]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_request.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42
43 struct execute_cb {
44 struct list_head link;
45 struct irq_work work;
46 struct i915_sw_fence *fence;
47 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 struct i915_request *signal;
49 };
50
51 static struct i915_global_request {
52 struct i915_global base;
53 struct kmem_cache *slab_requests;
54 struct kmem_cache *slab_execute_cbs;
55 } global;
56
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 return dev_name(to_request(fence)->i915->drm.dev);
60 }
61
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 const struct i915_gem_context *ctx;
65
66 /*
67 * The timeline struct (as part of the ppgtt underneath a context)
68 * may be freed when the request is no longer in use by the GPU.
69 * We could extend the life of a context to beyond that of all
70 * fences, possibly keeping the hw resource around indefinitely,
71 * or we just give them a false name. Since
72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 * lie seems justifiable.
74 */
75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 return "signaled";
77
78 ctx = i915_request_gem_context(to_request(fence));
79 if (!ctx)
80 return "[" DRIVER_NAME "]";
81
82 return ctx->name;
83 }
84
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 return i915_request_completed(to_request(fence));
88 }
89
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 return i915_request_enable_breadcrumb(to_request(fence));
93 }
94
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 bool interruptible,
97 signed long timeout)
98 {
99 return i915_request_wait(to_request(fence),
100 interruptible | I915_WAIT_PRIORITY,
101 timeout);
102 }
103
104 static void i915_fence_release(struct dma_fence *fence)
105 {
106 struct i915_request *rq = to_request(fence);
107
108 /*
109 * The request is put onto a RCU freelist (i.e. the address
110 * is immediately reused), mark the fences as being freed now.
111 * Otherwise the debugobjects for the fences are only marked as
112 * freed when the slab cache itself is freed, and so we would get
113 * caught trying to reuse dead objects.
114 */
115 i915_sw_fence_fini(&rq->submit);
116 i915_sw_fence_fini(&rq->semaphore);
117
118 kmem_cache_free(global.slab_requests, rq);
119 }
120
121 const struct dma_fence_ops i915_fence_ops = {
122 .get_driver_name = i915_fence_get_driver_name,
123 .get_timeline_name = i915_fence_get_timeline_name,
124 .enable_signaling = i915_fence_enable_signaling,
125 .signaled = i915_fence_signaled,
126 .wait = i915_fence_wait,
127 .release = i915_fence_release,
128 };
129
130 static void irq_execute_cb(struct irq_work *wrk)
131 {
132 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
133
134 i915_sw_fence_complete(cb->fence);
135 kmem_cache_free(global.slab_execute_cbs, cb);
136 }
137
138 static void irq_execute_cb_hook(struct irq_work *wrk)
139 {
140 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
141
142 cb->hook(container_of(cb->fence, struct i915_request, submit),
143 &cb->signal->fence);
144 i915_request_put(cb->signal);
145
146 irq_execute_cb(wrk);
147 }
148
149 static void __notify_execute_cb(struct i915_request *rq)
150 {
151 struct execute_cb *cb;
152
153 lockdep_assert_held(&rq->lock);
154
155 if (list_empty(&rq->execute_cb))
156 return;
157
158 list_for_each_entry(cb, &rq->execute_cb, link)
159 irq_work_queue(&cb->work);
160
161 /*
162 * XXX Rollback on __i915_request_unsubmit()
163 *
164 * In the future, perhaps when we have an active time-slicing scheduler,
165 * it will be interesting to unsubmit parallel execution and remove
166 * busywaits from the GPU until their master is restarted. This is
167 * quite hairy, we have to carefully rollback the fence and do a
168 * preempt-to-idle cycle on the target engine, all the while the
169 * master execute_cb may refire.
170 */
171 INIT_LIST_HEAD(&rq->execute_cb);
172 }
173
174 static inline void
175 remove_from_client(struct i915_request *request)
176 {
177 struct drm_i915_file_private *file_priv;
178
179 if (!READ_ONCE(request->file_priv))
180 return;
181
182 rcu_read_lock();
183 file_priv = xchg(&request->file_priv, NULL);
184 if (file_priv) {
185 spin_lock(&file_priv->mm.lock);
186 list_del(&request->client_link);
187 spin_unlock(&file_priv->mm.lock);
188 }
189 rcu_read_unlock();
190 }
191
192 static void free_capture_list(struct i915_request *request)
193 {
194 struct i915_capture_list *capture;
195
196 capture = fetch_and_zero(&request->capture_list);
197 while (capture) {
198 struct i915_capture_list *next = capture->next;
199
200 kfree(capture);
201 capture = next;
202 }
203 }
204
205 static void __i915_request_fill(struct i915_request *rq, u8 val)
206 {
207 void *vaddr = rq->ring->vaddr;
208 u32 head;
209
210 head = rq->infix;
211 if (rq->postfix < head) {
212 memset(vaddr + head, val, rq->ring->size - head);
213 head = 0;
214 }
215 memset(vaddr + head, val, rq->postfix - head);
216 }
217
218 static void remove_from_engine(struct i915_request *rq)
219 {
220 struct intel_engine_cs *engine, *locked;
221
222 /*
223 * Virtual engines complicate acquiring the engine timeline lock,
224 * as their rq->engine pointer is not stable until under that
225 * engine lock. The simple ploy we use is to take the lock then
226 * check that the rq still belongs to the newly locked engine.
227 */
228 locked = READ_ONCE(rq->engine);
229 spin_lock_irq(&locked->active.lock);
230 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
231 spin_unlock(&locked->active.lock);
232 spin_lock(&engine->active.lock);
233 locked = engine;
234 }
235 list_del_init(&rq->sched.link);
236 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
237 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
238 spin_unlock_irq(&locked->active.lock);
239 }
240
241 bool i915_request_retire(struct i915_request *rq)
242 {
243 if (!i915_request_completed(rq))
244 return false;
245
246 RQ_TRACE(rq, "\n");
247
248 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
249 trace_i915_request_retire(rq);
250
251 /*
252 * We know the GPU must have read the request to have
253 * sent us the seqno + interrupt, so use the position
254 * of tail of the request to update the last known position
255 * of the GPU head.
256 *
257 * Note this requires that we are always called in request
258 * completion order.
259 */
260 GEM_BUG_ON(!list_is_first(&rq->link,
261 &i915_request_timeline(rq)->requests));
262 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
263 /* Poison before we release our space in the ring */
264 __i915_request_fill(rq, POISON_FREE);
265 rq->ring->head = rq->postfix;
266
267 /*
268 * We only loosely track inflight requests across preemption,
269 * and so we may find ourselves attempting to retire a _completed_
270 * request that we have removed from the HW and put back on a run
271 * queue.
272 */
273 remove_from_engine(rq);
274
275 spin_lock_irq(&rq->lock);
276 i915_request_mark_complete(rq);
277 if (!i915_request_signaled(rq))
278 dma_fence_signal_locked(&rq->fence);
279 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
280 i915_request_cancel_breadcrumb(rq);
281 if (i915_request_has_waitboost(rq)) {
282 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
283 atomic_dec(&rq->engine->gt->rps.num_waiters);
284 }
285 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
286 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
287 __notify_execute_cb(rq);
288 }
289 GEM_BUG_ON(!list_empty(&rq->execute_cb));
290 spin_unlock_irq(&rq->lock);
291
292 remove_from_client(rq);
293 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
294
295 intel_context_exit(rq->context);
296 intel_context_unpin(rq->context);
297
298 free_capture_list(rq);
299 i915_sched_node_fini(&rq->sched);
300 i915_request_put(rq);
301
302 return true;
303 }
304
305 void i915_request_retire_upto(struct i915_request *rq)
306 {
307 struct intel_timeline * const tl = i915_request_timeline(rq);
308 struct i915_request *tmp;
309
310 RQ_TRACE(rq, "\n");
311
312 GEM_BUG_ON(!i915_request_completed(rq));
313
314 do {
315 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
316 } while (i915_request_retire(tmp) && tmp != rq);
317 }
318
319 static int
320 __await_execution(struct i915_request *rq,
321 struct i915_request *signal,
322 void (*hook)(struct i915_request *rq,
323 struct dma_fence *signal),
324 gfp_t gfp)
325 {
326 struct execute_cb *cb;
327
328 if (i915_request_is_active(signal)) {
329 if (hook)
330 hook(rq, &signal->fence);
331 return 0;
332 }
333
334 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
335 if (!cb)
336 return -ENOMEM;
337
338 cb->fence = &rq->submit;
339 i915_sw_fence_await(cb->fence);
340 init_irq_work(&cb->work, irq_execute_cb);
341
342 if (hook) {
343 cb->hook = hook;
344 cb->signal = i915_request_get(signal);
345 cb->work.func = irq_execute_cb_hook;
346 }
347
348 spin_lock_irq(&signal->lock);
349 if (i915_request_is_active(signal)) {
350 if (hook) {
351 hook(rq, &signal->fence);
352 i915_request_put(signal);
353 }
354 i915_sw_fence_complete(cb->fence);
355 kmem_cache_free(global.slab_execute_cbs, cb);
356 } else {
357 list_add_tail(&cb->link, &signal->execute_cb);
358 }
359 spin_unlock_irq(&signal->lock);
360
361 /* Copy across semaphore status as we need the same behaviour */
362 rq->sched.flags |= signal->sched.flags;
363 return 0;
364 }
365
366 static bool fatal_error(int error)
367 {
368 switch (error) {
369 case 0: /* not an error! */
370 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
371 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
372 return false;
373 default:
374 return true;
375 }
376 }
377
378 void __i915_request_skip(struct i915_request *rq)
379 {
380 GEM_BUG_ON(!fatal_error(rq->fence.error));
381
382 if (rq->infix == rq->postfix)
383 return;
384
385 /*
386 * As this request likely depends on state from the lost
387 * context, clear out all the user operations leaving the
388 * breadcrumb at the end (so we get the fence notifications).
389 */
390 __i915_request_fill(rq, 0);
391 rq->infix = rq->postfix;
392 }
393
394 void i915_request_set_error_once(struct i915_request *rq, int error)
395 {
396 int old;
397
398 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
399
400 if (i915_request_signaled(rq))
401 return;
402
403 old = READ_ONCE(rq->fence.error);
404 do {
405 if (fatal_error(old))
406 return;
407 } while (!try_cmpxchg(&rq->fence.error, &old, error));
408 }
409
410 bool __i915_request_submit(struct i915_request *request)
411 {
412 struct intel_engine_cs *engine = request->engine;
413 bool result = false;
414
415 RQ_TRACE(request, "\n");
416
417 GEM_BUG_ON(!irqs_disabled());
418 lockdep_assert_held(&engine->active.lock);
419
420 /*
421 * With the advent of preempt-to-busy, we frequently encounter
422 * requests that we have unsubmitted from HW, but left running
423 * until the next ack and so have completed in the meantime. On
424 * resubmission of that completed request, we can skip
425 * updating the payload, and execlists can even skip submitting
426 * the request.
427 *
428 * We must remove the request from the caller's priority queue,
429 * and the caller must only call us when the request is in their
430 * priority queue, under the active.lock. This ensures that the
431 * request has *not* yet been retired and we can safely move
432 * the request into the engine->active.list where it will be
433 * dropped upon retiring. (Otherwise if resubmit a *retired*
434 * request, this would be a horrible use-after-free.)
435 */
436 if (i915_request_completed(request))
437 goto xfer;
438
439 if (unlikely(intel_context_is_banned(request->context)))
440 i915_request_set_error_once(request, -EIO);
441 if (unlikely(fatal_error(request->fence.error)))
442 __i915_request_skip(request);
443
444 /*
445 * Are we using semaphores when the gpu is already saturated?
446 *
447 * Using semaphores incurs a cost in having the GPU poll a
448 * memory location, busywaiting for it to change. The continual
449 * memory reads can have a noticeable impact on the rest of the
450 * system with the extra bus traffic, stalling the cpu as it too
451 * tries to access memory across the bus (perf stat -e bus-cycles).
452 *
453 * If we installed a semaphore on this request and we only submit
454 * the request after the signaler completed, that indicates the
455 * system is overloaded and using semaphores at this time only
456 * increases the amount of work we are doing. If so, we disable
457 * further use of semaphores until we are idle again, whence we
458 * optimistically try again.
459 */
460 if (request->sched.semaphores &&
461 i915_sw_fence_signaled(&request->semaphore))
462 engine->saturated |= request->sched.semaphores;
463
464 engine->emit_fini_breadcrumb(request,
465 request->ring->vaddr + request->postfix);
466
467 trace_i915_request_execute(request);
468 engine->serial++;
469 result = true;
470
471 xfer: /* We may be recursing from the signal callback of another i915 fence */
472 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
473
474 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
475 list_move_tail(&request->sched.link, &engine->active.requests);
476 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
477 }
478
479 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
480 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
481 !i915_request_enable_breadcrumb(request))
482 intel_engine_signal_breadcrumbs(engine);
483
484 __notify_execute_cb(request);
485
486 spin_unlock(&request->lock);
487
488 return result;
489 }
490
491 void i915_request_submit(struct i915_request *request)
492 {
493 struct intel_engine_cs *engine = request->engine;
494 unsigned long flags;
495
496 /* Will be called from irq-context when using foreign fences. */
497 spin_lock_irqsave(&engine->active.lock, flags);
498
499 __i915_request_submit(request);
500
501 spin_unlock_irqrestore(&engine->active.lock, flags);
502 }
503
504 void __i915_request_unsubmit(struct i915_request *request)
505 {
506 struct intel_engine_cs *engine = request->engine;
507
508 RQ_TRACE(request, "\n");
509
510 GEM_BUG_ON(!irqs_disabled());
511 lockdep_assert_held(&engine->active.lock);
512
513 /*
514 * Only unwind in reverse order, required so that the per-context list
515 * is kept in seqno/ring order.
516 */
517
518 /* We may be recursing from the signal callback of another i915 fence */
519 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520
521 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522 i915_request_cancel_breadcrumb(request);
523
524 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
525 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
526
527 spin_unlock(&request->lock);
528
529 /* We've already spun, don't charge on resubmitting. */
530 if (request->sched.semaphores && i915_request_started(request)) {
531 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
532 request->sched.semaphores = 0;
533 }
534
535 /*
536 * We don't need to wake_up any waiters on request->execute, they
537 * will get woken by any other event or us re-adding this request
538 * to the engine timeline (__i915_request_submit()). The waiters
539 * should be quite adapt at finding that the request now has a new
540 * global_seqno to the one they went to sleep on.
541 */
542 }
543
544 void i915_request_unsubmit(struct i915_request *request)
545 {
546 struct intel_engine_cs *engine = request->engine;
547 unsigned long flags;
548
549 /* Will be called from irq-context when using foreign fences. */
550 spin_lock_irqsave(&engine->active.lock, flags);
551
552 __i915_request_unsubmit(request);
553
554 spin_unlock_irqrestore(&engine->active.lock, flags);
555 }
556
557 static int __i915_sw_fence_call
558 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
559 {
560 struct i915_request *request =
561 container_of(fence, typeof(*request), submit);
562
563 switch (state) {
564 case FENCE_COMPLETE:
565 trace_i915_request_submit(request);
566
567 if (unlikely(fence->error))
568 i915_request_set_error_once(request, fence->error);
569
570 /*
571 * We need to serialize use of the submit_request() callback
572 * with its hotplugging performed during an emergency
573 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
574 * critical section in order to force i915_gem_set_wedged() to
575 * wait until the submit_request() is completed before
576 * proceeding.
577 */
578 rcu_read_lock();
579 request->engine->submit_request(request);
580 rcu_read_unlock();
581 break;
582
583 case FENCE_FREE:
584 i915_request_put(request);
585 break;
586 }
587
588 return NOTIFY_DONE;
589 }
590
591 static void irq_semaphore_cb(struct irq_work *wrk)
592 {
593 struct i915_request *rq =
594 container_of(wrk, typeof(*rq), semaphore_work);
595
596 i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
597 i915_request_put(rq);
598 }
599
600 static int __i915_sw_fence_call
601 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
602 {
603 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
604
605 switch (state) {
606 case FENCE_COMPLETE:
607 if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
608 i915_request_get(rq);
609 init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
610 irq_work_queue(&rq->semaphore_work);
611 }
612 break;
613
614 case FENCE_FREE:
615 i915_request_put(rq);
616 break;
617 }
618
619 return NOTIFY_DONE;
620 }
621
622 static void retire_requests(struct intel_timeline *tl)
623 {
624 struct i915_request *rq, *rn;
625
626 list_for_each_entry_safe(rq, rn, &tl->requests, link)
627 if (!i915_request_retire(rq))
628 break;
629 }
630
631 static noinline struct i915_request *
632 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
633 {
634 struct i915_request *rq;
635
636 if (list_empty(&tl->requests))
637 goto out;
638
639 if (!gfpflags_allow_blocking(gfp))
640 goto out;
641
642 /* Move our oldest request to the slab-cache (if not in use!) */
643 rq = list_first_entry(&tl->requests, typeof(*rq), link);
644 i915_request_retire(rq);
645
646 rq = kmem_cache_alloc(global.slab_requests,
647 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
648 if (rq)
649 return rq;
650
651 /* Ratelimit ourselves to prevent oom from malicious clients */
652 rq = list_last_entry(&tl->requests, typeof(*rq), link);
653 cond_synchronize_rcu(rq->rcustate);
654
655 /* Retire our old requests in the hope that we free some */
656 retire_requests(tl);
657
658 out:
659 return kmem_cache_alloc(global.slab_requests, gfp);
660 }
661
662 static void __i915_request_ctor(void *arg)
663 {
664 struct i915_request *rq = arg;
665
666 spin_lock_init(&rq->lock);
667 i915_sched_node_init(&rq->sched);
668 i915_sw_fence_init(&rq->submit, submit_notify);
669 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
670
671 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
672
673 rq->file_priv = NULL;
674 rq->capture_list = NULL;
675
676 INIT_LIST_HEAD(&rq->execute_cb);
677 }
678
679 struct i915_request *
680 __i915_request_create(struct intel_context *ce, gfp_t gfp)
681 {
682 struct intel_timeline *tl = ce->timeline;
683 struct i915_request *rq;
684 u32 seqno;
685 int ret;
686
687 might_sleep_if(gfpflags_allow_blocking(gfp));
688
689 /* Check that the caller provided an already pinned context */
690 __intel_context_pin(ce);
691
692 /*
693 * Beware: Dragons be flying overhead.
694 *
695 * We use RCU to look up requests in flight. The lookups may
696 * race with the request being allocated from the slab freelist.
697 * That is the request we are writing to here, may be in the process
698 * of being read by __i915_active_request_get_rcu(). As such,
699 * we have to be very careful when overwriting the contents. During
700 * the RCU lookup, we change chase the request->engine pointer,
701 * read the request->global_seqno and increment the reference count.
702 *
703 * The reference count is incremented atomically. If it is zero,
704 * the lookup knows the request is unallocated and complete. Otherwise,
705 * it is either still in use, or has been reallocated and reset
706 * with dma_fence_init(). This increment is safe for release as we
707 * check that the request we have a reference to and matches the active
708 * request.
709 *
710 * Before we increment the refcount, we chase the request->engine
711 * pointer. We must not call kmem_cache_zalloc() or else we set
712 * that pointer to NULL and cause a crash during the lookup. If
713 * we see the request is completed (based on the value of the
714 * old engine and seqno), the lookup is complete and reports NULL.
715 * If we decide the request is not completed (new engine or seqno),
716 * then we grab a reference and double check that it is still the
717 * active request - which it won't be and restart the lookup.
718 *
719 * Do not use kmem_cache_zalloc() here!
720 */
721 rq = kmem_cache_alloc(global.slab_requests,
722 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
723 if (unlikely(!rq)) {
724 rq = request_alloc_slow(tl, gfp);
725 if (!rq) {
726 ret = -ENOMEM;
727 goto err_unreserve;
728 }
729 }
730
731 rq->i915 = ce->engine->i915;
732 rq->context = ce;
733 rq->engine = ce->engine;
734 rq->ring = ce->ring;
735 rq->execution_mask = ce->engine->mask;
736
737 kref_init(&rq->fence.refcount);
738 rq->fence.flags = 0;
739 rq->fence.error = 0;
740 INIT_LIST_HEAD(&rq->fence.cb_list);
741
742 ret = intel_timeline_get_seqno(tl, rq, &seqno);
743 if (ret)
744 goto err_free;
745
746 rq->fence.context = tl->fence_context;
747 rq->fence.seqno = seqno;
748
749 RCU_INIT_POINTER(rq->timeline, tl);
750 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
751 rq->hwsp_seqno = tl->hwsp_seqno;
752 GEM_BUG_ON(i915_request_completed(rq));
753
754 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
755
756 /* We bump the ref for the fence chain */
757 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
758 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
759
760 i915_sched_node_reinit(&rq->sched);
761
762 /* No zalloc, everything must be cleared after use */
763 rq->batch = NULL;
764 GEM_BUG_ON(rq->file_priv);
765 GEM_BUG_ON(rq->capture_list);
766 GEM_BUG_ON(!list_empty(&rq->execute_cb));
767
768 /*
769 * Reserve space in the ring buffer for all the commands required to
770 * eventually emit this request. This is to guarantee that the
771 * i915_request_add() call can't fail. Note that the reserve may need
772 * to be redone if the request is not actually submitted straight
773 * away, e.g. because a GPU scheduler has deferred it.
774 *
775 * Note that due to how we add reserved_space to intel_ring_begin()
776 * we need to double our request to ensure that if we need to wrap
777 * around inside i915_request_add() there is sufficient space at
778 * the beginning of the ring as well.
779 */
780 rq->reserved_space =
781 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
782
783 /*
784 * Record the position of the start of the request so that
785 * should we detect the updated seqno part-way through the
786 * GPU processing the request, we never over-estimate the
787 * position of the head.
788 */
789 rq->head = rq->ring->emit;
790
791 ret = rq->engine->request_alloc(rq);
792 if (ret)
793 goto err_unwind;
794
795 rq->infix = rq->ring->emit; /* end of header; start of user payload */
796
797 intel_context_mark_active(ce);
798 list_add_tail_rcu(&rq->link, &tl->requests);
799
800 return rq;
801
802 err_unwind:
803 ce->ring->emit = rq->head;
804
805 /* Make sure we didn't add ourselves to external state before freeing */
806 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
807 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
808
809 err_free:
810 kmem_cache_free(global.slab_requests, rq);
811 err_unreserve:
812 intel_context_unpin(ce);
813 return ERR_PTR(ret);
814 }
815
816 struct i915_request *
817 i915_request_create(struct intel_context *ce)
818 {
819 struct i915_request *rq;
820 struct intel_timeline *tl;
821
822 tl = intel_context_timeline_lock(ce);
823 if (IS_ERR(tl))
824 return ERR_CAST(tl);
825
826 /* Move our oldest request to the slab-cache (if not in use!) */
827 rq = list_first_entry(&tl->requests, typeof(*rq), link);
828 if (!list_is_last(&rq->link, &tl->requests))
829 i915_request_retire(rq);
830
831 intel_context_enter(ce);
832 rq = __i915_request_create(ce, GFP_KERNEL);
833 intel_context_exit(ce); /* active reference transferred to request */
834 if (IS_ERR(rq))
835 goto err_unlock;
836
837 /* Check that we do not interrupt ourselves with a new request */
838 rq->cookie = lockdep_pin_lock(&tl->mutex);
839
840 return rq;
841
842 err_unlock:
843 intel_context_timeline_unlock(tl);
844 return rq;
845 }
846
847 static int
848 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
849 {
850 struct dma_fence *fence;
851 int err;
852
853 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
854 return 0;
855
856 if (i915_request_started(signal))
857 return 0;
858
859 fence = NULL;
860 rcu_read_lock();
861 spin_lock_irq(&signal->lock);
862 do {
863 struct list_head *pos = READ_ONCE(signal->link.prev);
864 struct i915_request *prev;
865
866 /* Confirm signal has not been retired, the link is valid */
867 if (unlikely(i915_request_started(signal)))
868 break;
869
870 /* Is signal the earliest request on its timeline? */
871 if (pos == &rcu_dereference(signal->timeline)->requests)
872 break;
873
874 /*
875 * Peek at the request before us in the timeline. That
876 * request will only be valid before it is retired, so
877 * after acquiring a reference to it, confirm that it is
878 * still part of the signaler's timeline.
879 */
880 prev = list_entry(pos, typeof(*prev), link);
881 if (!i915_request_get_rcu(prev))
882 break;
883
884 /* After the strong barrier, confirm prev is still attached */
885 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
886 i915_request_put(prev);
887 break;
888 }
889
890 fence = &prev->fence;
891 } while (0);
892 spin_unlock_irq(&signal->lock);
893 rcu_read_unlock();
894 if (!fence)
895 return 0;
896
897 err = 0;
898 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
899 err = i915_sw_fence_await_dma_fence(&rq->submit,
900 fence, 0,
901 I915_FENCE_GFP);
902 dma_fence_put(fence);
903
904 return err;
905 }
906
907 static intel_engine_mask_t
908 already_busywaiting(struct i915_request *rq)
909 {
910 /*
911 * Polling a semaphore causes bus traffic, delaying other users of
912 * both the GPU and CPU. We want to limit the impact on others,
913 * while taking advantage of early submission to reduce GPU
914 * latency. Therefore we restrict ourselves to not using more
915 * than one semaphore from each source, and not using a semaphore
916 * if we have detected the engine is saturated (i.e. would not be
917 * submitted early and cause bus traffic reading an already passed
918 * semaphore).
919 *
920 * See the are-we-too-late? check in __i915_request_submit().
921 */
922 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
923 }
924
925 static int
926 __emit_semaphore_wait(struct i915_request *to,
927 struct i915_request *from,
928 u32 seqno)
929 {
930 const int has_token = INTEL_GEN(to->i915) >= 12;
931 u32 hwsp_offset;
932 int len, err;
933 u32 *cs;
934
935 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
936
937 /* We need to pin the signaler's HWSP until we are finished reading. */
938 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
939 if (err)
940 return err;
941
942 len = 4;
943 if (has_token)
944 len += 2;
945
946 cs = intel_ring_begin(to, len);
947 if (IS_ERR(cs))
948 return PTR_ERR(cs);
949
950 /*
951 * Using greater-than-or-equal here means we have to worry
952 * about seqno wraparound. To side step that issue, we swap
953 * the timeline HWSP upon wrapping, so that everyone listening
954 * for the old (pre-wrap) values do not see the much smaller
955 * (post-wrap) values than they were expecting (and so wait
956 * forever).
957 */
958 *cs++ = (MI_SEMAPHORE_WAIT |
959 MI_SEMAPHORE_GLOBAL_GTT |
960 MI_SEMAPHORE_POLL |
961 MI_SEMAPHORE_SAD_GTE_SDD) +
962 has_token;
963 *cs++ = seqno;
964 *cs++ = hwsp_offset;
965 *cs++ = 0;
966 if (has_token) {
967 *cs++ = 0;
968 *cs++ = MI_NOOP;
969 }
970
971 intel_ring_advance(to, cs);
972 return 0;
973 }
974
975 static int
976 emit_semaphore_wait(struct i915_request *to,
977 struct i915_request *from,
978 gfp_t gfp)
979 {
980 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
981
982 if (!intel_context_use_semaphores(to->context))
983 goto await_fence;
984
985 if (!rcu_access_pointer(from->hwsp_cacheline))
986 goto await_fence;
987
988 /* Just emit the first semaphore we see as request space is limited. */
989 if (already_busywaiting(to) & mask)
990 goto await_fence;
991
992 if (i915_request_await_start(to, from) < 0)
993 goto await_fence;
994
995 /* Only submit our spinner after the signaler is running! */
996 if (__await_execution(to, from, NULL, gfp))
997 goto await_fence;
998
999 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1000 goto await_fence;
1001
1002 to->sched.semaphores |= mask;
1003 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
1004 return 0;
1005
1006 await_fence:
1007 return i915_sw_fence_await_dma_fence(&to->submit,
1008 &from->fence, 0,
1009 I915_FENCE_GFP);
1010 }
1011
1012 static int
1013 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1014 {
1015 int ret;
1016
1017 GEM_BUG_ON(to == from);
1018 GEM_BUG_ON(to->timeline == from->timeline);
1019
1020 if (i915_request_completed(from))
1021 return 0;
1022
1023 if (to->engine->schedule) {
1024 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
1025 if (ret < 0)
1026 return ret;
1027 }
1028
1029 if (to->engine == from->engine)
1030 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
1031 &from->submit,
1032 I915_FENCE_GFP);
1033 else
1034 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1035 if (ret < 0)
1036 return ret;
1037
1038 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
1039 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
1040 &from->fence, 0,
1041 I915_FENCE_GFP);
1042 if (ret < 0)
1043 return ret;
1044 }
1045
1046 return 0;
1047 }
1048
1049 int
1050 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1051 {
1052 struct dma_fence **child = &fence;
1053 unsigned int nchild = 1;
1054 int ret;
1055
1056 /*
1057 * Note that if the fence-array was created in signal-on-any mode,
1058 * we should *not* decompose it into its individual fences. However,
1059 * we don't currently store which mode the fence-array is operating
1060 * in. Fortunately, the only user of signal-on-any is private to
1061 * amdgpu and we should not see any incoming fence-array from
1062 * sync-file being in signal-on-any mode.
1063 */
1064 if (dma_fence_is_array(fence)) {
1065 struct dma_fence_array *array = to_dma_fence_array(fence);
1066
1067 child = array->fences;
1068 nchild = array->num_fences;
1069 GEM_BUG_ON(!nchild);
1070 }
1071
1072 do {
1073 fence = *child++;
1074 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1075 i915_sw_fence_set_error_once(&rq->submit, fence->error);
1076 continue;
1077 }
1078
1079 /*
1080 * Requests on the same timeline are explicitly ordered, along
1081 * with their dependencies, by i915_request_add() which ensures
1082 * that requests are submitted in-order through each ring.
1083 */
1084 if (fence->context == rq->fence.context)
1085 continue;
1086
1087 /* Squash repeated waits to the same timelines */
1088 if (fence->context &&
1089 intel_timeline_sync_is_later(i915_request_timeline(rq),
1090 fence))
1091 continue;
1092
1093 if (dma_fence_is_i915(fence))
1094 ret = i915_request_await_request(rq, to_request(fence));
1095 else
1096 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1097 fence->context ? I915_FENCE_TIMEOUT : 0,
1098 I915_FENCE_GFP);
1099 if (ret < 0)
1100 return ret;
1101
1102 /* Record the latest fence used against each timeline */
1103 if (fence->context)
1104 intel_timeline_sync_set(i915_request_timeline(rq),
1105 fence);
1106 } while (--nchild);
1107
1108 return 0;
1109 }
1110
1111 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1112 struct dma_fence *fence)
1113 {
1114 return __intel_timeline_sync_is_later(tl,
1115 fence->context,
1116 fence->seqno - 1);
1117 }
1118
1119 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1120 const struct dma_fence *fence)
1121 {
1122 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1123 }
1124
1125 static int
1126 __i915_request_await_execution(struct i915_request *to,
1127 struct i915_request *from,
1128 void (*hook)(struct i915_request *rq,
1129 struct dma_fence *signal))
1130 {
1131 int err;
1132
1133 GEM_BUG_ON(intel_context_is_barrier(from->context));
1134
1135 /* Submit both requests at the same time */
1136 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1137 if (err)
1138 return err;
1139
1140 /* Squash repeated depenendices to the same timelines */
1141 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1142 &from->fence))
1143 return 0;
1144
1145 /*
1146 * Wait until the start of this request.
1147 *
1148 * The execution cb fires when we submit the request to HW. But in
1149 * many cases this may be long before the request itself is ready to
1150 * run (consider that we submit 2 requests for the same context, where
1151 * the request of interest is behind an indefinite spinner). So we hook
1152 * up to both to reduce our queues and keep the execution lag minimised
1153 * in the worst case, though we hope that the await_start is elided.
1154 */
1155 err = i915_request_await_start(to, from);
1156 if (err < 0)
1157 return err;
1158
1159 /*
1160 * Ensure both start together [after all semaphores in signal]
1161 *
1162 * Now that we are queued to the HW at roughly the same time (thanks
1163 * to the execute cb) and are ready to run at roughly the same time
1164 * (thanks to the await start), our signaler may still be indefinitely
1165 * delayed by waiting on a semaphore from a remote engine. If our
1166 * signaler depends on a semaphore, so indirectly do we, and we do not
1167 * want to start our payload until our signaler also starts theirs.
1168 * So we wait.
1169 *
1170 * However, there is also a second condition for which we need to wait
1171 * for the precise start of the signaler. Consider that the signaler
1172 * was submitted in a chain of requests following another context
1173 * (with just an ordinary intra-engine fence dependency between the
1174 * two). In this case the signaler is queued to HW, but not for
1175 * immediate execution, and so we must wait until it reaches the
1176 * active slot.
1177 */
1178 if (intel_engine_has_semaphores(to->engine)) {
1179 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1180 if (err < 0)
1181 return err;
1182 }
1183
1184 /* Couple the dependency tree for PI on this exposed to->fence */
1185 if (to->engine->schedule) {
1186 err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1187 if (err < 0)
1188 return err;
1189 }
1190
1191 return intel_timeline_sync_set_start(i915_request_timeline(to),
1192 &from->fence);
1193 }
1194
1195 int
1196 i915_request_await_execution(struct i915_request *rq,
1197 struct dma_fence *fence,
1198 void (*hook)(struct i915_request *rq,
1199 struct dma_fence *signal))
1200 {
1201 struct dma_fence **child = &fence;
1202 unsigned int nchild = 1;
1203 int ret;
1204
1205 if (dma_fence_is_array(fence)) {
1206 struct dma_fence_array *array = to_dma_fence_array(fence);
1207
1208 /* XXX Error for signal-on-any fence arrays */
1209
1210 child = array->fences;
1211 nchild = array->num_fences;
1212 GEM_BUG_ON(!nchild);
1213 }
1214
1215 do {
1216 fence = *child++;
1217 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1218 i915_sw_fence_set_error_once(&rq->submit, fence->error);
1219 continue;
1220 }
1221
1222 /*
1223 * We don't squash repeated fence dependencies here as we
1224 * want to run our callback in all cases.
1225 */
1226
1227 if (dma_fence_is_i915(fence))
1228 ret = __i915_request_await_execution(rq,
1229 to_request(fence),
1230 hook);
1231 else
1232 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1233 I915_FENCE_TIMEOUT,
1234 GFP_KERNEL);
1235 if (ret < 0)
1236 return ret;
1237 } while (--nchild);
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * i915_request_await_object - set this request to (async) wait upon a bo
1244 * @to: request we are wishing to use
1245 * @obj: object which may be in use on another ring.
1246 * @write: whether the wait is on behalf of a writer
1247 *
1248 * This code is meant to abstract object synchronization with the GPU.
1249 * Conceptually we serialise writes between engines inside the GPU.
1250 * We only allow one engine to write into a buffer at any time, but
1251 * multiple readers. To ensure each has a coherent view of memory, we must:
1252 *
1253 * - If there is an outstanding write request to the object, the new
1254 * request must wait for it to complete (either CPU or in hw, requests
1255 * on the same ring will be naturally ordered).
1256 *
1257 * - If we are a write request (pending_write_domain is set), the new
1258 * request must wait for outstanding read requests to complete.
1259 *
1260 * Returns 0 if successful, else propagates up the lower layer error.
1261 */
1262 int
1263 i915_request_await_object(struct i915_request *to,
1264 struct drm_i915_gem_object *obj,
1265 bool write)
1266 {
1267 struct dma_fence *excl;
1268 int ret = 0;
1269
1270 if (write) {
1271 struct dma_fence **shared;
1272 unsigned int count, i;
1273
1274 ret = dma_resv_get_fences_rcu(obj->base.resv,
1275 &excl, &count, &shared);
1276 if (ret)
1277 return ret;
1278
1279 for (i = 0; i < count; i++) {
1280 ret = i915_request_await_dma_fence(to, shared[i]);
1281 if (ret)
1282 break;
1283
1284 dma_fence_put(shared[i]);
1285 }
1286
1287 for (; i < count; i++)
1288 dma_fence_put(shared[i]);
1289 kfree(shared);
1290 } else {
1291 excl = dma_resv_get_excl_rcu(obj->base.resv);
1292 }
1293
1294 if (excl) {
1295 if (ret == 0)
1296 ret = i915_request_await_dma_fence(to, excl);
1297
1298 dma_fence_put(excl);
1299 }
1300
1301 return ret;
1302 }
1303
1304 static struct i915_request *
1305 __i915_request_add_to_timeline(struct i915_request *rq)
1306 {
1307 struct intel_timeline *timeline = i915_request_timeline(rq);
1308 struct i915_request *prev;
1309
1310 /*
1311 * Dependency tracking and request ordering along the timeline
1312 * is special cased so that we can eliminate redundant ordering
1313 * operations while building the request (we know that the timeline
1314 * itself is ordered, and here we guarantee it).
1315 *
1316 * As we know we will need to emit tracking along the timeline,
1317 * we embed the hooks into our request struct -- at the cost of
1318 * having to have specialised no-allocation interfaces (which will
1319 * be beneficial elsewhere).
1320 *
1321 * A second benefit to open-coding i915_request_await_request is
1322 * that we can apply a slight variant of the rules specialised
1323 * for timelines that jump between engines (such as virtual engines).
1324 * If we consider the case of virtual engine, we must emit a dma-fence
1325 * to prevent scheduling of the second request until the first is
1326 * complete (to maximise our greedy late load balancing) and this
1327 * precludes optimising to use semaphores serialisation of a single
1328 * timeline across engines.
1329 */
1330 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1331 &rq->fence));
1332 if (prev && !i915_request_completed(prev)) {
1333 /*
1334 * The requests are supposed to be kept in order. However,
1335 * we need to be wary in case the timeline->last_request
1336 * is used as a barrier for external modification to this
1337 * context.
1338 */
1339 GEM_BUG_ON(prev->context == rq->context &&
1340 i915_seqno_passed(prev->fence.seqno,
1341 rq->fence.seqno));
1342
1343 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1344 i915_sw_fence_await_sw_fence(&rq->submit,
1345 &prev->submit,
1346 &rq->submitq);
1347 else
1348 __i915_sw_fence_await_dma_fence(&rq->submit,
1349 &prev->fence,
1350 &rq->dmaq);
1351 if (rq->engine->schedule)
1352 __i915_sched_node_add_dependency(&rq->sched,
1353 &prev->sched,
1354 &rq->dep,
1355 0);
1356 }
1357
1358 /*
1359 * Make sure that no request gazumped us - if it was allocated after
1360 * our i915_request_alloc() and called __i915_request_add() before
1361 * us, the timeline will hold its seqno which is later than ours.
1362 */
1363 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1364
1365 return prev;
1366 }
1367
1368 /*
1369 * NB: This function is not allowed to fail. Doing so would mean the the
1370 * request is not being tracked for completion but the work itself is
1371 * going to happen on the hardware. This would be a Bad Thing(tm).
1372 */
1373 struct i915_request *__i915_request_commit(struct i915_request *rq)
1374 {
1375 struct intel_engine_cs *engine = rq->engine;
1376 struct intel_ring *ring = rq->ring;
1377 u32 *cs;
1378
1379 RQ_TRACE(rq, "\n");
1380
1381 /*
1382 * To ensure that this call will not fail, space for its emissions
1383 * should already have been reserved in the ring buffer. Let the ring
1384 * know that it is time to use that space up.
1385 */
1386 GEM_BUG_ON(rq->reserved_space > ring->space);
1387 rq->reserved_space = 0;
1388 rq->emitted_jiffies = jiffies;
1389
1390 /*
1391 * Record the position of the start of the breadcrumb so that
1392 * should we detect the updated seqno part-way through the
1393 * GPU processing the request, we never over-estimate the
1394 * position of the ring's HEAD.
1395 */
1396 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1397 GEM_BUG_ON(IS_ERR(cs));
1398 rq->postfix = intel_ring_offset(rq, cs);
1399
1400 return __i915_request_add_to_timeline(rq);
1401 }
1402
1403 void __i915_request_queue(struct i915_request *rq,
1404 const struct i915_sched_attr *attr)
1405 {
1406 /*
1407 * Let the backend know a new request has arrived that may need
1408 * to adjust the existing execution schedule due to a high priority
1409 * request - i.e. we may want to preempt the current request in order
1410 * to run a high priority dependency chain *before* we can execute this
1411 * request.
1412 *
1413 * This is called before the request is ready to run so that we can
1414 * decide whether to preempt the entire chain so that it is ready to
1415 * run at the earliest possible convenience.
1416 */
1417 if (attr && rq->engine->schedule)
1418 rq->engine->schedule(rq, attr);
1419 i915_sw_fence_commit(&rq->semaphore);
1420 i915_sw_fence_commit(&rq->submit);
1421 }
1422
1423 void i915_request_add(struct i915_request *rq)
1424 {
1425 struct intel_timeline * const tl = i915_request_timeline(rq);
1426 struct i915_sched_attr attr = {};
1427 struct i915_gem_context *ctx;
1428
1429 lockdep_assert_held(&tl->mutex);
1430 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1431
1432 trace_i915_request_add(rq);
1433 __i915_request_commit(rq);
1434
1435 /* XXX placeholder for selftests */
1436 rcu_read_lock();
1437 ctx = rcu_dereference(rq->context->gem_context);
1438 if (ctx)
1439 attr = ctx->sched;
1440 rcu_read_unlock();
1441
1442 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1443 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1444 if (list_empty(&rq->sched.signalers_list))
1445 attr.priority |= I915_PRIORITY_WAIT;
1446
1447 local_bh_disable();
1448 __i915_request_queue(rq, &attr);
1449 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1450
1451 mutex_unlock(&tl->mutex);
1452 }
1453
1454 static unsigned long local_clock_ns(unsigned int *cpu)
1455 {
1456 unsigned long t;
1457
1458 /*
1459 * Cheaply and approximately convert from nanoseconds to microseconds.
1460 * The result and subsequent calculations are also defined in the same
1461 * approximate microseconds units. The principal source of timing
1462 * error here is from the simple truncation.
1463 *
1464 * Note that local_clock() is only defined wrt to the current CPU;
1465 * the comparisons are no longer valid if we switch CPUs. Instead of
1466 * blocking preemption for the entire busywait, we can detect the CPU
1467 * switch and use that as indicator of system load and a reason to
1468 * stop busywaiting, see busywait_stop().
1469 */
1470 *cpu = get_cpu();
1471 t = local_clock();
1472 put_cpu();
1473
1474 return t;
1475 }
1476
1477 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1478 {
1479 unsigned int this_cpu;
1480
1481 if (time_after(local_clock_ns(&this_cpu), timeout))
1482 return true;
1483
1484 return this_cpu != cpu;
1485 }
1486
1487 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1488 {
1489 unsigned long timeout_ns;
1490 unsigned int cpu;
1491
1492 /*
1493 * Only wait for the request if we know it is likely to complete.
1494 *
1495 * We don't track the timestamps around requests, nor the average
1496 * request length, so we do not have a good indicator that this
1497 * request will complete within the timeout. What we do know is the
1498 * order in which requests are executed by the context and so we can
1499 * tell if the request has been started. If the request is not even
1500 * running yet, it is a fair assumption that it will not complete
1501 * within our relatively short timeout.
1502 */
1503 if (!i915_request_is_running(rq))
1504 return false;
1505
1506 /*
1507 * When waiting for high frequency requests, e.g. during synchronous
1508 * rendering split between the CPU and GPU, the finite amount of time
1509 * required to set up the irq and wait upon it limits the response
1510 * rate. By busywaiting on the request completion for a short while we
1511 * can service the high frequency waits as quick as possible. However,
1512 * if it is a slow request, we want to sleep as quickly as possible.
1513 * The tradeoff between waiting and sleeping is roughly the time it
1514 * takes to sleep on a request, on the order of a microsecond.
1515 */
1516
1517 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1518 timeout_ns += local_clock_ns(&cpu);
1519 do {
1520 if (i915_request_completed(rq))
1521 return true;
1522
1523 if (signal_pending_state(state, current))
1524 break;
1525
1526 if (busywait_stop(timeout_ns, cpu))
1527 break;
1528
1529 cpu_relax();
1530 } while (!need_resched());
1531
1532 return false;
1533 }
1534
1535 struct request_wait {
1536 struct dma_fence_cb cb;
1537 struct task_struct *tsk;
1538 };
1539
1540 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1541 {
1542 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1543
1544 wake_up_process(wait->tsk);
1545 }
1546
1547 /**
1548 * i915_request_wait - wait until execution of request has finished
1549 * @rq: the request to wait upon
1550 * @flags: how to wait
1551 * @timeout: how long to wait in jiffies
1552 *
1553 * i915_request_wait() waits for the request to be completed, for a
1554 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1555 * unbounded wait).
1556 *
1557 * Returns the remaining time (in jiffies) if the request completed, which may
1558 * be zero or -ETIME if the request is unfinished after the timeout expires.
1559 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1560 * pending before the request completes.
1561 */
1562 long i915_request_wait(struct i915_request *rq,
1563 unsigned int flags,
1564 long timeout)
1565 {
1566 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1567 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1568 struct request_wait wait;
1569
1570 might_sleep();
1571 GEM_BUG_ON(timeout < 0);
1572
1573 if (dma_fence_is_signaled(&rq->fence))
1574 return timeout;
1575
1576 if (!timeout)
1577 return -ETIME;
1578
1579 trace_i915_request_wait_begin(rq, flags);
1580
1581 /*
1582 * We must never wait on the GPU while holding a lock as we
1583 * may need to perform a GPU reset. So while we don't need to
1584 * serialise wait/reset with an explicit lock, we do want
1585 * lockdep to detect potential dependency cycles.
1586 */
1587 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1588
1589 /*
1590 * Optimistic spin before touching IRQs.
1591 *
1592 * We may use a rather large value here to offset the penalty of
1593 * switching away from the active task. Frequently, the client will
1594 * wait upon an old swapbuffer to throttle itself to remain within a
1595 * frame of the gpu. If the client is running in lockstep with the gpu,
1596 * then it should not be waiting long at all, and a sleep now will incur
1597 * extra scheduler latency in producing the next frame. To try to
1598 * avoid adding the cost of enabling/disabling the interrupt to the
1599 * short wait, we first spin to see if the request would have completed
1600 * in the time taken to setup the interrupt.
1601 *
1602 * We need upto 5us to enable the irq, and upto 20us to hide the
1603 * scheduler latency of a context switch, ignoring the secondary
1604 * impacts from a context switch such as cache eviction.
1605 *
1606 * The scheme used for low-latency IO is called "hybrid interrupt
1607 * polling". The suggestion there is to sleep until just before you
1608 * expect to be woken by the device interrupt and then poll for its
1609 * completion. That requires having a good predictor for the request
1610 * duration, which we currently lack.
1611 */
1612 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1613 __i915_spin_request(rq, state)) {
1614 dma_fence_signal(&rq->fence);
1615 goto out;
1616 }
1617
1618 /*
1619 * This client is about to stall waiting for the GPU. In many cases
1620 * this is undesirable and limits the throughput of the system, as
1621 * many clients cannot continue processing user input/output whilst
1622 * blocked. RPS autotuning may take tens of milliseconds to respond
1623 * to the GPU load and thus incurs additional latency for the client.
1624 * We can circumvent that by promoting the GPU frequency to maximum
1625 * before we sleep. This makes the GPU throttle up much more quickly
1626 * (good for benchmarks and user experience, e.g. window animations),
1627 * but at a cost of spending more power processing the workload
1628 * (bad for battery).
1629 */
1630 if (flags & I915_WAIT_PRIORITY) {
1631 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1632 intel_rps_boost(rq);
1633 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1634 }
1635
1636 wait.tsk = current;
1637 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1638 goto out;
1639
1640 for (;;) {
1641 set_current_state(state);
1642
1643 if (i915_request_completed(rq)) {
1644 dma_fence_signal(&rq->fence);
1645 break;
1646 }
1647
1648 intel_engine_flush_submission(rq->engine);
1649
1650 if (signal_pending_state(state, current)) {
1651 timeout = -ERESTARTSYS;
1652 break;
1653 }
1654
1655 if (!timeout) {
1656 timeout = -ETIME;
1657 break;
1658 }
1659
1660 timeout = io_schedule_timeout(timeout);
1661 }
1662 __set_current_state(TASK_RUNNING);
1663
1664 dma_fence_remove_callback(&rq->fence, &wait.cb);
1665
1666 out:
1667 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1668 trace_i915_request_wait_end(rq);
1669 return timeout;
1670 }
1671
1672 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1673 #include "selftests/mock_request.c"
1674 #include "selftests/i915_request.c"
1675 #endif
1676
1677 static void i915_global_request_shrink(void)
1678 {
1679 kmem_cache_shrink(global.slab_execute_cbs);
1680 kmem_cache_shrink(global.slab_requests);
1681 }
1682
1683 static void i915_global_request_exit(void)
1684 {
1685 kmem_cache_destroy(global.slab_execute_cbs);
1686 kmem_cache_destroy(global.slab_requests);
1687 }
1688
1689 static struct i915_global_request global = { {
1690 .shrink = i915_global_request_shrink,
1691 .exit = i915_global_request_exit,
1692 } };
1693
1694 int __init i915_global_request_init(void)
1695 {
1696 global.slab_requests =
1697 kmem_cache_create("i915_request",
1698 sizeof(struct i915_request),
1699 __alignof__(struct i915_request),
1700 SLAB_HWCACHE_ALIGN |
1701 SLAB_RECLAIM_ACCOUNT |
1702 SLAB_TYPESAFE_BY_RCU,
1703 __i915_request_ctor);
1704 if (!global.slab_requests)
1705 return -ENOMEM;
1706
1707 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1708 SLAB_HWCACHE_ALIGN |
1709 SLAB_RECLAIM_ACCOUNT |
1710 SLAB_TYPESAFE_BY_RCU);
1711 if (!global.slab_execute_cbs)
1712 goto err_requests;
1713
1714 i915_global_register(&global.base);
1715 return 0;
1716
1717 err_requests:
1718 kmem_cache_destroy(global.slab_requests);
1719 return -ENOMEM;
1720 }