]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Overcome display engine stride limits via GTT remapping
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/reservation.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45 #include <drm/i915_drm.h>
46
47 #include "i915_drv.h"
48 #include "i915_gem_clflush.h"
49 #include "i915_trace.h"
50 #include "intel_acpi.h"
51 #include "intel_atomic.h"
52 #include "intel_atomic_plane.h"
53 #include "intel_color.h"
54 #include "intel_cdclk.h"
55 #include "intel_crt.h"
56 #include "intel_ddi.h"
57 #include "intel_dp.h"
58 #include "intel_drv.h"
59 #include "intel_dsi.h"
60 #include "intel_dvo.h"
61 #include "intel_fbc.h"
62 #include "intel_fbdev.h"
63 #include "intel_fifo_underrun.h"
64 #include "intel_frontbuffer.h"
65 #include "intel_gmbus.h"
66 #include "intel_hdcp.h"
67 #include "intel_hdmi.h"
68 #include "intel_hotplug.h"
69 #include "intel_lvds.h"
70 #include "intel_overlay.h"
71 #include "intel_pipe_crc.h"
72 #include "intel_pm.h"
73 #include "intel_psr.h"
74 #include "intel_quirks.h"
75 #include "intel_sdvo.h"
76 #include "intel_sideband.h"
77 #include "intel_sprite.h"
78 #include "intel_tv.h"
79 #include "intel_vdsc.h"
80
81 /* Primary plane formats for gen <= 3 */
82 static const u32 i8xx_primary_formats[] = {
83 DRM_FORMAT_C8,
84 DRM_FORMAT_RGB565,
85 DRM_FORMAT_XRGB1555,
86 DRM_FORMAT_XRGB8888,
87 };
88
89 /* Primary plane formats for gen >= 4 */
90 static const u32 i965_primary_formats[] = {
91 DRM_FORMAT_C8,
92 DRM_FORMAT_RGB565,
93 DRM_FORMAT_XRGB8888,
94 DRM_FORMAT_XBGR8888,
95 DRM_FORMAT_XRGB2101010,
96 DRM_FORMAT_XBGR2101010,
97 };
98
99 static const u64 i9xx_format_modifiers[] = {
100 I915_FORMAT_MOD_X_TILED,
101 DRM_FORMAT_MOD_LINEAR,
102 DRM_FORMAT_MOD_INVALID
103 };
104
105 /* Cursor formats */
106 static const u32 intel_cursor_formats[] = {
107 DRM_FORMAT_ARGB8888,
108 };
109
110 static const u64 cursor_format_modifiers[] = {
111 DRM_FORMAT_MOD_LINEAR,
112 DRM_FORMAT_MOD_INVALID
113 };
114
115 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
116 struct intel_crtc_state *pipe_config);
117 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
118 struct intel_crtc_state *pipe_config);
119
120 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
121 struct drm_i915_gem_object *obj,
122 struct drm_mode_fb_cmd2 *mode_cmd);
123 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
124 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
125 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
126 const struct intel_link_m_n *m_n,
127 const struct intel_link_m_n *m2_n2);
128 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
129 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state);
130 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state);
131 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
132 static void vlv_prepare_pll(struct intel_crtc *crtc,
133 const struct intel_crtc_state *pipe_config);
134 static void chv_prepare_pll(struct intel_crtc *crtc,
135 const struct intel_crtc_state *pipe_config);
136 static void intel_begin_crtc_commit(struct intel_atomic_state *, struct intel_crtc *);
137 static void intel_finish_crtc_commit(struct intel_atomic_state *, struct intel_crtc *);
138 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
139 struct intel_crtc_state *crtc_state);
140 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state);
141 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state);
142 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state);
143 static void intel_modeset_setup_hw_state(struct drm_device *dev,
144 struct drm_modeset_acquire_ctx *ctx);
145 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
146
147 struct intel_limit {
148 struct {
149 int min, max;
150 } dot, vco, n, m, m1, m2, p, p1;
151
152 struct {
153 int dot_limit;
154 int p2_slow, p2_fast;
155 } p2;
156 };
157
158 /* returns HPLL frequency in kHz */
159 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
160 {
161 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
162
163 /* Obtain SKU information */
164 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
165 CCK_FUSE_HPLL_FREQ_MASK;
166
167 return vco_freq[hpll_freq] * 1000;
168 }
169
170 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
171 const char *name, u32 reg, int ref_freq)
172 {
173 u32 val;
174 int divider;
175
176 val = vlv_cck_read(dev_priv, reg);
177 divider = val & CCK_FREQUENCY_VALUES;
178
179 WARN((val & CCK_FREQUENCY_STATUS) !=
180 (divider << CCK_FREQUENCY_STATUS_SHIFT),
181 "%s change in progress\n", name);
182
183 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
184 }
185
186 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
187 const char *name, u32 reg)
188 {
189 int hpll;
190
191 vlv_cck_get(dev_priv);
192
193 if (dev_priv->hpll_freq == 0)
194 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
195
196 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
197
198 vlv_cck_put(dev_priv);
199
200 return hpll;
201 }
202
203 static void intel_update_czclk(struct drm_i915_private *dev_priv)
204 {
205 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
206 return;
207
208 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
209 CCK_CZ_CLOCK_CONTROL);
210
211 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
212 }
213
214 static inline u32 /* units of 100MHz */
215 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
216 const struct intel_crtc_state *pipe_config)
217 {
218 if (HAS_DDI(dev_priv))
219 return pipe_config->port_clock; /* SPLL */
220 else
221 return dev_priv->fdi_pll_freq;
222 }
223
224 static const struct intel_limit intel_limits_i8xx_dac = {
225 .dot = { .min = 25000, .max = 350000 },
226 .vco = { .min = 908000, .max = 1512000 },
227 .n = { .min = 2, .max = 16 },
228 .m = { .min = 96, .max = 140 },
229 .m1 = { .min = 18, .max = 26 },
230 .m2 = { .min = 6, .max = 16 },
231 .p = { .min = 4, .max = 128 },
232 .p1 = { .min = 2, .max = 33 },
233 .p2 = { .dot_limit = 165000,
234 .p2_slow = 4, .p2_fast = 2 },
235 };
236
237 static const struct intel_limit intel_limits_i8xx_dvo = {
238 .dot = { .min = 25000, .max = 350000 },
239 .vco = { .min = 908000, .max = 1512000 },
240 .n = { .min = 2, .max = 16 },
241 .m = { .min = 96, .max = 140 },
242 .m1 = { .min = 18, .max = 26 },
243 .m2 = { .min = 6, .max = 16 },
244 .p = { .min = 4, .max = 128 },
245 .p1 = { .min = 2, .max = 33 },
246 .p2 = { .dot_limit = 165000,
247 .p2_slow = 4, .p2_fast = 4 },
248 };
249
250 static const struct intel_limit intel_limits_i8xx_lvds = {
251 .dot = { .min = 25000, .max = 350000 },
252 .vco = { .min = 908000, .max = 1512000 },
253 .n = { .min = 2, .max = 16 },
254 .m = { .min = 96, .max = 140 },
255 .m1 = { .min = 18, .max = 26 },
256 .m2 = { .min = 6, .max = 16 },
257 .p = { .min = 4, .max = 128 },
258 .p1 = { .min = 1, .max = 6 },
259 .p2 = { .dot_limit = 165000,
260 .p2_slow = 14, .p2_fast = 7 },
261 };
262
263 static const struct intel_limit intel_limits_i9xx_sdvo = {
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1400000, .max = 2800000 },
266 .n = { .min = 1, .max = 6 },
267 .m = { .min = 70, .max = 120 },
268 .m1 = { .min = 8, .max = 18 },
269 .m2 = { .min = 3, .max = 7 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
274 };
275
276 static const struct intel_limit intel_limits_i9xx_lvds = {
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1400000, .max = 2800000 },
279 .n = { .min = 1, .max = 6 },
280 .m = { .min = 70, .max = 120 },
281 .m1 = { .min = 8, .max = 18 },
282 .m2 = { .min = 3, .max = 7 },
283 .p = { .min = 7, .max = 98 },
284 .p1 = { .min = 1, .max = 8 },
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 7 },
287 };
288
289
290 static const struct intel_limit intel_limits_g4x_sdvo = {
291 .dot = { .min = 25000, .max = 270000 },
292 .vco = { .min = 1750000, .max = 3500000},
293 .n = { .min = 1, .max = 4 },
294 .m = { .min = 104, .max = 138 },
295 .m1 = { .min = 17, .max = 23 },
296 .m2 = { .min = 5, .max = 11 },
297 .p = { .min = 10, .max = 30 },
298 .p1 = { .min = 1, .max = 3},
299 .p2 = { .dot_limit = 270000,
300 .p2_slow = 10,
301 .p2_fast = 10
302 },
303 };
304
305 static const struct intel_limit intel_limits_g4x_hdmi = {
306 .dot = { .min = 22000, .max = 400000 },
307 .vco = { .min = 1750000, .max = 3500000},
308 .n = { .min = 1, .max = 4 },
309 .m = { .min = 104, .max = 138 },
310 .m1 = { .min = 16, .max = 23 },
311 .m2 = { .min = 5, .max = 11 },
312 .p = { .min = 5, .max = 80 },
313 .p1 = { .min = 1, .max = 8},
314 .p2 = { .dot_limit = 165000,
315 .p2_slow = 10, .p2_fast = 5 },
316 };
317
318 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
319 .dot = { .min = 20000, .max = 115000 },
320 .vco = { .min = 1750000, .max = 3500000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 104, .max = 138 },
323 .m1 = { .min = 17, .max = 23 },
324 .m2 = { .min = 5, .max = 11 },
325 .p = { .min = 28, .max = 112 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 0,
328 .p2_slow = 14, .p2_fast = 14
329 },
330 };
331
332 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
333 .dot = { .min = 80000, .max = 224000 },
334 .vco = { .min = 1750000, .max = 3500000 },
335 .n = { .min = 1, .max = 3 },
336 .m = { .min = 104, .max = 138 },
337 .m1 = { .min = 17, .max = 23 },
338 .m2 = { .min = 5, .max = 11 },
339 .p = { .min = 14, .max = 42 },
340 .p1 = { .min = 2, .max = 6 },
341 .p2 = { .dot_limit = 0,
342 .p2_slow = 7, .p2_fast = 7
343 },
344 };
345
346 static const struct intel_limit intel_limits_pineview_sdvo = {
347 .dot = { .min = 20000, .max = 400000},
348 .vco = { .min = 1700000, .max = 3500000 },
349 /* Pineview's Ncounter is a ring counter */
350 .n = { .min = 3, .max = 6 },
351 .m = { .min = 2, .max = 256 },
352 /* Pineview only has one combined m divider, which we treat as m2. */
353 .m1 = { .min = 0, .max = 0 },
354 .m2 = { .min = 0, .max = 254 },
355 .p = { .min = 5, .max = 80 },
356 .p1 = { .min = 1, .max = 8 },
357 .p2 = { .dot_limit = 200000,
358 .p2_slow = 10, .p2_fast = 5 },
359 };
360
361 static const struct intel_limit intel_limits_pineview_lvds = {
362 .dot = { .min = 20000, .max = 400000 },
363 .vco = { .min = 1700000, .max = 3500000 },
364 .n = { .min = 3, .max = 6 },
365 .m = { .min = 2, .max = 256 },
366 .m1 = { .min = 0, .max = 0 },
367 .m2 = { .min = 0, .max = 254 },
368 .p = { .min = 7, .max = 112 },
369 .p1 = { .min = 1, .max = 8 },
370 .p2 = { .dot_limit = 112000,
371 .p2_slow = 14, .p2_fast = 14 },
372 };
373
374 /* Ironlake / Sandybridge
375 *
376 * We calculate clock using (register_value + 2) for N/M1/M2, so here
377 * the range value for them is (actual_value - 2).
378 */
379 static const struct intel_limit intel_limits_ironlake_dac = {
380 .dot = { .min = 25000, .max = 350000 },
381 .vco = { .min = 1760000, .max = 3510000 },
382 .n = { .min = 1, .max = 5 },
383 .m = { .min = 79, .max = 127 },
384 .m1 = { .min = 12, .max = 22 },
385 .m2 = { .min = 5, .max = 9 },
386 .p = { .min = 5, .max = 80 },
387 .p1 = { .min = 1, .max = 8 },
388 .p2 = { .dot_limit = 225000,
389 .p2_slow = 10, .p2_fast = 5 },
390 };
391
392 static const struct intel_limit intel_limits_ironlake_single_lvds = {
393 .dot = { .min = 25000, .max = 350000 },
394 .vco = { .min = 1760000, .max = 3510000 },
395 .n = { .min = 1, .max = 3 },
396 .m = { .min = 79, .max = 118 },
397 .m1 = { .min = 12, .max = 22 },
398 .m2 = { .min = 5, .max = 9 },
399 .p = { .min = 28, .max = 112 },
400 .p1 = { .min = 2, .max = 8 },
401 .p2 = { .dot_limit = 225000,
402 .p2_slow = 14, .p2_fast = 14 },
403 };
404
405 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
406 .dot = { .min = 25000, .max = 350000 },
407 .vco = { .min = 1760000, .max = 3510000 },
408 .n = { .min = 1, .max = 3 },
409 .m = { .min = 79, .max = 127 },
410 .m1 = { .min = 12, .max = 22 },
411 .m2 = { .min = 5, .max = 9 },
412 .p = { .min = 14, .max = 56 },
413 .p1 = { .min = 2, .max = 8 },
414 .p2 = { .dot_limit = 225000,
415 .p2_slow = 7, .p2_fast = 7 },
416 };
417
418 /* LVDS 100mhz refclk limits. */
419 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
420 .dot = { .min = 25000, .max = 350000 },
421 .vco = { .min = 1760000, .max = 3510000 },
422 .n = { .min = 1, .max = 2 },
423 .m = { .min = 79, .max = 126 },
424 .m1 = { .min = 12, .max = 22 },
425 .m2 = { .min = 5, .max = 9 },
426 .p = { .min = 28, .max = 112 },
427 .p1 = { .min = 2, .max = 8 },
428 .p2 = { .dot_limit = 225000,
429 .p2_slow = 14, .p2_fast = 14 },
430 };
431
432 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
433 .dot = { .min = 25000, .max = 350000 },
434 .vco = { .min = 1760000, .max = 3510000 },
435 .n = { .min = 1, .max = 3 },
436 .m = { .min = 79, .max = 126 },
437 .m1 = { .min = 12, .max = 22 },
438 .m2 = { .min = 5, .max = 9 },
439 .p = { .min = 14, .max = 42 },
440 .p1 = { .min = 2, .max = 6 },
441 .p2 = { .dot_limit = 225000,
442 .p2_slow = 7, .p2_fast = 7 },
443 };
444
445 static const struct intel_limit intel_limits_vlv = {
446 /*
447 * These are the data rate limits (measured in fast clocks)
448 * since those are the strictest limits we have. The fast
449 * clock and actual rate limits are more relaxed, so checking
450 * them would make no difference.
451 */
452 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
453 .vco = { .min = 4000000, .max = 6000000 },
454 .n = { .min = 1, .max = 7 },
455 .m1 = { .min = 2, .max = 3 },
456 .m2 = { .min = 11, .max = 156 },
457 .p1 = { .min = 2, .max = 3 },
458 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
459 };
460
461 static const struct intel_limit intel_limits_chv = {
462 /*
463 * These are the data rate limits (measured in fast clocks)
464 * since those are the strictest limits we have. The fast
465 * clock and actual rate limits are more relaxed, so checking
466 * them would make no difference.
467 */
468 .dot = { .min = 25000 * 5, .max = 540000 * 5},
469 .vco = { .min = 4800000, .max = 6480000 },
470 .n = { .min = 1, .max = 1 },
471 .m1 = { .min = 2, .max = 2 },
472 .m2 = { .min = 24 << 22, .max = 175 << 22 },
473 .p1 = { .min = 2, .max = 4 },
474 .p2 = { .p2_slow = 1, .p2_fast = 14 },
475 };
476
477 static const struct intel_limit intel_limits_bxt = {
478 /* FIXME: find real dot limits */
479 .dot = { .min = 0, .max = INT_MAX },
480 .vco = { .min = 4800000, .max = 6700000 },
481 .n = { .min = 1, .max = 1 },
482 .m1 = { .min = 2, .max = 2 },
483 /* FIXME: find real m2 limits */
484 .m2 = { .min = 2 << 22, .max = 255 << 22 },
485 .p1 = { .min = 2, .max = 4 },
486 .p2 = { .p2_slow = 1, .p2_fast = 20 },
487 };
488
489 /* WA Display #0827: Gen9:all */
490 static void
491 skl_wa_827(struct drm_i915_private *dev_priv, int pipe, bool enable)
492 {
493 if (enable)
494 I915_WRITE(CLKGATE_DIS_PSL(pipe),
495 I915_READ(CLKGATE_DIS_PSL(pipe)) |
496 DUPS1_GATING_DIS | DUPS2_GATING_DIS);
497 else
498 I915_WRITE(CLKGATE_DIS_PSL(pipe),
499 I915_READ(CLKGATE_DIS_PSL(pipe)) &
500 ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
501 }
502
503 /* Wa_2006604312:icl */
504 static void
505 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
506 bool enable)
507 {
508 if (enable)
509 I915_WRITE(CLKGATE_DIS_PSL(pipe),
510 I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
511 else
512 I915_WRITE(CLKGATE_DIS_PSL(pipe),
513 I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
514 }
515
516 static bool
517 needs_modeset(const struct drm_crtc_state *state)
518 {
519 return drm_atomic_crtc_needs_modeset(state);
520 }
521
522 /*
523 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
524 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
525 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
526 * The helpers' return value is the rate of the clock that is fed to the
527 * display engine's pipe which can be the above fast dot clock rate or a
528 * divided-down version of it.
529 */
530 /* m1 is reserved as 0 in Pineview, n is a ring counter */
531 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
532 {
533 clock->m = clock->m2 + 2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return 0;
537 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
538 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539
540 return clock->dot;
541 }
542
543 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
544 {
545 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
546 }
547
548 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
549 {
550 clock->m = i9xx_dpll_compute_m(clock);
551 clock->p = clock->p1 * clock->p2;
552 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
553 return 0;
554 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
555 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
556
557 return clock->dot;
558 }
559
560 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = clock->m1 * clock->m2;
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot / 5;
570 }
571
572 int chv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
579 clock->n << 22);
580 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
581
582 return clock->dot / 5;
583 }
584
585 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
586
587 /*
588 * Returns whether the given set of divisors are valid for a given refclk with
589 * the given connectors.
590 */
591 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
592 const struct intel_limit *limit,
593 const struct dpll *clock)
594 {
595 if (clock->n < limit->n.min || limit->n.max < clock->n)
596 INTELPllInvalid("n out of range\n");
597 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
598 INTELPllInvalid("p1 out of range\n");
599 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
600 INTELPllInvalid("m2 out of range\n");
601 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
602 INTELPllInvalid("m1 out of range\n");
603
604 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
605 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
606 if (clock->m1 <= clock->m2)
607 INTELPllInvalid("m1 <= m2\n");
608
609 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
610 !IS_GEN9_LP(dev_priv)) {
611 if (clock->p < limit->p.min || limit->p.max < clock->p)
612 INTELPllInvalid("p out of range\n");
613 if (clock->m < limit->m.min || limit->m.max < clock->m)
614 INTELPllInvalid("m out of range\n");
615 }
616
617 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
618 INTELPllInvalid("vco out of range\n");
619 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
620 * connector, etc., rather than just a single range.
621 */
622 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
623 INTELPllInvalid("dot out of range\n");
624
625 return true;
626 }
627
628 static int
629 i9xx_select_p2_div(const struct intel_limit *limit,
630 const struct intel_crtc_state *crtc_state,
631 int target)
632 {
633 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
634
635 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
636 /*
637 * For LVDS just rely on its current settings for dual-channel.
638 * We haven't figured out how to reliably set up different
639 * single/dual channel state, if we even can.
640 */
641 if (intel_is_dual_link_lvds(dev_priv))
642 return limit->p2.p2_fast;
643 else
644 return limit->p2.p2_slow;
645 } else {
646 if (target < limit->p2.dot_limit)
647 return limit->p2.p2_slow;
648 else
649 return limit->p2.p2_fast;
650 }
651 }
652
653 /*
654 * Returns a set of divisors for the desired target clock with the given
655 * refclk, or FALSE. The returned values represent the clock equation:
656 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
657 *
658 * Target and reference clocks are specified in kHz.
659 *
660 * If match_clock is provided, then best_clock P divider must match the P
661 * divider from @match_clock used for LVDS downclocking.
662 */
663 static bool
664 i9xx_find_best_dpll(const struct intel_limit *limit,
665 struct intel_crtc_state *crtc_state,
666 int target, int refclk, struct dpll *match_clock,
667 struct dpll *best_clock)
668 {
669 struct drm_device *dev = crtc_state->base.crtc->dev;
670 struct dpll clock;
671 int err = target;
672
673 memset(best_clock, 0, sizeof(*best_clock));
674
675 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
676
677 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
678 clock.m1++) {
679 for (clock.m2 = limit->m2.min;
680 clock.m2 <= limit->m2.max; clock.m2++) {
681 if (clock.m2 >= clock.m1)
682 break;
683 for (clock.n = limit->n.min;
684 clock.n <= limit->n.max; clock.n++) {
685 for (clock.p1 = limit->p1.min;
686 clock.p1 <= limit->p1.max; clock.p1++) {
687 int this_err;
688
689 i9xx_calc_dpll_params(refclk, &clock);
690 if (!intel_PLL_is_valid(to_i915(dev),
691 limit,
692 &clock))
693 continue;
694 if (match_clock &&
695 clock.p != match_clock->p)
696 continue;
697
698 this_err = abs(clock.dot - target);
699 if (this_err < err) {
700 *best_clock = clock;
701 err = this_err;
702 }
703 }
704 }
705 }
706 }
707
708 return (err != target);
709 }
710
711 /*
712 * Returns a set of divisors for the desired target clock with the given
713 * refclk, or FALSE. The returned values represent the clock equation:
714 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
715 *
716 * Target and reference clocks are specified in kHz.
717 *
718 * If match_clock is provided, then best_clock P divider must match the P
719 * divider from @match_clock used for LVDS downclocking.
720 */
721 static bool
722 pnv_find_best_dpll(const struct intel_limit *limit,
723 struct intel_crtc_state *crtc_state,
724 int target, int refclk, struct dpll *match_clock,
725 struct dpll *best_clock)
726 {
727 struct drm_device *dev = crtc_state->base.crtc->dev;
728 struct dpll clock;
729 int err = target;
730
731 memset(best_clock, 0, sizeof(*best_clock));
732
733 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
734
735 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
736 clock.m1++) {
737 for (clock.m2 = limit->m2.min;
738 clock.m2 <= limit->m2.max; clock.m2++) {
739 for (clock.n = limit->n.min;
740 clock.n <= limit->n.max; clock.n++) {
741 for (clock.p1 = limit->p1.min;
742 clock.p1 <= limit->p1.max; clock.p1++) {
743 int this_err;
744
745 pnv_calc_dpll_params(refclk, &clock);
746 if (!intel_PLL_is_valid(to_i915(dev),
747 limit,
748 &clock))
749 continue;
750 if (match_clock &&
751 clock.p != match_clock->p)
752 continue;
753
754 this_err = abs(clock.dot - target);
755 if (this_err < err) {
756 *best_clock = clock;
757 err = this_err;
758 }
759 }
760 }
761 }
762 }
763
764 return (err != target);
765 }
766
767 /*
768 * Returns a set of divisors for the desired target clock with the given
769 * refclk, or FALSE. The returned values represent the clock equation:
770 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
771 *
772 * Target and reference clocks are specified in kHz.
773 *
774 * If match_clock is provided, then best_clock P divider must match the P
775 * divider from @match_clock used for LVDS downclocking.
776 */
777 static bool
778 g4x_find_best_dpll(const struct intel_limit *limit,
779 struct intel_crtc_state *crtc_state,
780 int target, int refclk, struct dpll *match_clock,
781 struct dpll *best_clock)
782 {
783 struct drm_device *dev = crtc_state->base.crtc->dev;
784 struct dpll clock;
785 int max_n;
786 bool found = false;
787 /* approximately equals target * 0.00585 */
788 int err_most = (target >> 8) + (target >> 9);
789
790 memset(best_clock, 0, sizeof(*best_clock));
791
792 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
793
794 max_n = limit->n.max;
795 /* based on hardware requirement, prefer smaller n to precision */
796 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
797 /* based on hardware requirement, prefere larger m1,m2 */
798 for (clock.m1 = limit->m1.max;
799 clock.m1 >= limit->m1.min; clock.m1--) {
800 for (clock.m2 = limit->m2.max;
801 clock.m2 >= limit->m2.min; clock.m2--) {
802 for (clock.p1 = limit->p1.max;
803 clock.p1 >= limit->p1.min; clock.p1--) {
804 int this_err;
805
806 i9xx_calc_dpll_params(refclk, &clock);
807 if (!intel_PLL_is_valid(to_i915(dev),
808 limit,
809 &clock))
810 continue;
811
812 this_err = abs(clock.dot - target);
813 if (this_err < err_most) {
814 *best_clock = clock;
815 err_most = this_err;
816 max_n = clock.n;
817 found = true;
818 }
819 }
820 }
821 }
822 }
823 return found;
824 }
825
826 /*
827 * Check if the calculated PLL configuration is more optimal compared to the
828 * best configuration and error found so far. Return the calculated error.
829 */
830 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
831 const struct dpll *calculated_clock,
832 const struct dpll *best_clock,
833 unsigned int best_error_ppm,
834 unsigned int *error_ppm)
835 {
836 /*
837 * For CHV ignore the error and consider only the P value.
838 * Prefer a bigger P value based on HW requirements.
839 */
840 if (IS_CHERRYVIEW(to_i915(dev))) {
841 *error_ppm = 0;
842
843 return calculated_clock->p > best_clock->p;
844 }
845
846 if (WARN_ON_ONCE(!target_freq))
847 return false;
848
849 *error_ppm = div_u64(1000000ULL *
850 abs(target_freq - calculated_clock->dot),
851 target_freq);
852 /*
853 * Prefer a better P value over a better (smaller) error if the error
854 * is small. Ensure this preference for future configurations too by
855 * setting the error to 0.
856 */
857 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
858 *error_ppm = 0;
859
860 return true;
861 }
862
863 return *error_ppm + 10 < best_error_ppm;
864 }
865
866 /*
867 * Returns a set of divisors for the desired target clock with the given
868 * refclk, or FALSE. The returned values represent the clock equation:
869 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
870 */
871 static bool
872 vlv_find_best_dpll(const struct intel_limit *limit,
873 struct intel_crtc_state *crtc_state,
874 int target, int refclk, struct dpll *match_clock,
875 struct dpll *best_clock)
876 {
877 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
878 struct drm_device *dev = crtc->base.dev;
879 struct dpll clock;
880 unsigned int bestppm = 1000000;
881 /* min update 19.2 MHz */
882 int max_n = min(limit->n.max, refclk / 19200);
883 bool found = false;
884
885 target *= 5; /* fast clock */
886
887 memset(best_clock, 0, sizeof(*best_clock));
888
889 /* based on hardware requirement, prefer smaller n to precision */
890 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
891 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
892 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
893 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
894 clock.p = clock.p1 * clock.p2;
895 /* based on hardware requirement, prefer bigger m1,m2 values */
896 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
897 unsigned int ppm;
898
899 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
900 refclk * clock.m1);
901
902 vlv_calc_dpll_params(refclk, &clock);
903
904 if (!intel_PLL_is_valid(to_i915(dev),
905 limit,
906 &clock))
907 continue;
908
909 if (!vlv_PLL_is_optimal(dev, target,
910 &clock,
911 best_clock,
912 bestppm, &ppm))
913 continue;
914
915 *best_clock = clock;
916 bestppm = ppm;
917 found = true;
918 }
919 }
920 }
921 }
922
923 return found;
924 }
925
926 /*
927 * Returns a set of divisors for the desired target clock with the given
928 * refclk, or FALSE. The returned values represent the clock equation:
929 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
930 */
931 static bool
932 chv_find_best_dpll(const struct intel_limit *limit,
933 struct intel_crtc_state *crtc_state,
934 int target, int refclk, struct dpll *match_clock,
935 struct dpll *best_clock)
936 {
937 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
938 struct drm_device *dev = crtc->base.dev;
939 unsigned int best_error_ppm;
940 struct dpll clock;
941 u64 m2;
942 int found = false;
943
944 memset(best_clock, 0, sizeof(*best_clock));
945 best_error_ppm = 1000000;
946
947 /*
948 * Based on hardware doc, the n always set to 1, and m1 always
949 * set to 2. If requires to support 200Mhz refclk, we need to
950 * revisit this because n may not 1 anymore.
951 */
952 clock.n = 1, clock.m1 = 2;
953 target *= 5; /* fast clock */
954
955 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
956 for (clock.p2 = limit->p2.p2_fast;
957 clock.p2 >= limit->p2.p2_slow;
958 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
959 unsigned int error_ppm;
960
961 clock.p = clock.p1 * clock.p2;
962
963 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
964 refclk * clock.m1);
965
966 if (m2 > INT_MAX/clock.m1)
967 continue;
968
969 clock.m2 = m2;
970
971 chv_calc_dpll_params(refclk, &clock);
972
973 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
974 continue;
975
976 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
977 best_error_ppm, &error_ppm))
978 continue;
979
980 *best_clock = clock;
981 best_error_ppm = error_ppm;
982 found = true;
983 }
984 }
985
986 return found;
987 }
988
989 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
990 struct dpll *best_clock)
991 {
992 int refclk = 100000;
993 const struct intel_limit *limit = &intel_limits_bxt;
994
995 return chv_find_best_dpll(limit, crtc_state,
996 crtc_state->port_clock, refclk,
997 NULL, best_clock);
998 }
999
1000 bool intel_crtc_active(struct intel_crtc *crtc)
1001 {
1002 /* Be paranoid as we can arrive here with only partial
1003 * state retrieved from the hardware during setup.
1004 *
1005 * We can ditch the adjusted_mode.crtc_clock check as soon
1006 * as Haswell has gained clock readout/fastboot support.
1007 *
1008 * We can ditch the crtc->primary->state->fb check as soon as we can
1009 * properly reconstruct framebuffers.
1010 *
1011 * FIXME: The intel_crtc->active here should be switched to
1012 * crtc->state->active once we have proper CRTC states wired up
1013 * for atomic.
1014 */
1015 return crtc->active && crtc->base.primary->state->fb &&
1016 crtc->config->base.adjusted_mode.crtc_clock;
1017 }
1018
1019 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1020 enum pipe pipe)
1021 {
1022 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1023
1024 return crtc->config->cpu_transcoder;
1025 }
1026
1027 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1028 enum pipe pipe)
1029 {
1030 i915_reg_t reg = PIPEDSL(pipe);
1031 u32 line1, line2;
1032 u32 line_mask;
1033
1034 if (IS_GEN(dev_priv, 2))
1035 line_mask = DSL_LINEMASK_GEN2;
1036 else
1037 line_mask = DSL_LINEMASK_GEN3;
1038
1039 line1 = I915_READ(reg) & line_mask;
1040 msleep(5);
1041 line2 = I915_READ(reg) & line_mask;
1042
1043 return line1 != line2;
1044 }
1045
1046 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1047 {
1048 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1049 enum pipe pipe = crtc->pipe;
1050
1051 /* Wait for the display line to settle/start moving */
1052 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1053 DRM_ERROR("pipe %c scanline %s wait timed out\n",
1054 pipe_name(pipe), onoff(state));
1055 }
1056
1057 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1058 {
1059 wait_for_pipe_scanline_moving(crtc, false);
1060 }
1061
1062 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1063 {
1064 wait_for_pipe_scanline_moving(crtc, true);
1065 }
1066
1067 static void
1068 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1069 {
1070 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1071 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1072
1073 if (INTEL_GEN(dev_priv) >= 4) {
1074 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1075 i915_reg_t reg = PIPECONF(cpu_transcoder);
1076
1077 /* Wait for the Pipe State to go off */
1078 if (intel_wait_for_register(&dev_priv->uncore,
1079 reg, I965_PIPECONF_ACTIVE, 0,
1080 100))
1081 WARN(1, "pipe_off wait timed out\n");
1082 } else {
1083 intel_wait_for_pipe_scanline_stopped(crtc);
1084 }
1085 }
1086
1087 /* Only for pre-ILK configs */
1088 void assert_pll(struct drm_i915_private *dev_priv,
1089 enum pipe pipe, bool state)
1090 {
1091 u32 val;
1092 bool cur_state;
1093
1094 val = I915_READ(DPLL(pipe));
1095 cur_state = !!(val & DPLL_VCO_ENABLE);
1096 I915_STATE_WARN(cur_state != state,
1097 "PLL state assertion failure (expected %s, current %s)\n",
1098 onoff(state), onoff(cur_state));
1099 }
1100
1101 /* XXX: the dsi pll is shared between MIPI DSI ports */
1102 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1103 {
1104 u32 val;
1105 bool cur_state;
1106
1107 vlv_cck_get(dev_priv);
1108 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1109 vlv_cck_put(dev_priv);
1110
1111 cur_state = val & DSI_PLL_VCO_EN;
1112 I915_STATE_WARN(cur_state != state,
1113 "DSI PLL state assertion failure (expected %s, current %s)\n",
1114 onoff(state), onoff(cur_state));
1115 }
1116
1117 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1118 enum pipe pipe, bool state)
1119 {
1120 bool cur_state;
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
1123
1124 if (HAS_DDI(dev_priv)) {
1125 /* DDI does not have a specific FDI_TX register */
1126 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1127 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1128 } else {
1129 u32 val = I915_READ(FDI_TX_CTL(pipe));
1130 cur_state = !!(val & FDI_TX_ENABLE);
1131 }
1132 I915_STATE_WARN(cur_state != state,
1133 "FDI TX state assertion failure (expected %s, current %s)\n",
1134 onoff(state), onoff(cur_state));
1135 }
1136 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1137 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1138
1139 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1140 enum pipe pipe, bool state)
1141 {
1142 u32 val;
1143 bool cur_state;
1144
1145 val = I915_READ(FDI_RX_CTL(pipe));
1146 cur_state = !!(val & FDI_RX_ENABLE);
1147 I915_STATE_WARN(cur_state != state,
1148 "FDI RX state assertion failure (expected %s, current %s)\n",
1149 onoff(state), onoff(cur_state));
1150 }
1151 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1152 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1153
1154 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1155 enum pipe pipe)
1156 {
1157 u32 val;
1158
1159 /* ILK FDI PLL is always enabled */
1160 if (IS_GEN(dev_priv, 5))
1161 return;
1162
1163 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1164 if (HAS_DDI(dev_priv))
1165 return;
1166
1167 val = I915_READ(FDI_TX_CTL(pipe));
1168 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1169 }
1170
1171 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1172 enum pipe pipe, bool state)
1173 {
1174 u32 val;
1175 bool cur_state;
1176
1177 val = I915_READ(FDI_RX_CTL(pipe));
1178 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1179 I915_STATE_WARN(cur_state != state,
1180 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1181 onoff(state), onoff(cur_state));
1182 }
1183
1184 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1185 {
1186 i915_reg_t pp_reg;
1187 u32 val;
1188 enum pipe panel_pipe = INVALID_PIPE;
1189 bool locked = true;
1190
1191 if (WARN_ON(HAS_DDI(dev_priv)))
1192 return;
1193
1194 if (HAS_PCH_SPLIT(dev_priv)) {
1195 u32 port_sel;
1196
1197 pp_reg = PP_CONTROL(0);
1198 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1199
1200 switch (port_sel) {
1201 case PANEL_PORT_SELECT_LVDS:
1202 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1203 break;
1204 case PANEL_PORT_SELECT_DPA:
1205 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1206 break;
1207 case PANEL_PORT_SELECT_DPC:
1208 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1209 break;
1210 case PANEL_PORT_SELECT_DPD:
1211 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1212 break;
1213 default:
1214 MISSING_CASE(port_sel);
1215 break;
1216 }
1217 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = PP_CONTROL(pipe);
1220 panel_pipe = pipe;
1221 } else {
1222 u32 port_sel;
1223
1224 pp_reg = PP_CONTROL(0);
1225 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1226
1227 WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS);
1228 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1229 }
1230
1231 val = I915_READ(pp_reg);
1232 if (!(val & PANEL_POWER_ON) ||
1233 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1234 locked = false;
1235
1236 I915_STATE_WARN(panel_pipe == pipe && locked,
1237 "panel assertion failure, pipe %c regs locked\n",
1238 pipe_name(pipe));
1239 }
1240
1241 void assert_pipe(struct drm_i915_private *dev_priv,
1242 enum pipe pipe, bool state)
1243 {
1244 bool cur_state;
1245 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246 pipe);
1247 enum intel_display_power_domain power_domain;
1248 intel_wakeref_t wakeref;
1249
1250 /* we keep both pipes enabled on 830 */
1251 if (IS_I830(dev_priv))
1252 state = true;
1253
1254 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1255 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1256 if (wakeref) {
1257 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1258 cur_state = !!(val & PIPECONF_ENABLE);
1259
1260 intel_display_power_put(dev_priv, power_domain, wakeref);
1261 } else {
1262 cur_state = false;
1263 }
1264
1265 I915_STATE_WARN(cur_state != state,
1266 "pipe %c assertion failure (expected %s, current %s)\n",
1267 pipe_name(pipe), onoff(state), onoff(cur_state));
1268 }
1269
1270 static void assert_plane(struct intel_plane *plane, bool state)
1271 {
1272 enum pipe pipe;
1273 bool cur_state;
1274
1275 cur_state = plane->get_hw_state(plane, &pipe);
1276
1277 I915_STATE_WARN(cur_state != state,
1278 "%s assertion failure (expected %s, current %s)\n",
1279 plane->base.name, onoff(state), onoff(cur_state));
1280 }
1281
1282 #define assert_plane_enabled(p) assert_plane(p, true)
1283 #define assert_plane_disabled(p) assert_plane(p, false)
1284
1285 static void assert_planes_disabled(struct intel_crtc *crtc)
1286 {
1287 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1288 struct intel_plane *plane;
1289
1290 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1291 assert_plane_disabled(plane);
1292 }
1293
1294 static void assert_vblank_disabled(struct drm_crtc *crtc)
1295 {
1296 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1297 drm_crtc_vblank_put(crtc);
1298 }
1299
1300 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1301 enum pipe pipe)
1302 {
1303 u32 val;
1304 bool enabled;
1305
1306 val = I915_READ(PCH_TRANSCONF(pipe));
1307 enabled = !!(val & TRANS_ENABLE);
1308 I915_STATE_WARN(enabled,
1309 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1310 pipe_name(pipe));
1311 }
1312
1313 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1314 enum pipe pipe, enum port port,
1315 i915_reg_t dp_reg)
1316 {
1317 enum pipe port_pipe;
1318 bool state;
1319
1320 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1321
1322 I915_STATE_WARN(state && port_pipe == pipe,
1323 "PCH DP %c enabled on transcoder %c, should be disabled\n",
1324 port_name(port), pipe_name(pipe));
1325
1326 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1327 "IBX PCH DP %c still using transcoder B\n",
1328 port_name(port));
1329 }
1330
1331 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe, enum port port,
1333 i915_reg_t hdmi_reg)
1334 {
1335 enum pipe port_pipe;
1336 bool state;
1337
1338 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1339
1340 I915_STATE_WARN(state && port_pipe == pipe,
1341 "PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1342 port_name(port), pipe_name(pipe));
1343
1344 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1345 "IBX PCH HDMI %c still using transcoder B\n",
1346 port_name(port));
1347 }
1348
1349 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe)
1351 {
1352 enum pipe port_pipe;
1353
1354 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1355 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1356 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1357
1358 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1359 port_pipe == pipe,
1360 "PCH VGA enabled on transcoder %c, should be disabled\n",
1361 pipe_name(pipe));
1362
1363 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1364 port_pipe == pipe,
1365 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1366 pipe_name(pipe));
1367
1368 /* PCH SDVOB multiplex with HDMIB */
1369 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1370 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1371 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1372 }
1373
1374 static void _vlv_enable_pll(struct intel_crtc *crtc,
1375 const struct intel_crtc_state *pipe_config)
1376 {
1377 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1378 enum pipe pipe = crtc->pipe;
1379
1380 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1381 POSTING_READ(DPLL(pipe));
1382 udelay(150);
1383
1384 if (intel_wait_for_register(&dev_priv->uncore,
1385 DPLL(pipe),
1386 DPLL_LOCK_VLV,
1387 DPLL_LOCK_VLV,
1388 1))
1389 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1390 }
1391
1392 static void vlv_enable_pll(struct intel_crtc *crtc,
1393 const struct intel_crtc_state *pipe_config)
1394 {
1395 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1396 enum pipe pipe = crtc->pipe;
1397
1398 assert_pipe_disabled(dev_priv, pipe);
1399
1400 /* PLL is protected by panel, make sure we can write it */
1401 assert_panel_unlocked(dev_priv, pipe);
1402
1403 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1404 _vlv_enable_pll(crtc, pipe_config);
1405
1406 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1407 POSTING_READ(DPLL_MD(pipe));
1408 }
1409
1410
1411 static void _chv_enable_pll(struct intel_crtc *crtc,
1412 const struct intel_crtc_state *pipe_config)
1413 {
1414 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1415 enum pipe pipe = crtc->pipe;
1416 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1417 u32 tmp;
1418
1419 vlv_dpio_get(dev_priv);
1420
1421 /* Enable back the 10bit clock to display controller */
1422 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1423 tmp |= DPIO_DCLKP_EN;
1424 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1425
1426 vlv_dpio_put(dev_priv);
1427
1428 /*
1429 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1430 */
1431 udelay(1);
1432
1433 /* Enable PLL */
1434 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435
1436 /* Check PLL is locked */
1437 if (intel_wait_for_register(&dev_priv->uncore,
1438 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1439 1))
1440 DRM_ERROR("PLL %d failed to lock\n", pipe);
1441 }
1442
1443 static void chv_enable_pll(struct intel_crtc *crtc,
1444 const struct intel_crtc_state *pipe_config)
1445 {
1446 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1447 enum pipe pipe = crtc->pipe;
1448
1449 assert_pipe_disabled(dev_priv, pipe);
1450
1451 /* PLL is protected by panel, make sure we can write it */
1452 assert_panel_unlocked(dev_priv, pipe);
1453
1454 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1455 _chv_enable_pll(crtc, pipe_config);
1456
1457 if (pipe != PIPE_A) {
1458 /*
1459 * WaPixelRepeatModeFixForC0:chv
1460 *
1461 * DPLLCMD is AWOL. Use chicken bits to propagate
1462 * the value from DPLLBMD to either pipe B or C.
1463 */
1464 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1465 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1466 I915_WRITE(CBR4_VLV, 0);
1467 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1468
1469 /*
1470 * DPLLB VGA mode also seems to cause problems.
1471 * We should always have it disabled.
1472 */
1473 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1474 } else {
1475 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1476 POSTING_READ(DPLL_MD(pipe));
1477 }
1478 }
1479
1480 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1481 {
1482 if (IS_I830(dev_priv))
1483 return false;
1484
1485 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1486 }
1487
1488 static void i9xx_enable_pll(struct intel_crtc *crtc,
1489 const struct intel_crtc_state *crtc_state)
1490 {
1491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492 i915_reg_t reg = DPLL(crtc->pipe);
1493 u32 dpll = crtc_state->dpll_hw_state.dpll;
1494 int i;
1495
1496 assert_pipe_disabled(dev_priv, crtc->pipe);
1497
1498 /* PLL is protected by panel, make sure we can write it */
1499 if (i9xx_has_pps(dev_priv))
1500 assert_panel_unlocked(dev_priv, crtc->pipe);
1501
1502 /*
1503 * Apparently we need to have VGA mode enabled prior to changing
1504 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1505 * dividers, even though the register value does change.
1506 */
1507 I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS);
1508 I915_WRITE(reg, dpll);
1509
1510 /* Wait for the clocks to stabilize. */
1511 POSTING_READ(reg);
1512 udelay(150);
1513
1514 if (INTEL_GEN(dev_priv) >= 4) {
1515 I915_WRITE(DPLL_MD(crtc->pipe),
1516 crtc_state->dpll_hw_state.dpll_md);
1517 } else {
1518 /* The pixel multiplier can only be updated once the
1519 * DPLL is enabled and the clocks are stable.
1520 *
1521 * So write it again.
1522 */
1523 I915_WRITE(reg, dpll);
1524 }
1525
1526 /* We do this three times for luck */
1527 for (i = 0; i < 3; i++) {
1528 I915_WRITE(reg, dpll);
1529 POSTING_READ(reg);
1530 udelay(150); /* wait for warmup */
1531 }
1532 }
1533
1534 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1535 {
1536 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1537 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1538 enum pipe pipe = crtc->pipe;
1539
1540 /* Don't disable pipe or pipe PLLs if needed */
1541 if (IS_I830(dev_priv))
1542 return;
1543
1544 /* Make sure the pipe isn't still relying on us */
1545 assert_pipe_disabled(dev_priv, pipe);
1546
1547 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1548 POSTING_READ(DPLL(pipe));
1549 }
1550
1551 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1552 {
1553 u32 val;
1554
1555 /* Make sure the pipe isn't still relying on us */
1556 assert_pipe_disabled(dev_priv, pipe);
1557
1558 val = DPLL_INTEGRATED_REF_CLK_VLV |
1559 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1560 if (pipe != PIPE_A)
1561 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1562
1563 I915_WRITE(DPLL(pipe), val);
1564 POSTING_READ(DPLL(pipe));
1565 }
1566
1567 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1568 {
1569 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1570 u32 val;
1571
1572 /* Make sure the pipe isn't still relying on us */
1573 assert_pipe_disabled(dev_priv, pipe);
1574
1575 val = DPLL_SSC_REF_CLK_CHV |
1576 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1577 if (pipe != PIPE_A)
1578 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1579
1580 I915_WRITE(DPLL(pipe), val);
1581 POSTING_READ(DPLL(pipe));
1582
1583 vlv_dpio_get(dev_priv);
1584
1585 /* Disable 10bit clock to display controller */
1586 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1587 val &= ~DPIO_DCLKP_EN;
1588 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1589
1590 vlv_dpio_put(dev_priv);
1591 }
1592
1593 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1594 struct intel_digital_port *dport,
1595 unsigned int expected_mask)
1596 {
1597 u32 port_mask;
1598 i915_reg_t dpll_reg;
1599
1600 switch (dport->base.port) {
1601 case PORT_B:
1602 port_mask = DPLL_PORTB_READY_MASK;
1603 dpll_reg = DPLL(0);
1604 break;
1605 case PORT_C:
1606 port_mask = DPLL_PORTC_READY_MASK;
1607 dpll_reg = DPLL(0);
1608 expected_mask <<= 4;
1609 break;
1610 case PORT_D:
1611 port_mask = DPLL_PORTD_READY_MASK;
1612 dpll_reg = DPIO_PHY_STATUS;
1613 break;
1614 default:
1615 BUG();
1616 }
1617
1618 if (intel_wait_for_register(&dev_priv->uncore,
1619 dpll_reg, port_mask, expected_mask,
1620 1000))
1621 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1622 port_name(dport->base.port),
1623 I915_READ(dpll_reg) & port_mask, expected_mask);
1624 }
1625
1626 static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1627 {
1628 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1629 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1630 enum pipe pipe = crtc->pipe;
1631 i915_reg_t reg;
1632 u32 val, pipeconf_val;
1633
1634 /* Make sure PCH DPLL is enabled */
1635 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1636
1637 /* FDI must be feeding us bits for PCH ports */
1638 assert_fdi_tx_enabled(dev_priv, pipe);
1639 assert_fdi_rx_enabled(dev_priv, pipe);
1640
1641 if (HAS_PCH_CPT(dev_priv)) {
1642 /* Workaround: Set the timing override bit before enabling the
1643 * pch transcoder. */
1644 reg = TRANS_CHICKEN2(pipe);
1645 val = I915_READ(reg);
1646 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1647 I915_WRITE(reg, val);
1648 }
1649
1650 reg = PCH_TRANSCONF(pipe);
1651 val = I915_READ(reg);
1652 pipeconf_val = I915_READ(PIPECONF(pipe));
1653
1654 if (HAS_PCH_IBX(dev_priv)) {
1655 /*
1656 * Make the BPC in transcoder be consistent with
1657 * that in pipeconf reg. For HDMI we must use 8bpc
1658 * here for both 8bpc and 12bpc.
1659 */
1660 val &= ~PIPECONF_BPC_MASK;
1661 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1662 val |= PIPECONF_8BPC;
1663 else
1664 val |= pipeconf_val & PIPECONF_BPC_MASK;
1665 }
1666
1667 val &= ~TRANS_INTERLACE_MASK;
1668 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1669 if (HAS_PCH_IBX(dev_priv) &&
1670 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1671 val |= TRANS_LEGACY_INTERLACED_ILK;
1672 else
1673 val |= TRANS_INTERLACED;
1674 } else {
1675 val |= TRANS_PROGRESSIVE;
1676 }
1677
1678 I915_WRITE(reg, val | TRANS_ENABLE);
1679 if (intel_wait_for_register(&dev_priv->uncore,
1680 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1681 100))
1682 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1683 }
1684
1685 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1686 enum transcoder cpu_transcoder)
1687 {
1688 u32 val, pipeconf_val;
1689
1690 /* FDI must be feeding us bits for PCH ports */
1691 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1692 assert_fdi_rx_enabled(dev_priv, PIPE_A);
1693
1694 /* Workaround: set timing override bit. */
1695 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1696 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1697 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1698
1699 val = TRANS_ENABLE;
1700 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1701
1702 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1703 PIPECONF_INTERLACED_ILK)
1704 val |= TRANS_INTERLACED;
1705 else
1706 val |= TRANS_PROGRESSIVE;
1707
1708 I915_WRITE(LPT_TRANSCONF, val);
1709 if (intel_wait_for_register(&dev_priv->uncore,
1710 LPT_TRANSCONF,
1711 TRANS_STATE_ENABLE,
1712 TRANS_STATE_ENABLE,
1713 100))
1714 DRM_ERROR("Failed to enable PCH transcoder\n");
1715 }
1716
1717 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1718 enum pipe pipe)
1719 {
1720 i915_reg_t reg;
1721 u32 val;
1722
1723 /* FDI relies on the transcoder */
1724 assert_fdi_tx_disabled(dev_priv, pipe);
1725 assert_fdi_rx_disabled(dev_priv, pipe);
1726
1727 /* Ports must be off as well */
1728 assert_pch_ports_disabled(dev_priv, pipe);
1729
1730 reg = PCH_TRANSCONF(pipe);
1731 val = I915_READ(reg);
1732 val &= ~TRANS_ENABLE;
1733 I915_WRITE(reg, val);
1734 /* wait for PCH transcoder off, transcoder state */
1735 if (intel_wait_for_register(&dev_priv->uncore,
1736 reg, TRANS_STATE_ENABLE, 0,
1737 50))
1738 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1739
1740 if (HAS_PCH_CPT(dev_priv)) {
1741 /* Workaround: Clear the timing override chicken bit again. */
1742 reg = TRANS_CHICKEN2(pipe);
1743 val = I915_READ(reg);
1744 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1745 I915_WRITE(reg, val);
1746 }
1747 }
1748
1749 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1750 {
1751 u32 val;
1752
1753 val = I915_READ(LPT_TRANSCONF);
1754 val &= ~TRANS_ENABLE;
1755 I915_WRITE(LPT_TRANSCONF, val);
1756 /* wait for PCH transcoder off, transcoder state */
1757 if (intel_wait_for_register(&dev_priv->uncore,
1758 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1759 50))
1760 DRM_ERROR("Failed to disable PCH transcoder\n");
1761
1762 /* Workaround: clear timing override bit. */
1763 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1764 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1765 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1766 }
1767
1768 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1769 {
1770 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1771
1772 if (HAS_PCH_LPT(dev_priv))
1773 return PIPE_A;
1774 else
1775 return crtc->pipe;
1776 }
1777
1778 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1779 {
1780 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1781
1782 /*
1783 * On i965gm the hardware frame counter reads
1784 * zero when the TV encoder is enabled :(
1785 */
1786 if (IS_I965GM(dev_priv) &&
1787 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1788 return 0;
1789
1790 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1791 return 0xffffffff; /* full 32 bit counter */
1792 else if (INTEL_GEN(dev_priv) >= 3)
1793 return 0xffffff; /* only 24 bits of frame count */
1794 else
1795 return 0; /* Gen2 doesn't have a hardware frame counter */
1796 }
1797
1798 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1799 {
1800 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1801
1802 drm_crtc_set_max_vblank_count(&crtc->base,
1803 intel_crtc_max_vblank_count(crtc_state));
1804 drm_crtc_vblank_on(&crtc->base);
1805 }
1806
1807 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1808 {
1809 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1810 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1811 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1812 enum pipe pipe = crtc->pipe;
1813 i915_reg_t reg;
1814 u32 val;
1815
1816 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1817
1818 assert_planes_disabled(crtc);
1819
1820 /*
1821 * A pipe without a PLL won't actually be able to drive bits from
1822 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1823 * need the check.
1824 */
1825 if (HAS_GMCH(dev_priv)) {
1826 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1827 assert_dsi_pll_enabled(dev_priv);
1828 else
1829 assert_pll_enabled(dev_priv, pipe);
1830 } else {
1831 if (new_crtc_state->has_pch_encoder) {
1832 /* if driving the PCH, we need FDI enabled */
1833 assert_fdi_rx_pll_enabled(dev_priv,
1834 intel_crtc_pch_transcoder(crtc));
1835 assert_fdi_tx_pll_enabled(dev_priv,
1836 (enum pipe) cpu_transcoder);
1837 }
1838 /* FIXME: assert CPU port conditions for SNB+ */
1839 }
1840
1841 trace_intel_pipe_enable(dev_priv, pipe);
1842
1843 reg = PIPECONF(cpu_transcoder);
1844 val = I915_READ(reg);
1845 if (val & PIPECONF_ENABLE) {
1846 /* we keep both pipes enabled on 830 */
1847 WARN_ON(!IS_I830(dev_priv));
1848 return;
1849 }
1850
1851 I915_WRITE(reg, val | PIPECONF_ENABLE);
1852 POSTING_READ(reg);
1853
1854 /*
1855 * Until the pipe starts PIPEDSL reads will return a stale value,
1856 * which causes an apparent vblank timestamp jump when PIPEDSL
1857 * resets to its proper value. That also messes up the frame count
1858 * when it's derived from the timestamps. So let's wait for the
1859 * pipe to start properly before we call drm_crtc_vblank_on()
1860 */
1861 if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1862 intel_wait_for_pipe_scanline_moving(crtc);
1863 }
1864
1865 static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1866 {
1867 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1869 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1870 enum pipe pipe = crtc->pipe;
1871 i915_reg_t reg;
1872 u32 val;
1873
1874 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1875
1876 /*
1877 * Make sure planes won't keep trying to pump pixels to us,
1878 * or we might hang the display.
1879 */
1880 assert_planes_disabled(crtc);
1881
1882 trace_intel_pipe_disable(dev_priv, pipe);
1883
1884 reg = PIPECONF(cpu_transcoder);
1885 val = I915_READ(reg);
1886 if ((val & PIPECONF_ENABLE) == 0)
1887 return;
1888
1889 /*
1890 * Double wide has implications for planes
1891 * so best keep it disabled when not needed.
1892 */
1893 if (old_crtc_state->double_wide)
1894 val &= ~PIPECONF_DOUBLE_WIDE;
1895
1896 /* Don't disable pipe or pipe PLLs if needed */
1897 if (!IS_I830(dev_priv))
1898 val &= ~PIPECONF_ENABLE;
1899
1900 I915_WRITE(reg, val);
1901 if ((val & PIPECONF_ENABLE) == 0)
1902 intel_wait_for_pipe_off(old_crtc_state);
1903 }
1904
1905 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1906 {
1907 return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1908 }
1909
1910 static unsigned int
1911 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
1912 {
1913 struct drm_i915_private *dev_priv = to_i915(fb->dev);
1914 unsigned int cpp = fb->format->cpp[color_plane];
1915
1916 switch (fb->modifier) {
1917 case DRM_FORMAT_MOD_LINEAR:
1918 return intel_tile_size(dev_priv);
1919 case I915_FORMAT_MOD_X_TILED:
1920 if (IS_GEN(dev_priv, 2))
1921 return 128;
1922 else
1923 return 512;
1924 case I915_FORMAT_MOD_Y_TILED_CCS:
1925 if (color_plane == 1)
1926 return 128;
1927 /* fall through */
1928 case I915_FORMAT_MOD_Y_TILED:
1929 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
1930 return 128;
1931 else
1932 return 512;
1933 case I915_FORMAT_MOD_Yf_TILED_CCS:
1934 if (color_plane == 1)
1935 return 128;
1936 /* fall through */
1937 case I915_FORMAT_MOD_Yf_TILED:
1938 switch (cpp) {
1939 case 1:
1940 return 64;
1941 case 2:
1942 case 4:
1943 return 128;
1944 case 8:
1945 case 16:
1946 return 256;
1947 default:
1948 MISSING_CASE(cpp);
1949 return cpp;
1950 }
1951 break;
1952 default:
1953 MISSING_CASE(fb->modifier);
1954 return cpp;
1955 }
1956 }
1957
1958 static unsigned int
1959 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
1960 {
1961 return intel_tile_size(to_i915(fb->dev)) /
1962 intel_tile_width_bytes(fb, color_plane);
1963 }
1964
1965 /* Return the tile dimensions in pixel units */
1966 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
1967 unsigned int *tile_width,
1968 unsigned int *tile_height)
1969 {
1970 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
1971 unsigned int cpp = fb->format->cpp[color_plane];
1972
1973 *tile_width = tile_width_bytes / cpp;
1974 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
1975 }
1976
1977 unsigned int
1978 intel_fb_align_height(const struct drm_framebuffer *fb,
1979 int color_plane, unsigned int height)
1980 {
1981 unsigned int tile_height = intel_tile_height(fb, color_plane);
1982
1983 return ALIGN(height, tile_height);
1984 }
1985
1986 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
1987 {
1988 unsigned int size = 0;
1989 int i;
1990
1991 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1992 size += rot_info->plane[i].width * rot_info->plane[i].height;
1993
1994 return size;
1995 }
1996
1997 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
1998 {
1999 unsigned int size = 0;
2000 int i;
2001
2002 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2003 size += rem_info->plane[i].width * rem_info->plane[i].height;
2004
2005 return size;
2006 }
2007
2008 static void
2009 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2010 const struct drm_framebuffer *fb,
2011 unsigned int rotation)
2012 {
2013 view->type = I915_GGTT_VIEW_NORMAL;
2014 if (drm_rotation_90_or_270(rotation)) {
2015 view->type = I915_GGTT_VIEW_ROTATED;
2016 view->rotated = to_intel_framebuffer(fb)->rot_info;
2017 }
2018 }
2019
2020 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2021 {
2022 if (IS_I830(dev_priv))
2023 return 16 * 1024;
2024 else if (IS_I85X(dev_priv))
2025 return 256;
2026 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2027 return 32;
2028 else
2029 return 4 * 1024;
2030 }
2031
2032 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2033 {
2034 if (INTEL_GEN(dev_priv) >= 9)
2035 return 256 * 1024;
2036 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2037 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2038 return 128 * 1024;
2039 else if (INTEL_GEN(dev_priv) >= 4)
2040 return 4 * 1024;
2041 else
2042 return 0;
2043 }
2044
2045 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2046 int color_plane)
2047 {
2048 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2049
2050 /* AUX_DIST needs only 4K alignment */
2051 if (color_plane == 1)
2052 return 4096;
2053
2054 switch (fb->modifier) {
2055 case DRM_FORMAT_MOD_LINEAR:
2056 return intel_linear_alignment(dev_priv);
2057 case I915_FORMAT_MOD_X_TILED:
2058 if (INTEL_GEN(dev_priv) >= 9)
2059 return 256 * 1024;
2060 return 0;
2061 case I915_FORMAT_MOD_Y_TILED_CCS:
2062 case I915_FORMAT_MOD_Yf_TILED_CCS:
2063 case I915_FORMAT_MOD_Y_TILED:
2064 case I915_FORMAT_MOD_Yf_TILED:
2065 return 1 * 1024 * 1024;
2066 default:
2067 MISSING_CASE(fb->modifier);
2068 return 0;
2069 }
2070 }
2071
2072 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2073 {
2074 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2075 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2076
2077 return INTEL_GEN(dev_priv) < 4 ||
2078 (plane->has_fbc &&
2079 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2080 }
2081
2082 struct i915_vma *
2083 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2084 const struct i915_ggtt_view *view,
2085 bool uses_fence,
2086 unsigned long *out_flags)
2087 {
2088 struct drm_device *dev = fb->dev;
2089 struct drm_i915_private *dev_priv = to_i915(dev);
2090 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2091 intel_wakeref_t wakeref;
2092 struct i915_vma *vma;
2093 unsigned int pinctl;
2094 u32 alignment;
2095
2096 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2097
2098 alignment = intel_surf_alignment(fb, 0);
2099
2100 /* Note that the w/a also requires 64 PTE of padding following the
2101 * bo. We currently fill all unused PTE with the shadow page and so
2102 * we should always have valid PTE following the scanout preventing
2103 * the VT-d warning.
2104 */
2105 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2106 alignment = 256 * 1024;
2107
2108 /*
2109 * Global gtt pte registers are special registers which actually forward
2110 * writes to a chunk of system memory. Which means that there is no risk
2111 * that the register values disappear as soon as we call
2112 * intel_runtime_pm_put(), so it is correct to wrap only the
2113 * pin/unpin/fence and not more.
2114 */
2115 wakeref = intel_runtime_pm_get(dev_priv);
2116
2117 atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2118
2119 pinctl = 0;
2120
2121 /* Valleyview is definitely limited to scanning out the first
2122 * 512MiB. Lets presume this behaviour was inherited from the
2123 * g4x display engine and that all earlier gen are similarly
2124 * limited. Testing suggests that it is a little more
2125 * complicated than this. For example, Cherryview appears quite
2126 * happy to scanout from anywhere within its global aperture.
2127 */
2128 if (HAS_GMCH(dev_priv))
2129 pinctl |= PIN_MAPPABLE;
2130
2131 vma = i915_gem_object_pin_to_display_plane(obj,
2132 alignment, view, pinctl);
2133 if (IS_ERR(vma))
2134 goto err;
2135
2136 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2137 int ret;
2138
2139 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2140 * fence, whereas 965+ only requires a fence if using
2141 * framebuffer compression. For simplicity, we always, when
2142 * possible, install a fence as the cost is not that onerous.
2143 *
2144 * If we fail to fence the tiled scanout, then either the
2145 * modeset will reject the change (which is highly unlikely as
2146 * the affected systems, all but one, do not have unmappable
2147 * space) or we will not be able to enable full powersaving
2148 * techniques (also likely not to apply due to various limits
2149 * FBC and the like impose on the size of the buffer, which
2150 * presumably we violated anyway with this unmappable buffer).
2151 * Anyway, it is presumably better to stumble onwards with
2152 * something and try to run the system in a "less than optimal"
2153 * mode that matches the user configuration.
2154 */
2155 ret = i915_vma_pin_fence(vma);
2156 if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2157 i915_gem_object_unpin_from_display_plane(vma);
2158 vma = ERR_PTR(ret);
2159 goto err;
2160 }
2161
2162 if (ret == 0 && vma->fence)
2163 *out_flags |= PLANE_HAS_FENCE;
2164 }
2165
2166 i915_vma_get(vma);
2167 err:
2168 atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2169
2170 intel_runtime_pm_put(dev_priv, wakeref);
2171 return vma;
2172 }
2173
2174 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2175 {
2176 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2177
2178 if (flags & PLANE_HAS_FENCE)
2179 i915_vma_unpin_fence(vma);
2180 i915_gem_object_unpin_from_display_plane(vma);
2181 i915_vma_put(vma);
2182 }
2183
2184 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2185 unsigned int rotation)
2186 {
2187 if (drm_rotation_90_or_270(rotation))
2188 return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2189 else
2190 return fb->pitches[color_plane];
2191 }
2192
2193 /*
2194 * Convert the x/y offsets into a linear offset.
2195 * Only valid with 0/180 degree rotation, which is fine since linear
2196 * offset is only used with linear buffers on pre-hsw and tiled buffers
2197 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2198 */
2199 u32 intel_fb_xy_to_linear(int x, int y,
2200 const struct intel_plane_state *state,
2201 int color_plane)
2202 {
2203 const struct drm_framebuffer *fb = state->base.fb;
2204 unsigned int cpp = fb->format->cpp[color_plane];
2205 unsigned int pitch = state->color_plane[color_plane].stride;
2206
2207 return y * pitch + x * cpp;
2208 }
2209
2210 /*
2211 * Add the x/y offsets derived from fb->offsets[] to the user
2212 * specified plane src x/y offsets. The resulting x/y offsets
2213 * specify the start of scanout from the beginning of the gtt mapping.
2214 */
2215 void intel_add_fb_offsets(int *x, int *y,
2216 const struct intel_plane_state *state,
2217 int color_plane)
2218
2219 {
2220 *x += state->color_plane[color_plane].x;
2221 *y += state->color_plane[color_plane].y;
2222 }
2223
2224 static u32 intel_adjust_tile_offset(int *x, int *y,
2225 unsigned int tile_width,
2226 unsigned int tile_height,
2227 unsigned int tile_size,
2228 unsigned int pitch_tiles,
2229 u32 old_offset,
2230 u32 new_offset)
2231 {
2232 unsigned int pitch_pixels = pitch_tiles * tile_width;
2233 unsigned int tiles;
2234
2235 WARN_ON(old_offset & (tile_size - 1));
2236 WARN_ON(new_offset & (tile_size - 1));
2237 WARN_ON(new_offset > old_offset);
2238
2239 tiles = (old_offset - new_offset) / tile_size;
2240
2241 *y += tiles / pitch_tiles * tile_height;
2242 *x += tiles % pitch_tiles * tile_width;
2243
2244 /* minimize x in case it got needlessly big */
2245 *y += *x / pitch_pixels * tile_height;
2246 *x %= pitch_pixels;
2247
2248 return new_offset;
2249 }
2250
2251 static bool is_surface_linear(u64 modifier, int color_plane)
2252 {
2253 return modifier == DRM_FORMAT_MOD_LINEAR;
2254 }
2255
2256 static u32 intel_adjust_aligned_offset(int *x, int *y,
2257 const struct drm_framebuffer *fb,
2258 int color_plane,
2259 unsigned int rotation,
2260 unsigned int pitch,
2261 u32 old_offset, u32 new_offset)
2262 {
2263 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2264 unsigned int cpp = fb->format->cpp[color_plane];
2265
2266 WARN_ON(new_offset > old_offset);
2267
2268 if (!is_surface_linear(fb->modifier, color_plane)) {
2269 unsigned int tile_size, tile_width, tile_height;
2270 unsigned int pitch_tiles;
2271
2272 tile_size = intel_tile_size(dev_priv);
2273 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2274
2275 if (drm_rotation_90_or_270(rotation)) {
2276 pitch_tiles = pitch / tile_height;
2277 swap(tile_width, tile_height);
2278 } else {
2279 pitch_tiles = pitch / (tile_width * cpp);
2280 }
2281
2282 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2283 tile_size, pitch_tiles,
2284 old_offset, new_offset);
2285 } else {
2286 old_offset += *y * pitch + *x * cpp;
2287
2288 *y = (old_offset - new_offset) / pitch;
2289 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2290 }
2291
2292 return new_offset;
2293 }
2294
2295 /*
2296 * Adjust the tile offset by moving the difference into
2297 * the x/y offsets.
2298 */
2299 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2300 const struct intel_plane_state *state,
2301 int color_plane,
2302 u32 old_offset, u32 new_offset)
2303 {
2304 return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane,
2305 state->base.rotation,
2306 state->color_plane[color_plane].stride,
2307 old_offset, new_offset);
2308 }
2309
2310 /*
2311 * Computes the aligned offset to the base tile and adjusts
2312 * x, y. bytes per pixel is assumed to be a power-of-two.
2313 *
2314 * In the 90/270 rotated case, x and y are assumed
2315 * to be already rotated to match the rotated GTT view, and
2316 * pitch is the tile_height aligned framebuffer height.
2317 *
2318 * This function is used when computing the derived information
2319 * under intel_framebuffer, so using any of that information
2320 * here is not allowed. Anything under drm_framebuffer can be
2321 * used. This is why the user has to pass in the pitch since it
2322 * is specified in the rotated orientation.
2323 */
2324 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2325 int *x, int *y,
2326 const struct drm_framebuffer *fb,
2327 int color_plane,
2328 unsigned int pitch,
2329 unsigned int rotation,
2330 u32 alignment)
2331 {
2332 unsigned int cpp = fb->format->cpp[color_plane];
2333 u32 offset, offset_aligned;
2334
2335 if (alignment)
2336 alignment--;
2337
2338 if (!is_surface_linear(fb->modifier, color_plane)) {
2339 unsigned int tile_size, tile_width, tile_height;
2340 unsigned int tile_rows, tiles, pitch_tiles;
2341
2342 tile_size = intel_tile_size(dev_priv);
2343 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2344
2345 if (drm_rotation_90_or_270(rotation)) {
2346 pitch_tiles = pitch / tile_height;
2347 swap(tile_width, tile_height);
2348 } else {
2349 pitch_tiles = pitch / (tile_width * cpp);
2350 }
2351
2352 tile_rows = *y / tile_height;
2353 *y %= tile_height;
2354
2355 tiles = *x / tile_width;
2356 *x %= tile_width;
2357
2358 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2359 offset_aligned = offset & ~alignment;
2360
2361 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2362 tile_size, pitch_tiles,
2363 offset, offset_aligned);
2364 } else {
2365 offset = *y * pitch + *x * cpp;
2366 offset_aligned = offset & ~alignment;
2367
2368 *y = (offset & alignment) / pitch;
2369 *x = ((offset & alignment) - *y * pitch) / cpp;
2370 }
2371
2372 return offset_aligned;
2373 }
2374
2375 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2376 const struct intel_plane_state *state,
2377 int color_plane)
2378 {
2379 struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2380 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2381 const struct drm_framebuffer *fb = state->base.fb;
2382 unsigned int rotation = state->base.rotation;
2383 int pitch = state->color_plane[color_plane].stride;
2384 u32 alignment;
2385
2386 if (intel_plane->id == PLANE_CURSOR)
2387 alignment = intel_cursor_alignment(dev_priv);
2388 else
2389 alignment = intel_surf_alignment(fb, color_plane);
2390
2391 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2392 pitch, rotation, alignment);
2393 }
2394
2395 /* Convert the fb->offset[] into x/y offsets */
2396 static int intel_fb_offset_to_xy(int *x, int *y,
2397 const struct drm_framebuffer *fb,
2398 int color_plane)
2399 {
2400 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2401 unsigned int height;
2402
2403 if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2404 fb->offsets[color_plane] % intel_tile_size(dev_priv)) {
2405 DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n",
2406 fb->offsets[color_plane], color_plane);
2407 return -EINVAL;
2408 }
2409
2410 height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2411 height = ALIGN(height, intel_tile_height(fb, color_plane));
2412
2413 /* Catch potential overflows early */
2414 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2415 fb->offsets[color_plane])) {
2416 DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n",
2417 fb->offsets[color_plane], fb->pitches[color_plane],
2418 color_plane);
2419 return -ERANGE;
2420 }
2421
2422 *x = 0;
2423 *y = 0;
2424
2425 intel_adjust_aligned_offset(x, y,
2426 fb, color_plane, DRM_MODE_ROTATE_0,
2427 fb->pitches[color_plane],
2428 fb->offsets[color_plane], 0);
2429
2430 return 0;
2431 }
2432
2433 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2434 {
2435 switch (fb_modifier) {
2436 case I915_FORMAT_MOD_X_TILED:
2437 return I915_TILING_X;
2438 case I915_FORMAT_MOD_Y_TILED:
2439 case I915_FORMAT_MOD_Y_TILED_CCS:
2440 return I915_TILING_Y;
2441 default:
2442 return I915_TILING_NONE;
2443 }
2444 }
2445
2446 /*
2447 * From the Sky Lake PRM:
2448 * "The Color Control Surface (CCS) contains the compression status of
2449 * the cache-line pairs. The compression state of the cache-line pair
2450 * is specified by 2 bits in the CCS. Each CCS cache-line represents
2451 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2452 * cache-line-pairs. CCS is always Y tiled."
2453 *
2454 * Since cache line pairs refers to horizontally adjacent cache lines,
2455 * each cache line in the CCS corresponds to an area of 32x16 cache
2456 * lines on the main surface. Since each pixel is 4 bytes, this gives
2457 * us a ratio of one byte in the CCS for each 8x16 pixels in the
2458 * main surface.
2459 */
2460 static const struct drm_format_info ccs_formats[] = {
2461 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2462 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2463 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2464 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2465 };
2466
2467 static const struct drm_format_info *
2468 lookup_format_info(const struct drm_format_info formats[],
2469 int num_formats, u32 format)
2470 {
2471 int i;
2472
2473 for (i = 0; i < num_formats; i++) {
2474 if (formats[i].format == format)
2475 return &formats[i];
2476 }
2477
2478 return NULL;
2479 }
2480
2481 static const struct drm_format_info *
2482 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2483 {
2484 switch (cmd->modifier[0]) {
2485 case I915_FORMAT_MOD_Y_TILED_CCS:
2486 case I915_FORMAT_MOD_Yf_TILED_CCS:
2487 return lookup_format_info(ccs_formats,
2488 ARRAY_SIZE(ccs_formats),
2489 cmd->pixel_format);
2490 default:
2491 return NULL;
2492 }
2493 }
2494
2495 bool is_ccs_modifier(u64 modifier)
2496 {
2497 return modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2498 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2499 }
2500
2501 static
2502 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2503 u32 pixel_format, u64 modifier)
2504 {
2505 struct intel_crtc *crtc;
2506 struct intel_plane *plane;
2507
2508 /*
2509 * We assume the primary plane for pipe A has
2510 * the highest stride limits of them all.
2511 */
2512 crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
2513 plane = to_intel_plane(crtc->base.primary);
2514
2515 return plane->max_stride(plane, pixel_format, modifier,
2516 DRM_MODE_ROTATE_0);
2517 }
2518
2519 static
2520 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2521 u32 pixel_format, u64 modifier)
2522 {
2523 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2524 }
2525
2526 static u32
2527 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2528 {
2529 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2530
2531 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2532 u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2533 fb->format->format,
2534 fb->modifier);
2535
2536 /*
2537 * To make remapping with linear generally feasible
2538 * we need the stride to be page aligned.
2539 */
2540 if (fb->pitches[color_plane] > max_stride)
2541 return intel_tile_size(dev_priv);
2542 else
2543 return 64;
2544 } else {
2545 return intel_tile_width_bytes(fb, color_plane);
2546 }
2547 }
2548
2549 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2550 {
2551 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2552 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2553 const struct drm_framebuffer *fb = plane_state->base.fb;
2554 int i;
2555
2556 /* We don't want to deal with remapping with cursors */
2557 if (plane->id == PLANE_CURSOR)
2558 return false;
2559
2560 /*
2561 * The display engine limits already match/exceed the
2562 * render engine limits, so not much point in remapping.
2563 * Would also need to deal with the fence POT alignment
2564 * and gen2 2KiB GTT tile size.
2565 */
2566 if (INTEL_GEN(dev_priv) < 4)
2567 return false;
2568
2569 /*
2570 * The new CCS hash mode isn't compatible with remapping as
2571 * the virtual address of the pages affects the compressed data.
2572 */
2573 if (is_ccs_modifier(fb->modifier))
2574 return false;
2575
2576 /* Linear needs a page aligned stride for remapping */
2577 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2578 unsigned int alignment = intel_tile_size(dev_priv) - 1;
2579
2580 for (i = 0; i < fb->format->num_planes; i++) {
2581 if (fb->pitches[i] & alignment)
2582 return false;
2583 }
2584 }
2585
2586 return true;
2587 }
2588
2589 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2590 {
2591 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2592 const struct drm_framebuffer *fb = plane_state->base.fb;
2593 unsigned int rotation = plane_state->base.rotation;
2594 u32 stride, max_stride;
2595
2596 /*
2597 * No remapping for invisible planes since we don't have
2598 * an actual source viewport to remap.
2599 */
2600 if (!plane_state->base.visible)
2601 return false;
2602
2603 if (!intel_plane_can_remap(plane_state))
2604 return false;
2605
2606 /*
2607 * FIXME: aux plane limits on gen9+ are
2608 * unclear in Bspec, for now no checking.
2609 */
2610 stride = intel_fb_pitch(fb, 0, rotation);
2611 max_stride = plane->max_stride(plane, fb->format->format,
2612 fb->modifier, rotation);
2613
2614 return stride > max_stride;
2615 }
2616
2617 static int
2618 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2619 struct drm_framebuffer *fb)
2620 {
2621 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2622 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2623 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2624 u32 gtt_offset_rotated = 0;
2625 unsigned int max_size = 0;
2626 int i, num_planes = fb->format->num_planes;
2627 unsigned int tile_size = intel_tile_size(dev_priv);
2628
2629 for (i = 0; i < num_planes; i++) {
2630 unsigned int width, height;
2631 unsigned int cpp, size;
2632 u32 offset;
2633 int x, y;
2634 int ret;
2635
2636 cpp = fb->format->cpp[i];
2637 width = drm_framebuffer_plane_width(fb->width, fb, i);
2638 height = drm_framebuffer_plane_height(fb->height, fb, i);
2639
2640 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2641 if (ret) {
2642 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2643 i, fb->offsets[i]);
2644 return ret;
2645 }
2646
2647 if (is_ccs_modifier(fb->modifier) && i == 1) {
2648 int hsub = fb->format->hsub;
2649 int vsub = fb->format->vsub;
2650 int tile_width, tile_height;
2651 int main_x, main_y;
2652 int ccs_x, ccs_y;
2653
2654 intel_tile_dims(fb, i, &tile_width, &tile_height);
2655 tile_width *= hsub;
2656 tile_height *= vsub;
2657
2658 ccs_x = (x * hsub) % tile_width;
2659 ccs_y = (y * vsub) % tile_height;
2660 main_x = intel_fb->normal[0].x % tile_width;
2661 main_y = intel_fb->normal[0].y % tile_height;
2662
2663 /*
2664 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2665 * x/y offsets must match between CCS and the main surface.
2666 */
2667 if (main_x != ccs_x || main_y != ccs_y) {
2668 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2669 main_x, main_y,
2670 ccs_x, ccs_y,
2671 intel_fb->normal[0].x,
2672 intel_fb->normal[0].y,
2673 x, y);
2674 return -EINVAL;
2675 }
2676 }
2677
2678 /*
2679 * The fence (if used) is aligned to the start of the object
2680 * so having the framebuffer wrap around across the edge of the
2681 * fenced region doesn't really work. We have no API to configure
2682 * the fence start offset within the object (nor could we probably
2683 * on gen2/3). So it's just easier if we just require that the
2684 * fb layout agrees with the fence layout. We already check that the
2685 * fb stride matches the fence stride elsewhere.
2686 */
2687 if (i == 0 && i915_gem_object_is_tiled(obj) &&
2688 (x + width) * cpp > fb->pitches[i]) {
2689 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2690 i, fb->offsets[i]);
2691 return -EINVAL;
2692 }
2693
2694 /*
2695 * First pixel of the framebuffer from
2696 * the start of the normal gtt mapping.
2697 */
2698 intel_fb->normal[i].x = x;
2699 intel_fb->normal[i].y = y;
2700
2701 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
2702 fb->pitches[i],
2703 DRM_MODE_ROTATE_0,
2704 tile_size);
2705 offset /= tile_size;
2706
2707 if (!is_surface_linear(fb->modifier, i)) {
2708 unsigned int tile_width, tile_height;
2709 unsigned int pitch_tiles;
2710 struct drm_rect r;
2711
2712 intel_tile_dims(fb, i, &tile_width, &tile_height);
2713
2714 rot_info->plane[i].offset = offset;
2715 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2716 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2717 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2718
2719 intel_fb->rotated[i].pitch =
2720 rot_info->plane[i].height * tile_height;
2721
2722 /* how many tiles does this plane need */
2723 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2724 /*
2725 * If the plane isn't horizontally tile aligned,
2726 * we need one more tile.
2727 */
2728 if (x != 0)
2729 size++;
2730
2731 /* rotate the x/y offsets to match the GTT view */
2732 r.x1 = x;
2733 r.y1 = y;
2734 r.x2 = x + width;
2735 r.y2 = y + height;
2736 drm_rect_rotate(&r,
2737 rot_info->plane[i].width * tile_width,
2738 rot_info->plane[i].height * tile_height,
2739 DRM_MODE_ROTATE_270);
2740 x = r.x1;
2741 y = r.y1;
2742
2743 /* rotate the tile dimensions to match the GTT view */
2744 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2745 swap(tile_width, tile_height);
2746
2747 /*
2748 * We only keep the x/y offsets, so push all of the
2749 * gtt offset into the x/y offsets.
2750 */
2751 intel_adjust_tile_offset(&x, &y,
2752 tile_width, tile_height,
2753 tile_size, pitch_tiles,
2754 gtt_offset_rotated * tile_size, 0);
2755
2756 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2757
2758 /*
2759 * First pixel of the framebuffer from
2760 * the start of the rotated gtt mapping.
2761 */
2762 intel_fb->rotated[i].x = x;
2763 intel_fb->rotated[i].y = y;
2764 } else {
2765 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2766 x * cpp, tile_size);
2767 }
2768
2769 /* how many tiles in total needed in the bo */
2770 max_size = max(max_size, offset + size);
2771 }
2772
2773 if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
2774 DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n",
2775 mul_u32_u32(max_size, tile_size), obj->base.size);
2776 return -EINVAL;
2777 }
2778
2779 return 0;
2780 }
2781
2782 static void
2783 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
2784 {
2785 struct drm_i915_private *dev_priv =
2786 to_i915(plane_state->base.plane->dev);
2787 struct drm_framebuffer *fb = plane_state->base.fb;
2788 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2789 struct intel_rotation_info *info = &plane_state->view.rotated;
2790 unsigned int rotation = plane_state->base.rotation;
2791 int i, num_planes = fb->format->num_planes;
2792 unsigned int tile_size = intel_tile_size(dev_priv);
2793 unsigned int src_x, src_y;
2794 unsigned int src_w, src_h;
2795 u32 gtt_offset = 0;
2796
2797 memset(&plane_state->view, 0, sizeof(plane_state->view));
2798 plane_state->view.type = drm_rotation_90_or_270(rotation) ?
2799 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
2800
2801 src_x = plane_state->base.src.x1 >> 16;
2802 src_y = plane_state->base.src.y1 >> 16;
2803 src_w = drm_rect_width(&plane_state->base.src) >> 16;
2804 src_h = drm_rect_height(&plane_state->base.src) >> 16;
2805
2806 WARN_ON(is_ccs_modifier(fb->modifier));
2807
2808 /* Make src coordinates relative to the viewport */
2809 drm_rect_translate(&plane_state->base.src,
2810 -(src_x << 16), -(src_y << 16));
2811
2812 /* Rotate src coordinates to match rotated GTT view */
2813 if (drm_rotation_90_or_270(rotation))
2814 drm_rect_rotate(&plane_state->base.src,
2815 src_w << 16, src_h << 16,
2816 DRM_MODE_ROTATE_270);
2817
2818 for (i = 0; i < num_planes; i++) {
2819 unsigned int hsub = i ? fb->format->hsub : 1;
2820 unsigned int vsub = i ? fb->format->vsub : 1;
2821 unsigned int cpp = fb->format->cpp[i];
2822 unsigned int tile_width, tile_height;
2823 unsigned int width, height;
2824 unsigned int pitch_tiles;
2825 unsigned int x, y;
2826 u32 offset;
2827
2828 intel_tile_dims(fb, i, &tile_width, &tile_height);
2829
2830 x = src_x / hsub;
2831 y = src_y / vsub;
2832 width = src_w / hsub;
2833 height = src_h / vsub;
2834
2835 /*
2836 * First pixel of the src viewport from the
2837 * start of the normal gtt mapping.
2838 */
2839 x += intel_fb->normal[i].x;
2840 y += intel_fb->normal[i].y;
2841
2842 offset = intel_compute_aligned_offset(dev_priv, &x, &y,
2843 fb, i, fb->pitches[i],
2844 DRM_MODE_ROTATE_0, tile_size);
2845 offset /= tile_size;
2846
2847 info->plane[i].offset = offset;
2848 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
2849 tile_width * cpp);
2850 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2851 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2852
2853 if (drm_rotation_90_or_270(rotation)) {
2854 struct drm_rect r;
2855
2856 /* rotate the x/y offsets to match the GTT view */
2857 r.x1 = x;
2858 r.y1 = y;
2859 r.x2 = x + width;
2860 r.y2 = y + height;
2861 drm_rect_rotate(&r,
2862 info->plane[i].width * tile_width,
2863 info->plane[i].height * tile_height,
2864 DRM_MODE_ROTATE_270);
2865 x = r.x1;
2866 y = r.y1;
2867
2868 pitch_tiles = info->plane[i].height;
2869 plane_state->color_plane[i].stride = pitch_tiles * tile_height;
2870
2871 /* rotate the tile dimensions to match the GTT view */
2872 swap(tile_width, tile_height);
2873 } else {
2874 pitch_tiles = info->plane[i].width;
2875 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
2876 }
2877
2878 /*
2879 * We only keep the x/y offsets, so push all of the
2880 * gtt offset into the x/y offsets.
2881 */
2882 intel_adjust_tile_offset(&x, &y,
2883 tile_width, tile_height,
2884 tile_size, pitch_tiles,
2885 gtt_offset * tile_size, 0);
2886
2887 gtt_offset += info->plane[i].width * info->plane[i].height;
2888
2889 plane_state->color_plane[i].offset = 0;
2890 plane_state->color_plane[i].x = x;
2891 plane_state->color_plane[i].y = y;
2892 }
2893 }
2894
2895 static int
2896 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
2897 {
2898 const struct intel_framebuffer *fb =
2899 to_intel_framebuffer(plane_state->base.fb);
2900 unsigned int rotation = plane_state->base.rotation;
2901 int i, num_planes;
2902
2903 if (!fb)
2904 return 0;
2905
2906 num_planes = fb->base.format->num_planes;
2907
2908 if (intel_plane_needs_remap(plane_state)) {
2909 intel_plane_remap_gtt(plane_state);
2910
2911 /*
2912 * Sometimes even remapping can't overcome
2913 * the stride limitations :( Can happen with
2914 * big plane sizes and suitably misaligned
2915 * offsets.
2916 */
2917 return intel_plane_check_stride(plane_state);
2918 }
2919
2920 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
2921
2922 for (i = 0; i < num_planes; i++) {
2923 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
2924 plane_state->color_plane[i].offset = 0;
2925
2926 if (drm_rotation_90_or_270(rotation)) {
2927 plane_state->color_plane[i].x = fb->rotated[i].x;
2928 plane_state->color_plane[i].y = fb->rotated[i].y;
2929 } else {
2930 plane_state->color_plane[i].x = fb->normal[i].x;
2931 plane_state->color_plane[i].y = fb->normal[i].y;
2932 }
2933 }
2934
2935 /* Rotate src coordinates to match rotated GTT view */
2936 if (drm_rotation_90_or_270(rotation))
2937 drm_rect_rotate(&plane_state->base.src,
2938 fb->base.width << 16, fb->base.height << 16,
2939 DRM_MODE_ROTATE_270);
2940
2941 return intel_plane_check_stride(plane_state);
2942 }
2943
2944 static int i9xx_format_to_fourcc(int format)
2945 {
2946 switch (format) {
2947 case DISPPLANE_8BPP:
2948 return DRM_FORMAT_C8;
2949 case DISPPLANE_BGRX555:
2950 return DRM_FORMAT_XRGB1555;
2951 case DISPPLANE_BGRX565:
2952 return DRM_FORMAT_RGB565;
2953 default:
2954 case DISPPLANE_BGRX888:
2955 return DRM_FORMAT_XRGB8888;
2956 case DISPPLANE_RGBX888:
2957 return DRM_FORMAT_XBGR8888;
2958 case DISPPLANE_BGRX101010:
2959 return DRM_FORMAT_XRGB2101010;
2960 case DISPPLANE_RGBX101010:
2961 return DRM_FORMAT_XBGR2101010;
2962 }
2963 }
2964
2965 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2966 {
2967 switch (format) {
2968 case PLANE_CTL_FORMAT_RGB_565:
2969 return DRM_FORMAT_RGB565;
2970 case PLANE_CTL_FORMAT_NV12:
2971 return DRM_FORMAT_NV12;
2972 case PLANE_CTL_FORMAT_P010:
2973 return DRM_FORMAT_P010;
2974 case PLANE_CTL_FORMAT_P012:
2975 return DRM_FORMAT_P012;
2976 case PLANE_CTL_FORMAT_P016:
2977 return DRM_FORMAT_P016;
2978 case PLANE_CTL_FORMAT_Y210:
2979 return DRM_FORMAT_Y210;
2980 case PLANE_CTL_FORMAT_Y212:
2981 return DRM_FORMAT_Y212;
2982 case PLANE_CTL_FORMAT_Y216:
2983 return DRM_FORMAT_Y216;
2984 case PLANE_CTL_FORMAT_Y410:
2985 return DRM_FORMAT_XVYU2101010;
2986 case PLANE_CTL_FORMAT_Y412:
2987 return DRM_FORMAT_XVYU12_16161616;
2988 case PLANE_CTL_FORMAT_Y416:
2989 return DRM_FORMAT_XVYU16161616;
2990 default:
2991 case PLANE_CTL_FORMAT_XRGB_8888:
2992 if (rgb_order) {
2993 if (alpha)
2994 return DRM_FORMAT_ABGR8888;
2995 else
2996 return DRM_FORMAT_XBGR8888;
2997 } else {
2998 if (alpha)
2999 return DRM_FORMAT_ARGB8888;
3000 else
3001 return DRM_FORMAT_XRGB8888;
3002 }
3003 case PLANE_CTL_FORMAT_XRGB_2101010:
3004 if (rgb_order)
3005 return DRM_FORMAT_XBGR2101010;
3006 else
3007 return DRM_FORMAT_XRGB2101010;
3008 case PLANE_CTL_FORMAT_XRGB_16161616F:
3009 if (rgb_order) {
3010 if (alpha)
3011 return DRM_FORMAT_ABGR16161616F;
3012 else
3013 return DRM_FORMAT_XBGR16161616F;
3014 } else {
3015 if (alpha)
3016 return DRM_FORMAT_ARGB16161616F;
3017 else
3018 return DRM_FORMAT_XRGB16161616F;
3019 }
3020 }
3021 }
3022
3023 static bool
3024 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3025 struct intel_initial_plane_config *plane_config)
3026 {
3027 struct drm_device *dev = crtc->base.dev;
3028 struct drm_i915_private *dev_priv = to_i915(dev);
3029 struct drm_i915_gem_object *obj = NULL;
3030 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3031 struct drm_framebuffer *fb = &plane_config->fb->base;
3032 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
3033 u32 size_aligned = round_up(plane_config->base + plane_config->size,
3034 PAGE_SIZE);
3035
3036 size_aligned -= base_aligned;
3037
3038 if (plane_config->size == 0)
3039 return false;
3040
3041 /* If the FB is too big, just don't use it since fbdev is not very
3042 * important and we should probably use that space with FBC or other
3043 * features. */
3044 if (size_aligned * 2 > dev_priv->stolen_usable_size)
3045 return false;
3046
3047 switch (fb->modifier) {
3048 case DRM_FORMAT_MOD_LINEAR:
3049 case I915_FORMAT_MOD_X_TILED:
3050 case I915_FORMAT_MOD_Y_TILED:
3051 break;
3052 default:
3053 DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n",
3054 fb->modifier);
3055 return false;
3056 }
3057
3058 mutex_lock(&dev->struct_mutex);
3059 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
3060 base_aligned,
3061 base_aligned,
3062 size_aligned);
3063 mutex_unlock(&dev->struct_mutex);
3064 if (!obj)
3065 return false;
3066
3067 switch (plane_config->tiling) {
3068 case I915_TILING_NONE:
3069 break;
3070 case I915_TILING_X:
3071 case I915_TILING_Y:
3072 obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling;
3073 break;
3074 default:
3075 MISSING_CASE(plane_config->tiling);
3076 return false;
3077 }
3078
3079 mode_cmd.pixel_format = fb->format->format;
3080 mode_cmd.width = fb->width;
3081 mode_cmd.height = fb->height;
3082 mode_cmd.pitches[0] = fb->pitches[0];
3083 mode_cmd.modifier[0] = fb->modifier;
3084 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3085
3086 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
3087 DRM_DEBUG_KMS("intel fb init failed\n");
3088 goto out_unref_obj;
3089 }
3090
3091
3092 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
3093 return true;
3094
3095 out_unref_obj:
3096 i915_gem_object_put(obj);
3097 return false;
3098 }
3099
3100 static void
3101 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3102 struct intel_plane_state *plane_state,
3103 bool visible)
3104 {
3105 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3106
3107 plane_state->base.visible = visible;
3108
3109 if (visible)
3110 crtc_state->base.plane_mask |= drm_plane_mask(&plane->base);
3111 else
3112 crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base);
3113 }
3114
3115 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3116 {
3117 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3118 struct drm_plane *plane;
3119
3120 /*
3121 * Active_planes aliases if multiple "primary" or cursor planes
3122 * have been used on the same (or wrong) pipe. plane_mask uses
3123 * unique ids, hence we can use that to reconstruct active_planes.
3124 */
3125 crtc_state->active_planes = 0;
3126
3127 drm_for_each_plane_mask(plane, &dev_priv->drm,
3128 crtc_state->base.plane_mask)
3129 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3130 }
3131
3132 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3133 struct intel_plane *plane)
3134 {
3135 struct intel_crtc_state *crtc_state =
3136 to_intel_crtc_state(crtc->base.state);
3137 struct intel_plane_state *plane_state =
3138 to_intel_plane_state(plane->base.state);
3139
3140 DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3141 plane->base.base.id, plane->base.name,
3142 crtc->base.base.id, crtc->base.name);
3143
3144 intel_set_plane_visible(crtc_state, plane_state, false);
3145 fixup_active_planes(crtc_state);
3146
3147 if (plane->id == PLANE_PRIMARY)
3148 intel_pre_disable_primary_noatomic(&crtc->base);
3149
3150 intel_disable_plane(plane, crtc_state);
3151 }
3152
3153 static void
3154 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3155 struct intel_initial_plane_config *plane_config)
3156 {
3157 struct drm_device *dev = intel_crtc->base.dev;
3158 struct drm_i915_private *dev_priv = to_i915(dev);
3159 struct drm_crtc *c;
3160 struct drm_i915_gem_object *obj;
3161 struct drm_plane *primary = intel_crtc->base.primary;
3162 struct drm_plane_state *plane_state = primary->state;
3163 struct intel_plane *intel_plane = to_intel_plane(primary);
3164 struct intel_plane_state *intel_state =
3165 to_intel_plane_state(plane_state);
3166 struct drm_framebuffer *fb;
3167
3168 if (!plane_config->fb)
3169 return;
3170
3171 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3172 fb = &plane_config->fb->base;
3173 goto valid_fb;
3174 }
3175
3176 kfree(plane_config->fb);
3177
3178 /*
3179 * Failed to alloc the obj, check to see if we should share
3180 * an fb with another CRTC instead
3181 */
3182 for_each_crtc(dev, c) {
3183 struct intel_plane_state *state;
3184
3185 if (c == &intel_crtc->base)
3186 continue;
3187
3188 if (!to_intel_crtc(c)->active)
3189 continue;
3190
3191 state = to_intel_plane_state(c->primary->state);
3192 if (!state->vma)
3193 continue;
3194
3195 if (intel_plane_ggtt_offset(state) == plane_config->base) {
3196 fb = state->base.fb;
3197 drm_framebuffer_get(fb);
3198 goto valid_fb;
3199 }
3200 }
3201
3202 /*
3203 * We've failed to reconstruct the BIOS FB. Current display state
3204 * indicates that the primary plane is visible, but has a NULL FB,
3205 * which will lead to problems later if we don't fix it up. The
3206 * simplest solution is to just disable the primary plane now and
3207 * pretend the BIOS never had it enabled.
3208 */
3209 intel_plane_disable_noatomic(intel_crtc, intel_plane);
3210
3211 return;
3212
3213 valid_fb:
3214 intel_state->base.rotation = plane_config->rotation;
3215 intel_fill_fb_ggtt_view(&intel_state->view, fb,
3216 intel_state->base.rotation);
3217 intel_state->color_plane[0].stride =
3218 intel_fb_pitch(fb, 0, intel_state->base.rotation);
3219
3220 mutex_lock(&dev->struct_mutex);
3221 intel_state->vma =
3222 intel_pin_and_fence_fb_obj(fb,
3223 &intel_state->view,
3224 intel_plane_uses_fence(intel_state),
3225 &intel_state->flags);
3226 mutex_unlock(&dev->struct_mutex);
3227 if (IS_ERR(intel_state->vma)) {
3228 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
3229 intel_crtc->pipe, PTR_ERR(intel_state->vma));
3230
3231 intel_state->vma = NULL;
3232 drm_framebuffer_put(fb);
3233 return;
3234 }
3235
3236 obj = intel_fb_obj(fb);
3237 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3238
3239 plane_state->src_x = 0;
3240 plane_state->src_y = 0;
3241 plane_state->src_w = fb->width << 16;
3242 plane_state->src_h = fb->height << 16;
3243
3244 plane_state->crtc_x = 0;
3245 plane_state->crtc_y = 0;
3246 plane_state->crtc_w = fb->width;
3247 plane_state->crtc_h = fb->height;
3248
3249 intel_state->base.src = drm_plane_state_src(plane_state);
3250 intel_state->base.dst = drm_plane_state_dest(plane_state);
3251
3252 if (i915_gem_object_is_tiled(obj))
3253 dev_priv->preserve_bios_swizzle = true;
3254
3255 plane_state->fb = fb;
3256 plane_state->crtc = &intel_crtc->base;
3257
3258 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3259 &obj->frontbuffer_bits);
3260 }
3261
3262 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3263 int color_plane,
3264 unsigned int rotation)
3265 {
3266 int cpp = fb->format->cpp[color_plane];
3267
3268 switch (fb->modifier) {
3269 case DRM_FORMAT_MOD_LINEAR:
3270 case I915_FORMAT_MOD_X_TILED:
3271 return 4096;
3272 case I915_FORMAT_MOD_Y_TILED_CCS:
3273 case I915_FORMAT_MOD_Yf_TILED_CCS:
3274 /* FIXME AUX plane? */
3275 case I915_FORMAT_MOD_Y_TILED:
3276 case I915_FORMAT_MOD_Yf_TILED:
3277 if (cpp == 8)
3278 return 2048;
3279 else
3280 return 4096;
3281 default:
3282 MISSING_CASE(fb->modifier);
3283 return 2048;
3284 }
3285 }
3286
3287 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3288 int color_plane,
3289 unsigned int rotation)
3290 {
3291 int cpp = fb->format->cpp[color_plane];
3292
3293 switch (fb->modifier) {
3294 case DRM_FORMAT_MOD_LINEAR:
3295 case I915_FORMAT_MOD_X_TILED:
3296 if (cpp == 8)
3297 return 4096;
3298 else
3299 return 5120;
3300 case I915_FORMAT_MOD_Y_TILED_CCS:
3301 case I915_FORMAT_MOD_Yf_TILED_CCS:
3302 /* FIXME AUX plane? */
3303 case I915_FORMAT_MOD_Y_TILED:
3304 case I915_FORMAT_MOD_Yf_TILED:
3305 if (cpp == 8)
3306 return 2048;
3307 else
3308 return 5120;
3309 default:
3310 MISSING_CASE(fb->modifier);
3311 return 2048;
3312 }
3313 }
3314
3315 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3316 int color_plane,
3317 unsigned int rotation)
3318 {
3319 return 5120;
3320 }
3321
3322 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3323 int main_x, int main_y, u32 main_offset)
3324 {
3325 const struct drm_framebuffer *fb = plane_state->base.fb;
3326 int hsub = fb->format->hsub;
3327 int vsub = fb->format->vsub;
3328 int aux_x = plane_state->color_plane[1].x;
3329 int aux_y = plane_state->color_plane[1].y;
3330 u32 aux_offset = plane_state->color_plane[1].offset;
3331 u32 alignment = intel_surf_alignment(fb, 1);
3332
3333 while (aux_offset >= main_offset && aux_y <= main_y) {
3334 int x, y;
3335
3336 if (aux_x == main_x && aux_y == main_y)
3337 break;
3338
3339 if (aux_offset == 0)
3340 break;
3341
3342 x = aux_x / hsub;
3343 y = aux_y / vsub;
3344 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1,
3345 aux_offset, aux_offset - alignment);
3346 aux_x = x * hsub + aux_x % hsub;
3347 aux_y = y * vsub + aux_y % vsub;
3348 }
3349
3350 if (aux_x != main_x || aux_y != main_y)
3351 return false;
3352
3353 plane_state->color_plane[1].offset = aux_offset;
3354 plane_state->color_plane[1].x = aux_x;
3355 plane_state->color_plane[1].y = aux_y;
3356
3357 return true;
3358 }
3359
3360 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3361 {
3362 struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
3363 const struct drm_framebuffer *fb = plane_state->base.fb;
3364 unsigned int rotation = plane_state->base.rotation;
3365 int x = plane_state->base.src.x1 >> 16;
3366 int y = plane_state->base.src.y1 >> 16;
3367 int w = drm_rect_width(&plane_state->base.src) >> 16;
3368 int h = drm_rect_height(&plane_state->base.src) >> 16;
3369 int max_width;
3370 int max_height = 4096;
3371 u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset;
3372
3373 if (INTEL_GEN(dev_priv) >= 11)
3374 max_width = icl_max_plane_width(fb, 0, rotation);
3375 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3376 max_width = glk_max_plane_width(fb, 0, rotation);
3377 else
3378 max_width = skl_max_plane_width(fb, 0, rotation);
3379
3380 if (w > max_width || h > max_height) {
3381 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
3382 w, h, max_width, max_height);
3383 return -EINVAL;
3384 }
3385
3386 intel_add_fb_offsets(&x, &y, plane_state, 0);
3387 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3388 alignment = intel_surf_alignment(fb, 0);
3389
3390 /*
3391 * AUX surface offset is specified as the distance from the
3392 * main surface offset, and it must be non-negative. Make
3393 * sure that is what we will get.
3394 */
3395 if (offset > aux_offset)
3396 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3397 offset, aux_offset & ~(alignment - 1));
3398
3399 /*
3400 * When using an X-tiled surface, the plane blows up
3401 * if the x offset + width exceed the stride.
3402 *
3403 * TODO: linear and Y-tiled seem fine, Yf untested,
3404 */
3405 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3406 int cpp = fb->format->cpp[0];
3407
3408 while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3409 if (offset == 0) {
3410 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3411 return -EINVAL;
3412 }
3413
3414 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3415 offset, offset - alignment);
3416 }
3417 }
3418
3419 /*
3420 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3421 * they match with the main surface x/y offsets.
3422 */
3423 if (is_ccs_modifier(fb->modifier)) {
3424 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3425 if (offset == 0)
3426 break;
3427
3428 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3429 offset, offset - alignment);
3430 }
3431
3432 if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) {
3433 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3434 return -EINVAL;
3435 }
3436 }
3437
3438 plane_state->color_plane[0].offset = offset;
3439 plane_state->color_plane[0].x = x;
3440 plane_state->color_plane[0].y = y;
3441
3442 /*
3443 * Put the final coordinates back so that the src
3444 * coordinate checks will see the right values.
3445 */
3446 drm_rect_translate(&plane_state->base.src,
3447 (x << 16) - plane_state->base.src.x1,
3448 (y << 16) - plane_state->base.src.y1);
3449
3450 return 0;
3451 }
3452
3453 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3454 {
3455 const struct drm_framebuffer *fb = plane_state->base.fb;
3456 unsigned int rotation = plane_state->base.rotation;
3457 int max_width = skl_max_plane_width(fb, 1, rotation);
3458 int max_height = 4096;
3459 int x = plane_state->base.src.x1 >> 17;
3460 int y = plane_state->base.src.y1 >> 17;
3461 int w = drm_rect_width(&plane_state->base.src) >> 17;
3462 int h = drm_rect_height(&plane_state->base.src) >> 17;
3463 u32 offset;
3464
3465 intel_add_fb_offsets(&x, &y, plane_state, 1);
3466 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3467
3468 /* FIXME not quite sure how/if these apply to the chroma plane */
3469 if (w > max_width || h > max_height) {
3470 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3471 w, h, max_width, max_height);
3472 return -EINVAL;
3473 }
3474
3475 plane_state->color_plane[1].offset = offset;
3476 plane_state->color_plane[1].x = x;
3477 plane_state->color_plane[1].y = y;
3478
3479 return 0;
3480 }
3481
3482 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3483 {
3484 const struct drm_framebuffer *fb = plane_state->base.fb;
3485 int src_x = plane_state->base.src.x1 >> 16;
3486 int src_y = plane_state->base.src.y1 >> 16;
3487 int hsub = fb->format->hsub;
3488 int vsub = fb->format->vsub;
3489 int x = src_x / hsub;
3490 int y = src_y / vsub;
3491 u32 offset;
3492
3493 intel_add_fb_offsets(&x, &y, plane_state, 1);
3494 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3495
3496 plane_state->color_plane[1].offset = offset;
3497 plane_state->color_plane[1].x = x * hsub + src_x % hsub;
3498 plane_state->color_plane[1].y = y * vsub + src_y % vsub;
3499
3500 return 0;
3501 }
3502
3503 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3504 {
3505 const struct drm_framebuffer *fb = plane_state->base.fb;
3506 int ret;
3507
3508 ret = intel_plane_compute_gtt(plane_state);
3509 if (ret)
3510 return ret;
3511
3512 if (!plane_state->base.visible)
3513 return 0;
3514
3515 /*
3516 * Handle the AUX surface first since
3517 * the main surface setup depends on it.
3518 */
3519 if (is_planar_yuv_format(fb->format->format)) {
3520 ret = skl_check_nv12_aux_surface(plane_state);
3521 if (ret)
3522 return ret;
3523 } else if (is_ccs_modifier(fb->modifier)) {
3524 ret = skl_check_ccs_aux_surface(plane_state);
3525 if (ret)
3526 return ret;
3527 } else {
3528 plane_state->color_plane[1].offset = ~0xfff;
3529 plane_state->color_plane[1].x = 0;
3530 plane_state->color_plane[1].y = 0;
3531 }
3532
3533 ret = skl_check_main_surface(plane_state);
3534 if (ret)
3535 return ret;
3536
3537 return 0;
3538 }
3539
3540 unsigned int
3541 i9xx_plane_max_stride(struct intel_plane *plane,
3542 u32 pixel_format, u64 modifier,
3543 unsigned int rotation)
3544 {
3545 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3546
3547 if (!HAS_GMCH(dev_priv)) {
3548 return 32*1024;
3549 } else if (INTEL_GEN(dev_priv) >= 4) {
3550 if (modifier == I915_FORMAT_MOD_X_TILED)
3551 return 16*1024;
3552 else
3553 return 32*1024;
3554 } else if (INTEL_GEN(dev_priv) >= 3) {
3555 if (modifier == I915_FORMAT_MOD_X_TILED)
3556 return 8*1024;
3557 else
3558 return 16*1024;
3559 } else {
3560 if (plane->i9xx_plane == PLANE_C)
3561 return 4*1024;
3562 else
3563 return 8*1024;
3564 }
3565 }
3566
3567 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
3568 {
3569 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3570 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3571 u32 dspcntr = 0;
3572
3573 if (crtc_state->gamma_enable)
3574 dspcntr |= DISPPLANE_GAMMA_ENABLE;
3575
3576 if (crtc_state->csc_enable)
3577 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3578
3579 if (INTEL_GEN(dev_priv) < 5)
3580 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3581
3582 return dspcntr;
3583 }
3584
3585 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3586 const struct intel_plane_state *plane_state)
3587 {
3588 struct drm_i915_private *dev_priv =
3589 to_i915(plane_state->base.plane->dev);
3590 const struct drm_framebuffer *fb = plane_state->base.fb;
3591 unsigned int rotation = plane_state->base.rotation;
3592 u32 dspcntr;
3593
3594 dspcntr = DISPLAY_PLANE_ENABLE;
3595
3596 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
3597 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
3598 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3599
3600 switch (fb->format->format) {
3601 case DRM_FORMAT_C8:
3602 dspcntr |= DISPPLANE_8BPP;
3603 break;
3604 case DRM_FORMAT_XRGB1555:
3605 dspcntr |= DISPPLANE_BGRX555;
3606 break;
3607 case DRM_FORMAT_RGB565:
3608 dspcntr |= DISPPLANE_BGRX565;
3609 break;
3610 case DRM_FORMAT_XRGB8888:
3611 dspcntr |= DISPPLANE_BGRX888;
3612 break;
3613 case DRM_FORMAT_XBGR8888:
3614 dspcntr |= DISPPLANE_RGBX888;
3615 break;
3616 case DRM_FORMAT_XRGB2101010:
3617 dspcntr |= DISPPLANE_BGRX101010;
3618 break;
3619 case DRM_FORMAT_XBGR2101010:
3620 dspcntr |= DISPPLANE_RGBX101010;
3621 break;
3622 default:
3623 MISSING_CASE(fb->format->format);
3624 return 0;
3625 }
3626
3627 if (INTEL_GEN(dev_priv) >= 4 &&
3628 fb->modifier == I915_FORMAT_MOD_X_TILED)
3629 dspcntr |= DISPPLANE_TILED;
3630
3631 if (rotation & DRM_MODE_ROTATE_180)
3632 dspcntr |= DISPPLANE_ROTATE_180;
3633
3634 if (rotation & DRM_MODE_REFLECT_X)
3635 dspcntr |= DISPPLANE_MIRROR;
3636
3637 return dspcntr;
3638 }
3639
3640 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3641 {
3642 struct drm_i915_private *dev_priv =
3643 to_i915(plane_state->base.plane->dev);
3644 int src_x, src_y;
3645 u32 offset;
3646 int ret;
3647
3648 ret = intel_plane_compute_gtt(plane_state);
3649 if (ret)
3650 return ret;
3651
3652 if (!plane_state->base.visible)
3653 return 0;
3654
3655 src_x = plane_state->base.src.x1 >> 16;
3656 src_y = plane_state->base.src.y1 >> 16;
3657
3658 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3659
3660 if (INTEL_GEN(dev_priv) >= 4)
3661 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
3662 plane_state, 0);
3663 else
3664 offset = 0;
3665
3666 /*
3667 * Put the final coordinates back so that the src
3668 * coordinate checks will see the right values.
3669 */
3670 drm_rect_translate(&plane_state->base.src,
3671 (src_x << 16) - plane_state->base.src.x1,
3672 (src_y << 16) - plane_state->base.src.y1);
3673
3674 /* HSW/BDW do this automagically in hardware */
3675 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3676 unsigned int rotation = plane_state->base.rotation;
3677 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3678 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3679
3680 if (rotation & DRM_MODE_ROTATE_180) {
3681 src_x += src_w - 1;
3682 src_y += src_h - 1;
3683 } else if (rotation & DRM_MODE_REFLECT_X) {
3684 src_x += src_w - 1;
3685 }
3686 }
3687
3688 plane_state->color_plane[0].offset = offset;
3689 plane_state->color_plane[0].x = src_x;
3690 plane_state->color_plane[0].y = src_y;
3691
3692 return 0;
3693 }
3694
3695 static int
3696 i9xx_plane_check(struct intel_crtc_state *crtc_state,
3697 struct intel_plane_state *plane_state)
3698 {
3699 int ret;
3700
3701 ret = chv_plane_check_rotation(plane_state);
3702 if (ret)
3703 return ret;
3704
3705 ret = drm_atomic_helper_check_plane_state(&plane_state->base,
3706 &crtc_state->base,
3707 DRM_PLANE_HELPER_NO_SCALING,
3708 DRM_PLANE_HELPER_NO_SCALING,
3709 false, true);
3710 if (ret)
3711 return ret;
3712
3713 ret = i9xx_check_plane_surface(plane_state);
3714 if (ret)
3715 return ret;
3716
3717 if (!plane_state->base.visible)
3718 return 0;
3719
3720 ret = intel_plane_check_src_coordinates(plane_state);
3721 if (ret)
3722 return ret;
3723
3724 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
3725
3726 return 0;
3727 }
3728
3729 static void i9xx_update_plane(struct intel_plane *plane,
3730 const struct intel_crtc_state *crtc_state,
3731 const struct intel_plane_state *plane_state)
3732 {
3733 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3734 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3735 u32 linear_offset;
3736 int x = plane_state->color_plane[0].x;
3737 int y = plane_state->color_plane[0].y;
3738 unsigned long irqflags;
3739 u32 dspaddr_offset;
3740 u32 dspcntr;
3741
3742 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
3743
3744 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3745
3746 if (INTEL_GEN(dev_priv) >= 4)
3747 dspaddr_offset = plane_state->color_plane[0].offset;
3748 else
3749 dspaddr_offset = linear_offset;
3750
3751 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3752
3753 I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride);
3754
3755 if (INTEL_GEN(dev_priv) < 4) {
3756 /* pipesrc and dspsize control the size that is scaled from,
3757 * which should always be the user's requested size.
3758 */
3759 I915_WRITE_FW(DSPPOS(i9xx_plane), 0);
3760 I915_WRITE_FW(DSPSIZE(i9xx_plane),
3761 ((crtc_state->pipe_src_h - 1) << 16) |
3762 (crtc_state->pipe_src_w - 1));
3763 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
3764 I915_WRITE_FW(PRIMPOS(i9xx_plane), 0);
3765 I915_WRITE_FW(PRIMSIZE(i9xx_plane),
3766 ((crtc_state->pipe_src_h - 1) << 16) |
3767 (crtc_state->pipe_src_w - 1));
3768 I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0);
3769 }
3770
3771 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3772 I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x);
3773 } else if (INTEL_GEN(dev_priv) >= 4) {
3774 I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset);
3775 I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x);
3776 }
3777
3778 /*
3779 * The control register self-arms if the plane was previously
3780 * disabled. Try to make the plane enable atomic by writing
3781 * the control register just before the surface register.
3782 */
3783 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
3784 if (INTEL_GEN(dev_priv) >= 4)
3785 I915_WRITE_FW(DSPSURF(i9xx_plane),
3786 intel_plane_ggtt_offset(plane_state) +
3787 dspaddr_offset);
3788 else
3789 I915_WRITE_FW(DSPADDR(i9xx_plane),
3790 intel_plane_ggtt_offset(plane_state) +
3791 dspaddr_offset);
3792
3793 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3794 }
3795
3796 static void i9xx_disable_plane(struct intel_plane *plane,
3797 const struct intel_crtc_state *crtc_state)
3798 {
3799 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3800 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3801 unsigned long irqflags;
3802 u32 dspcntr;
3803
3804 /*
3805 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
3806 * enable on ilk+ affect the pipe bottom color as
3807 * well, so we must configure them even if the plane
3808 * is disabled.
3809 *
3810 * On pre-g4x there is no way to gamma correct the
3811 * pipe bottom color but we'll keep on doing this
3812 * anyway so that the crtc state readout works correctly.
3813 */
3814 dspcntr = i9xx_plane_ctl_crtc(crtc_state);
3815
3816 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3817
3818 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
3819 if (INTEL_GEN(dev_priv) >= 4)
3820 I915_WRITE_FW(DSPSURF(i9xx_plane), 0);
3821 else
3822 I915_WRITE_FW(DSPADDR(i9xx_plane), 0);
3823
3824 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3825 }
3826
3827 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
3828 enum pipe *pipe)
3829 {
3830 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3831 enum intel_display_power_domain power_domain;
3832 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3833 intel_wakeref_t wakeref;
3834 bool ret;
3835 u32 val;
3836
3837 /*
3838 * Not 100% correct for planes that can move between pipes,
3839 * but that's only the case for gen2-4 which don't have any
3840 * display power wells.
3841 */
3842 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
3843 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
3844 if (!wakeref)
3845 return false;
3846
3847 val = I915_READ(DSPCNTR(i9xx_plane));
3848
3849 ret = val & DISPLAY_PLANE_ENABLE;
3850
3851 if (INTEL_GEN(dev_priv) >= 5)
3852 *pipe = plane->pipe;
3853 else
3854 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
3855 DISPPLANE_SEL_PIPE_SHIFT;
3856
3857 intel_display_power_put(dev_priv, power_domain, wakeref);
3858
3859 return ret;
3860 }
3861
3862 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3863 {
3864 struct drm_device *dev = intel_crtc->base.dev;
3865 struct drm_i915_private *dev_priv = to_i915(dev);
3866
3867 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3868 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3869 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3870 }
3871
3872 /*
3873 * This function detaches (aka. unbinds) unused scalers in hardware
3874 */
3875 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
3876 {
3877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3878 const struct intel_crtc_scaler_state *scaler_state =
3879 &crtc_state->scaler_state;
3880 int i;
3881
3882 /* loop through and disable scalers that aren't in use */
3883 for (i = 0; i < intel_crtc->num_scalers; i++) {
3884 if (!scaler_state->scalers[i].in_use)
3885 skl_detach_scaler(intel_crtc, i);
3886 }
3887 }
3888
3889 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
3890 int color_plane, unsigned int rotation)
3891 {
3892 /*
3893 * The stride is either expressed as a multiple of 64 bytes chunks for
3894 * linear buffers or in number of tiles for tiled buffers.
3895 */
3896 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3897 return 64;
3898 else if (drm_rotation_90_or_270(rotation))
3899 return intel_tile_height(fb, color_plane);
3900 else
3901 return intel_tile_width_bytes(fb, color_plane);
3902 }
3903
3904 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
3905 int color_plane)
3906 {
3907 const struct drm_framebuffer *fb = plane_state->base.fb;
3908 unsigned int rotation = plane_state->base.rotation;
3909 u32 stride = plane_state->color_plane[color_plane].stride;
3910
3911 if (color_plane >= fb->format->num_planes)
3912 return 0;
3913
3914 return stride / skl_plane_stride_mult(fb, color_plane, rotation);
3915 }
3916
3917 static u32 skl_plane_ctl_format(u32 pixel_format)
3918 {
3919 switch (pixel_format) {
3920 case DRM_FORMAT_C8:
3921 return PLANE_CTL_FORMAT_INDEXED;
3922 case DRM_FORMAT_RGB565:
3923 return PLANE_CTL_FORMAT_RGB_565;
3924 case DRM_FORMAT_XBGR8888:
3925 case DRM_FORMAT_ABGR8888:
3926 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3927 case DRM_FORMAT_XRGB8888:
3928 case DRM_FORMAT_ARGB8888:
3929 return PLANE_CTL_FORMAT_XRGB_8888;
3930 case DRM_FORMAT_XRGB2101010:
3931 return PLANE_CTL_FORMAT_XRGB_2101010;
3932 case DRM_FORMAT_XBGR2101010:
3933 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3934 case DRM_FORMAT_XBGR16161616F:
3935 case DRM_FORMAT_ABGR16161616F:
3936 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
3937 case DRM_FORMAT_XRGB16161616F:
3938 case DRM_FORMAT_ARGB16161616F:
3939 return PLANE_CTL_FORMAT_XRGB_16161616F;
3940 case DRM_FORMAT_YUYV:
3941 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3942 case DRM_FORMAT_YVYU:
3943 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3944 case DRM_FORMAT_UYVY:
3945 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3946 case DRM_FORMAT_VYUY:
3947 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3948 case DRM_FORMAT_NV12:
3949 return PLANE_CTL_FORMAT_NV12;
3950 case DRM_FORMAT_P010:
3951 return PLANE_CTL_FORMAT_P010;
3952 case DRM_FORMAT_P012:
3953 return PLANE_CTL_FORMAT_P012;
3954 case DRM_FORMAT_P016:
3955 return PLANE_CTL_FORMAT_P016;
3956 case DRM_FORMAT_Y210:
3957 return PLANE_CTL_FORMAT_Y210;
3958 case DRM_FORMAT_Y212:
3959 return PLANE_CTL_FORMAT_Y212;
3960 case DRM_FORMAT_Y216:
3961 return PLANE_CTL_FORMAT_Y216;
3962 case DRM_FORMAT_XVYU2101010:
3963 return PLANE_CTL_FORMAT_Y410;
3964 case DRM_FORMAT_XVYU12_16161616:
3965 return PLANE_CTL_FORMAT_Y412;
3966 case DRM_FORMAT_XVYU16161616:
3967 return PLANE_CTL_FORMAT_Y416;
3968 default:
3969 MISSING_CASE(pixel_format);
3970 }
3971
3972 return 0;
3973 }
3974
3975 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
3976 {
3977 if (!plane_state->base.fb->format->has_alpha)
3978 return PLANE_CTL_ALPHA_DISABLE;
3979
3980 switch (plane_state->base.pixel_blend_mode) {
3981 case DRM_MODE_BLEND_PIXEL_NONE:
3982 return PLANE_CTL_ALPHA_DISABLE;
3983 case DRM_MODE_BLEND_PREMULTI:
3984 return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3985 case DRM_MODE_BLEND_COVERAGE:
3986 return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
3987 default:
3988 MISSING_CASE(plane_state->base.pixel_blend_mode);
3989 return PLANE_CTL_ALPHA_DISABLE;
3990 }
3991 }
3992
3993 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
3994 {
3995 if (!plane_state->base.fb->format->has_alpha)
3996 return PLANE_COLOR_ALPHA_DISABLE;
3997
3998 switch (plane_state->base.pixel_blend_mode) {
3999 case DRM_MODE_BLEND_PIXEL_NONE:
4000 return PLANE_COLOR_ALPHA_DISABLE;
4001 case DRM_MODE_BLEND_PREMULTI:
4002 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4003 case DRM_MODE_BLEND_COVERAGE:
4004 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4005 default:
4006 MISSING_CASE(plane_state->base.pixel_blend_mode);
4007 return PLANE_COLOR_ALPHA_DISABLE;
4008 }
4009 }
4010
4011 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4012 {
4013 switch (fb_modifier) {
4014 case DRM_FORMAT_MOD_LINEAR:
4015 break;
4016 case I915_FORMAT_MOD_X_TILED:
4017 return PLANE_CTL_TILED_X;
4018 case I915_FORMAT_MOD_Y_TILED:
4019 return PLANE_CTL_TILED_Y;
4020 case I915_FORMAT_MOD_Y_TILED_CCS:
4021 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4022 case I915_FORMAT_MOD_Yf_TILED:
4023 return PLANE_CTL_TILED_YF;
4024 case I915_FORMAT_MOD_Yf_TILED_CCS:
4025 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4026 default:
4027 MISSING_CASE(fb_modifier);
4028 }
4029
4030 return 0;
4031 }
4032
4033 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4034 {
4035 switch (rotate) {
4036 case DRM_MODE_ROTATE_0:
4037 break;
4038 /*
4039 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4040 * while i915 HW rotation is clockwise, thats why this swapping.
4041 */
4042 case DRM_MODE_ROTATE_90:
4043 return PLANE_CTL_ROTATE_270;
4044 case DRM_MODE_ROTATE_180:
4045 return PLANE_CTL_ROTATE_180;
4046 case DRM_MODE_ROTATE_270:
4047 return PLANE_CTL_ROTATE_90;
4048 default:
4049 MISSING_CASE(rotate);
4050 }
4051
4052 return 0;
4053 }
4054
4055 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4056 {
4057 switch (reflect) {
4058 case 0:
4059 break;
4060 case DRM_MODE_REFLECT_X:
4061 return PLANE_CTL_FLIP_HORIZONTAL;
4062 case DRM_MODE_REFLECT_Y:
4063 default:
4064 MISSING_CASE(reflect);
4065 }
4066
4067 return 0;
4068 }
4069
4070 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4071 {
4072 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4073 u32 plane_ctl = 0;
4074
4075 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4076 return plane_ctl;
4077
4078 if (crtc_state->gamma_enable)
4079 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4080
4081 if (crtc_state->csc_enable)
4082 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4083
4084 return plane_ctl;
4085 }
4086
4087 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4088 const struct intel_plane_state *plane_state)
4089 {
4090 struct drm_i915_private *dev_priv =
4091 to_i915(plane_state->base.plane->dev);
4092 const struct drm_framebuffer *fb = plane_state->base.fb;
4093 unsigned int rotation = plane_state->base.rotation;
4094 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4095 u32 plane_ctl;
4096
4097 plane_ctl = PLANE_CTL_ENABLE;
4098
4099 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4100 plane_ctl |= skl_plane_ctl_alpha(plane_state);
4101 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4102
4103 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
4104 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4105
4106 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4107 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4108 }
4109
4110 plane_ctl |= skl_plane_ctl_format(fb->format->format);
4111 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4112 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4113
4114 if (INTEL_GEN(dev_priv) >= 10)
4115 plane_ctl |= cnl_plane_ctl_flip(rotation &
4116 DRM_MODE_REFLECT_MASK);
4117
4118 if (key->flags & I915_SET_COLORKEY_DESTINATION)
4119 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4120 else if (key->flags & I915_SET_COLORKEY_SOURCE)
4121 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4122
4123 return plane_ctl;
4124 }
4125
4126 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4127 {
4128 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4129 u32 plane_color_ctl = 0;
4130
4131 if (INTEL_GEN(dev_priv) >= 11)
4132 return plane_color_ctl;
4133
4134 if (crtc_state->gamma_enable)
4135 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4136
4137 if (crtc_state->csc_enable)
4138 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4139
4140 return plane_color_ctl;
4141 }
4142
4143 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4144 const struct intel_plane_state *plane_state)
4145 {
4146 struct drm_i915_private *dev_priv =
4147 to_i915(plane_state->base.plane->dev);
4148 const struct drm_framebuffer *fb = plane_state->base.fb;
4149 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4150 u32 plane_color_ctl = 0;
4151
4152 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4153 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4154
4155 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4156 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
4157 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4158 else
4159 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709;
4160
4161 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4162 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4163 } else if (fb->format->is_yuv) {
4164 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4165 }
4166
4167 return plane_color_ctl;
4168 }
4169
4170 static int
4171 __intel_display_resume(struct drm_device *dev,
4172 struct drm_atomic_state *state,
4173 struct drm_modeset_acquire_ctx *ctx)
4174 {
4175 struct drm_crtc_state *crtc_state;
4176 struct drm_crtc *crtc;
4177 int i, ret;
4178
4179 intel_modeset_setup_hw_state(dev, ctx);
4180 i915_redisable_vga(to_i915(dev));
4181
4182 if (!state)
4183 return 0;
4184
4185 /*
4186 * We've duplicated the state, pointers to the old state are invalid.
4187 *
4188 * Don't attempt to use the old state until we commit the duplicated state.
4189 */
4190 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4191 /*
4192 * Force recalculation even if we restore
4193 * current state. With fast modeset this may not result
4194 * in a modeset when the state is compatible.
4195 */
4196 crtc_state->mode_changed = true;
4197 }
4198
4199 /* ignore any reset values/BIOS leftovers in the WM registers */
4200 if (!HAS_GMCH(to_i915(dev)))
4201 to_intel_atomic_state(state)->skip_intermediate_wm = true;
4202
4203 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4204
4205 WARN_ON(ret == -EDEADLK);
4206 return ret;
4207 }
4208
4209 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4210 {
4211 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4212 intel_has_gpu_reset(dev_priv));
4213 }
4214
4215 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4216 {
4217 struct drm_device *dev = &dev_priv->drm;
4218 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4219 struct drm_atomic_state *state;
4220 int ret;
4221
4222 /* reset doesn't touch the display */
4223 if (!i915_modparams.force_reset_modeset_test &&
4224 !gpu_reset_clobbers_display(dev_priv))
4225 return;
4226
4227 /* We have a modeset vs reset deadlock, defensively unbreak it. */
4228 set_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
4229 wake_up_all(&dev_priv->gpu_error.wait_queue);
4230
4231 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4232 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
4233 i915_gem_set_wedged(dev_priv);
4234 }
4235
4236 /*
4237 * Need mode_config.mutex so that we don't
4238 * trample ongoing ->detect() and whatnot.
4239 */
4240 mutex_lock(&dev->mode_config.mutex);
4241 drm_modeset_acquire_init(ctx, 0);
4242 while (1) {
4243 ret = drm_modeset_lock_all_ctx(dev, ctx);
4244 if (ret != -EDEADLK)
4245 break;
4246
4247 drm_modeset_backoff(ctx);
4248 }
4249 /*
4250 * Disabling the crtcs gracefully seems nicer. Also the
4251 * g33 docs say we should at least disable all the planes.
4252 */
4253 state = drm_atomic_helper_duplicate_state(dev, ctx);
4254 if (IS_ERR(state)) {
4255 ret = PTR_ERR(state);
4256 DRM_ERROR("Duplicating state failed with %i\n", ret);
4257 return;
4258 }
4259
4260 ret = drm_atomic_helper_disable_all(dev, ctx);
4261 if (ret) {
4262 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
4263 drm_atomic_state_put(state);
4264 return;
4265 }
4266
4267 dev_priv->modeset_restore_state = state;
4268 state->acquire_ctx = ctx;
4269 }
4270
4271 void intel_finish_reset(struct drm_i915_private *dev_priv)
4272 {
4273 struct drm_device *dev = &dev_priv->drm;
4274 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4275 struct drm_atomic_state *state;
4276 int ret;
4277
4278 /* reset doesn't touch the display */
4279 if (!test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
4280 return;
4281
4282 state = fetch_and_zero(&dev_priv->modeset_restore_state);
4283 if (!state)
4284 goto unlock;
4285
4286 /* reset doesn't touch the display */
4287 if (!gpu_reset_clobbers_display(dev_priv)) {
4288 /* for testing only restore the display */
4289 ret = __intel_display_resume(dev, state, ctx);
4290 if (ret)
4291 DRM_ERROR("Restoring old state failed with %i\n", ret);
4292 } else {
4293 /*
4294 * The display has been reset as well,
4295 * so need a full re-initialization.
4296 */
4297 intel_pps_unlock_regs_wa(dev_priv);
4298 intel_modeset_init_hw(dev);
4299 intel_init_clock_gating(dev_priv);
4300
4301 spin_lock_irq(&dev_priv->irq_lock);
4302 if (dev_priv->display.hpd_irq_setup)
4303 dev_priv->display.hpd_irq_setup(dev_priv);
4304 spin_unlock_irq(&dev_priv->irq_lock);
4305
4306 ret = __intel_display_resume(dev, state, ctx);
4307 if (ret)
4308 DRM_ERROR("Restoring old state failed with %i\n", ret);
4309
4310 intel_hpd_init(dev_priv);
4311 }
4312
4313 drm_atomic_state_put(state);
4314 unlock:
4315 drm_modeset_drop_locks(ctx);
4316 drm_modeset_acquire_fini(ctx);
4317 mutex_unlock(&dev->mode_config.mutex);
4318
4319 clear_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
4320 }
4321
4322 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
4323 {
4324 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4325 enum pipe pipe = crtc->pipe;
4326 u32 tmp;
4327
4328 tmp = I915_READ(PIPE_CHICKEN(pipe));
4329
4330 /*
4331 * Display WA #1153: icl
4332 * enable hardware to bypass the alpha math
4333 * and rounding for per-pixel values 00 and 0xff
4334 */
4335 tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
4336 /*
4337 * Display WA # 1605353570: icl
4338 * Set the pixel rounding bit to 1 for allowing
4339 * passthrough of Frame buffer pixels unmodified
4340 * across pipe
4341 */
4342 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
4343 I915_WRITE(PIPE_CHICKEN(pipe), tmp);
4344 }
4345
4346 static void intel_update_pipe_config(const struct intel_crtc_state *old_crtc_state,
4347 const struct intel_crtc_state *new_crtc_state)
4348 {
4349 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
4350 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4351
4352 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
4353 crtc->base.mode = new_crtc_state->base.mode;
4354
4355 /*
4356 * Update pipe size and adjust fitter if needed: the reason for this is
4357 * that in compute_mode_changes we check the native mode (not the pfit
4358 * mode) to see if we can flip rather than do a full mode set. In the
4359 * fastboot case, we'll flip, but if we don't update the pipesrc and
4360 * pfit state, we'll end up with a big fb scanned out into the wrong
4361 * sized surface.
4362 */
4363
4364 I915_WRITE(PIPESRC(crtc->pipe),
4365 ((new_crtc_state->pipe_src_w - 1) << 16) |
4366 (new_crtc_state->pipe_src_h - 1));
4367
4368 /* on skylake this is done by detaching scalers */
4369 if (INTEL_GEN(dev_priv) >= 9) {
4370 skl_detach_scalers(new_crtc_state);
4371
4372 if (new_crtc_state->pch_pfit.enabled)
4373 skylake_pfit_enable(new_crtc_state);
4374 } else if (HAS_PCH_SPLIT(dev_priv)) {
4375 if (new_crtc_state->pch_pfit.enabled)
4376 ironlake_pfit_enable(new_crtc_state);
4377 else if (old_crtc_state->pch_pfit.enabled)
4378 ironlake_pfit_disable(old_crtc_state);
4379 }
4380
4381 if (INTEL_GEN(dev_priv) >= 11)
4382 icl_set_pipe_chicken(crtc);
4383 }
4384
4385 static void intel_fdi_normal_train(struct intel_crtc *crtc)
4386 {
4387 struct drm_device *dev = crtc->base.dev;
4388 struct drm_i915_private *dev_priv = to_i915(dev);
4389 int pipe = crtc->pipe;
4390 i915_reg_t reg;
4391 u32 temp;
4392
4393 /* enable normal train */
4394 reg = FDI_TX_CTL(pipe);
4395 temp = I915_READ(reg);
4396 if (IS_IVYBRIDGE(dev_priv)) {
4397 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4398 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
4399 } else {
4400 temp &= ~FDI_LINK_TRAIN_NONE;
4401 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
4402 }
4403 I915_WRITE(reg, temp);
4404
4405 reg = FDI_RX_CTL(pipe);
4406 temp = I915_READ(reg);
4407 if (HAS_PCH_CPT(dev_priv)) {
4408 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4409 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
4410 } else {
4411 temp &= ~FDI_LINK_TRAIN_NONE;
4412 temp |= FDI_LINK_TRAIN_NONE;
4413 }
4414 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
4415
4416 /* wait one idle pattern time */
4417 POSTING_READ(reg);
4418 udelay(1000);
4419
4420 /* IVB wants error correction enabled */
4421 if (IS_IVYBRIDGE(dev_priv))
4422 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
4423 FDI_FE_ERRC_ENABLE);
4424 }
4425
4426 /* The FDI link training functions for ILK/Ibexpeak. */
4427 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
4428 const struct intel_crtc_state *crtc_state)
4429 {
4430 struct drm_device *dev = crtc->base.dev;
4431 struct drm_i915_private *dev_priv = to_i915(dev);
4432 int pipe = crtc->pipe;
4433 i915_reg_t reg;
4434 u32 temp, tries;
4435
4436 /* FDI needs bits from pipe first */
4437 assert_pipe_enabled(dev_priv, pipe);
4438
4439 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4440 for train result */
4441 reg = FDI_RX_IMR(pipe);
4442 temp = I915_READ(reg);
4443 temp &= ~FDI_RX_SYMBOL_LOCK;
4444 temp &= ~FDI_RX_BIT_LOCK;
4445 I915_WRITE(reg, temp);
4446 I915_READ(reg);
4447 udelay(150);
4448
4449 /* enable CPU FDI TX and PCH FDI RX */
4450 reg = FDI_TX_CTL(pipe);
4451 temp = I915_READ(reg);
4452 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4453 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4454 temp &= ~FDI_LINK_TRAIN_NONE;
4455 temp |= FDI_LINK_TRAIN_PATTERN_1;
4456 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4457
4458 reg = FDI_RX_CTL(pipe);
4459 temp = I915_READ(reg);
4460 temp &= ~FDI_LINK_TRAIN_NONE;
4461 temp |= FDI_LINK_TRAIN_PATTERN_1;
4462 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4463
4464 POSTING_READ(reg);
4465 udelay(150);
4466
4467 /* Ironlake workaround, enable clock pointer after FDI enable*/
4468 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4469 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
4470 FDI_RX_PHASE_SYNC_POINTER_EN);
4471
4472 reg = FDI_RX_IIR(pipe);
4473 for (tries = 0; tries < 5; tries++) {
4474 temp = I915_READ(reg);
4475 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4476
4477 if ((temp & FDI_RX_BIT_LOCK)) {
4478 DRM_DEBUG_KMS("FDI train 1 done.\n");
4479 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4480 break;
4481 }
4482 }
4483 if (tries == 5)
4484 DRM_ERROR("FDI train 1 fail!\n");
4485
4486 /* Train 2 */
4487 reg = FDI_TX_CTL(pipe);
4488 temp = I915_READ(reg);
4489 temp &= ~FDI_LINK_TRAIN_NONE;
4490 temp |= FDI_LINK_TRAIN_PATTERN_2;
4491 I915_WRITE(reg, temp);
4492
4493 reg = FDI_RX_CTL(pipe);
4494 temp = I915_READ(reg);
4495 temp &= ~FDI_LINK_TRAIN_NONE;
4496 temp |= FDI_LINK_TRAIN_PATTERN_2;
4497 I915_WRITE(reg, temp);
4498
4499 POSTING_READ(reg);
4500 udelay(150);
4501
4502 reg = FDI_RX_IIR(pipe);
4503 for (tries = 0; tries < 5; tries++) {
4504 temp = I915_READ(reg);
4505 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4506
4507 if (temp & FDI_RX_SYMBOL_LOCK) {
4508 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4509 DRM_DEBUG_KMS("FDI train 2 done.\n");
4510 break;
4511 }
4512 }
4513 if (tries == 5)
4514 DRM_ERROR("FDI train 2 fail!\n");
4515
4516 DRM_DEBUG_KMS("FDI train done\n");
4517
4518 }
4519
4520 static const int snb_b_fdi_train_param[] = {
4521 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
4522 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
4523 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
4524 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
4525 };
4526
4527 /* The FDI link training functions for SNB/Cougarpoint. */
4528 static void gen6_fdi_link_train(struct intel_crtc *crtc,
4529 const struct intel_crtc_state *crtc_state)
4530 {
4531 struct drm_device *dev = crtc->base.dev;
4532 struct drm_i915_private *dev_priv = to_i915(dev);
4533 int pipe = crtc->pipe;
4534 i915_reg_t reg;
4535 u32 temp, i, retry;
4536
4537 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4538 for train result */
4539 reg = FDI_RX_IMR(pipe);
4540 temp = I915_READ(reg);
4541 temp &= ~FDI_RX_SYMBOL_LOCK;
4542 temp &= ~FDI_RX_BIT_LOCK;
4543 I915_WRITE(reg, temp);
4544
4545 POSTING_READ(reg);
4546 udelay(150);
4547
4548 /* enable CPU FDI TX and PCH FDI RX */
4549 reg = FDI_TX_CTL(pipe);
4550 temp = I915_READ(reg);
4551 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4552 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4553 temp &= ~FDI_LINK_TRAIN_NONE;
4554 temp |= FDI_LINK_TRAIN_PATTERN_1;
4555 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4556 /* SNB-B */
4557 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4558 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4559
4560 I915_WRITE(FDI_RX_MISC(pipe),
4561 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4562
4563 reg = FDI_RX_CTL(pipe);
4564 temp = I915_READ(reg);
4565 if (HAS_PCH_CPT(dev_priv)) {
4566 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4567 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4568 } else {
4569 temp &= ~FDI_LINK_TRAIN_NONE;
4570 temp |= FDI_LINK_TRAIN_PATTERN_1;
4571 }
4572 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4573
4574 POSTING_READ(reg);
4575 udelay(150);
4576
4577 for (i = 0; i < 4; i++) {
4578 reg = FDI_TX_CTL(pipe);
4579 temp = I915_READ(reg);
4580 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4581 temp |= snb_b_fdi_train_param[i];
4582 I915_WRITE(reg, temp);
4583
4584 POSTING_READ(reg);
4585 udelay(500);
4586
4587 for (retry = 0; retry < 5; retry++) {
4588 reg = FDI_RX_IIR(pipe);
4589 temp = I915_READ(reg);
4590 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4591 if (temp & FDI_RX_BIT_LOCK) {
4592 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4593 DRM_DEBUG_KMS("FDI train 1 done.\n");
4594 break;
4595 }
4596 udelay(50);
4597 }
4598 if (retry < 5)
4599 break;
4600 }
4601 if (i == 4)
4602 DRM_ERROR("FDI train 1 fail!\n");
4603
4604 /* Train 2 */
4605 reg = FDI_TX_CTL(pipe);
4606 temp = I915_READ(reg);
4607 temp &= ~FDI_LINK_TRAIN_NONE;
4608 temp |= FDI_LINK_TRAIN_PATTERN_2;
4609 if (IS_GEN(dev_priv, 6)) {
4610 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4611 /* SNB-B */
4612 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4613 }
4614 I915_WRITE(reg, temp);
4615
4616 reg = FDI_RX_CTL(pipe);
4617 temp = I915_READ(reg);
4618 if (HAS_PCH_CPT(dev_priv)) {
4619 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4620 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4621 } else {
4622 temp &= ~FDI_LINK_TRAIN_NONE;
4623 temp |= FDI_LINK_TRAIN_PATTERN_2;
4624 }
4625 I915_WRITE(reg, temp);
4626
4627 POSTING_READ(reg);
4628 udelay(150);
4629
4630 for (i = 0; i < 4; i++) {
4631 reg = FDI_TX_CTL(pipe);
4632 temp = I915_READ(reg);
4633 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4634 temp |= snb_b_fdi_train_param[i];
4635 I915_WRITE(reg, temp);
4636
4637 POSTING_READ(reg);
4638 udelay(500);
4639
4640 for (retry = 0; retry < 5; retry++) {
4641 reg = FDI_RX_IIR(pipe);
4642 temp = I915_READ(reg);
4643 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4644 if (temp & FDI_RX_SYMBOL_LOCK) {
4645 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4646 DRM_DEBUG_KMS("FDI train 2 done.\n");
4647 break;
4648 }
4649 udelay(50);
4650 }
4651 if (retry < 5)
4652 break;
4653 }
4654 if (i == 4)
4655 DRM_ERROR("FDI train 2 fail!\n");
4656
4657 DRM_DEBUG_KMS("FDI train done.\n");
4658 }
4659
4660 /* Manual link training for Ivy Bridge A0 parts */
4661 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
4662 const struct intel_crtc_state *crtc_state)
4663 {
4664 struct drm_device *dev = crtc->base.dev;
4665 struct drm_i915_private *dev_priv = to_i915(dev);
4666 int pipe = crtc->pipe;
4667 i915_reg_t reg;
4668 u32 temp, i, j;
4669
4670 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4671 for train result */
4672 reg = FDI_RX_IMR(pipe);
4673 temp = I915_READ(reg);
4674 temp &= ~FDI_RX_SYMBOL_LOCK;
4675 temp &= ~FDI_RX_BIT_LOCK;
4676 I915_WRITE(reg, temp);
4677
4678 POSTING_READ(reg);
4679 udelay(150);
4680
4681 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4682 I915_READ(FDI_RX_IIR(pipe)));
4683
4684 /* Try each vswing and preemphasis setting twice before moving on */
4685 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4686 /* disable first in case we need to retry */
4687 reg = FDI_TX_CTL(pipe);
4688 temp = I915_READ(reg);
4689 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4690 temp &= ~FDI_TX_ENABLE;
4691 I915_WRITE(reg, temp);
4692
4693 reg = FDI_RX_CTL(pipe);
4694 temp = I915_READ(reg);
4695 temp &= ~FDI_LINK_TRAIN_AUTO;
4696 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4697 temp &= ~FDI_RX_ENABLE;
4698 I915_WRITE(reg, temp);
4699
4700 /* enable CPU FDI TX and PCH FDI RX */
4701 reg = FDI_TX_CTL(pipe);
4702 temp = I915_READ(reg);
4703 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4704 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4705 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4706 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4707 temp |= snb_b_fdi_train_param[j/2];
4708 temp |= FDI_COMPOSITE_SYNC;
4709 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4710
4711 I915_WRITE(FDI_RX_MISC(pipe),
4712 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4713
4714 reg = FDI_RX_CTL(pipe);
4715 temp = I915_READ(reg);
4716 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4717 temp |= FDI_COMPOSITE_SYNC;
4718 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4719
4720 POSTING_READ(reg);
4721 udelay(1); /* should be 0.5us */
4722
4723 for (i = 0; i < 4; i++) {
4724 reg = FDI_RX_IIR(pipe);
4725 temp = I915_READ(reg);
4726 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4727
4728 if (temp & FDI_RX_BIT_LOCK ||
4729 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4730 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4731 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4732 i);
4733 break;
4734 }
4735 udelay(1); /* should be 0.5us */
4736 }
4737 if (i == 4) {
4738 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4739 continue;
4740 }
4741
4742 /* Train 2 */
4743 reg = FDI_TX_CTL(pipe);
4744 temp = I915_READ(reg);
4745 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4746 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4747 I915_WRITE(reg, temp);
4748
4749 reg = FDI_RX_CTL(pipe);
4750 temp = I915_READ(reg);
4751 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4752 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4753 I915_WRITE(reg, temp);
4754
4755 POSTING_READ(reg);
4756 udelay(2); /* should be 1.5us */
4757
4758 for (i = 0; i < 4; i++) {
4759 reg = FDI_RX_IIR(pipe);
4760 temp = I915_READ(reg);
4761 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4762
4763 if (temp & FDI_RX_SYMBOL_LOCK ||
4764 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4765 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4766 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4767 i);
4768 goto train_done;
4769 }
4770 udelay(2); /* should be 1.5us */
4771 }
4772 if (i == 4)
4773 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4774 }
4775
4776 train_done:
4777 DRM_DEBUG_KMS("FDI train done.\n");
4778 }
4779
4780 static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
4781 {
4782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4783 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4784 int pipe = intel_crtc->pipe;
4785 i915_reg_t reg;
4786 u32 temp;
4787
4788 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4789 reg = FDI_RX_CTL(pipe);
4790 temp = I915_READ(reg);
4791 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4792 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4793 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4794 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4795
4796 POSTING_READ(reg);
4797 udelay(200);
4798
4799 /* Switch from Rawclk to PCDclk */
4800 temp = I915_READ(reg);
4801 I915_WRITE(reg, temp | FDI_PCDCLK);
4802
4803 POSTING_READ(reg);
4804 udelay(200);
4805
4806 /* Enable CPU FDI TX PLL, always on for Ironlake */
4807 reg = FDI_TX_CTL(pipe);
4808 temp = I915_READ(reg);
4809 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4810 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4811
4812 POSTING_READ(reg);
4813 udelay(100);
4814 }
4815 }
4816
4817 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4818 {
4819 struct drm_device *dev = intel_crtc->base.dev;
4820 struct drm_i915_private *dev_priv = to_i915(dev);
4821 int pipe = intel_crtc->pipe;
4822 i915_reg_t reg;
4823 u32 temp;
4824
4825 /* Switch from PCDclk to Rawclk */
4826 reg = FDI_RX_CTL(pipe);
4827 temp = I915_READ(reg);
4828 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4829
4830 /* Disable CPU FDI TX PLL */
4831 reg = FDI_TX_CTL(pipe);
4832 temp = I915_READ(reg);
4833 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4834
4835 POSTING_READ(reg);
4836 udelay(100);
4837
4838 reg = FDI_RX_CTL(pipe);
4839 temp = I915_READ(reg);
4840 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4841
4842 /* Wait for the clocks to turn off. */
4843 POSTING_READ(reg);
4844 udelay(100);
4845 }
4846
4847 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4848 {
4849 struct drm_device *dev = crtc->dev;
4850 struct drm_i915_private *dev_priv = to_i915(dev);
4851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4852 int pipe = intel_crtc->pipe;
4853 i915_reg_t reg;
4854 u32 temp;
4855
4856 /* disable CPU FDI tx and PCH FDI rx */
4857 reg = FDI_TX_CTL(pipe);
4858 temp = I915_READ(reg);
4859 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4860 POSTING_READ(reg);
4861
4862 reg = FDI_RX_CTL(pipe);
4863 temp = I915_READ(reg);
4864 temp &= ~(0x7 << 16);
4865 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4866 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4867
4868 POSTING_READ(reg);
4869 udelay(100);
4870
4871 /* Ironlake workaround, disable clock pointer after downing FDI */
4872 if (HAS_PCH_IBX(dev_priv))
4873 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4874
4875 /* still set train pattern 1 */
4876 reg = FDI_TX_CTL(pipe);
4877 temp = I915_READ(reg);
4878 temp &= ~FDI_LINK_TRAIN_NONE;
4879 temp |= FDI_LINK_TRAIN_PATTERN_1;
4880 I915_WRITE(reg, temp);
4881
4882 reg = FDI_RX_CTL(pipe);
4883 temp = I915_READ(reg);
4884 if (HAS_PCH_CPT(dev_priv)) {
4885 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4886 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4887 } else {
4888 temp &= ~FDI_LINK_TRAIN_NONE;
4889 temp |= FDI_LINK_TRAIN_PATTERN_1;
4890 }
4891 /* BPC in FDI rx is consistent with that in PIPECONF */
4892 temp &= ~(0x07 << 16);
4893 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4894 I915_WRITE(reg, temp);
4895
4896 POSTING_READ(reg);
4897 udelay(100);
4898 }
4899
4900 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4901 {
4902 struct drm_crtc *crtc;
4903 bool cleanup_done;
4904
4905 drm_for_each_crtc(crtc, &dev_priv->drm) {
4906 struct drm_crtc_commit *commit;
4907 spin_lock(&crtc->commit_lock);
4908 commit = list_first_entry_or_null(&crtc->commit_list,
4909 struct drm_crtc_commit, commit_entry);
4910 cleanup_done = commit ?
4911 try_wait_for_completion(&commit->cleanup_done) : true;
4912 spin_unlock(&crtc->commit_lock);
4913
4914 if (cleanup_done)
4915 continue;
4916
4917 drm_crtc_wait_one_vblank(crtc);
4918
4919 return true;
4920 }
4921
4922 return false;
4923 }
4924
4925 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4926 {
4927 u32 temp;
4928
4929 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4930
4931 mutex_lock(&dev_priv->sb_lock);
4932
4933 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4934 temp |= SBI_SSCCTL_DISABLE;
4935 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4936
4937 mutex_unlock(&dev_priv->sb_lock);
4938 }
4939
4940 /* Program iCLKIP clock to the desired frequency */
4941 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
4942 {
4943 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4944 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4945 int clock = crtc_state->base.adjusted_mode.crtc_clock;
4946 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4947 u32 temp;
4948
4949 lpt_disable_iclkip(dev_priv);
4950
4951 /* The iCLK virtual clock root frequency is in MHz,
4952 * but the adjusted_mode->crtc_clock in in KHz. To get the
4953 * divisors, it is necessary to divide one by another, so we
4954 * convert the virtual clock precision to KHz here for higher
4955 * precision.
4956 */
4957 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4958 u32 iclk_virtual_root_freq = 172800 * 1000;
4959 u32 iclk_pi_range = 64;
4960 u32 desired_divisor;
4961
4962 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4963 clock << auxdiv);
4964 divsel = (desired_divisor / iclk_pi_range) - 2;
4965 phaseinc = desired_divisor % iclk_pi_range;
4966
4967 /*
4968 * Near 20MHz is a corner case which is
4969 * out of range for the 7-bit divisor
4970 */
4971 if (divsel <= 0x7f)
4972 break;
4973 }
4974
4975 /* This should not happen with any sane values */
4976 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4977 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4978 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4979 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4980
4981 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4982 clock,
4983 auxdiv,
4984 divsel,
4985 phasedir,
4986 phaseinc);
4987
4988 mutex_lock(&dev_priv->sb_lock);
4989
4990 /* Program SSCDIVINTPHASE6 */
4991 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4992 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4993 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4994 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4995 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4996 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4997 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4998 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4999
5000 /* Program SSCAUXDIV */
5001 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5002 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5003 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5004 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5005
5006 /* Enable modulator and associated divider */
5007 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5008 temp &= ~SBI_SSCCTL_DISABLE;
5009 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5010
5011 mutex_unlock(&dev_priv->sb_lock);
5012
5013 /* Wait for initialization time */
5014 udelay(24);
5015
5016 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5017 }
5018
5019 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5020 {
5021 u32 divsel, phaseinc, auxdiv;
5022 u32 iclk_virtual_root_freq = 172800 * 1000;
5023 u32 iclk_pi_range = 64;
5024 u32 desired_divisor;
5025 u32 temp;
5026
5027 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5028 return 0;
5029
5030 mutex_lock(&dev_priv->sb_lock);
5031
5032 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5033 if (temp & SBI_SSCCTL_DISABLE) {
5034 mutex_unlock(&dev_priv->sb_lock);
5035 return 0;
5036 }
5037
5038 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5039 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5040 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5041 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5042 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5043
5044 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5045 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5046 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5047
5048 mutex_unlock(&dev_priv->sb_lock);
5049
5050 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5051
5052 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5053 desired_divisor << auxdiv);
5054 }
5055
5056 static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5057 enum pipe pch_transcoder)
5058 {
5059 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5060 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5061 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5062
5063 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
5064 I915_READ(HTOTAL(cpu_transcoder)));
5065 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
5066 I915_READ(HBLANK(cpu_transcoder)));
5067 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
5068 I915_READ(HSYNC(cpu_transcoder)));
5069
5070 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
5071 I915_READ(VTOTAL(cpu_transcoder)));
5072 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
5073 I915_READ(VBLANK(cpu_transcoder)));
5074 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
5075 I915_READ(VSYNC(cpu_transcoder)));
5076 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5077 I915_READ(VSYNCSHIFT(cpu_transcoder)));
5078 }
5079
5080 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5081 {
5082 u32 temp;
5083
5084 temp = I915_READ(SOUTH_CHICKEN1);
5085 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5086 return;
5087
5088 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5089 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5090
5091 temp &= ~FDI_BC_BIFURCATION_SELECT;
5092 if (enable)
5093 temp |= FDI_BC_BIFURCATION_SELECT;
5094
5095 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
5096 I915_WRITE(SOUTH_CHICKEN1, temp);
5097 POSTING_READ(SOUTH_CHICKEN1);
5098 }
5099
5100 static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5101 {
5102 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5103 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5104
5105 switch (crtc->pipe) {
5106 case PIPE_A:
5107 break;
5108 case PIPE_B:
5109 if (crtc_state->fdi_lanes > 2)
5110 cpt_set_fdi_bc_bifurcation(dev_priv, false);
5111 else
5112 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5113
5114 break;
5115 case PIPE_C:
5116 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5117
5118 break;
5119 default:
5120 BUG();
5121 }
5122 }
5123
5124 /*
5125 * Finds the encoder associated with the given CRTC. This can only be
5126 * used when we know that the CRTC isn't feeding multiple encoders!
5127 */
5128 static struct intel_encoder *
5129 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5130 const struct intel_crtc_state *crtc_state)
5131 {
5132 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5133 const struct drm_connector_state *connector_state;
5134 const struct drm_connector *connector;
5135 struct intel_encoder *encoder = NULL;
5136 int num_encoders = 0;
5137 int i;
5138
5139 for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5140 if (connector_state->crtc != &crtc->base)
5141 continue;
5142
5143 encoder = to_intel_encoder(connector_state->best_encoder);
5144 num_encoders++;
5145 }
5146
5147 WARN(num_encoders != 1, "%d encoders for pipe %c\n",
5148 num_encoders, pipe_name(crtc->pipe));
5149
5150 return encoder;
5151 }
5152
5153 /*
5154 * Enable PCH resources required for PCH ports:
5155 * - PCH PLLs
5156 * - FDI training & RX/TX
5157 * - update transcoder timings
5158 * - DP transcoding bits
5159 * - transcoder
5160 */
5161 static void ironlake_pch_enable(const struct intel_atomic_state *state,
5162 const struct intel_crtc_state *crtc_state)
5163 {
5164 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5165 struct drm_device *dev = crtc->base.dev;
5166 struct drm_i915_private *dev_priv = to_i915(dev);
5167 int pipe = crtc->pipe;
5168 u32 temp;
5169
5170 assert_pch_transcoder_disabled(dev_priv, pipe);
5171
5172 if (IS_IVYBRIDGE(dev_priv))
5173 ivybridge_update_fdi_bc_bifurcation(crtc_state);
5174
5175 /* Write the TU size bits before fdi link training, so that error
5176 * detection works. */
5177 I915_WRITE(FDI_RX_TUSIZE1(pipe),
5178 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5179
5180 /* For PCH output, training FDI link */
5181 dev_priv->display.fdi_link_train(crtc, crtc_state);
5182
5183 /* We need to program the right clock selection before writing the pixel
5184 * mutliplier into the DPLL. */
5185 if (HAS_PCH_CPT(dev_priv)) {
5186 u32 sel;
5187
5188 temp = I915_READ(PCH_DPLL_SEL);
5189 temp |= TRANS_DPLL_ENABLE(pipe);
5190 sel = TRANS_DPLLB_SEL(pipe);
5191 if (crtc_state->shared_dpll ==
5192 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5193 temp |= sel;
5194 else
5195 temp &= ~sel;
5196 I915_WRITE(PCH_DPLL_SEL, temp);
5197 }
5198
5199 /* XXX: pch pll's can be enabled any time before we enable the PCH
5200 * transcoder, and we actually should do this to not upset any PCH
5201 * transcoder that already use the clock when we share it.
5202 *
5203 * Note that enable_shared_dpll tries to do the right thing, but
5204 * get_shared_dpll unconditionally resets the pll - we need that to have
5205 * the right LVDS enable sequence. */
5206 intel_enable_shared_dpll(crtc_state);
5207
5208 /* set transcoder timing, panel must allow it */
5209 assert_panel_unlocked(dev_priv, pipe);
5210 ironlake_pch_transcoder_set_timings(crtc_state, pipe);
5211
5212 intel_fdi_normal_train(crtc);
5213
5214 /* For PCH DP, enable TRANS_DP_CTL */
5215 if (HAS_PCH_CPT(dev_priv) &&
5216 intel_crtc_has_dp_encoder(crtc_state)) {
5217 const struct drm_display_mode *adjusted_mode =
5218 &crtc_state->base.adjusted_mode;
5219 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5220 i915_reg_t reg = TRANS_DP_CTL(pipe);
5221 enum port port;
5222
5223 temp = I915_READ(reg);
5224 temp &= ~(TRANS_DP_PORT_SEL_MASK |
5225 TRANS_DP_SYNC_MASK |
5226 TRANS_DP_BPC_MASK);
5227 temp |= TRANS_DP_OUTPUT_ENABLE;
5228 temp |= bpc << 9; /* same format but at 11:9 */
5229
5230 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5231 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5232 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5233 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5234
5235 port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5236 WARN_ON(port < PORT_B || port > PORT_D);
5237 temp |= TRANS_DP_PORT_SEL(port);
5238
5239 I915_WRITE(reg, temp);
5240 }
5241
5242 ironlake_enable_pch_transcoder(crtc_state);
5243 }
5244
5245 static void lpt_pch_enable(const struct intel_atomic_state *state,
5246 const struct intel_crtc_state *crtc_state)
5247 {
5248 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5249 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5250 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5251
5252 assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5253
5254 lpt_program_iclkip(crtc_state);
5255
5256 /* Set transcoder timing. */
5257 ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A);
5258
5259 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5260 }
5261
5262 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
5263 {
5264 struct drm_i915_private *dev_priv = to_i915(dev);
5265 i915_reg_t dslreg = PIPEDSL(pipe);
5266 u32 temp;
5267
5268 temp = I915_READ(dslreg);
5269 udelay(500);
5270 if (wait_for(I915_READ(dslreg) != temp, 5)) {
5271 if (wait_for(I915_READ(dslreg) != temp, 5))
5272 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5273 }
5274 }
5275
5276 /*
5277 * The hardware phase 0.0 refers to the center of the pixel.
5278 * We want to start from the top/left edge which is phase
5279 * -0.5. That matches how the hardware calculates the scaling
5280 * factors (from top-left of the first pixel to bottom-right
5281 * of the last pixel, as opposed to the pixel centers).
5282 *
5283 * For 4:2:0 subsampled chroma planes we obviously have to
5284 * adjust that so that the chroma sample position lands in
5285 * the right spot.
5286 *
5287 * Note that for packed YCbCr 4:2:2 formats there is no way to
5288 * control chroma siting. The hardware simply replicates the
5289 * chroma samples for both of the luma samples, and thus we don't
5290 * actually get the expected MPEG2 chroma siting convention :(
5291 * The same behaviour is observed on pre-SKL platforms as well.
5292 *
5293 * Theory behind the formula (note that we ignore sub-pixel
5294 * source coordinates):
5295 * s = source sample position
5296 * d = destination sample position
5297 *
5298 * Downscaling 4:1:
5299 * -0.5
5300 * | 0.0
5301 * | | 1.5 (initial phase)
5302 * | | |
5303 * v v v
5304 * | s | s | s | s |
5305 * | d |
5306 *
5307 * Upscaling 1:4:
5308 * -0.5
5309 * | -0.375 (initial phase)
5310 * | | 0.0
5311 * | | |
5312 * v v v
5313 * | s |
5314 * | d | d | d | d |
5315 */
5316 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5317 {
5318 int phase = -0x8000;
5319 u16 trip = 0;
5320
5321 if (chroma_cosited)
5322 phase += (sub - 1) * 0x8000 / sub;
5323
5324 phase += scale / (2 * sub);
5325
5326 /*
5327 * Hardware initial phase limited to [-0.5:1.5].
5328 * Since the max hardware scale factor is 3.0, we
5329 * should never actually excdeed 1.0 here.
5330 */
5331 WARN_ON(phase < -0x8000 || phase > 0x18000);
5332
5333 if (phase < 0)
5334 phase = 0x10000 + phase;
5335 else
5336 trip = PS_PHASE_TRIP;
5337
5338 return ((phase >> 2) & PS_PHASE_MASK) | trip;
5339 }
5340
5341 #define SKL_MIN_SRC_W 8
5342 #define SKL_MAX_SRC_W 4096
5343 #define SKL_MIN_SRC_H 8
5344 #define SKL_MAX_SRC_H 4096
5345 #define SKL_MIN_DST_W 8
5346 #define SKL_MAX_DST_W 4096
5347 #define SKL_MIN_DST_H 8
5348 #define SKL_MAX_DST_H 4096
5349 #define ICL_MAX_SRC_W 5120
5350 #define ICL_MAX_SRC_H 4096
5351 #define ICL_MAX_DST_W 5120
5352 #define ICL_MAX_DST_H 4096
5353 #define SKL_MIN_YUV_420_SRC_W 16
5354 #define SKL_MIN_YUV_420_SRC_H 16
5355
5356 static int
5357 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
5358 unsigned int scaler_user, int *scaler_id,
5359 int src_w, int src_h, int dst_w, int dst_h,
5360 const struct drm_format_info *format, bool need_scaler)
5361 {
5362 struct intel_crtc_scaler_state *scaler_state =
5363 &crtc_state->scaler_state;
5364 struct intel_crtc *intel_crtc =
5365 to_intel_crtc(crtc_state->base.crtc);
5366 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5367 const struct drm_display_mode *adjusted_mode =
5368 &crtc_state->base.adjusted_mode;
5369
5370 /*
5371 * Src coordinates are already rotated by 270 degrees for
5372 * the 90/270 degree plane rotation cases (to match the
5373 * GTT mapping), hence no need to account for rotation here.
5374 */
5375 if (src_w != dst_w || src_h != dst_h)
5376 need_scaler = true;
5377
5378 /*
5379 * Scaling/fitting not supported in IF-ID mode in GEN9+
5380 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
5381 * Once NV12 is enabled, handle it here while allocating scaler
5382 * for NV12.
5383 */
5384 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
5385 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5386 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
5387 return -EINVAL;
5388 }
5389
5390 /*
5391 * if plane is being disabled or scaler is no more required or force detach
5392 * - free scaler binded to this plane/crtc
5393 * - in order to do this, update crtc->scaler_usage
5394 *
5395 * Here scaler state in crtc_state is set free so that
5396 * scaler can be assigned to other user. Actual register
5397 * update to free the scaler is done in plane/panel-fit programming.
5398 * For this purpose crtc/plane_state->scaler_id isn't reset here.
5399 */
5400 if (force_detach || !need_scaler) {
5401 if (*scaler_id >= 0) {
5402 scaler_state->scaler_users &= ~(1 << scaler_user);
5403 scaler_state->scalers[*scaler_id].in_use = 0;
5404
5405 DRM_DEBUG_KMS("scaler_user index %u.%u: "
5406 "Staged freeing scaler id %d scaler_users = 0x%x\n",
5407 intel_crtc->pipe, scaler_user, *scaler_id,
5408 scaler_state->scaler_users);
5409 *scaler_id = -1;
5410 }
5411 return 0;
5412 }
5413
5414 if (format && is_planar_yuv_format(format->format) &&
5415 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
5416 DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n");
5417 return -EINVAL;
5418 }
5419
5420 /* range checks */
5421 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
5422 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
5423 (INTEL_GEN(dev_priv) >= 11 &&
5424 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
5425 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
5426 (INTEL_GEN(dev_priv) < 11 &&
5427 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
5428 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
5429 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
5430 "size is out of scaler range\n",
5431 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
5432 return -EINVAL;
5433 }
5434
5435 /* mark this plane as a scaler user in crtc_state */
5436 scaler_state->scaler_users |= (1 << scaler_user);
5437 DRM_DEBUG_KMS("scaler_user index %u.%u: "
5438 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
5439 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
5440 scaler_state->scaler_users);
5441
5442 return 0;
5443 }
5444
5445 /**
5446 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
5447 *
5448 * @state: crtc's scaler state
5449 *
5450 * Return
5451 * 0 - scaler_usage updated successfully
5452 * error - requested scaling cannot be supported or other error condition
5453 */
5454 int skl_update_scaler_crtc(struct intel_crtc_state *state)
5455 {
5456 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
5457 bool need_scaler = false;
5458
5459 if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
5460 need_scaler = true;
5461
5462 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
5463 &state->scaler_state.scaler_id,
5464 state->pipe_src_w, state->pipe_src_h,
5465 adjusted_mode->crtc_hdisplay,
5466 adjusted_mode->crtc_vdisplay, NULL, need_scaler);
5467 }
5468
5469 /**
5470 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
5471 * @crtc_state: crtc's scaler state
5472 * @plane_state: atomic plane state to update
5473 *
5474 * Return
5475 * 0 - scaler_usage updated successfully
5476 * error - requested scaling cannot be supported or other error condition
5477 */
5478 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
5479 struct intel_plane_state *plane_state)
5480 {
5481 struct intel_plane *intel_plane =
5482 to_intel_plane(plane_state->base.plane);
5483 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
5484 struct drm_framebuffer *fb = plane_state->base.fb;
5485 int ret;
5486 bool force_detach = !fb || !plane_state->base.visible;
5487 bool need_scaler = false;
5488
5489 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */
5490 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
5491 fb && is_planar_yuv_format(fb->format->format))
5492 need_scaler = true;
5493
5494 ret = skl_update_scaler(crtc_state, force_detach,
5495 drm_plane_index(&intel_plane->base),
5496 &plane_state->scaler_id,
5497 drm_rect_width(&plane_state->base.src) >> 16,
5498 drm_rect_height(&plane_state->base.src) >> 16,
5499 drm_rect_width(&plane_state->base.dst),
5500 drm_rect_height(&plane_state->base.dst),
5501 fb ? fb->format : NULL, need_scaler);
5502
5503 if (ret || plane_state->scaler_id < 0)
5504 return ret;
5505
5506 /* check colorkey */
5507 if (plane_state->ckey.flags) {
5508 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
5509 intel_plane->base.base.id,
5510 intel_plane->base.name);
5511 return -EINVAL;
5512 }
5513
5514 /* Check src format */
5515 switch (fb->format->format) {
5516 case DRM_FORMAT_RGB565:
5517 case DRM_FORMAT_XBGR8888:
5518 case DRM_FORMAT_XRGB8888:
5519 case DRM_FORMAT_ABGR8888:
5520 case DRM_FORMAT_ARGB8888:
5521 case DRM_FORMAT_XRGB2101010:
5522 case DRM_FORMAT_XBGR2101010:
5523 case DRM_FORMAT_XBGR16161616F:
5524 case DRM_FORMAT_ABGR16161616F:
5525 case DRM_FORMAT_XRGB16161616F:
5526 case DRM_FORMAT_ARGB16161616F:
5527 case DRM_FORMAT_YUYV:
5528 case DRM_FORMAT_YVYU:
5529 case DRM_FORMAT_UYVY:
5530 case DRM_FORMAT_VYUY:
5531 case DRM_FORMAT_NV12:
5532 case DRM_FORMAT_P010:
5533 case DRM_FORMAT_P012:
5534 case DRM_FORMAT_P016:
5535 case DRM_FORMAT_Y210:
5536 case DRM_FORMAT_Y212:
5537 case DRM_FORMAT_Y216:
5538 case DRM_FORMAT_XVYU2101010:
5539 case DRM_FORMAT_XVYU12_16161616:
5540 case DRM_FORMAT_XVYU16161616:
5541 break;
5542 default:
5543 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
5544 intel_plane->base.base.id, intel_plane->base.name,
5545 fb->base.id, fb->format->format);
5546 return -EINVAL;
5547 }
5548
5549 return 0;
5550 }
5551
5552 static void skylake_scaler_disable(struct intel_crtc *crtc)
5553 {
5554 int i;
5555
5556 for (i = 0; i < crtc->num_scalers; i++)
5557 skl_detach_scaler(crtc, i);
5558 }
5559
5560 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state)
5561 {
5562 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5563 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5564 enum pipe pipe = crtc->pipe;
5565 const struct intel_crtc_scaler_state *scaler_state =
5566 &crtc_state->scaler_state;
5567
5568 if (crtc_state->pch_pfit.enabled) {
5569 u16 uv_rgb_hphase, uv_rgb_vphase;
5570 int pfit_w, pfit_h, hscale, vscale;
5571 int id;
5572
5573 if (WARN_ON(crtc_state->scaler_state.scaler_id < 0))
5574 return;
5575
5576 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF;
5577 pfit_h = crtc_state->pch_pfit.size & 0xFFFF;
5578
5579 hscale = (crtc_state->pipe_src_w << 16) / pfit_w;
5580 vscale = (crtc_state->pipe_src_h << 16) / pfit_h;
5581
5582 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
5583 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
5584
5585 id = scaler_state->scaler_id;
5586 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
5587 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
5588 I915_WRITE_FW(SKL_PS_VPHASE(pipe, id),
5589 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
5590 I915_WRITE_FW(SKL_PS_HPHASE(pipe, id),
5591 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
5592 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos);
5593 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size);
5594 }
5595 }
5596
5597 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state)
5598 {
5599 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5600 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5601 int pipe = crtc->pipe;
5602
5603 if (crtc_state->pch_pfit.enabled) {
5604 /* Force use of hard-coded filter coefficients
5605 * as some pre-programmed values are broken,
5606 * e.g. x201.
5607 */
5608 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
5609 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
5610 PF_PIPE_SEL_IVB(pipe));
5611 else
5612 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
5613 I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos);
5614 I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size);
5615 }
5616 }
5617
5618 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
5619 {
5620 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5621 struct drm_device *dev = crtc->base.dev;
5622 struct drm_i915_private *dev_priv = to_i915(dev);
5623
5624 if (!crtc_state->ips_enabled)
5625 return;
5626
5627 /*
5628 * We can only enable IPS after we enable a plane and wait for a vblank
5629 * This function is called from post_plane_update, which is run after
5630 * a vblank wait.
5631 */
5632 WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
5633
5634 if (IS_BROADWELL(dev_priv)) {
5635 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
5636 IPS_ENABLE | IPS_PCODE_CONTROL));
5637 /* Quoting Art Runyan: "its not safe to expect any particular
5638 * value in IPS_CTL bit 31 after enabling IPS through the
5639 * mailbox." Moreover, the mailbox may return a bogus state,
5640 * so we need to just enable it and continue on.
5641 */
5642 } else {
5643 I915_WRITE(IPS_CTL, IPS_ENABLE);
5644 /* The bit only becomes 1 in the next vblank, so this wait here
5645 * is essentially intel_wait_for_vblank. If we don't have this
5646 * and don't wait for vblanks until the end of crtc_enable, then
5647 * the HW state readout code will complain that the expected
5648 * IPS_CTL value is not the one we read. */
5649 if (intel_wait_for_register(&dev_priv->uncore,
5650 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
5651 50))
5652 DRM_ERROR("Timed out waiting for IPS enable\n");
5653 }
5654 }
5655
5656 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
5657 {
5658 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5659 struct drm_device *dev = crtc->base.dev;
5660 struct drm_i915_private *dev_priv = to_i915(dev);
5661
5662 if (!crtc_state->ips_enabled)
5663 return;
5664
5665 if (IS_BROADWELL(dev_priv)) {
5666 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
5667 /*
5668 * Wait for PCODE to finish disabling IPS. The BSpec specified
5669 * 42ms timeout value leads to occasional timeouts so use 100ms
5670 * instead.
5671 */
5672 if (intel_wait_for_register(&dev_priv->uncore,
5673 IPS_CTL, IPS_ENABLE, 0,
5674 100))
5675 DRM_ERROR("Timed out waiting for IPS disable\n");
5676 } else {
5677 I915_WRITE(IPS_CTL, 0);
5678 POSTING_READ(IPS_CTL);
5679 }
5680
5681 /* We need to wait for a vblank before we can disable the plane. */
5682 intel_wait_for_vblank(dev_priv, crtc->pipe);
5683 }
5684
5685 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
5686 {
5687 if (intel_crtc->overlay) {
5688 struct drm_device *dev = intel_crtc->base.dev;
5689
5690 mutex_lock(&dev->struct_mutex);
5691 (void) intel_overlay_switch_off(intel_crtc->overlay);
5692 mutex_unlock(&dev->struct_mutex);
5693 }
5694
5695 /* Let userspace switch the overlay on again. In most cases userspace
5696 * has to recompute where to put it anyway.
5697 */
5698 }
5699
5700 /**
5701 * intel_post_enable_primary - Perform operations after enabling primary plane
5702 * @crtc: the CRTC whose primary plane was just enabled
5703 * @new_crtc_state: the enabling state
5704 *
5705 * Performs potentially sleeping operations that must be done after the primary
5706 * plane is enabled, such as updating FBC and IPS. Note that this may be
5707 * called due to an explicit primary plane update, or due to an implicit
5708 * re-enable that is caused when a sprite plane is updated to no longer
5709 * completely hide the primary plane.
5710 */
5711 static void
5712 intel_post_enable_primary(struct drm_crtc *crtc,
5713 const struct intel_crtc_state *new_crtc_state)
5714 {
5715 struct drm_device *dev = crtc->dev;
5716 struct drm_i915_private *dev_priv = to_i915(dev);
5717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5718 int pipe = intel_crtc->pipe;
5719
5720 /*
5721 * Gen2 reports pipe underruns whenever all planes are disabled.
5722 * So don't enable underrun reporting before at least some planes
5723 * are enabled.
5724 * FIXME: Need to fix the logic to work when we turn off all planes
5725 * but leave the pipe running.
5726 */
5727 if (IS_GEN(dev_priv, 2))
5728 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5729
5730 /* Underruns don't always raise interrupts, so check manually. */
5731 intel_check_cpu_fifo_underruns(dev_priv);
5732 intel_check_pch_fifo_underruns(dev_priv);
5733 }
5734
5735 /* FIXME get rid of this and use pre_plane_update */
5736 static void
5737 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5738 {
5739 struct drm_device *dev = crtc->dev;
5740 struct drm_i915_private *dev_priv = to_i915(dev);
5741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5742 int pipe = intel_crtc->pipe;
5743
5744 /*
5745 * Gen2 reports pipe underruns whenever all planes are disabled.
5746 * So disable underrun reporting before all the planes get disabled.
5747 */
5748 if (IS_GEN(dev_priv, 2))
5749 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5750
5751 hsw_disable_ips(to_intel_crtc_state(crtc->state));
5752
5753 /*
5754 * Vblank time updates from the shadow to live plane control register
5755 * are blocked if the memory self-refresh mode is active at that
5756 * moment. So to make sure the plane gets truly disabled, disable
5757 * first the self-refresh mode. The self-refresh enable bit in turn
5758 * will be checked/applied by the HW only at the next frame start
5759 * event which is after the vblank start event, so we need to have a
5760 * wait-for-vblank between disabling the plane and the pipe.
5761 */
5762 if (HAS_GMCH(dev_priv) &&
5763 intel_set_memory_cxsr(dev_priv, false))
5764 intel_wait_for_vblank(dev_priv, pipe);
5765 }
5766
5767 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
5768 const struct intel_crtc_state *new_crtc_state)
5769 {
5770 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5771 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5772
5773 if (!old_crtc_state->ips_enabled)
5774 return false;
5775
5776 if (needs_modeset(&new_crtc_state->base))
5777 return true;
5778
5779 /*
5780 * Workaround : Do not read or write the pipe palette/gamma data while
5781 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
5782 *
5783 * Disable IPS before we program the LUT.
5784 */
5785 if (IS_HASWELL(dev_priv) &&
5786 (new_crtc_state->base.color_mgmt_changed ||
5787 new_crtc_state->update_pipe) &&
5788 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
5789 return true;
5790
5791 return !new_crtc_state->ips_enabled;
5792 }
5793
5794 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
5795 const struct intel_crtc_state *new_crtc_state)
5796 {
5797 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5798 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5799
5800 if (!new_crtc_state->ips_enabled)
5801 return false;
5802
5803 if (needs_modeset(&new_crtc_state->base))
5804 return true;
5805
5806 /*
5807 * Workaround : Do not read or write the pipe palette/gamma data while
5808 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
5809 *
5810 * Re-enable IPS after the LUT has been programmed.
5811 */
5812 if (IS_HASWELL(dev_priv) &&
5813 (new_crtc_state->base.color_mgmt_changed ||
5814 new_crtc_state->update_pipe) &&
5815 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
5816 return true;
5817
5818 /*
5819 * We can't read out IPS on broadwell, assume the worst and
5820 * forcibly enable IPS on the first fastset.
5821 */
5822 if (new_crtc_state->update_pipe &&
5823 old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED)
5824 return true;
5825
5826 return !old_crtc_state->ips_enabled;
5827 }
5828
5829 static bool needs_nv12_wa(struct drm_i915_private *dev_priv,
5830 const struct intel_crtc_state *crtc_state)
5831 {
5832 if (!crtc_state->nv12_planes)
5833 return false;
5834
5835 /* WA Display #0827: Gen9:all */
5836 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
5837 return true;
5838
5839 return false;
5840 }
5841
5842 static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv,
5843 const struct intel_crtc_state *crtc_state)
5844 {
5845 /* Wa_2006604312:icl */
5846 if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv))
5847 return true;
5848
5849 return false;
5850 }
5851
5852 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5853 {
5854 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5855 struct drm_device *dev = crtc->base.dev;
5856 struct drm_i915_private *dev_priv = to_i915(dev);
5857 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5858 struct intel_crtc_state *pipe_config =
5859 intel_atomic_get_new_crtc_state(to_intel_atomic_state(old_state),
5860 crtc);
5861 struct drm_plane *primary = crtc->base.primary;
5862 struct drm_plane_state *old_primary_state =
5863 drm_atomic_get_old_plane_state(old_state, primary);
5864
5865 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5866
5867 if (pipe_config->update_wm_post && pipe_config->base.active)
5868 intel_update_watermarks(crtc);
5869
5870 if (hsw_post_update_enable_ips(old_crtc_state, pipe_config))
5871 hsw_enable_ips(pipe_config);
5872
5873 if (old_primary_state) {
5874 struct drm_plane_state *new_primary_state =
5875 drm_atomic_get_new_plane_state(old_state, primary);
5876
5877 intel_fbc_post_update(crtc);
5878
5879 if (new_primary_state->visible &&
5880 (needs_modeset(&pipe_config->base) ||
5881 !old_primary_state->visible))
5882 intel_post_enable_primary(&crtc->base, pipe_config);
5883 }
5884
5885 if (needs_nv12_wa(dev_priv, old_crtc_state) &&
5886 !needs_nv12_wa(dev_priv, pipe_config))
5887 skl_wa_827(dev_priv, crtc->pipe, false);
5888
5889 if (needs_scalerclk_wa(dev_priv, old_crtc_state) &&
5890 !needs_scalerclk_wa(dev_priv, pipe_config))
5891 icl_wa_scalerclkgating(dev_priv, crtc->pipe, false);
5892 }
5893
5894 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5895 struct intel_crtc_state *pipe_config)
5896 {
5897 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5898 struct drm_device *dev = crtc->base.dev;
5899 struct drm_i915_private *dev_priv = to_i915(dev);
5900 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5901 struct drm_plane *primary = crtc->base.primary;
5902 struct drm_plane_state *old_primary_state =
5903 drm_atomic_get_old_plane_state(old_state, primary);
5904 bool modeset = needs_modeset(&pipe_config->base);
5905 struct intel_atomic_state *old_intel_state =
5906 to_intel_atomic_state(old_state);
5907
5908 if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config))
5909 hsw_disable_ips(old_crtc_state);
5910
5911 if (old_primary_state) {
5912 struct intel_plane_state *new_primary_state =
5913 intel_atomic_get_new_plane_state(old_intel_state,
5914 to_intel_plane(primary));
5915
5916 intel_fbc_pre_update(crtc, pipe_config, new_primary_state);
5917 /*
5918 * Gen2 reports pipe underruns whenever all planes are disabled.
5919 * So disable underrun reporting before all the planes get disabled.
5920 */
5921 if (IS_GEN(dev_priv, 2) && old_primary_state->visible &&
5922 (modeset || !new_primary_state->base.visible))
5923 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5924 }
5925
5926 /* Display WA 827 */
5927 if (!needs_nv12_wa(dev_priv, old_crtc_state) &&
5928 needs_nv12_wa(dev_priv, pipe_config))
5929 skl_wa_827(dev_priv, crtc->pipe, true);
5930
5931 /* Wa_2006604312:icl */
5932 if (!needs_scalerclk_wa(dev_priv, old_crtc_state) &&
5933 needs_scalerclk_wa(dev_priv, pipe_config))
5934 icl_wa_scalerclkgating(dev_priv, crtc->pipe, true);
5935
5936 /*
5937 * Vblank time updates from the shadow to live plane control register
5938 * are blocked if the memory self-refresh mode is active at that
5939 * moment. So to make sure the plane gets truly disabled, disable
5940 * first the self-refresh mode. The self-refresh enable bit in turn
5941 * will be checked/applied by the HW only at the next frame start
5942 * event which is after the vblank start event, so we need to have a
5943 * wait-for-vblank between disabling the plane and the pipe.
5944 */
5945 if (HAS_GMCH(dev_priv) && old_crtc_state->base.active &&
5946 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5947 intel_wait_for_vblank(dev_priv, crtc->pipe);
5948
5949 /*
5950 * IVB workaround: must disable low power watermarks for at least
5951 * one frame before enabling scaling. LP watermarks can be re-enabled
5952 * when scaling is disabled.
5953 *
5954 * WaCxSRDisabledForSpriteScaling:ivb
5955 */
5956 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) &&
5957 old_crtc_state->base.active)
5958 intel_wait_for_vblank(dev_priv, crtc->pipe);
5959
5960 /*
5961 * If we're doing a modeset, we're done. No need to do any pre-vblank
5962 * watermark programming here.
5963 */
5964 if (needs_modeset(&pipe_config->base))
5965 return;
5966
5967 /*
5968 * For platforms that support atomic watermarks, program the
5969 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5970 * will be the intermediate values that are safe for both pre- and
5971 * post- vblank; when vblank happens, the 'active' values will be set
5972 * to the final 'target' values and we'll do this again to get the
5973 * optimal watermarks. For gen9+ platforms, the values we program here
5974 * will be the final target values which will get automatically latched
5975 * at vblank time; no further programming will be necessary.
5976 *
5977 * If a platform hasn't been transitioned to atomic watermarks yet,
5978 * we'll continue to update watermarks the old way, if flags tell
5979 * us to.
5980 */
5981 if (dev_priv->display.initial_watermarks != NULL)
5982 dev_priv->display.initial_watermarks(old_intel_state,
5983 pipe_config);
5984 else if (pipe_config->update_wm_pre)
5985 intel_update_watermarks(crtc);
5986 }
5987
5988 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
5989 struct intel_crtc *crtc)
5990 {
5991 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5992 const struct intel_crtc_state *new_crtc_state =
5993 intel_atomic_get_new_crtc_state(state, crtc);
5994 unsigned int update_mask = new_crtc_state->update_planes;
5995 const struct intel_plane_state *old_plane_state;
5996 struct intel_plane *plane;
5997 unsigned fb_bits = 0;
5998 int i;
5999
6000 intel_crtc_dpms_overlay_disable(crtc);
6001
6002 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6003 if (crtc->pipe != plane->pipe ||
6004 !(update_mask & BIT(plane->id)))
6005 continue;
6006
6007 intel_disable_plane(plane, new_crtc_state);
6008
6009 if (old_plane_state->base.visible)
6010 fb_bits |= plane->frontbuffer_bit;
6011 }
6012
6013 intel_frontbuffer_flip(dev_priv, fb_bits);
6014 }
6015
6016 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
6017 struct intel_crtc_state *crtc_state,
6018 struct drm_atomic_state *old_state)
6019 {
6020 struct drm_connector_state *conn_state;
6021 struct drm_connector *conn;
6022 int i;
6023
6024 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
6025 struct intel_encoder *encoder =
6026 to_intel_encoder(conn_state->best_encoder);
6027
6028 if (conn_state->crtc != crtc)
6029 continue;
6030
6031 if (encoder->pre_pll_enable)
6032 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
6033 }
6034 }
6035
6036 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
6037 struct intel_crtc_state *crtc_state,
6038 struct drm_atomic_state *old_state)
6039 {
6040 struct drm_connector_state *conn_state;
6041 struct drm_connector *conn;
6042 int i;
6043
6044 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
6045 struct intel_encoder *encoder =
6046 to_intel_encoder(conn_state->best_encoder);
6047
6048 if (conn_state->crtc != crtc)
6049 continue;
6050
6051 if (encoder->pre_enable)
6052 encoder->pre_enable(encoder, crtc_state, conn_state);
6053 }
6054 }
6055
6056 static void intel_encoders_enable(struct drm_crtc *crtc,
6057 struct intel_crtc_state *crtc_state,
6058 struct drm_atomic_state *old_state)
6059 {
6060 struct drm_connector_state *conn_state;
6061 struct drm_connector *conn;
6062 int i;
6063
6064 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
6065 struct intel_encoder *encoder =
6066 to_intel_encoder(conn_state->best_encoder);
6067
6068 if (conn_state->crtc != crtc)
6069 continue;
6070
6071 if (encoder->enable)
6072 encoder->enable(encoder, crtc_state, conn_state);
6073 intel_opregion_notify_encoder(encoder, true);
6074 }
6075 }
6076
6077 static void intel_encoders_disable(struct drm_crtc *crtc,
6078 struct intel_crtc_state *old_crtc_state,
6079 struct drm_atomic_state *old_state)
6080 {
6081 struct drm_connector_state *old_conn_state;
6082 struct drm_connector *conn;
6083 int i;
6084
6085 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
6086 struct intel_encoder *encoder =
6087 to_intel_encoder(old_conn_state->best_encoder);
6088
6089 if (old_conn_state->crtc != crtc)
6090 continue;
6091
6092 intel_opregion_notify_encoder(encoder, false);
6093 if (encoder->disable)
6094 encoder->disable(encoder, old_crtc_state, old_conn_state);
6095 }
6096 }
6097
6098 static void intel_encoders_post_disable(struct drm_crtc *crtc,
6099 struct intel_crtc_state *old_crtc_state,
6100 struct drm_atomic_state *old_state)
6101 {
6102 struct drm_connector_state *old_conn_state;
6103 struct drm_connector *conn;
6104 int i;
6105
6106 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
6107 struct intel_encoder *encoder =
6108 to_intel_encoder(old_conn_state->best_encoder);
6109
6110 if (old_conn_state->crtc != crtc)
6111 continue;
6112
6113 if (encoder->post_disable)
6114 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
6115 }
6116 }
6117
6118 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
6119 struct intel_crtc_state *old_crtc_state,
6120 struct drm_atomic_state *old_state)
6121 {
6122 struct drm_connector_state *old_conn_state;
6123 struct drm_connector *conn;
6124 int i;
6125
6126 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
6127 struct intel_encoder *encoder =
6128 to_intel_encoder(old_conn_state->best_encoder);
6129
6130 if (old_conn_state->crtc != crtc)
6131 continue;
6132
6133 if (encoder->post_pll_disable)
6134 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
6135 }
6136 }
6137
6138 static void intel_encoders_update_pipe(struct drm_crtc *crtc,
6139 struct intel_crtc_state *crtc_state,
6140 struct drm_atomic_state *old_state)
6141 {
6142 struct drm_connector_state *conn_state;
6143 struct drm_connector *conn;
6144 int i;
6145
6146 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
6147 struct intel_encoder *encoder =
6148 to_intel_encoder(conn_state->best_encoder);
6149
6150 if (conn_state->crtc != crtc)
6151 continue;
6152
6153 if (encoder->update_pipe)
6154 encoder->update_pipe(encoder, crtc_state, conn_state);
6155 }
6156 }
6157
6158 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6159 {
6160 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6161 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6162
6163 plane->disable_plane(plane, crtc_state);
6164 }
6165
6166 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
6167 struct drm_atomic_state *old_state)
6168 {
6169 struct drm_crtc *crtc = pipe_config->base.crtc;
6170 struct drm_device *dev = crtc->dev;
6171 struct drm_i915_private *dev_priv = to_i915(dev);
6172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6173 int pipe = intel_crtc->pipe;
6174 struct intel_atomic_state *old_intel_state =
6175 to_intel_atomic_state(old_state);
6176
6177 if (WARN_ON(intel_crtc->active))
6178 return;
6179
6180 /*
6181 * Sometimes spurious CPU pipe underruns happen during FDI
6182 * training, at least with VGA+HDMI cloning. Suppress them.
6183 *
6184 * On ILK we get an occasional spurious CPU pipe underruns
6185 * between eDP port A enable and vdd enable. Also PCH port
6186 * enable seems to result in the occasional CPU pipe underrun.
6187 *
6188 * Spurious PCH underruns also occur during PCH enabling.
6189 */
6190 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6191 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6192
6193 if (pipe_config->has_pch_encoder)
6194 intel_prepare_shared_dpll(pipe_config);
6195
6196 if (intel_crtc_has_dp_encoder(pipe_config))
6197 intel_dp_set_m_n(pipe_config, M1_N1);
6198
6199 intel_set_pipe_timings(pipe_config);
6200 intel_set_pipe_src_size(pipe_config);
6201
6202 if (pipe_config->has_pch_encoder) {
6203 intel_cpu_transcoder_set_m_n(pipe_config,
6204 &pipe_config->fdi_m_n, NULL);
6205 }
6206
6207 ironlake_set_pipeconf(pipe_config);
6208
6209 intel_crtc->active = true;
6210
6211 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6212
6213 if (pipe_config->has_pch_encoder) {
6214 /* Note: FDI PLL enabling _must_ be done before we enable the
6215 * cpu pipes, hence this is separate from all the other fdi/pch
6216 * enabling. */
6217 ironlake_fdi_pll_enable(pipe_config);
6218 } else {
6219 assert_fdi_tx_disabled(dev_priv, pipe);
6220 assert_fdi_rx_disabled(dev_priv, pipe);
6221 }
6222
6223 ironlake_pfit_enable(pipe_config);
6224
6225 /*
6226 * On ILK+ LUT must be loaded before the pipe is running but with
6227 * clocks enabled
6228 */
6229 intel_color_load_luts(pipe_config);
6230 intel_color_commit(pipe_config);
6231 /* update DSPCNTR to configure gamma for pipe bottom color */
6232 intel_disable_primary_plane(pipe_config);
6233
6234 if (dev_priv->display.initial_watermarks != NULL)
6235 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
6236 intel_enable_pipe(pipe_config);
6237
6238 if (pipe_config->has_pch_encoder)
6239 ironlake_pch_enable(old_intel_state, pipe_config);
6240
6241 assert_vblank_disabled(crtc);
6242 intel_crtc_vblank_on(pipe_config);
6243
6244 intel_encoders_enable(crtc, pipe_config, old_state);
6245
6246 if (HAS_PCH_CPT(dev_priv))
6247 cpt_verify_modeset(dev, intel_crtc->pipe);
6248
6249 /*
6250 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6251 * And a second vblank wait is needed at least on ILK with
6252 * some interlaced HDMI modes. Let's do the double wait always
6253 * in case there are more corner cases we don't know about.
6254 */
6255 if (pipe_config->has_pch_encoder) {
6256 intel_wait_for_vblank(dev_priv, pipe);
6257 intel_wait_for_vblank(dev_priv, pipe);
6258 }
6259 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6260 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6261 }
6262
6263 /* IPS only exists on ULT machines and is tied to pipe A. */
6264 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
6265 {
6266 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
6267 }
6268
6269 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
6270 enum pipe pipe, bool apply)
6271 {
6272 u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
6273 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
6274
6275 if (apply)
6276 val |= mask;
6277 else
6278 val &= ~mask;
6279
6280 I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
6281 }
6282
6283 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
6284 {
6285 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6286 enum pipe pipe = crtc->pipe;
6287 u32 val;
6288
6289 val = MBUS_DBOX_A_CREDIT(2);
6290 val |= MBUS_DBOX_BW_CREDIT(1);
6291 val |= MBUS_DBOX_B_CREDIT(8);
6292
6293 I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val);
6294 }
6295
6296 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
6297 struct drm_atomic_state *old_state)
6298 {
6299 struct drm_crtc *crtc = pipe_config->base.crtc;
6300 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6301 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6302 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
6303 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6304 struct intel_atomic_state *old_intel_state =
6305 to_intel_atomic_state(old_state);
6306 bool psl_clkgate_wa;
6307
6308 if (WARN_ON(intel_crtc->active))
6309 return;
6310
6311 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6312
6313 if (pipe_config->shared_dpll)
6314 intel_enable_shared_dpll(pipe_config);
6315
6316 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6317
6318 if (intel_crtc_has_dp_encoder(pipe_config))
6319 intel_dp_set_m_n(pipe_config, M1_N1);
6320
6321 if (!transcoder_is_dsi(cpu_transcoder))
6322 intel_set_pipe_timings(pipe_config);
6323
6324 intel_set_pipe_src_size(pipe_config);
6325
6326 if (cpu_transcoder != TRANSCODER_EDP &&
6327 !transcoder_is_dsi(cpu_transcoder)) {
6328 I915_WRITE(PIPE_MULT(cpu_transcoder),
6329 pipe_config->pixel_multiplier - 1);
6330 }
6331
6332 if (pipe_config->has_pch_encoder) {
6333 intel_cpu_transcoder_set_m_n(pipe_config,
6334 &pipe_config->fdi_m_n, NULL);
6335 }
6336
6337 if (!transcoder_is_dsi(cpu_transcoder))
6338 haswell_set_pipeconf(pipe_config);
6339
6340 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
6341 bdw_set_pipemisc(pipe_config);
6342
6343 intel_crtc->active = true;
6344
6345 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
6346 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
6347 pipe_config->pch_pfit.enabled;
6348 if (psl_clkgate_wa)
6349 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
6350
6351 if (INTEL_GEN(dev_priv) >= 9)
6352 skylake_pfit_enable(pipe_config);
6353 else
6354 ironlake_pfit_enable(pipe_config);
6355
6356 /*
6357 * On ILK+ LUT must be loaded before the pipe is running but with
6358 * clocks enabled
6359 */
6360 intel_color_load_luts(pipe_config);
6361 intel_color_commit(pipe_config);
6362 /* update DSPCNTR to configure gamma/csc for pipe bottom color */
6363 if (INTEL_GEN(dev_priv) < 9)
6364 intel_disable_primary_plane(pipe_config);
6365
6366 if (INTEL_GEN(dev_priv) >= 11)
6367 icl_set_pipe_chicken(intel_crtc);
6368
6369 intel_ddi_set_pipe_settings(pipe_config);
6370 if (!transcoder_is_dsi(cpu_transcoder))
6371 intel_ddi_enable_transcoder_func(pipe_config);
6372
6373 if (dev_priv->display.initial_watermarks != NULL)
6374 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
6375
6376 if (INTEL_GEN(dev_priv) >= 11)
6377 icl_pipe_mbus_enable(intel_crtc);
6378
6379 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
6380 if (!transcoder_is_dsi(cpu_transcoder))
6381 intel_enable_pipe(pipe_config);
6382
6383 if (pipe_config->has_pch_encoder)
6384 lpt_pch_enable(old_intel_state, pipe_config);
6385
6386 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST))
6387 intel_ddi_set_vc_payload_alloc(pipe_config, true);
6388
6389 assert_vblank_disabled(crtc);
6390 intel_crtc_vblank_on(pipe_config);
6391
6392 intel_encoders_enable(crtc, pipe_config, old_state);
6393
6394 if (psl_clkgate_wa) {
6395 intel_wait_for_vblank(dev_priv, pipe);
6396 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
6397 }
6398
6399 /* If we change the relative order between pipe/planes enabling, we need
6400 * to change the workaround. */
6401 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
6402 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
6403 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6404 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6405 }
6406 }
6407
6408 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state)
6409 {
6410 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
6411 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6412 enum pipe pipe = crtc->pipe;
6413
6414 /* To avoid upsetting the power well on haswell only disable the pfit if
6415 * it's in use. The hw state code will make sure we get this right. */
6416 if (old_crtc_state->pch_pfit.enabled) {
6417 I915_WRITE(PF_CTL(pipe), 0);
6418 I915_WRITE(PF_WIN_POS(pipe), 0);
6419 I915_WRITE(PF_WIN_SZ(pipe), 0);
6420 }
6421 }
6422
6423 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
6424 struct drm_atomic_state *old_state)
6425 {
6426 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6427 struct drm_device *dev = crtc->dev;
6428 struct drm_i915_private *dev_priv = to_i915(dev);
6429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6430 int pipe = intel_crtc->pipe;
6431
6432 /*
6433 * Sometimes spurious CPU pipe underruns happen when the
6434 * pipe is already disabled, but FDI RX/TX is still enabled.
6435 * Happens at least with VGA+HDMI cloning. Suppress them.
6436 */
6437 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6438 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6439
6440 intel_encoders_disable(crtc, old_crtc_state, old_state);
6441
6442 drm_crtc_vblank_off(crtc);
6443 assert_vblank_disabled(crtc);
6444
6445 intel_disable_pipe(old_crtc_state);
6446
6447 ironlake_pfit_disable(old_crtc_state);
6448
6449 if (old_crtc_state->has_pch_encoder)
6450 ironlake_fdi_disable(crtc);
6451
6452 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6453
6454 if (old_crtc_state->has_pch_encoder) {
6455 ironlake_disable_pch_transcoder(dev_priv, pipe);
6456
6457 if (HAS_PCH_CPT(dev_priv)) {
6458 i915_reg_t reg;
6459 u32 temp;
6460
6461 /* disable TRANS_DP_CTL */
6462 reg = TRANS_DP_CTL(pipe);
6463 temp = I915_READ(reg);
6464 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
6465 TRANS_DP_PORT_SEL_MASK);
6466 temp |= TRANS_DP_PORT_SEL_NONE;
6467 I915_WRITE(reg, temp);
6468
6469 /* disable DPLL_SEL */
6470 temp = I915_READ(PCH_DPLL_SEL);
6471 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
6472 I915_WRITE(PCH_DPLL_SEL, temp);
6473 }
6474
6475 ironlake_fdi_pll_disable(intel_crtc);
6476 }
6477
6478 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6479 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6480 }
6481
6482 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
6483 struct drm_atomic_state *old_state)
6484 {
6485 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6486 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6488 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
6489
6490 intel_encoders_disable(crtc, old_crtc_state, old_state);
6491
6492 drm_crtc_vblank_off(crtc);
6493 assert_vblank_disabled(crtc);
6494
6495 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
6496 if (!transcoder_is_dsi(cpu_transcoder))
6497 intel_disable_pipe(old_crtc_state);
6498
6499 if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST))
6500 intel_ddi_set_vc_payload_alloc(old_crtc_state, false);
6501
6502 if (!transcoder_is_dsi(cpu_transcoder))
6503 intel_ddi_disable_transcoder_func(old_crtc_state);
6504
6505 intel_dsc_disable(old_crtc_state);
6506
6507 if (INTEL_GEN(dev_priv) >= 9)
6508 skylake_scaler_disable(intel_crtc);
6509 else
6510 ironlake_pfit_disable(old_crtc_state);
6511
6512 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6513
6514 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6515 }
6516
6517 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
6518 {
6519 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6520 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6521
6522 if (!crtc_state->gmch_pfit.control)
6523 return;
6524
6525 /*
6526 * The panel fitter should only be adjusted whilst the pipe is disabled,
6527 * according to register description and PRM.
6528 */
6529 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
6530 assert_pipe_disabled(dev_priv, crtc->pipe);
6531
6532 I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios);
6533 I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control);
6534
6535 /* Border color in case we don't scale up to the full screen. Black by
6536 * default, change to something else for debugging. */
6537 I915_WRITE(BCLRPAT(crtc->pipe), 0);
6538 }
6539
6540 bool intel_port_is_combophy(struct drm_i915_private *dev_priv, enum port port)
6541 {
6542 if (port == PORT_NONE)
6543 return false;
6544
6545 if (IS_ELKHARTLAKE(dev_priv))
6546 return port <= PORT_C;
6547
6548 if (INTEL_GEN(dev_priv) >= 11)
6549 return port <= PORT_B;
6550
6551 return false;
6552 }
6553
6554 bool intel_port_is_tc(struct drm_i915_private *dev_priv, enum port port)
6555 {
6556 if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
6557 return port >= PORT_C && port <= PORT_F;
6558
6559 return false;
6560 }
6561
6562 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
6563 {
6564 if (!intel_port_is_tc(dev_priv, port))
6565 return PORT_TC_NONE;
6566
6567 return port - PORT_C;
6568 }
6569
6570 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
6571 {
6572 switch (port) {
6573 case PORT_A:
6574 return POWER_DOMAIN_PORT_DDI_A_LANES;
6575 case PORT_B:
6576 return POWER_DOMAIN_PORT_DDI_B_LANES;
6577 case PORT_C:
6578 return POWER_DOMAIN_PORT_DDI_C_LANES;
6579 case PORT_D:
6580 return POWER_DOMAIN_PORT_DDI_D_LANES;
6581 case PORT_E:
6582 return POWER_DOMAIN_PORT_DDI_E_LANES;
6583 case PORT_F:
6584 return POWER_DOMAIN_PORT_DDI_F_LANES;
6585 default:
6586 MISSING_CASE(port);
6587 return POWER_DOMAIN_PORT_OTHER;
6588 }
6589 }
6590
6591 enum intel_display_power_domain
6592 intel_aux_power_domain(struct intel_digital_port *dig_port)
6593 {
6594 switch (dig_port->aux_ch) {
6595 case AUX_CH_A:
6596 return POWER_DOMAIN_AUX_A;
6597 case AUX_CH_B:
6598 return POWER_DOMAIN_AUX_B;
6599 case AUX_CH_C:
6600 return POWER_DOMAIN_AUX_C;
6601 case AUX_CH_D:
6602 return POWER_DOMAIN_AUX_D;
6603 case AUX_CH_E:
6604 return POWER_DOMAIN_AUX_E;
6605 case AUX_CH_F:
6606 return POWER_DOMAIN_AUX_F;
6607 default:
6608 MISSING_CASE(dig_port->aux_ch);
6609 return POWER_DOMAIN_AUX_A;
6610 }
6611 }
6612
6613 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
6614 struct intel_crtc_state *crtc_state)
6615 {
6616 struct drm_device *dev = crtc->dev;
6617 struct drm_i915_private *dev_priv = to_i915(dev);
6618 struct drm_encoder *encoder;
6619 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6620 enum pipe pipe = intel_crtc->pipe;
6621 u64 mask;
6622 enum transcoder transcoder = crtc_state->cpu_transcoder;
6623
6624 if (!crtc_state->base.active)
6625 return 0;
6626
6627 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
6628 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
6629 if (crtc_state->pch_pfit.enabled ||
6630 crtc_state->pch_pfit.force_thru)
6631 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6632
6633 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
6634 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6635
6636 mask |= BIT_ULL(intel_encoder->power_domain);
6637 }
6638
6639 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
6640 mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
6641
6642 if (crtc_state->shared_dpll)
6643 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
6644
6645 return mask;
6646 }
6647
6648 static u64
6649 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
6650 struct intel_crtc_state *crtc_state)
6651 {
6652 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6654 enum intel_display_power_domain domain;
6655 u64 domains, new_domains, old_domains;
6656
6657 old_domains = intel_crtc->enabled_power_domains;
6658 intel_crtc->enabled_power_domains = new_domains =
6659 get_crtc_power_domains(crtc, crtc_state);
6660
6661 domains = new_domains & ~old_domains;
6662
6663 for_each_power_domain(domain, domains)
6664 intel_display_power_get(dev_priv, domain);
6665
6666 return old_domains & ~new_domains;
6667 }
6668
6669 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
6670 u64 domains)
6671 {
6672 enum intel_display_power_domain domain;
6673
6674 for_each_power_domain(domain, domains)
6675 intel_display_power_put_unchecked(dev_priv, domain);
6676 }
6677
6678 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6679 struct drm_atomic_state *old_state)
6680 {
6681 struct intel_atomic_state *old_intel_state =
6682 to_intel_atomic_state(old_state);
6683 struct drm_crtc *crtc = pipe_config->base.crtc;
6684 struct drm_device *dev = crtc->dev;
6685 struct drm_i915_private *dev_priv = to_i915(dev);
6686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6687 int pipe = intel_crtc->pipe;
6688
6689 if (WARN_ON(intel_crtc->active))
6690 return;
6691
6692 if (intel_crtc_has_dp_encoder(pipe_config))
6693 intel_dp_set_m_n(pipe_config, M1_N1);
6694
6695 intel_set_pipe_timings(pipe_config);
6696 intel_set_pipe_src_size(pipe_config);
6697
6698 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6699 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6700 I915_WRITE(CHV_CANVAS(pipe), 0);
6701 }
6702
6703 i9xx_set_pipeconf(pipe_config);
6704
6705 intel_crtc->active = true;
6706
6707 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6708
6709 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6710
6711 if (IS_CHERRYVIEW(dev_priv)) {
6712 chv_prepare_pll(intel_crtc, pipe_config);
6713 chv_enable_pll(intel_crtc, pipe_config);
6714 } else {
6715 vlv_prepare_pll(intel_crtc, pipe_config);
6716 vlv_enable_pll(intel_crtc, pipe_config);
6717 }
6718
6719 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6720
6721 i9xx_pfit_enable(pipe_config);
6722
6723 intel_color_load_luts(pipe_config);
6724 intel_color_commit(pipe_config);
6725 /* update DSPCNTR to configure gamma for pipe bottom color */
6726 intel_disable_primary_plane(pipe_config);
6727
6728 dev_priv->display.initial_watermarks(old_intel_state,
6729 pipe_config);
6730 intel_enable_pipe(pipe_config);
6731
6732 assert_vblank_disabled(crtc);
6733 intel_crtc_vblank_on(pipe_config);
6734
6735 intel_encoders_enable(crtc, pipe_config, old_state);
6736 }
6737
6738 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
6739 {
6740 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6741 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6742
6743 I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0);
6744 I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1);
6745 }
6746
6747 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6748 struct drm_atomic_state *old_state)
6749 {
6750 struct intel_atomic_state *old_intel_state =
6751 to_intel_atomic_state(old_state);
6752 struct drm_crtc *crtc = pipe_config->base.crtc;
6753 struct drm_device *dev = crtc->dev;
6754 struct drm_i915_private *dev_priv = to_i915(dev);
6755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6756 enum pipe pipe = intel_crtc->pipe;
6757
6758 if (WARN_ON(intel_crtc->active))
6759 return;
6760
6761 i9xx_set_pll_dividers(pipe_config);
6762
6763 if (intel_crtc_has_dp_encoder(pipe_config))
6764 intel_dp_set_m_n(pipe_config, M1_N1);
6765
6766 intel_set_pipe_timings(pipe_config);
6767 intel_set_pipe_src_size(pipe_config);
6768
6769 i9xx_set_pipeconf(pipe_config);
6770
6771 intel_crtc->active = true;
6772
6773 if (!IS_GEN(dev_priv, 2))
6774 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6775
6776 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6777
6778 i9xx_enable_pll(intel_crtc, pipe_config);
6779
6780 i9xx_pfit_enable(pipe_config);
6781
6782 intel_color_load_luts(pipe_config);
6783 intel_color_commit(pipe_config);
6784 /* update DSPCNTR to configure gamma for pipe bottom color */
6785 intel_disable_primary_plane(pipe_config);
6786
6787 if (dev_priv->display.initial_watermarks != NULL)
6788 dev_priv->display.initial_watermarks(old_intel_state,
6789 pipe_config);
6790 else
6791 intel_update_watermarks(intel_crtc);
6792 intel_enable_pipe(pipe_config);
6793
6794 assert_vblank_disabled(crtc);
6795 intel_crtc_vblank_on(pipe_config);
6796
6797 intel_encoders_enable(crtc, pipe_config, old_state);
6798 }
6799
6800 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
6801 {
6802 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
6803 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6804
6805 if (!old_crtc_state->gmch_pfit.control)
6806 return;
6807
6808 assert_pipe_disabled(dev_priv, crtc->pipe);
6809
6810 DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n",
6811 I915_READ(PFIT_CONTROL));
6812 I915_WRITE(PFIT_CONTROL, 0);
6813 }
6814
6815 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6816 struct drm_atomic_state *old_state)
6817 {
6818 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6819 struct drm_device *dev = crtc->dev;
6820 struct drm_i915_private *dev_priv = to_i915(dev);
6821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6822 int pipe = intel_crtc->pipe;
6823
6824 /*
6825 * On gen2 planes are double buffered but the pipe isn't, so we must
6826 * wait for planes to fully turn off before disabling the pipe.
6827 */
6828 if (IS_GEN(dev_priv, 2))
6829 intel_wait_for_vblank(dev_priv, pipe);
6830
6831 intel_encoders_disable(crtc, old_crtc_state, old_state);
6832
6833 drm_crtc_vblank_off(crtc);
6834 assert_vblank_disabled(crtc);
6835
6836 intel_disable_pipe(old_crtc_state);
6837
6838 i9xx_pfit_disable(old_crtc_state);
6839
6840 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6841
6842 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
6843 if (IS_CHERRYVIEW(dev_priv))
6844 chv_disable_pll(dev_priv, pipe);
6845 else if (IS_VALLEYVIEW(dev_priv))
6846 vlv_disable_pll(dev_priv, pipe);
6847 else
6848 i9xx_disable_pll(old_crtc_state);
6849 }
6850
6851 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6852
6853 if (!IS_GEN(dev_priv, 2))
6854 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6855
6856 if (!dev_priv->display.initial_watermarks)
6857 intel_update_watermarks(intel_crtc);
6858
6859 /* clock the pipe down to 640x480@60 to potentially save power */
6860 if (IS_I830(dev_priv))
6861 i830_enable_pipe(dev_priv, pipe);
6862 }
6863
6864 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
6865 struct drm_modeset_acquire_ctx *ctx)
6866 {
6867 struct intel_encoder *encoder;
6868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6869 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6870 enum intel_display_power_domain domain;
6871 struct intel_plane *plane;
6872 u64 domains;
6873 struct drm_atomic_state *state;
6874 struct intel_crtc_state *crtc_state;
6875 int ret;
6876
6877 if (!intel_crtc->active)
6878 return;
6879
6880 for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
6881 const struct intel_plane_state *plane_state =
6882 to_intel_plane_state(plane->base.state);
6883
6884 if (plane_state->base.visible)
6885 intel_plane_disable_noatomic(intel_crtc, plane);
6886 }
6887
6888 state = drm_atomic_state_alloc(crtc->dev);
6889 if (!state) {
6890 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6891 crtc->base.id, crtc->name);
6892 return;
6893 }
6894
6895 state->acquire_ctx = ctx;
6896
6897 /* Everything's already locked, -EDEADLK can't happen. */
6898 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6899 ret = drm_atomic_add_affected_connectors(state, crtc);
6900
6901 WARN_ON(IS_ERR(crtc_state) || ret);
6902
6903 dev_priv->display.crtc_disable(crtc_state, state);
6904
6905 drm_atomic_state_put(state);
6906
6907 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6908 crtc->base.id, crtc->name);
6909
6910 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6911 crtc->state->active = false;
6912 intel_crtc->active = false;
6913 crtc->enabled = false;
6914 crtc->state->connector_mask = 0;
6915 crtc->state->encoder_mask = 0;
6916
6917 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6918 encoder->base.crtc = NULL;
6919
6920 intel_fbc_disable(intel_crtc);
6921 intel_update_watermarks(intel_crtc);
6922 intel_disable_shared_dpll(to_intel_crtc_state(crtc->state));
6923
6924 domains = intel_crtc->enabled_power_domains;
6925 for_each_power_domain(domain, domains)
6926 intel_display_power_put_unchecked(dev_priv, domain);
6927 intel_crtc->enabled_power_domains = 0;
6928
6929 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6930 dev_priv->min_cdclk[intel_crtc->pipe] = 0;
6931 dev_priv->min_voltage_level[intel_crtc->pipe] = 0;
6932 }
6933
6934 /*
6935 * turn all crtc's off, but do not adjust state
6936 * This has to be paired with a call to intel_modeset_setup_hw_state.
6937 */
6938 int intel_display_suspend(struct drm_device *dev)
6939 {
6940 struct drm_i915_private *dev_priv = to_i915(dev);
6941 struct drm_atomic_state *state;
6942 int ret;
6943
6944 state = drm_atomic_helper_suspend(dev);
6945 ret = PTR_ERR_OR_ZERO(state);
6946 if (ret)
6947 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6948 else
6949 dev_priv->modeset_restore_state = state;
6950 return ret;
6951 }
6952
6953 void intel_encoder_destroy(struct drm_encoder *encoder)
6954 {
6955 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6956
6957 drm_encoder_cleanup(encoder);
6958 kfree(intel_encoder);
6959 }
6960
6961 /* Cross check the actual hw state with our own modeset state tracking (and it's
6962 * internal consistency). */
6963 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
6964 struct drm_connector_state *conn_state)
6965 {
6966 struct intel_connector *connector = to_intel_connector(conn_state->connector);
6967
6968 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6969 connector->base.base.id,
6970 connector->base.name);
6971
6972 if (connector->get_hw_state(connector)) {
6973 struct intel_encoder *encoder = connector->encoder;
6974
6975 I915_STATE_WARN(!crtc_state,
6976 "connector enabled without attached crtc\n");
6977
6978 if (!crtc_state)
6979 return;
6980
6981 I915_STATE_WARN(!crtc_state->active,
6982 "connector is active, but attached crtc isn't\n");
6983
6984 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6985 return;
6986
6987 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6988 "atomic encoder doesn't match attached encoder\n");
6989
6990 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6991 "attached encoder crtc differs from connector crtc\n");
6992 } else {
6993 I915_STATE_WARN(crtc_state && crtc_state->active,
6994 "attached crtc is active, but connector isn't\n");
6995 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
6996 "best encoder set without crtc!\n");
6997 }
6998 }
6999
7000 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7001 {
7002 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7003 return crtc_state->fdi_lanes;
7004
7005 return 0;
7006 }
7007
7008 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7009 struct intel_crtc_state *pipe_config)
7010 {
7011 struct drm_i915_private *dev_priv = to_i915(dev);
7012 struct drm_atomic_state *state = pipe_config->base.state;
7013 struct intel_crtc *other_crtc;
7014 struct intel_crtc_state *other_crtc_state;
7015
7016 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7017 pipe_name(pipe), pipe_config->fdi_lanes);
7018 if (pipe_config->fdi_lanes > 4) {
7019 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7020 pipe_name(pipe), pipe_config->fdi_lanes);
7021 return -EINVAL;
7022 }
7023
7024 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7025 if (pipe_config->fdi_lanes > 2) {
7026 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7027 pipe_config->fdi_lanes);
7028 return -EINVAL;
7029 } else {
7030 return 0;
7031 }
7032 }
7033
7034 if (INTEL_INFO(dev_priv)->num_pipes == 2)
7035 return 0;
7036
7037 /* Ivybridge 3 pipe is really complicated */
7038 switch (pipe) {
7039 case PIPE_A:
7040 return 0;
7041 case PIPE_B:
7042 if (pipe_config->fdi_lanes <= 2)
7043 return 0;
7044
7045 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7046 other_crtc_state =
7047 intel_atomic_get_crtc_state(state, other_crtc);
7048 if (IS_ERR(other_crtc_state))
7049 return PTR_ERR(other_crtc_state);
7050
7051 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7052 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7053 pipe_name(pipe), pipe_config->fdi_lanes);
7054 return -EINVAL;
7055 }
7056 return 0;
7057 case PIPE_C:
7058 if (pipe_config->fdi_lanes > 2) {
7059 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7060 pipe_name(pipe), pipe_config->fdi_lanes);
7061 return -EINVAL;
7062 }
7063
7064 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7065 other_crtc_state =
7066 intel_atomic_get_crtc_state(state, other_crtc);
7067 if (IS_ERR(other_crtc_state))
7068 return PTR_ERR(other_crtc_state);
7069
7070 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7071 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7072 return -EINVAL;
7073 }
7074 return 0;
7075 default:
7076 BUG();
7077 }
7078 }
7079
7080 #define RETRY 1
7081 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7082 struct intel_crtc_state *pipe_config)
7083 {
7084 struct drm_device *dev = intel_crtc->base.dev;
7085 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7086 int lane, link_bw, fdi_dotclock, ret;
7087 bool needs_recompute = false;
7088
7089 retry:
7090 /* FDI is a binary signal running at ~2.7GHz, encoding
7091 * each output octet as 10 bits. The actual frequency
7092 * is stored as a divider into a 100MHz clock, and the
7093 * mode pixel clock is stored in units of 1KHz.
7094 * Hence the bw of each lane in terms of the mode signal
7095 * is:
7096 */
7097 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7098
7099 fdi_dotclock = adjusted_mode->crtc_clock;
7100
7101 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7102 pipe_config->pipe_bpp);
7103
7104 pipe_config->fdi_lanes = lane;
7105
7106 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7107 link_bw, &pipe_config->fdi_m_n, false);
7108
7109 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7110 if (ret == -EDEADLK)
7111 return ret;
7112
7113 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7114 pipe_config->pipe_bpp -= 2*3;
7115 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7116 pipe_config->pipe_bpp);
7117 needs_recompute = true;
7118 pipe_config->bw_constrained = true;
7119
7120 goto retry;
7121 }
7122
7123 if (needs_recompute)
7124 return RETRY;
7125
7126 return ret;
7127 }
7128
7129 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7130 {
7131 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7132 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7133
7134 /* IPS only exists on ULT machines and is tied to pipe A. */
7135 if (!hsw_crtc_supports_ips(crtc))
7136 return false;
7137
7138 if (!i915_modparams.enable_ips)
7139 return false;
7140
7141 if (crtc_state->pipe_bpp > 24)
7142 return false;
7143
7144 /*
7145 * We compare against max which means we must take
7146 * the increased cdclk requirement into account when
7147 * calculating the new cdclk.
7148 *
7149 * Should measure whether using a lower cdclk w/o IPS
7150 */
7151 if (IS_BROADWELL(dev_priv) &&
7152 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7153 return false;
7154
7155 return true;
7156 }
7157
7158 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7159 {
7160 struct drm_i915_private *dev_priv =
7161 to_i915(crtc_state->base.crtc->dev);
7162 struct intel_atomic_state *intel_state =
7163 to_intel_atomic_state(crtc_state->base.state);
7164
7165 if (!hsw_crtc_state_ips_capable(crtc_state))
7166 return false;
7167
7168 /*
7169 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7170 * enabled and disabled dynamically based on package C states,
7171 * user space can't make reliable use of the CRCs, so let's just
7172 * completely disable it.
7173 */
7174 if (crtc_state->crc_enabled)
7175 return false;
7176
7177 /* IPS should be fine as long as at least one plane is enabled. */
7178 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7179 return false;
7180
7181 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
7182 if (IS_BROADWELL(dev_priv) &&
7183 crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100)
7184 return false;
7185
7186 return true;
7187 }
7188
7189 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7190 {
7191 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7192
7193 /* GDG double wide on either pipe, otherwise pipe A only */
7194 return INTEL_GEN(dev_priv) < 4 &&
7195 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7196 }
7197
7198 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
7199 {
7200 u32 pixel_rate;
7201
7202 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
7203
7204 /*
7205 * We only use IF-ID interlacing. If we ever use
7206 * PF-ID we'll need to adjust the pixel_rate here.
7207 */
7208
7209 if (pipe_config->pch_pfit.enabled) {
7210 u64 pipe_w, pipe_h, pfit_w, pfit_h;
7211 u32 pfit_size = pipe_config->pch_pfit.size;
7212
7213 pipe_w = pipe_config->pipe_src_w;
7214 pipe_h = pipe_config->pipe_src_h;
7215
7216 pfit_w = (pfit_size >> 16) & 0xFFFF;
7217 pfit_h = pfit_size & 0xFFFF;
7218 if (pipe_w < pfit_w)
7219 pipe_w = pfit_w;
7220 if (pipe_h < pfit_h)
7221 pipe_h = pfit_h;
7222
7223 if (WARN_ON(!pfit_w || !pfit_h))
7224 return pixel_rate;
7225
7226 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
7227 pfit_w * pfit_h);
7228 }
7229
7230 return pixel_rate;
7231 }
7232
7233 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
7234 {
7235 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
7236
7237 if (HAS_GMCH(dev_priv))
7238 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
7239 crtc_state->pixel_rate =
7240 crtc_state->base.adjusted_mode.crtc_clock;
7241 else
7242 crtc_state->pixel_rate =
7243 ilk_pipe_pixel_rate(crtc_state);
7244 }
7245
7246 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7247 struct intel_crtc_state *pipe_config)
7248 {
7249 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7250 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7251 int clock_limit = dev_priv->max_dotclk_freq;
7252
7253 if (INTEL_GEN(dev_priv) < 4) {
7254 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7255
7256 /*
7257 * Enable double wide mode when the dot clock
7258 * is > 90% of the (display) core speed.
7259 */
7260 if (intel_crtc_supports_double_wide(crtc) &&
7261 adjusted_mode->crtc_clock > clock_limit) {
7262 clock_limit = dev_priv->max_dotclk_freq;
7263 pipe_config->double_wide = true;
7264 }
7265 }
7266
7267 if (adjusted_mode->crtc_clock > clock_limit) {
7268 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7269 adjusted_mode->crtc_clock, clock_limit,
7270 yesno(pipe_config->double_wide));
7271 return -EINVAL;
7272 }
7273
7274 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
7275 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
7276 pipe_config->base.ctm) {
7277 /*
7278 * There is only one pipe CSC unit per pipe, and we need that
7279 * for output conversion from RGB->YCBCR. So if CTM is already
7280 * applied we can't support YCBCR420 output.
7281 */
7282 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
7283 return -EINVAL;
7284 }
7285
7286 /*
7287 * Pipe horizontal size must be even in:
7288 * - DVO ganged mode
7289 * - LVDS dual channel mode
7290 * - Double wide pipe
7291 */
7292 if (pipe_config->pipe_src_w & 1) {
7293 if (pipe_config->double_wide) {
7294 DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n");
7295 return -EINVAL;
7296 }
7297
7298 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7299 intel_is_dual_link_lvds(dev_priv)) {
7300 DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n");
7301 return -EINVAL;
7302 }
7303 }
7304
7305 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7306 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7307 */
7308 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7309 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7310 return -EINVAL;
7311
7312 intel_crtc_compute_pixel_rate(pipe_config);
7313
7314 if (pipe_config->has_pch_encoder)
7315 return ironlake_fdi_compute_config(crtc, pipe_config);
7316
7317 return 0;
7318 }
7319
7320 static void
7321 intel_reduce_m_n_ratio(u32 *num, u32 *den)
7322 {
7323 while (*num > DATA_LINK_M_N_MASK ||
7324 *den > DATA_LINK_M_N_MASK) {
7325 *num >>= 1;
7326 *den >>= 1;
7327 }
7328 }
7329
7330 static void compute_m_n(unsigned int m, unsigned int n,
7331 u32 *ret_m, u32 *ret_n,
7332 bool constant_n)
7333 {
7334 /*
7335 * Several DP dongles in particular seem to be fussy about
7336 * too large link M/N values. Give N value as 0x8000 that
7337 * should be acceptable by specific devices. 0x8000 is the
7338 * specified fixed N value for asynchronous clock mode,
7339 * which the devices expect also in synchronous clock mode.
7340 */
7341 if (constant_n)
7342 *ret_n = 0x8000;
7343 else
7344 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7345
7346 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
7347 intel_reduce_m_n_ratio(ret_m, ret_n);
7348 }
7349
7350 void
7351 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
7352 int pixel_clock, int link_clock,
7353 struct intel_link_m_n *m_n,
7354 bool constant_n)
7355 {
7356 m_n->tu = 64;
7357
7358 compute_m_n(bits_per_pixel * pixel_clock,
7359 link_clock * nlanes * 8,
7360 &m_n->gmch_m, &m_n->gmch_n,
7361 constant_n);
7362
7363 compute_m_n(pixel_clock, link_clock,
7364 &m_n->link_m, &m_n->link_n,
7365 constant_n);
7366 }
7367
7368 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7369 {
7370 if (i915_modparams.panel_use_ssc >= 0)
7371 return i915_modparams.panel_use_ssc != 0;
7372 return dev_priv->vbt.lvds_use_ssc
7373 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7374 }
7375
7376 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
7377 {
7378 return (1 << dpll->n) << 16 | dpll->m2;
7379 }
7380
7381 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
7382 {
7383 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7384 }
7385
7386 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7387 struct intel_crtc_state *crtc_state,
7388 struct dpll *reduced_clock)
7389 {
7390 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7391 u32 fp, fp2 = 0;
7392
7393 if (IS_PINEVIEW(dev_priv)) {
7394 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7395 if (reduced_clock)
7396 fp2 = pnv_dpll_compute_fp(reduced_clock);
7397 } else {
7398 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7399 if (reduced_clock)
7400 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7401 }
7402
7403 crtc_state->dpll_hw_state.fp0 = fp;
7404
7405 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7406 reduced_clock) {
7407 crtc_state->dpll_hw_state.fp1 = fp2;
7408 } else {
7409 crtc_state->dpll_hw_state.fp1 = fp;
7410 }
7411 }
7412
7413 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7414 pipe)
7415 {
7416 u32 reg_val;
7417
7418 /*
7419 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7420 * and set it to a reasonable value instead.
7421 */
7422 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7423 reg_val &= 0xffffff00;
7424 reg_val |= 0x00000030;
7425 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7426
7427 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7428 reg_val &= 0x00ffffff;
7429 reg_val |= 0x8c000000;
7430 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7431
7432 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7433 reg_val &= 0xffffff00;
7434 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7435
7436 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7437 reg_val &= 0x00ffffff;
7438 reg_val |= 0xb0000000;
7439 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7440 }
7441
7442 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7443 const struct intel_link_m_n *m_n)
7444 {
7445 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7446 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7447 enum pipe pipe = crtc->pipe;
7448
7449 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7450 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7451 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7452 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7453 }
7454
7455 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
7456 enum transcoder transcoder)
7457 {
7458 if (IS_HASWELL(dev_priv))
7459 return transcoder == TRANSCODER_EDP;
7460
7461 /*
7462 * Strictly speaking some registers are available before
7463 * gen7, but we only support DRRS on gen7+
7464 */
7465 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
7466 }
7467
7468 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7469 const struct intel_link_m_n *m_n,
7470 const struct intel_link_m_n *m2_n2)
7471 {
7472 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7473 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7474 enum pipe pipe = crtc->pipe;
7475 enum transcoder transcoder = crtc_state->cpu_transcoder;
7476
7477 if (INTEL_GEN(dev_priv) >= 5) {
7478 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7479 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7480 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7481 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7482 /*
7483 * M2_N2 registers are set only if DRRS is supported
7484 * (to make sure the registers are not unnecessarily accessed).
7485 */
7486 if (m2_n2 && crtc_state->has_drrs &&
7487 transcoder_has_m2_n2(dev_priv, transcoder)) {
7488 I915_WRITE(PIPE_DATA_M2(transcoder),
7489 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7490 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7491 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7492 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7493 }
7494 } else {
7495 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7496 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7497 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7498 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7499 }
7500 }
7501
7502 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
7503 {
7504 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7505
7506 if (m_n == M1_N1) {
7507 dp_m_n = &crtc_state->dp_m_n;
7508 dp_m2_n2 = &crtc_state->dp_m2_n2;
7509 } else if (m_n == M2_N2) {
7510
7511 /*
7512 * M2_N2 registers are not supported. Hence m2_n2 divider value
7513 * needs to be programmed into M1_N1.
7514 */
7515 dp_m_n = &crtc_state->dp_m2_n2;
7516 } else {
7517 DRM_ERROR("Unsupported divider value\n");
7518 return;
7519 }
7520
7521 if (crtc_state->has_pch_encoder)
7522 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
7523 else
7524 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
7525 }
7526
7527 static void vlv_compute_dpll(struct intel_crtc *crtc,
7528 struct intel_crtc_state *pipe_config)
7529 {
7530 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7531 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7532 if (crtc->pipe != PIPE_A)
7533 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7534
7535 /* DPLL not used with DSI, but still need the rest set up */
7536 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7537 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7538 DPLL_EXT_BUFFER_ENABLE_VLV;
7539
7540 pipe_config->dpll_hw_state.dpll_md =
7541 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7542 }
7543
7544 static void chv_compute_dpll(struct intel_crtc *crtc,
7545 struct intel_crtc_state *pipe_config)
7546 {
7547 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7548 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7549 if (crtc->pipe != PIPE_A)
7550 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7551
7552 /* DPLL not used with DSI, but still need the rest set up */
7553 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7554 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7555
7556 pipe_config->dpll_hw_state.dpll_md =
7557 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7558 }
7559
7560 static void vlv_prepare_pll(struct intel_crtc *crtc,
7561 const struct intel_crtc_state *pipe_config)
7562 {
7563 struct drm_device *dev = crtc->base.dev;
7564 struct drm_i915_private *dev_priv = to_i915(dev);
7565 enum pipe pipe = crtc->pipe;
7566 u32 mdiv;
7567 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7568 u32 coreclk, reg_val;
7569
7570 /* Enable Refclk */
7571 I915_WRITE(DPLL(pipe),
7572 pipe_config->dpll_hw_state.dpll &
7573 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7574
7575 /* No need to actually set up the DPLL with DSI */
7576 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7577 return;
7578
7579 vlv_dpio_get(dev_priv);
7580
7581 bestn = pipe_config->dpll.n;
7582 bestm1 = pipe_config->dpll.m1;
7583 bestm2 = pipe_config->dpll.m2;
7584 bestp1 = pipe_config->dpll.p1;
7585 bestp2 = pipe_config->dpll.p2;
7586
7587 /* See eDP HDMI DPIO driver vbios notes doc */
7588
7589 /* PLL B needs special handling */
7590 if (pipe == PIPE_B)
7591 vlv_pllb_recal_opamp(dev_priv, pipe);
7592
7593 /* Set up Tx target for periodic Rcomp update */
7594 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7595
7596 /* Disable target IRef on PLL */
7597 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7598 reg_val &= 0x00ffffff;
7599 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7600
7601 /* Disable fast lock */
7602 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7603
7604 /* Set idtafcrecal before PLL is enabled */
7605 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7606 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7607 mdiv |= ((bestn << DPIO_N_SHIFT));
7608 mdiv |= (1 << DPIO_K_SHIFT);
7609
7610 /*
7611 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7612 * but we don't support that).
7613 * Note: don't use the DAC post divider as it seems unstable.
7614 */
7615 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7616 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7617
7618 mdiv |= DPIO_ENABLE_CALIBRATION;
7619 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7620
7621 /* Set HBR and RBR LPF coefficients */
7622 if (pipe_config->port_clock == 162000 ||
7623 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
7624 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
7625 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7626 0x009f0003);
7627 else
7628 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7629 0x00d0000f);
7630
7631 if (intel_crtc_has_dp_encoder(pipe_config)) {
7632 /* Use SSC source */
7633 if (pipe == PIPE_A)
7634 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7635 0x0df40000);
7636 else
7637 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7638 0x0df70000);
7639 } else { /* HDMI or VGA */
7640 /* Use bend source */
7641 if (pipe == PIPE_A)
7642 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7643 0x0df70000);
7644 else
7645 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7646 0x0df40000);
7647 }
7648
7649 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7650 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7651 if (intel_crtc_has_dp_encoder(pipe_config))
7652 coreclk |= 0x01000000;
7653 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7654
7655 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7656
7657 vlv_dpio_put(dev_priv);
7658 }
7659
7660 static void chv_prepare_pll(struct intel_crtc *crtc,
7661 const struct intel_crtc_state *pipe_config)
7662 {
7663 struct drm_device *dev = crtc->base.dev;
7664 struct drm_i915_private *dev_priv = to_i915(dev);
7665 enum pipe pipe = crtc->pipe;
7666 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7667 u32 loopfilter, tribuf_calcntr;
7668 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7669 u32 dpio_val;
7670 int vco;
7671
7672 /* Enable Refclk and SSC */
7673 I915_WRITE(DPLL(pipe),
7674 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7675
7676 /* No need to actually set up the DPLL with DSI */
7677 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7678 return;
7679
7680 bestn = pipe_config->dpll.n;
7681 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7682 bestm1 = pipe_config->dpll.m1;
7683 bestm2 = pipe_config->dpll.m2 >> 22;
7684 bestp1 = pipe_config->dpll.p1;
7685 bestp2 = pipe_config->dpll.p2;
7686 vco = pipe_config->dpll.vco;
7687 dpio_val = 0;
7688 loopfilter = 0;
7689
7690 vlv_dpio_get(dev_priv);
7691
7692 /* p1 and p2 divider */
7693 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7694 5 << DPIO_CHV_S1_DIV_SHIFT |
7695 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7696 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7697 1 << DPIO_CHV_K_DIV_SHIFT);
7698
7699 /* Feedback post-divider - m2 */
7700 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7701
7702 /* Feedback refclk divider - n and m1 */
7703 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7704 DPIO_CHV_M1_DIV_BY_2 |
7705 1 << DPIO_CHV_N_DIV_SHIFT);
7706
7707 /* M2 fraction division */
7708 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7709
7710 /* M2 fraction division enable */
7711 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7712 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7713 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7714 if (bestm2_frac)
7715 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7716 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7717
7718 /* Program digital lock detect threshold */
7719 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7720 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7721 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7722 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7723 if (!bestm2_frac)
7724 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7725 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7726
7727 /* Loop filter */
7728 if (vco == 5400000) {
7729 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7730 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7731 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7732 tribuf_calcntr = 0x9;
7733 } else if (vco <= 6200000) {
7734 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7735 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7736 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7737 tribuf_calcntr = 0x9;
7738 } else if (vco <= 6480000) {
7739 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7740 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7741 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7742 tribuf_calcntr = 0x8;
7743 } else {
7744 /* Not supported. Apply the same limits as in the max case */
7745 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7746 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7747 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7748 tribuf_calcntr = 0;
7749 }
7750 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7751
7752 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7753 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7754 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7755 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7756
7757 /* AFC Recal */
7758 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7759 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7760 DPIO_AFC_RECAL);
7761
7762 vlv_dpio_put(dev_priv);
7763 }
7764
7765 /**
7766 * vlv_force_pll_on - forcibly enable just the PLL
7767 * @dev_priv: i915 private structure
7768 * @pipe: pipe PLL to enable
7769 * @dpll: PLL configuration
7770 *
7771 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7772 * in cases where we need the PLL enabled even when @pipe is not going to
7773 * be enabled.
7774 */
7775 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
7776 const struct dpll *dpll)
7777 {
7778 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
7779 struct intel_crtc_state *pipe_config;
7780
7781 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7782 if (!pipe_config)
7783 return -ENOMEM;
7784
7785 pipe_config->base.crtc = &crtc->base;
7786 pipe_config->pixel_multiplier = 1;
7787 pipe_config->dpll = *dpll;
7788
7789 if (IS_CHERRYVIEW(dev_priv)) {
7790 chv_compute_dpll(crtc, pipe_config);
7791 chv_prepare_pll(crtc, pipe_config);
7792 chv_enable_pll(crtc, pipe_config);
7793 } else {
7794 vlv_compute_dpll(crtc, pipe_config);
7795 vlv_prepare_pll(crtc, pipe_config);
7796 vlv_enable_pll(crtc, pipe_config);
7797 }
7798
7799 kfree(pipe_config);
7800
7801 return 0;
7802 }
7803
7804 /**
7805 * vlv_force_pll_off - forcibly disable just the PLL
7806 * @dev_priv: i915 private structure
7807 * @pipe: pipe PLL to disable
7808 *
7809 * Disable the PLL for @pipe. To be used in cases where we need
7810 * the PLL enabled even when @pipe is not going to be enabled.
7811 */
7812 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
7813 {
7814 if (IS_CHERRYVIEW(dev_priv))
7815 chv_disable_pll(dev_priv, pipe);
7816 else
7817 vlv_disable_pll(dev_priv, pipe);
7818 }
7819
7820 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7821 struct intel_crtc_state *crtc_state,
7822 struct dpll *reduced_clock)
7823 {
7824 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7825 u32 dpll;
7826 struct dpll *clock = &crtc_state->dpll;
7827
7828 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7829
7830 dpll = DPLL_VGA_MODE_DIS;
7831
7832 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
7833 dpll |= DPLLB_MODE_LVDS;
7834 else
7835 dpll |= DPLLB_MODE_DAC_SERIAL;
7836
7837 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7838 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7839 dpll |= (crtc_state->pixel_multiplier - 1)
7840 << SDVO_MULTIPLIER_SHIFT_HIRES;
7841 }
7842
7843 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7844 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
7845 dpll |= DPLL_SDVO_HIGH_SPEED;
7846
7847 if (intel_crtc_has_dp_encoder(crtc_state))
7848 dpll |= DPLL_SDVO_HIGH_SPEED;
7849
7850 /* compute bitmask from p1 value */
7851 if (IS_PINEVIEW(dev_priv))
7852 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7853 else {
7854 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7855 if (IS_G4X(dev_priv) && reduced_clock)
7856 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7857 }
7858 switch (clock->p2) {
7859 case 5:
7860 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7861 break;
7862 case 7:
7863 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7864 break;
7865 case 10:
7866 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7867 break;
7868 case 14:
7869 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7870 break;
7871 }
7872 if (INTEL_GEN(dev_priv) >= 4)
7873 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7874
7875 if (crtc_state->sdvo_tv_clock)
7876 dpll |= PLL_REF_INPUT_TVCLKINBC;
7877 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7878 intel_panel_use_ssc(dev_priv))
7879 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7880 else
7881 dpll |= PLL_REF_INPUT_DREFCLK;
7882
7883 dpll |= DPLL_VCO_ENABLE;
7884 crtc_state->dpll_hw_state.dpll = dpll;
7885
7886 if (INTEL_GEN(dev_priv) >= 4) {
7887 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7888 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7889 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7890 }
7891 }
7892
7893 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7894 struct intel_crtc_state *crtc_state,
7895 struct dpll *reduced_clock)
7896 {
7897 struct drm_device *dev = crtc->base.dev;
7898 struct drm_i915_private *dev_priv = to_i915(dev);
7899 u32 dpll;
7900 struct dpll *clock = &crtc_state->dpll;
7901
7902 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7903
7904 dpll = DPLL_VGA_MODE_DIS;
7905
7906 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7907 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7908 } else {
7909 if (clock->p1 == 2)
7910 dpll |= PLL_P1_DIVIDE_BY_TWO;
7911 else
7912 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7913 if (clock->p2 == 4)
7914 dpll |= PLL_P2_DIVIDE_BY_4;
7915 }
7916
7917 /*
7918 * Bspec:
7919 * "[Almador Errata}: For the correct operation of the muxed DVO pins
7920 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
7921 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
7922 * Enable) must be set to “1” in both the DPLL A Control Register
7923 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
7924 *
7925 * For simplicity We simply keep both bits always enabled in
7926 * both DPLLS. The spec says we should disable the DVO 2X clock
7927 * when not needed, but this seems to work fine in practice.
7928 */
7929 if (IS_I830(dev_priv) ||
7930 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7931 dpll |= DPLL_DVO_2X_MODE;
7932
7933 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7934 intel_panel_use_ssc(dev_priv))
7935 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7936 else
7937 dpll |= PLL_REF_INPUT_DREFCLK;
7938
7939 dpll |= DPLL_VCO_ENABLE;
7940 crtc_state->dpll_hw_state.dpll = dpll;
7941 }
7942
7943 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
7944 {
7945 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7946 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7947 enum pipe pipe = crtc->pipe;
7948 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
7949 const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
7950 u32 crtc_vtotal, crtc_vblank_end;
7951 int vsyncshift = 0;
7952
7953 /* We need to be careful not to changed the adjusted mode, for otherwise
7954 * the hw state checker will get angry at the mismatch. */
7955 crtc_vtotal = adjusted_mode->crtc_vtotal;
7956 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7957
7958 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7959 /* the chip adds 2 halflines automatically */
7960 crtc_vtotal -= 1;
7961 crtc_vblank_end -= 1;
7962
7963 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
7964 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7965 else
7966 vsyncshift = adjusted_mode->crtc_hsync_start -
7967 adjusted_mode->crtc_htotal / 2;
7968 if (vsyncshift < 0)
7969 vsyncshift += adjusted_mode->crtc_htotal;
7970 }
7971
7972 if (INTEL_GEN(dev_priv) > 3)
7973 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7974
7975 I915_WRITE(HTOTAL(cpu_transcoder),
7976 (adjusted_mode->crtc_hdisplay - 1) |
7977 ((adjusted_mode->crtc_htotal - 1) << 16));
7978 I915_WRITE(HBLANK(cpu_transcoder),
7979 (adjusted_mode->crtc_hblank_start - 1) |
7980 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7981 I915_WRITE(HSYNC(cpu_transcoder),
7982 (adjusted_mode->crtc_hsync_start - 1) |
7983 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7984
7985 I915_WRITE(VTOTAL(cpu_transcoder),
7986 (adjusted_mode->crtc_vdisplay - 1) |
7987 ((crtc_vtotal - 1) << 16));
7988 I915_WRITE(VBLANK(cpu_transcoder),
7989 (adjusted_mode->crtc_vblank_start - 1) |
7990 ((crtc_vblank_end - 1) << 16));
7991 I915_WRITE(VSYNC(cpu_transcoder),
7992 (adjusted_mode->crtc_vsync_start - 1) |
7993 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7994
7995 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7996 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7997 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7998 * bits. */
7999 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8000 (pipe == PIPE_B || pipe == PIPE_C))
8001 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8002
8003 }
8004
8005 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8006 {
8007 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8009 enum pipe pipe = crtc->pipe;
8010
8011 /* pipesrc controls the size that is scaled from, which should
8012 * always be the user's requested size.
8013 */
8014 I915_WRITE(PIPESRC(pipe),
8015 ((crtc_state->pipe_src_w - 1) << 16) |
8016 (crtc_state->pipe_src_h - 1));
8017 }
8018
8019 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8020 struct intel_crtc_state *pipe_config)
8021 {
8022 struct drm_device *dev = crtc->base.dev;
8023 struct drm_i915_private *dev_priv = to_i915(dev);
8024 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8025 u32 tmp;
8026
8027 tmp = I915_READ(HTOTAL(cpu_transcoder));
8028 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8029 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8030
8031 if (!transcoder_is_dsi(cpu_transcoder)) {
8032 tmp = I915_READ(HBLANK(cpu_transcoder));
8033 pipe_config->base.adjusted_mode.crtc_hblank_start =
8034 (tmp & 0xffff) + 1;
8035 pipe_config->base.adjusted_mode.crtc_hblank_end =
8036 ((tmp >> 16) & 0xffff) + 1;
8037 }
8038 tmp = I915_READ(HSYNC(cpu_transcoder));
8039 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8040 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8041
8042 tmp = I915_READ(VTOTAL(cpu_transcoder));
8043 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8044 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8045
8046 if (!transcoder_is_dsi(cpu_transcoder)) {
8047 tmp = I915_READ(VBLANK(cpu_transcoder));
8048 pipe_config->base.adjusted_mode.crtc_vblank_start =
8049 (tmp & 0xffff) + 1;
8050 pipe_config->base.adjusted_mode.crtc_vblank_end =
8051 ((tmp >> 16) & 0xffff) + 1;
8052 }
8053 tmp = I915_READ(VSYNC(cpu_transcoder));
8054 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8055 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8056
8057 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8058 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8059 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8060 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8061 }
8062 }
8063
8064 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8065 struct intel_crtc_state *pipe_config)
8066 {
8067 struct drm_device *dev = crtc->base.dev;
8068 struct drm_i915_private *dev_priv = to_i915(dev);
8069 u32 tmp;
8070
8071 tmp = I915_READ(PIPESRC(crtc->pipe));
8072 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8073 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8074
8075 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8076 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8077 }
8078
8079 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8080 struct intel_crtc_state *pipe_config)
8081 {
8082 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8083 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8084 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8085 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8086
8087 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8088 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8089 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8090 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8091
8092 mode->flags = pipe_config->base.adjusted_mode.flags;
8093 mode->type = DRM_MODE_TYPE_DRIVER;
8094
8095 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8096
8097 mode->hsync = drm_mode_hsync(mode);
8098 mode->vrefresh = drm_mode_vrefresh(mode);
8099 drm_mode_set_name(mode);
8100 }
8101
8102 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8103 {
8104 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8105 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8106 u32 pipeconf;
8107
8108 pipeconf = 0;
8109
8110 /* we keep both pipes enabled on 830 */
8111 if (IS_I830(dev_priv))
8112 pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8113
8114 if (crtc_state->double_wide)
8115 pipeconf |= PIPECONF_DOUBLE_WIDE;
8116
8117 /* only g4x and later have fancy bpc/dither controls */
8118 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8119 IS_CHERRYVIEW(dev_priv)) {
8120 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8121 if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8122 pipeconf |= PIPECONF_DITHER_EN |
8123 PIPECONF_DITHER_TYPE_SP;
8124
8125 switch (crtc_state->pipe_bpp) {
8126 case 18:
8127 pipeconf |= PIPECONF_6BPC;
8128 break;
8129 case 24:
8130 pipeconf |= PIPECONF_8BPC;
8131 break;
8132 case 30:
8133 pipeconf |= PIPECONF_10BPC;
8134 break;
8135 default:
8136 /* Case prevented by intel_choose_pipe_bpp_dither. */
8137 BUG();
8138 }
8139 }
8140
8141 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8142 if (INTEL_GEN(dev_priv) < 4 ||
8143 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8144 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8145 else
8146 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8147 } else {
8148 pipeconf |= PIPECONF_PROGRESSIVE;
8149 }
8150
8151 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8152 crtc_state->limited_color_range)
8153 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8154
8155 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
8156
8157 I915_WRITE(PIPECONF(crtc->pipe), pipeconf);
8158 POSTING_READ(PIPECONF(crtc->pipe));
8159 }
8160
8161 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8162 struct intel_crtc_state *crtc_state)
8163 {
8164 struct drm_device *dev = crtc->base.dev;
8165 struct drm_i915_private *dev_priv = to_i915(dev);
8166 const struct intel_limit *limit;
8167 int refclk = 48000;
8168
8169 memset(&crtc_state->dpll_hw_state, 0,
8170 sizeof(crtc_state->dpll_hw_state));
8171
8172 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8173 if (intel_panel_use_ssc(dev_priv)) {
8174 refclk = dev_priv->vbt.lvds_ssc_freq;
8175 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8176 }
8177
8178 limit = &intel_limits_i8xx_lvds;
8179 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8180 limit = &intel_limits_i8xx_dvo;
8181 } else {
8182 limit = &intel_limits_i8xx_dac;
8183 }
8184
8185 if (!crtc_state->clock_set &&
8186 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8187 refclk, NULL, &crtc_state->dpll)) {
8188 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8189 return -EINVAL;
8190 }
8191
8192 i8xx_compute_dpll(crtc, crtc_state, NULL);
8193
8194 return 0;
8195 }
8196
8197 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8198 struct intel_crtc_state *crtc_state)
8199 {
8200 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8201 const struct intel_limit *limit;
8202 int refclk = 96000;
8203
8204 memset(&crtc_state->dpll_hw_state, 0,
8205 sizeof(crtc_state->dpll_hw_state));
8206
8207 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8208 if (intel_panel_use_ssc(dev_priv)) {
8209 refclk = dev_priv->vbt.lvds_ssc_freq;
8210 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8211 }
8212
8213 if (intel_is_dual_link_lvds(dev_priv))
8214 limit = &intel_limits_g4x_dual_channel_lvds;
8215 else
8216 limit = &intel_limits_g4x_single_channel_lvds;
8217 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8218 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8219 limit = &intel_limits_g4x_hdmi;
8220 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8221 limit = &intel_limits_g4x_sdvo;
8222 } else {
8223 /* The option is for other outputs */
8224 limit = &intel_limits_i9xx_sdvo;
8225 }
8226
8227 if (!crtc_state->clock_set &&
8228 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8229 refclk, NULL, &crtc_state->dpll)) {
8230 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8231 return -EINVAL;
8232 }
8233
8234 i9xx_compute_dpll(crtc, crtc_state, NULL);
8235
8236 return 0;
8237 }
8238
8239 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8240 struct intel_crtc_state *crtc_state)
8241 {
8242 struct drm_device *dev = crtc->base.dev;
8243 struct drm_i915_private *dev_priv = to_i915(dev);
8244 const struct intel_limit *limit;
8245 int refclk = 96000;
8246
8247 memset(&crtc_state->dpll_hw_state, 0,
8248 sizeof(crtc_state->dpll_hw_state));
8249
8250 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8251 if (intel_panel_use_ssc(dev_priv)) {
8252 refclk = dev_priv->vbt.lvds_ssc_freq;
8253 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8254 }
8255
8256 limit = &intel_limits_pineview_lvds;
8257 } else {
8258 limit = &intel_limits_pineview_sdvo;
8259 }
8260
8261 if (!crtc_state->clock_set &&
8262 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8263 refclk, NULL, &crtc_state->dpll)) {
8264 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8265 return -EINVAL;
8266 }
8267
8268 i9xx_compute_dpll(crtc, crtc_state, NULL);
8269
8270 return 0;
8271 }
8272
8273 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8274 struct intel_crtc_state *crtc_state)
8275 {
8276 struct drm_device *dev = crtc->base.dev;
8277 struct drm_i915_private *dev_priv = to_i915(dev);
8278 const struct intel_limit *limit;
8279 int refclk = 96000;
8280
8281 memset(&crtc_state->dpll_hw_state, 0,
8282 sizeof(crtc_state->dpll_hw_state));
8283
8284 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8285 if (intel_panel_use_ssc(dev_priv)) {
8286 refclk = dev_priv->vbt.lvds_ssc_freq;
8287 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8288 }
8289
8290 limit = &intel_limits_i9xx_lvds;
8291 } else {
8292 limit = &intel_limits_i9xx_sdvo;
8293 }
8294
8295 if (!crtc_state->clock_set &&
8296 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8297 refclk, NULL, &crtc_state->dpll)) {
8298 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8299 return -EINVAL;
8300 }
8301
8302 i9xx_compute_dpll(crtc, crtc_state, NULL);
8303
8304 return 0;
8305 }
8306
8307 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8308 struct intel_crtc_state *crtc_state)
8309 {
8310 int refclk = 100000;
8311 const struct intel_limit *limit = &intel_limits_chv;
8312
8313 memset(&crtc_state->dpll_hw_state, 0,
8314 sizeof(crtc_state->dpll_hw_state));
8315
8316 if (!crtc_state->clock_set &&
8317 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8318 refclk, NULL, &crtc_state->dpll)) {
8319 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8320 return -EINVAL;
8321 }
8322
8323 chv_compute_dpll(crtc, crtc_state);
8324
8325 return 0;
8326 }
8327
8328 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8329 struct intel_crtc_state *crtc_state)
8330 {
8331 int refclk = 100000;
8332 const struct intel_limit *limit = &intel_limits_vlv;
8333
8334 memset(&crtc_state->dpll_hw_state, 0,
8335 sizeof(crtc_state->dpll_hw_state));
8336
8337 if (!crtc_state->clock_set &&
8338 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8339 refclk, NULL, &crtc_state->dpll)) {
8340 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8341 return -EINVAL;
8342 }
8343
8344 vlv_compute_dpll(crtc, crtc_state);
8345
8346 return 0;
8347 }
8348
8349 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
8350 {
8351 if (IS_I830(dev_priv))
8352 return false;
8353
8354 return INTEL_GEN(dev_priv) >= 4 ||
8355 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
8356 }
8357
8358 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8359 struct intel_crtc_state *pipe_config)
8360 {
8361 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8362 u32 tmp;
8363
8364 if (!i9xx_has_pfit(dev_priv))
8365 return;
8366
8367 tmp = I915_READ(PFIT_CONTROL);
8368 if (!(tmp & PFIT_ENABLE))
8369 return;
8370
8371 /* Check whether the pfit is attached to our pipe. */
8372 if (INTEL_GEN(dev_priv) < 4) {
8373 if (crtc->pipe != PIPE_B)
8374 return;
8375 } else {
8376 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8377 return;
8378 }
8379
8380 pipe_config->gmch_pfit.control = tmp;
8381 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8382 }
8383
8384 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8385 struct intel_crtc_state *pipe_config)
8386 {
8387 struct drm_device *dev = crtc->base.dev;
8388 struct drm_i915_private *dev_priv = to_i915(dev);
8389 int pipe = pipe_config->cpu_transcoder;
8390 struct dpll clock;
8391 u32 mdiv;
8392 int refclk = 100000;
8393
8394 /* In case of DSI, DPLL will not be used */
8395 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8396 return;
8397
8398 vlv_dpio_get(dev_priv);
8399 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8400 vlv_dpio_put(dev_priv);
8401
8402 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8403 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8404 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8405 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8406 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8407
8408 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8409 }
8410
8411 static void
8412 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8413 struct intel_initial_plane_config *plane_config)
8414 {
8415 struct drm_device *dev = crtc->base.dev;
8416 struct drm_i915_private *dev_priv = to_i915(dev);
8417 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8418 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8419 enum pipe pipe;
8420 u32 val, base, offset;
8421 int fourcc, pixel_format;
8422 unsigned int aligned_height;
8423 struct drm_framebuffer *fb;
8424 struct intel_framebuffer *intel_fb;
8425
8426 if (!plane->get_hw_state(plane, &pipe))
8427 return;
8428
8429 WARN_ON(pipe != crtc->pipe);
8430
8431 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8432 if (!intel_fb) {
8433 DRM_DEBUG_KMS("failed to alloc fb\n");
8434 return;
8435 }
8436
8437 fb = &intel_fb->base;
8438
8439 fb->dev = dev;
8440
8441 val = I915_READ(DSPCNTR(i9xx_plane));
8442
8443 if (INTEL_GEN(dev_priv) >= 4) {
8444 if (val & DISPPLANE_TILED) {
8445 plane_config->tiling = I915_TILING_X;
8446 fb->modifier = I915_FORMAT_MOD_X_TILED;
8447 }
8448
8449 if (val & DISPPLANE_ROTATE_180)
8450 plane_config->rotation = DRM_MODE_ROTATE_180;
8451 }
8452
8453 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
8454 val & DISPPLANE_MIRROR)
8455 plane_config->rotation |= DRM_MODE_REFLECT_X;
8456
8457 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8458 fourcc = i9xx_format_to_fourcc(pixel_format);
8459 fb->format = drm_format_info(fourcc);
8460
8461 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8462 offset = I915_READ(DSPOFFSET(i9xx_plane));
8463 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
8464 } else if (INTEL_GEN(dev_priv) >= 4) {
8465 if (plane_config->tiling)
8466 offset = I915_READ(DSPTILEOFF(i9xx_plane));
8467 else
8468 offset = I915_READ(DSPLINOFF(i9xx_plane));
8469 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
8470 } else {
8471 base = I915_READ(DSPADDR(i9xx_plane));
8472 }
8473 plane_config->base = base;
8474
8475 val = I915_READ(PIPESRC(pipe));
8476 fb->width = ((val >> 16) & 0xfff) + 1;
8477 fb->height = ((val >> 0) & 0xfff) + 1;
8478
8479 val = I915_READ(DSPSTRIDE(i9xx_plane));
8480 fb->pitches[0] = val & 0xffffffc0;
8481
8482 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8483
8484 plane_config->size = fb->pitches[0] * aligned_height;
8485
8486 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8487 crtc->base.name, plane->base.name, fb->width, fb->height,
8488 fb->format->cpp[0] * 8, base, fb->pitches[0],
8489 plane_config->size);
8490
8491 plane_config->fb = intel_fb;
8492 }
8493
8494 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8495 struct intel_crtc_state *pipe_config)
8496 {
8497 struct drm_device *dev = crtc->base.dev;
8498 struct drm_i915_private *dev_priv = to_i915(dev);
8499 int pipe = pipe_config->cpu_transcoder;
8500 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8501 struct dpll clock;
8502 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8503 int refclk = 100000;
8504
8505 /* In case of DSI, DPLL will not be used */
8506 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8507 return;
8508
8509 vlv_dpio_get(dev_priv);
8510 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8511 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8512 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8513 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8514 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8515 vlv_dpio_put(dev_priv);
8516
8517 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8518 clock.m2 = (pll_dw0 & 0xff) << 22;
8519 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8520 clock.m2 |= pll_dw2 & 0x3fffff;
8521 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8522 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8523 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8524
8525 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8526 }
8527
8528 static void intel_get_crtc_ycbcr_config(struct intel_crtc *crtc,
8529 struct intel_crtc_state *pipe_config)
8530 {
8531 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8532 enum intel_output_format output = INTEL_OUTPUT_FORMAT_RGB;
8533
8534 pipe_config->lspcon_downsampling = false;
8535
8536 if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) {
8537 u32 tmp = I915_READ(PIPEMISC(crtc->pipe));
8538
8539 if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
8540 bool ycbcr420_enabled = tmp & PIPEMISC_YUV420_ENABLE;
8541 bool blend = tmp & PIPEMISC_YUV420_MODE_FULL_BLEND;
8542
8543 if (ycbcr420_enabled) {
8544 /* We support 4:2:0 in full blend mode only */
8545 if (!blend)
8546 output = INTEL_OUTPUT_FORMAT_INVALID;
8547 else if (!(IS_GEMINILAKE(dev_priv) ||
8548 INTEL_GEN(dev_priv) >= 10))
8549 output = INTEL_OUTPUT_FORMAT_INVALID;
8550 else
8551 output = INTEL_OUTPUT_FORMAT_YCBCR420;
8552 } else {
8553 /*
8554 * Currently there is no interface defined to
8555 * check user preference between RGB/YCBCR444
8556 * or YCBCR420. So the only possible case for
8557 * YCBCR444 usage is driving YCBCR420 output
8558 * with LSPCON, when pipe is configured for
8559 * YCBCR444 output and LSPCON takes care of
8560 * downsampling it.
8561 */
8562 pipe_config->lspcon_downsampling = true;
8563 output = INTEL_OUTPUT_FORMAT_YCBCR444;
8564 }
8565 }
8566 }
8567
8568 pipe_config->output_format = output;
8569 }
8570
8571 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
8572 {
8573 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8574 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8575 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8576 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8577 u32 tmp;
8578
8579 tmp = I915_READ(DSPCNTR(i9xx_plane));
8580
8581 if (tmp & DISPPLANE_GAMMA_ENABLE)
8582 crtc_state->gamma_enable = true;
8583
8584 if (!HAS_GMCH(dev_priv) &&
8585 tmp & DISPPLANE_PIPE_CSC_ENABLE)
8586 crtc_state->csc_enable = true;
8587 }
8588
8589 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8590 struct intel_crtc_state *pipe_config)
8591 {
8592 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8593 enum intel_display_power_domain power_domain;
8594 intel_wakeref_t wakeref;
8595 u32 tmp;
8596 bool ret;
8597
8598 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8599 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
8600 if (!wakeref)
8601 return false;
8602
8603 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
8604 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8605 pipe_config->shared_dpll = NULL;
8606
8607 ret = false;
8608
8609 tmp = I915_READ(PIPECONF(crtc->pipe));
8610 if (!(tmp & PIPECONF_ENABLE))
8611 goto out;
8612
8613 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8614 IS_CHERRYVIEW(dev_priv)) {
8615 switch (tmp & PIPECONF_BPC_MASK) {
8616 case PIPECONF_6BPC:
8617 pipe_config->pipe_bpp = 18;
8618 break;
8619 case PIPECONF_8BPC:
8620 pipe_config->pipe_bpp = 24;
8621 break;
8622 case PIPECONF_10BPC:
8623 pipe_config->pipe_bpp = 30;
8624 break;
8625 default:
8626 break;
8627 }
8628 }
8629
8630 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8631 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8632 pipe_config->limited_color_range = true;
8633
8634 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
8635 PIPECONF_GAMMA_MODE_SHIFT;
8636
8637 if (IS_CHERRYVIEW(dev_priv))
8638 pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe));
8639
8640 i9xx_get_pipe_color_config(pipe_config);
8641
8642 if (INTEL_GEN(dev_priv) < 4)
8643 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8644
8645 intel_get_pipe_timings(crtc, pipe_config);
8646 intel_get_pipe_src_size(crtc, pipe_config);
8647
8648 i9xx_get_pfit_config(crtc, pipe_config);
8649
8650 if (INTEL_GEN(dev_priv) >= 4) {
8651 /* No way to read it out on pipes B and C */
8652 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8653 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8654 else
8655 tmp = I915_READ(DPLL_MD(crtc->pipe));
8656 pipe_config->pixel_multiplier =
8657 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8658 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8659 pipe_config->dpll_hw_state.dpll_md = tmp;
8660 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8661 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8662 tmp = I915_READ(DPLL(crtc->pipe));
8663 pipe_config->pixel_multiplier =
8664 ((tmp & SDVO_MULTIPLIER_MASK)
8665 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8666 } else {
8667 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8668 * port and will be fixed up in the encoder->get_config
8669 * function. */
8670 pipe_config->pixel_multiplier = 1;
8671 }
8672 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8673 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8674 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8675 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8676 } else {
8677 /* Mask out read-only status bits. */
8678 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8679 DPLL_PORTC_READY_MASK |
8680 DPLL_PORTB_READY_MASK);
8681 }
8682
8683 if (IS_CHERRYVIEW(dev_priv))
8684 chv_crtc_clock_get(crtc, pipe_config);
8685 else if (IS_VALLEYVIEW(dev_priv))
8686 vlv_crtc_clock_get(crtc, pipe_config);
8687 else
8688 i9xx_crtc_clock_get(crtc, pipe_config);
8689
8690 /*
8691 * Normally the dotclock is filled in by the encoder .get_config()
8692 * but in case the pipe is enabled w/o any ports we need a sane
8693 * default.
8694 */
8695 pipe_config->base.adjusted_mode.crtc_clock =
8696 pipe_config->port_clock / pipe_config->pixel_multiplier;
8697
8698 ret = true;
8699
8700 out:
8701 intel_display_power_put(dev_priv, power_domain, wakeref);
8702
8703 return ret;
8704 }
8705
8706 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
8707 {
8708 struct intel_encoder *encoder;
8709 int i;
8710 u32 val, final;
8711 bool has_lvds = false;
8712 bool has_cpu_edp = false;
8713 bool has_panel = false;
8714 bool has_ck505 = false;
8715 bool can_ssc = false;
8716 bool using_ssc_source = false;
8717
8718 /* We need to take the global config into account */
8719 for_each_intel_encoder(&dev_priv->drm, encoder) {
8720 switch (encoder->type) {
8721 case INTEL_OUTPUT_LVDS:
8722 has_panel = true;
8723 has_lvds = true;
8724 break;
8725 case INTEL_OUTPUT_EDP:
8726 has_panel = true;
8727 if (encoder->port == PORT_A)
8728 has_cpu_edp = true;
8729 break;
8730 default:
8731 break;
8732 }
8733 }
8734
8735 if (HAS_PCH_IBX(dev_priv)) {
8736 has_ck505 = dev_priv->vbt.display_clock_mode;
8737 can_ssc = has_ck505;
8738 } else {
8739 has_ck505 = false;
8740 can_ssc = true;
8741 }
8742
8743 /* Check if any DPLLs are using the SSC source */
8744 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8745 u32 temp = I915_READ(PCH_DPLL(i));
8746
8747 if (!(temp & DPLL_VCO_ENABLE))
8748 continue;
8749
8750 if ((temp & PLL_REF_INPUT_MASK) ==
8751 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8752 using_ssc_source = true;
8753 break;
8754 }
8755 }
8756
8757 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8758 has_panel, has_lvds, has_ck505, using_ssc_source);
8759
8760 /* Ironlake: try to setup display ref clock before DPLL
8761 * enabling. This is only under driver's control after
8762 * PCH B stepping, previous chipset stepping should be
8763 * ignoring this setting.
8764 */
8765 val = I915_READ(PCH_DREF_CONTROL);
8766
8767 /* As we must carefully and slowly disable/enable each source in turn,
8768 * compute the final state we want first and check if we need to
8769 * make any changes at all.
8770 */
8771 final = val;
8772 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8773 if (has_ck505)
8774 final |= DREF_NONSPREAD_CK505_ENABLE;
8775 else
8776 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8777
8778 final &= ~DREF_SSC_SOURCE_MASK;
8779 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8780 final &= ~DREF_SSC1_ENABLE;
8781
8782 if (has_panel) {
8783 final |= DREF_SSC_SOURCE_ENABLE;
8784
8785 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8786 final |= DREF_SSC1_ENABLE;
8787
8788 if (has_cpu_edp) {
8789 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8790 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8791 else
8792 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8793 } else
8794 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8795 } else if (using_ssc_source) {
8796 final |= DREF_SSC_SOURCE_ENABLE;
8797 final |= DREF_SSC1_ENABLE;
8798 }
8799
8800 if (final == val)
8801 return;
8802
8803 /* Always enable nonspread source */
8804 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8805
8806 if (has_ck505)
8807 val |= DREF_NONSPREAD_CK505_ENABLE;
8808 else
8809 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8810
8811 if (has_panel) {
8812 val &= ~DREF_SSC_SOURCE_MASK;
8813 val |= DREF_SSC_SOURCE_ENABLE;
8814
8815 /* SSC must be turned on before enabling the CPU output */
8816 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8817 DRM_DEBUG_KMS("Using SSC on panel\n");
8818 val |= DREF_SSC1_ENABLE;
8819 } else
8820 val &= ~DREF_SSC1_ENABLE;
8821
8822 /* Get SSC going before enabling the outputs */
8823 I915_WRITE(PCH_DREF_CONTROL, val);
8824 POSTING_READ(PCH_DREF_CONTROL);
8825 udelay(200);
8826
8827 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8828
8829 /* Enable CPU source on CPU attached eDP */
8830 if (has_cpu_edp) {
8831 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8832 DRM_DEBUG_KMS("Using SSC on eDP\n");
8833 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8834 } else
8835 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8836 } else
8837 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8838
8839 I915_WRITE(PCH_DREF_CONTROL, val);
8840 POSTING_READ(PCH_DREF_CONTROL);
8841 udelay(200);
8842 } else {
8843 DRM_DEBUG_KMS("Disabling CPU source output\n");
8844
8845 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8846
8847 /* Turn off CPU output */
8848 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8849
8850 I915_WRITE(PCH_DREF_CONTROL, val);
8851 POSTING_READ(PCH_DREF_CONTROL);
8852 udelay(200);
8853
8854 if (!using_ssc_source) {
8855 DRM_DEBUG_KMS("Disabling SSC source\n");
8856
8857 /* Turn off the SSC source */
8858 val &= ~DREF_SSC_SOURCE_MASK;
8859 val |= DREF_SSC_SOURCE_DISABLE;
8860
8861 /* Turn off SSC1 */
8862 val &= ~DREF_SSC1_ENABLE;
8863
8864 I915_WRITE(PCH_DREF_CONTROL, val);
8865 POSTING_READ(PCH_DREF_CONTROL);
8866 udelay(200);
8867 }
8868 }
8869
8870 BUG_ON(val != final);
8871 }
8872
8873 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8874 {
8875 u32 tmp;
8876
8877 tmp = I915_READ(SOUTH_CHICKEN2);
8878 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8879 I915_WRITE(SOUTH_CHICKEN2, tmp);
8880
8881 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8882 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8883 DRM_ERROR("FDI mPHY reset assert timeout\n");
8884
8885 tmp = I915_READ(SOUTH_CHICKEN2);
8886 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8887 I915_WRITE(SOUTH_CHICKEN2, tmp);
8888
8889 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8890 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8891 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8892 }
8893
8894 /* WaMPhyProgramming:hsw */
8895 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8896 {
8897 u32 tmp;
8898
8899 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8900 tmp &= ~(0xFF << 24);
8901 tmp |= (0x12 << 24);
8902 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8903
8904 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8905 tmp |= (1 << 11);
8906 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8907
8908 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8909 tmp |= (1 << 11);
8910 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8911
8912 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8913 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8914 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8915
8916 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8917 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8918 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8919
8920 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8921 tmp &= ~(7 << 13);
8922 tmp |= (5 << 13);
8923 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8924
8925 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8926 tmp &= ~(7 << 13);
8927 tmp |= (5 << 13);
8928 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8929
8930 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8931 tmp &= ~0xFF;
8932 tmp |= 0x1C;
8933 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8934
8935 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8936 tmp &= ~0xFF;
8937 tmp |= 0x1C;
8938 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8939
8940 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8941 tmp &= ~(0xFF << 16);
8942 tmp |= (0x1C << 16);
8943 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8944
8945 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8946 tmp &= ~(0xFF << 16);
8947 tmp |= (0x1C << 16);
8948 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8949
8950 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8951 tmp |= (1 << 27);
8952 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8953
8954 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8955 tmp |= (1 << 27);
8956 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8957
8958 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8959 tmp &= ~(0xF << 28);
8960 tmp |= (4 << 28);
8961 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8962
8963 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8964 tmp &= ~(0xF << 28);
8965 tmp |= (4 << 28);
8966 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8967 }
8968
8969 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8970 * Programming" based on the parameters passed:
8971 * - Sequence to enable CLKOUT_DP
8972 * - Sequence to enable CLKOUT_DP without spread
8973 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8974 */
8975 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
8976 bool with_spread, bool with_fdi)
8977 {
8978 u32 reg, tmp;
8979
8980 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8981 with_spread = true;
8982 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
8983 with_fdi, "LP PCH doesn't have FDI\n"))
8984 with_fdi = false;
8985
8986 mutex_lock(&dev_priv->sb_lock);
8987
8988 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8989 tmp &= ~SBI_SSCCTL_DISABLE;
8990 tmp |= SBI_SSCCTL_PATHALT;
8991 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8992
8993 udelay(24);
8994
8995 if (with_spread) {
8996 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8997 tmp &= ~SBI_SSCCTL_PATHALT;
8998 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8999
9000 if (with_fdi) {
9001 lpt_reset_fdi_mphy(dev_priv);
9002 lpt_program_fdi_mphy(dev_priv);
9003 }
9004 }
9005
9006 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9007 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9008 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9009 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9010
9011 mutex_unlock(&dev_priv->sb_lock);
9012 }
9013
9014 /* Sequence to disable CLKOUT_DP */
9015 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9016 {
9017 u32 reg, tmp;
9018
9019 mutex_lock(&dev_priv->sb_lock);
9020
9021 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9022 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9023 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9024 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9025
9026 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9027 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9028 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9029 tmp |= SBI_SSCCTL_PATHALT;
9030 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9031 udelay(32);
9032 }
9033 tmp |= SBI_SSCCTL_DISABLE;
9034 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9035 }
9036
9037 mutex_unlock(&dev_priv->sb_lock);
9038 }
9039
9040 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9041
9042 static const u16 sscdivintphase[] = {
9043 [BEND_IDX( 50)] = 0x3B23,
9044 [BEND_IDX( 45)] = 0x3B23,
9045 [BEND_IDX( 40)] = 0x3C23,
9046 [BEND_IDX( 35)] = 0x3C23,
9047 [BEND_IDX( 30)] = 0x3D23,
9048 [BEND_IDX( 25)] = 0x3D23,
9049 [BEND_IDX( 20)] = 0x3E23,
9050 [BEND_IDX( 15)] = 0x3E23,
9051 [BEND_IDX( 10)] = 0x3F23,
9052 [BEND_IDX( 5)] = 0x3F23,
9053 [BEND_IDX( 0)] = 0x0025,
9054 [BEND_IDX( -5)] = 0x0025,
9055 [BEND_IDX(-10)] = 0x0125,
9056 [BEND_IDX(-15)] = 0x0125,
9057 [BEND_IDX(-20)] = 0x0225,
9058 [BEND_IDX(-25)] = 0x0225,
9059 [BEND_IDX(-30)] = 0x0325,
9060 [BEND_IDX(-35)] = 0x0325,
9061 [BEND_IDX(-40)] = 0x0425,
9062 [BEND_IDX(-45)] = 0x0425,
9063 [BEND_IDX(-50)] = 0x0525,
9064 };
9065
9066 /*
9067 * Bend CLKOUT_DP
9068 * steps -50 to 50 inclusive, in steps of 5
9069 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9070 * change in clock period = -(steps / 10) * 5.787 ps
9071 */
9072 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9073 {
9074 u32 tmp;
9075 int idx = BEND_IDX(steps);
9076
9077 if (WARN_ON(steps % 5 != 0))
9078 return;
9079
9080 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9081 return;
9082
9083 mutex_lock(&dev_priv->sb_lock);
9084
9085 if (steps % 10 != 0)
9086 tmp = 0xAAAAAAAB;
9087 else
9088 tmp = 0x00000000;
9089 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9090
9091 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9092 tmp &= 0xffff0000;
9093 tmp |= sscdivintphase[idx];
9094 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9095
9096 mutex_unlock(&dev_priv->sb_lock);
9097 }
9098
9099 #undef BEND_IDX
9100
9101 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9102 {
9103 struct intel_encoder *encoder;
9104 bool has_vga = false;
9105
9106 for_each_intel_encoder(&dev_priv->drm, encoder) {
9107 switch (encoder->type) {
9108 case INTEL_OUTPUT_ANALOG:
9109 has_vga = true;
9110 break;
9111 default:
9112 break;
9113 }
9114 }
9115
9116 if (has_vga) {
9117 lpt_bend_clkout_dp(dev_priv, 0);
9118 lpt_enable_clkout_dp(dev_priv, true, true);
9119 } else {
9120 lpt_disable_clkout_dp(dev_priv);
9121 }
9122 }
9123
9124 /*
9125 * Initialize reference clocks when the driver loads
9126 */
9127 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9128 {
9129 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9130 ironlake_init_pch_refclk(dev_priv);
9131 else if (HAS_PCH_LPT(dev_priv))
9132 lpt_init_pch_refclk(dev_priv);
9133 }
9134
9135 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state)
9136 {
9137 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9138 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9139 enum pipe pipe = crtc->pipe;
9140 u32 val;
9141
9142 val = 0;
9143
9144 switch (crtc_state->pipe_bpp) {
9145 case 18:
9146 val |= PIPECONF_6BPC;
9147 break;
9148 case 24:
9149 val |= PIPECONF_8BPC;
9150 break;
9151 case 30:
9152 val |= PIPECONF_10BPC;
9153 break;
9154 case 36:
9155 val |= PIPECONF_12BPC;
9156 break;
9157 default:
9158 /* Case prevented by intel_choose_pipe_bpp_dither. */
9159 BUG();
9160 }
9161
9162 if (crtc_state->dither)
9163 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9164
9165 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9166 val |= PIPECONF_INTERLACED_ILK;
9167 else
9168 val |= PIPECONF_PROGRESSIVE;
9169
9170 if (crtc_state->limited_color_range)
9171 val |= PIPECONF_COLOR_RANGE_SELECT;
9172
9173 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9174
9175 I915_WRITE(PIPECONF(pipe), val);
9176 POSTING_READ(PIPECONF(pipe));
9177 }
9178
9179 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state)
9180 {
9181 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9182 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9183 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9184 u32 val = 0;
9185
9186 if (IS_HASWELL(dev_priv) && crtc_state->dither)
9187 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9188
9189 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9190 val |= PIPECONF_INTERLACED_ILK;
9191 else
9192 val |= PIPECONF_PROGRESSIVE;
9193
9194 I915_WRITE(PIPECONF(cpu_transcoder), val);
9195 POSTING_READ(PIPECONF(cpu_transcoder));
9196 }
9197
9198 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
9199 {
9200 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9201 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9202 u32 val = 0;
9203
9204 switch (crtc_state->pipe_bpp) {
9205 case 18:
9206 val |= PIPEMISC_DITHER_6_BPC;
9207 break;
9208 case 24:
9209 val |= PIPEMISC_DITHER_8_BPC;
9210 break;
9211 case 30:
9212 val |= PIPEMISC_DITHER_10_BPC;
9213 break;
9214 case 36:
9215 val |= PIPEMISC_DITHER_12_BPC;
9216 break;
9217 default:
9218 MISSING_CASE(crtc_state->pipe_bpp);
9219 break;
9220 }
9221
9222 if (crtc_state->dither)
9223 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9224
9225 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
9226 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
9227 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
9228
9229 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
9230 val |= PIPEMISC_YUV420_ENABLE |
9231 PIPEMISC_YUV420_MODE_FULL_BLEND;
9232
9233 if (INTEL_GEN(dev_priv) >= 11 &&
9234 (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
9235 BIT(PLANE_CURSOR))) == 0)
9236 val |= PIPEMISC_HDR_MODE_PRECISION;
9237
9238 I915_WRITE(PIPEMISC(crtc->pipe), val);
9239 }
9240
9241 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
9242 {
9243 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9244 u32 tmp;
9245
9246 tmp = I915_READ(PIPEMISC(crtc->pipe));
9247
9248 switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
9249 case PIPEMISC_DITHER_6_BPC:
9250 return 18;
9251 case PIPEMISC_DITHER_8_BPC:
9252 return 24;
9253 case PIPEMISC_DITHER_10_BPC:
9254 return 30;
9255 case PIPEMISC_DITHER_12_BPC:
9256 return 36;
9257 default:
9258 MISSING_CASE(tmp);
9259 return 0;
9260 }
9261 }
9262
9263 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9264 {
9265 /*
9266 * Account for spread spectrum to avoid
9267 * oversubscribing the link. Max center spread
9268 * is 2.5%; use 5% for safety's sake.
9269 */
9270 u32 bps = target_clock * bpp * 21 / 20;
9271 return DIV_ROUND_UP(bps, link_bw * 8);
9272 }
9273
9274 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9275 {
9276 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9277 }
9278
9279 static void ironlake_compute_dpll(struct intel_crtc *crtc,
9280 struct intel_crtc_state *crtc_state,
9281 struct dpll *reduced_clock)
9282 {
9283 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9284 u32 dpll, fp, fp2;
9285 int factor;
9286
9287 /* Enable autotuning of the PLL clock (if permissible) */
9288 factor = 21;
9289 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9290 if ((intel_panel_use_ssc(dev_priv) &&
9291 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9292 (HAS_PCH_IBX(dev_priv) &&
9293 intel_is_dual_link_lvds(dev_priv)))
9294 factor = 25;
9295 } else if (crtc_state->sdvo_tv_clock) {
9296 factor = 20;
9297 }
9298
9299 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9300
9301 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9302 fp |= FP_CB_TUNE;
9303
9304 if (reduced_clock) {
9305 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9306
9307 if (reduced_clock->m < factor * reduced_clock->n)
9308 fp2 |= FP_CB_TUNE;
9309 } else {
9310 fp2 = fp;
9311 }
9312
9313 dpll = 0;
9314
9315 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9316 dpll |= DPLLB_MODE_LVDS;
9317 else
9318 dpll |= DPLLB_MODE_DAC_SERIAL;
9319
9320 dpll |= (crtc_state->pixel_multiplier - 1)
9321 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9322
9323 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9324 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9325 dpll |= DPLL_SDVO_HIGH_SPEED;
9326
9327 if (intel_crtc_has_dp_encoder(crtc_state))
9328 dpll |= DPLL_SDVO_HIGH_SPEED;
9329
9330 /*
9331 * The high speed IO clock is only really required for
9332 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9333 * possible to share the DPLL between CRT and HDMI. Enabling
9334 * the clock needlessly does no real harm, except use up a
9335 * bit of power potentially.
9336 *
9337 * We'll limit this to IVB with 3 pipes, since it has only two
9338 * DPLLs and so DPLL sharing is the only way to get three pipes
9339 * driving PCH ports at the same time. On SNB we could do this,
9340 * and potentially avoid enabling the second DPLL, but it's not
9341 * clear if it''s a win or loss power wise. No point in doing
9342 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9343 */
9344 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9345 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9346 dpll |= DPLL_SDVO_HIGH_SPEED;
9347
9348 /* compute bitmask from p1 value */
9349 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9350 /* also FPA1 */
9351 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9352
9353 switch (crtc_state->dpll.p2) {
9354 case 5:
9355 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9356 break;
9357 case 7:
9358 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9359 break;
9360 case 10:
9361 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9362 break;
9363 case 14:
9364 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9365 break;
9366 }
9367
9368 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9369 intel_panel_use_ssc(dev_priv))
9370 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9371 else
9372 dpll |= PLL_REF_INPUT_DREFCLK;
9373
9374 dpll |= DPLL_VCO_ENABLE;
9375
9376 crtc_state->dpll_hw_state.dpll = dpll;
9377 crtc_state->dpll_hw_state.fp0 = fp;
9378 crtc_state->dpll_hw_state.fp1 = fp2;
9379 }
9380
9381 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9382 struct intel_crtc_state *crtc_state)
9383 {
9384 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9385 const struct intel_limit *limit;
9386 int refclk = 120000;
9387
9388 memset(&crtc_state->dpll_hw_state, 0,
9389 sizeof(crtc_state->dpll_hw_state));
9390
9391 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9392 if (!crtc_state->has_pch_encoder)
9393 return 0;
9394
9395 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9396 if (intel_panel_use_ssc(dev_priv)) {
9397 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9398 dev_priv->vbt.lvds_ssc_freq);
9399 refclk = dev_priv->vbt.lvds_ssc_freq;
9400 }
9401
9402 if (intel_is_dual_link_lvds(dev_priv)) {
9403 if (refclk == 100000)
9404 limit = &intel_limits_ironlake_dual_lvds_100m;
9405 else
9406 limit = &intel_limits_ironlake_dual_lvds;
9407 } else {
9408 if (refclk == 100000)
9409 limit = &intel_limits_ironlake_single_lvds_100m;
9410 else
9411 limit = &intel_limits_ironlake_single_lvds;
9412 }
9413 } else {
9414 limit = &intel_limits_ironlake_dac;
9415 }
9416
9417 if (!crtc_state->clock_set &&
9418 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9419 refclk, NULL, &crtc_state->dpll)) {
9420 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9421 return -EINVAL;
9422 }
9423
9424 ironlake_compute_dpll(crtc, crtc_state, NULL);
9425
9426 if (!intel_get_shared_dpll(crtc_state, NULL)) {
9427 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
9428 pipe_name(crtc->pipe));
9429 return -EINVAL;
9430 }
9431
9432 return 0;
9433 }
9434
9435 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9436 struct intel_link_m_n *m_n)
9437 {
9438 struct drm_device *dev = crtc->base.dev;
9439 struct drm_i915_private *dev_priv = to_i915(dev);
9440 enum pipe pipe = crtc->pipe;
9441
9442 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9443 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9444 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9445 & ~TU_SIZE_MASK;
9446 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9447 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9448 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9449 }
9450
9451 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9452 enum transcoder transcoder,
9453 struct intel_link_m_n *m_n,
9454 struct intel_link_m_n *m2_n2)
9455 {
9456 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9457 enum pipe pipe = crtc->pipe;
9458
9459 if (INTEL_GEN(dev_priv) >= 5) {
9460 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9461 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9462 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9463 & ~TU_SIZE_MASK;
9464 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9465 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9466 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9467
9468 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
9469 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9470 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9471 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9472 & ~TU_SIZE_MASK;
9473 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9474 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9475 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9476 }
9477 } else {
9478 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9479 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9480 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9481 & ~TU_SIZE_MASK;
9482 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9483 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9484 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9485 }
9486 }
9487
9488 void intel_dp_get_m_n(struct intel_crtc *crtc,
9489 struct intel_crtc_state *pipe_config)
9490 {
9491 if (pipe_config->has_pch_encoder)
9492 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9493 else
9494 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9495 &pipe_config->dp_m_n,
9496 &pipe_config->dp_m2_n2);
9497 }
9498
9499 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9500 struct intel_crtc_state *pipe_config)
9501 {
9502 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9503 &pipe_config->fdi_m_n, NULL);
9504 }
9505
9506 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9507 struct intel_crtc_state *pipe_config)
9508 {
9509 struct drm_device *dev = crtc->base.dev;
9510 struct drm_i915_private *dev_priv = to_i915(dev);
9511 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9512 u32 ps_ctrl = 0;
9513 int id = -1;
9514 int i;
9515
9516 /* find scaler attached to this pipe */
9517 for (i = 0; i < crtc->num_scalers; i++) {
9518 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9519 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9520 id = i;
9521 pipe_config->pch_pfit.enabled = true;
9522 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9523 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9524 scaler_state->scalers[i].in_use = true;
9525 break;
9526 }
9527 }
9528
9529 scaler_state->scaler_id = id;
9530 if (id >= 0) {
9531 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9532 } else {
9533 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9534 }
9535 }
9536
9537 static void
9538 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9539 struct intel_initial_plane_config *plane_config)
9540 {
9541 struct drm_device *dev = crtc->base.dev;
9542 struct drm_i915_private *dev_priv = to_i915(dev);
9543 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9544 enum plane_id plane_id = plane->id;
9545 enum pipe pipe;
9546 u32 val, base, offset, stride_mult, tiling, alpha;
9547 int fourcc, pixel_format;
9548 unsigned int aligned_height;
9549 struct drm_framebuffer *fb;
9550 struct intel_framebuffer *intel_fb;
9551
9552 if (!plane->get_hw_state(plane, &pipe))
9553 return;
9554
9555 WARN_ON(pipe != crtc->pipe);
9556
9557 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9558 if (!intel_fb) {
9559 DRM_DEBUG_KMS("failed to alloc fb\n");
9560 return;
9561 }
9562
9563 fb = &intel_fb->base;
9564
9565 fb->dev = dev;
9566
9567 val = I915_READ(PLANE_CTL(pipe, plane_id));
9568
9569 if (INTEL_GEN(dev_priv) >= 11)
9570 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
9571 else
9572 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9573
9574 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
9575 alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id));
9576 alpha &= PLANE_COLOR_ALPHA_MASK;
9577 } else {
9578 alpha = val & PLANE_CTL_ALPHA_MASK;
9579 }
9580
9581 fourcc = skl_format_to_fourcc(pixel_format,
9582 val & PLANE_CTL_ORDER_RGBX, alpha);
9583 fb->format = drm_format_info(fourcc);
9584
9585 tiling = val & PLANE_CTL_TILED_MASK;
9586 switch (tiling) {
9587 case PLANE_CTL_TILED_LINEAR:
9588 fb->modifier = DRM_FORMAT_MOD_LINEAR;
9589 break;
9590 case PLANE_CTL_TILED_X:
9591 plane_config->tiling = I915_TILING_X;
9592 fb->modifier = I915_FORMAT_MOD_X_TILED;
9593 break;
9594 case PLANE_CTL_TILED_Y:
9595 plane_config->tiling = I915_TILING_Y;
9596 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
9597 fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
9598 else
9599 fb->modifier = I915_FORMAT_MOD_Y_TILED;
9600 break;
9601 case PLANE_CTL_TILED_YF:
9602 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
9603 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
9604 else
9605 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9606 break;
9607 default:
9608 MISSING_CASE(tiling);
9609 goto error;
9610 }
9611
9612 /*
9613 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
9614 * while i915 HW rotation is clockwise, thats why this swapping.
9615 */
9616 switch (val & PLANE_CTL_ROTATE_MASK) {
9617 case PLANE_CTL_ROTATE_0:
9618 plane_config->rotation = DRM_MODE_ROTATE_0;
9619 break;
9620 case PLANE_CTL_ROTATE_90:
9621 plane_config->rotation = DRM_MODE_ROTATE_270;
9622 break;
9623 case PLANE_CTL_ROTATE_180:
9624 plane_config->rotation = DRM_MODE_ROTATE_180;
9625 break;
9626 case PLANE_CTL_ROTATE_270:
9627 plane_config->rotation = DRM_MODE_ROTATE_90;
9628 break;
9629 }
9630
9631 if (INTEL_GEN(dev_priv) >= 10 &&
9632 val & PLANE_CTL_FLIP_HORIZONTAL)
9633 plane_config->rotation |= DRM_MODE_REFLECT_X;
9634
9635 base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000;
9636 plane_config->base = base;
9637
9638 offset = I915_READ(PLANE_OFFSET(pipe, plane_id));
9639
9640 val = I915_READ(PLANE_SIZE(pipe, plane_id));
9641 fb->height = ((val >> 16) & 0xfff) + 1;
9642 fb->width = ((val >> 0) & 0x1fff) + 1;
9643
9644 val = I915_READ(PLANE_STRIDE(pipe, plane_id));
9645 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
9646 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9647
9648 aligned_height = intel_fb_align_height(fb, 0, fb->height);
9649
9650 plane_config->size = fb->pitches[0] * aligned_height;
9651
9652 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9653 crtc->base.name, plane->base.name, fb->width, fb->height,
9654 fb->format->cpp[0] * 8, base, fb->pitches[0],
9655 plane_config->size);
9656
9657 plane_config->fb = intel_fb;
9658 return;
9659
9660 error:
9661 kfree(intel_fb);
9662 }
9663
9664 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9665 struct intel_crtc_state *pipe_config)
9666 {
9667 struct drm_device *dev = crtc->base.dev;
9668 struct drm_i915_private *dev_priv = to_i915(dev);
9669 u32 tmp;
9670
9671 tmp = I915_READ(PF_CTL(crtc->pipe));
9672
9673 if (tmp & PF_ENABLE) {
9674 pipe_config->pch_pfit.enabled = true;
9675 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9676 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9677
9678 /* We currently do not free assignements of panel fitters on
9679 * ivb/hsw (since we don't use the higher upscaling modes which
9680 * differentiates them) so just WARN about this case for now. */
9681 if (IS_GEN(dev_priv, 7)) {
9682 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9683 PF_PIPE_SEL_IVB(crtc->pipe));
9684 }
9685 }
9686 }
9687
9688 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9689 struct intel_crtc_state *pipe_config)
9690 {
9691 struct drm_device *dev = crtc->base.dev;
9692 struct drm_i915_private *dev_priv = to_i915(dev);
9693 enum intel_display_power_domain power_domain;
9694 intel_wakeref_t wakeref;
9695 u32 tmp;
9696 bool ret;
9697
9698 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9699 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9700 if (!wakeref)
9701 return false;
9702
9703 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9704 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9705 pipe_config->shared_dpll = NULL;
9706
9707 ret = false;
9708 tmp = I915_READ(PIPECONF(crtc->pipe));
9709 if (!(tmp & PIPECONF_ENABLE))
9710 goto out;
9711
9712 switch (tmp & PIPECONF_BPC_MASK) {
9713 case PIPECONF_6BPC:
9714 pipe_config->pipe_bpp = 18;
9715 break;
9716 case PIPECONF_8BPC:
9717 pipe_config->pipe_bpp = 24;
9718 break;
9719 case PIPECONF_10BPC:
9720 pipe_config->pipe_bpp = 30;
9721 break;
9722 case PIPECONF_12BPC:
9723 pipe_config->pipe_bpp = 36;
9724 break;
9725 default:
9726 break;
9727 }
9728
9729 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9730 pipe_config->limited_color_range = true;
9731
9732 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
9733 PIPECONF_GAMMA_MODE_SHIFT;
9734
9735 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
9736
9737 i9xx_get_pipe_color_config(pipe_config);
9738
9739 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9740 struct intel_shared_dpll *pll;
9741 enum intel_dpll_id pll_id;
9742
9743 pipe_config->has_pch_encoder = true;
9744
9745 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9746 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9747 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9748
9749 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9750
9751 if (HAS_PCH_IBX(dev_priv)) {
9752 /*
9753 * The pipe->pch transcoder and pch transcoder->pll
9754 * mapping is fixed.
9755 */
9756 pll_id = (enum intel_dpll_id) crtc->pipe;
9757 } else {
9758 tmp = I915_READ(PCH_DPLL_SEL);
9759 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9760 pll_id = DPLL_ID_PCH_PLL_B;
9761 else
9762 pll_id= DPLL_ID_PCH_PLL_A;
9763 }
9764
9765 pipe_config->shared_dpll =
9766 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9767 pll = pipe_config->shared_dpll;
9768
9769 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
9770 &pipe_config->dpll_hw_state));
9771
9772 tmp = pipe_config->dpll_hw_state.dpll;
9773 pipe_config->pixel_multiplier =
9774 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9775 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9776
9777 ironlake_pch_clock_get(crtc, pipe_config);
9778 } else {
9779 pipe_config->pixel_multiplier = 1;
9780 }
9781
9782 intel_get_pipe_timings(crtc, pipe_config);
9783 intel_get_pipe_src_size(crtc, pipe_config);
9784
9785 ironlake_get_pfit_config(crtc, pipe_config);
9786
9787 ret = true;
9788
9789 out:
9790 intel_display_power_put(dev_priv, power_domain, wakeref);
9791
9792 return ret;
9793 }
9794 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9795 struct intel_crtc_state *crtc_state)
9796 {
9797 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9798 struct intel_atomic_state *state =
9799 to_intel_atomic_state(crtc_state->base.state);
9800
9801 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
9802 INTEL_GEN(dev_priv) >= 11) {
9803 struct intel_encoder *encoder =
9804 intel_get_crtc_new_encoder(state, crtc_state);
9805
9806 if (!intel_get_shared_dpll(crtc_state, encoder)) {
9807 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
9808 pipe_name(crtc->pipe));
9809 return -EINVAL;
9810 }
9811 }
9812
9813 return 0;
9814 }
9815
9816 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
9817 enum port port,
9818 struct intel_crtc_state *pipe_config)
9819 {
9820 enum intel_dpll_id id;
9821 u32 temp;
9822
9823 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
9824 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
9825
9826 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
9827 return;
9828
9829 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9830 }
9831
9832 static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv,
9833 enum port port,
9834 struct intel_crtc_state *pipe_config)
9835 {
9836 enum intel_dpll_id id;
9837 u32 temp;
9838
9839 /* TODO: TBT pll not implemented. */
9840 if (intel_port_is_combophy(dev_priv, port)) {
9841 temp = I915_READ(DPCLKA_CFGCR0_ICL) &
9842 DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
9843 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
9844 } else if (intel_port_is_tc(dev_priv, port)) {
9845 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, port));
9846 } else {
9847 WARN(1, "Invalid port %x\n", port);
9848 return;
9849 }
9850
9851 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9852 }
9853
9854 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9855 enum port port,
9856 struct intel_crtc_state *pipe_config)
9857 {
9858 enum intel_dpll_id id;
9859
9860 switch (port) {
9861 case PORT_A:
9862 id = DPLL_ID_SKL_DPLL0;
9863 break;
9864 case PORT_B:
9865 id = DPLL_ID_SKL_DPLL1;
9866 break;
9867 case PORT_C:
9868 id = DPLL_ID_SKL_DPLL2;
9869 break;
9870 default:
9871 DRM_ERROR("Incorrect port type\n");
9872 return;
9873 }
9874
9875 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9876 }
9877
9878 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9879 enum port port,
9880 struct intel_crtc_state *pipe_config)
9881 {
9882 enum intel_dpll_id id;
9883 u32 temp;
9884
9885 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9886 id = temp >> (port * 3 + 1);
9887
9888 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
9889 return;
9890
9891 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9892 }
9893
9894 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9895 enum port port,
9896 struct intel_crtc_state *pipe_config)
9897 {
9898 enum intel_dpll_id id;
9899 u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9900
9901 switch (ddi_pll_sel) {
9902 case PORT_CLK_SEL_WRPLL1:
9903 id = DPLL_ID_WRPLL1;
9904 break;
9905 case PORT_CLK_SEL_WRPLL2:
9906 id = DPLL_ID_WRPLL2;
9907 break;
9908 case PORT_CLK_SEL_SPLL:
9909 id = DPLL_ID_SPLL;
9910 break;
9911 case PORT_CLK_SEL_LCPLL_810:
9912 id = DPLL_ID_LCPLL_810;
9913 break;
9914 case PORT_CLK_SEL_LCPLL_1350:
9915 id = DPLL_ID_LCPLL_1350;
9916 break;
9917 case PORT_CLK_SEL_LCPLL_2700:
9918 id = DPLL_ID_LCPLL_2700;
9919 break;
9920 default:
9921 MISSING_CASE(ddi_pll_sel);
9922 /* fall through */
9923 case PORT_CLK_SEL_NONE:
9924 return;
9925 }
9926
9927 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9928 }
9929
9930 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9931 struct intel_crtc_state *pipe_config,
9932 u64 *power_domain_mask,
9933 intel_wakeref_t *wakerefs)
9934 {
9935 struct drm_device *dev = crtc->base.dev;
9936 struct drm_i915_private *dev_priv = to_i915(dev);
9937 enum intel_display_power_domain power_domain;
9938 unsigned long panel_transcoder_mask = 0;
9939 unsigned long enabled_panel_transcoders = 0;
9940 enum transcoder panel_transcoder;
9941 intel_wakeref_t wf;
9942 u32 tmp;
9943
9944 if (INTEL_GEN(dev_priv) >= 11)
9945 panel_transcoder_mask |=
9946 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
9947
9948 if (HAS_TRANSCODER_EDP(dev_priv))
9949 panel_transcoder_mask |= BIT(TRANSCODER_EDP);
9950
9951 /*
9952 * The pipe->transcoder mapping is fixed with the exception of the eDP
9953 * and DSI transcoders handled below.
9954 */
9955 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9956
9957 /*
9958 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9959 * consistency and less surprising code; it's in always on power).
9960 */
9961 for_each_set_bit(panel_transcoder,
9962 &panel_transcoder_mask,
9963 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) {
9964 bool force_thru = false;
9965 enum pipe trans_pipe;
9966
9967 tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder));
9968 if (!(tmp & TRANS_DDI_FUNC_ENABLE))
9969 continue;
9970
9971 /*
9972 * Log all enabled ones, only use the first one.
9973 *
9974 * FIXME: This won't work for two separate DSI displays.
9975 */
9976 enabled_panel_transcoders |= BIT(panel_transcoder);
9977 if (enabled_panel_transcoders != BIT(panel_transcoder))
9978 continue;
9979
9980 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9981 default:
9982 WARN(1, "unknown pipe linked to transcoder %s\n",
9983 transcoder_name(panel_transcoder));
9984 /* fall through */
9985 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9986 force_thru = true;
9987 /* fall through */
9988 case TRANS_DDI_EDP_INPUT_A_ON:
9989 trans_pipe = PIPE_A;
9990 break;
9991 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9992 trans_pipe = PIPE_B;
9993 break;
9994 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9995 trans_pipe = PIPE_C;
9996 break;
9997 }
9998
9999 if (trans_pipe == crtc->pipe) {
10000 pipe_config->cpu_transcoder = panel_transcoder;
10001 pipe_config->pch_pfit.force_thru = force_thru;
10002 }
10003 }
10004
10005 /*
10006 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
10007 */
10008 WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
10009 enabled_panel_transcoders != BIT(TRANSCODER_EDP));
10010
10011 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10012 WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10013
10014 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10015 if (!wf)
10016 return false;
10017
10018 wakerefs[power_domain] = wf;
10019 *power_domain_mask |= BIT_ULL(power_domain);
10020
10021 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10022
10023 return tmp & PIPECONF_ENABLE;
10024 }
10025
10026 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10027 struct intel_crtc_state *pipe_config,
10028 u64 *power_domain_mask,
10029 intel_wakeref_t *wakerefs)
10030 {
10031 struct drm_device *dev = crtc->base.dev;
10032 struct drm_i915_private *dev_priv = to_i915(dev);
10033 enum intel_display_power_domain power_domain;
10034 enum transcoder cpu_transcoder;
10035 intel_wakeref_t wf;
10036 enum port port;
10037 u32 tmp;
10038
10039 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10040 if (port == PORT_A)
10041 cpu_transcoder = TRANSCODER_DSI_A;
10042 else
10043 cpu_transcoder = TRANSCODER_DSI_C;
10044
10045 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10046 WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10047
10048 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10049 if (!wf)
10050 continue;
10051
10052 wakerefs[power_domain] = wf;
10053 *power_domain_mask |= BIT_ULL(power_domain);
10054
10055 /*
10056 * The PLL needs to be enabled with a valid divider
10057 * configuration, otherwise accessing DSI registers will hang
10058 * the machine. See BSpec North Display Engine
10059 * registers/MIPI[BXT]. We can break out here early, since we
10060 * need the same DSI PLL to be enabled for both DSI ports.
10061 */
10062 if (!bxt_dsi_pll_is_enabled(dev_priv))
10063 break;
10064
10065 /* XXX: this works for video mode only */
10066 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10067 if (!(tmp & DPI_ENABLE))
10068 continue;
10069
10070 tmp = I915_READ(MIPI_CTRL(port));
10071 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10072 continue;
10073
10074 pipe_config->cpu_transcoder = cpu_transcoder;
10075 break;
10076 }
10077
10078 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10079 }
10080
10081 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10082 struct intel_crtc_state *pipe_config)
10083 {
10084 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10085 struct intel_shared_dpll *pll;
10086 enum port port;
10087 u32 tmp;
10088
10089 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10090
10091 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10092
10093 if (INTEL_GEN(dev_priv) >= 11)
10094 icelake_get_ddi_pll(dev_priv, port, pipe_config);
10095 else if (IS_CANNONLAKE(dev_priv))
10096 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
10097 else if (IS_GEN9_BC(dev_priv))
10098 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10099 else if (IS_GEN9_LP(dev_priv))
10100 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10101 else
10102 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10103
10104 pll = pipe_config->shared_dpll;
10105 if (pll) {
10106 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10107 &pipe_config->dpll_hw_state));
10108 }
10109
10110 /*
10111 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10112 * DDI E. So just check whether this pipe is wired to DDI E and whether
10113 * the PCH transcoder is on.
10114 */
10115 if (INTEL_GEN(dev_priv) < 9 &&
10116 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10117 pipe_config->has_pch_encoder = true;
10118
10119 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10120 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10121 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10122
10123 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10124 }
10125 }
10126
10127 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10128 struct intel_crtc_state *pipe_config)
10129 {
10130 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10131 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
10132 enum intel_display_power_domain power_domain;
10133 u64 power_domain_mask;
10134 bool active;
10135
10136 intel_crtc_init_scalers(crtc, pipe_config);
10137
10138 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10139 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10140 if (!wf)
10141 return false;
10142
10143 wakerefs[power_domain] = wf;
10144 power_domain_mask = BIT_ULL(power_domain);
10145
10146 pipe_config->shared_dpll = NULL;
10147
10148 active = hsw_get_transcoder_state(crtc, pipe_config,
10149 &power_domain_mask, wakerefs);
10150
10151 if (IS_GEN9_LP(dev_priv) &&
10152 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10153 &power_domain_mask, wakerefs)) {
10154 WARN_ON(active);
10155 active = true;
10156 }
10157
10158 if (!active)
10159 goto out;
10160
10161 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
10162 INTEL_GEN(dev_priv) >= 11) {
10163 haswell_get_ddi_port_state(crtc, pipe_config);
10164 intel_get_pipe_timings(crtc, pipe_config);
10165 }
10166
10167 intel_get_pipe_src_size(crtc, pipe_config);
10168 intel_get_crtc_ycbcr_config(crtc, pipe_config);
10169
10170 pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe));
10171
10172 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10173
10174 if (INTEL_GEN(dev_priv) >= 9) {
10175 u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe));
10176
10177 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
10178 pipe_config->gamma_enable = true;
10179
10180 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
10181 pipe_config->csc_enable = true;
10182 } else {
10183 i9xx_get_pipe_color_config(pipe_config);
10184 }
10185
10186 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10187 WARN_ON(power_domain_mask & BIT_ULL(power_domain));
10188
10189 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10190 if (wf) {
10191 wakerefs[power_domain] = wf;
10192 power_domain_mask |= BIT_ULL(power_domain);
10193
10194 if (INTEL_GEN(dev_priv) >= 9)
10195 skylake_get_pfit_config(crtc, pipe_config);
10196 else
10197 ironlake_get_pfit_config(crtc, pipe_config);
10198 }
10199
10200 if (hsw_crtc_supports_ips(crtc)) {
10201 if (IS_HASWELL(dev_priv))
10202 pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE;
10203 else {
10204 /*
10205 * We cannot readout IPS state on broadwell, set to
10206 * true so we can set it to a defined state on first
10207 * commit.
10208 */
10209 pipe_config->ips_enabled = true;
10210 }
10211 }
10212
10213 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10214 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10215 pipe_config->pixel_multiplier =
10216 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10217 } else {
10218 pipe_config->pixel_multiplier = 1;
10219 }
10220
10221 out:
10222 for_each_power_domain(power_domain, power_domain_mask)
10223 intel_display_power_put(dev_priv,
10224 power_domain, wakerefs[power_domain]);
10225
10226 return active;
10227 }
10228
10229 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
10230 {
10231 struct drm_i915_private *dev_priv =
10232 to_i915(plane_state->base.plane->dev);
10233 const struct drm_framebuffer *fb = plane_state->base.fb;
10234 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10235 u32 base;
10236
10237 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
10238 base = obj->phys_handle->busaddr;
10239 else
10240 base = intel_plane_ggtt_offset(plane_state);
10241
10242 base += plane_state->color_plane[0].offset;
10243
10244 /* ILK+ do this automagically */
10245 if (HAS_GMCH(dev_priv) &&
10246 plane_state->base.rotation & DRM_MODE_ROTATE_180)
10247 base += (plane_state->base.crtc_h *
10248 plane_state->base.crtc_w - 1) * fb->format->cpp[0];
10249
10250 return base;
10251 }
10252
10253 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
10254 {
10255 int x = plane_state->base.crtc_x;
10256 int y = plane_state->base.crtc_y;
10257 u32 pos = 0;
10258
10259 if (x < 0) {
10260 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10261 x = -x;
10262 }
10263 pos |= x << CURSOR_X_SHIFT;
10264
10265 if (y < 0) {
10266 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10267 y = -y;
10268 }
10269 pos |= y << CURSOR_Y_SHIFT;
10270
10271 return pos;
10272 }
10273
10274 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
10275 {
10276 const struct drm_mode_config *config =
10277 &plane_state->base.plane->dev->mode_config;
10278 int width = plane_state->base.crtc_w;
10279 int height = plane_state->base.crtc_h;
10280
10281 return width > 0 && width <= config->cursor_width &&
10282 height > 0 && height <= config->cursor_height;
10283 }
10284
10285 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
10286 {
10287 int src_x, src_y;
10288 u32 offset;
10289 int ret;
10290
10291 ret = intel_plane_compute_gtt(plane_state);
10292 if (ret)
10293 return ret;
10294
10295 if (!plane_state->base.visible)
10296 return 0;
10297
10298 src_x = plane_state->base.src_x >> 16;
10299 src_y = plane_state->base.src_y >> 16;
10300
10301 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
10302 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
10303 plane_state, 0);
10304
10305 if (src_x != 0 || src_y != 0) {
10306 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
10307 return -EINVAL;
10308 }
10309
10310 plane_state->color_plane[0].offset = offset;
10311
10312 return 0;
10313 }
10314
10315 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
10316 struct intel_plane_state *plane_state)
10317 {
10318 const struct drm_framebuffer *fb = plane_state->base.fb;
10319 int ret;
10320
10321 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
10322 DRM_DEBUG_KMS("cursor cannot be tiled\n");
10323 return -EINVAL;
10324 }
10325
10326 ret = drm_atomic_helper_check_plane_state(&plane_state->base,
10327 &crtc_state->base,
10328 DRM_PLANE_HELPER_NO_SCALING,
10329 DRM_PLANE_HELPER_NO_SCALING,
10330 true, true);
10331 if (ret)
10332 return ret;
10333
10334 ret = intel_cursor_check_surface(plane_state);
10335 if (ret)
10336 return ret;
10337
10338 if (!plane_state->base.visible)
10339 return 0;
10340
10341 ret = intel_plane_check_src_coordinates(plane_state);
10342 if (ret)
10343 return ret;
10344
10345 return 0;
10346 }
10347
10348 static unsigned int
10349 i845_cursor_max_stride(struct intel_plane *plane,
10350 u32 pixel_format, u64 modifier,
10351 unsigned int rotation)
10352 {
10353 return 2048;
10354 }
10355
10356 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
10357 {
10358 u32 cntl = 0;
10359
10360 if (crtc_state->gamma_enable)
10361 cntl |= CURSOR_GAMMA_ENABLE;
10362
10363 return cntl;
10364 }
10365
10366 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
10367 const struct intel_plane_state *plane_state)
10368 {
10369 return CURSOR_ENABLE |
10370 CURSOR_FORMAT_ARGB |
10371 CURSOR_STRIDE(plane_state->color_plane[0].stride);
10372 }
10373
10374 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
10375 {
10376 int width = plane_state->base.crtc_w;
10377
10378 /*
10379 * 845g/865g are only limited by the width of their cursors,
10380 * the height is arbitrary up to the precision of the register.
10381 */
10382 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
10383 }
10384
10385 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
10386 struct intel_plane_state *plane_state)
10387 {
10388 const struct drm_framebuffer *fb = plane_state->base.fb;
10389 int ret;
10390
10391 ret = intel_check_cursor(crtc_state, plane_state);
10392 if (ret)
10393 return ret;
10394
10395 /* if we want to turn off the cursor ignore width and height */
10396 if (!fb)
10397 return 0;
10398
10399 /* Check for which cursor types we support */
10400 if (!i845_cursor_size_ok(plane_state)) {
10401 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
10402 plane_state->base.crtc_w,
10403 plane_state->base.crtc_h);
10404 return -EINVAL;
10405 }
10406
10407 WARN_ON(plane_state->base.visible &&
10408 plane_state->color_plane[0].stride != fb->pitches[0]);
10409
10410 switch (fb->pitches[0]) {
10411 case 256:
10412 case 512:
10413 case 1024:
10414 case 2048:
10415 break;
10416 default:
10417 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
10418 fb->pitches[0]);
10419 return -EINVAL;
10420 }
10421
10422 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
10423
10424 return 0;
10425 }
10426
10427 static void i845_update_cursor(struct intel_plane *plane,
10428 const struct intel_crtc_state *crtc_state,
10429 const struct intel_plane_state *plane_state)
10430 {
10431 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10432 u32 cntl = 0, base = 0, pos = 0, size = 0;
10433 unsigned long irqflags;
10434
10435 if (plane_state && plane_state->base.visible) {
10436 unsigned int width = plane_state->base.crtc_w;
10437 unsigned int height = plane_state->base.crtc_h;
10438
10439 cntl = plane_state->ctl |
10440 i845_cursor_ctl_crtc(crtc_state);
10441
10442 size = (height << 12) | width;
10443
10444 base = intel_cursor_base(plane_state);
10445 pos = intel_cursor_position(plane_state);
10446 }
10447
10448 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
10449
10450 /* On these chipsets we can only modify the base/size/stride
10451 * whilst the cursor is disabled.
10452 */
10453 if (plane->cursor.base != base ||
10454 plane->cursor.size != size ||
10455 plane->cursor.cntl != cntl) {
10456 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
10457 I915_WRITE_FW(CURBASE(PIPE_A), base);
10458 I915_WRITE_FW(CURSIZE, size);
10459 I915_WRITE_FW(CURPOS(PIPE_A), pos);
10460 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
10461
10462 plane->cursor.base = base;
10463 plane->cursor.size = size;
10464 plane->cursor.cntl = cntl;
10465 } else {
10466 I915_WRITE_FW(CURPOS(PIPE_A), pos);
10467 }
10468
10469 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
10470 }
10471
10472 static void i845_disable_cursor(struct intel_plane *plane,
10473 const struct intel_crtc_state *crtc_state)
10474 {
10475 i845_update_cursor(plane, crtc_state, NULL);
10476 }
10477
10478 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
10479 enum pipe *pipe)
10480 {
10481 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10482 enum intel_display_power_domain power_domain;
10483 intel_wakeref_t wakeref;
10484 bool ret;
10485
10486 power_domain = POWER_DOMAIN_PIPE(PIPE_A);
10487 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10488 if (!wakeref)
10489 return false;
10490
10491 ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
10492
10493 *pipe = PIPE_A;
10494
10495 intel_display_power_put(dev_priv, power_domain, wakeref);
10496
10497 return ret;
10498 }
10499
10500 static unsigned int
10501 i9xx_cursor_max_stride(struct intel_plane *plane,
10502 u32 pixel_format, u64 modifier,
10503 unsigned int rotation)
10504 {
10505 return plane->base.dev->mode_config.cursor_width * 4;
10506 }
10507
10508 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
10509 {
10510 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
10511 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10512 u32 cntl = 0;
10513
10514 if (INTEL_GEN(dev_priv) >= 11)
10515 return cntl;
10516
10517 if (crtc_state->gamma_enable)
10518 cntl = MCURSOR_GAMMA_ENABLE;
10519
10520 if (crtc_state->csc_enable)
10521 cntl |= MCURSOR_PIPE_CSC_ENABLE;
10522
10523 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10524 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
10525
10526 return cntl;
10527 }
10528
10529 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
10530 const struct intel_plane_state *plane_state)
10531 {
10532 struct drm_i915_private *dev_priv =
10533 to_i915(plane_state->base.plane->dev);
10534 u32 cntl = 0;
10535
10536 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
10537 cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
10538
10539 switch (plane_state->base.crtc_w) {
10540 case 64:
10541 cntl |= MCURSOR_MODE_64_ARGB_AX;
10542 break;
10543 case 128:
10544 cntl |= MCURSOR_MODE_128_ARGB_AX;
10545 break;
10546 case 256:
10547 cntl |= MCURSOR_MODE_256_ARGB_AX;
10548 break;
10549 default:
10550 MISSING_CASE(plane_state->base.crtc_w);
10551 return 0;
10552 }
10553
10554 if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
10555 cntl |= MCURSOR_ROTATE_180;
10556
10557 return cntl;
10558 }
10559
10560 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
10561 {
10562 struct drm_i915_private *dev_priv =
10563 to_i915(plane_state->base.plane->dev);
10564 int width = plane_state->base.crtc_w;
10565 int height = plane_state->base.crtc_h;
10566
10567 if (!intel_cursor_size_ok(plane_state))
10568 return false;
10569
10570 /* Cursor width is limited to a few power-of-two sizes */
10571 switch (width) {
10572 case 256:
10573 case 128:
10574 case 64:
10575 break;
10576 default:
10577 return false;
10578 }
10579
10580 /*
10581 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
10582 * height from 8 lines up to the cursor width, when the
10583 * cursor is not rotated. Everything else requires square
10584 * cursors.
10585 */
10586 if (HAS_CUR_FBC(dev_priv) &&
10587 plane_state->base.rotation & DRM_MODE_ROTATE_0) {
10588 if (height < 8 || height > width)
10589 return false;
10590 } else {
10591 if (height != width)
10592 return false;
10593 }
10594
10595 return true;
10596 }
10597
10598 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
10599 struct intel_plane_state *plane_state)
10600 {
10601 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
10602 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10603 const struct drm_framebuffer *fb = plane_state->base.fb;
10604 enum pipe pipe = plane->pipe;
10605 int ret;
10606
10607 ret = intel_check_cursor(crtc_state, plane_state);
10608 if (ret)
10609 return ret;
10610
10611 /* if we want to turn off the cursor ignore width and height */
10612 if (!fb)
10613 return 0;
10614
10615 /* Check for which cursor types we support */
10616 if (!i9xx_cursor_size_ok(plane_state)) {
10617 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
10618 plane_state->base.crtc_w,
10619 plane_state->base.crtc_h);
10620 return -EINVAL;
10621 }
10622
10623 WARN_ON(plane_state->base.visible &&
10624 plane_state->color_plane[0].stride != fb->pitches[0]);
10625
10626 if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
10627 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
10628 fb->pitches[0], plane_state->base.crtc_w);
10629 return -EINVAL;
10630 }
10631
10632 /*
10633 * There's something wrong with the cursor on CHV pipe C.
10634 * If it straddles the left edge of the screen then
10635 * moving it away from the edge or disabling it often
10636 * results in a pipe underrun, and often that can lead to
10637 * dead pipe (constant underrun reported, and it scans
10638 * out just a solid color). To recover from that, the
10639 * display power well must be turned off and on again.
10640 * Refuse the put the cursor into that compromised position.
10641 */
10642 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
10643 plane_state->base.visible && plane_state->base.crtc_x < 0) {
10644 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
10645 return -EINVAL;
10646 }
10647
10648 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
10649
10650 return 0;
10651 }
10652
10653 static void i9xx_update_cursor(struct intel_plane *plane,
10654 const struct intel_crtc_state *crtc_state,
10655 const struct intel_plane_state *plane_state)
10656 {
10657 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10658 enum pipe pipe = plane->pipe;
10659 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
10660 unsigned long irqflags;
10661
10662 if (plane_state && plane_state->base.visible) {
10663 cntl = plane_state->ctl |
10664 i9xx_cursor_ctl_crtc(crtc_state);
10665
10666 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
10667 fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
10668
10669 base = intel_cursor_base(plane_state);
10670 pos = intel_cursor_position(plane_state);
10671 }
10672
10673 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
10674
10675 /*
10676 * On some platforms writing CURCNTR first will also
10677 * cause CURPOS to be armed by the CURBASE write.
10678 * Without the CURCNTR write the CURPOS write would
10679 * arm itself. Thus we always update CURCNTR before
10680 * CURPOS.
10681 *
10682 * On other platforms CURPOS always requires the
10683 * CURBASE write to arm the update. Additonally
10684 * a write to any of the cursor register will cancel
10685 * an already armed cursor update. Thus leaving out
10686 * the CURBASE write after CURPOS could lead to a
10687 * cursor that doesn't appear to move, or even change
10688 * shape. Thus we always write CURBASE.
10689 *
10690 * The other registers are armed by by the CURBASE write
10691 * except when the plane is getting enabled at which time
10692 * the CURCNTR write arms the update.
10693 */
10694
10695 if (INTEL_GEN(dev_priv) >= 9)
10696 skl_write_cursor_wm(plane, crtc_state);
10697
10698 if (plane->cursor.base != base ||
10699 plane->cursor.size != fbc_ctl ||
10700 plane->cursor.cntl != cntl) {
10701 if (HAS_CUR_FBC(dev_priv))
10702 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
10703 I915_WRITE_FW(CURCNTR(pipe), cntl);
10704 I915_WRITE_FW(CURPOS(pipe), pos);
10705 I915_WRITE_FW(CURBASE(pipe), base);
10706
10707 plane->cursor.base = base;
10708 plane->cursor.size = fbc_ctl;
10709 plane->cursor.cntl = cntl;
10710 } else {
10711 I915_WRITE_FW(CURPOS(pipe), pos);
10712 I915_WRITE_FW(CURBASE(pipe), base);
10713 }
10714
10715 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
10716 }
10717
10718 static void i9xx_disable_cursor(struct intel_plane *plane,
10719 const struct intel_crtc_state *crtc_state)
10720 {
10721 i9xx_update_cursor(plane, crtc_state, NULL);
10722 }
10723
10724 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
10725 enum pipe *pipe)
10726 {
10727 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10728 enum intel_display_power_domain power_domain;
10729 intel_wakeref_t wakeref;
10730 bool ret;
10731 u32 val;
10732
10733 /*
10734 * Not 100% correct for planes that can move between pipes,
10735 * but that's only the case for gen2-3 which don't have any
10736 * display power wells.
10737 */
10738 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
10739 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10740 if (!wakeref)
10741 return false;
10742
10743 val = I915_READ(CURCNTR(plane->pipe));
10744
10745 ret = val & MCURSOR_MODE;
10746
10747 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10748 *pipe = plane->pipe;
10749 else
10750 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
10751 MCURSOR_PIPE_SELECT_SHIFT;
10752
10753 intel_display_power_put(dev_priv, power_domain, wakeref);
10754
10755 return ret;
10756 }
10757
10758 /* VESA 640x480x72Hz mode to set on the pipe */
10759 static const struct drm_display_mode load_detect_mode = {
10760 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10761 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10762 };
10763
10764 struct drm_framebuffer *
10765 intel_framebuffer_create(struct drm_i915_gem_object *obj,
10766 struct drm_mode_fb_cmd2 *mode_cmd)
10767 {
10768 struct intel_framebuffer *intel_fb;
10769 int ret;
10770
10771 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10772 if (!intel_fb)
10773 return ERR_PTR(-ENOMEM);
10774
10775 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
10776 if (ret)
10777 goto err;
10778
10779 return &intel_fb->base;
10780
10781 err:
10782 kfree(intel_fb);
10783 return ERR_PTR(ret);
10784 }
10785
10786 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
10787 struct drm_crtc *crtc)
10788 {
10789 struct drm_plane *plane;
10790 struct drm_plane_state *plane_state;
10791 int ret, i;
10792
10793 ret = drm_atomic_add_affected_planes(state, crtc);
10794 if (ret)
10795 return ret;
10796
10797 for_each_new_plane_in_state(state, plane, plane_state, i) {
10798 if (plane_state->crtc != crtc)
10799 continue;
10800
10801 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
10802 if (ret)
10803 return ret;
10804
10805 drm_atomic_set_fb_for_plane(plane_state, NULL);
10806 }
10807
10808 return 0;
10809 }
10810
10811 int intel_get_load_detect_pipe(struct drm_connector *connector,
10812 const struct drm_display_mode *mode,
10813 struct intel_load_detect_pipe *old,
10814 struct drm_modeset_acquire_ctx *ctx)
10815 {
10816 struct intel_crtc *intel_crtc;
10817 struct intel_encoder *intel_encoder =
10818 intel_attached_encoder(connector);
10819 struct drm_crtc *possible_crtc;
10820 struct drm_encoder *encoder = &intel_encoder->base;
10821 struct drm_crtc *crtc = NULL;
10822 struct drm_device *dev = encoder->dev;
10823 struct drm_i915_private *dev_priv = to_i915(dev);
10824 struct drm_mode_config *config = &dev->mode_config;
10825 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10826 struct drm_connector_state *connector_state;
10827 struct intel_crtc_state *crtc_state;
10828 int ret, i = -1;
10829
10830 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10831 connector->base.id, connector->name,
10832 encoder->base.id, encoder->name);
10833
10834 old->restore_state = NULL;
10835
10836 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
10837
10838 /*
10839 * Algorithm gets a little messy:
10840 *
10841 * - if the connector already has an assigned crtc, use it (but make
10842 * sure it's on first)
10843 *
10844 * - try to find the first unused crtc that can drive this connector,
10845 * and use that if we find one
10846 */
10847
10848 /* See if we already have a CRTC for this connector */
10849 if (connector->state->crtc) {
10850 crtc = connector->state->crtc;
10851
10852 ret = drm_modeset_lock(&crtc->mutex, ctx);
10853 if (ret)
10854 goto fail;
10855
10856 /* Make sure the crtc and connector are running */
10857 goto found;
10858 }
10859
10860 /* Find an unused one (if possible) */
10861 for_each_crtc(dev, possible_crtc) {
10862 i++;
10863 if (!(encoder->possible_crtcs & (1 << i)))
10864 continue;
10865
10866 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10867 if (ret)
10868 goto fail;
10869
10870 if (possible_crtc->state->enable) {
10871 drm_modeset_unlock(&possible_crtc->mutex);
10872 continue;
10873 }
10874
10875 crtc = possible_crtc;
10876 break;
10877 }
10878
10879 /*
10880 * If we didn't find an unused CRTC, don't use any.
10881 */
10882 if (!crtc) {
10883 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10884 ret = -ENODEV;
10885 goto fail;
10886 }
10887
10888 found:
10889 intel_crtc = to_intel_crtc(crtc);
10890
10891 state = drm_atomic_state_alloc(dev);
10892 restore_state = drm_atomic_state_alloc(dev);
10893 if (!state || !restore_state) {
10894 ret = -ENOMEM;
10895 goto fail;
10896 }
10897
10898 state->acquire_ctx = ctx;
10899 restore_state->acquire_ctx = ctx;
10900
10901 connector_state = drm_atomic_get_connector_state(state, connector);
10902 if (IS_ERR(connector_state)) {
10903 ret = PTR_ERR(connector_state);
10904 goto fail;
10905 }
10906
10907 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10908 if (ret)
10909 goto fail;
10910
10911 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10912 if (IS_ERR(crtc_state)) {
10913 ret = PTR_ERR(crtc_state);
10914 goto fail;
10915 }
10916
10917 crtc_state->base.active = crtc_state->base.enable = true;
10918
10919 if (!mode)
10920 mode = &load_detect_mode;
10921
10922 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10923 if (ret)
10924 goto fail;
10925
10926 ret = intel_modeset_disable_planes(state, crtc);
10927 if (ret)
10928 goto fail;
10929
10930 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10931 if (!ret)
10932 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10933 if (!ret)
10934 ret = drm_atomic_add_affected_planes(restore_state, crtc);
10935 if (ret) {
10936 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10937 goto fail;
10938 }
10939
10940 ret = drm_atomic_commit(state);
10941 if (ret) {
10942 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10943 goto fail;
10944 }
10945
10946 old->restore_state = restore_state;
10947 drm_atomic_state_put(state);
10948
10949 /* let the connector get through one full cycle before testing */
10950 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
10951 return true;
10952
10953 fail:
10954 if (state) {
10955 drm_atomic_state_put(state);
10956 state = NULL;
10957 }
10958 if (restore_state) {
10959 drm_atomic_state_put(restore_state);
10960 restore_state = NULL;
10961 }
10962
10963 if (ret == -EDEADLK)
10964 return ret;
10965
10966 return false;
10967 }
10968
10969 void intel_release_load_detect_pipe(struct drm_connector *connector,
10970 struct intel_load_detect_pipe *old,
10971 struct drm_modeset_acquire_ctx *ctx)
10972 {
10973 struct intel_encoder *intel_encoder =
10974 intel_attached_encoder(connector);
10975 struct drm_encoder *encoder = &intel_encoder->base;
10976 struct drm_atomic_state *state = old->restore_state;
10977 int ret;
10978
10979 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10980 connector->base.id, connector->name,
10981 encoder->base.id, encoder->name);
10982
10983 if (!state)
10984 return;
10985
10986 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
10987 if (ret)
10988 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10989 drm_atomic_state_put(state);
10990 }
10991
10992 static int i9xx_pll_refclk(struct drm_device *dev,
10993 const struct intel_crtc_state *pipe_config)
10994 {
10995 struct drm_i915_private *dev_priv = to_i915(dev);
10996 u32 dpll = pipe_config->dpll_hw_state.dpll;
10997
10998 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10999 return dev_priv->vbt.lvds_ssc_freq;
11000 else if (HAS_PCH_SPLIT(dev_priv))
11001 return 120000;
11002 else if (!IS_GEN(dev_priv, 2))
11003 return 96000;
11004 else
11005 return 48000;
11006 }
11007
11008 /* Returns the clock of the currently programmed mode of the given pipe. */
11009 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11010 struct intel_crtc_state *pipe_config)
11011 {
11012 struct drm_device *dev = crtc->base.dev;
11013 struct drm_i915_private *dev_priv = to_i915(dev);
11014 int pipe = pipe_config->cpu_transcoder;
11015 u32 dpll = pipe_config->dpll_hw_state.dpll;
11016 u32 fp;
11017 struct dpll clock;
11018 int port_clock;
11019 int refclk = i9xx_pll_refclk(dev, pipe_config);
11020
11021 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11022 fp = pipe_config->dpll_hw_state.fp0;
11023 else
11024 fp = pipe_config->dpll_hw_state.fp1;
11025
11026 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11027 if (IS_PINEVIEW(dev_priv)) {
11028 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11029 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11030 } else {
11031 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11032 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11033 }
11034
11035 if (!IS_GEN(dev_priv, 2)) {
11036 if (IS_PINEVIEW(dev_priv))
11037 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11038 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11039 else
11040 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11041 DPLL_FPA01_P1_POST_DIV_SHIFT);
11042
11043 switch (dpll & DPLL_MODE_MASK) {
11044 case DPLLB_MODE_DAC_SERIAL:
11045 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11046 5 : 10;
11047 break;
11048 case DPLLB_MODE_LVDS:
11049 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11050 7 : 14;
11051 break;
11052 default:
11053 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11054 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11055 return;
11056 }
11057
11058 if (IS_PINEVIEW(dev_priv))
11059 port_clock = pnv_calc_dpll_params(refclk, &clock);
11060 else
11061 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11062 } else {
11063 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11064 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11065
11066 if (is_lvds) {
11067 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11068 DPLL_FPA01_P1_POST_DIV_SHIFT);
11069
11070 if (lvds & LVDS_CLKB_POWER_UP)
11071 clock.p2 = 7;
11072 else
11073 clock.p2 = 14;
11074 } else {
11075 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11076 clock.p1 = 2;
11077 else {
11078 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11079 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11080 }
11081 if (dpll & PLL_P2_DIVIDE_BY_4)
11082 clock.p2 = 4;
11083 else
11084 clock.p2 = 2;
11085 }
11086
11087 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11088 }
11089
11090 /*
11091 * This value includes pixel_multiplier. We will use
11092 * port_clock to compute adjusted_mode.crtc_clock in the
11093 * encoder's get_config() function.
11094 */
11095 pipe_config->port_clock = port_clock;
11096 }
11097
11098 int intel_dotclock_calculate(int link_freq,
11099 const struct intel_link_m_n *m_n)
11100 {
11101 /*
11102 * The calculation for the data clock is:
11103 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11104 * But we want to avoid losing precison if possible, so:
11105 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11106 *
11107 * and the link clock is simpler:
11108 * link_clock = (m * link_clock) / n
11109 */
11110
11111 if (!m_n->link_n)
11112 return 0;
11113
11114 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
11115 }
11116
11117 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11118 struct intel_crtc_state *pipe_config)
11119 {
11120 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11121
11122 /* read out port_clock from the DPLL */
11123 i9xx_crtc_clock_get(crtc, pipe_config);
11124
11125 /*
11126 * In case there is an active pipe without active ports,
11127 * we may need some idea for the dotclock anyway.
11128 * Calculate one based on the FDI configuration.
11129 */
11130 pipe_config->base.adjusted_mode.crtc_clock =
11131 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11132 &pipe_config->fdi_m_n);
11133 }
11134
11135 /* Returns the currently programmed mode of the given encoder. */
11136 struct drm_display_mode *
11137 intel_encoder_current_mode(struct intel_encoder *encoder)
11138 {
11139 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
11140 struct intel_crtc_state *crtc_state;
11141 struct drm_display_mode *mode;
11142 struct intel_crtc *crtc;
11143 enum pipe pipe;
11144
11145 if (!encoder->get_hw_state(encoder, &pipe))
11146 return NULL;
11147
11148 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11149
11150 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11151 if (!mode)
11152 return NULL;
11153
11154 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
11155 if (!crtc_state) {
11156 kfree(mode);
11157 return NULL;
11158 }
11159
11160 crtc_state->base.crtc = &crtc->base;
11161
11162 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
11163 kfree(crtc_state);
11164 kfree(mode);
11165 return NULL;
11166 }
11167
11168 encoder->get_config(encoder, crtc_state);
11169
11170 intel_mode_from_pipe_config(mode, crtc_state);
11171
11172 kfree(crtc_state);
11173
11174 return mode;
11175 }
11176
11177 static void intel_crtc_destroy(struct drm_crtc *crtc)
11178 {
11179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11180
11181 drm_crtc_cleanup(crtc);
11182 kfree(intel_crtc);
11183 }
11184
11185 /**
11186 * intel_wm_need_update - Check whether watermarks need updating
11187 * @cur: current plane state
11188 * @new: new plane state
11189 *
11190 * Check current plane state versus the new one to determine whether
11191 * watermarks need to be recalculated.
11192 *
11193 * Returns true or false.
11194 */
11195 static bool intel_wm_need_update(struct intel_plane_state *cur,
11196 struct intel_plane_state *new)
11197 {
11198 /* Update watermarks on tiling or size changes. */
11199 if (new->base.visible != cur->base.visible)
11200 return true;
11201
11202 if (!cur->base.fb || !new->base.fb)
11203 return false;
11204
11205 if (cur->base.fb->modifier != new->base.fb->modifier ||
11206 cur->base.rotation != new->base.rotation ||
11207 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
11208 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
11209 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
11210 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
11211 return true;
11212
11213 return false;
11214 }
11215
11216 static bool needs_scaling(const struct intel_plane_state *state)
11217 {
11218 int src_w = drm_rect_width(&state->base.src) >> 16;
11219 int src_h = drm_rect_height(&state->base.src) >> 16;
11220 int dst_w = drm_rect_width(&state->base.dst);
11221 int dst_h = drm_rect_height(&state->base.dst);
11222
11223 return (src_w != dst_w || src_h != dst_h);
11224 }
11225
11226 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
11227 struct drm_crtc_state *crtc_state,
11228 const struct intel_plane_state *old_plane_state,
11229 struct drm_plane_state *plane_state)
11230 {
11231 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11232 struct drm_crtc *crtc = crtc_state->crtc;
11233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11234 struct intel_plane *plane = to_intel_plane(plane_state->plane);
11235 struct drm_device *dev = crtc->dev;
11236 struct drm_i915_private *dev_priv = to_i915(dev);
11237 bool mode_changed = needs_modeset(crtc_state);
11238 bool was_crtc_enabled = old_crtc_state->base.active;
11239 bool is_crtc_enabled = crtc_state->active;
11240 bool turn_off, turn_on, visible, was_visible;
11241 struct drm_framebuffer *fb = plane_state->fb;
11242 int ret;
11243
11244 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11245 ret = skl_update_scaler_plane(
11246 to_intel_crtc_state(crtc_state),
11247 to_intel_plane_state(plane_state));
11248 if (ret)
11249 return ret;
11250 }
11251
11252 was_visible = old_plane_state->base.visible;
11253 visible = plane_state->visible;
11254
11255 if (!was_crtc_enabled && WARN_ON(was_visible))
11256 was_visible = false;
11257
11258 /*
11259 * Visibility is calculated as if the crtc was on, but
11260 * after scaler setup everything depends on it being off
11261 * when the crtc isn't active.
11262 *
11263 * FIXME this is wrong for watermarks. Watermarks should also
11264 * be computed as if the pipe would be active. Perhaps move
11265 * per-plane wm computation to the .check_plane() hook, and
11266 * only combine the results from all planes in the current place?
11267 */
11268 if (!is_crtc_enabled) {
11269 plane_state->visible = visible = false;
11270 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
11271 }
11272
11273 if (!was_visible && !visible)
11274 return 0;
11275
11276 if (fb != old_plane_state->base.fb)
11277 pipe_config->fb_changed = true;
11278
11279 turn_off = was_visible && (!visible || mode_changed);
11280 turn_on = visible && (!was_visible || mode_changed);
11281
11282 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11283 intel_crtc->base.base.id, intel_crtc->base.name,
11284 plane->base.base.id, plane->base.name,
11285 fb ? fb->base.id : -1);
11286
11287 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11288 plane->base.base.id, plane->base.name,
11289 was_visible, visible,
11290 turn_off, turn_on, mode_changed);
11291
11292 if (turn_on) {
11293 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11294 pipe_config->update_wm_pre = true;
11295
11296 /* must disable cxsr around plane enable/disable */
11297 if (plane->id != PLANE_CURSOR)
11298 pipe_config->disable_cxsr = true;
11299 } else if (turn_off) {
11300 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11301 pipe_config->update_wm_post = true;
11302
11303 /* must disable cxsr around plane enable/disable */
11304 if (plane->id != PLANE_CURSOR)
11305 pipe_config->disable_cxsr = true;
11306 } else if (intel_wm_need_update(to_intel_plane_state(plane->base.state),
11307 to_intel_plane_state(plane_state))) {
11308 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11309 /* FIXME bollocks */
11310 pipe_config->update_wm_pre = true;
11311 pipe_config->update_wm_post = true;
11312 }
11313 }
11314
11315 if (visible || was_visible)
11316 pipe_config->fb_bits |= plane->frontbuffer_bit;
11317
11318 /*
11319 * ILK/SNB DVSACNTR/Sprite Enable
11320 * IVB SPR_CTL/Sprite Enable
11321 * "When in Self Refresh Big FIFO mode, a write to enable the
11322 * plane will be internally buffered and delayed while Big FIFO
11323 * mode is exiting."
11324 *
11325 * Which means that enabling the sprite can take an extra frame
11326 * when we start in big FIFO mode (LP1+). Thus we need to drop
11327 * down to LP0 and wait for vblank in order to make sure the
11328 * sprite gets enabled on the next vblank after the register write.
11329 * Doing otherwise would risk enabling the sprite one frame after
11330 * we've already signalled flip completion. We can resume LP1+
11331 * once the sprite has been enabled.
11332 *
11333 *
11334 * WaCxSRDisabledForSpriteScaling:ivb
11335 * IVB SPR_SCALE/Scaling Enable
11336 * "Low Power watermarks must be disabled for at least one
11337 * frame before enabling sprite scaling, and kept disabled
11338 * until sprite scaling is disabled."
11339 *
11340 * ILK/SNB DVSASCALE/Scaling Enable
11341 * "When in Self Refresh Big FIFO mode, scaling enable will be
11342 * masked off while Big FIFO mode is exiting."
11343 *
11344 * Despite the w/a only being listed for IVB we assume that
11345 * the ILK/SNB note has similar ramifications, hence we apply
11346 * the w/a on all three platforms.
11347 *
11348 * With experimental results seems this is needed also for primary
11349 * plane, not only sprite plane.
11350 */
11351 if (plane->id != PLANE_CURSOR &&
11352 (IS_GEN_RANGE(dev_priv, 5, 6) ||
11353 IS_IVYBRIDGE(dev_priv)) &&
11354 (turn_on || (!needs_scaling(old_plane_state) &&
11355 needs_scaling(to_intel_plane_state(plane_state)))))
11356 pipe_config->disable_lp_wm = true;
11357
11358 return 0;
11359 }
11360
11361 static bool encoders_cloneable(const struct intel_encoder *a,
11362 const struct intel_encoder *b)
11363 {
11364 /* masks could be asymmetric, so check both ways */
11365 return a == b || (a->cloneable & (1 << b->type) &&
11366 b->cloneable & (1 << a->type));
11367 }
11368
11369 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11370 struct intel_crtc *crtc,
11371 struct intel_encoder *encoder)
11372 {
11373 struct intel_encoder *source_encoder;
11374 struct drm_connector *connector;
11375 struct drm_connector_state *connector_state;
11376 int i;
11377
11378 for_each_new_connector_in_state(state, connector, connector_state, i) {
11379 if (connector_state->crtc != &crtc->base)
11380 continue;
11381
11382 source_encoder =
11383 to_intel_encoder(connector_state->best_encoder);
11384 if (!encoders_cloneable(encoder, source_encoder))
11385 return false;
11386 }
11387
11388 return true;
11389 }
11390
11391 static int icl_add_linked_planes(struct intel_atomic_state *state)
11392 {
11393 struct intel_plane *plane, *linked;
11394 struct intel_plane_state *plane_state, *linked_plane_state;
11395 int i;
11396
11397 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11398 linked = plane_state->linked_plane;
11399
11400 if (!linked)
11401 continue;
11402
11403 linked_plane_state = intel_atomic_get_plane_state(state, linked);
11404 if (IS_ERR(linked_plane_state))
11405 return PTR_ERR(linked_plane_state);
11406
11407 WARN_ON(linked_plane_state->linked_plane != plane);
11408 WARN_ON(linked_plane_state->slave == plane_state->slave);
11409 }
11410
11411 return 0;
11412 }
11413
11414 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
11415 {
11416 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11418 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state);
11419 struct intel_plane *plane, *linked;
11420 struct intel_plane_state *plane_state;
11421 int i;
11422
11423 if (INTEL_GEN(dev_priv) < 11)
11424 return 0;
11425
11426 /*
11427 * Destroy all old plane links and make the slave plane invisible
11428 * in the crtc_state->active_planes mask.
11429 */
11430 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11431 if (plane->pipe != crtc->pipe || !plane_state->linked_plane)
11432 continue;
11433
11434 plane_state->linked_plane = NULL;
11435 if (plane_state->slave && !plane_state->base.visible) {
11436 crtc_state->active_planes &= ~BIT(plane->id);
11437 crtc_state->update_planes |= BIT(plane->id);
11438 }
11439
11440 plane_state->slave = false;
11441 }
11442
11443 if (!crtc_state->nv12_planes)
11444 return 0;
11445
11446 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11447 struct intel_plane_state *linked_state = NULL;
11448
11449 if (plane->pipe != crtc->pipe ||
11450 !(crtc_state->nv12_planes & BIT(plane->id)))
11451 continue;
11452
11453 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
11454 if (!icl_is_nv12_y_plane(linked->id))
11455 continue;
11456
11457 if (crtc_state->active_planes & BIT(linked->id))
11458 continue;
11459
11460 linked_state = intel_atomic_get_plane_state(state, linked);
11461 if (IS_ERR(linked_state))
11462 return PTR_ERR(linked_state);
11463
11464 break;
11465 }
11466
11467 if (!linked_state) {
11468 DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n",
11469 hweight8(crtc_state->nv12_planes));
11470
11471 return -EINVAL;
11472 }
11473
11474 plane_state->linked_plane = linked;
11475
11476 linked_state->slave = true;
11477 linked_state->linked_plane = plane;
11478 crtc_state->active_planes |= BIT(linked->id);
11479 crtc_state->update_planes |= BIT(linked->id);
11480 DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name);
11481 }
11482
11483 return 0;
11484 }
11485
11486 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11487 struct drm_crtc_state *crtc_state)
11488 {
11489 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11491 struct intel_crtc_state *pipe_config =
11492 to_intel_crtc_state(crtc_state);
11493 int ret;
11494 bool mode_changed = needs_modeset(crtc_state);
11495
11496 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
11497 mode_changed && !crtc_state->active)
11498 pipe_config->update_wm_post = true;
11499
11500 if (mode_changed && crtc_state->enable &&
11501 dev_priv->display.crtc_compute_clock &&
11502 !WARN_ON(pipe_config->shared_dpll)) {
11503 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11504 pipe_config);
11505 if (ret)
11506 return ret;
11507 }
11508
11509 if (mode_changed || pipe_config->update_pipe ||
11510 crtc_state->color_mgmt_changed) {
11511 ret = intel_color_check(pipe_config);
11512 if (ret)
11513 return ret;
11514 }
11515
11516 ret = 0;
11517 if (dev_priv->display.compute_pipe_wm) {
11518 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11519 if (ret) {
11520 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11521 return ret;
11522 }
11523 }
11524
11525 if (dev_priv->display.compute_intermediate_wm) {
11526 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11527 return 0;
11528
11529 /*
11530 * Calculate 'intermediate' watermarks that satisfy both the
11531 * old state and the new state. We can program these
11532 * immediately.
11533 */
11534 ret = dev_priv->display.compute_intermediate_wm(pipe_config);
11535 if (ret) {
11536 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11537 return ret;
11538 }
11539 }
11540
11541 if (INTEL_GEN(dev_priv) >= 9) {
11542 if (mode_changed || pipe_config->update_pipe)
11543 ret = skl_update_scaler_crtc(pipe_config);
11544
11545 if (!ret)
11546 ret = icl_check_nv12_planes(pipe_config);
11547 if (!ret)
11548 ret = skl_check_pipe_max_pixel_rate(intel_crtc,
11549 pipe_config);
11550 if (!ret)
11551 ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
11552 pipe_config);
11553 }
11554
11555 if (HAS_IPS(dev_priv))
11556 pipe_config->ips_enabled = hsw_compute_ips_config(pipe_config);
11557
11558 return ret;
11559 }
11560
11561 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11562 .atomic_check = intel_crtc_atomic_check,
11563 };
11564
11565 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11566 {
11567 struct intel_connector *connector;
11568 struct drm_connector_list_iter conn_iter;
11569
11570 drm_connector_list_iter_begin(dev, &conn_iter);
11571 for_each_intel_connector_iter(connector, &conn_iter) {
11572 if (connector->base.state->crtc)
11573 drm_connector_put(&connector->base);
11574
11575 if (connector->base.encoder) {
11576 connector->base.state->best_encoder =
11577 connector->base.encoder;
11578 connector->base.state->crtc =
11579 connector->base.encoder->crtc;
11580
11581 drm_connector_get(&connector->base);
11582 } else {
11583 connector->base.state->best_encoder = NULL;
11584 connector->base.state->crtc = NULL;
11585 }
11586 }
11587 drm_connector_list_iter_end(&conn_iter);
11588 }
11589
11590 static int
11591 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
11592 struct intel_crtc_state *pipe_config)
11593 {
11594 struct drm_connector *connector = conn_state->connector;
11595 const struct drm_display_info *info = &connector->display_info;
11596 int bpp;
11597
11598 switch (conn_state->max_bpc) {
11599 case 6 ... 7:
11600 bpp = 6 * 3;
11601 break;
11602 case 8 ... 9:
11603 bpp = 8 * 3;
11604 break;
11605 case 10 ... 11:
11606 bpp = 10 * 3;
11607 break;
11608 case 12:
11609 bpp = 12 * 3;
11610 break;
11611 default:
11612 return -EINVAL;
11613 }
11614
11615 if (bpp < pipe_config->pipe_bpp) {
11616 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
11617 "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
11618 connector->base.id, connector->name,
11619 bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc,
11620 pipe_config->pipe_bpp);
11621
11622 pipe_config->pipe_bpp = bpp;
11623 }
11624
11625 return 0;
11626 }
11627
11628 static int
11629 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11630 struct intel_crtc_state *pipe_config)
11631 {
11632 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11633 struct drm_atomic_state *state = pipe_config->base.state;
11634 struct drm_connector *connector;
11635 struct drm_connector_state *connector_state;
11636 int bpp, i;
11637
11638 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11639 IS_CHERRYVIEW(dev_priv)))
11640 bpp = 10*3;
11641 else if (INTEL_GEN(dev_priv) >= 5)
11642 bpp = 12*3;
11643 else
11644 bpp = 8*3;
11645
11646 pipe_config->pipe_bpp = bpp;
11647
11648 /* Clamp display bpp to connector max bpp */
11649 for_each_new_connector_in_state(state, connector, connector_state, i) {
11650 int ret;
11651
11652 if (connector_state->crtc != &crtc->base)
11653 continue;
11654
11655 ret = compute_sink_pipe_bpp(connector_state, pipe_config);
11656 if (ret)
11657 return ret;
11658 }
11659
11660 return 0;
11661 }
11662
11663 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11664 {
11665 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11666 "type: 0x%x flags: 0x%x\n",
11667 mode->crtc_clock,
11668 mode->crtc_hdisplay, mode->crtc_hsync_start,
11669 mode->crtc_hsync_end, mode->crtc_htotal,
11670 mode->crtc_vdisplay, mode->crtc_vsync_start,
11671 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11672 }
11673
11674 static inline void
11675 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11676 unsigned int lane_count, struct intel_link_m_n *m_n)
11677 {
11678 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11679 id, lane_count,
11680 m_n->gmch_m, m_n->gmch_n,
11681 m_n->link_m, m_n->link_n, m_n->tu);
11682 }
11683
11684 static void
11685 intel_dump_infoframe(struct drm_i915_private *dev_priv,
11686 const union hdmi_infoframe *frame)
11687 {
11688 if ((drm_debug & DRM_UT_KMS) == 0)
11689 return;
11690
11691 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
11692 }
11693
11694 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
11695
11696 static const char * const output_type_str[] = {
11697 OUTPUT_TYPE(UNUSED),
11698 OUTPUT_TYPE(ANALOG),
11699 OUTPUT_TYPE(DVO),
11700 OUTPUT_TYPE(SDVO),
11701 OUTPUT_TYPE(LVDS),
11702 OUTPUT_TYPE(TVOUT),
11703 OUTPUT_TYPE(HDMI),
11704 OUTPUT_TYPE(DP),
11705 OUTPUT_TYPE(EDP),
11706 OUTPUT_TYPE(DSI),
11707 OUTPUT_TYPE(DDI),
11708 OUTPUT_TYPE(DP_MST),
11709 };
11710
11711 #undef OUTPUT_TYPE
11712
11713 static void snprintf_output_types(char *buf, size_t len,
11714 unsigned int output_types)
11715 {
11716 char *str = buf;
11717 int i;
11718
11719 str[0] = '\0';
11720
11721 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
11722 int r;
11723
11724 if ((output_types & BIT(i)) == 0)
11725 continue;
11726
11727 r = snprintf(str, len, "%s%s",
11728 str != buf ? "," : "", output_type_str[i]);
11729 if (r >= len)
11730 break;
11731 str += r;
11732 len -= r;
11733
11734 output_types &= ~BIT(i);
11735 }
11736
11737 WARN_ON_ONCE(output_types != 0);
11738 }
11739
11740 static const char * const output_format_str[] = {
11741 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
11742 [INTEL_OUTPUT_FORMAT_RGB] = "RGB",
11743 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
11744 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
11745 };
11746
11747 static const char *output_formats(enum intel_output_format format)
11748 {
11749 if (format >= ARRAY_SIZE(output_format_str))
11750 format = INTEL_OUTPUT_FORMAT_INVALID;
11751 return output_format_str[format];
11752 }
11753
11754 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11755 struct intel_crtc_state *pipe_config,
11756 const char *context)
11757 {
11758 struct drm_device *dev = crtc->base.dev;
11759 struct drm_i915_private *dev_priv = to_i915(dev);
11760 struct drm_plane *plane;
11761 struct intel_plane *intel_plane;
11762 struct intel_plane_state *state;
11763 struct drm_framebuffer *fb;
11764 char buf[64];
11765
11766 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11767 crtc->base.base.id, crtc->base.name, context);
11768
11769 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
11770 DRM_DEBUG_KMS("output_types: %s (0x%x)\n",
11771 buf, pipe_config->output_types);
11772
11773 DRM_DEBUG_KMS("output format: %s\n",
11774 output_formats(pipe_config->output_format));
11775
11776 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11777 transcoder_name(pipe_config->cpu_transcoder),
11778 pipe_config->pipe_bpp, pipe_config->dither);
11779
11780 if (pipe_config->has_pch_encoder)
11781 intel_dump_m_n_config(pipe_config, "fdi",
11782 pipe_config->fdi_lanes,
11783 &pipe_config->fdi_m_n);
11784
11785 if (intel_crtc_has_dp_encoder(pipe_config)) {
11786 intel_dump_m_n_config(pipe_config, "dp m_n",
11787 pipe_config->lane_count, &pipe_config->dp_m_n);
11788 if (pipe_config->has_drrs)
11789 intel_dump_m_n_config(pipe_config, "dp m2_n2",
11790 pipe_config->lane_count,
11791 &pipe_config->dp_m2_n2);
11792 }
11793
11794 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11795 pipe_config->has_audio, pipe_config->has_infoframe);
11796
11797 DRM_DEBUG_KMS("infoframes enabled: 0x%x\n",
11798 pipe_config->infoframes.enable);
11799
11800 if (pipe_config->infoframes.enable &
11801 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
11802 DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp);
11803 if (pipe_config->infoframes.enable &
11804 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
11805 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
11806 if (pipe_config->infoframes.enable &
11807 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
11808 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
11809 if (pipe_config->infoframes.enable &
11810 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
11811 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
11812
11813 DRM_DEBUG_KMS("requested mode:\n");
11814 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11815 DRM_DEBUG_KMS("adjusted mode:\n");
11816 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11817 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11818 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11819 pipe_config->port_clock,
11820 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11821 pipe_config->pixel_rate);
11822
11823 if (INTEL_GEN(dev_priv) >= 9)
11824 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11825 crtc->num_scalers,
11826 pipe_config->scaler_state.scaler_users,
11827 pipe_config->scaler_state.scaler_id);
11828
11829 if (HAS_GMCH(dev_priv))
11830 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11831 pipe_config->gmch_pfit.control,
11832 pipe_config->gmch_pfit.pgm_ratios,
11833 pipe_config->gmch_pfit.lvds_border_bits);
11834 else
11835 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n",
11836 pipe_config->pch_pfit.pos,
11837 pipe_config->pch_pfit.size,
11838 enableddisabled(pipe_config->pch_pfit.enabled),
11839 yesno(pipe_config->pch_pfit.force_thru));
11840
11841 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11842 pipe_config->ips_enabled, pipe_config->double_wide);
11843
11844 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11845
11846 DRM_DEBUG_KMS("planes on this crtc\n");
11847 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11848 struct drm_format_name_buf format_name;
11849 intel_plane = to_intel_plane(plane);
11850 if (intel_plane->pipe != crtc->pipe)
11851 continue;
11852
11853 state = to_intel_plane_state(plane->state);
11854 fb = state->base.fb;
11855 if (!fb) {
11856 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11857 plane->base.id, plane->name, state->scaler_id);
11858 continue;
11859 }
11860
11861 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11862 plane->base.id, plane->name,
11863 fb->base.id, fb->width, fb->height,
11864 drm_get_format_name(fb->format->format, &format_name));
11865 if (INTEL_GEN(dev_priv) >= 9)
11866 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11867 state->scaler_id,
11868 state->base.src.x1 >> 16,
11869 state->base.src.y1 >> 16,
11870 drm_rect_width(&state->base.src) >> 16,
11871 drm_rect_height(&state->base.src) >> 16,
11872 state->base.dst.x1, state->base.dst.y1,
11873 drm_rect_width(&state->base.dst),
11874 drm_rect_height(&state->base.dst));
11875 }
11876 }
11877
11878 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11879 {
11880 struct drm_device *dev = state->dev;
11881 struct drm_connector *connector;
11882 struct drm_connector_list_iter conn_iter;
11883 unsigned int used_ports = 0;
11884 unsigned int used_mst_ports = 0;
11885 bool ret = true;
11886
11887 /*
11888 * Walk the connector list instead of the encoder
11889 * list to detect the problem on ddi platforms
11890 * where there's just one encoder per digital port.
11891 */
11892 drm_connector_list_iter_begin(dev, &conn_iter);
11893 drm_for_each_connector_iter(connector, &conn_iter) {
11894 struct drm_connector_state *connector_state;
11895 struct intel_encoder *encoder;
11896
11897 connector_state = drm_atomic_get_new_connector_state(state, connector);
11898 if (!connector_state)
11899 connector_state = connector->state;
11900
11901 if (!connector_state->best_encoder)
11902 continue;
11903
11904 encoder = to_intel_encoder(connector_state->best_encoder);
11905
11906 WARN_ON(!connector_state->crtc);
11907
11908 switch (encoder->type) {
11909 unsigned int port_mask;
11910 case INTEL_OUTPUT_DDI:
11911 if (WARN_ON(!HAS_DDI(to_i915(dev))))
11912 break;
11913 /* else: fall through */
11914 case INTEL_OUTPUT_DP:
11915 case INTEL_OUTPUT_HDMI:
11916 case INTEL_OUTPUT_EDP:
11917 port_mask = 1 << encoder->port;
11918
11919 /* the same port mustn't appear more than once */
11920 if (used_ports & port_mask)
11921 ret = false;
11922
11923 used_ports |= port_mask;
11924 break;
11925 case INTEL_OUTPUT_DP_MST:
11926 used_mst_ports |=
11927 1 << encoder->port;
11928 break;
11929 default:
11930 break;
11931 }
11932 }
11933 drm_connector_list_iter_end(&conn_iter);
11934
11935 /* can't mix MST and SST/HDMI on the same port */
11936 if (used_ports & used_mst_ports)
11937 return false;
11938
11939 return ret;
11940 }
11941
11942 static int
11943 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11944 {
11945 struct drm_i915_private *dev_priv =
11946 to_i915(crtc_state->base.crtc->dev);
11947 struct intel_crtc_state *saved_state;
11948
11949 saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL);
11950 if (!saved_state)
11951 return -ENOMEM;
11952
11953 /* FIXME: before the switch to atomic started, a new pipe_config was
11954 * kzalloc'd. Code that depends on any field being zero should be
11955 * fixed, so that the crtc_state can be safely duplicated. For now,
11956 * only fields that are know to not cause problems are preserved. */
11957
11958 saved_state->scaler_state = crtc_state->scaler_state;
11959 saved_state->shared_dpll = crtc_state->shared_dpll;
11960 saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
11961 saved_state->crc_enabled = crtc_state->crc_enabled;
11962 if (IS_G4X(dev_priv) ||
11963 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11964 saved_state->wm = crtc_state->wm;
11965
11966 /* Keep base drm_crtc_state intact, only clear our extended struct */
11967 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11968 memcpy(&crtc_state->base + 1, &saved_state->base + 1,
11969 sizeof(*crtc_state) - sizeof(crtc_state->base));
11970
11971 kfree(saved_state);
11972 return 0;
11973 }
11974
11975 static int
11976 intel_modeset_pipe_config(struct drm_crtc *crtc,
11977 struct intel_crtc_state *pipe_config)
11978 {
11979 struct drm_atomic_state *state = pipe_config->base.state;
11980 struct intel_encoder *encoder;
11981 struct drm_connector *connector;
11982 struct drm_connector_state *connector_state;
11983 int base_bpp, ret;
11984 int i;
11985 bool retry = true;
11986
11987 ret = clear_intel_crtc_state(pipe_config);
11988 if (ret)
11989 return ret;
11990
11991 pipe_config->cpu_transcoder =
11992 (enum transcoder) to_intel_crtc(crtc)->pipe;
11993
11994 /*
11995 * Sanitize sync polarity flags based on requested ones. If neither
11996 * positive or negative polarity is requested, treat this as meaning
11997 * negative polarity.
11998 */
11999 if (!(pipe_config->base.adjusted_mode.flags &
12000 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12001 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12002
12003 if (!(pipe_config->base.adjusted_mode.flags &
12004 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12005 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12006
12007 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12008 pipe_config);
12009 if (ret)
12010 return ret;
12011
12012 base_bpp = pipe_config->pipe_bpp;
12013
12014 /*
12015 * Determine the real pipe dimensions. Note that stereo modes can
12016 * increase the actual pipe size due to the frame doubling and
12017 * insertion of additional space for blanks between the frame. This
12018 * is stored in the crtc timings. We use the requested mode to do this
12019 * computation to clearly distinguish it from the adjusted mode, which
12020 * can be changed by the connectors in the below retry loop.
12021 */
12022 drm_mode_get_hv_timing(&pipe_config->base.mode,
12023 &pipe_config->pipe_src_w,
12024 &pipe_config->pipe_src_h);
12025
12026 for_each_new_connector_in_state(state, connector, connector_state, i) {
12027 if (connector_state->crtc != crtc)
12028 continue;
12029
12030 encoder = to_intel_encoder(connector_state->best_encoder);
12031
12032 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12033 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12034 return -EINVAL;
12035 }
12036
12037 /*
12038 * Determine output_types before calling the .compute_config()
12039 * hooks so that the hooks can use this information safely.
12040 */
12041 if (encoder->compute_output_type)
12042 pipe_config->output_types |=
12043 BIT(encoder->compute_output_type(encoder, pipe_config,
12044 connector_state));
12045 else
12046 pipe_config->output_types |= BIT(encoder->type);
12047 }
12048
12049 encoder_retry:
12050 /* Ensure the port clock defaults are reset when retrying. */
12051 pipe_config->port_clock = 0;
12052 pipe_config->pixel_multiplier = 1;
12053
12054 /* Fill in default crtc timings, allow encoders to overwrite them. */
12055 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12056 CRTC_STEREO_DOUBLE);
12057
12058 /* Pass our mode to the connectors and the CRTC to give them a chance to
12059 * adjust it according to limitations or connector properties, and also
12060 * a chance to reject the mode entirely.
12061 */
12062 for_each_new_connector_in_state(state, connector, connector_state, i) {
12063 if (connector_state->crtc != crtc)
12064 continue;
12065
12066 encoder = to_intel_encoder(connector_state->best_encoder);
12067 ret = encoder->compute_config(encoder, pipe_config,
12068 connector_state);
12069 if (ret < 0) {
12070 if (ret != -EDEADLK)
12071 DRM_DEBUG_KMS("Encoder config failure: %d\n",
12072 ret);
12073 return ret;
12074 }
12075 }
12076
12077 /* Set default port clock if not overwritten by the encoder. Needs to be
12078 * done afterwards in case the encoder adjusts the mode. */
12079 if (!pipe_config->port_clock)
12080 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12081 * pipe_config->pixel_multiplier;
12082
12083 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12084 if (ret == -EDEADLK)
12085 return ret;
12086 if (ret < 0) {
12087 DRM_DEBUG_KMS("CRTC fixup failed\n");
12088 return ret;
12089 }
12090
12091 if (ret == RETRY) {
12092 if (WARN(!retry, "loop in pipe configuration computation\n"))
12093 return -EINVAL;
12094
12095 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12096 retry = false;
12097 goto encoder_retry;
12098 }
12099
12100 /* Dithering seems to not pass-through bits correctly when it should, so
12101 * only enable it on 6bpc panels and when its not a compliance
12102 * test requesting 6bpc video pattern.
12103 */
12104 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
12105 !pipe_config->dither_force_disable;
12106 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12107 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12108
12109 return 0;
12110 }
12111
12112 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12113 {
12114 int diff;
12115
12116 if (clock1 == clock2)
12117 return true;
12118
12119 if (!clock1 || !clock2)
12120 return false;
12121
12122 diff = abs(clock1 - clock2);
12123
12124 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12125 return true;
12126
12127 return false;
12128 }
12129
12130 static bool
12131 intel_compare_m_n(unsigned int m, unsigned int n,
12132 unsigned int m2, unsigned int n2,
12133 bool exact)
12134 {
12135 if (m == m2 && n == n2)
12136 return true;
12137
12138 if (exact || !m || !n || !m2 || !n2)
12139 return false;
12140
12141 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12142
12143 if (n > n2) {
12144 while (n > n2) {
12145 m2 <<= 1;
12146 n2 <<= 1;
12147 }
12148 } else if (n < n2) {
12149 while (n < n2) {
12150 m <<= 1;
12151 n <<= 1;
12152 }
12153 }
12154
12155 if (n != n2)
12156 return false;
12157
12158 return intel_fuzzy_clock_check(m, m2);
12159 }
12160
12161 static bool
12162 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12163 struct intel_link_m_n *m2_n2,
12164 bool adjust)
12165 {
12166 if (m_n->tu == m2_n2->tu &&
12167 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12168 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12169 intel_compare_m_n(m_n->link_m, m_n->link_n,
12170 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12171 if (adjust)
12172 *m2_n2 = *m_n;
12173
12174 return true;
12175 }
12176
12177 return false;
12178 }
12179
12180 static bool
12181 intel_compare_infoframe(const union hdmi_infoframe *a,
12182 const union hdmi_infoframe *b)
12183 {
12184 return memcmp(a, b, sizeof(*a)) == 0;
12185 }
12186
12187 static void
12188 pipe_config_infoframe_err(struct drm_i915_private *dev_priv,
12189 bool adjust, const char *name,
12190 const union hdmi_infoframe *a,
12191 const union hdmi_infoframe *b)
12192 {
12193 if (adjust) {
12194 if ((drm_debug & DRM_UT_KMS) == 0)
12195 return;
12196
12197 drm_dbg(DRM_UT_KMS, "mismatch in %s infoframe", name);
12198 drm_dbg(DRM_UT_KMS, "expected:");
12199 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
12200 drm_dbg(DRM_UT_KMS, "found");
12201 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
12202 } else {
12203 drm_err("mismatch in %s infoframe", name);
12204 drm_err("expected:");
12205 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
12206 drm_err("found");
12207 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
12208 }
12209 }
12210
12211 static void __printf(3, 4)
12212 pipe_config_err(bool adjust, const char *name, const char *format, ...)
12213 {
12214 struct va_format vaf;
12215 va_list args;
12216
12217 va_start(args, format);
12218 vaf.fmt = format;
12219 vaf.va = &args;
12220
12221 if (adjust)
12222 drm_dbg(DRM_UT_KMS, "mismatch in %s %pV", name, &vaf);
12223 else
12224 drm_err("mismatch in %s %pV", name, &vaf);
12225
12226 va_end(args);
12227 }
12228
12229 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
12230 {
12231 if (i915_modparams.fastboot != -1)
12232 return i915_modparams.fastboot;
12233
12234 /* Enable fastboot by default on Skylake and newer */
12235 if (INTEL_GEN(dev_priv) >= 9)
12236 return true;
12237
12238 /* Enable fastboot by default on VLV and CHV */
12239 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12240 return true;
12241
12242 /* Disabled by default on all others */
12243 return false;
12244 }
12245
12246 static bool
12247 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
12248 struct intel_crtc_state *current_config,
12249 struct intel_crtc_state *pipe_config,
12250 bool adjust)
12251 {
12252 bool ret = true;
12253 bool fixup_inherited = adjust &&
12254 (current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) &&
12255 !(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED);
12256
12257 if (fixup_inherited && !fastboot_enabled(dev_priv)) {
12258 DRM_DEBUG_KMS("initial modeset and fastboot not set\n");
12259 ret = false;
12260 }
12261
12262 #define PIPE_CONF_CHECK_X(name) do { \
12263 if (current_config->name != pipe_config->name) { \
12264 pipe_config_err(adjust, __stringify(name), \
12265 "(expected 0x%08x, found 0x%08x)\n", \
12266 current_config->name, \
12267 pipe_config->name); \
12268 ret = false; \
12269 } \
12270 } while (0)
12271
12272 #define PIPE_CONF_CHECK_I(name) do { \
12273 if (current_config->name != pipe_config->name) { \
12274 pipe_config_err(adjust, __stringify(name), \
12275 "(expected %i, found %i)\n", \
12276 current_config->name, \
12277 pipe_config->name); \
12278 ret = false; \
12279 } \
12280 } while (0)
12281
12282 #define PIPE_CONF_CHECK_BOOL(name) do { \
12283 if (current_config->name != pipe_config->name) { \
12284 pipe_config_err(adjust, __stringify(name), \
12285 "(expected %s, found %s)\n", \
12286 yesno(current_config->name), \
12287 yesno(pipe_config->name)); \
12288 ret = false; \
12289 } \
12290 } while (0)
12291
12292 /*
12293 * Checks state where we only read out the enabling, but not the entire
12294 * state itself (like full infoframes or ELD for audio). These states
12295 * require a full modeset on bootup to fix up.
12296 */
12297 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
12298 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
12299 PIPE_CONF_CHECK_BOOL(name); \
12300 } else { \
12301 pipe_config_err(adjust, __stringify(name), \
12302 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)\n", \
12303 yesno(current_config->name), \
12304 yesno(pipe_config->name)); \
12305 ret = false; \
12306 } \
12307 } while (0)
12308
12309 #define PIPE_CONF_CHECK_P(name) do { \
12310 if (current_config->name != pipe_config->name) { \
12311 pipe_config_err(adjust, __stringify(name), \
12312 "(expected %p, found %p)\n", \
12313 current_config->name, \
12314 pipe_config->name); \
12315 ret = false; \
12316 } \
12317 } while (0)
12318
12319 #define PIPE_CONF_CHECK_M_N(name) do { \
12320 if (!intel_compare_link_m_n(&current_config->name, \
12321 &pipe_config->name,\
12322 adjust)) { \
12323 pipe_config_err(adjust, __stringify(name), \
12324 "(expected tu %i gmch %i/%i link %i/%i, " \
12325 "found tu %i, gmch %i/%i link %i/%i)\n", \
12326 current_config->name.tu, \
12327 current_config->name.gmch_m, \
12328 current_config->name.gmch_n, \
12329 current_config->name.link_m, \
12330 current_config->name.link_n, \
12331 pipe_config->name.tu, \
12332 pipe_config->name.gmch_m, \
12333 pipe_config->name.gmch_n, \
12334 pipe_config->name.link_m, \
12335 pipe_config->name.link_n); \
12336 ret = false; \
12337 } \
12338 } while (0)
12339
12340 /* This is required for BDW+ where there is only one set of registers for
12341 * switching between high and low RR.
12342 * This macro can be used whenever a comparison has to be made between one
12343 * hw state and multiple sw state variables.
12344 */
12345 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
12346 if (!intel_compare_link_m_n(&current_config->name, \
12347 &pipe_config->name, adjust) && \
12348 !intel_compare_link_m_n(&current_config->alt_name, \
12349 &pipe_config->name, adjust)) { \
12350 pipe_config_err(adjust, __stringify(name), \
12351 "(expected tu %i gmch %i/%i link %i/%i, " \
12352 "or tu %i gmch %i/%i link %i/%i, " \
12353 "found tu %i, gmch %i/%i link %i/%i)\n", \
12354 current_config->name.tu, \
12355 current_config->name.gmch_m, \
12356 current_config->name.gmch_n, \
12357 current_config->name.link_m, \
12358 current_config->name.link_n, \
12359 current_config->alt_name.tu, \
12360 current_config->alt_name.gmch_m, \
12361 current_config->alt_name.gmch_n, \
12362 current_config->alt_name.link_m, \
12363 current_config->alt_name.link_n, \
12364 pipe_config->name.tu, \
12365 pipe_config->name.gmch_m, \
12366 pipe_config->name.gmch_n, \
12367 pipe_config->name.link_m, \
12368 pipe_config->name.link_n); \
12369 ret = false; \
12370 } \
12371 } while (0)
12372
12373 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
12374 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12375 pipe_config_err(adjust, __stringify(name), \
12376 "(%x) (expected %i, found %i)\n", \
12377 (mask), \
12378 current_config->name & (mask), \
12379 pipe_config->name & (mask)); \
12380 ret = false; \
12381 } \
12382 } while (0)
12383
12384 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
12385 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12386 pipe_config_err(adjust, __stringify(name), \
12387 "(expected %i, found %i)\n", \
12388 current_config->name, \
12389 pipe_config->name); \
12390 ret = false; \
12391 } \
12392 } while (0)
12393
12394 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
12395 if (!intel_compare_infoframe(&current_config->infoframes.name, \
12396 &pipe_config->infoframes.name)) { \
12397 pipe_config_infoframe_err(dev_priv, adjust, __stringify(name), \
12398 &current_config->infoframes.name, \
12399 &pipe_config->infoframes.name); \
12400 ret = false; \
12401 } \
12402 } while (0)
12403
12404 #define PIPE_CONF_QUIRK(quirk) \
12405 ((current_config->quirks | pipe_config->quirks) & (quirk))
12406
12407 PIPE_CONF_CHECK_I(cpu_transcoder);
12408
12409 PIPE_CONF_CHECK_BOOL(has_pch_encoder);
12410 PIPE_CONF_CHECK_I(fdi_lanes);
12411 PIPE_CONF_CHECK_M_N(fdi_m_n);
12412
12413 PIPE_CONF_CHECK_I(lane_count);
12414 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12415
12416 if (INTEL_GEN(dev_priv) < 8) {
12417 PIPE_CONF_CHECK_M_N(dp_m_n);
12418
12419 if (current_config->has_drrs)
12420 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12421 } else
12422 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12423
12424 PIPE_CONF_CHECK_X(output_types);
12425
12426 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12427 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12428 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12429 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12430 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12431 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12432
12433 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12434 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12435 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12436 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12437 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12438 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12439
12440 PIPE_CONF_CHECK_I(pixel_multiplier);
12441 PIPE_CONF_CHECK_I(output_format);
12442 PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
12443 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
12444 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12445 PIPE_CONF_CHECK_BOOL(limited_color_range);
12446
12447 PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
12448 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
12449 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_infoframe);
12450
12451 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
12452
12453 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12454 DRM_MODE_FLAG_INTERLACE);
12455
12456 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12457 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12458 DRM_MODE_FLAG_PHSYNC);
12459 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12460 DRM_MODE_FLAG_NHSYNC);
12461 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12462 DRM_MODE_FLAG_PVSYNC);
12463 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12464 DRM_MODE_FLAG_NVSYNC);
12465 }
12466
12467 PIPE_CONF_CHECK_X(gmch_pfit.control);
12468 /* pfit ratios are autocomputed by the hw on gen4+ */
12469 if (INTEL_GEN(dev_priv) < 4)
12470 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12471 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12472
12473 /*
12474 * Changing the EDP transcoder input mux
12475 * (A_ONOFF vs. A_ON) requires a full modeset.
12476 */
12477 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
12478
12479 if (!adjust) {
12480 PIPE_CONF_CHECK_I(pipe_src_w);
12481 PIPE_CONF_CHECK_I(pipe_src_h);
12482
12483 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
12484 if (current_config->pch_pfit.enabled) {
12485 PIPE_CONF_CHECK_X(pch_pfit.pos);
12486 PIPE_CONF_CHECK_X(pch_pfit.size);
12487 }
12488
12489 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12490 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
12491
12492 PIPE_CONF_CHECK_X(gamma_mode);
12493 if (IS_CHERRYVIEW(dev_priv))
12494 PIPE_CONF_CHECK_X(cgm_mode);
12495 else
12496 PIPE_CONF_CHECK_X(csc_mode);
12497 PIPE_CONF_CHECK_BOOL(gamma_enable);
12498 PIPE_CONF_CHECK_BOOL(csc_enable);
12499 }
12500
12501 PIPE_CONF_CHECK_BOOL(double_wide);
12502
12503 PIPE_CONF_CHECK_P(shared_dpll);
12504 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12505 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12506 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12507 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12508 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12509 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12510 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12511 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12512 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12513 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
12514 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
12515 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
12516 PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
12517 PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
12518 PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
12519 PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
12520 PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
12521 PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
12522 PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
12523 PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
12524 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
12525 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
12526 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
12527 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
12528 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
12529 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
12530 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
12531 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
12532 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
12533 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
12534 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
12535
12536 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12537 PIPE_CONF_CHECK_X(dsi_pll.div);
12538
12539 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
12540 PIPE_CONF_CHECK_I(pipe_bpp);
12541
12542 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12543 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12544
12545 PIPE_CONF_CHECK_I(min_voltage_level);
12546
12547 PIPE_CONF_CHECK_X(infoframes.enable);
12548 PIPE_CONF_CHECK_X(infoframes.gcp);
12549 PIPE_CONF_CHECK_INFOFRAME(avi);
12550 PIPE_CONF_CHECK_INFOFRAME(spd);
12551 PIPE_CONF_CHECK_INFOFRAME(hdmi);
12552
12553 #undef PIPE_CONF_CHECK_X
12554 #undef PIPE_CONF_CHECK_I
12555 #undef PIPE_CONF_CHECK_BOOL
12556 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
12557 #undef PIPE_CONF_CHECK_P
12558 #undef PIPE_CONF_CHECK_FLAGS
12559 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12560 #undef PIPE_CONF_QUIRK
12561
12562 return ret;
12563 }
12564
12565 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12566 const struct intel_crtc_state *pipe_config)
12567 {
12568 if (pipe_config->has_pch_encoder) {
12569 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12570 &pipe_config->fdi_m_n);
12571 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12572
12573 /*
12574 * FDI already provided one idea for the dotclock.
12575 * Yell if the encoder disagrees.
12576 */
12577 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12578 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12579 fdi_dotclock, dotclock);
12580 }
12581 }
12582
12583 static void verify_wm_state(struct drm_crtc *crtc,
12584 struct drm_crtc_state *new_state)
12585 {
12586 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
12587 struct skl_hw_state {
12588 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
12589 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
12590 struct skl_ddb_allocation ddb;
12591 struct skl_pipe_wm wm;
12592 } *hw;
12593 struct skl_ddb_allocation *sw_ddb;
12594 struct skl_pipe_wm *sw_wm;
12595 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
12596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12597 const enum pipe pipe = intel_crtc->pipe;
12598 int plane, level, max_level = ilk_wm_max_level(dev_priv);
12599
12600 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
12601 return;
12602
12603 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
12604 if (!hw)
12605 return;
12606
12607 skl_pipe_wm_get_hw_state(intel_crtc, &hw->wm);
12608 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
12609
12610 skl_pipe_ddb_get_hw_state(intel_crtc, hw->ddb_y, hw->ddb_uv);
12611
12612 skl_ddb_get_hw_state(dev_priv, &hw->ddb);
12613 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12614
12615 if (INTEL_GEN(dev_priv) >= 11 &&
12616 hw->ddb.enabled_slices != sw_ddb->enabled_slices)
12617 DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n",
12618 sw_ddb->enabled_slices,
12619 hw->ddb.enabled_slices);
12620
12621 /* planes */
12622 for_each_universal_plane(dev_priv, pipe, plane) {
12623 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
12624
12625 hw_plane_wm = &hw->wm.planes[plane];
12626 sw_plane_wm = &sw_wm->planes[plane];
12627
12628 /* Watermarks */
12629 for (level = 0; level <= max_level; level++) {
12630 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12631 &sw_plane_wm->wm[level]))
12632 continue;
12633
12634 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12635 pipe_name(pipe), plane + 1, level,
12636 sw_plane_wm->wm[level].plane_en,
12637 sw_plane_wm->wm[level].plane_res_b,
12638 sw_plane_wm->wm[level].plane_res_l,
12639 hw_plane_wm->wm[level].plane_en,
12640 hw_plane_wm->wm[level].plane_res_b,
12641 hw_plane_wm->wm[level].plane_res_l);
12642 }
12643
12644 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12645 &sw_plane_wm->trans_wm)) {
12646 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12647 pipe_name(pipe), plane + 1,
12648 sw_plane_wm->trans_wm.plane_en,
12649 sw_plane_wm->trans_wm.plane_res_b,
12650 sw_plane_wm->trans_wm.plane_res_l,
12651 hw_plane_wm->trans_wm.plane_en,
12652 hw_plane_wm->trans_wm.plane_res_b,
12653 hw_plane_wm->trans_wm.plane_res_l);
12654 }
12655
12656 /* DDB */
12657 hw_ddb_entry = &hw->ddb_y[plane];
12658 sw_ddb_entry = &to_intel_crtc_state(new_state)->wm.skl.plane_ddb_y[plane];
12659
12660 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12661 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
12662 pipe_name(pipe), plane + 1,
12663 sw_ddb_entry->start, sw_ddb_entry->end,
12664 hw_ddb_entry->start, hw_ddb_entry->end);
12665 }
12666 }
12667
12668 /*
12669 * cursor
12670 * If the cursor plane isn't active, we may not have updated it's ddb
12671 * allocation. In that case since the ddb allocation will be updated
12672 * once the plane becomes visible, we can skip this check
12673 */
12674 if (1) {
12675 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
12676
12677 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
12678 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
12679
12680 /* Watermarks */
12681 for (level = 0; level <= max_level; level++) {
12682 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12683 &sw_plane_wm->wm[level]))
12684 continue;
12685
12686 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12687 pipe_name(pipe), level,
12688 sw_plane_wm->wm[level].plane_en,
12689 sw_plane_wm->wm[level].plane_res_b,
12690 sw_plane_wm->wm[level].plane_res_l,
12691 hw_plane_wm->wm[level].plane_en,
12692 hw_plane_wm->wm[level].plane_res_b,
12693 hw_plane_wm->wm[level].plane_res_l);
12694 }
12695
12696 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12697 &sw_plane_wm->trans_wm)) {
12698 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12699 pipe_name(pipe),
12700 sw_plane_wm->trans_wm.plane_en,
12701 sw_plane_wm->trans_wm.plane_res_b,
12702 sw_plane_wm->trans_wm.plane_res_l,
12703 hw_plane_wm->trans_wm.plane_en,
12704 hw_plane_wm->trans_wm.plane_res_b,
12705 hw_plane_wm->trans_wm.plane_res_l);
12706 }
12707
12708 /* DDB */
12709 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
12710 sw_ddb_entry = &to_intel_crtc_state(new_state)->wm.skl.plane_ddb_y[PLANE_CURSOR];
12711
12712 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12713 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
12714 pipe_name(pipe),
12715 sw_ddb_entry->start, sw_ddb_entry->end,
12716 hw_ddb_entry->start, hw_ddb_entry->end);
12717 }
12718 }
12719
12720 kfree(hw);
12721 }
12722
12723 static void
12724 verify_connector_state(struct drm_device *dev,
12725 struct drm_atomic_state *state,
12726 struct drm_crtc *crtc)
12727 {
12728 struct drm_connector *connector;
12729 struct drm_connector_state *new_conn_state;
12730 int i;
12731
12732 for_each_new_connector_in_state(state, connector, new_conn_state, i) {
12733 struct drm_encoder *encoder = connector->encoder;
12734 struct drm_crtc_state *crtc_state = NULL;
12735
12736 if (new_conn_state->crtc != crtc)
12737 continue;
12738
12739 if (crtc)
12740 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
12741
12742 intel_connector_verify_state(crtc_state, new_conn_state);
12743
12744 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
12745 "connector's atomic encoder doesn't match legacy encoder\n");
12746 }
12747 }
12748
12749 static void
12750 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
12751 {
12752 struct intel_encoder *encoder;
12753 struct drm_connector *connector;
12754 struct drm_connector_state *old_conn_state, *new_conn_state;
12755 int i;
12756
12757 for_each_intel_encoder(dev, encoder) {
12758 bool enabled = false, found = false;
12759 enum pipe pipe;
12760
12761 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12762 encoder->base.base.id,
12763 encoder->base.name);
12764
12765 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
12766 new_conn_state, i) {
12767 if (old_conn_state->best_encoder == &encoder->base)
12768 found = true;
12769
12770 if (new_conn_state->best_encoder != &encoder->base)
12771 continue;
12772 found = enabled = true;
12773
12774 I915_STATE_WARN(new_conn_state->crtc !=
12775 encoder->base.crtc,
12776 "connector's crtc doesn't match encoder crtc\n");
12777 }
12778
12779 if (!found)
12780 continue;
12781
12782 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12783 "encoder's enabled state mismatch "
12784 "(expected %i, found %i)\n",
12785 !!encoder->base.crtc, enabled);
12786
12787 if (!encoder->base.crtc) {
12788 bool active;
12789
12790 active = encoder->get_hw_state(encoder, &pipe);
12791 I915_STATE_WARN(active,
12792 "encoder detached but still enabled on pipe %c.\n",
12793 pipe_name(pipe));
12794 }
12795 }
12796 }
12797
12798 static void
12799 verify_crtc_state(struct drm_crtc *crtc,
12800 struct drm_crtc_state *old_crtc_state,
12801 struct drm_crtc_state *new_crtc_state)
12802 {
12803 struct drm_device *dev = crtc->dev;
12804 struct drm_i915_private *dev_priv = to_i915(dev);
12805 struct intel_encoder *encoder;
12806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12807 struct intel_crtc_state *pipe_config, *sw_config;
12808 struct drm_atomic_state *old_state;
12809 bool active;
12810
12811 old_state = old_crtc_state->state;
12812 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12813 pipe_config = to_intel_crtc_state(old_crtc_state);
12814 memset(pipe_config, 0, sizeof(*pipe_config));
12815 pipe_config->base.crtc = crtc;
12816 pipe_config->base.state = old_state;
12817
12818 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12819
12820 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12821
12822 /* we keep both pipes enabled on 830 */
12823 if (IS_I830(dev_priv))
12824 active = new_crtc_state->active;
12825
12826 I915_STATE_WARN(new_crtc_state->active != active,
12827 "crtc active state doesn't match with hw state "
12828 "(expected %i, found %i)\n", new_crtc_state->active, active);
12829
12830 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12831 "transitional active state does not match atomic hw state "
12832 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12833
12834 for_each_encoder_on_crtc(dev, crtc, encoder) {
12835 enum pipe pipe;
12836
12837 active = encoder->get_hw_state(encoder, &pipe);
12838 I915_STATE_WARN(active != new_crtc_state->active,
12839 "[ENCODER:%i] active %i with crtc active %i\n",
12840 encoder->base.base.id, active, new_crtc_state->active);
12841
12842 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12843 "Encoder connected to wrong pipe %c\n",
12844 pipe_name(pipe));
12845
12846 if (active)
12847 encoder->get_config(encoder, pipe_config);
12848 }
12849
12850 intel_crtc_compute_pixel_rate(pipe_config);
12851
12852 if (!new_crtc_state->active)
12853 return;
12854
12855 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12856
12857 sw_config = to_intel_crtc_state(new_crtc_state);
12858 if (!intel_pipe_config_compare(dev_priv, sw_config,
12859 pipe_config, false)) {
12860 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12861 intel_dump_pipe_config(intel_crtc, pipe_config,
12862 "[hw state]");
12863 intel_dump_pipe_config(intel_crtc, sw_config,
12864 "[sw state]");
12865 }
12866 }
12867
12868 static void
12869 intel_verify_planes(struct intel_atomic_state *state)
12870 {
12871 struct intel_plane *plane;
12872 const struct intel_plane_state *plane_state;
12873 int i;
12874
12875 for_each_new_intel_plane_in_state(state, plane,
12876 plane_state, i)
12877 assert_plane(plane, plane_state->slave ||
12878 plane_state->base.visible);
12879 }
12880
12881 static void
12882 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12883 struct intel_shared_dpll *pll,
12884 struct drm_crtc *crtc,
12885 struct drm_crtc_state *new_state)
12886 {
12887 struct intel_dpll_hw_state dpll_hw_state;
12888 unsigned int crtc_mask;
12889 bool active;
12890
12891 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12892
12893 DRM_DEBUG_KMS("%s\n", pll->info->name);
12894
12895 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
12896
12897 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
12898 I915_STATE_WARN(!pll->on && pll->active_mask,
12899 "pll in active use but not on in sw tracking\n");
12900 I915_STATE_WARN(pll->on && !pll->active_mask,
12901 "pll is on but not used by any active crtc\n");
12902 I915_STATE_WARN(pll->on != active,
12903 "pll on state mismatch (expected %i, found %i)\n",
12904 pll->on, active);
12905 }
12906
12907 if (!crtc) {
12908 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12909 "more active pll users than references: %x vs %x\n",
12910 pll->active_mask, pll->state.crtc_mask);
12911
12912 return;
12913 }
12914
12915 crtc_mask = drm_crtc_mask(crtc);
12916
12917 if (new_state->active)
12918 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12919 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12920 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12921 else
12922 I915_STATE_WARN(pll->active_mask & crtc_mask,
12923 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12924 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12925
12926 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12927 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12928 crtc_mask, pll->state.crtc_mask);
12929
12930 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12931 &dpll_hw_state,
12932 sizeof(dpll_hw_state)),
12933 "pll hw state mismatch\n");
12934 }
12935
12936 static void
12937 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12938 struct drm_crtc_state *old_crtc_state,
12939 struct drm_crtc_state *new_crtc_state)
12940 {
12941 struct drm_i915_private *dev_priv = to_i915(dev);
12942 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12943 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12944
12945 if (new_state->shared_dpll)
12946 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12947
12948 if (old_state->shared_dpll &&
12949 old_state->shared_dpll != new_state->shared_dpll) {
12950 unsigned int crtc_mask = drm_crtc_mask(crtc);
12951 struct intel_shared_dpll *pll = old_state->shared_dpll;
12952
12953 I915_STATE_WARN(pll->active_mask & crtc_mask,
12954 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12955 pipe_name(drm_crtc_index(crtc)));
12956 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12957 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12958 pipe_name(drm_crtc_index(crtc)));
12959 }
12960 }
12961
12962 static void
12963 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12964 struct drm_atomic_state *state,
12965 struct drm_crtc_state *old_state,
12966 struct drm_crtc_state *new_state)
12967 {
12968 if (!needs_modeset(new_state) &&
12969 !to_intel_crtc_state(new_state)->update_pipe)
12970 return;
12971
12972 verify_wm_state(crtc, new_state);
12973 verify_connector_state(crtc->dev, state, crtc);
12974 verify_crtc_state(crtc, old_state, new_state);
12975 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12976 }
12977
12978 static void
12979 verify_disabled_dpll_state(struct drm_device *dev)
12980 {
12981 struct drm_i915_private *dev_priv = to_i915(dev);
12982 int i;
12983
12984 for (i = 0; i < dev_priv->num_shared_dpll; i++)
12985 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12986 }
12987
12988 static void
12989 intel_modeset_verify_disabled(struct drm_device *dev,
12990 struct drm_atomic_state *state)
12991 {
12992 verify_encoder_state(dev, state);
12993 verify_connector_state(dev, state, NULL);
12994 verify_disabled_dpll_state(dev);
12995 }
12996
12997 static void update_scanline_offset(const struct intel_crtc_state *crtc_state)
12998 {
12999 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
13000 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13001
13002 /*
13003 * The scanline counter increments at the leading edge of hsync.
13004 *
13005 * On most platforms it starts counting from vtotal-1 on the
13006 * first active line. That means the scanline counter value is
13007 * always one less than what we would expect. Ie. just after
13008 * start of vblank, which also occurs at start of hsync (on the
13009 * last active line), the scanline counter will read vblank_start-1.
13010 *
13011 * On gen2 the scanline counter starts counting from 1 instead
13012 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13013 * to keep the value positive), instead of adding one.
13014 *
13015 * On HSW+ the behaviour of the scanline counter depends on the output
13016 * type. For DP ports it behaves like most other platforms, but on HDMI
13017 * there's an extra 1 line difference. So we need to add two instead of
13018 * one to the value.
13019 *
13020 * On VLV/CHV DSI the scanline counter would appear to increment
13021 * approx. 1/3 of a scanline before start of vblank. Unfortunately
13022 * that means we can't tell whether we're in vblank or not while
13023 * we're on that particular line. We must still set scanline_offset
13024 * to 1 so that the vblank timestamps come out correct when we query
13025 * the scanline counter from within the vblank interrupt handler.
13026 * However if queried just before the start of vblank we'll get an
13027 * answer that's slightly in the future.
13028 */
13029 if (IS_GEN(dev_priv, 2)) {
13030 const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
13031 int vtotal;
13032
13033 vtotal = adjusted_mode->crtc_vtotal;
13034 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13035 vtotal /= 2;
13036
13037 crtc->scanline_offset = vtotal - 1;
13038 } else if (HAS_DDI(dev_priv) &&
13039 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
13040 crtc->scanline_offset = 2;
13041 } else
13042 crtc->scanline_offset = 1;
13043 }
13044
13045 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13046 {
13047 struct drm_device *dev = state->dev;
13048 struct drm_i915_private *dev_priv = to_i915(dev);
13049 struct drm_crtc *crtc;
13050 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13051 int i;
13052
13053 if (!dev_priv->display.crtc_compute_clock)
13054 return;
13055
13056 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13058 struct intel_shared_dpll *old_dpll =
13059 to_intel_crtc_state(old_crtc_state)->shared_dpll;
13060
13061 if (!needs_modeset(new_crtc_state))
13062 continue;
13063
13064 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
13065
13066 if (!old_dpll)
13067 continue;
13068
13069 intel_release_shared_dpll(old_dpll, intel_crtc, state);
13070 }
13071 }
13072
13073 /*
13074 * This implements the workaround described in the "notes" section of the mode
13075 * set sequence documentation. When going from no pipes or single pipe to
13076 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13077 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13078 */
13079 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13080 {
13081 struct drm_crtc_state *crtc_state;
13082 struct intel_crtc *intel_crtc;
13083 struct drm_crtc *crtc;
13084 struct intel_crtc_state *first_crtc_state = NULL;
13085 struct intel_crtc_state *other_crtc_state = NULL;
13086 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13087 int i;
13088
13089 /* look at all crtc's that are going to be enabled in during modeset */
13090 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
13091 intel_crtc = to_intel_crtc(crtc);
13092
13093 if (!crtc_state->active || !needs_modeset(crtc_state))
13094 continue;
13095
13096 if (first_crtc_state) {
13097 other_crtc_state = to_intel_crtc_state(crtc_state);
13098 break;
13099 } else {
13100 first_crtc_state = to_intel_crtc_state(crtc_state);
13101 first_pipe = intel_crtc->pipe;
13102 }
13103 }
13104
13105 /* No workaround needed? */
13106 if (!first_crtc_state)
13107 return 0;
13108
13109 /* w/a possibly needed, check how many crtc's are already enabled. */
13110 for_each_intel_crtc(state->dev, intel_crtc) {
13111 struct intel_crtc_state *pipe_config;
13112
13113 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13114 if (IS_ERR(pipe_config))
13115 return PTR_ERR(pipe_config);
13116
13117 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13118
13119 if (!pipe_config->base.active ||
13120 needs_modeset(&pipe_config->base))
13121 continue;
13122
13123 /* 2 or more enabled crtcs means no need for w/a */
13124 if (enabled_pipe != INVALID_PIPE)
13125 return 0;
13126
13127 enabled_pipe = intel_crtc->pipe;
13128 }
13129
13130 if (enabled_pipe != INVALID_PIPE)
13131 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13132 else if (other_crtc_state)
13133 other_crtc_state->hsw_workaround_pipe = first_pipe;
13134
13135 return 0;
13136 }
13137
13138 static int intel_lock_all_pipes(struct drm_atomic_state *state)
13139 {
13140 struct drm_crtc *crtc;
13141
13142 /* Add all pipes to the state */
13143 for_each_crtc(state->dev, crtc) {
13144 struct drm_crtc_state *crtc_state;
13145
13146 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13147 if (IS_ERR(crtc_state))
13148 return PTR_ERR(crtc_state);
13149 }
13150
13151 return 0;
13152 }
13153
13154 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13155 {
13156 struct drm_crtc *crtc;
13157
13158 /*
13159 * Add all pipes to the state, and force
13160 * a modeset on all the active ones.
13161 */
13162 for_each_crtc(state->dev, crtc) {
13163 struct drm_crtc_state *crtc_state;
13164 int ret;
13165
13166 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13167 if (IS_ERR(crtc_state))
13168 return PTR_ERR(crtc_state);
13169
13170 if (!crtc_state->active || needs_modeset(crtc_state))
13171 continue;
13172
13173 crtc_state->mode_changed = true;
13174
13175 ret = drm_atomic_add_affected_connectors(state, crtc);
13176 if (ret)
13177 return ret;
13178
13179 ret = drm_atomic_add_affected_planes(state, crtc);
13180 if (ret)
13181 return ret;
13182 }
13183
13184 return 0;
13185 }
13186
13187 static int intel_modeset_checks(struct drm_atomic_state *state)
13188 {
13189 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13190 struct drm_i915_private *dev_priv = to_i915(state->dev);
13191 struct drm_crtc *crtc;
13192 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13193 int ret = 0, i;
13194
13195 if (!check_digital_port_conflicts(state)) {
13196 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13197 return -EINVAL;
13198 }
13199
13200 /* keep the current setting */
13201 if (!intel_state->cdclk.force_min_cdclk_changed)
13202 intel_state->cdclk.force_min_cdclk =
13203 dev_priv->cdclk.force_min_cdclk;
13204
13205 intel_state->modeset = true;
13206 intel_state->active_crtcs = dev_priv->active_crtcs;
13207 intel_state->cdclk.logical = dev_priv->cdclk.logical;
13208 intel_state->cdclk.actual = dev_priv->cdclk.actual;
13209 intel_state->cdclk.pipe = INVALID_PIPE;
13210
13211 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13212 if (new_crtc_state->active)
13213 intel_state->active_crtcs |= 1 << i;
13214 else
13215 intel_state->active_crtcs &= ~(1 << i);
13216
13217 if (old_crtc_state->active != new_crtc_state->active)
13218 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13219 }
13220
13221 /*
13222 * See if the config requires any additional preparation, e.g.
13223 * to adjust global state with pipes off. We need to do this
13224 * here so we can get the modeset_pipe updated config for the new
13225 * mode set on this crtc. For other crtcs we need to use the
13226 * adjusted_mode bits in the crtc directly.
13227 */
13228 if (dev_priv->display.modeset_calc_cdclk) {
13229 enum pipe pipe;
13230
13231 ret = dev_priv->display.modeset_calc_cdclk(state);
13232 if (ret < 0)
13233 return ret;
13234
13235 /*
13236 * Writes to dev_priv->cdclk.logical must protected by
13237 * holding all the crtc locks, even if we don't end up
13238 * touching the hardware
13239 */
13240 if (intel_cdclk_changed(&dev_priv->cdclk.logical,
13241 &intel_state->cdclk.logical)) {
13242 ret = intel_lock_all_pipes(state);
13243 if (ret < 0)
13244 return ret;
13245 }
13246
13247 if (is_power_of_2(intel_state->active_crtcs)) {
13248 struct drm_crtc *crtc;
13249 struct drm_crtc_state *crtc_state;
13250
13251 pipe = ilog2(intel_state->active_crtcs);
13252 crtc = &intel_get_crtc_for_pipe(dev_priv, pipe)->base;
13253 crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
13254 if (crtc_state && needs_modeset(crtc_state))
13255 pipe = INVALID_PIPE;
13256 } else {
13257 pipe = INVALID_PIPE;
13258 }
13259
13260 /* All pipes must be switched off while we change the cdclk. */
13261 if (pipe != INVALID_PIPE &&
13262 intel_cdclk_needs_cd2x_update(dev_priv,
13263 &dev_priv->cdclk.actual,
13264 &intel_state->cdclk.actual)) {
13265 ret = intel_lock_all_pipes(state);
13266 if (ret < 0)
13267 return ret;
13268
13269 intel_state->cdclk.pipe = pipe;
13270 } else if (intel_cdclk_needs_modeset(&dev_priv->cdclk.actual,
13271 &intel_state->cdclk.actual)) {
13272 ret = intel_modeset_all_pipes(state);
13273 if (ret < 0)
13274 return ret;
13275
13276 intel_state->cdclk.pipe = INVALID_PIPE;
13277 }
13278
13279 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
13280 intel_state->cdclk.logical.cdclk,
13281 intel_state->cdclk.actual.cdclk);
13282 DRM_DEBUG_KMS("New voltage level calculated to be logical %u, actual %u\n",
13283 intel_state->cdclk.logical.voltage_level,
13284 intel_state->cdclk.actual.voltage_level);
13285 }
13286
13287 intel_modeset_clear_plls(state);
13288
13289 if (IS_HASWELL(dev_priv))
13290 return haswell_mode_set_planes_workaround(state);
13291
13292 return 0;
13293 }
13294
13295 /*
13296 * Handle calculation of various watermark data at the end of the atomic check
13297 * phase. The code here should be run after the per-crtc and per-plane 'check'
13298 * handlers to ensure that all derived state has been updated.
13299 */
13300 static int calc_watermark_data(struct intel_atomic_state *state)
13301 {
13302 struct drm_device *dev = state->base.dev;
13303 struct drm_i915_private *dev_priv = to_i915(dev);
13304
13305 /* Is there platform-specific watermark information to calculate? */
13306 if (dev_priv->display.compute_global_watermarks)
13307 return dev_priv->display.compute_global_watermarks(state);
13308
13309 return 0;
13310 }
13311
13312 /**
13313 * intel_atomic_check - validate state object
13314 * @dev: drm device
13315 * @state: state to validate
13316 */
13317 static int intel_atomic_check(struct drm_device *dev,
13318 struct drm_atomic_state *state)
13319 {
13320 struct drm_i915_private *dev_priv = to_i915(dev);
13321 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13322 struct drm_crtc *crtc;
13323 struct drm_crtc_state *old_crtc_state, *crtc_state;
13324 int ret, i;
13325 bool any_ms = intel_state->cdclk.force_min_cdclk_changed;
13326
13327 /* Catch I915_MODE_FLAG_INHERITED */
13328 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
13329 crtc_state, i) {
13330 if (crtc_state->mode.private_flags !=
13331 old_crtc_state->mode.private_flags)
13332 crtc_state->mode_changed = true;
13333 }
13334
13335 ret = drm_atomic_helper_check_modeset(dev, state);
13336 if (ret)
13337 return ret;
13338
13339 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
13340 struct intel_crtc_state *pipe_config =
13341 to_intel_crtc_state(crtc_state);
13342
13343 if (!needs_modeset(crtc_state))
13344 continue;
13345
13346 if (!crtc_state->enable) {
13347 any_ms = true;
13348 continue;
13349 }
13350
13351 ret = intel_modeset_pipe_config(crtc, pipe_config);
13352 if (ret == -EDEADLK)
13353 return ret;
13354 if (ret) {
13355 intel_dump_pipe_config(to_intel_crtc(crtc),
13356 pipe_config, "[failed]");
13357 return ret;
13358 }
13359
13360 if (intel_pipe_config_compare(dev_priv,
13361 to_intel_crtc_state(old_crtc_state),
13362 pipe_config, true)) {
13363 crtc_state->mode_changed = false;
13364 pipe_config->update_pipe = true;
13365 }
13366
13367 if (needs_modeset(crtc_state))
13368 any_ms = true;
13369
13370 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13371 needs_modeset(crtc_state) ?
13372 "[modeset]" : "[fastset]");
13373 }
13374
13375 ret = drm_dp_mst_atomic_check(state);
13376 if (ret)
13377 return ret;
13378
13379 if (any_ms) {
13380 ret = intel_modeset_checks(state);
13381
13382 if (ret)
13383 return ret;
13384 } else {
13385 intel_state->cdclk.logical = dev_priv->cdclk.logical;
13386 }
13387
13388 ret = icl_add_linked_planes(intel_state);
13389 if (ret)
13390 return ret;
13391
13392 ret = drm_atomic_helper_check_planes(dev, state);
13393 if (ret)
13394 return ret;
13395
13396 intel_fbc_choose_crtc(dev_priv, intel_state);
13397 return calc_watermark_data(intel_state);
13398 }
13399
13400 static int intel_atomic_prepare_commit(struct drm_device *dev,
13401 struct drm_atomic_state *state)
13402 {
13403 return drm_atomic_helper_prepare_planes(dev, state);
13404 }
13405
13406 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13407 {
13408 struct drm_device *dev = crtc->base.dev;
13409 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
13410
13411 if (!vblank->max_vblank_count)
13412 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
13413
13414 return dev->driver->get_vblank_counter(dev, crtc->pipe);
13415 }
13416
13417 static void intel_update_crtc(struct drm_crtc *crtc,
13418 struct drm_atomic_state *state,
13419 struct drm_crtc_state *old_crtc_state,
13420 struct drm_crtc_state *new_crtc_state)
13421 {
13422 struct drm_device *dev = crtc->dev;
13423 struct drm_i915_private *dev_priv = to_i915(dev);
13424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13425 struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
13426 bool modeset = needs_modeset(new_crtc_state);
13427 struct intel_plane_state *new_plane_state =
13428 intel_atomic_get_new_plane_state(to_intel_atomic_state(state),
13429 to_intel_plane(crtc->primary));
13430
13431 if (modeset) {
13432 update_scanline_offset(pipe_config);
13433 dev_priv->display.crtc_enable(pipe_config, state);
13434
13435 /* vblanks work again, re-enable pipe CRC. */
13436 intel_crtc_enable_pipe_crc(intel_crtc);
13437 } else {
13438 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
13439 pipe_config);
13440
13441 if (pipe_config->update_pipe)
13442 intel_encoders_update_pipe(crtc, pipe_config, state);
13443 }
13444
13445 if (pipe_config->update_pipe && !pipe_config->enable_fbc)
13446 intel_fbc_disable(intel_crtc);
13447 else if (new_plane_state)
13448 intel_fbc_enable(intel_crtc, pipe_config, new_plane_state);
13449
13450 intel_begin_crtc_commit(to_intel_atomic_state(state), intel_crtc);
13451
13452 if (INTEL_GEN(dev_priv) >= 9)
13453 skl_update_planes_on_crtc(to_intel_atomic_state(state), intel_crtc);
13454 else
13455 i9xx_update_planes_on_crtc(to_intel_atomic_state(state), intel_crtc);
13456
13457 intel_finish_crtc_commit(to_intel_atomic_state(state), intel_crtc);
13458 }
13459
13460 static void intel_update_crtcs(struct drm_atomic_state *state)
13461 {
13462 struct drm_crtc *crtc;
13463 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13464 int i;
13465
13466 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13467 if (!new_crtc_state->active)
13468 continue;
13469
13470 intel_update_crtc(crtc, state, old_crtc_state,
13471 new_crtc_state);
13472 }
13473 }
13474
13475 static void skl_update_crtcs(struct drm_atomic_state *state)
13476 {
13477 struct drm_i915_private *dev_priv = to_i915(state->dev);
13478 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13479 struct drm_crtc *crtc;
13480 struct intel_crtc *intel_crtc;
13481 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13482 struct intel_crtc_state *cstate;
13483 unsigned int updated = 0;
13484 bool progress;
13485 enum pipe pipe;
13486 int i;
13487 u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
13488 u8 required_slices = intel_state->wm_results.ddb.enabled_slices;
13489 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
13490
13491 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
13492 /* ignore allocations for crtc's that have been turned off. */
13493 if (new_crtc_state->active)
13494 entries[i] = to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
13495
13496 /* If 2nd DBuf slice required, enable it here */
13497 if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices)
13498 icl_dbuf_slices_update(dev_priv, required_slices);
13499
13500 /*
13501 * Whenever the number of active pipes changes, we need to make sure we
13502 * update the pipes in the right order so that their ddb allocations
13503 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
13504 * cause pipe underruns and other bad stuff.
13505 */
13506 do {
13507 progress = false;
13508
13509 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13510 bool vbl_wait = false;
13511 unsigned int cmask = drm_crtc_mask(crtc);
13512
13513 intel_crtc = to_intel_crtc(crtc);
13514 cstate = to_intel_crtc_state(new_crtc_state);
13515 pipe = intel_crtc->pipe;
13516
13517 if (updated & cmask || !cstate->base.active)
13518 continue;
13519
13520 if (skl_ddb_allocation_overlaps(&cstate->wm.skl.ddb,
13521 entries,
13522 INTEL_INFO(dev_priv)->num_pipes, i))
13523 continue;
13524
13525 updated |= cmask;
13526 entries[i] = cstate->wm.skl.ddb;
13527
13528 /*
13529 * If this is an already active pipe, it's DDB changed,
13530 * and this isn't the last pipe that needs updating
13531 * then we need to wait for a vblank to pass for the
13532 * new ddb allocation to take effect.
13533 */
13534 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
13535 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
13536 !new_crtc_state->active_changed &&
13537 intel_state->wm_results.dirty_pipes != updated)
13538 vbl_wait = true;
13539
13540 intel_update_crtc(crtc, state, old_crtc_state,
13541 new_crtc_state);
13542
13543 if (vbl_wait)
13544 intel_wait_for_vblank(dev_priv, pipe);
13545
13546 progress = true;
13547 }
13548 } while (progress);
13549
13550 /* If 2nd DBuf slice is no more required disable it */
13551 if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices)
13552 icl_dbuf_slices_update(dev_priv, required_slices);
13553 }
13554
13555 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
13556 {
13557 struct intel_atomic_state *state, *next;
13558 struct llist_node *freed;
13559
13560 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
13561 llist_for_each_entry_safe(state, next, freed, freed)
13562 drm_atomic_state_put(&state->base);
13563 }
13564
13565 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
13566 {
13567 struct drm_i915_private *dev_priv =
13568 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
13569
13570 intel_atomic_helper_free_state(dev_priv);
13571 }
13572
13573 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
13574 {
13575 struct wait_queue_entry wait_fence, wait_reset;
13576 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
13577
13578 init_wait_entry(&wait_fence, 0);
13579 init_wait_entry(&wait_reset, 0);
13580 for (;;) {
13581 prepare_to_wait(&intel_state->commit_ready.wait,
13582 &wait_fence, TASK_UNINTERRUPTIBLE);
13583 prepare_to_wait(&dev_priv->gpu_error.wait_queue,
13584 &wait_reset, TASK_UNINTERRUPTIBLE);
13585
13586
13587 if (i915_sw_fence_done(&intel_state->commit_ready)
13588 || test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
13589 break;
13590
13591 schedule();
13592 }
13593 finish_wait(&intel_state->commit_ready.wait, &wait_fence);
13594 finish_wait(&dev_priv->gpu_error.wait_queue, &wait_reset);
13595 }
13596
13597 static void intel_atomic_cleanup_work(struct work_struct *work)
13598 {
13599 struct drm_atomic_state *state =
13600 container_of(work, struct drm_atomic_state, commit_work);
13601 struct drm_i915_private *i915 = to_i915(state->dev);
13602
13603 drm_atomic_helper_cleanup_planes(&i915->drm, state);
13604 drm_atomic_helper_commit_cleanup_done(state);
13605 drm_atomic_state_put(state);
13606
13607 intel_atomic_helper_free_state(i915);
13608 }
13609
13610 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13611 {
13612 struct drm_device *dev = state->dev;
13613 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13614 struct drm_i915_private *dev_priv = to_i915(dev);
13615 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
13616 struct intel_crtc_state *new_intel_crtc_state, *old_intel_crtc_state;
13617 struct drm_crtc *crtc;
13618 struct intel_crtc *intel_crtc;
13619 u64 put_domains[I915_MAX_PIPES] = {};
13620 intel_wakeref_t wakeref = 0;
13621 int i;
13622
13623 intel_atomic_commit_fence_wait(intel_state);
13624
13625 drm_atomic_helper_wait_for_dependencies(state);
13626
13627 if (intel_state->modeset)
13628 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13629
13630 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13631 old_intel_crtc_state = to_intel_crtc_state(old_crtc_state);
13632 new_intel_crtc_state = to_intel_crtc_state(new_crtc_state);
13633 intel_crtc = to_intel_crtc(crtc);
13634
13635 if (needs_modeset(new_crtc_state) ||
13636 to_intel_crtc_state(new_crtc_state)->update_pipe) {
13637
13638 put_domains[intel_crtc->pipe] =
13639 modeset_get_crtc_power_domains(crtc,
13640 new_intel_crtc_state);
13641 }
13642
13643 if (!needs_modeset(new_crtc_state))
13644 continue;
13645
13646 intel_pre_plane_update(old_intel_crtc_state, new_intel_crtc_state);
13647
13648 if (old_crtc_state->active) {
13649 intel_crtc_disable_planes(intel_state, intel_crtc);
13650
13651 /*
13652 * We need to disable pipe CRC before disabling the pipe,
13653 * or we race against vblank off.
13654 */
13655 intel_crtc_disable_pipe_crc(intel_crtc);
13656
13657 dev_priv->display.crtc_disable(old_intel_crtc_state, state);
13658 intel_crtc->active = false;
13659 intel_fbc_disable(intel_crtc);
13660 intel_disable_shared_dpll(old_intel_crtc_state);
13661
13662 /*
13663 * Underruns don't always raise
13664 * interrupts, so check manually.
13665 */
13666 intel_check_cpu_fifo_underruns(dev_priv);
13667 intel_check_pch_fifo_underruns(dev_priv);
13668
13669 /* FIXME unify this for all platforms */
13670 if (!new_crtc_state->active &&
13671 !HAS_GMCH(dev_priv) &&
13672 dev_priv->display.initial_watermarks)
13673 dev_priv->display.initial_watermarks(intel_state,
13674 new_intel_crtc_state);
13675 }
13676 }
13677
13678 /* FIXME: Eventually get rid of our intel_crtc->config pointer */
13679 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i)
13680 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
13681
13682 if (intel_state->modeset) {
13683 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13684
13685 intel_set_cdclk_pre_plane_update(dev_priv,
13686 &intel_state->cdclk.actual,
13687 &dev_priv->cdclk.actual,
13688 intel_state->cdclk.pipe);
13689
13690 /*
13691 * SKL workaround: bspec recommends we disable the SAGV when we
13692 * have more then one pipe enabled
13693 */
13694 if (!intel_can_enable_sagv(state))
13695 intel_disable_sagv(dev_priv);
13696
13697 intel_modeset_verify_disabled(dev, state);
13698 }
13699
13700 /* Complete the events for pipes that have now been disabled */
13701 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13702 bool modeset = needs_modeset(new_crtc_state);
13703
13704 /* Complete events for now disable pipes here. */
13705 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
13706 spin_lock_irq(&dev->event_lock);
13707 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
13708 spin_unlock_irq(&dev->event_lock);
13709
13710 new_crtc_state->event = NULL;
13711 }
13712 }
13713
13714 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13715 dev_priv->display.update_crtcs(state);
13716
13717 if (intel_state->modeset)
13718 intel_set_cdclk_post_plane_update(dev_priv,
13719 &intel_state->cdclk.actual,
13720 &dev_priv->cdclk.actual,
13721 intel_state->cdclk.pipe);
13722
13723 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13724 * already, but still need the state for the delayed optimization. To
13725 * fix this:
13726 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13727 * - schedule that vblank worker _before_ calling hw_done
13728 * - at the start of commit_tail, cancel it _synchrously
13729 * - switch over to the vblank wait helper in the core after that since
13730 * we don't need out special handling any more.
13731 */
13732 drm_atomic_helper_wait_for_flip_done(dev, state);
13733
13734 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13735 new_intel_crtc_state = to_intel_crtc_state(new_crtc_state);
13736
13737 if (new_crtc_state->active &&
13738 !needs_modeset(new_crtc_state) &&
13739 (new_intel_crtc_state->base.color_mgmt_changed ||
13740 new_intel_crtc_state->update_pipe))
13741 intel_color_load_luts(new_intel_crtc_state);
13742 }
13743
13744 /*
13745 * Now that the vblank has passed, we can go ahead and program the
13746 * optimal watermarks on platforms that need two-step watermark
13747 * programming.
13748 *
13749 * TODO: Move this (and other cleanup) to an async worker eventually.
13750 */
13751 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13752 new_intel_crtc_state = to_intel_crtc_state(new_crtc_state);
13753
13754 if (dev_priv->display.optimize_watermarks)
13755 dev_priv->display.optimize_watermarks(intel_state,
13756 new_intel_crtc_state);
13757 }
13758
13759 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13760 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13761
13762 if (put_domains[i])
13763 modeset_put_power_domains(dev_priv, put_domains[i]);
13764
13765 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
13766 }
13767
13768 if (intel_state->modeset)
13769 intel_verify_planes(intel_state);
13770
13771 if (intel_state->modeset && intel_can_enable_sagv(state))
13772 intel_enable_sagv(dev_priv);
13773
13774 drm_atomic_helper_commit_hw_done(state);
13775
13776 if (intel_state->modeset) {
13777 /* As one of the primary mmio accessors, KMS has a high
13778 * likelihood of triggering bugs in unclaimed access. After we
13779 * finish modesetting, see if an error has been flagged, and if
13780 * so enable debugging for the next modeset - and hope we catch
13781 * the culprit.
13782 */
13783 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
13784 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
13785 }
13786
13787 /*
13788 * Defer the cleanup of the old state to a separate worker to not
13789 * impede the current task (userspace for blocking modesets) that
13790 * are executed inline. For out-of-line asynchronous modesets/flips,
13791 * deferring to a new worker seems overkill, but we would place a
13792 * schedule point (cond_resched()) here anyway to keep latencies
13793 * down.
13794 */
13795 INIT_WORK(&state->commit_work, intel_atomic_cleanup_work);
13796 queue_work(system_highpri_wq, &state->commit_work);
13797 }
13798
13799 static void intel_atomic_commit_work(struct work_struct *work)
13800 {
13801 struct drm_atomic_state *state =
13802 container_of(work, struct drm_atomic_state, commit_work);
13803
13804 intel_atomic_commit_tail(state);
13805 }
13806
13807 static int __i915_sw_fence_call
13808 intel_atomic_commit_ready(struct i915_sw_fence *fence,
13809 enum i915_sw_fence_notify notify)
13810 {
13811 struct intel_atomic_state *state =
13812 container_of(fence, struct intel_atomic_state, commit_ready);
13813
13814 switch (notify) {
13815 case FENCE_COMPLETE:
13816 /* we do blocking waits in the worker, nothing to do here */
13817 break;
13818 case FENCE_FREE:
13819 {
13820 struct intel_atomic_helper *helper =
13821 &to_i915(state->base.dev)->atomic_helper;
13822
13823 if (llist_add(&state->freed, &helper->free_list))
13824 schedule_work(&helper->free_work);
13825 break;
13826 }
13827 }
13828
13829 return NOTIFY_DONE;
13830 }
13831
13832 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13833 {
13834 struct drm_plane_state *old_plane_state, *new_plane_state;
13835 struct drm_plane *plane;
13836 int i;
13837
13838 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
13839 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
13840 intel_fb_obj(new_plane_state->fb),
13841 to_intel_plane(plane)->frontbuffer_bit);
13842 }
13843
13844 /**
13845 * intel_atomic_commit - commit validated state object
13846 * @dev: DRM device
13847 * @state: the top-level driver state object
13848 * @nonblock: nonblocking commit
13849 *
13850 * This function commits a top-level state object that has been validated
13851 * with drm_atomic_helper_check().
13852 *
13853 * RETURNS
13854 * Zero for success or -errno.
13855 */
13856 static int intel_atomic_commit(struct drm_device *dev,
13857 struct drm_atomic_state *state,
13858 bool nonblock)
13859 {
13860 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13861 struct drm_i915_private *dev_priv = to_i915(dev);
13862 int ret = 0;
13863
13864 drm_atomic_state_get(state);
13865 i915_sw_fence_init(&intel_state->commit_ready,
13866 intel_atomic_commit_ready);
13867
13868 /*
13869 * The intel_legacy_cursor_update() fast path takes care
13870 * of avoiding the vblank waits for simple cursor
13871 * movement and flips. For cursor on/off and size changes,
13872 * we want to perform the vblank waits so that watermark
13873 * updates happen during the correct frames. Gen9+ have
13874 * double buffered watermarks and so shouldn't need this.
13875 *
13876 * Unset state->legacy_cursor_update before the call to
13877 * drm_atomic_helper_setup_commit() because otherwise
13878 * drm_atomic_helper_wait_for_flip_done() is a noop and
13879 * we get FIFO underruns because we didn't wait
13880 * for vblank.
13881 *
13882 * FIXME doing watermarks and fb cleanup from a vblank worker
13883 * (assuming we had any) would solve these problems.
13884 */
13885 if (INTEL_GEN(dev_priv) < 9 && state->legacy_cursor_update) {
13886 struct intel_crtc_state *new_crtc_state;
13887 struct intel_crtc *crtc;
13888 int i;
13889
13890 for_each_new_intel_crtc_in_state(intel_state, crtc, new_crtc_state, i)
13891 if (new_crtc_state->wm.need_postvbl_update ||
13892 new_crtc_state->update_wm_post)
13893 state->legacy_cursor_update = false;
13894 }
13895
13896 ret = intel_atomic_prepare_commit(dev, state);
13897 if (ret) {
13898 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13899 i915_sw_fence_commit(&intel_state->commit_ready);
13900 return ret;
13901 }
13902
13903 ret = drm_atomic_helper_setup_commit(state, nonblock);
13904 if (!ret)
13905 ret = drm_atomic_helper_swap_state(state, true);
13906
13907 if (ret) {
13908 i915_sw_fence_commit(&intel_state->commit_ready);
13909
13910 drm_atomic_helper_cleanup_planes(dev, state);
13911 return ret;
13912 }
13913 dev_priv->wm.distrust_bios_wm = false;
13914 intel_shared_dpll_swap_state(state);
13915 intel_atomic_track_fbs(state);
13916
13917 if (intel_state->modeset) {
13918 memcpy(dev_priv->min_cdclk, intel_state->min_cdclk,
13919 sizeof(intel_state->min_cdclk));
13920 memcpy(dev_priv->min_voltage_level,
13921 intel_state->min_voltage_level,
13922 sizeof(intel_state->min_voltage_level));
13923 dev_priv->active_crtcs = intel_state->active_crtcs;
13924 dev_priv->cdclk.force_min_cdclk =
13925 intel_state->cdclk.force_min_cdclk;
13926
13927 intel_cdclk_swap_state(intel_state);
13928 }
13929
13930 drm_atomic_state_get(state);
13931 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13932
13933 i915_sw_fence_commit(&intel_state->commit_ready);
13934 if (nonblock && intel_state->modeset) {
13935 queue_work(dev_priv->modeset_wq, &state->commit_work);
13936 } else if (nonblock) {
13937 queue_work(system_unbound_wq, &state->commit_work);
13938 } else {
13939 if (intel_state->modeset)
13940 flush_workqueue(dev_priv->modeset_wq);
13941 intel_atomic_commit_tail(state);
13942 }
13943
13944 return 0;
13945 }
13946
13947 static const struct drm_crtc_funcs intel_crtc_funcs = {
13948 .gamma_set = drm_atomic_helper_legacy_gamma_set,
13949 .set_config = drm_atomic_helper_set_config,
13950 .destroy = intel_crtc_destroy,
13951 .page_flip = drm_atomic_helper_page_flip,
13952 .atomic_duplicate_state = intel_crtc_duplicate_state,
13953 .atomic_destroy_state = intel_crtc_destroy_state,
13954 .set_crc_source = intel_crtc_set_crc_source,
13955 .verify_crc_source = intel_crtc_verify_crc_source,
13956 .get_crc_sources = intel_crtc_get_crc_sources,
13957 };
13958
13959 struct wait_rps_boost {
13960 struct wait_queue_entry wait;
13961
13962 struct drm_crtc *crtc;
13963 struct i915_request *request;
13964 };
13965
13966 static int do_rps_boost(struct wait_queue_entry *_wait,
13967 unsigned mode, int sync, void *key)
13968 {
13969 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
13970 struct i915_request *rq = wait->request;
13971
13972 /*
13973 * If we missed the vblank, but the request is already running it
13974 * is reasonable to assume that it will complete before the next
13975 * vblank without our intervention, so leave RPS alone.
13976 */
13977 if (!i915_request_started(rq))
13978 gen6_rps_boost(rq);
13979 i915_request_put(rq);
13980
13981 drm_crtc_vblank_put(wait->crtc);
13982
13983 list_del(&wait->wait.entry);
13984 kfree(wait);
13985 return 1;
13986 }
13987
13988 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
13989 struct dma_fence *fence)
13990 {
13991 struct wait_rps_boost *wait;
13992
13993 if (!dma_fence_is_i915(fence))
13994 return;
13995
13996 if (INTEL_GEN(to_i915(crtc->dev)) < 6)
13997 return;
13998
13999 if (drm_crtc_vblank_get(crtc))
14000 return;
14001
14002 wait = kmalloc(sizeof(*wait), GFP_KERNEL);
14003 if (!wait) {
14004 drm_crtc_vblank_put(crtc);
14005 return;
14006 }
14007
14008 wait->request = to_request(dma_fence_get(fence));
14009 wait->crtc = crtc;
14010
14011 wait->wait.func = do_rps_boost;
14012 wait->wait.flags = 0;
14013
14014 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
14015 }
14016
14017 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
14018 {
14019 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
14020 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
14021 struct drm_framebuffer *fb = plane_state->base.fb;
14022 struct i915_vma *vma;
14023
14024 if (plane->id == PLANE_CURSOR &&
14025 INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
14026 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14027 const int align = intel_cursor_alignment(dev_priv);
14028 int err;
14029
14030 err = i915_gem_object_attach_phys(obj, align);
14031 if (err)
14032 return err;
14033 }
14034
14035 vma = intel_pin_and_fence_fb_obj(fb,
14036 &plane_state->view,
14037 intel_plane_uses_fence(plane_state),
14038 &plane_state->flags);
14039 if (IS_ERR(vma))
14040 return PTR_ERR(vma);
14041
14042 plane_state->vma = vma;
14043
14044 return 0;
14045 }
14046
14047 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
14048 {
14049 struct i915_vma *vma;
14050
14051 vma = fetch_and_zero(&old_plane_state->vma);
14052 if (vma)
14053 intel_unpin_fb_vma(vma, old_plane_state->flags);
14054 }
14055
14056 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
14057 {
14058 struct i915_sched_attr attr = {
14059 .priority = I915_PRIORITY_DISPLAY,
14060 };
14061
14062 i915_gem_object_wait_priority(obj, 0, &attr);
14063 }
14064
14065 /**
14066 * intel_prepare_plane_fb - Prepare fb for usage on plane
14067 * @plane: drm plane to prepare for
14068 * @new_state: the plane state being prepared
14069 *
14070 * Prepares a framebuffer for usage on a display plane. Generally this
14071 * involves pinning the underlying object and updating the frontbuffer tracking
14072 * bits. Some older platforms need special physical address handling for
14073 * cursor planes.
14074 *
14075 * Must be called with struct_mutex held.
14076 *
14077 * Returns 0 on success, negative error code on failure.
14078 */
14079 int
14080 intel_prepare_plane_fb(struct drm_plane *plane,
14081 struct drm_plane_state *new_state)
14082 {
14083 struct intel_atomic_state *intel_state =
14084 to_intel_atomic_state(new_state->state);
14085 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14086 struct drm_framebuffer *fb = new_state->fb;
14087 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14088 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14089 int ret;
14090
14091 if (old_obj) {
14092 struct drm_crtc_state *crtc_state =
14093 drm_atomic_get_new_crtc_state(new_state->state,
14094 plane->state->crtc);
14095
14096 /* Big Hammer, we also need to ensure that any pending
14097 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14098 * current scanout is retired before unpinning the old
14099 * framebuffer. Note that we rely on userspace rendering
14100 * into the buffer attached to the pipe they are waiting
14101 * on. If not, userspace generates a GPU hang with IPEHR
14102 * point to the MI_WAIT_FOR_EVENT.
14103 *
14104 * This should only fail upon a hung GPU, in which case we
14105 * can safely continue.
14106 */
14107 if (needs_modeset(crtc_state)) {
14108 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14109 old_obj->resv, NULL,
14110 false, 0,
14111 GFP_KERNEL);
14112 if (ret < 0)
14113 return ret;
14114 }
14115 }
14116
14117 if (new_state->fence) { /* explicit fencing */
14118 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14119 new_state->fence,
14120 I915_FENCE_TIMEOUT,
14121 GFP_KERNEL);
14122 if (ret < 0)
14123 return ret;
14124 }
14125
14126 if (!obj)
14127 return 0;
14128
14129 ret = i915_gem_object_pin_pages(obj);
14130 if (ret)
14131 return ret;
14132
14133 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
14134 if (ret) {
14135 i915_gem_object_unpin_pages(obj);
14136 return ret;
14137 }
14138
14139 ret = intel_plane_pin_fb(to_intel_plane_state(new_state));
14140
14141 mutex_unlock(&dev_priv->drm.struct_mutex);
14142 i915_gem_object_unpin_pages(obj);
14143 if (ret)
14144 return ret;
14145
14146 fb_obj_bump_render_priority(obj);
14147 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14148
14149 if (!new_state->fence) { /* implicit fencing */
14150 struct dma_fence *fence;
14151
14152 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14153 obj->resv, NULL,
14154 false, I915_FENCE_TIMEOUT,
14155 GFP_KERNEL);
14156 if (ret < 0)
14157 return ret;
14158
14159 fence = reservation_object_get_excl_rcu(obj->resv);
14160 if (fence) {
14161 add_rps_boost_after_vblank(new_state->crtc, fence);
14162 dma_fence_put(fence);
14163 }
14164 } else {
14165 add_rps_boost_after_vblank(new_state->crtc, new_state->fence);
14166 }
14167
14168 /*
14169 * We declare pageflips to be interactive and so merit a small bias
14170 * towards upclocking to deliver the frame on time. By only changing
14171 * the RPS thresholds to sample more regularly and aim for higher
14172 * clocks we can hopefully deliver low power workloads (like kodi)
14173 * that are not quite steady state without resorting to forcing
14174 * maximum clocks following a vblank miss (see do_rps_boost()).
14175 */
14176 if (!intel_state->rps_interactive) {
14177 intel_rps_mark_interactive(dev_priv, true);
14178 intel_state->rps_interactive = true;
14179 }
14180
14181 return 0;
14182 }
14183
14184 /**
14185 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14186 * @plane: drm plane to clean up for
14187 * @old_state: the state from the previous modeset
14188 *
14189 * Cleans up a framebuffer that has just been removed from a plane.
14190 *
14191 * Must be called with struct_mutex held.
14192 */
14193 void
14194 intel_cleanup_plane_fb(struct drm_plane *plane,
14195 struct drm_plane_state *old_state)
14196 {
14197 struct intel_atomic_state *intel_state =
14198 to_intel_atomic_state(old_state->state);
14199 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14200
14201 if (intel_state->rps_interactive) {
14202 intel_rps_mark_interactive(dev_priv, false);
14203 intel_state->rps_interactive = false;
14204 }
14205
14206 /* Should only be called after a successful intel_prepare_plane_fb()! */
14207 mutex_lock(&dev_priv->drm.struct_mutex);
14208 intel_plane_unpin_fb(to_intel_plane_state(old_state));
14209 mutex_unlock(&dev_priv->drm.struct_mutex);
14210 }
14211
14212 int
14213 skl_max_scale(const struct intel_crtc_state *crtc_state,
14214 u32 pixel_format)
14215 {
14216 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
14217 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14218 int max_scale, mult;
14219 int crtc_clock, max_dotclk, tmpclk1, tmpclk2;
14220
14221 if (!crtc_state->base.enable)
14222 return DRM_PLANE_HELPER_NO_SCALING;
14223
14224 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14225 max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
14226
14227 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
14228 max_dotclk *= 2;
14229
14230 if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
14231 return DRM_PLANE_HELPER_NO_SCALING;
14232
14233 /*
14234 * skl max scale is lower of:
14235 * close to 3 but not 3, -1 is for that purpose
14236 * or
14237 * cdclk/crtc_clock
14238 */
14239 mult = is_planar_yuv_format(pixel_format) ? 2 : 3;
14240 tmpclk1 = (1 << 16) * mult - 1;
14241 tmpclk2 = (1 << 8) * ((max_dotclk << 8) / crtc_clock);
14242 max_scale = min(tmpclk1, tmpclk2);
14243
14244 return max_scale;
14245 }
14246
14247 static void intel_begin_crtc_commit(struct intel_atomic_state *state,
14248 struct intel_crtc *crtc)
14249 {
14250 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14251 struct intel_crtc_state *old_crtc_state =
14252 intel_atomic_get_old_crtc_state(state, crtc);
14253 struct intel_crtc_state *new_crtc_state =
14254 intel_atomic_get_new_crtc_state(state, crtc);
14255 bool modeset = needs_modeset(&new_crtc_state->base);
14256
14257 /* Perform vblank evasion around commit operation */
14258 intel_pipe_update_start(new_crtc_state);
14259
14260 if (modeset)
14261 goto out;
14262
14263 if (new_crtc_state->base.color_mgmt_changed ||
14264 new_crtc_state->update_pipe)
14265 intel_color_commit(new_crtc_state);
14266
14267 if (new_crtc_state->update_pipe)
14268 intel_update_pipe_config(old_crtc_state, new_crtc_state);
14269 else if (INTEL_GEN(dev_priv) >= 9)
14270 skl_detach_scalers(new_crtc_state);
14271
14272 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
14273 bdw_set_pipemisc(new_crtc_state);
14274
14275 out:
14276 if (dev_priv->display.atomic_update_watermarks)
14277 dev_priv->display.atomic_update_watermarks(state,
14278 new_crtc_state);
14279 }
14280
14281 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
14282 struct intel_crtc_state *crtc_state)
14283 {
14284 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14285
14286 if (!IS_GEN(dev_priv, 2))
14287 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
14288
14289 if (crtc_state->has_pch_encoder) {
14290 enum pipe pch_transcoder =
14291 intel_crtc_pch_transcoder(crtc);
14292
14293 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
14294 }
14295 }
14296
14297 static void intel_finish_crtc_commit(struct intel_atomic_state *state,
14298 struct intel_crtc *crtc)
14299 {
14300 struct intel_crtc_state *old_crtc_state =
14301 intel_atomic_get_old_crtc_state(state, crtc);
14302 struct intel_crtc_state *new_crtc_state =
14303 intel_atomic_get_new_crtc_state(state, crtc);
14304
14305 intel_pipe_update_end(new_crtc_state);
14306
14307 if (new_crtc_state->update_pipe &&
14308 !needs_modeset(&new_crtc_state->base) &&
14309 old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED)
14310 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14311 }
14312
14313 /**
14314 * intel_plane_destroy - destroy a plane
14315 * @plane: plane to destroy
14316 *
14317 * Common destruction function for all types of planes (primary, cursor,
14318 * sprite).
14319 */
14320 void intel_plane_destroy(struct drm_plane *plane)
14321 {
14322 drm_plane_cleanup(plane);
14323 kfree(to_intel_plane(plane));
14324 }
14325
14326 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
14327 u32 format, u64 modifier)
14328 {
14329 switch (modifier) {
14330 case DRM_FORMAT_MOD_LINEAR:
14331 case I915_FORMAT_MOD_X_TILED:
14332 break;
14333 default:
14334 return false;
14335 }
14336
14337 switch (format) {
14338 case DRM_FORMAT_C8:
14339 case DRM_FORMAT_RGB565:
14340 case DRM_FORMAT_XRGB1555:
14341 case DRM_FORMAT_XRGB8888:
14342 return modifier == DRM_FORMAT_MOD_LINEAR ||
14343 modifier == I915_FORMAT_MOD_X_TILED;
14344 default:
14345 return false;
14346 }
14347 }
14348
14349 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
14350 u32 format, u64 modifier)
14351 {
14352 switch (modifier) {
14353 case DRM_FORMAT_MOD_LINEAR:
14354 case I915_FORMAT_MOD_X_TILED:
14355 break;
14356 default:
14357 return false;
14358 }
14359
14360 switch (format) {
14361 case DRM_FORMAT_C8:
14362 case DRM_FORMAT_RGB565:
14363 case DRM_FORMAT_XRGB8888:
14364 case DRM_FORMAT_XBGR8888:
14365 case DRM_FORMAT_XRGB2101010:
14366 case DRM_FORMAT_XBGR2101010:
14367 return modifier == DRM_FORMAT_MOD_LINEAR ||
14368 modifier == I915_FORMAT_MOD_X_TILED;
14369 default:
14370 return false;
14371 }
14372 }
14373
14374 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
14375 u32 format, u64 modifier)
14376 {
14377 return modifier == DRM_FORMAT_MOD_LINEAR &&
14378 format == DRM_FORMAT_ARGB8888;
14379 }
14380
14381 static const struct drm_plane_funcs i965_plane_funcs = {
14382 .update_plane = drm_atomic_helper_update_plane,
14383 .disable_plane = drm_atomic_helper_disable_plane,
14384 .destroy = intel_plane_destroy,
14385 .atomic_get_property = intel_plane_atomic_get_property,
14386 .atomic_set_property = intel_plane_atomic_set_property,
14387 .atomic_duplicate_state = intel_plane_duplicate_state,
14388 .atomic_destroy_state = intel_plane_destroy_state,
14389 .format_mod_supported = i965_plane_format_mod_supported,
14390 };
14391
14392 static const struct drm_plane_funcs i8xx_plane_funcs = {
14393 .update_plane = drm_atomic_helper_update_plane,
14394 .disable_plane = drm_atomic_helper_disable_plane,
14395 .destroy = intel_plane_destroy,
14396 .atomic_get_property = intel_plane_atomic_get_property,
14397 .atomic_set_property = intel_plane_atomic_set_property,
14398 .atomic_duplicate_state = intel_plane_duplicate_state,
14399 .atomic_destroy_state = intel_plane_destroy_state,
14400 .format_mod_supported = i8xx_plane_format_mod_supported,
14401 };
14402
14403 static int
14404 intel_legacy_cursor_update(struct drm_plane *plane,
14405 struct drm_crtc *crtc,
14406 struct drm_framebuffer *fb,
14407 int crtc_x, int crtc_y,
14408 unsigned int crtc_w, unsigned int crtc_h,
14409 u32 src_x, u32 src_y,
14410 u32 src_w, u32 src_h,
14411 struct drm_modeset_acquire_ctx *ctx)
14412 {
14413 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
14414 int ret;
14415 struct drm_plane_state *old_plane_state, *new_plane_state;
14416 struct intel_plane *intel_plane = to_intel_plane(plane);
14417 struct drm_framebuffer *old_fb;
14418 struct intel_crtc_state *crtc_state =
14419 to_intel_crtc_state(crtc->state);
14420 struct intel_crtc_state *new_crtc_state;
14421
14422 /*
14423 * When crtc is inactive or there is a modeset pending,
14424 * wait for it to complete in the slowpath
14425 */
14426 if (!crtc_state->base.active || needs_modeset(&crtc_state->base) ||
14427 crtc_state->update_pipe)
14428 goto slow;
14429
14430 old_plane_state = plane->state;
14431 /*
14432 * Don't do an async update if there is an outstanding commit modifying
14433 * the plane. This prevents our async update's changes from getting
14434 * overridden by a previous synchronous update's state.
14435 */
14436 if (old_plane_state->commit &&
14437 !try_wait_for_completion(&old_plane_state->commit->hw_done))
14438 goto slow;
14439
14440 /*
14441 * If any parameters change that may affect watermarks,
14442 * take the slowpath. Only changing fb or position should be
14443 * in the fastpath.
14444 */
14445 if (old_plane_state->crtc != crtc ||
14446 old_plane_state->src_w != src_w ||
14447 old_plane_state->src_h != src_h ||
14448 old_plane_state->crtc_w != crtc_w ||
14449 old_plane_state->crtc_h != crtc_h ||
14450 !old_plane_state->fb != !fb)
14451 goto slow;
14452
14453 new_plane_state = intel_plane_duplicate_state(plane);
14454 if (!new_plane_state)
14455 return -ENOMEM;
14456
14457 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(crtc));
14458 if (!new_crtc_state) {
14459 ret = -ENOMEM;
14460 goto out_free;
14461 }
14462
14463 drm_atomic_set_fb_for_plane(new_plane_state, fb);
14464
14465 new_plane_state->src_x = src_x;
14466 new_plane_state->src_y = src_y;
14467 new_plane_state->src_w = src_w;
14468 new_plane_state->src_h = src_h;
14469 new_plane_state->crtc_x = crtc_x;
14470 new_plane_state->crtc_y = crtc_y;
14471 new_plane_state->crtc_w = crtc_w;
14472 new_plane_state->crtc_h = crtc_h;
14473
14474 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
14475 to_intel_plane_state(old_plane_state),
14476 to_intel_plane_state(new_plane_state));
14477 if (ret)
14478 goto out_free;
14479
14480 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
14481 if (ret)
14482 goto out_free;
14483
14484 ret = intel_plane_pin_fb(to_intel_plane_state(new_plane_state));
14485 if (ret)
14486 goto out_unlock;
14487
14488 intel_fb_obj_flush(intel_fb_obj(fb), ORIGIN_FLIP);
14489
14490 old_fb = old_plane_state->fb;
14491 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
14492 intel_plane->frontbuffer_bit);
14493
14494 /* Swap plane state */
14495 plane->state = new_plane_state;
14496
14497 /*
14498 * We cannot swap crtc_state as it may be in use by an atomic commit or
14499 * page flip that's running simultaneously. If we swap crtc_state and
14500 * destroy the old state, we will cause a use-after-free there.
14501 *
14502 * Only update active_planes, which is needed for our internal
14503 * bookkeeping. Either value will do the right thing when updating
14504 * planes atomically. If the cursor was part of the atomic update then
14505 * we would have taken the slowpath.
14506 */
14507 crtc_state->active_planes = new_crtc_state->active_planes;
14508
14509 if (plane->state->visible)
14510 intel_update_plane(intel_plane, crtc_state,
14511 to_intel_plane_state(plane->state));
14512 else
14513 intel_disable_plane(intel_plane, crtc_state);
14514
14515 intel_plane_unpin_fb(to_intel_plane_state(old_plane_state));
14516
14517 out_unlock:
14518 mutex_unlock(&dev_priv->drm.struct_mutex);
14519 out_free:
14520 if (new_crtc_state)
14521 intel_crtc_destroy_state(crtc, &new_crtc_state->base);
14522 if (ret)
14523 intel_plane_destroy_state(plane, new_plane_state);
14524 else
14525 intel_plane_destroy_state(plane, old_plane_state);
14526 return ret;
14527
14528 slow:
14529 return drm_atomic_helper_update_plane(plane, crtc, fb,
14530 crtc_x, crtc_y, crtc_w, crtc_h,
14531 src_x, src_y, src_w, src_h, ctx);
14532 }
14533
14534 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
14535 .update_plane = intel_legacy_cursor_update,
14536 .disable_plane = drm_atomic_helper_disable_plane,
14537 .destroy = intel_plane_destroy,
14538 .atomic_get_property = intel_plane_atomic_get_property,
14539 .atomic_set_property = intel_plane_atomic_set_property,
14540 .atomic_duplicate_state = intel_plane_duplicate_state,
14541 .atomic_destroy_state = intel_plane_destroy_state,
14542 .format_mod_supported = intel_cursor_format_mod_supported,
14543 };
14544
14545 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
14546 enum i9xx_plane_id i9xx_plane)
14547 {
14548 if (!HAS_FBC(dev_priv))
14549 return false;
14550
14551 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
14552 return i9xx_plane == PLANE_A; /* tied to pipe A */
14553 else if (IS_IVYBRIDGE(dev_priv))
14554 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
14555 i9xx_plane == PLANE_C;
14556 else if (INTEL_GEN(dev_priv) >= 4)
14557 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
14558 else
14559 return i9xx_plane == PLANE_A;
14560 }
14561
14562 static struct intel_plane *
14563 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
14564 {
14565 struct intel_plane *plane;
14566 const struct drm_plane_funcs *plane_funcs;
14567 unsigned int supported_rotations;
14568 unsigned int possible_crtcs;
14569 const u64 *modifiers;
14570 const u32 *formats;
14571 int num_formats;
14572 int ret;
14573
14574 if (INTEL_GEN(dev_priv) >= 9)
14575 return skl_universal_plane_create(dev_priv, pipe,
14576 PLANE_PRIMARY);
14577
14578 plane = intel_plane_alloc();
14579 if (IS_ERR(plane))
14580 return plane;
14581
14582 plane->pipe = pipe;
14583 /*
14584 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
14585 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
14586 */
14587 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
14588 plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
14589 else
14590 plane->i9xx_plane = (enum i9xx_plane_id) pipe;
14591 plane->id = PLANE_PRIMARY;
14592 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
14593
14594 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
14595 if (plane->has_fbc) {
14596 struct intel_fbc *fbc = &dev_priv->fbc;
14597
14598 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
14599 }
14600
14601 if (INTEL_GEN(dev_priv) >= 4) {
14602 formats = i965_primary_formats;
14603 num_formats = ARRAY_SIZE(i965_primary_formats);
14604 modifiers = i9xx_format_modifiers;
14605
14606 plane->max_stride = i9xx_plane_max_stride;
14607 plane->update_plane = i9xx_update_plane;
14608 plane->disable_plane = i9xx_disable_plane;
14609 plane->get_hw_state = i9xx_plane_get_hw_state;
14610 plane->check_plane = i9xx_plane_check;
14611
14612 plane_funcs = &i965_plane_funcs;
14613 } else {
14614 formats = i8xx_primary_formats;
14615 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14616 modifiers = i9xx_format_modifiers;
14617
14618 plane->max_stride = i9xx_plane_max_stride;
14619 plane->update_plane = i9xx_update_plane;
14620 plane->disable_plane = i9xx_disable_plane;
14621 plane->get_hw_state = i9xx_plane_get_hw_state;
14622 plane->check_plane = i9xx_plane_check;
14623
14624 plane_funcs = &i8xx_plane_funcs;
14625 }
14626
14627 possible_crtcs = BIT(pipe);
14628
14629 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
14630 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
14631 possible_crtcs, plane_funcs,
14632 formats, num_formats, modifiers,
14633 DRM_PLANE_TYPE_PRIMARY,
14634 "primary %c", pipe_name(pipe));
14635 else
14636 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
14637 possible_crtcs, plane_funcs,
14638 formats, num_formats, modifiers,
14639 DRM_PLANE_TYPE_PRIMARY,
14640 "plane %c",
14641 plane_name(plane->i9xx_plane));
14642 if (ret)
14643 goto fail;
14644
14645 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
14646 supported_rotations =
14647 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
14648 DRM_MODE_REFLECT_X;
14649 } else if (INTEL_GEN(dev_priv) >= 4) {
14650 supported_rotations =
14651 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
14652 } else {
14653 supported_rotations = DRM_MODE_ROTATE_0;
14654 }
14655
14656 if (INTEL_GEN(dev_priv) >= 4)
14657 drm_plane_create_rotation_property(&plane->base,
14658 DRM_MODE_ROTATE_0,
14659 supported_rotations);
14660
14661 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
14662
14663 return plane;
14664
14665 fail:
14666 intel_plane_free(plane);
14667
14668 return ERR_PTR(ret);
14669 }
14670
14671 static struct intel_plane *
14672 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
14673 enum pipe pipe)
14674 {
14675 unsigned int possible_crtcs;
14676 struct intel_plane *cursor;
14677 int ret;
14678
14679 cursor = intel_plane_alloc();
14680 if (IS_ERR(cursor))
14681 return cursor;
14682
14683 cursor->pipe = pipe;
14684 cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
14685 cursor->id = PLANE_CURSOR;
14686 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
14687
14688 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14689 cursor->max_stride = i845_cursor_max_stride;
14690 cursor->update_plane = i845_update_cursor;
14691 cursor->disable_plane = i845_disable_cursor;
14692 cursor->get_hw_state = i845_cursor_get_hw_state;
14693 cursor->check_plane = i845_check_cursor;
14694 } else {
14695 cursor->max_stride = i9xx_cursor_max_stride;
14696 cursor->update_plane = i9xx_update_cursor;
14697 cursor->disable_plane = i9xx_disable_cursor;
14698 cursor->get_hw_state = i9xx_cursor_get_hw_state;
14699 cursor->check_plane = i9xx_check_cursor;
14700 }
14701
14702 cursor->cursor.base = ~0;
14703 cursor->cursor.cntl = ~0;
14704
14705 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
14706 cursor->cursor.size = ~0;
14707
14708 possible_crtcs = BIT(pipe);
14709
14710 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
14711 possible_crtcs, &intel_cursor_plane_funcs,
14712 intel_cursor_formats,
14713 ARRAY_SIZE(intel_cursor_formats),
14714 cursor_format_modifiers,
14715 DRM_PLANE_TYPE_CURSOR,
14716 "cursor %c", pipe_name(pipe));
14717 if (ret)
14718 goto fail;
14719
14720 if (INTEL_GEN(dev_priv) >= 4)
14721 drm_plane_create_rotation_property(&cursor->base,
14722 DRM_MODE_ROTATE_0,
14723 DRM_MODE_ROTATE_0 |
14724 DRM_MODE_ROTATE_180);
14725
14726 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14727
14728 return cursor;
14729
14730 fail:
14731 intel_plane_free(cursor);
14732
14733 return ERR_PTR(ret);
14734 }
14735
14736 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
14737 struct intel_crtc_state *crtc_state)
14738 {
14739 struct intel_crtc_scaler_state *scaler_state =
14740 &crtc_state->scaler_state;
14741 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14742 int i;
14743
14744 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe];
14745 if (!crtc->num_scalers)
14746 return;
14747
14748 for (i = 0; i < crtc->num_scalers; i++) {
14749 struct intel_scaler *scaler = &scaler_state->scalers[i];
14750
14751 scaler->in_use = 0;
14752 scaler->mode = 0;
14753 }
14754
14755 scaler_state->scaler_id = -1;
14756 }
14757
14758 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
14759 {
14760 struct intel_crtc *intel_crtc;
14761 struct intel_crtc_state *crtc_state = NULL;
14762 struct intel_plane *primary = NULL;
14763 struct intel_plane *cursor = NULL;
14764 int sprite, ret;
14765
14766 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14767 if (!intel_crtc)
14768 return -ENOMEM;
14769
14770 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14771 if (!crtc_state) {
14772 ret = -ENOMEM;
14773 goto fail;
14774 }
14775 intel_crtc->config = crtc_state;
14776 intel_crtc->base.state = &crtc_state->base;
14777 crtc_state->base.crtc = &intel_crtc->base;
14778
14779 primary = intel_primary_plane_create(dev_priv, pipe);
14780 if (IS_ERR(primary)) {
14781 ret = PTR_ERR(primary);
14782 goto fail;
14783 }
14784 intel_crtc->plane_ids_mask |= BIT(primary->id);
14785
14786 for_each_sprite(dev_priv, pipe, sprite) {
14787 struct intel_plane *plane;
14788
14789 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
14790 if (IS_ERR(plane)) {
14791 ret = PTR_ERR(plane);
14792 goto fail;
14793 }
14794 intel_crtc->plane_ids_mask |= BIT(plane->id);
14795 }
14796
14797 cursor = intel_cursor_plane_create(dev_priv, pipe);
14798 if (IS_ERR(cursor)) {
14799 ret = PTR_ERR(cursor);
14800 goto fail;
14801 }
14802 intel_crtc->plane_ids_mask |= BIT(cursor->id);
14803
14804 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
14805 &primary->base, &cursor->base,
14806 &intel_crtc_funcs,
14807 "pipe %c", pipe_name(pipe));
14808 if (ret)
14809 goto fail;
14810
14811 intel_crtc->pipe = pipe;
14812
14813 /* initialize shared scalers */
14814 intel_crtc_init_scalers(intel_crtc, crtc_state);
14815
14816 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
14817 dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
14818 dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc;
14819
14820 if (INTEL_GEN(dev_priv) < 9) {
14821 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
14822
14823 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14824 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
14825 dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc;
14826 }
14827
14828 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14829
14830 intel_color_init(intel_crtc);
14831
14832 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14833
14834 return 0;
14835
14836 fail:
14837 /*
14838 * drm_mode_config_cleanup() will free up any
14839 * crtcs/planes already initialized.
14840 */
14841 kfree(crtc_state);
14842 kfree(intel_crtc);
14843
14844 return ret;
14845 }
14846
14847 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
14848 struct drm_file *file)
14849 {
14850 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14851 struct drm_crtc *drmmode_crtc;
14852 struct intel_crtc *crtc;
14853
14854 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
14855 if (!drmmode_crtc)
14856 return -ENOENT;
14857
14858 crtc = to_intel_crtc(drmmode_crtc);
14859 pipe_from_crtc_id->pipe = crtc->pipe;
14860
14861 return 0;
14862 }
14863
14864 static int intel_encoder_clones(struct intel_encoder *encoder)
14865 {
14866 struct drm_device *dev = encoder->base.dev;
14867 struct intel_encoder *source_encoder;
14868 int index_mask = 0;
14869 int entry = 0;
14870
14871 for_each_intel_encoder(dev, source_encoder) {
14872 if (encoders_cloneable(encoder, source_encoder))
14873 index_mask |= (1 << entry);
14874
14875 entry++;
14876 }
14877
14878 return index_mask;
14879 }
14880
14881 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
14882 {
14883 if (!IS_MOBILE(dev_priv))
14884 return false;
14885
14886 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14887 return false;
14888
14889 if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14890 return false;
14891
14892 return true;
14893 }
14894
14895 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
14896 {
14897 if (INTEL_GEN(dev_priv) >= 9)
14898 return false;
14899
14900 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
14901 return false;
14902
14903 if (HAS_PCH_LPT_H(dev_priv) &&
14904 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14905 return false;
14906
14907 /* DDI E can't be used if DDI A requires 4 lanes */
14908 if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14909 return false;
14910
14911 if (!dev_priv->vbt.int_crt_support)
14912 return false;
14913
14914 return true;
14915 }
14916
14917 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
14918 {
14919 int pps_num;
14920 int pps_idx;
14921
14922 if (HAS_DDI(dev_priv))
14923 return;
14924 /*
14925 * This w/a is needed at least on CPT/PPT, but to be sure apply it
14926 * everywhere where registers can be write protected.
14927 */
14928 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14929 pps_num = 2;
14930 else
14931 pps_num = 1;
14932
14933 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14934 u32 val = I915_READ(PP_CONTROL(pps_idx));
14935
14936 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14937 I915_WRITE(PP_CONTROL(pps_idx), val);
14938 }
14939 }
14940
14941 static void intel_pps_init(struct drm_i915_private *dev_priv)
14942 {
14943 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14944 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14945 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14946 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14947 else
14948 dev_priv->pps_mmio_base = PPS_BASE;
14949
14950 intel_pps_unlock_regs_wa(dev_priv);
14951 }
14952
14953 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14954 {
14955 struct intel_encoder *encoder;
14956 bool dpd_is_edp = false;
14957
14958 intel_pps_init(dev_priv);
14959
14960 if (!HAS_DISPLAY(dev_priv))
14961 return;
14962
14963 if (IS_ELKHARTLAKE(dev_priv)) {
14964 intel_ddi_init(dev_priv, PORT_A);
14965 intel_ddi_init(dev_priv, PORT_B);
14966 intel_ddi_init(dev_priv, PORT_C);
14967 icl_dsi_init(dev_priv);
14968 } else if (INTEL_GEN(dev_priv) >= 11) {
14969 intel_ddi_init(dev_priv, PORT_A);
14970 intel_ddi_init(dev_priv, PORT_B);
14971 intel_ddi_init(dev_priv, PORT_C);
14972 intel_ddi_init(dev_priv, PORT_D);
14973 intel_ddi_init(dev_priv, PORT_E);
14974 /*
14975 * On some ICL SKUs port F is not present. No strap bits for
14976 * this, so rely on VBT.
14977 * Work around broken VBTs on SKUs known to have no port F.
14978 */
14979 if (IS_ICL_WITH_PORT_F(dev_priv) &&
14980 intel_bios_is_port_present(dev_priv, PORT_F))
14981 intel_ddi_init(dev_priv, PORT_F);
14982
14983 icl_dsi_init(dev_priv);
14984 } else if (IS_GEN9_LP(dev_priv)) {
14985 /*
14986 * FIXME: Broxton doesn't support port detection via the
14987 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14988 * detect the ports.
14989 */
14990 intel_ddi_init(dev_priv, PORT_A);
14991 intel_ddi_init(dev_priv, PORT_B);
14992 intel_ddi_init(dev_priv, PORT_C);
14993
14994 vlv_dsi_init(dev_priv);
14995 } else if (HAS_DDI(dev_priv)) {
14996 int found;
14997
14998 if (intel_ddi_crt_present(dev_priv))
14999 intel_crt_init(dev_priv);
15000
15001 /*
15002 * Haswell uses DDI functions to detect digital outputs.
15003 * On SKL pre-D0 the strap isn't connected, so we assume
15004 * it's there.
15005 */
15006 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15007 /* WaIgnoreDDIAStrap: skl */
15008 if (found || IS_GEN9_BC(dev_priv))
15009 intel_ddi_init(dev_priv, PORT_A);
15010
15011 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
15012 * register */
15013 found = I915_READ(SFUSE_STRAP);
15014
15015 if (found & SFUSE_STRAP_DDIB_DETECTED)
15016 intel_ddi_init(dev_priv, PORT_B);
15017 if (found & SFUSE_STRAP_DDIC_DETECTED)
15018 intel_ddi_init(dev_priv, PORT_C);
15019 if (found & SFUSE_STRAP_DDID_DETECTED)
15020 intel_ddi_init(dev_priv, PORT_D);
15021 if (found & SFUSE_STRAP_DDIF_DETECTED)
15022 intel_ddi_init(dev_priv, PORT_F);
15023 /*
15024 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15025 */
15026 if (IS_GEN9_BC(dev_priv) &&
15027 intel_bios_is_port_present(dev_priv, PORT_E))
15028 intel_ddi_init(dev_priv, PORT_E);
15029
15030 } else if (HAS_PCH_SPLIT(dev_priv)) {
15031 int found;
15032
15033 /*
15034 * intel_edp_init_connector() depends on this completing first,
15035 * to prevent the registration of both eDP and LVDS and the
15036 * incorrect sharing of the PPS.
15037 */
15038 intel_lvds_init(dev_priv);
15039 intel_crt_init(dev_priv);
15040
15041 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
15042
15043 if (ilk_has_edp_a(dev_priv))
15044 intel_dp_init(dev_priv, DP_A, PORT_A);
15045
15046 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15047 /* PCH SDVOB multiplex with HDMIB */
15048 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
15049 if (!found)
15050 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
15051 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15052 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
15053 }
15054
15055 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15056 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
15057
15058 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15059 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
15060
15061 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15062 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
15063
15064 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15065 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
15066 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15067 bool has_edp, has_port;
15068
15069 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
15070 intel_crt_init(dev_priv);
15071
15072 /*
15073 * The DP_DETECTED bit is the latched state of the DDC
15074 * SDA pin at boot. However since eDP doesn't require DDC
15075 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15076 * eDP ports may have been muxed to an alternate function.
15077 * Thus we can't rely on the DP_DETECTED bit alone to detect
15078 * eDP ports. Consult the VBT as well as DP_DETECTED to
15079 * detect eDP ports.
15080 *
15081 * Sadly the straps seem to be missing sometimes even for HDMI
15082 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15083 * and VBT for the presence of the port. Additionally we can't
15084 * trust the port type the VBT declares as we've seen at least
15085 * HDMI ports that the VBT claim are DP or eDP.
15086 */
15087 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
15088 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15089 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15090 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
15091 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15092 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
15093
15094 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
15095 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15096 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15097 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
15098 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15099 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
15100
15101 if (IS_CHERRYVIEW(dev_priv)) {
15102 /*
15103 * eDP not supported on port D,
15104 * so no need to worry about it
15105 */
15106 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15107 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15108 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
15109 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15110 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
15111 }
15112
15113 vlv_dsi_init(dev_priv);
15114 } else if (IS_PINEVIEW(dev_priv)) {
15115 intel_lvds_init(dev_priv);
15116 intel_crt_init(dev_priv);
15117 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
15118 bool found = false;
15119
15120 if (IS_MOBILE(dev_priv))
15121 intel_lvds_init(dev_priv);
15122
15123 intel_crt_init(dev_priv);
15124
15125 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15126 DRM_DEBUG_KMS("probing SDVOB\n");
15127 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
15128 if (!found && IS_G4X(dev_priv)) {
15129 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15130 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
15131 }
15132
15133 if (!found && IS_G4X(dev_priv))
15134 intel_dp_init(dev_priv, DP_B, PORT_B);
15135 }
15136
15137 /* Before G4X SDVOC doesn't have its own detect register */
15138
15139 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15140 DRM_DEBUG_KMS("probing SDVOC\n");
15141 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
15142 }
15143
15144 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15145
15146 if (IS_G4X(dev_priv)) {
15147 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15148 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
15149 }
15150 if (IS_G4X(dev_priv))
15151 intel_dp_init(dev_priv, DP_C, PORT_C);
15152 }
15153
15154 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15155 intel_dp_init(dev_priv, DP_D, PORT_D);
15156
15157 if (SUPPORTS_TV(dev_priv))
15158 intel_tv_init(dev_priv);
15159 } else if (IS_GEN(dev_priv, 2)) {
15160 if (IS_I85X(dev_priv))
15161 intel_lvds_init(dev_priv);
15162
15163 intel_crt_init(dev_priv);
15164 intel_dvo_init(dev_priv);
15165 }
15166
15167 intel_psr_init(dev_priv);
15168
15169 for_each_intel_encoder(&dev_priv->drm, encoder) {
15170 encoder->base.possible_crtcs = encoder->crtc_mask;
15171 encoder->base.possible_clones =
15172 intel_encoder_clones(encoder);
15173 }
15174
15175 intel_init_pch_refclk(dev_priv);
15176
15177 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
15178 }
15179
15180 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15181 {
15182 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15183 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15184
15185 drm_framebuffer_cleanup(fb);
15186
15187 i915_gem_object_lock(obj);
15188 WARN_ON(!obj->framebuffer_references--);
15189 i915_gem_object_unlock(obj);
15190
15191 i915_gem_object_put(obj);
15192
15193 kfree(intel_fb);
15194 }
15195
15196 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15197 struct drm_file *file,
15198 unsigned int *handle)
15199 {
15200 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15201
15202 if (obj->userptr.mm) {
15203 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15204 return -EINVAL;
15205 }
15206
15207 return drm_gem_handle_create(file, &obj->base, handle);
15208 }
15209
15210 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15211 struct drm_file *file,
15212 unsigned flags, unsigned color,
15213 struct drm_clip_rect *clips,
15214 unsigned num_clips)
15215 {
15216 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15217
15218 i915_gem_object_flush_if_display(obj);
15219 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
15220
15221 return 0;
15222 }
15223
15224 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15225 .destroy = intel_user_framebuffer_destroy,
15226 .create_handle = intel_user_framebuffer_create_handle,
15227 .dirty = intel_user_framebuffer_dirty,
15228 };
15229
15230 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
15231 struct drm_i915_gem_object *obj,
15232 struct drm_mode_fb_cmd2 *mode_cmd)
15233 {
15234 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
15235 struct drm_framebuffer *fb = &intel_fb->base;
15236 u32 max_stride;
15237 unsigned int tiling, stride;
15238 int ret = -EINVAL;
15239 int i;
15240
15241 i915_gem_object_lock(obj);
15242 obj->framebuffer_references++;
15243 tiling = i915_gem_object_get_tiling(obj);
15244 stride = i915_gem_object_get_stride(obj);
15245 i915_gem_object_unlock(obj);
15246
15247 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15248 /*
15249 * If there's a fence, enforce that
15250 * the fb modifier and tiling mode match.
15251 */
15252 if (tiling != I915_TILING_NONE &&
15253 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15254 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
15255 goto err;
15256 }
15257 } else {
15258 if (tiling == I915_TILING_X) {
15259 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15260 } else if (tiling == I915_TILING_Y) {
15261 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
15262 goto err;
15263 }
15264 }
15265
15266 if (!drm_any_plane_has_format(&dev_priv->drm,
15267 mode_cmd->pixel_format,
15268 mode_cmd->modifier[0])) {
15269 struct drm_format_name_buf format_name;
15270
15271 DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n",
15272 drm_get_format_name(mode_cmd->pixel_format,
15273 &format_name),
15274 mode_cmd->modifier[0]);
15275 goto err;
15276 }
15277
15278 /*
15279 * gen2/3 display engine uses the fence if present,
15280 * so the tiling mode must match the fb modifier exactly.
15281 */
15282 if (INTEL_GEN(dev_priv) < 4 &&
15283 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15284 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
15285 goto err;
15286 }
15287
15288 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
15289 mode_cmd->modifier[0]);
15290 if (mode_cmd->pitches[0] > max_stride) {
15291 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
15292 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
15293 "tiled" : "linear",
15294 mode_cmd->pitches[0], max_stride);
15295 goto err;
15296 }
15297
15298 /*
15299 * If there's a fence, enforce that
15300 * the fb pitch and fence stride match.
15301 */
15302 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
15303 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
15304 mode_cmd->pitches[0], stride);
15305 goto err;
15306 }
15307
15308 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15309 if (mode_cmd->offsets[0] != 0)
15310 goto err;
15311
15312 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
15313
15314 for (i = 0; i < fb->format->num_planes; i++) {
15315 u32 stride_alignment;
15316
15317 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
15318 DRM_DEBUG_KMS("bad plane %d handle\n", i);
15319 goto err;
15320 }
15321
15322 stride_alignment = intel_fb_stride_alignment(fb, i);
15323
15324 /*
15325 * Display WA #0531: skl,bxt,kbl,glk
15326 *
15327 * Render decompression and plane width > 3840
15328 * combined with horizontal panning requires the
15329 * plane stride to be a multiple of 4. We'll just
15330 * require the entire fb to accommodate that to avoid
15331 * potential runtime errors at plane configuration time.
15332 */
15333 if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 &&
15334 is_ccs_modifier(fb->modifier))
15335 stride_alignment *= 4;
15336
15337 if (fb->pitches[i] & (stride_alignment - 1)) {
15338 DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
15339 i, fb->pitches[i], stride_alignment);
15340 goto err;
15341 }
15342
15343 fb->obj[i] = &obj->base;
15344 }
15345
15346 ret = intel_fill_fb_info(dev_priv, fb);
15347 if (ret)
15348 goto err;
15349
15350 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
15351 if (ret) {
15352 DRM_ERROR("framebuffer init failed %d\n", ret);
15353 goto err;
15354 }
15355
15356 return 0;
15357
15358 err:
15359 i915_gem_object_lock(obj);
15360 obj->framebuffer_references--;
15361 i915_gem_object_unlock(obj);
15362 return ret;
15363 }
15364
15365 static struct drm_framebuffer *
15366 intel_user_framebuffer_create(struct drm_device *dev,
15367 struct drm_file *filp,
15368 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15369 {
15370 struct drm_framebuffer *fb;
15371 struct drm_i915_gem_object *obj;
15372 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15373
15374 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15375 if (!obj)
15376 return ERR_PTR(-ENOENT);
15377
15378 fb = intel_framebuffer_create(obj, &mode_cmd);
15379 if (IS_ERR(fb))
15380 i915_gem_object_put(obj);
15381
15382 return fb;
15383 }
15384
15385 static void intel_atomic_state_free(struct drm_atomic_state *state)
15386 {
15387 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
15388
15389 drm_atomic_state_default_release(state);
15390
15391 i915_sw_fence_fini(&intel_state->commit_ready);
15392
15393 kfree(state);
15394 }
15395
15396 static enum drm_mode_status
15397 intel_mode_valid(struct drm_device *dev,
15398 const struct drm_display_mode *mode)
15399 {
15400 struct drm_i915_private *dev_priv = to_i915(dev);
15401 int hdisplay_max, htotal_max;
15402 int vdisplay_max, vtotal_max;
15403
15404 /*
15405 * Can't reject DBLSCAN here because Xorg ddxen can add piles
15406 * of DBLSCAN modes to the output's mode list when they detect
15407 * the scaling mode property on the connector. And they don't
15408 * ask the kernel to validate those modes in any way until
15409 * modeset time at which point the client gets a protocol error.
15410 * So in order to not upset those clients we silently ignore the
15411 * DBLSCAN flag on such connectors. For other connectors we will
15412 * reject modes with the DBLSCAN flag in encoder->compute_config().
15413 * And we always reject DBLSCAN modes in connector->mode_valid()
15414 * as we never want such modes on the connector's mode list.
15415 */
15416
15417 if (mode->vscan > 1)
15418 return MODE_NO_VSCAN;
15419
15420 if (mode->flags & DRM_MODE_FLAG_HSKEW)
15421 return MODE_H_ILLEGAL;
15422
15423 if (mode->flags & (DRM_MODE_FLAG_CSYNC |
15424 DRM_MODE_FLAG_NCSYNC |
15425 DRM_MODE_FLAG_PCSYNC))
15426 return MODE_HSYNC;
15427
15428 if (mode->flags & (DRM_MODE_FLAG_BCAST |
15429 DRM_MODE_FLAG_PIXMUX |
15430 DRM_MODE_FLAG_CLKDIV2))
15431 return MODE_BAD;
15432
15433 if (INTEL_GEN(dev_priv) >= 9 ||
15434 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
15435 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
15436 vdisplay_max = 4096;
15437 htotal_max = 8192;
15438 vtotal_max = 8192;
15439 } else if (INTEL_GEN(dev_priv) >= 3) {
15440 hdisplay_max = 4096;
15441 vdisplay_max = 4096;
15442 htotal_max = 8192;
15443 vtotal_max = 8192;
15444 } else {
15445 hdisplay_max = 2048;
15446 vdisplay_max = 2048;
15447 htotal_max = 4096;
15448 vtotal_max = 4096;
15449 }
15450
15451 if (mode->hdisplay > hdisplay_max ||
15452 mode->hsync_start > htotal_max ||
15453 mode->hsync_end > htotal_max ||
15454 mode->htotal > htotal_max)
15455 return MODE_H_ILLEGAL;
15456
15457 if (mode->vdisplay > vdisplay_max ||
15458 mode->vsync_start > vtotal_max ||
15459 mode->vsync_end > vtotal_max ||
15460 mode->vtotal > vtotal_max)
15461 return MODE_V_ILLEGAL;
15462
15463 return MODE_OK;
15464 }
15465
15466 static const struct drm_mode_config_funcs intel_mode_funcs = {
15467 .fb_create = intel_user_framebuffer_create,
15468 .get_format_info = intel_get_format_info,
15469 .output_poll_changed = intel_fbdev_output_poll_changed,
15470 .mode_valid = intel_mode_valid,
15471 .atomic_check = intel_atomic_check,
15472 .atomic_commit = intel_atomic_commit,
15473 .atomic_state_alloc = intel_atomic_state_alloc,
15474 .atomic_state_clear = intel_atomic_state_clear,
15475 .atomic_state_free = intel_atomic_state_free,
15476 };
15477
15478 /**
15479 * intel_init_display_hooks - initialize the display modesetting hooks
15480 * @dev_priv: device private
15481 */
15482 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15483 {
15484 intel_init_cdclk_hooks(dev_priv);
15485
15486 if (INTEL_GEN(dev_priv) >= 9) {
15487 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15488 dev_priv->display.get_initial_plane_config =
15489 skylake_get_initial_plane_config;
15490 dev_priv->display.crtc_compute_clock =
15491 haswell_crtc_compute_clock;
15492 dev_priv->display.crtc_enable = haswell_crtc_enable;
15493 dev_priv->display.crtc_disable = haswell_crtc_disable;
15494 } else if (HAS_DDI(dev_priv)) {
15495 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15496 dev_priv->display.get_initial_plane_config =
15497 i9xx_get_initial_plane_config;
15498 dev_priv->display.crtc_compute_clock =
15499 haswell_crtc_compute_clock;
15500 dev_priv->display.crtc_enable = haswell_crtc_enable;
15501 dev_priv->display.crtc_disable = haswell_crtc_disable;
15502 } else if (HAS_PCH_SPLIT(dev_priv)) {
15503 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15504 dev_priv->display.get_initial_plane_config =
15505 i9xx_get_initial_plane_config;
15506 dev_priv->display.crtc_compute_clock =
15507 ironlake_crtc_compute_clock;
15508 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15509 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15510 } else if (IS_CHERRYVIEW(dev_priv)) {
15511 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15512 dev_priv->display.get_initial_plane_config =
15513 i9xx_get_initial_plane_config;
15514 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15515 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15516 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15517 } else if (IS_VALLEYVIEW(dev_priv)) {
15518 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15519 dev_priv->display.get_initial_plane_config =
15520 i9xx_get_initial_plane_config;
15521 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15522 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15523 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15524 } else if (IS_G4X(dev_priv)) {
15525 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15526 dev_priv->display.get_initial_plane_config =
15527 i9xx_get_initial_plane_config;
15528 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15529 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15530 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15531 } else if (IS_PINEVIEW(dev_priv)) {
15532 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15533 dev_priv->display.get_initial_plane_config =
15534 i9xx_get_initial_plane_config;
15535 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15536 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15537 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15538 } else if (!IS_GEN(dev_priv, 2)) {
15539 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15540 dev_priv->display.get_initial_plane_config =
15541 i9xx_get_initial_plane_config;
15542 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15543 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15544 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15545 } else {
15546 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15547 dev_priv->display.get_initial_plane_config =
15548 i9xx_get_initial_plane_config;
15549 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15550 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15551 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15552 }
15553
15554 if (IS_GEN(dev_priv, 5)) {
15555 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15556 } else if (IS_GEN(dev_priv, 6)) {
15557 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15558 } else if (IS_IVYBRIDGE(dev_priv)) {
15559 /* FIXME: detect B0+ stepping and use auto training */
15560 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15561 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15562 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15563 }
15564
15565 if (INTEL_GEN(dev_priv) >= 9)
15566 dev_priv->display.update_crtcs = skl_update_crtcs;
15567 else
15568 dev_priv->display.update_crtcs = intel_update_crtcs;
15569 }
15570
15571 static i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
15572 {
15573 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15574 return VLV_VGACNTRL;
15575 else if (INTEL_GEN(dev_priv) >= 5)
15576 return CPU_VGACNTRL;
15577 else
15578 return VGACNTRL;
15579 }
15580
15581 /* Disable the VGA plane that we never use */
15582 static void i915_disable_vga(struct drm_i915_private *dev_priv)
15583 {
15584 struct pci_dev *pdev = dev_priv->drm.pdev;
15585 u8 sr1;
15586 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15587
15588 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15589 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
15590 outb(SR01, VGA_SR_INDEX);
15591 sr1 = inb(VGA_SR_DATA);
15592 outb(sr1 | 1<<5, VGA_SR_DATA);
15593 vga_put(pdev, VGA_RSRC_LEGACY_IO);
15594 udelay(300);
15595
15596 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15597 POSTING_READ(vga_reg);
15598 }
15599
15600 void intel_modeset_init_hw(struct drm_device *dev)
15601 {
15602 struct drm_i915_private *dev_priv = to_i915(dev);
15603
15604 intel_update_cdclk(dev_priv);
15605 intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK");
15606 dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
15607 }
15608
15609 /*
15610 * Calculate what we think the watermarks should be for the state we've read
15611 * out of the hardware and then immediately program those watermarks so that
15612 * we ensure the hardware settings match our internal state.
15613 *
15614 * We can calculate what we think WM's should be by creating a duplicate of the
15615 * current state (which was constructed during hardware readout) and running it
15616 * through the atomic check code to calculate new watermark values in the
15617 * state object.
15618 */
15619 static void sanitize_watermarks(struct drm_device *dev)
15620 {
15621 struct drm_i915_private *dev_priv = to_i915(dev);
15622 struct drm_atomic_state *state;
15623 struct intel_atomic_state *intel_state;
15624 struct drm_crtc *crtc;
15625 struct drm_crtc_state *cstate;
15626 struct drm_modeset_acquire_ctx ctx;
15627 int ret;
15628 int i;
15629
15630 /* Only supported on platforms that use atomic watermark design */
15631 if (!dev_priv->display.optimize_watermarks)
15632 return;
15633
15634 /*
15635 * We need to hold connection_mutex before calling duplicate_state so
15636 * that the connector loop is protected.
15637 */
15638 drm_modeset_acquire_init(&ctx, 0);
15639 retry:
15640 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15641 if (ret == -EDEADLK) {
15642 drm_modeset_backoff(&ctx);
15643 goto retry;
15644 } else if (WARN_ON(ret)) {
15645 goto fail;
15646 }
15647
15648 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15649 if (WARN_ON(IS_ERR(state)))
15650 goto fail;
15651
15652 intel_state = to_intel_atomic_state(state);
15653
15654 /*
15655 * Hardware readout is the only time we don't want to calculate
15656 * intermediate watermarks (since we don't trust the current
15657 * watermarks).
15658 */
15659 if (!HAS_GMCH(dev_priv))
15660 intel_state->skip_intermediate_wm = true;
15661
15662 ret = intel_atomic_check(dev, state);
15663 if (ret) {
15664 /*
15665 * If we fail here, it means that the hardware appears to be
15666 * programmed in a way that shouldn't be possible, given our
15667 * understanding of watermark requirements. This might mean a
15668 * mistake in the hardware readout code or a mistake in the
15669 * watermark calculations for a given platform. Raise a WARN
15670 * so that this is noticeable.
15671 *
15672 * If this actually happens, we'll have to just leave the
15673 * BIOS-programmed watermarks untouched and hope for the best.
15674 */
15675 WARN(true, "Could not determine valid watermarks for inherited state\n");
15676 goto put_state;
15677 }
15678
15679 /* Write calculated watermark values back */
15680 for_each_new_crtc_in_state(state, crtc, cstate, i) {
15681 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15682
15683 cs->wm.need_postvbl_update = true;
15684 dev_priv->display.optimize_watermarks(intel_state, cs);
15685
15686 to_intel_crtc_state(crtc->state)->wm = cs->wm;
15687 }
15688
15689 put_state:
15690 drm_atomic_state_put(state);
15691 fail:
15692 drm_modeset_drop_locks(&ctx);
15693 drm_modeset_acquire_fini(&ctx);
15694 }
15695
15696 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
15697 {
15698 if (IS_GEN(dev_priv, 5)) {
15699 u32 fdi_pll_clk =
15700 I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
15701
15702 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
15703 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
15704 dev_priv->fdi_pll_freq = 270000;
15705 } else {
15706 return;
15707 }
15708
15709 DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
15710 }
15711
15712 static int intel_initial_commit(struct drm_device *dev)
15713 {
15714 struct drm_atomic_state *state = NULL;
15715 struct drm_modeset_acquire_ctx ctx;
15716 struct drm_crtc *crtc;
15717 struct drm_crtc_state *crtc_state;
15718 int ret = 0;
15719
15720 state = drm_atomic_state_alloc(dev);
15721 if (!state)
15722 return -ENOMEM;
15723
15724 drm_modeset_acquire_init(&ctx, 0);
15725
15726 retry:
15727 state->acquire_ctx = &ctx;
15728
15729 drm_for_each_crtc(crtc, dev) {
15730 crtc_state = drm_atomic_get_crtc_state(state, crtc);
15731 if (IS_ERR(crtc_state)) {
15732 ret = PTR_ERR(crtc_state);
15733 goto out;
15734 }
15735
15736 if (crtc_state->active) {
15737 ret = drm_atomic_add_affected_planes(state, crtc);
15738 if (ret)
15739 goto out;
15740
15741 /*
15742 * FIXME hack to force a LUT update to avoid the
15743 * plane update forcing the pipe gamma on without
15744 * having a proper LUT loaded. Remove once we
15745 * have readout for pipe gamma enable.
15746 */
15747 crtc_state->color_mgmt_changed = true;
15748 }
15749 }
15750
15751 ret = drm_atomic_commit(state);
15752
15753 out:
15754 if (ret == -EDEADLK) {
15755 drm_atomic_state_clear(state);
15756 drm_modeset_backoff(&ctx);
15757 goto retry;
15758 }
15759
15760 drm_atomic_state_put(state);
15761
15762 drm_modeset_drop_locks(&ctx);
15763 drm_modeset_acquire_fini(&ctx);
15764
15765 return ret;
15766 }
15767
15768 int intel_modeset_init(struct drm_device *dev)
15769 {
15770 struct drm_i915_private *dev_priv = to_i915(dev);
15771 struct i915_ggtt *ggtt = &dev_priv->ggtt;
15772 enum pipe pipe;
15773 struct intel_crtc *crtc;
15774 int ret;
15775
15776 dev_priv->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
15777
15778 drm_mode_config_init(dev);
15779
15780 dev->mode_config.min_width = 0;
15781 dev->mode_config.min_height = 0;
15782
15783 dev->mode_config.preferred_depth = 24;
15784 dev->mode_config.prefer_shadow = 1;
15785
15786 dev->mode_config.allow_fb_modifiers = true;
15787
15788 dev->mode_config.funcs = &intel_mode_funcs;
15789
15790 init_llist_head(&dev_priv->atomic_helper.free_list);
15791 INIT_WORK(&dev_priv->atomic_helper.free_work,
15792 intel_atomic_helper_free_state_worker);
15793
15794 intel_init_quirks(dev_priv);
15795
15796 intel_fbc_init(dev_priv);
15797
15798 intel_init_pm(dev_priv);
15799
15800 /*
15801 * There may be no VBT; and if the BIOS enabled SSC we can
15802 * just keep using it to avoid unnecessary flicker. Whereas if the
15803 * BIOS isn't using it, don't assume it will work even if the VBT
15804 * indicates as much.
15805 */
15806 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
15807 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15808 DREF_SSC1_ENABLE);
15809
15810 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15811 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15812 bios_lvds_use_ssc ? "en" : "dis",
15813 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15814 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15815 }
15816 }
15817
15818 /* maximum framebuffer dimensions */
15819 if (IS_GEN(dev_priv, 2)) {
15820 dev->mode_config.max_width = 2048;
15821 dev->mode_config.max_height = 2048;
15822 } else if (IS_GEN(dev_priv, 3)) {
15823 dev->mode_config.max_width = 4096;
15824 dev->mode_config.max_height = 4096;
15825 } else {
15826 dev->mode_config.max_width = 8192;
15827 dev->mode_config.max_height = 8192;
15828 }
15829
15830 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15831 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
15832 dev->mode_config.cursor_height = 1023;
15833 } else if (IS_GEN(dev_priv, 2)) {
15834 dev->mode_config.cursor_width = 64;
15835 dev->mode_config.cursor_height = 64;
15836 } else {
15837 dev->mode_config.cursor_width = 256;
15838 dev->mode_config.cursor_height = 256;
15839 }
15840
15841 dev->mode_config.fb_base = ggtt->gmadr.start;
15842
15843 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15844 INTEL_INFO(dev_priv)->num_pipes,
15845 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
15846
15847 for_each_pipe(dev_priv, pipe) {
15848 ret = intel_crtc_init(dev_priv, pipe);
15849 if (ret) {
15850 drm_mode_config_cleanup(dev);
15851 return ret;
15852 }
15853 }
15854
15855 intel_shared_dpll_init(dev);
15856 intel_update_fdi_pll_freq(dev_priv);
15857
15858 intel_update_czclk(dev_priv);
15859 intel_modeset_init_hw(dev);
15860
15861 intel_hdcp_component_init(dev_priv);
15862
15863 if (dev_priv->max_cdclk_freq == 0)
15864 intel_update_max_cdclk(dev_priv);
15865
15866 /* Just disable it once at startup */
15867 i915_disable_vga(dev_priv);
15868 intel_setup_outputs(dev_priv);
15869
15870 drm_modeset_lock_all(dev);
15871 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
15872 drm_modeset_unlock_all(dev);
15873
15874 for_each_intel_crtc(dev, crtc) {
15875 struct intel_initial_plane_config plane_config = {};
15876
15877 if (!crtc->active)
15878 continue;
15879
15880 /*
15881 * Note that reserving the BIOS fb up front prevents us
15882 * from stuffing other stolen allocations like the ring
15883 * on top. This prevents some ugliness at boot time, and
15884 * can even allow for smooth boot transitions if the BIOS
15885 * fb is large enough for the active pipe configuration.
15886 */
15887 dev_priv->display.get_initial_plane_config(crtc,
15888 &plane_config);
15889
15890 /*
15891 * If the fb is shared between multiple heads, we'll
15892 * just get the first one.
15893 */
15894 intel_find_initial_plane_obj(crtc, &plane_config);
15895 }
15896
15897 /*
15898 * Make sure hardware watermarks really match the state we read out.
15899 * Note that we need to do this after reconstructing the BIOS fb's
15900 * since the watermark calculation done here will use pstate->fb.
15901 */
15902 if (!HAS_GMCH(dev_priv))
15903 sanitize_watermarks(dev);
15904
15905 /*
15906 * Force all active planes to recompute their states. So that on
15907 * mode_setcrtc after probe, all the intel_plane_state variables
15908 * are already calculated and there is no assert_plane warnings
15909 * during bootup.
15910 */
15911 ret = intel_initial_commit(dev);
15912 if (ret)
15913 DRM_DEBUG_KMS("Initial commit in probe failed.\n");
15914
15915 return 0;
15916 }
15917
15918 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15919 {
15920 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15921 /* 640x480@60Hz, ~25175 kHz */
15922 struct dpll clock = {
15923 .m1 = 18,
15924 .m2 = 7,
15925 .p1 = 13,
15926 .p2 = 4,
15927 .n = 2,
15928 };
15929 u32 dpll, fp;
15930 int i;
15931
15932 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
15933
15934 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
15935 pipe_name(pipe), clock.vco, clock.dot);
15936
15937 fp = i9xx_dpll_compute_fp(&clock);
15938 dpll = DPLL_DVO_2X_MODE |
15939 DPLL_VGA_MODE_DIS |
15940 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
15941 PLL_P2_DIVIDE_BY_4 |
15942 PLL_REF_INPUT_DREFCLK |
15943 DPLL_VCO_ENABLE;
15944
15945 I915_WRITE(FP0(pipe), fp);
15946 I915_WRITE(FP1(pipe), fp);
15947
15948 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
15949 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
15950 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
15951 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
15952 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
15953 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
15954 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
15955
15956 /*
15957 * Apparently we need to have VGA mode enabled prior to changing
15958 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
15959 * dividers, even though the register value does change.
15960 */
15961 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
15962 I915_WRITE(DPLL(pipe), dpll);
15963
15964 /* Wait for the clocks to stabilize. */
15965 POSTING_READ(DPLL(pipe));
15966 udelay(150);
15967
15968 /* The pixel multiplier can only be updated once the
15969 * DPLL is enabled and the clocks are stable.
15970 *
15971 * So write it again.
15972 */
15973 I915_WRITE(DPLL(pipe), dpll);
15974
15975 /* We do this three times for luck */
15976 for (i = 0; i < 3 ; i++) {
15977 I915_WRITE(DPLL(pipe), dpll);
15978 POSTING_READ(DPLL(pipe));
15979 udelay(150); /* wait for warmup */
15980 }
15981
15982 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
15983 POSTING_READ(PIPECONF(pipe));
15984
15985 intel_wait_for_pipe_scanline_moving(crtc);
15986 }
15987
15988 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
15989 {
15990 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15991
15992 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
15993 pipe_name(pipe));
15994
15995 WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
15996 WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
15997 WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
15998 WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE);
15999 WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE);
16000
16001 I915_WRITE(PIPECONF(pipe), 0);
16002 POSTING_READ(PIPECONF(pipe));
16003
16004 intel_wait_for_pipe_scanline_stopped(crtc);
16005
16006 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
16007 POSTING_READ(DPLL(pipe));
16008 }
16009
16010 static void
16011 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
16012 {
16013 struct intel_crtc *crtc;
16014
16015 if (INTEL_GEN(dev_priv) >= 4)
16016 return;
16017
16018 for_each_intel_crtc(&dev_priv->drm, crtc) {
16019 struct intel_plane *plane =
16020 to_intel_plane(crtc->base.primary);
16021 struct intel_crtc *plane_crtc;
16022 enum pipe pipe;
16023
16024 if (!plane->get_hw_state(plane, &pipe))
16025 continue;
16026
16027 if (pipe == crtc->pipe)
16028 continue;
16029
16030 DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
16031 plane->base.base.id, plane->base.name);
16032
16033 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16034 intel_plane_disable_noatomic(plane_crtc, plane);
16035 }
16036 }
16037
16038 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16039 {
16040 struct drm_device *dev = crtc->base.dev;
16041 struct intel_encoder *encoder;
16042
16043 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16044 return true;
16045
16046 return false;
16047 }
16048
16049 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16050 {
16051 struct drm_device *dev = encoder->base.dev;
16052 struct intel_connector *connector;
16053
16054 for_each_connector_on_encoder(dev, &encoder->base, connector)
16055 return connector;
16056
16057 return NULL;
16058 }
16059
16060 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16061 enum pipe pch_transcoder)
16062 {
16063 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16064 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
16065 }
16066
16067 static void intel_sanitize_crtc(struct intel_crtc *crtc,
16068 struct drm_modeset_acquire_ctx *ctx)
16069 {
16070 struct drm_device *dev = crtc->base.dev;
16071 struct drm_i915_private *dev_priv = to_i915(dev);
16072 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
16073 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
16074
16075 /* Clear any frame start delays used for debugging left by the BIOS */
16076 if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) {
16077 i915_reg_t reg = PIPECONF(cpu_transcoder);
16078
16079 I915_WRITE(reg,
16080 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16081 }
16082
16083 if (crtc_state->base.active) {
16084 struct intel_plane *plane;
16085
16086 /* Disable everything but the primary plane */
16087 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16088 const struct intel_plane_state *plane_state =
16089 to_intel_plane_state(plane->base.state);
16090
16091 if (plane_state->base.visible &&
16092 plane->base.type != DRM_PLANE_TYPE_PRIMARY)
16093 intel_plane_disable_noatomic(crtc, plane);
16094 }
16095
16096 /*
16097 * Disable any background color set by the BIOS, but enable the
16098 * gamma and CSC to match how we program our planes.
16099 */
16100 if (INTEL_GEN(dev_priv) >= 9)
16101 I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe),
16102 SKL_BOTTOM_COLOR_GAMMA_ENABLE |
16103 SKL_BOTTOM_COLOR_CSC_ENABLE);
16104 }
16105
16106 /* Adjust the state of the output pipe according to whether we
16107 * have active connectors/encoders. */
16108 if (crtc_state->base.active && !intel_crtc_has_encoders(crtc))
16109 intel_crtc_disable_noatomic(&crtc->base, ctx);
16110
16111 if (crtc_state->base.active || HAS_GMCH(dev_priv)) {
16112 /*
16113 * We start out with underrun reporting disabled to avoid races.
16114 * For correct bookkeeping mark this on active crtcs.
16115 *
16116 * Also on gmch platforms we dont have any hardware bits to
16117 * disable the underrun reporting. Which means we need to start
16118 * out with underrun reporting disabled also on inactive pipes,
16119 * since otherwise we'll complain about the garbage we read when
16120 * e.g. coming up after runtime pm.
16121 *
16122 * No protection against concurrent access is required - at
16123 * worst a fifo underrun happens which also sets this to false.
16124 */
16125 crtc->cpu_fifo_underrun_disabled = true;
16126 /*
16127 * We track the PCH trancoder underrun reporting state
16128 * within the crtc. With crtc for pipe A housing the underrun
16129 * reporting state for PCH transcoder A, crtc for pipe B housing
16130 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16131 * and marking underrun reporting as disabled for the non-existing
16132 * PCH transcoders B and C would prevent enabling the south
16133 * error interrupt (see cpt_can_enable_serr_int()).
16134 */
16135 if (has_pch_trancoder(dev_priv, crtc->pipe))
16136 crtc->pch_fifo_underrun_disabled = true;
16137 }
16138 }
16139
16140 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
16141 {
16142 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
16143
16144 /*
16145 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
16146 * the hardware when a high res displays plugged in. DPLL P
16147 * divider is zero, and the pipe timings are bonkers. We'll
16148 * try to disable everything in that case.
16149 *
16150 * FIXME would be nice to be able to sanitize this state
16151 * without several WARNs, but for now let's take the easy
16152 * road.
16153 */
16154 return IS_GEN(dev_priv, 6) &&
16155 crtc_state->base.active &&
16156 crtc_state->shared_dpll &&
16157 crtc_state->port_clock == 0;
16158 }
16159
16160 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16161 {
16162 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
16163 struct intel_connector *connector;
16164 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
16165 struct intel_crtc_state *crtc_state = crtc ?
16166 to_intel_crtc_state(crtc->base.state) : NULL;
16167
16168 /* We need to check both for a crtc link (meaning that the
16169 * encoder is active and trying to read from a pipe) and the
16170 * pipe itself being active. */
16171 bool has_active_crtc = crtc_state &&
16172 crtc_state->base.active;
16173
16174 if (crtc_state && has_bogus_dpll_config(crtc_state)) {
16175 DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n",
16176 pipe_name(crtc->pipe));
16177 has_active_crtc = false;
16178 }
16179
16180 connector = intel_encoder_find_connector(encoder);
16181 if (connector && !has_active_crtc) {
16182 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16183 encoder->base.base.id,
16184 encoder->base.name);
16185
16186 /* Connector is active, but has no active pipe. This is
16187 * fallout from our resume register restoring. Disable
16188 * the encoder manually again. */
16189 if (crtc_state) {
16190 struct drm_encoder *best_encoder;
16191
16192 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16193 encoder->base.base.id,
16194 encoder->base.name);
16195
16196 /* avoid oopsing in case the hooks consult best_encoder */
16197 best_encoder = connector->base.state->best_encoder;
16198 connector->base.state->best_encoder = &encoder->base;
16199
16200 if (encoder->disable)
16201 encoder->disable(encoder, crtc_state,
16202 connector->base.state);
16203 if (encoder->post_disable)
16204 encoder->post_disable(encoder, crtc_state,
16205 connector->base.state);
16206
16207 connector->base.state->best_encoder = best_encoder;
16208 }
16209 encoder->base.crtc = NULL;
16210
16211 /* Inconsistent output/port/pipe state happens presumably due to
16212 * a bug in one of the get_hw_state functions. Or someplace else
16213 * in our code, like the register restore mess on resume. Clamp
16214 * things to off as a safer default. */
16215
16216 connector->base.dpms = DRM_MODE_DPMS_OFF;
16217 connector->base.encoder = NULL;
16218 }
16219
16220 /* notify opregion of the sanitized encoder state */
16221 intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
16222
16223 if (INTEL_GEN(dev_priv) >= 11)
16224 icl_sanitize_encoder_pll_mapping(encoder);
16225 }
16226
16227 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16228 {
16229 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16230
16231 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16232 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16233 i915_disable_vga(dev_priv);
16234 }
16235 }
16236
16237 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16238 {
16239 intel_wakeref_t wakeref;
16240
16241 /*
16242 * This function can be called both from intel_modeset_setup_hw_state or
16243 * at a very early point in our resume sequence, where the power well
16244 * structures are not yet restored. Since this function is at a very
16245 * paranoid "someone might have enabled VGA while we were not looking"
16246 * level, just check if the power well is enabled instead of trying to
16247 * follow the "don't touch the power well if we don't need it" policy
16248 * the rest of the driver uses.
16249 */
16250 wakeref = intel_display_power_get_if_enabled(dev_priv,
16251 POWER_DOMAIN_VGA);
16252 if (!wakeref)
16253 return;
16254
16255 i915_redisable_vga_power_on(dev_priv);
16256
16257 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA, wakeref);
16258 }
16259
16260 /* FIXME read out full plane state for all planes */
16261 static void readout_plane_state(struct drm_i915_private *dev_priv)
16262 {
16263 struct intel_plane *plane;
16264 struct intel_crtc *crtc;
16265
16266 for_each_intel_plane(&dev_priv->drm, plane) {
16267 struct intel_plane_state *plane_state =
16268 to_intel_plane_state(plane->base.state);
16269 struct intel_crtc_state *crtc_state;
16270 enum pipe pipe = PIPE_A;
16271 bool visible;
16272
16273 visible = plane->get_hw_state(plane, &pipe);
16274
16275 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16276 crtc_state = to_intel_crtc_state(crtc->base.state);
16277
16278 intel_set_plane_visible(crtc_state, plane_state, visible);
16279
16280 DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
16281 plane->base.base.id, plane->base.name,
16282 enableddisabled(visible), pipe_name(pipe));
16283 }
16284
16285 for_each_intel_crtc(&dev_priv->drm, crtc) {
16286 struct intel_crtc_state *crtc_state =
16287 to_intel_crtc_state(crtc->base.state);
16288
16289 fixup_active_planes(crtc_state);
16290 }
16291 }
16292
16293 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16294 {
16295 struct drm_i915_private *dev_priv = to_i915(dev);
16296 enum pipe pipe;
16297 struct intel_crtc *crtc;
16298 struct intel_encoder *encoder;
16299 struct intel_connector *connector;
16300 struct drm_connector_list_iter conn_iter;
16301 int i;
16302
16303 dev_priv->active_crtcs = 0;
16304
16305 for_each_intel_crtc(dev, crtc) {
16306 struct intel_crtc_state *crtc_state =
16307 to_intel_crtc_state(crtc->base.state);
16308
16309 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16310 memset(crtc_state, 0, sizeof(*crtc_state));
16311 crtc_state->base.crtc = &crtc->base;
16312
16313 crtc_state->base.active = crtc_state->base.enable =
16314 dev_priv->display.get_pipe_config(crtc, crtc_state);
16315
16316 crtc->base.enabled = crtc_state->base.enable;
16317 crtc->active = crtc_state->base.active;
16318
16319 if (crtc_state->base.active)
16320 dev_priv->active_crtcs |= 1 << crtc->pipe;
16321
16322 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16323 crtc->base.base.id, crtc->base.name,
16324 enableddisabled(crtc_state->base.active));
16325 }
16326
16327 readout_plane_state(dev_priv);
16328
16329 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16330 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16331
16332 pll->on = pll->info->funcs->get_hw_state(dev_priv, pll,
16333 &pll->state.hw_state);
16334 pll->state.crtc_mask = 0;
16335 for_each_intel_crtc(dev, crtc) {
16336 struct intel_crtc_state *crtc_state =
16337 to_intel_crtc_state(crtc->base.state);
16338
16339 if (crtc_state->base.active &&
16340 crtc_state->shared_dpll == pll)
16341 pll->state.crtc_mask |= 1 << crtc->pipe;
16342 }
16343 pll->active_mask = pll->state.crtc_mask;
16344
16345 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16346 pll->info->name, pll->state.crtc_mask, pll->on);
16347 }
16348
16349 for_each_intel_encoder(dev, encoder) {
16350 pipe = 0;
16351
16352 if (encoder->get_hw_state(encoder, &pipe)) {
16353 struct intel_crtc_state *crtc_state;
16354
16355 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16356 crtc_state = to_intel_crtc_state(crtc->base.state);
16357
16358 encoder->base.crtc = &crtc->base;
16359 encoder->get_config(encoder, crtc_state);
16360 } else {
16361 encoder->base.crtc = NULL;
16362 }
16363
16364 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16365 encoder->base.base.id, encoder->base.name,
16366 enableddisabled(encoder->base.crtc),
16367 pipe_name(pipe));
16368 }
16369
16370 drm_connector_list_iter_begin(dev, &conn_iter);
16371 for_each_intel_connector_iter(connector, &conn_iter) {
16372 if (connector->get_hw_state(connector)) {
16373 connector->base.dpms = DRM_MODE_DPMS_ON;
16374
16375 encoder = connector->encoder;
16376 connector->base.encoder = &encoder->base;
16377
16378 if (encoder->base.crtc &&
16379 encoder->base.crtc->state->active) {
16380 /*
16381 * This has to be done during hardware readout
16382 * because anything calling .crtc_disable may
16383 * rely on the connector_mask being accurate.
16384 */
16385 encoder->base.crtc->state->connector_mask |=
16386 drm_connector_mask(&connector->base);
16387 encoder->base.crtc->state->encoder_mask |=
16388 drm_encoder_mask(&encoder->base);
16389 }
16390
16391 } else {
16392 connector->base.dpms = DRM_MODE_DPMS_OFF;
16393 connector->base.encoder = NULL;
16394 }
16395 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16396 connector->base.base.id, connector->base.name,
16397 enableddisabled(connector->base.encoder));
16398 }
16399 drm_connector_list_iter_end(&conn_iter);
16400
16401 for_each_intel_crtc(dev, crtc) {
16402 struct intel_crtc_state *crtc_state =
16403 to_intel_crtc_state(crtc->base.state);
16404 int min_cdclk = 0;
16405
16406 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16407 if (crtc_state->base.active) {
16408 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
16409 crtc->base.mode.hdisplay = crtc_state->pipe_src_w;
16410 crtc->base.mode.vdisplay = crtc_state->pipe_src_h;
16411 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
16412 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16413
16414 /*
16415 * The initial mode needs to be set in order to keep
16416 * the atomic core happy. It wants a valid mode if the
16417 * crtc's enabled, so we do the above call.
16418 *
16419 * But we don't set all the derived state fully, hence
16420 * set a flag to indicate that a full recalculation is
16421 * needed on the next commit.
16422 */
16423 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
16424
16425 intel_crtc_compute_pixel_rate(crtc_state);
16426
16427 if (dev_priv->display.modeset_calc_cdclk) {
16428 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
16429 if (WARN_ON(min_cdclk < 0))
16430 min_cdclk = 0;
16431 }
16432
16433 drm_calc_timestamping_constants(&crtc->base,
16434 &crtc_state->base.adjusted_mode);
16435 update_scanline_offset(crtc_state);
16436 }
16437
16438 dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
16439 dev_priv->min_voltage_level[crtc->pipe] =
16440 crtc_state->min_voltage_level;
16441
16442 intel_pipe_config_sanity_check(dev_priv, crtc_state);
16443 }
16444 }
16445
16446 static void
16447 get_encoder_power_domains(struct drm_i915_private *dev_priv)
16448 {
16449 struct intel_encoder *encoder;
16450
16451 for_each_intel_encoder(&dev_priv->drm, encoder) {
16452 struct intel_crtc_state *crtc_state;
16453
16454 if (!encoder->get_power_domains)
16455 continue;
16456
16457 /*
16458 * MST-primary and inactive encoders don't have a crtc state
16459 * and neither of these require any power domain references.
16460 */
16461 if (!encoder->base.crtc)
16462 continue;
16463
16464 crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
16465 encoder->get_power_domains(encoder, crtc_state);
16466 }
16467 }
16468
16469 static void intel_early_display_was(struct drm_i915_private *dev_priv)
16470 {
16471 /* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */
16472 if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
16473 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
16474 DARBF_GATING_DIS);
16475
16476 if (IS_HASWELL(dev_priv)) {
16477 /*
16478 * WaRsPkgCStateDisplayPMReq:hsw
16479 * System hang if this isn't done before disabling all planes!
16480 */
16481 I915_WRITE(CHICKEN_PAR1_1,
16482 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
16483 }
16484 }
16485
16486 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
16487 enum port port, i915_reg_t hdmi_reg)
16488 {
16489 u32 val = I915_READ(hdmi_reg);
16490
16491 if (val & SDVO_ENABLE ||
16492 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
16493 return;
16494
16495 DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n",
16496 port_name(port));
16497
16498 val &= ~SDVO_PIPE_SEL_MASK;
16499 val |= SDVO_PIPE_SEL(PIPE_A);
16500
16501 I915_WRITE(hdmi_reg, val);
16502 }
16503
16504 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
16505 enum port port, i915_reg_t dp_reg)
16506 {
16507 u32 val = I915_READ(dp_reg);
16508
16509 if (val & DP_PORT_EN ||
16510 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
16511 return;
16512
16513 DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n",
16514 port_name(port));
16515
16516 val &= ~DP_PIPE_SEL_MASK;
16517 val |= DP_PIPE_SEL(PIPE_A);
16518
16519 I915_WRITE(dp_reg, val);
16520 }
16521
16522 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
16523 {
16524 /*
16525 * The BIOS may select transcoder B on some of the PCH
16526 * ports even it doesn't enable the port. This would trip
16527 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
16528 * Sanitize the transcoder select bits to prevent that. We
16529 * assume that the BIOS never actually enabled the port,
16530 * because if it did we'd actually have to toggle the port
16531 * on and back off to make the transcoder A select stick
16532 * (see. intel_dp_link_down(), intel_disable_hdmi(),
16533 * intel_disable_sdvo()).
16534 */
16535 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
16536 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
16537 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
16538
16539 /* PCH SDVOB multiplex with HDMIB */
16540 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
16541 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
16542 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
16543 }
16544
16545 /* Scan out the current hw modeset state,
16546 * and sanitizes it to the current state
16547 */
16548 static void
16549 intel_modeset_setup_hw_state(struct drm_device *dev,
16550 struct drm_modeset_acquire_ctx *ctx)
16551 {
16552 struct drm_i915_private *dev_priv = to_i915(dev);
16553 struct intel_crtc_state *crtc_state;
16554 struct intel_encoder *encoder;
16555 struct intel_crtc *crtc;
16556 intel_wakeref_t wakeref;
16557 int i;
16558
16559 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
16560
16561 intel_early_display_was(dev_priv);
16562 intel_modeset_readout_hw_state(dev);
16563
16564 /* HW state is read out, now we need to sanitize this mess. */
16565 get_encoder_power_domains(dev_priv);
16566
16567 if (HAS_PCH_IBX(dev_priv))
16568 ibx_sanitize_pch_ports(dev_priv);
16569
16570 /*
16571 * intel_sanitize_plane_mapping() may need to do vblank
16572 * waits, so we need vblank interrupts restored beforehand.
16573 */
16574 for_each_intel_crtc(&dev_priv->drm, crtc) {
16575 crtc_state = to_intel_crtc_state(crtc->base.state);
16576
16577 drm_crtc_vblank_reset(&crtc->base);
16578
16579 if (crtc_state->base.active)
16580 intel_crtc_vblank_on(crtc_state);
16581 }
16582
16583 intel_sanitize_plane_mapping(dev_priv);
16584
16585 for_each_intel_encoder(dev, encoder)
16586 intel_sanitize_encoder(encoder);
16587
16588 for_each_intel_crtc(&dev_priv->drm, crtc) {
16589 crtc_state = to_intel_crtc_state(crtc->base.state);
16590 intel_sanitize_crtc(crtc, ctx);
16591 intel_dump_pipe_config(crtc, crtc_state,
16592 "[setup_hw_state]");
16593 }
16594
16595 intel_modeset_update_connector_atomic_state(dev);
16596
16597 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16598 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16599
16600 if (!pll->on || pll->active_mask)
16601 continue;
16602
16603 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n",
16604 pll->info->name);
16605
16606 pll->info->funcs->disable(dev_priv, pll);
16607 pll->on = false;
16608 }
16609
16610 if (IS_G4X(dev_priv)) {
16611 g4x_wm_get_hw_state(dev_priv);
16612 g4x_wm_sanitize(dev_priv);
16613 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16614 vlv_wm_get_hw_state(dev_priv);
16615 vlv_wm_sanitize(dev_priv);
16616 } else if (INTEL_GEN(dev_priv) >= 9) {
16617 skl_wm_get_hw_state(dev_priv);
16618 } else if (HAS_PCH_SPLIT(dev_priv)) {
16619 ilk_wm_get_hw_state(dev_priv);
16620 }
16621
16622 for_each_intel_crtc(dev, crtc) {
16623 u64 put_domains;
16624
16625 crtc_state = to_intel_crtc_state(crtc->base.state);
16626 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc_state);
16627 if (WARN_ON(put_domains))
16628 modeset_put_power_domains(dev_priv, put_domains);
16629 }
16630
16631 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
16632
16633 intel_fbc_init_pipe_state(dev_priv);
16634 }
16635
16636 void intel_display_resume(struct drm_device *dev)
16637 {
16638 struct drm_i915_private *dev_priv = to_i915(dev);
16639 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16640 struct drm_modeset_acquire_ctx ctx;
16641 int ret;
16642
16643 dev_priv->modeset_restore_state = NULL;
16644 if (state)
16645 state->acquire_ctx = &ctx;
16646
16647 drm_modeset_acquire_init(&ctx, 0);
16648
16649 while (1) {
16650 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16651 if (ret != -EDEADLK)
16652 break;
16653
16654 drm_modeset_backoff(&ctx);
16655 }
16656
16657 if (!ret)
16658 ret = __intel_display_resume(dev, state, &ctx);
16659
16660 intel_enable_ipc(dev_priv);
16661 drm_modeset_drop_locks(&ctx);
16662 drm_modeset_acquire_fini(&ctx);
16663
16664 if (ret)
16665 DRM_ERROR("Restoring old state failed with %i\n", ret);
16666 if (state)
16667 drm_atomic_state_put(state);
16668 }
16669
16670 static void intel_hpd_poll_fini(struct drm_device *dev)
16671 {
16672 struct intel_connector *connector;
16673 struct drm_connector_list_iter conn_iter;
16674
16675 /* Kill all the work that may have been queued by hpd. */
16676 drm_connector_list_iter_begin(dev, &conn_iter);
16677 for_each_intel_connector_iter(connector, &conn_iter) {
16678 if (connector->modeset_retry_work.func)
16679 cancel_work_sync(&connector->modeset_retry_work);
16680 if (connector->hdcp.shim) {
16681 cancel_delayed_work_sync(&connector->hdcp.check_work);
16682 cancel_work_sync(&connector->hdcp.prop_work);
16683 }
16684 }
16685 drm_connector_list_iter_end(&conn_iter);
16686 }
16687
16688 void intel_modeset_cleanup(struct drm_device *dev)
16689 {
16690 struct drm_i915_private *dev_priv = to_i915(dev);
16691
16692 flush_workqueue(dev_priv->modeset_wq);
16693
16694 flush_work(&dev_priv->atomic_helper.free_work);
16695 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
16696
16697 /*
16698 * Interrupts and polling as the first thing to avoid creating havoc.
16699 * Too much stuff here (turning of connectors, ...) would
16700 * experience fancy races otherwise.
16701 */
16702 intel_irq_uninstall(dev_priv);
16703
16704 /*
16705 * Due to the hpd irq storm handling the hotplug work can re-arm the
16706 * poll handlers. Hence disable polling after hpd handling is shut down.
16707 */
16708 intel_hpd_poll_fini(dev);
16709
16710 /* poll work can call into fbdev, hence clean that up afterwards */
16711 intel_fbdev_fini(dev_priv);
16712
16713 intel_unregister_dsm_handler();
16714
16715 intel_fbc_global_disable(dev_priv);
16716
16717 /* flush any delayed tasks or pending work */
16718 flush_scheduled_work();
16719
16720 intel_hdcp_component_fini(dev_priv);
16721
16722 drm_mode_config_cleanup(dev);
16723
16724 intel_overlay_cleanup(dev_priv);
16725
16726 intel_gmbus_teardown(dev_priv);
16727
16728 destroy_workqueue(dev_priv->modeset_wq);
16729
16730 intel_fbc_cleanup_cfb(dev_priv);
16731 }
16732
16733 /*
16734 * set vga decode state - true == enable VGA decode
16735 */
16736 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
16737 {
16738 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16739 u16 gmch_ctrl;
16740
16741 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16742 DRM_ERROR("failed to read control word\n");
16743 return -EIO;
16744 }
16745
16746 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16747 return 0;
16748
16749 if (state)
16750 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16751 else
16752 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16753
16754 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16755 DRM_ERROR("failed to write control word\n");
16756 return -EIO;
16757 }
16758
16759 return 0;
16760 }
16761
16762 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
16763
16764 struct intel_display_error_state {
16765
16766 u32 power_well_driver;
16767
16768 struct intel_cursor_error_state {
16769 u32 control;
16770 u32 position;
16771 u32 base;
16772 u32 size;
16773 } cursor[I915_MAX_PIPES];
16774
16775 struct intel_pipe_error_state {
16776 bool power_domain_on;
16777 u32 source;
16778 u32 stat;
16779 } pipe[I915_MAX_PIPES];
16780
16781 struct intel_plane_error_state {
16782 u32 control;
16783 u32 stride;
16784 u32 size;
16785 u32 pos;
16786 u32 addr;
16787 u32 surface;
16788 u32 tile_offset;
16789 } plane[I915_MAX_PIPES];
16790
16791 struct intel_transcoder_error_state {
16792 bool available;
16793 bool power_domain_on;
16794 enum transcoder cpu_transcoder;
16795
16796 u32 conf;
16797
16798 u32 htotal;
16799 u32 hblank;
16800 u32 hsync;
16801 u32 vtotal;
16802 u32 vblank;
16803 u32 vsync;
16804 } transcoder[4];
16805 };
16806
16807 struct intel_display_error_state *
16808 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16809 {
16810 struct intel_display_error_state *error;
16811 int transcoders[] = {
16812 TRANSCODER_A,
16813 TRANSCODER_B,
16814 TRANSCODER_C,
16815 TRANSCODER_EDP,
16816 };
16817 int i;
16818
16819 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
16820
16821 if (!HAS_DISPLAY(dev_priv))
16822 return NULL;
16823
16824 error = kzalloc(sizeof(*error), GFP_ATOMIC);
16825 if (error == NULL)
16826 return NULL;
16827
16828 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16829 error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2);
16830
16831 for_each_pipe(dev_priv, i) {
16832 error->pipe[i].power_domain_on =
16833 __intel_display_power_is_enabled(dev_priv,
16834 POWER_DOMAIN_PIPE(i));
16835 if (!error->pipe[i].power_domain_on)
16836 continue;
16837
16838 error->cursor[i].control = I915_READ(CURCNTR(i));
16839 error->cursor[i].position = I915_READ(CURPOS(i));
16840 error->cursor[i].base = I915_READ(CURBASE(i));
16841
16842 error->plane[i].control = I915_READ(DSPCNTR(i));
16843 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16844 if (INTEL_GEN(dev_priv) <= 3) {
16845 error->plane[i].size = I915_READ(DSPSIZE(i));
16846 error->plane[i].pos = I915_READ(DSPPOS(i));
16847 }
16848 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16849 error->plane[i].addr = I915_READ(DSPADDR(i));
16850 if (INTEL_GEN(dev_priv) >= 4) {
16851 error->plane[i].surface = I915_READ(DSPSURF(i));
16852 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16853 }
16854
16855 error->pipe[i].source = I915_READ(PIPESRC(i));
16856
16857 if (HAS_GMCH(dev_priv))
16858 error->pipe[i].stat = I915_READ(PIPESTAT(i));
16859 }
16860
16861 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
16862 enum transcoder cpu_transcoder = transcoders[i];
16863
16864 if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder])
16865 continue;
16866
16867 error->transcoder[i].available = true;
16868 error->transcoder[i].power_domain_on =
16869 __intel_display_power_is_enabled(dev_priv,
16870 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16871 if (!error->transcoder[i].power_domain_on)
16872 continue;
16873
16874 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16875
16876 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16877 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16878 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16879 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16880 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16881 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16882 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16883 }
16884
16885 return error;
16886 }
16887
16888 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16889
16890 void
16891 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16892 struct intel_display_error_state *error)
16893 {
16894 struct drm_i915_private *dev_priv = m->i915;
16895 int i;
16896
16897 if (!error)
16898 return;
16899
16900 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
16901 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16902 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16903 error->power_well_driver);
16904 for_each_pipe(dev_priv, i) {
16905 err_printf(m, "Pipe [%d]:\n", i);
16906 err_printf(m, " Power: %s\n",
16907 onoff(error->pipe[i].power_domain_on));
16908 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
16909 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
16910
16911 err_printf(m, "Plane [%d]:\n", i);
16912 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16913 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
16914 if (INTEL_GEN(dev_priv) <= 3) {
16915 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16916 err_printf(m, " POS: %08x\n", error->plane[i].pos);
16917 }
16918 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16919 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
16920 if (INTEL_GEN(dev_priv) >= 4) {
16921 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16922 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
16923 }
16924
16925 err_printf(m, "Cursor [%d]:\n", i);
16926 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16927 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16928 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
16929 }
16930
16931 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
16932 if (!error->transcoder[i].available)
16933 continue;
16934
16935 err_printf(m, "CPU transcoder: %s\n",
16936 transcoder_name(error->transcoder[i].cpu_transcoder));
16937 err_printf(m, " Power: %s\n",
16938 onoff(error->transcoder[i].power_domain_on));
16939 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16940 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16941 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16942 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16943 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16944 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16945 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16946 }
16947 }
16948
16949 #endif