]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_bios.c
Merge tag 'pwm/for-5.2-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_bios.c
1 /*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drm_dp_helper.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31
32 #define _INTEL_BIOS_PRIVATE
33 #include "intel_vbt_defs.h"
34
35 /**
36 * DOC: Video BIOS Table (VBT)
37 *
38 * The Video BIOS Table, or VBT, provides platform and board specific
39 * configuration information to the driver that is not discoverable or available
40 * through other means. The configuration is mostly related to display
41 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
42 * the PCI ROM.
43 *
44 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
45 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
46 * contain the actual configuration information. The VBT Header, and thus the
47 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
48 * BDB Header. The data blocks are concatenated after the BDB Header. The data
49 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
50 * data. (Block 53, the MIPI Sequence Block is an exception.)
51 *
52 * The driver parses the VBT during load. The relevant information is stored in
53 * driver private data for ease of use, and the actual VBT is not read after
54 * that.
55 */
56
57 #define SLAVE_ADDR1 0x70
58 #define SLAVE_ADDR2 0x72
59
60 /* Get BDB block size given a pointer to Block ID. */
61 static u32 _get_blocksize(const u8 *block_base)
62 {
63 /* The MIPI Sequence Block v3+ has a separate size field. */
64 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
65 return *((const u32 *)(block_base + 4));
66 else
67 return *((const u16 *)(block_base + 1));
68 }
69
70 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
71 static u32 get_blocksize(const void *block_data)
72 {
73 return _get_blocksize(block_data - 3);
74 }
75
76 static const void *
77 find_section(const void *_bdb, int section_id)
78 {
79 const struct bdb_header *bdb = _bdb;
80 const u8 *base = _bdb;
81 int index = 0;
82 u32 total, current_size;
83 u8 current_id;
84
85 /* skip to first section */
86 index += bdb->header_size;
87 total = bdb->bdb_size;
88
89 /* walk the sections looking for section_id */
90 while (index + 3 < total) {
91 current_id = *(base + index);
92 current_size = _get_blocksize(base + index);
93 index += 3;
94
95 if (index + current_size > total)
96 return NULL;
97
98 if (current_id == section_id)
99 return base + index;
100
101 index += current_size;
102 }
103
104 return NULL;
105 }
106
107 static void
108 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
109 const struct lvds_dvo_timing *dvo_timing)
110 {
111 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
112 dvo_timing->hactive_lo;
113 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
114 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
115 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
116 ((dvo_timing->hsync_pulse_width_hi << 8) |
117 dvo_timing->hsync_pulse_width_lo);
118 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
119 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
120
121 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
122 dvo_timing->vactive_lo;
123 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
124 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
125 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
126 ((dvo_timing->vsync_pulse_width_hi << 4) |
127 dvo_timing->vsync_pulse_width_lo);
128 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
129 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
130 panel_fixed_mode->clock = dvo_timing->clock * 10;
131 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
132
133 if (dvo_timing->hsync_positive)
134 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
135 else
136 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
137
138 if (dvo_timing->vsync_positive)
139 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
140 else
141 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
142
143 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
144 dvo_timing->himage_lo;
145 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
146 dvo_timing->vimage_lo;
147
148 /* Some VBTs have bogus h/vtotal values */
149 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
150 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
151 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
152 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
153
154 drm_mode_set_name(panel_fixed_mode);
155 }
156
157 static const struct lvds_dvo_timing *
158 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
159 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
160 int index)
161 {
162 /*
163 * the size of fp_timing varies on the different platform.
164 * So calculate the DVO timing relative offset in LVDS data
165 * entry to get the DVO timing entry
166 */
167
168 int lfp_data_size =
169 lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
170 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
171 int dvo_timing_offset =
172 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
173 lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
174 char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
175
176 return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
177 }
178
179 /* get lvds_fp_timing entry
180 * this function may return NULL if the corresponding entry is invalid
181 */
182 static const struct lvds_fp_timing *
183 get_lvds_fp_timing(const struct bdb_header *bdb,
184 const struct bdb_lvds_lfp_data *data,
185 const struct bdb_lvds_lfp_data_ptrs *ptrs,
186 int index)
187 {
188 size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
189 u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
190 size_t ofs;
191
192 if (index >= ARRAY_SIZE(ptrs->ptr))
193 return NULL;
194 ofs = ptrs->ptr[index].fp_timing_offset;
195 if (ofs < data_ofs ||
196 ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
197 return NULL;
198 return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
199 }
200
201 /* Try to find integrated panel data */
202 static void
203 parse_lfp_panel_data(struct drm_i915_private *dev_priv,
204 const struct bdb_header *bdb)
205 {
206 const struct bdb_lvds_options *lvds_options;
207 const struct bdb_lvds_lfp_data *lvds_lfp_data;
208 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
209 const struct lvds_dvo_timing *panel_dvo_timing;
210 const struct lvds_fp_timing *fp_timing;
211 struct drm_display_mode *panel_fixed_mode;
212 int panel_type;
213 int drrs_mode;
214 int ret;
215
216 lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
217 if (!lvds_options)
218 return;
219
220 dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
221
222 ret = intel_opregion_get_panel_type(dev_priv);
223 if (ret >= 0) {
224 WARN_ON(ret > 0xf);
225 panel_type = ret;
226 DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
227 } else {
228 if (lvds_options->panel_type > 0xf) {
229 DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
230 lvds_options->panel_type);
231 return;
232 }
233 panel_type = lvds_options->panel_type;
234 DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
235 }
236
237 dev_priv->vbt.panel_type = panel_type;
238
239 drrs_mode = (lvds_options->dps_panel_type_bits
240 >> (panel_type * 2)) & MODE_MASK;
241 /*
242 * VBT has static DRRS = 0 and seamless DRRS = 2.
243 * The below piece of code is required to adjust vbt.drrs_type
244 * to match the enum drrs_support_type.
245 */
246 switch (drrs_mode) {
247 case 0:
248 dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
249 DRM_DEBUG_KMS("DRRS supported mode is static\n");
250 break;
251 case 2:
252 dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
253 DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
254 break;
255 default:
256 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
257 DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
258 break;
259 }
260
261 lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
262 if (!lvds_lfp_data)
263 return;
264
265 lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
266 if (!lvds_lfp_data_ptrs)
267 return;
268
269 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
270 lvds_lfp_data_ptrs,
271 panel_type);
272
273 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
274 if (!panel_fixed_mode)
275 return;
276
277 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
278
279 dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
280
281 DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
282 drm_mode_debug_printmodeline(panel_fixed_mode);
283
284 fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
285 lvds_lfp_data_ptrs,
286 panel_type);
287 if (fp_timing) {
288 /* check the resolution, just to be sure */
289 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
290 fp_timing->y_res == panel_fixed_mode->vdisplay) {
291 dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
292 DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
293 dev_priv->vbt.bios_lvds_val);
294 }
295 }
296 }
297
298 static void
299 parse_lfp_backlight(struct drm_i915_private *dev_priv,
300 const struct bdb_header *bdb)
301 {
302 const struct bdb_lfp_backlight_data *backlight_data;
303 const struct bdb_lfp_backlight_data_entry *entry;
304 int panel_type = dev_priv->vbt.panel_type;
305
306 backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
307 if (!backlight_data)
308 return;
309
310 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
311 DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
312 backlight_data->entry_size);
313 return;
314 }
315
316 entry = &backlight_data->data[panel_type];
317
318 dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
319 if (!dev_priv->vbt.backlight.present) {
320 DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
321 entry->type);
322 return;
323 }
324
325 dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
326 if (bdb->version >= 191 &&
327 get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
328 const struct bdb_lfp_backlight_control_method *method;
329
330 method = &backlight_data->backlight_control[panel_type];
331 dev_priv->vbt.backlight.type = method->type;
332 dev_priv->vbt.backlight.controller = method->controller;
333 }
334
335 dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
336 dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
337 dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
338 DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
339 "active %s, min brightness %u, level %u, controller %u\n",
340 dev_priv->vbt.backlight.pwm_freq_hz,
341 dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
342 dev_priv->vbt.backlight.min_brightness,
343 backlight_data->level[panel_type],
344 dev_priv->vbt.backlight.controller);
345 }
346
347 /* Try to find sdvo panel data */
348 static void
349 parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
350 const struct bdb_header *bdb)
351 {
352 const struct lvds_dvo_timing *dvo_timing;
353 struct drm_display_mode *panel_fixed_mode;
354 int index;
355
356 index = i915_modparams.vbt_sdvo_panel_type;
357 if (index == -2) {
358 DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
359 return;
360 }
361
362 if (index == -1) {
363 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
364
365 sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
366 if (!sdvo_lvds_options)
367 return;
368
369 index = sdvo_lvds_options->panel_type;
370 }
371
372 dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS);
373 if (!dvo_timing)
374 return;
375
376 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
377 if (!panel_fixed_mode)
378 return;
379
380 fill_detail_timing_data(panel_fixed_mode, dvo_timing + index);
381
382 dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
383
384 DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
385 drm_mode_debug_printmodeline(panel_fixed_mode);
386 }
387
388 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
389 bool alternate)
390 {
391 switch (INTEL_GEN(dev_priv)) {
392 case 2:
393 return alternate ? 66667 : 48000;
394 case 3:
395 case 4:
396 return alternate ? 100000 : 96000;
397 default:
398 return alternate ? 100000 : 120000;
399 }
400 }
401
402 static void
403 parse_general_features(struct drm_i915_private *dev_priv,
404 const struct bdb_header *bdb)
405 {
406 const struct bdb_general_features *general;
407
408 general = find_section(bdb, BDB_GENERAL_FEATURES);
409 if (!general)
410 return;
411
412 dev_priv->vbt.int_tv_support = general->int_tv_support;
413 /* int_crt_support can't be trusted on earlier platforms */
414 if (bdb->version >= 155 &&
415 (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
416 dev_priv->vbt.int_crt_support = general->int_crt_support;
417 dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
418 dev_priv->vbt.lvds_ssc_freq =
419 intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
420 dev_priv->vbt.display_clock_mode = general->display_clock_mode;
421 dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
422 if (bdb->version >= 181) {
423 dev_priv->vbt.orientation = general->rotate_180 ?
424 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
425 DRM_MODE_PANEL_ORIENTATION_NORMAL;
426 } else {
427 dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
428 }
429 DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
430 dev_priv->vbt.int_tv_support,
431 dev_priv->vbt.int_crt_support,
432 dev_priv->vbt.lvds_use_ssc,
433 dev_priv->vbt.lvds_ssc_freq,
434 dev_priv->vbt.display_clock_mode,
435 dev_priv->vbt.fdi_rx_polarity_inverted);
436 }
437
438 static const struct child_device_config *
439 child_device_ptr(const struct bdb_general_definitions *defs, int i)
440 {
441 return (const void *) &defs->devices[i * defs->child_dev_size];
442 }
443
444 static void
445 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
446 {
447 struct sdvo_device_mapping *mapping;
448 const struct child_device_config *child;
449 int i, count = 0;
450
451 /*
452 * Only parse SDVO mappings on gens that could have SDVO. This isn't
453 * accurate and doesn't have to be, as long as it's not too strict.
454 */
455 if (!IS_GEN_RANGE(dev_priv, 3, 7)) {
456 DRM_DEBUG_KMS("Skipping SDVO device mapping\n");
457 return;
458 }
459
460 for (i = 0, count = 0; i < dev_priv->vbt.child_dev_num; i++) {
461 child = dev_priv->vbt.child_dev + i;
462
463 if (child->slave_addr != SLAVE_ADDR1 &&
464 child->slave_addr != SLAVE_ADDR2) {
465 /*
466 * If the slave address is neither 0x70 nor 0x72,
467 * it is not a SDVO device. Skip it.
468 */
469 continue;
470 }
471 if (child->dvo_port != DEVICE_PORT_DVOB &&
472 child->dvo_port != DEVICE_PORT_DVOC) {
473 /* skip the incorrect SDVO port */
474 DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
475 continue;
476 }
477 DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
478 " %s port\n",
479 child->slave_addr,
480 (child->dvo_port == DEVICE_PORT_DVOB) ?
481 "SDVOB" : "SDVOC");
482 mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
483 if (!mapping->initialized) {
484 mapping->dvo_port = child->dvo_port;
485 mapping->slave_addr = child->slave_addr;
486 mapping->dvo_wiring = child->dvo_wiring;
487 mapping->ddc_pin = child->ddc_pin;
488 mapping->i2c_pin = child->i2c_pin;
489 mapping->initialized = 1;
490 DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
491 mapping->dvo_port,
492 mapping->slave_addr,
493 mapping->dvo_wiring,
494 mapping->ddc_pin,
495 mapping->i2c_pin);
496 } else {
497 DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
498 "two SDVO device.\n");
499 }
500 if (child->slave2_addr) {
501 /* Maybe this is a SDVO device with multiple inputs */
502 /* And the mapping info is not added */
503 DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
504 " is a SDVO device with multiple inputs.\n");
505 }
506 count++;
507 }
508
509 if (!count) {
510 /* No SDVO device info is found */
511 DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
512 }
513 }
514
515 static void
516 parse_driver_features(struct drm_i915_private *dev_priv,
517 const struct bdb_header *bdb)
518 {
519 const struct bdb_driver_features *driver;
520
521 driver = find_section(bdb, BDB_DRIVER_FEATURES);
522 if (!driver)
523 return;
524
525 if (INTEL_GEN(dev_priv) >= 5) {
526 /*
527 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
528 * to mean "eDP". The VBT spec doesn't agree with that
529 * interpretation, but real world VBTs seem to.
530 */
531 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
532 dev_priv->vbt.int_lvds_support = 0;
533 } else {
534 /*
535 * FIXME it's not clear which BDB version has the LVDS config
536 * bits defined. Revision history in the VBT spec says:
537 * "0.92 | Add two definitions for VBT value of LVDS Active
538 * Config (00b and 11b values defined) | 06/13/2005"
539 * but does not the specify the BDB version.
540 *
541 * So far version 134 (on i945gm) is the oldest VBT observed
542 * in the wild with the bits correctly populated. Version
543 * 108 (on i85x) does not have the bits correctly populated.
544 */
545 if (bdb->version >= 134 &&
546 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
547 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
548 dev_priv->vbt.int_lvds_support = 0;
549 }
550
551 DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
552 /*
553 * If DRRS is not supported, drrs_type has to be set to 0.
554 * This is because, VBT is configured in such a way that
555 * static DRRS is 0 and DRRS not supported is represented by
556 * driver->drrs_enabled=false
557 */
558 if (!driver->drrs_enabled)
559 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
560 dev_priv->vbt.psr.enable = driver->psr_enabled;
561 }
562
563 static void
564 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
565 {
566 const struct bdb_edp *edp;
567 const struct edp_power_seq *edp_pps;
568 const struct edp_fast_link_params *edp_link_params;
569 int panel_type = dev_priv->vbt.panel_type;
570
571 edp = find_section(bdb, BDB_EDP);
572 if (!edp)
573 return;
574
575 switch ((edp->color_depth >> (panel_type * 2)) & 3) {
576 case EDP_18BPP:
577 dev_priv->vbt.edp.bpp = 18;
578 break;
579 case EDP_24BPP:
580 dev_priv->vbt.edp.bpp = 24;
581 break;
582 case EDP_30BPP:
583 dev_priv->vbt.edp.bpp = 30;
584 break;
585 }
586
587 /* Get the eDP sequencing and link info */
588 edp_pps = &edp->power_seqs[panel_type];
589 edp_link_params = &edp->fast_link_params[panel_type];
590
591 dev_priv->vbt.edp.pps = *edp_pps;
592
593 switch (edp_link_params->rate) {
594 case EDP_RATE_1_62:
595 dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
596 break;
597 case EDP_RATE_2_7:
598 dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
599 break;
600 default:
601 DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
602 edp_link_params->rate);
603 break;
604 }
605
606 switch (edp_link_params->lanes) {
607 case EDP_LANE_1:
608 dev_priv->vbt.edp.lanes = 1;
609 break;
610 case EDP_LANE_2:
611 dev_priv->vbt.edp.lanes = 2;
612 break;
613 case EDP_LANE_4:
614 dev_priv->vbt.edp.lanes = 4;
615 break;
616 default:
617 DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
618 edp_link_params->lanes);
619 break;
620 }
621
622 switch (edp_link_params->preemphasis) {
623 case EDP_PREEMPHASIS_NONE:
624 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
625 break;
626 case EDP_PREEMPHASIS_3_5dB:
627 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
628 break;
629 case EDP_PREEMPHASIS_6dB:
630 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
631 break;
632 case EDP_PREEMPHASIS_9_5dB:
633 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
634 break;
635 default:
636 DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
637 edp_link_params->preemphasis);
638 break;
639 }
640
641 switch (edp_link_params->vswing) {
642 case EDP_VSWING_0_4V:
643 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
644 break;
645 case EDP_VSWING_0_6V:
646 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
647 break;
648 case EDP_VSWING_0_8V:
649 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
650 break;
651 case EDP_VSWING_1_2V:
652 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
653 break;
654 default:
655 DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
656 edp_link_params->vswing);
657 break;
658 }
659
660 if (bdb->version >= 173) {
661 u8 vswing;
662
663 /* Don't read from VBT if module parameter has valid value*/
664 if (i915_modparams.edp_vswing) {
665 dev_priv->vbt.edp.low_vswing =
666 i915_modparams.edp_vswing == 1;
667 } else {
668 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
669 dev_priv->vbt.edp.low_vswing = vswing == 0;
670 }
671 }
672 }
673
674 static void
675 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
676 {
677 const struct bdb_psr *psr;
678 const struct psr_table *psr_table;
679 int panel_type = dev_priv->vbt.panel_type;
680
681 psr = find_section(bdb, BDB_PSR);
682 if (!psr) {
683 DRM_DEBUG_KMS("No PSR BDB found.\n");
684 return;
685 }
686
687 psr_table = &psr->psr_table[panel_type];
688
689 dev_priv->vbt.psr.full_link = psr_table->full_link;
690 dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
691
692 /* Allowed VBT values goes from 0 to 15 */
693 dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
694 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
695
696 switch (psr_table->lines_to_wait) {
697 case 0:
698 dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
699 break;
700 case 1:
701 dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
702 break;
703 case 2:
704 dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
705 break;
706 case 3:
707 dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
708 break;
709 default:
710 DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
711 psr_table->lines_to_wait);
712 break;
713 }
714
715 /*
716 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
717 * Old decimal value is wake up time in multiples of 100 us.
718 */
719 if (bdb->version >= 205 &&
720 (IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
721 INTEL_GEN(dev_priv) >= 10)) {
722 switch (psr_table->tp1_wakeup_time) {
723 case 0:
724 dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
725 break;
726 case 1:
727 dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
728 break;
729 case 3:
730 dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
731 break;
732 default:
733 DRM_DEBUG_KMS("VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
734 psr_table->tp1_wakeup_time);
735 /* fallthrough */
736 case 2:
737 dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
738 break;
739 }
740
741 switch (psr_table->tp2_tp3_wakeup_time) {
742 case 0:
743 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
744 break;
745 case 1:
746 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
747 break;
748 case 3:
749 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
750 break;
751 default:
752 DRM_DEBUG_KMS("VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
753 psr_table->tp2_tp3_wakeup_time);
754 /* fallthrough */
755 case 2:
756 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
757 break;
758 }
759 } else {
760 dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
761 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
762 }
763
764 if (bdb->version >= 226) {
765 u32 wakeup_time = psr_table->psr2_tp2_tp3_wakeup_time;
766
767 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
768 switch (wakeup_time) {
769 case 0:
770 wakeup_time = 500;
771 break;
772 case 1:
773 wakeup_time = 100;
774 break;
775 case 3:
776 wakeup_time = 50;
777 break;
778 default:
779 case 2:
780 wakeup_time = 2500;
781 break;
782 }
783 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
784 } else {
785 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
786 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us;
787 }
788 }
789
790 static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
791 u16 version, enum port port)
792 {
793 if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
794 dev_priv->vbt.dsi.bl_ports = BIT(port);
795 if (dev_priv->vbt.dsi.config->cabc_supported)
796 dev_priv->vbt.dsi.cabc_ports = BIT(port);
797
798 return;
799 }
800
801 switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
802 case DL_DCS_PORT_A:
803 dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
804 break;
805 case DL_DCS_PORT_C:
806 dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
807 break;
808 default:
809 case DL_DCS_PORT_A_AND_C:
810 dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
811 break;
812 }
813
814 if (!dev_priv->vbt.dsi.config->cabc_supported)
815 return;
816
817 switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
818 case DL_DCS_PORT_A:
819 dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
820 break;
821 case DL_DCS_PORT_C:
822 dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
823 break;
824 default:
825 case DL_DCS_PORT_A_AND_C:
826 dev_priv->vbt.dsi.cabc_ports =
827 BIT(PORT_A) | BIT(PORT_C);
828 break;
829 }
830 }
831
832 static void
833 parse_mipi_config(struct drm_i915_private *dev_priv,
834 const struct bdb_header *bdb)
835 {
836 const struct bdb_mipi_config *start;
837 const struct mipi_config *config;
838 const struct mipi_pps_data *pps;
839 int panel_type = dev_priv->vbt.panel_type;
840 enum port port;
841
842 /* parse MIPI blocks only if LFP type is MIPI */
843 if (!intel_bios_is_dsi_present(dev_priv, &port))
844 return;
845
846 /* Initialize this to undefined indicating no generic MIPI support */
847 dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
848
849 /* Block #40 is already parsed and panel_fixed_mode is
850 * stored in dev_priv->lfp_lvds_vbt_mode
851 * resuse this when needed
852 */
853
854 /* Parse #52 for panel index used from panel_type already
855 * parsed
856 */
857 start = find_section(bdb, BDB_MIPI_CONFIG);
858 if (!start) {
859 DRM_DEBUG_KMS("No MIPI config BDB found");
860 return;
861 }
862
863 DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
864 panel_type);
865
866 /*
867 * get hold of the correct configuration block and pps data as per
868 * the panel_type as index
869 */
870 config = &start->config[panel_type];
871 pps = &start->pps[panel_type];
872
873 /* store as of now full data. Trim when we realise all is not needed */
874 dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
875 if (!dev_priv->vbt.dsi.config)
876 return;
877
878 dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
879 if (!dev_priv->vbt.dsi.pps) {
880 kfree(dev_priv->vbt.dsi.config);
881 return;
882 }
883
884 parse_dsi_backlight_ports(dev_priv, bdb->version, port);
885
886 /* FIXME is the 90 vs. 270 correct? */
887 switch (config->rotation) {
888 case ENABLE_ROTATION_0:
889 /*
890 * Most (all?) VBTs claim 0 degrees despite having
891 * an upside down panel, thus we do not trust this.
892 */
893 dev_priv->vbt.dsi.orientation =
894 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
895 break;
896 case ENABLE_ROTATION_90:
897 dev_priv->vbt.dsi.orientation =
898 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
899 break;
900 case ENABLE_ROTATION_180:
901 dev_priv->vbt.dsi.orientation =
902 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
903 break;
904 case ENABLE_ROTATION_270:
905 dev_priv->vbt.dsi.orientation =
906 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
907 break;
908 }
909
910 /* We have mandatory mipi config blocks. Initialize as generic panel */
911 dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
912 }
913
914 /* Find the sequence block and size for the given panel. */
915 static const u8 *
916 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
917 u16 panel_id, u32 *seq_size)
918 {
919 u32 total = get_blocksize(sequence);
920 const u8 *data = &sequence->data[0];
921 u8 current_id;
922 u32 current_size;
923 int header_size = sequence->version >= 3 ? 5 : 3;
924 int index = 0;
925 int i;
926
927 /* skip new block size */
928 if (sequence->version >= 3)
929 data += 4;
930
931 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
932 if (index + header_size > total) {
933 DRM_ERROR("Invalid sequence block (header)\n");
934 return NULL;
935 }
936
937 current_id = *(data + index);
938 if (sequence->version >= 3)
939 current_size = *((const u32 *)(data + index + 1));
940 else
941 current_size = *((const u16 *)(data + index + 1));
942
943 index += header_size;
944
945 if (index + current_size > total) {
946 DRM_ERROR("Invalid sequence block\n");
947 return NULL;
948 }
949
950 if (current_id == panel_id) {
951 *seq_size = current_size;
952 return data + index;
953 }
954
955 index += current_size;
956 }
957
958 DRM_ERROR("Sequence block detected but no valid configuration\n");
959
960 return NULL;
961 }
962
963 static int goto_next_sequence(const u8 *data, int index, int total)
964 {
965 u16 len;
966
967 /* Skip Sequence Byte. */
968 for (index = index + 1; index < total; index += len) {
969 u8 operation_byte = *(data + index);
970 index++;
971
972 switch (operation_byte) {
973 case MIPI_SEQ_ELEM_END:
974 return index;
975 case MIPI_SEQ_ELEM_SEND_PKT:
976 if (index + 4 > total)
977 return 0;
978
979 len = *((const u16 *)(data + index + 2)) + 4;
980 break;
981 case MIPI_SEQ_ELEM_DELAY:
982 len = 4;
983 break;
984 case MIPI_SEQ_ELEM_GPIO:
985 len = 2;
986 break;
987 case MIPI_SEQ_ELEM_I2C:
988 if (index + 7 > total)
989 return 0;
990 len = *(data + index + 6) + 7;
991 break;
992 default:
993 DRM_ERROR("Unknown operation byte\n");
994 return 0;
995 }
996 }
997
998 return 0;
999 }
1000
1001 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1002 {
1003 int seq_end;
1004 u16 len;
1005 u32 size_of_sequence;
1006
1007 /*
1008 * Could skip sequence based on Size of Sequence alone, but also do some
1009 * checking on the structure.
1010 */
1011 if (total < 5) {
1012 DRM_ERROR("Too small sequence size\n");
1013 return 0;
1014 }
1015
1016 /* Skip Sequence Byte. */
1017 index++;
1018
1019 /*
1020 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1021 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1022 * byte.
1023 */
1024 size_of_sequence = *((const u32 *)(data + index));
1025 index += 4;
1026
1027 seq_end = index + size_of_sequence;
1028 if (seq_end > total) {
1029 DRM_ERROR("Invalid sequence size\n");
1030 return 0;
1031 }
1032
1033 for (; index < total; index += len) {
1034 u8 operation_byte = *(data + index);
1035 index++;
1036
1037 if (operation_byte == MIPI_SEQ_ELEM_END) {
1038 if (index != seq_end) {
1039 DRM_ERROR("Invalid element structure\n");
1040 return 0;
1041 }
1042 return index;
1043 }
1044
1045 len = *(data + index);
1046 index++;
1047
1048 /*
1049 * FIXME: Would be nice to check elements like for v1/v2 in
1050 * goto_next_sequence() above.
1051 */
1052 switch (operation_byte) {
1053 case MIPI_SEQ_ELEM_SEND_PKT:
1054 case MIPI_SEQ_ELEM_DELAY:
1055 case MIPI_SEQ_ELEM_GPIO:
1056 case MIPI_SEQ_ELEM_I2C:
1057 case MIPI_SEQ_ELEM_SPI:
1058 case MIPI_SEQ_ELEM_PMIC:
1059 break;
1060 default:
1061 DRM_ERROR("Unknown operation byte %u\n",
1062 operation_byte);
1063 break;
1064 }
1065 }
1066
1067 return 0;
1068 }
1069
1070 /*
1071 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1072 * skip all delay + gpio operands and stop at the first DSI packet op.
1073 */
1074 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
1075 {
1076 const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1077 int index, len;
1078
1079 if (WARN_ON(!data || dev_priv->vbt.dsi.seq_version != 1))
1080 return 0;
1081
1082 /* index = 1 to skip sequence byte */
1083 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1084 switch (data[index]) {
1085 case MIPI_SEQ_ELEM_SEND_PKT:
1086 return index == 1 ? 0 : index;
1087 case MIPI_SEQ_ELEM_DELAY:
1088 len = 5; /* 1 byte for operand + uint32 */
1089 break;
1090 case MIPI_SEQ_ELEM_GPIO:
1091 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1092 break;
1093 default:
1094 return 0;
1095 }
1096 }
1097
1098 return 0;
1099 }
1100
1101 /*
1102 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1103 * The deassert must be done before calling intel_dsi_device_ready, so for
1104 * these devices we split the init OTP sequence into a deassert sequence and
1105 * the actual init OTP part.
1106 */
1107 static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
1108 {
1109 u8 *init_otp;
1110 int len;
1111
1112 /* Limit this to VLV for now. */
1113 if (!IS_VALLEYVIEW(dev_priv))
1114 return;
1115
1116 /* Limit this to v1 vid-mode sequences */
1117 if (dev_priv->vbt.dsi.config->is_cmd_mode ||
1118 dev_priv->vbt.dsi.seq_version != 1)
1119 return;
1120
1121 /* Only do this if there are otp and assert seqs and no deassert seq */
1122 if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1123 !dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1124 dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1125 return;
1126
1127 /* The deassert-sequence ends at the first DSI packet */
1128 len = get_init_otp_deassert_fragment_len(dev_priv);
1129 if (!len)
1130 return;
1131
1132 DRM_DEBUG_KMS("Using init OTP fragment to deassert reset\n");
1133
1134 /* Copy the fragment, update seq byte and terminate it */
1135 init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1136 dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1137 if (!dev_priv->vbt.dsi.deassert_seq)
1138 return;
1139 dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1140 dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1141 /* Use the copy for deassert */
1142 dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1143 dev_priv->vbt.dsi.deassert_seq;
1144 /* Replace the last byte of the fragment with init OTP seq byte */
1145 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1146 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1147 dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1148 }
1149
1150 static void
1151 parse_mipi_sequence(struct drm_i915_private *dev_priv,
1152 const struct bdb_header *bdb)
1153 {
1154 int panel_type = dev_priv->vbt.panel_type;
1155 const struct bdb_mipi_sequence *sequence;
1156 const u8 *seq_data;
1157 u32 seq_size;
1158 u8 *data;
1159 int index = 0;
1160
1161 /* Only our generic panel driver uses the sequence block. */
1162 if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1163 return;
1164
1165 sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1166 if (!sequence) {
1167 DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
1168 return;
1169 }
1170
1171 /* Fail gracefully for forward incompatible sequence block. */
1172 if (sequence->version >= 4) {
1173 DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
1174 sequence->version);
1175 return;
1176 }
1177
1178 DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
1179
1180 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1181 if (!seq_data)
1182 return;
1183
1184 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1185 if (!data)
1186 return;
1187
1188 /* Parse the sequences, store pointers to each sequence. */
1189 for (;;) {
1190 u8 seq_id = *(data + index);
1191 if (seq_id == MIPI_SEQ_END)
1192 break;
1193
1194 if (seq_id >= MIPI_SEQ_MAX) {
1195 DRM_ERROR("Unknown sequence %u\n", seq_id);
1196 goto err;
1197 }
1198
1199 /* Log about presence of sequences we won't run. */
1200 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1201 DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id);
1202
1203 dev_priv->vbt.dsi.sequence[seq_id] = data + index;
1204
1205 if (sequence->version >= 3)
1206 index = goto_next_sequence_v3(data, index, seq_size);
1207 else
1208 index = goto_next_sequence(data, index, seq_size);
1209 if (!index) {
1210 DRM_ERROR("Invalid sequence %u\n", seq_id);
1211 goto err;
1212 }
1213 }
1214
1215 dev_priv->vbt.dsi.data = data;
1216 dev_priv->vbt.dsi.size = seq_size;
1217 dev_priv->vbt.dsi.seq_version = sequence->version;
1218
1219 fixup_mipi_sequences(dev_priv);
1220
1221 DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
1222 return;
1223
1224 err:
1225 kfree(data);
1226 memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
1227 }
1228
1229 static u8 translate_iboost(u8 val)
1230 {
1231 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1232
1233 if (val >= ARRAY_SIZE(mapping)) {
1234 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1235 return 0;
1236 }
1237 return mapping[val];
1238 }
1239
1240 static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
1241 enum port port)
1242 {
1243 const struct ddi_vbt_port_info *info =
1244 &dev_priv->vbt.ddi_port_info[port];
1245 enum port p;
1246
1247 if (!info->alternate_ddc_pin)
1248 return;
1249
1250 for (p = PORT_A; p < I915_MAX_PORTS; p++) {
1251 struct ddi_vbt_port_info *i = &dev_priv->vbt.ddi_port_info[p];
1252
1253 if (p == port || !i->present ||
1254 info->alternate_ddc_pin != i->alternate_ddc_pin)
1255 continue;
1256
1257 DRM_DEBUG_KMS("port %c trying to use the same DDC pin (0x%x) as port %c, "
1258 "disabling port %c DVI/HDMI support\n",
1259 port_name(p), i->alternate_ddc_pin,
1260 port_name(port), port_name(p));
1261
1262 /*
1263 * If we have multiple ports supposedly sharing the
1264 * pin, then dvi/hdmi couldn't exist on the shared
1265 * port. Otherwise they share the same ddc bin and
1266 * system couldn't communicate with them separately.
1267 *
1268 * Due to parsing the ports in child device order,
1269 * a later device will always clobber an earlier one.
1270 */
1271 i->supports_dvi = false;
1272 i->supports_hdmi = false;
1273 i->alternate_ddc_pin = 0;
1274 }
1275 }
1276
1277 static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
1278 enum port port)
1279 {
1280 const struct ddi_vbt_port_info *info =
1281 &dev_priv->vbt.ddi_port_info[port];
1282 enum port p;
1283
1284 if (!info->alternate_aux_channel)
1285 return;
1286
1287 for (p = PORT_A; p < I915_MAX_PORTS; p++) {
1288 struct ddi_vbt_port_info *i = &dev_priv->vbt.ddi_port_info[p];
1289
1290 if (p == port || !i->present ||
1291 info->alternate_aux_channel != i->alternate_aux_channel)
1292 continue;
1293
1294 DRM_DEBUG_KMS("port %c trying to use the same AUX CH (0x%x) as port %c, "
1295 "disabling port %c DP support\n",
1296 port_name(p), i->alternate_aux_channel,
1297 port_name(port), port_name(p));
1298
1299 /*
1300 * If we have multiple ports supposedlt sharing the
1301 * aux channel, then DP couldn't exist on the shared
1302 * port. Otherwise they share the same aux channel
1303 * and system couldn't communicate with them separately.
1304 *
1305 * Due to parsing the ports in child device order,
1306 * a later device will always clobber an earlier one.
1307 */
1308 i->supports_dp = false;
1309 i->alternate_aux_channel = 0;
1310 }
1311 }
1312
1313 static const u8 cnp_ddc_pin_map[] = {
1314 [0] = 0, /* N/A */
1315 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1316 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1317 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1318 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1319 };
1320
1321 static const u8 icp_ddc_pin_map[] = {
1322 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1323 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1324 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1325 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1326 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1327 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1328 };
1329
1330 static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
1331 {
1332 const u8 *ddc_pin_map;
1333 int n_entries;
1334
1335 if (HAS_PCH_ICP(dev_priv)) {
1336 ddc_pin_map = icp_ddc_pin_map;
1337 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1338 } else if (HAS_PCH_CNP(dev_priv)) {
1339 ddc_pin_map = cnp_ddc_pin_map;
1340 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1341 } else {
1342 /* Assuming direct map */
1343 return vbt_pin;
1344 }
1345
1346 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1347 return ddc_pin_map[vbt_pin];
1348
1349 DRM_DEBUG_KMS("Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1350 vbt_pin);
1351 return 0;
1352 }
1353
1354 static enum port dvo_port_to_port(u8 dvo_port)
1355 {
1356 /*
1357 * Each DDI port can have more than one value on the "DVO Port" field,
1358 * so look for all the possible values for each port.
1359 */
1360 static const int dvo_ports[][3] = {
1361 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
1362 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
1363 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
1364 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1},
1365 [PORT_E] = { DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
1366 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
1367 };
1368 enum port port;
1369 int i;
1370
1371 for (port = PORT_A; port < ARRAY_SIZE(dvo_ports); port++) {
1372 for (i = 0; i < ARRAY_SIZE(dvo_ports[port]); i++) {
1373 if (dvo_ports[port][i] == -1)
1374 break;
1375
1376 if (dvo_port == dvo_ports[port][i])
1377 return port;
1378 }
1379 }
1380
1381 return PORT_NONE;
1382 }
1383
1384 static void parse_ddi_port(struct drm_i915_private *dev_priv,
1385 const struct child_device_config *child,
1386 u8 bdb_version)
1387 {
1388 struct ddi_vbt_port_info *info;
1389 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1390 enum port port;
1391
1392 port = dvo_port_to_port(child->dvo_port);
1393 if (port == PORT_NONE)
1394 return;
1395
1396 info = &dev_priv->vbt.ddi_port_info[port];
1397
1398 if (info->present) {
1399 DRM_DEBUG_KMS("More than one child device for port %c in VBT, using the first.\n",
1400 port_name(port));
1401 return;
1402 }
1403
1404 info->present = true;
1405
1406 is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1407 is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1408 is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1409 is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1410 is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
1411
1412 if (port == PORT_A && is_dvi) {
1413 DRM_DEBUG_KMS("VBT claims port A supports DVI%s, ignoring\n",
1414 is_hdmi ? "/HDMI" : "");
1415 is_dvi = false;
1416 is_hdmi = false;
1417 }
1418
1419 info->supports_dvi = is_dvi;
1420 info->supports_hdmi = is_hdmi;
1421 info->supports_dp = is_dp;
1422 info->supports_edp = is_edp;
1423
1424 if (bdb_version >= 195)
1425 info->supports_typec_usb = child->dp_usb_type_c;
1426
1427 if (bdb_version >= 209)
1428 info->supports_tbt = child->tbt;
1429
1430 DRM_DEBUG_KMS("Port %c VBT info: DP:%d HDMI:%d DVI:%d EDP:%d CRT:%d TCUSB:%d TBT:%d\n",
1431 port_name(port), is_dp, is_hdmi, is_dvi, is_edp, is_crt,
1432 info->supports_typec_usb, info->supports_tbt);
1433
1434 if (is_edp && is_dvi)
1435 DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
1436 port_name(port));
1437 if (is_crt && port != PORT_E)
1438 DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
1439 if (is_crt && (is_dvi || is_dp))
1440 DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
1441 port_name(port));
1442 if (is_dvi && (port == PORT_A || port == PORT_E))
1443 DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
1444 if (!is_dvi && !is_dp && !is_crt)
1445 DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
1446 port_name(port));
1447 if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
1448 DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
1449
1450 if (is_dvi) {
1451 u8 ddc_pin;
1452
1453 ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
1454 if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
1455 info->alternate_ddc_pin = ddc_pin;
1456 sanitize_ddc_pin(dev_priv, port);
1457 } else {
1458 DRM_DEBUG_KMS("Port %c has invalid DDC pin %d, "
1459 "sticking to defaults\n",
1460 port_name(port), ddc_pin);
1461 }
1462 }
1463
1464 if (is_dp) {
1465 info->alternate_aux_channel = child->aux_channel;
1466
1467 sanitize_aux_ch(dev_priv, port);
1468 }
1469
1470 if (bdb_version >= 158) {
1471 /* The VBT HDMI level shift values match the table we have. */
1472 u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1473 DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
1474 port_name(port),
1475 hdmi_level_shift);
1476 info->hdmi_level_shift = hdmi_level_shift;
1477 }
1478
1479 if (bdb_version >= 204) {
1480 int max_tmds_clock;
1481
1482 switch (child->hdmi_max_data_rate) {
1483 default:
1484 MISSING_CASE(child->hdmi_max_data_rate);
1485 /* fall through */
1486 case HDMI_MAX_DATA_RATE_PLATFORM:
1487 max_tmds_clock = 0;
1488 break;
1489 case HDMI_MAX_DATA_RATE_297:
1490 max_tmds_clock = 297000;
1491 break;
1492 case HDMI_MAX_DATA_RATE_165:
1493 max_tmds_clock = 165000;
1494 break;
1495 }
1496
1497 if (max_tmds_clock)
1498 DRM_DEBUG_KMS("VBT HDMI max TMDS clock for port %c: %d kHz\n",
1499 port_name(port), max_tmds_clock);
1500 info->max_tmds_clock = max_tmds_clock;
1501 }
1502
1503 /* Parse the I_boost config for SKL and above */
1504 if (bdb_version >= 196 && child->iboost) {
1505 info->dp_boost_level = translate_iboost(child->dp_iboost_level);
1506 DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
1507 port_name(port), info->dp_boost_level);
1508 info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
1509 DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
1510 port_name(port), info->hdmi_boost_level);
1511 }
1512
1513 /* DP max link rate for CNL+ */
1514 if (bdb_version >= 216) {
1515 switch (child->dp_max_link_rate) {
1516 default:
1517 case VBT_DP_MAX_LINK_RATE_HBR3:
1518 info->dp_max_link_rate = 810000;
1519 break;
1520 case VBT_DP_MAX_LINK_RATE_HBR2:
1521 info->dp_max_link_rate = 540000;
1522 break;
1523 case VBT_DP_MAX_LINK_RATE_HBR:
1524 info->dp_max_link_rate = 270000;
1525 break;
1526 case VBT_DP_MAX_LINK_RATE_LBR:
1527 info->dp_max_link_rate = 162000;
1528 break;
1529 }
1530 DRM_DEBUG_KMS("VBT DP max link rate for port %c: %d\n",
1531 port_name(port), info->dp_max_link_rate);
1532 }
1533 }
1534
1535 static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
1536 {
1537 const struct child_device_config *child;
1538 int i;
1539
1540 if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1541 return;
1542
1543 if (bdb_version < 155)
1544 return;
1545
1546 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1547 child = dev_priv->vbt.child_dev + i;
1548
1549 parse_ddi_port(dev_priv, child, bdb_version);
1550 }
1551 }
1552
1553 static void
1554 parse_general_definitions(struct drm_i915_private *dev_priv,
1555 const struct bdb_header *bdb)
1556 {
1557 const struct bdb_general_definitions *defs;
1558 const struct child_device_config *child;
1559 int i, child_device_num, count;
1560 u8 expected_size;
1561 u16 block_size;
1562 int bus_pin;
1563
1564 defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
1565 if (!defs) {
1566 DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
1567 return;
1568 }
1569
1570 block_size = get_blocksize(defs);
1571 if (block_size < sizeof(*defs)) {
1572 DRM_DEBUG_KMS("General definitions block too small (%u)\n",
1573 block_size);
1574 return;
1575 }
1576
1577 bus_pin = defs->crt_ddc_gmbus_pin;
1578 DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
1579 if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
1580 dev_priv->vbt.crt_ddc_pin = bus_pin;
1581
1582 if (bdb->version < 106) {
1583 expected_size = 22;
1584 } else if (bdb->version < 111) {
1585 expected_size = 27;
1586 } else if (bdb->version < 195) {
1587 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
1588 } else if (bdb->version == 195) {
1589 expected_size = 37;
1590 } else if (bdb->version <= 215) {
1591 expected_size = 38;
1592 } else if (bdb->version <= 216) {
1593 expected_size = 39;
1594 } else {
1595 expected_size = sizeof(*child);
1596 BUILD_BUG_ON(sizeof(*child) < 39);
1597 DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
1598 bdb->version, expected_size);
1599 }
1600
1601 /* Flag an error for unexpected size, but continue anyway. */
1602 if (defs->child_dev_size != expected_size)
1603 DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
1604 defs->child_dev_size, expected_size, bdb->version);
1605
1606 /* The legacy sized child device config is the minimum we need. */
1607 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
1608 DRM_DEBUG_KMS("Child device config size %u is too small.\n",
1609 defs->child_dev_size);
1610 return;
1611 }
1612
1613 /* get the number of child device */
1614 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
1615 count = 0;
1616 /* get the number of child device that is present */
1617 for (i = 0; i < child_device_num; i++) {
1618 child = child_device_ptr(defs, i);
1619 if (!child->device_type)
1620 continue;
1621 count++;
1622 }
1623 if (!count) {
1624 DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
1625 return;
1626 }
1627 dev_priv->vbt.child_dev = kcalloc(count, sizeof(*child), GFP_KERNEL);
1628 if (!dev_priv->vbt.child_dev) {
1629 DRM_DEBUG_KMS("No memory space for child device\n");
1630 return;
1631 }
1632
1633 dev_priv->vbt.child_dev_num = count;
1634 count = 0;
1635 for (i = 0; i < child_device_num; i++) {
1636 child = child_device_ptr(defs, i);
1637 if (!child->device_type)
1638 continue;
1639
1640 /*
1641 * Copy as much as we know (sizeof) and is available
1642 * (child_dev_size) of the child device. Accessing the data must
1643 * depend on VBT version.
1644 */
1645 memcpy(dev_priv->vbt.child_dev + count, child,
1646 min_t(size_t, defs->child_dev_size, sizeof(*child)));
1647 count++;
1648 }
1649 }
1650
1651 /* Common defaults which may be overridden by VBT. */
1652 static void
1653 init_vbt_defaults(struct drm_i915_private *dev_priv)
1654 {
1655 enum port port;
1656
1657 dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
1658
1659 /* Default to having backlight */
1660 dev_priv->vbt.backlight.present = true;
1661
1662 /* LFP panel data */
1663 dev_priv->vbt.lvds_dither = 1;
1664
1665 /* SDVO panel data */
1666 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1667
1668 /* general features */
1669 dev_priv->vbt.int_tv_support = 1;
1670 dev_priv->vbt.int_crt_support = 1;
1671
1672 /* driver features */
1673 dev_priv->vbt.int_lvds_support = 1;
1674
1675 /* Default to using SSC */
1676 dev_priv->vbt.lvds_use_ssc = 1;
1677 /*
1678 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
1679 * clock for LVDS.
1680 */
1681 dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
1682 !HAS_PCH_SPLIT(dev_priv));
1683 DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
1684
1685 for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1686 struct ddi_vbt_port_info *info =
1687 &dev_priv->vbt.ddi_port_info[port];
1688
1689 info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
1690 }
1691 }
1692
1693 /* Defaults to initialize only if there is no VBT. */
1694 static void
1695 init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
1696 {
1697 enum port port;
1698
1699 for (port = PORT_A; port < I915_MAX_PORTS; port++) {
1700 struct ddi_vbt_port_info *info =
1701 &dev_priv->vbt.ddi_port_info[port];
1702
1703 /*
1704 * VBT has the TypeC mode (native,TBT/USB) and we don't want
1705 * to detect it.
1706 */
1707 if (intel_port_is_tc(dev_priv, port))
1708 continue;
1709
1710 info->supports_dvi = (port != PORT_A && port != PORT_E);
1711 info->supports_hdmi = info->supports_dvi;
1712 info->supports_dp = (port != PORT_E);
1713 info->supports_edp = (port == PORT_A);
1714 }
1715 }
1716
1717 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
1718 {
1719 const void *_vbt = vbt;
1720
1721 return _vbt + vbt->bdb_offset;
1722 }
1723
1724 /**
1725 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
1726 * @buf: pointer to a buffer to validate
1727 * @size: size of the buffer
1728 *
1729 * Returns true on valid VBT.
1730 */
1731 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
1732 {
1733 const struct vbt_header *vbt = buf;
1734 const struct bdb_header *bdb;
1735
1736 if (!vbt)
1737 return false;
1738
1739 if (sizeof(struct vbt_header) > size) {
1740 DRM_DEBUG_DRIVER("VBT header incomplete\n");
1741 return false;
1742 }
1743
1744 if (memcmp(vbt->signature, "$VBT", 4)) {
1745 DRM_DEBUG_DRIVER("VBT invalid signature\n");
1746 return false;
1747 }
1748
1749 if (range_overflows_t(size_t,
1750 vbt->bdb_offset,
1751 sizeof(struct bdb_header),
1752 size)) {
1753 DRM_DEBUG_DRIVER("BDB header incomplete\n");
1754 return false;
1755 }
1756
1757 bdb = get_bdb_header(vbt);
1758 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
1759 DRM_DEBUG_DRIVER("BDB incomplete\n");
1760 return false;
1761 }
1762
1763 return vbt;
1764 }
1765
1766 static const struct vbt_header *find_vbt(void __iomem *bios, size_t size)
1767 {
1768 size_t i;
1769
1770 /* Scour memory looking for the VBT signature. */
1771 for (i = 0; i + 4 < size; i++) {
1772 void *vbt;
1773
1774 if (ioread32(bios + i) != *((const u32 *) "$VBT"))
1775 continue;
1776
1777 /*
1778 * This is the one place where we explicitly discard the address
1779 * space (__iomem) of the BIOS/VBT.
1780 */
1781 vbt = (void __force *) bios + i;
1782 if (intel_bios_is_valid_vbt(vbt, size - i))
1783 return vbt;
1784
1785 break;
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /**
1792 * intel_bios_init - find VBT and initialize settings from the BIOS
1793 * @dev_priv: i915 device instance
1794 *
1795 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
1796 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
1797 * initialize some defaults if the VBT is not present at all.
1798 */
1799 void intel_bios_init(struct drm_i915_private *dev_priv)
1800 {
1801 struct pci_dev *pdev = dev_priv->drm.pdev;
1802 const struct vbt_header *vbt = dev_priv->opregion.vbt;
1803 const struct bdb_header *bdb;
1804 u8 __iomem *bios = NULL;
1805
1806 if (!HAS_DISPLAY(dev_priv)) {
1807 DRM_DEBUG_KMS("Skipping VBT init due to disabled display.\n");
1808 return;
1809 }
1810
1811 init_vbt_defaults(dev_priv);
1812
1813 /* If the OpRegion does not have VBT, look in PCI ROM. */
1814 if (!vbt) {
1815 size_t size;
1816
1817 bios = pci_map_rom(pdev, &size);
1818 if (!bios)
1819 goto out;
1820
1821 vbt = find_vbt(bios, size);
1822 if (!vbt)
1823 goto out;
1824
1825 DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
1826 }
1827
1828 bdb = get_bdb_header(vbt);
1829
1830 DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
1831 (int)sizeof(vbt->signature), vbt->signature, bdb->version);
1832
1833 /* Grab useful general definitions */
1834 parse_general_features(dev_priv, bdb);
1835 parse_general_definitions(dev_priv, bdb);
1836 parse_lfp_panel_data(dev_priv, bdb);
1837 parse_lfp_backlight(dev_priv, bdb);
1838 parse_sdvo_panel_data(dev_priv, bdb);
1839 parse_driver_features(dev_priv, bdb);
1840 parse_edp(dev_priv, bdb);
1841 parse_psr(dev_priv, bdb);
1842 parse_mipi_config(dev_priv, bdb);
1843 parse_mipi_sequence(dev_priv, bdb);
1844
1845 /* Further processing on pre-parsed data */
1846 parse_sdvo_device_mapping(dev_priv, bdb->version);
1847 parse_ddi_ports(dev_priv, bdb->version);
1848
1849 out:
1850 if (!vbt) {
1851 DRM_INFO("Failed to find VBIOS tables (VBT)\n");
1852 init_vbt_missing_defaults(dev_priv);
1853 }
1854
1855 if (bios)
1856 pci_unmap_rom(pdev, bios);
1857 }
1858
1859 /**
1860 * intel_bios_cleanup - Free any resources allocated by intel_bios_init()
1861 * @dev_priv: i915 device instance
1862 */
1863 void intel_bios_cleanup(struct drm_i915_private *dev_priv)
1864 {
1865 kfree(dev_priv->vbt.child_dev);
1866 dev_priv->vbt.child_dev = NULL;
1867 dev_priv->vbt.child_dev_num = 0;
1868 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1869 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1870 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1871 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1872 kfree(dev_priv->vbt.dsi.data);
1873 dev_priv->vbt.dsi.data = NULL;
1874 kfree(dev_priv->vbt.dsi.pps);
1875 dev_priv->vbt.dsi.pps = NULL;
1876 kfree(dev_priv->vbt.dsi.config);
1877 dev_priv->vbt.dsi.config = NULL;
1878 kfree(dev_priv->vbt.dsi.deassert_seq);
1879 dev_priv->vbt.dsi.deassert_seq = NULL;
1880 }
1881
1882 /**
1883 * intel_bios_is_tv_present - is integrated TV present in VBT
1884 * @dev_priv: i915 device instance
1885 *
1886 * Return true if TV is present. If no child devices were parsed from VBT,
1887 * assume TV is present.
1888 */
1889 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
1890 {
1891 const struct child_device_config *child;
1892 int i;
1893
1894 if (!dev_priv->vbt.int_tv_support)
1895 return false;
1896
1897 if (!dev_priv->vbt.child_dev_num)
1898 return true;
1899
1900 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1901 child = dev_priv->vbt.child_dev + i;
1902 /*
1903 * If the device type is not TV, continue.
1904 */
1905 switch (child->device_type) {
1906 case DEVICE_TYPE_INT_TV:
1907 case DEVICE_TYPE_TV:
1908 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
1909 break;
1910 default:
1911 continue;
1912 }
1913 /* Only when the addin_offset is non-zero, it is regarded
1914 * as present.
1915 */
1916 if (child->addin_offset)
1917 return true;
1918 }
1919
1920 return false;
1921 }
1922
1923 /**
1924 * intel_bios_is_lvds_present - is LVDS present in VBT
1925 * @dev_priv: i915 device instance
1926 * @i2c_pin: i2c pin for LVDS if present
1927 *
1928 * Return true if LVDS is present. If no child devices were parsed from VBT,
1929 * assume LVDS is present.
1930 */
1931 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
1932 {
1933 const struct child_device_config *child;
1934 int i;
1935
1936 if (!dev_priv->vbt.child_dev_num)
1937 return true;
1938
1939 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
1940 child = dev_priv->vbt.child_dev + i;
1941
1942 /* If the device type is not LFP, continue.
1943 * We have to check both the new identifiers as well as the
1944 * old for compatibility with some BIOSes.
1945 */
1946 if (child->device_type != DEVICE_TYPE_INT_LFP &&
1947 child->device_type != DEVICE_TYPE_LFP)
1948 continue;
1949
1950 if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
1951 *i2c_pin = child->i2c_pin;
1952
1953 /* However, we cannot trust the BIOS writers to populate
1954 * the VBT correctly. Since LVDS requires additional
1955 * information from AIM blocks, a non-zero addin offset is
1956 * a good indicator that the LVDS is actually present.
1957 */
1958 if (child->addin_offset)
1959 return true;
1960
1961 /* But even then some BIOS writers perform some black magic
1962 * and instantiate the device without reference to any
1963 * additional data. Trust that if the VBT was written into
1964 * the OpRegion then they have validated the LVDS's existence.
1965 */
1966 if (dev_priv->opregion.vbt)
1967 return true;
1968 }
1969
1970 return false;
1971 }
1972
1973 /**
1974 * intel_bios_is_port_present - is the specified digital port present
1975 * @dev_priv: i915 device instance
1976 * @port: port to check
1977 *
1978 * Return true if the device in %port is present.
1979 */
1980 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
1981 {
1982 const struct child_device_config *child;
1983 static const struct {
1984 u16 dp, hdmi;
1985 } port_mapping[] = {
1986 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
1987 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
1988 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
1989 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
1990 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
1991 };
1992 int i;
1993
1994 if (HAS_DDI(dev_priv)) {
1995 const struct ddi_vbt_port_info *port_info =
1996 &dev_priv->vbt.ddi_port_info[port];
1997
1998 return port_info->supports_dp ||
1999 port_info->supports_dvi ||
2000 port_info->supports_hdmi;
2001 }
2002
2003 /* FIXME maybe deal with port A as well? */
2004 if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2005 return false;
2006
2007 if (!dev_priv->vbt.child_dev_num)
2008 return false;
2009
2010 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2011 child = dev_priv->vbt.child_dev + i;
2012
2013 if ((child->dvo_port == port_mapping[port].dp ||
2014 child->dvo_port == port_mapping[port].hdmi) &&
2015 (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2016 DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2017 return true;
2018 }
2019
2020 return false;
2021 }
2022
2023 /**
2024 * intel_bios_is_port_edp - is the device in given port eDP
2025 * @dev_priv: i915 device instance
2026 * @port: port to check
2027 *
2028 * Return true if the device in %port is eDP.
2029 */
2030 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
2031 {
2032 const struct child_device_config *child;
2033 static const short port_mapping[] = {
2034 [PORT_B] = DVO_PORT_DPB,
2035 [PORT_C] = DVO_PORT_DPC,
2036 [PORT_D] = DVO_PORT_DPD,
2037 [PORT_E] = DVO_PORT_DPE,
2038 [PORT_F] = DVO_PORT_DPF,
2039 };
2040 int i;
2041
2042 if (HAS_DDI(dev_priv))
2043 return dev_priv->vbt.ddi_port_info[port].supports_edp;
2044
2045 if (!dev_priv->vbt.child_dev_num)
2046 return false;
2047
2048 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2049 child = dev_priv->vbt.child_dev + i;
2050
2051 if (child->dvo_port == port_mapping[port] &&
2052 (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2053 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2054 return true;
2055 }
2056
2057 return false;
2058 }
2059
2060 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2061 enum port port)
2062 {
2063 static const struct {
2064 u16 dp, hdmi;
2065 } port_mapping[] = {
2066 /*
2067 * Buggy VBTs may declare DP ports as having
2068 * HDMI type dvo_port :( So let's check both.
2069 */
2070 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2071 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2072 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2073 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2074 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2075 };
2076
2077 if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2078 return false;
2079
2080 if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2081 (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2082 return false;
2083
2084 if (child->dvo_port == port_mapping[port].dp)
2085 return true;
2086
2087 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2088 if (child->dvo_port == port_mapping[port].hdmi &&
2089 child->aux_channel != 0)
2090 return true;
2091
2092 return false;
2093 }
2094
2095 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
2096 enum port port)
2097 {
2098 const struct child_device_config *child;
2099 int i;
2100
2101 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2102 child = dev_priv->vbt.child_dev + i;
2103
2104 if (child_dev_is_dp_dual_mode(child, port))
2105 return true;
2106 }
2107
2108 return false;
2109 }
2110
2111 /**
2112 * intel_bios_is_dsi_present - is DSI present in VBT
2113 * @dev_priv: i915 device instance
2114 * @port: port for DSI if present
2115 *
2116 * Return true if DSI is present, and return the port in %port.
2117 */
2118 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
2119 enum port *port)
2120 {
2121 const struct child_device_config *child;
2122 u8 dvo_port;
2123 int i;
2124
2125 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2126 child = dev_priv->vbt.child_dev + i;
2127
2128 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2129 continue;
2130
2131 dvo_port = child->dvo_port;
2132
2133 if (dvo_port == DVO_PORT_MIPIA ||
2134 (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) ||
2135 (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) {
2136 if (port)
2137 *port = dvo_port - DVO_PORT_MIPIA;
2138 return true;
2139 } else if (dvo_port == DVO_PORT_MIPIB ||
2140 dvo_port == DVO_PORT_MIPIC ||
2141 dvo_port == DVO_PORT_MIPID) {
2142 DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
2143 port_name(dvo_port - DVO_PORT_MIPIA));
2144 }
2145 }
2146
2147 return false;
2148 }
2149
2150 /**
2151 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2152 * @dev_priv: i915 device instance
2153 * @port: port to check
2154 *
2155 * Return true if HPD should be inverted for %port.
2156 */
2157 bool
2158 intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
2159 enum port port)
2160 {
2161 const struct child_device_config *child;
2162 int i;
2163
2164 if (WARN_ON_ONCE(!IS_GEN9_LP(dev_priv)))
2165 return false;
2166
2167 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2168 child = dev_priv->vbt.child_dev + i;
2169
2170 if (!child->hpd_invert)
2171 continue;
2172
2173 switch (child->dvo_port) {
2174 case DVO_PORT_DPA:
2175 case DVO_PORT_HDMIA:
2176 if (port == PORT_A)
2177 return true;
2178 break;
2179 case DVO_PORT_DPB:
2180 case DVO_PORT_HDMIB:
2181 if (port == PORT_B)
2182 return true;
2183 break;
2184 case DVO_PORT_DPC:
2185 case DVO_PORT_HDMIC:
2186 if (port == PORT_C)
2187 return true;
2188 break;
2189 default:
2190 break;
2191 }
2192 }
2193
2194 return false;
2195 }
2196
2197 /**
2198 * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2199 * @dev_priv: i915 device instance
2200 * @port: port to check
2201 *
2202 * Return true if LSPCON is present on this port
2203 */
2204 bool
2205 intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
2206 enum port port)
2207 {
2208 const struct child_device_config *child;
2209 int i;
2210
2211 if (!HAS_LSPCON(dev_priv))
2212 return false;
2213
2214 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2215 child = dev_priv->vbt.child_dev + i;
2216
2217 if (!child->lspcon)
2218 continue;
2219
2220 switch (child->dvo_port) {
2221 case DVO_PORT_DPA:
2222 case DVO_PORT_HDMIA:
2223 if (port == PORT_A)
2224 return true;
2225 break;
2226 case DVO_PORT_DPB:
2227 case DVO_PORT_HDMIB:
2228 if (port == PORT_B)
2229 return true;
2230 break;
2231 case DVO_PORT_DPC:
2232 case DVO_PORT_HDMIC:
2233 if (port == PORT_C)
2234 return true;
2235 break;
2236 case DVO_PORT_DPD:
2237 case DVO_PORT_HDMID:
2238 if (port == PORT_D)
2239 return true;
2240 break;
2241 case DVO_PORT_DPF:
2242 case DVO_PORT_HDMIF:
2243 if (port == PORT_F)
2244 return true;
2245 break;
2246 default:
2247 break;
2248 }
2249 }
2250
2251 return false;
2252 }
2253
2254 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv,
2255 enum port port)
2256 {
2257 const struct ddi_vbt_port_info *info =
2258 &dev_priv->vbt.ddi_port_info[port];
2259 enum aux_ch aux_ch;
2260
2261 if (!info->alternate_aux_channel) {
2262 aux_ch = (enum aux_ch)port;
2263
2264 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
2265 aux_ch_name(aux_ch), port_name(port));
2266 return aux_ch;
2267 }
2268
2269 switch (info->alternate_aux_channel) {
2270 case DP_AUX_A:
2271 aux_ch = AUX_CH_A;
2272 break;
2273 case DP_AUX_B:
2274 aux_ch = AUX_CH_B;
2275 break;
2276 case DP_AUX_C:
2277 aux_ch = AUX_CH_C;
2278 break;
2279 case DP_AUX_D:
2280 aux_ch = AUX_CH_D;
2281 break;
2282 case DP_AUX_E:
2283 aux_ch = AUX_CH_E;
2284 break;
2285 case DP_AUX_F:
2286 aux_ch = AUX_CH_F;
2287 break;
2288 default:
2289 MISSING_CASE(info->alternate_aux_channel);
2290 aux_ch = AUX_CH_A;
2291 break;
2292 }
2293
2294 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
2295 aux_ch_name(aux_ch), port_name(port));
2296
2297 return aux_ch;
2298 }