stream access (i.e. query based sampling
3373 * using MI_RECORD_PERF_COUNT.
3374 */
3375 if (IS_HASWELL(perf->i915) && specific_ctx)
3376 privileged_op = false;
3377 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3378 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3379 privileged_op = false;
3380
3381 if (props->hold_preemption) {
3382 if (!props->single_context) {
3383 DRM_DEBUG("preemption disable with no context\n");
3384 ret = -EINVAL;
3385 goto err;
3386 }
3387 privileged_op = true;
3388 }
3389
3390 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3391 * we check a dev.i915.perf_stream_paranoid sysctl option
3392 * to determine if it's ok to access system wide OA counters
3393 * without CAP_SYS_ADMIN privileges.
3394 */
3395 if (privileged_op &&
3396 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3397 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3398 ret = -EACCES;
3399 goto err_ctx;
3400 }
3401
3402 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3403 if (!stream) {
3404 ret = -ENOMEM;
3405 goto err_ctx;
3406 }
3407
3408 stream->perf = perf;
3409 stream->ctx = specific_ctx;
3410
3411 ret = i915_oa_stream_init(stream, param, props);
3412 if (ret)
3413 goto err_alloc;
3414
3415 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3416 * to have _stream_init check the combination of sample flags more
3417 * thoroughly, but still this is the expected result at this point.
3418 */
3419 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3420 ret = -ENODEV;
3421 goto err_flags;
3422 }
3423
3424 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3425 f_flags |= O_CLOEXEC;
3426 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3427 f_flags |= O_NONBLOCK;
3428
3429 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3430 if (stream_fd < 0) {
3431 ret = stream_fd;
3432 goto err_flags;
3433 }
3434
3435 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3436 i915_perf_enable_locked(stream);
3437
3438 /* Take a reference on the driver that will be kept with stream_fd
3439 * until its release.
3440 */
3441 drm_dev_get(&perf->i915->drm);
3442
3443 return stream_fd;
3444
3445 err_flags:
3446 if (stream->ops->destroy)
3447 stream->ops->destroy(stream);
3448 err_alloc:
3449 kfree(stream);
3450 err_ctx:
3451 if (specific_ctx)
3452 i915_gem_context_put(specific_ctx);
3453 err:
3454 return ret;
3455 }
3456
3457 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3458 {
3459 return div64_u64(1000000000ULL * (2ULL << exponent),
3460 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
3461 }
3462
3463 /**
3464 * read_properties_unlocked - validate + copy userspace stream open properties
3465 * @perf: i915 perf instance
3466 * @uprops: The array of u64 key value pairs given by userspace
3467 * @n_props: The number of key value pairs expected in @uprops
3468 * @props: The stream configuration built up while validating properties
3469 *
3470 * Note this function only validates properties in isolation it doesn't
3471 * validate that the combination of properties makes sense or that all
3472 * properties necessary for a particular kind of stream have been set.
3473 *
3474 * Note that there currently aren't any ordering requirements for properties so
3475 * we shouldn't validate or assume anything about ordering here. This doesn't
3476 * rule out defining new properties with ordering requirements in the future.
3477 */
3478 static int read_properties_unlocked(struct i915_perf *perf,
3479 u64 __user *uprops,
3480 u32 n_props,
3481 struct perf_open_properties *props)
3482 {
3483 u64 __user *uprop = uprops;
3484 u32 i;
3485
3486 memset(props, 0, sizeof(struct perf_open_properties));
3487
3488 if (!n_props) {
3489 DRM_DEBUG("No i915 perf properties given\n");
3490 return -EINVAL;
3491 }
3492
3493 /* At the moment we only support using i915-perf on the RCS. */
3494 props->engine = intel_engine_lookup_user(perf->i915,
3495 I915_ENGINE_CLASS_RENDER,
3496 0);
3497 if (!props->engine) {
3498 DRM_DEBUG("No RENDER-capable engines\n");
3499 return -EINVAL;
3500 }
3501
3502 /* Considering that ID = 0 is reserved and assuming that we don't
3503 * (currently) expect any configurations to ever specify duplicate
3504 * values for a particular property ID then the last _PROP_MAX value is
3505 * one greater than the maximum number of properties we expect to get
3506 * from userspace.
3507 */
3508 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3509 DRM_DEBUG("More i915 perf properties specified than exist\n");
3510 return -EINVAL;
3511 }
3512
3513 for (i = 0; i < n_props; i++) {
3514 u64 oa_period, oa_freq_hz;
3515 u64 id, value;
3516 int ret;
3517
3518 ret = get_user(id, uprop);
3519 if (ret)
3520 return ret;
3521
3522 ret = get_user(value, uprop + 1);
3523 if (ret)
3524 return ret;
3525
3526 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3527 DRM_DEBUG("Unknown i915 perf property ID\n");
3528 return -EINVAL;
3529 }
3530
3531 switch ((enum drm_i915_perf_property_id)id) {
3532 case DRM_I915_PERF_PROP_CTX_HANDLE:
3533 props->single_context = 1;
3534 props->ctx_handle = value;
3535 break;
3536 case DRM_I915_PERF_PROP_SAMPLE_OA:
3537 if (value)
3538 props->sample_flags |= SAMPLE_OA_REPORT;
3539 break;
3540 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3541 if (value == 0) {
3542 DRM_DEBUG("Unknown OA metric set ID\n");
3543 return -EINVAL;
3544 }
3545 props->metrics_set = value;
3546 break;
3547 case DRM_I915_PERF_PROP_OA_FORMAT:
3548 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3549 DRM_DEBUG("Out-of-range OA report format %llu\n",
3550 value);
3551 return -EINVAL;
3552 }
3553 if (!perf->oa_formats[value].size) {
3554 DRM_DEBUG("Unsupported OA report format %llu\n",
3555 value);
3556 return -EINVAL;
3557 }
3558 props->oa_format = value;
3559 break;
3560 case DRM_I915_PERF_PROP_OA_EXPONENT:
3561 if (value > OA_EXPONENT_MAX) {
3562 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3563 OA_EXPONENT_MAX);
3564 return -EINVAL;
3565 }
3566
3567 /* Theoretically we can program the OA unit to sample
3568 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3569 * for BXT. We don't allow such high sampling
3570 * frequencies by default unless root.
3571 */
3572
3573 BUILD_BUG_ON(sizeof(oa_period) != 8);
3574 oa_period = oa_exponent_to_ns(perf, value);
3575
3576 /* This check is primarily to ensure that oa_period <=
3577 * UINT32_MAX (before passing to do_div which only
3578 * accepts a u32 denominator), but we can also skip
3579 * checking anything < 1Hz which implicitly can't be
3580 * limited via an integer oa_max_sample_rate.
3581 */
3582 if (oa_period <= NSEC_PER_SEC) {
3583 u64 tmp = NSEC_PER_SEC;
3584 do_div(tmp, oa_period);
3585 oa_freq_hz = tmp;
3586 } else
3587 oa_freq_hz = 0;
3588
3589 if (oa_freq_hz > i915_oa_max_sample_rate &&
3590 !capable(CAP_SYS_ADMIN)) {
3591 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
3592 i915_oa_max_sample_rate);
3593 return -EACCES;
3594 }
3595
3596 props->oa_periodic = true;
3597 props->oa_period_exponent = value;
3598 break;
3599 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3600 props->hold_preemption = !!value;
3601 break;
3602 case DRM_I915_PERF_PROP_MAX:
3603 MISSING_CASE(id);
3604 return -EINVAL;
3605 }
3606
3607 uprop += 2;
3608 }
3609
3610 return 0;
3611 }
3612
3613 /**
3614 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3615 * @dev: drm device
3616 * @data: ioctl data copied from userspace (unvalidated)
3617 * @file: drm file
3618 *
3619 * Validates the stream open parameters given by userspace including flags
3620 * and an array of u64 key, value pair properties.
3621 *
3622 * Very little is assumed up front about the nature of the stream being
3623 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3624 * i915-perf stream is expected to be a suitable interface for other forms of
3625 * buffered data written by the GPU besides periodic OA metrics.
3626 *
3627 * Note we copy the properties from userspace outside of the i915 perf
3628 * mutex to avoid an awkward lockdep with mmap_sem.
3629 *
3630 * Most of the implementation details are handled by
3631 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3632 * mutex for serializing with any non-file-operation driver hooks.
3633 *
3634 * Return: A newly opened i915 Perf stream file descriptor or negative
3635 * error code on failure.
3636 */
3637 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3638 struct drm_file *file)
3639 {
3640 struct i915_perf *perf = &to_i915(dev)->perf;
3641 struct drm_i915_perf_open_param *param = data;
3642 struct perf_open_properties props;
3643 u32 known_open_flags;
3644 int ret;
3645
3646 if (!perf->i915) {
3647 DRM_DEBUG("i915 perf interface not available for this system\n");
3648 return -ENOTSUPP;
3649 }
3650
3651 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3652 I915_PERF_FLAG_FD_NONBLOCK |
3653 I915_PERF_FLAG_DISABLED;
3654 if (param->flags & ~known_open_flags) {
3655 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3656 return -EINVAL;
3657 }
3658
3659 ret = read_properties_unlocked(perf,
3660 u64_to_user_ptr(param->properties_ptr),
3661 param->num_properties,
3662 &props);
3663 if (ret)
3664 return ret;
3665
3666 mutex_lock(&perf->lock);
3667 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3668 mutex_unlock(&perf->lock);
3669
3670 return ret;
3671 }
3672
3673 /**
3674 * i915_perf_register - exposes i915-perf to userspace
3675 * @i915: i915 device instance
3676 *
3677 * In particular OA metric sets are advertised under a sysfs metrics/
3678 * directory allowing userspace to enumerate valid IDs that can be
3679 * used to open an i915-perf stream.
3680 */
3681 void i915_perf_register(struct drm_i915_private *i915)
3682 {
3683 struct i915_perf *perf = &i915->perf;
3684 int ret;
3685
3686 if (!perf->i915)
3687 return;
3688
3689 /* To be sure we're synchronized with an attempted
3690 * i915_perf_open_ioctl(); considering that we register after
3691 * being exposed to userspace.
3692 */
3693 mutex_lock(&perf->lock);
3694
3695 perf->metrics_kobj =
3696 kobject_create_and_add("metrics",
3697 &i915->drm.primary->kdev->kobj);
3698 if (!perf->metrics_kobj)
3699 goto exit;
3700
3701 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);
3702
3703 if (IS_TIGERLAKE(i915)) {
3704 i915_perf_load_test_config_tgl(i915);
3705 } else if (INTEL_GEN(i915) >= 11) {
3706 i915_perf_load_test_config_icl(i915);
3707 } else if (IS_CANNONLAKE(i915)) {
3708 i915_perf_load_test_config_cnl(i915);
3709 } else if (IS_COFFEELAKE(i915)) {
3710 if (IS_CFL_GT2(i915))
3711 i915_perf_load_test_config_cflgt2(i915);
3712 if (IS_CFL_GT3(i915))
3713 i915_perf_load_test_config_cflgt3(i915);
3714 } else if (IS_GEMINILAKE(i915)) {
3715 i915_perf_load_test_config_glk(i915);
3716 } else if (IS_KABYLAKE(i915)) {
3717 if (IS_KBL_GT2(i915))
3718 i915_perf_load_test_config_kblgt2(i915);
3719 else if (IS_KBL_GT3(i915))
3720 i915_perf_load_test_config_kblgt3(i915);
3721 } else if (IS_BROXTON(i915)) {
3722 i915_perf_load_test_config_bxt(i915);
3723 } else if (IS_SKYLAKE(i915)) {
3724 if (IS_SKL_GT2(i915))
3725 i915_perf_load_test_config_sklgt2(i915);
3726 else if (IS_SKL_GT3(i915))
3727 i915_perf_load_test_config_sklgt3(i915);
3728 else if (IS_SKL_GT4(i915))
3729 i915_perf_load_test_config_sklgt4(i915);
3730 } else if (IS_CHERRYVIEW(i915)) {
3731 i915_perf_load_test_config_chv(i915);
3732 } else if (IS_BROADWELL(i915)) {
3733 i915_perf_load_test_config_bdw(i915);
3734 } else if (IS_HASWELL(i915)) {
3735 i915_perf_load_test_config_hsw(i915);
3736 }
3737
3738 if (perf->test_config.id == 0)
3739 goto sysfs_error;
3740
3741 ret = sysfs_create_group(perf->metrics_kobj,
3742 &perf->test_config.sysfs_metric);
3743 if (ret)
3744 goto sysfs_error;
3745
3746 perf->test_config.perf = perf;
3747 kref_init(&perf->test_config.ref);
3748
3749 goto exit;
3750
3751 sysfs_error:
3752 kobject_put(perf->metrics_kobj);
3753 perf->metrics_kobj = NULL;
3754
3755 exit:
3756 mutex_unlock(&perf->lock);
3757 }
3758
3759 /**
3760 * i915_perf_unregister - hide i915-perf from userspace
3761 * @i915: i915 device instance
3762 *
3763 * i915-perf state cleanup is split up into an 'unregister' and
3764 * 'deinit' phase where the interface is first hidden from
3765 * userspace by i915_perf_unregister() before cleaning up
3766 * remaining state in i915_perf_fini().
3767 */
3768 void i915_perf_unregister(struct drm_i915_private *i915)
3769 {
3770 struct i915_perf *perf = &i915->perf;
3771
3772 if (!perf->metrics_kobj)
3773 return;
3774
3775 sysfs_remove_group(perf->metrics_kobj,
3776 &perf->test_config.sysfs_metric);
3777
3778 kobject_put(perf->metrics_kobj);
3779 perf->metrics_kobj = NULL;
3780 }
3781
3782 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3783 {
3784 static const i915_reg_t flex_eu_regs[] = {
3785 EU_PERF_CNTL0,
3786 EU_PERF_CNTL1,
3787 EU_PERF_CNTL2,
3788 EU_PERF_CNTL3,
3789 EU_PERF_CNTL4,
3790 EU_PERF_CNTL5,
3791 EU_PERF_CNTL6,
3792 };
3793 int i;
3794
3795 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3796 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3797 return true;
3798 }
3799 return false;
3800 }
3801
3802 #define ADDR_IN_RANGE(addr, start, end) \
3803 ((addr) >= (start) && \
3804 (addr) <= (end))
3805
3806 #define REG_IN_RANGE(addr, start, end) \
3807 ((addr) >= i915_mmio_reg_offset(start) && \
3808 (addr) <= i915_mmio_reg_offset(end))
3809
3810 #define REG_EQUAL(addr, mmio) \
3811 ((addr) == i915_mmio_reg_offset(mmio))
3812
3813 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3814 {
3815 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3816 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3817 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3818 }
3819
3820 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3821 {
3822 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3823 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3824 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3825 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3826 }
3827
3828 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3829 {
3830 return gen7_is_valid_mux_addr(perf, addr) ||
3831 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3832 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3833 }
3834
3835 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3836 {
3837 return gen8_is_valid_mux_addr(perf, addr) ||
3838 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3839 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3840 }
3841
3842 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3843 {
3844 return gen7_is_valid_mux_addr(perf, addr) ||
3845 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3846 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3847 REG_EQUAL(addr, HSW_MBVID2_MISR0);
3848 }
3849
3850 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3851 {
3852 return gen7_is_valid_mux_addr(perf, addr) ||
3853 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3854 }
3855
3856 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3857 {
3858 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3859 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3860 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3861 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3862 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3863 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3864 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3865 }
3866
3867 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3868 {
3869 return REG_EQUAL(addr, NOA_WRITE) ||
3870 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3871 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3872 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3873 REG_EQUAL(addr, RPM_CONFIG0) ||
3874 REG_EQUAL(addr, RPM_CONFIG1) ||
3875 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3876 }
3877
3878 static u32 mask_reg_value(u32 reg, u32 val)
3879 {
3880 /* HALF_SLICE_CHICKEN2 is programmed with a the
3881 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3882 * programmed by userspace doesn't change this.
3883 */
3884 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3885 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3886
3887 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3888 * indicated by its name and a bunch of selection fields used by OA
3889 * configs.
3890 */
3891 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3892 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3893
3894 return val;
3895 }
3896
3897 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3898 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3899 u32 __user *regs,
3900 u32 n_regs)
3901 {
3902 struct i915_oa_reg *oa_regs;
3903 int err;
3904 u32 i;
3905
3906 if (!n_regs)
3907 return NULL;
3908
3909 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3910 return ERR_PTR(-EFAULT);
3911
3912 /* No is_valid function means we're not allowing any register to be programmed. */
3913 GEM_BUG_ON(!is_valid);
3914 if (!is_valid)
3915 return ERR_PTR(-EINVAL);
3916
3917 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3918 if (!oa_regs)
3919 return ERR_PTR(-ENOMEM);
3920
3921 for (i = 0; i < n_regs; i++) {
3922 u32 addr, value;
3923
3924 err = get_user(addr, regs);
3925 if (err)
3926 goto addr_err;
3927
3928 if (!is_valid(perf, addr)) {
3929 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3930 err = -EINVAL;
3931 goto addr_err;
3932 }
3933
3934 err = get_user(value, regs + 1);
3935 if (err)
3936 goto addr_err;
3937
3938 oa_regs[i].addr = _MMIO(addr);
3939 oa_regs[i].value = mask_reg_value(addr, value);
3940
3941 regs += 2;
3942 }
3943
3944 return oa_regs;
3945
3946 addr_err:
3947 kfree(oa_regs);
3948 return ERR_PTR(err);
3949 }
3950
3951 static ssize_t show_dynamic_id(struct device *dev,
3952 struct device_attribute *attr,
3953 char *buf)
3954 {
3955 struct i915_oa_config *oa_config =
3956 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3957
3958 return sprintf(buf, "%d\n", oa_config->id);
3959 }
3960
3961 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3962 struct i915_oa_config *oa_config)
3963 {
3964 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3965 oa_config->sysfs_metric_id.attr.name = "id";
3966 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3967 oa_config->sysfs_metric_id.show = show_dynamic_id;
3968 oa_config->sysfs_metric_id.store = NULL;
3969
3970 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3971 oa_config->attrs[1] = NULL;
3972
3973 oa_config->sysfs_metric.name = oa_config->uuid;
3974 oa_config->sysfs_metric.attrs = oa_config->attrs;
3975
3976 return sysfs_create_group(perf->metrics_kobj,
3977 &oa_config->sysfs_metric);
3978 }
3979
3980 /**
3981 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3982 * @dev: drm device
3983 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3984 * userspace (unvalidated)
3985 * @file: drm file
3986 *
3987 * Validates the submitted OA register to be saved into a new OA config that
3988 * can then be used for programming the OA unit and its NOA network.
3989 *
3990 * Returns: A new allocated config number to be used with the perf open ioctl
3991 * or a negative error code on failure.
3992 */
3993 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3994 struct drm_file *file)
3995 {
3996 struct i915_perf *perf = &to_i915(dev)->perf;
3997 struct drm_i915_perf_oa_config *args = data;
3998 struct i915_oa_config *oa_config, *tmp;
3999 struct i915_oa_reg *regs;
4000 int err, id;
4001
4002 if (!perf->i915) {
4003 DRM_DEBUG("i915 perf interface not available for this system\n");
4004 return -ENOTSUPP;
4005 }
4006
4007 if (!perf->metrics_kobj) {
4008 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4009 return -EINVAL;
4010 }
4011
4012 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4013 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4014 return -EACCES;
4015 }
4016
4017 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4018 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4019 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4020 DRM_DEBUG("No OA registers given\n");
4021 return -EINVAL;
4022 }
4023
4024 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4025 if (!oa_config) {
4026 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4027 return -ENOMEM;
4028 }
4029
4030 oa_config->perf = perf;
4031 kref_init(&oa_config->ref);
4032
4033 if (!uuid_is_valid(args->uuid)) {
4034 DRM_DEBUG("Invalid uuid format for OA config\n");
4035 err = -EINVAL;
4036 goto reg_err;
4037 }
4038
4039 /* Last character in oa_config->uuid will be 0 because oa_config is
4040 * kzalloc.
4041 */
4042 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4043
4044 oa_config->mux_regs_len = args->n_mux_regs;
4045 regs = alloc_oa_regs(perf,
4046 perf->ops.is_valid_mux_reg,
4047 u64_to_user_ptr(args->mux_regs_ptr),
4048 args->n_mux_regs);
4049
4050 if (IS_ERR(regs)) {
4051 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4052 err = PTR_ERR(regs);
4053 goto reg_err;
4054 }
4055 oa_config->mux_regs = regs;
4056
4057 oa_config->b_counter_regs_len = args->n_boolean_regs;
4058 regs = alloc_oa_regs(perf,
4059 perf->ops.is_valid_b_counter_reg,
4060 u64_to_user_ptr(args->boolean_regs_ptr),
4061 args->n_boolean_regs);
4062
4063 if (IS_ERR(regs)) {
4064 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4065 err = PTR_ERR(regs);
4066 goto reg_err;
4067 }
4068 oa_config->b_counter_regs = regs;
4069
4070 if (INTEL_GEN(perf->i915) < 8) {
4071 if (args->n_flex_regs != 0) {
4072 err = -EINVAL;
4073 goto reg_err;
4074 }
4075 } else {
4076 oa_config->flex_regs_len = args->n_flex_regs;
4077 regs = alloc_oa_regs(perf,
4078 perf->ops.is_valid_flex_reg,
4079 u64_to_user_ptr(args->flex_regs_ptr),
4080 args->n_flex_regs);
4081
4082 if (IS_ERR(regs)) {
4083 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4084 err = PTR_ERR(regs);
4085 goto reg_err;
4086 }
4087 oa_config->flex_regs = regs;
4088 }
4089
4090 err = mutex_lock_interruptible(&perf->metrics_lock);
4091 if (err)
4092 goto reg_err;
4093
4094 /* We shouldn't have too many configs, so this iteration shouldn't be
4095 * too costly.
4096 */
4097 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4098 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4099 DRM_DEBUG("OA config already exists with this uuid\n");
4100 err = -EADDRINUSE;
4101 goto sysfs_err;
4102 }
4103 }
4104
4105 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4106 if (err) {
4107 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4108 goto sysfs_err;
4109 }
4110
4111 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4112 oa_config->id = idr_alloc(&perf->metrics_idr,
4113 oa_config, 2,
4114 0, GFP_KERNEL);
4115 if (oa_config->id < 0) {
4116 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4117 err = oa_config->id;
4118 goto sysfs_err;
4119 }
4120
4121 mutex_unlock(&perf->metrics_lock);
4122
4123 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4124
4125 return oa_config->id;
4126
4127 sysfs_err:
4128 mutex_unlock(&perf->metrics_lock);
4129 reg_err:
4130 i915_oa_config_put(oa_config);
4131 DRM_DEBUG("Failed to add new OA config\n");
4132 return err;
4133 }
4134
4135 /**
4136 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4137 * @dev: drm device
4138 * @data: ioctl data (pointer to u64 integer) copied from userspace
4139 * @file: drm file
4140 *
4141 * Configs can be removed while being used, the will stop appearing in sysfs
4142 * and their content will be freed when the stream using the config is closed.
4143 *
4144 * Returns: 0 on success or a negative error code on failure.
4145 */
4146 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4147 struct drm_file *file)
4148 {
4149 struct i915_perf *perf = &to_i915(dev)->perf;
4150 u64 *arg = data;
4151 struct i915_oa_config *oa_config;
4152 int ret;
4153
4154 if (!perf->i915) {
4155 DRM_DEBUG("i915 perf interface not available for this system\n");
4156 return -ENOTSUPP;
4157 }
4158
4159 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4160 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4161 return -EACCES;
4162 }
4163
4164 ret = mutex_lock_interruptible(&perf->metrics_lock);
4165 if (ret)
4166 return ret;
4167
4168 oa_config = idr_find(&perf->metrics_idr, *arg);
4169 if (!oa_config) {
4170 DRM_DEBUG("Failed to remove unknown OA config\n");
4171 ret = -ENOENT;
4172 goto err_unlock;
4173 }
4174
4175 GEM_BUG_ON(*arg != oa_config->id);
4176
4177 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4178
4179 idr_remove(&perf->metrics_idr, *arg);
4180
4181 mutex_unlock(&perf->metrics_lock);
4182
4183 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4184
4185 i915_oa_config_put(oa_config);
4186
4187 return 0;
4188
4189 err_unlock:
4190 mutex_unlock(&perf->metrics_lock);
4191 return ret;
4192 }
4193
4194 static struct ctl_table oa_table[] = {
4195 {
4196 .procname = "perf_stream_paranoid",
4197 .data = &i915_perf_stream_paranoid,
4198 .maxlen = sizeof(i915_perf_stream_paranoid),
4199 .mode = 0644,
4200 .proc_handler = proc_dointvec_minmax,
4201 .extra1 = SYSCTL_ZERO,
4202 .extra2 = SYSCTL_ONE,
4203 },
4204 {
4205 .procname = "oa_max_sample_rate",
4206 .data = &i915_oa_max_sample_rate,
4207 .maxlen = sizeof(i915_oa_max_sample_rate),
4208 .mode = 0644,
4209 .proc_handler = proc_dointvec_minmax,
4210 .extra1 = SYSCTL_ZERO,
4211 .extra2 = &oa_sample_rate_hard_limit,
4212 },
4213 {}
4214 };
4215
4216 static struct ctl_table i915_root[] = {
4217 {
4218 .procname = "i915",
4219 .maxlen = 0,
4220 .mode = 0555,
4221 .child = oa_table,
4222 },
4223 {}
4224 };
4225
4226 static struct ctl_table dev_root[] = {
4227 {
4228 .procname = "dev",
4229 .maxlen = 0,
4230 .mode = 0555,
4231 .child = i915_root,
4232 },
4233 {}
4234 };
4235
4236 /**
4237 * i915_perf_init - initialize i915-perf state on module bind
4238 * @i915: i915 device instance
4239 *
4240 * Initializes i915-perf state without exposing anything to userspace.
4241 *
4242 * Note: i915-perf initialization is split into an 'init' and 'register'
4243 * phase with the i915_perf_register() exposing state to userspace.
4244 */
4245 void i915_perf_init(struct drm_i915_private *i915)
4246 {
4247 struct i915_perf *perf = &i915->perf;
4248
4249 /* XXX const struct i915_perf_ops! */
4250
4251 if (IS_HASWELL(i915)) {
4252 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4253 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4254 perf->ops.is_valid_flex_reg = NULL;
4255 perf->ops.enable_metric_set = hsw_enable_metric_set;
4256 perf->ops.disable_metric_set = hsw_disable_metric_set;
4257 perf->ops.oa_enable = gen7_oa_enable;
4258 perf->ops.oa_disable = gen7_oa_disable;
4259 perf->ops.read = gen7_oa_read;
4260 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4261
4262 perf->oa_formats = hsw_oa_formats;
4263 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4264 /* Note: that although we could theoretically also support the
4265 * legacy ringbuffer mode on BDW (and earlier iterations of
4266 * this driver, before upstreaming did this) it didn't seem
4267 * worth the complexity to maintain now that BDW+ enable
4268 * execlist mode by default.
4269 */
4270 perf->ops.read = gen8_oa_read;
4271
4272 if (IS_GEN_RANGE(i915, 8, 9)) {
4273 perf->oa_formats = gen8_plus_oa_formats;
4274
4275 perf->ops.is_valid_b_counter_reg =
4276 gen7_is_valid_b_counter_addr;
4277 perf->ops.is_valid_mux_reg =
4278 gen8_is_valid_mux_addr;
4279 perf->ops.is_valid_flex_reg =
4280 gen8_is_valid_flex_addr;
4281
4282 if (IS_CHERRYVIEW(i915)) {
4283 perf->ops.is_valid_mux_reg =
4284 chv_is_valid_mux_addr;
4285 }
4286
4287 perf->ops.oa_enable = gen8_oa_enable;
4288 perf->ops.oa_disable = gen8_oa_disable;
4289 perf->ops.enable_metric_set = gen8_enable_metric_set;
4290 perf->ops.disable_metric_set = gen8_disable_metric_set;
4291 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4292
4293 if (IS_GEN(i915, 8)) {
4294 perf->ctx_oactxctrl_offset = 0x120;
4295 perf->ctx_flexeu0_offset = 0x2ce;
4296
4297 perf->gen8_valid_ctx_bit = BIT(25);
4298 } else {
4299 perf->ctx_oactxctrl_offset = 0x128;
4300 perf->ctx_flexeu0_offset = 0x3de;
4301
4302 perf->gen8_valid_ctx_bit = BIT(16);
4303 }
4304 } else if (IS_GEN_RANGE(i915, 10, 11)) {
4305 perf->oa_formats = gen8_plus_oa_formats;
4306
4307 perf->ops.is_valid_b_counter_reg =
4308 gen7_is_valid_b_counter_addr;
4309 perf->ops.is_valid_mux_reg =
4310 gen10_is_valid_mux_addr;
4311 perf->ops.is_valid_flex_reg =
4312 gen8_is_valid_flex_addr;
4313
4314 perf->ops.oa_enable = gen8_oa_enable;
4315 perf->ops.oa_disable = gen8_oa_disable;
4316 perf->ops.enable_metric_set = gen8_enable_metric_set;
4317 perf->ops.disable_metric_set = gen10_disable_metric_set;
4318 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4319
4320 if (IS_GEN(i915, 10)) {
4321 perf->ctx_oactxctrl_offset = 0x128;
4322 perf->ctx_flexeu0_offset = 0x3de;
4323 } else {
4324 perf->ctx_oactxctrl_offset = 0x124;
4325 perf->ctx_flexeu0_offset = 0x78e;
4326 }
4327 perf->gen8_valid_ctx_bit = BIT(16);
4328 } else if (IS_GEN(i915, 12)) {
4329 perf->oa_formats = gen12_oa_formats;
4330
4331 perf->ops.is_valid_b_counter_reg =
4332 gen12_is_valid_b_counter_addr;
4333 perf->ops.is_valid_mux_reg =
4334 gen12_is_valid_mux_addr;
4335 perf->ops.is_valid_flex_reg =
4336 gen8_is_valid_flex_addr;
4337
4338 perf->ops.oa_enable = gen12_oa_enable;
4339 perf->ops.oa_disable = gen12_oa_disable;
4340 perf->ops.enable_metric_set = gen12_enable_metric_set;
4341 perf->ops.disable_metric_set = gen12_disable_metric_set;
4342 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4343
4344 perf->ctx_flexeu0_offset = 0;
4345 perf->ctx_oactxctrl_offset = 0x144;
4346 }
4347 }
4348
4349 if (perf->ops.enable_metric_set) {
4350 mutex_init(&perf->lock);
4351
4352 oa_sample_rate_hard_limit = 1000 *
4353 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
4354
4355 mutex_init(&perf->metrics_lock);
4356 idr_init(&perf->metrics_idr);
4357
4358 /* We set up some ratelimit state to potentially throttle any
4359 * _NOTES about spurious, invalid OA reports which we don't
4360 * forward to userspace.
4361 *
4362 * We print a _NOTE about any throttling when closing the
4363 * stream instead of waiting until driver _fini which no one
4364 * would ever see.
4365 *
4366 * Using the same limiting factors as printk_ratelimit()
4367 */
4368 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4369 /* Since we use a DRM_NOTE for spurious reports it would be
4370 * inconsistent to let __ratelimit() automatically print a
4371 * warning for throttling.
4372 */
4373 ratelimit_set_flags(&perf->spurious_report_rs,
4374 RATELIMIT_MSG_ON_RELEASE);
4375
4376 atomic64_set(&perf->noa_programming_delay,
4377 500 * 1000 /* 500us */);
4378
4379 perf->i915 = i915;
4380 }
4381 }
4382
4383 static int destroy_config(int id, void *p, void *data)
4384 {
4385 i915_oa_config_put(p);
4386 return 0;
4387 }
4388
4389 void i915_perf_sysctl_register(void)
4390 {
4391 sysctl_header = register_sysctl_table(dev_root);
4392 }
4393
4394 void i915_perf_sysctl_unregister(void)
4395 {
4396 unregister_sysctl_table(sysctl_header);
4397 }
4398
4399 /**
4400 * i915_perf_fini - Counter part to i915_perf_init()
4401 * @i915: i915 device instance
4402 */
4403 void i915_perf_fini(struct drm_i915_private *i915)
4404 {
4405 struct i915_perf *perf = &i915->perf;
4406
4407 if (!perf->i915)
4408 return;
4409
4410 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4411 idr_destroy(&perf->metrics_idr);
4412
4413 memset(&perf->ops, 0, sizeof(perf->ops));
4414 perf->i915 = NULL;
4415 }
4416
4417 /**
4418 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4419 *
4420 * This version number is used by userspace to detect available features.
4421 */
4422 int i915_perf_ioctl_version(void)
4423 {
4424 /*
4425 * 1: Initial version
4426 * I915_PERF_IOCTL_ENABLE
4427 * I915_PERF_IOCTL_DISABLE
4428 *
4429 * 2: Added runtime modification of OA config.
4430 * I915_PERF_IOCTL_CONFIG
4431 *
4432 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4433 * preemption on a particular context so that performance data is
4434 * accessible from a delta of MI_RPC reports without looking at the
4435 * OA buffer.
4436 */
4437 return 3;
4438 }
4439
4440 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4441 #include "selftests/i915_perf.c"
4442 #endif