]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_hdmi.c
Merge tag 'drm-intel-next-2014-10-03-no-ppgtt' of git://anongit.freedesktop.org/drm...
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_hdmi.c
1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/i2c.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/hdmi.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39
40 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
41 {
42 return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
43 }
44
45 static void
46 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
47 {
48 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
49 struct drm_i915_private *dev_priv = dev->dev_private;
50 uint32_t enabled_bits;
51
52 enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
53
54 WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
55 "HDMI port enabled, expecting disabled\n");
56 }
57
58 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
59 {
60 struct intel_digital_port *intel_dig_port =
61 container_of(encoder, struct intel_digital_port, base.base);
62 return &intel_dig_port->hdmi;
63 }
64
65 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
66 {
67 return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
68 }
69
70 static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
71 {
72 switch (type) {
73 case HDMI_INFOFRAME_TYPE_AVI:
74 return VIDEO_DIP_SELECT_AVI;
75 case HDMI_INFOFRAME_TYPE_SPD:
76 return VIDEO_DIP_SELECT_SPD;
77 case HDMI_INFOFRAME_TYPE_VENDOR:
78 return VIDEO_DIP_SELECT_VENDOR;
79 default:
80 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
81 return 0;
82 }
83 }
84
85 static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
86 {
87 switch (type) {
88 case HDMI_INFOFRAME_TYPE_AVI:
89 return VIDEO_DIP_ENABLE_AVI;
90 case HDMI_INFOFRAME_TYPE_SPD:
91 return VIDEO_DIP_ENABLE_SPD;
92 case HDMI_INFOFRAME_TYPE_VENDOR:
93 return VIDEO_DIP_ENABLE_VENDOR;
94 default:
95 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
96 return 0;
97 }
98 }
99
100 static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
101 {
102 switch (type) {
103 case HDMI_INFOFRAME_TYPE_AVI:
104 return VIDEO_DIP_ENABLE_AVI_HSW;
105 case HDMI_INFOFRAME_TYPE_SPD:
106 return VIDEO_DIP_ENABLE_SPD_HSW;
107 case HDMI_INFOFRAME_TYPE_VENDOR:
108 return VIDEO_DIP_ENABLE_VS_HSW;
109 default:
110 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
111 return 0;
112 }
113 }
114
115 static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
116 enum transcoder cpu_transcoder,
117 struct drm_i915_private *dev_priv)
118 {
119 switch (type) {
120 case HDMI_INFOFRAME_TYPE_AVI:
121 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
122 case HDMI_INFOFRAME_TYPE_SPD:
123 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
124 case HDMI_INFOFRAME_TYPE_VENDOR:
125 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
126 default:
127 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
128 return 0;
129 }
130 }
131
132 static void g4x_write_infoframe(struct drm_encoder *encoder,
133 enum hdmi_infoframe_type type,
134 const void *frame, ssize_t len)
135 {
136 const uint32_t *data = frame;
137 struct drm_device *dev = encoder->dev;
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 u32 val = I915_READ(VIDEO_DIP_CTL);
140 int i;
141
142 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
143
144 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
145 val |= g4x_infoframe_index(type);
146
147 val &= ~g4x_infoframe_enable(type);
148
149 I915_WRITE(VIDEO_DIP_CTL, val);
150
151 mmiowb();
152 for (i = 0; i < len; i += 4) {
153 I915_WRITE(VIDEO_DIP_DATA, *data);
154 data++;
155 }
156 /* Write every possible data byte to force correct ECC calculation. */
157 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
158 I915_WRITE(VIDEO_DIP_DATA, 0);
159 mmiowb();
160
161 val |= g4x_infoframe_enable(type);
162 val &= ~VIDEO_DIP_FREQ_MASK;
163 val |= VIDEO_DIP_FREQ_VSYNC;
164
165 I915_WRITE(VIDEO_DIP_CTL, val);
166 POSTING_READ(VIDEO_DIP_CTL);
167 }
168
169 static void ibx_write_infoframe(struct drm_encoder *encoder,
170 enum hdmi_infoframe_type type,
171 const void *frame, ssize_t len)
172 {
173 const uint32_t *data = frame;
174 struct drm_device *dev = encoder->dev;
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
177 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
178 u32 val = I915_READ(reg);
179
180 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
181
182 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
183 val |= g4x_infoframe_index(type);
184
185 val &= ~g4x_infoframe_enable(type);
186
187 I915_WRITE(reg, val);
188
189 mmiowb();
190 for (i = 0; i < len; i += 4) {
191 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
192 data++;
193 }
194 /* Write every possible data byte to force correct ECC calculation. */
195 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
196 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
197 mmiowb();
198
199 val |= g4x_infoframe_enable(type);
200 val &= ~VIDEO_DIP_FREQ_MASK;
201 val |= VIDEO_DIP_FREQ_VSYNC;
202
203 I915_WRITE(reg, val);
204 POSTING_READ(reg);
205 }
206
207 static void cpt_write_infoframe(struct drm_encoder *encoder,
208 enum hdmi_infoframe_type type,
209 const void *frame, ssize_t len)
210 {
211 const uint32_t *data = frame;
212 struct drm_device *dev = encoder->dev;
213 struct drm_i915_private *dev_priv = dev->dev_private;
214 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
215 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
216 u32 val = I915_READ(reg);
217
218 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
219
220 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
221 val |= g4x_infoframe_index(type);
222
223 /* The DIP control register spec says that we need to update the AVI
224 * infoframe without clearing its enable bit */
225 if (type != HDMI_INFOFRAME_TYPE_AVI)
226 val &= ~g4x_infoframe_enable(type);
227
228 I915_WRITE(reg, val);
229
230 mmiowb();
231 for (i = 0; i < len; i += 4) {
232 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
233 data++;
234 }
235 /* Write every possible data byte to force correct ECC calculation. */
236 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
237 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
238 mmiowb();
239
240 val |= g4x_infoframe_enable(type);
241 val &= ~VIDEO_DIP_FREQ_MASK;
242 val |= VIDEO_DIP_FREQ_VSYNC;
243
244 I915_WRITE(reg, val);
245 POSTING_READ(reg);
246 }
247
248 static void vlv_write_infoframe(struct drm_encoder *encoder,
249 enum hdmi_infoframe_type type,
250 const void *frame, ssize_t len)
251 {
252 const uint32_t *data = frame;
253 struct drm_device *dev = encoder->dev;
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
256 int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
257 u32 val = I915_READ(reg);
258
259 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
260
261 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
262 val |= g4x_infoframe_index(type);
263
264 val &= ~g4x_infoframe_enable(type);
265
266 I915_WRITE(reg, val);
267
268 mmiowb();
269 for (i = 0; i < len; i += 4) {
270 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
271 data++;
272 }
273 /* Write every possible data byte to force correct ECC calculation. */
274 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
275 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
276 mmiowb();
277
278 val |= g4x_infoframe_enable(type);
279 val &= ~VIDEO_DIP_FREQ_MASK;
280 val |= VIDEO_DIP_FREQ_VSYNC;
281
282 I915_WRITE(reg, val);
283 POSTING_READ(reg);
284 }
285
286 static void hsw_write_infoframe(struct drm_encoder *encoder,
287 enum hdmi_infoframe_type type,
288 const void *frame, ssize_t len)
289 {
290 const uint32_t *data = frame;
291 struct drm_device *dev = encoder->dev;
292 struct drm_i915_private *dev_priv = dev->dev_private;
293 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
294 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
295 u32 data_reg;
296 int i;
297 u32 val = I915_READ(ctl_reg);
298
299 data_reg = hsw_infoframe_data_reg(type,
300 intel_crtc->config.cpu_transcoder,
301 dev_priv);
302 if (data_reg == 0)
303 return;
304
305 val &= ~hsw_infoframe_enable(type);
306 I915_WRITE(ctl_reg, val);
307
308 mmiowb();
309 for (i = 0; i < len; i += 4) {
310 I915_WRITE(data_reg + i, *data);
311 data++;
312 }
313 /* Write every possible data byte to force correct ECC calculation. */
314 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
315 I915_WRITE(data_reg + i, 0);
316 mmiowb();
317
318 val |= hsw_infoframe_enable(type);
319 I915_WRITE(ctl_reg, val);
320 POSTING_READ(ctl_reg);
321 }
322
323 /*
324 * The data we write to the DIP data buffer registers is 1 byte bigger than the
325 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
326 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
327 * used for both technologies.
328 *
329 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
330 * DW1: DB3 | DB2 | DB1 | DB0
331 * DW2: DB7 | DB6 | DB5 | DB4
332 * DW3: ...
333 *
334 * (HB is Header Byte, DB is Data Byte)
335 *
336 * The hdmi pack() functions don't know about that hardware specific hole so we
337 * trick them by giving an offset into the buffer and moving back the header
338 * bytes by one.
339 */
340 static void intel_write_infoframe(struct drm_encoder *encoder,
341 union hdmi_infoframe *frame)
342 {
343 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
344 uint8_t buffer[VIDEO_DIP_DATA_SIZE];
345 ssize_t len;
346
347 /* see comment above for the reason for this offset */
348 len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
349 if (len < 0)
350 return;
351
352 /* Insert the 'hole' (see big comment above) at position 3 */
353 buffer[0] = buffer[1];
354 buffer[1] = buffer[2];
355 buffer[2] = buffer[3];
356 buffer[3] = 0;
357 len++;
358
359 intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
360 }
361
362 static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
363 struct drm_display_mode *adjusted_mode)
364 {
365 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
366 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
367 union hdmi_infoframe frame;
368 int ret;
369
370 /* Set user selected PAR to incoming mode's member */
371 adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
372
373 ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
374 adjusted_mode);
375 if (ret < 0) {
376 DRM_ERROR("couldn't fill AVI infoframe\n");
377 return;
378 }
379
380 if (intel_hdmi->rgb_quant_range_selectable) {
381 if (intel_crtc->config.limited_color_range)
382 frame.avi.quantization_range =
383 HDMI_QUANTIZATION_RANGE_LIMITED;
384 else
385 frame.avi.quantization_range =
386 HDMI_QUANTIZATION_RANGE_FULL;
387 }
388
389 intel_write_infoframe(encoder, &frame);
390 }
391
392 static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
393 {
394 union hdmi_infoframe frame;
395 int ret;
396
397 ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
398 if (ret < 0) {
399 DRM_ERROR("couldn't fill SPD infoframe\n");
400 return;
401 }
402
403 frame.spd.sdi = HDMI_SPD_SDI_PC;
404
405 intel_write_infoframe(encoder, &frame);
406 }
407
408 static void
409 intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
410 struct drm_display_mode *adjusted_mode)
411 {
412 union hdmi_infoframe frame;
413 int ret;
414
415 ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
416 adjusted_mode);
417 if (ret < 0)
418 return;
419
420 intel_write_infoframe(encoder, &frame);
421 }
422
423 static void g4x_set_infoframes(struct drm_encoder *encoder,
424 bool enable,
425 struct drm_display_mode *adjusted_mode)
426 {
427 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
428 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
429 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
430 u32 reg = VIDEO_DIP_CTL;
431 u32 val = I915_READ(reg);
432 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
433
434 assert_hdmi_port_disabled(intel_hdmi);
435
436 /* If the registers were not initialized yet, they might be zeroes,
437 * which means we're selecting the AVI DIP and we're setting its
438 * frequency to once. This seems to really confuse the HW and make
439 * things stop working (the register spec says the AVI always needs to
440 * be sent every VSync). So here we avoid writing to the register more
441 * than we need and also explicitly select the AVI DIP and explicitly
442 * set its frequency to every VSync. Avoiding to write it twice seems to
443 * be enough to solve the problem, but being defensive shouldn't hurt us
444 * either. */
445 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
446
447 if (!enable) {
448 if (!(val & VIDEO_DIP_ENABLE))
449 return;
450 val &= ~VIDEO_DIP_ENABLE;
451 I915_WRITE(reg, val);
452 POSTING_READ(reg);
453 return;
454 }
455
456 if (port != (val & VIDEO_DIP_PORT_MASK)) {
457 if (val & VIDEO_DIP_ENABLE) {
458 val &= ~VIDEO_DIP_ENABLE;
459 I915_WRITE(reg, val);
460 POSTING_READ(reg);
461 }
462 val &= ~VIDEO_DIP_PORT_MASK;
463 val |= port;
464 }
465
466 val |= VIDEO_DIP_ENABLE;
467 val &= ~VIDEO_DIP_ENABLE_VENDOR;
468
469 I915_WRITE(reg, val);
470 POSTING_READ(reg);
471
472 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
473 intel_hdmi_set_spd_infoframe(encoder);
474 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
475 }
476
477 static void ibx_set_infoframes(struct drm_encoder *encoder,
478 bool enable,
479 struct drm_display_mode *adjusted_mode)
480 {
481 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
482 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
483 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
484 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
485 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
486 u32 val = I915_READ(reg);
487 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
488
489 assert_hdmi_port_disabled(intel_hdmi);
490
491 /* See the big comment in g4x_set_infoframes() */
492 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
493
494 if (!enable) {
495 if (!(val & VIDEO_DIP_ENABLE))
496 return;
497 val &= ~VIDEO_DIP_ENABLE;
498 I915_WRITE(reg, val);
499 POSTING_READ(reg);
500 return;
501 }
502
503 if (port != (val & VIDEO_DIP_PORT_MASK)) {
504 if (val & VIDEO_DIP_ENABLE) {
505 val &= ~VIDEO_DIP_ENABLE;
506 I915_WRITE(reg, val);
507 POSTING_READ(reg);
508 }
509 val &= ~VIDEO_DIP_PORT_MASK;
510 val |= port;
511 }
512
513 val |= VIDEO_DIP_ENABLE;
514 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
515 VIDEO_DIP_ENABLE_GCP);
516
517 I915_WRITE(reg, val);
518 POSTING_READ(reg);
519
520 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
521 intel_hdmi_set_spd_infoframe(encoder);
522 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
523 }
524
525 static void cpt_set_infoframes(struct drm_encoder *encoder,
526 bool enable,
527 struct drm_display_mode *adjusted_mode)
528 {
529 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
530 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
531 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
532 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
533 u32 val = I915_READ(reg);
534
535 assert_hdmi_port_disabled(intel_hdmi);
536
537 /* See the big comment in g4x_set_infoframes() */
538 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
539
540 if (!enable) {
541 if (!(val & VIDEO_DIP_ENABLE))
542 return;
543 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
544 I915_WRITE(reg, val);
545 POSTING_READ(reg);
546 return;
547 }
548
549 /* Set both together, unset both together: see the spec. */
550 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
551 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
552 VIDEO_DIP_ENABLE_GCP);
553
554 I915_WRITE(reg, val);
555 POSTING_READ(reg);
556
557 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
558 intel_hdmi_set_spd_infoframe(encoder);
559 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
560 }
561
562 static void vlv_set_infoframes(struct drm_encoder *encoder,
563 bool enable,
564 struct drm_display_mode *adjusted_mode)
565 {
566 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
567 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
568 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
569 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
570 u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
571 u32 val = I915_READ(reg);
572 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
573
574 assert_hdmi_port_disabled(intel_hdmi);
575
576 /* See the big comment in g4x_set_infoframes() */
577 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
578
579 if (!enable) {
580 if (!(val & VIDEO_DIP_ENABLE))
581 return;
582 val &= ~VIDEO_DIP_ENABLE;
583 I915_WRITE(reg, val);
584 POSTING_READ(reg);
585 return;
586 }
587
588 if (port != (val & VIDEO_DIP_PORT_MASK)) {
589 if (val & VIDEO_DIP_ENABLE) {
590 val &= ~VIDEO_DIP_ENABLE;
591 I915_WRITE(reg, val);
592 POSTING_READ(reg);
593 }
594 val &= ~VIDEO_DIP_PORT_MASK;
595 val |= port;
596 }
597
598 val |= VIDEO_DIP_ENABLE;
599 val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR |
600 VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP);
601
602 I915_WRITE(reg, val);
603 POSTING_READ(reg);
604
605 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
606 intel_hdmi_set_spd_infoframe(encoder);
607 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
608 }
609
610 static void hsw_set_infoframes(struct drm_encoder *encoder,
611 bool enable,
612 struct drm_display_mode *adjusted_mode)
613 {
614 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
615 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
616 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
617 u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
618 u32 val = I915_READ(reg);
619
620 assert_hdmi_port_disabled(intel_hdmi);
621
622 if (!enable) {
623 I915_WRITE(reg, 0);
624 POSTING_READ(reg);
625 return;
626 }
627
628 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
629 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
630
631 I915_WRITE(reg, val);
632 POSTING_READ(reg);
633
634 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
635 intel_hdmi_set_spd_infoframe(encoder);
636 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
637 }
638
639 static void intel_hdmi_prepare(struct intel_encoder *encoder)
640 {
641 struct drm_device *dev = encoder->base.dev;
642 struct drm_i915_private *dev_priv = dev->dev_private;
643 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
644 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
645 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
646 u32 hdmi_val;
647
648 hdmi_val = SDVO_ENCODING_HDMI;
649 if (!HAS_PCH_SPLIT(dev))
650 hdmi_val |= intel_hdmi->color_range;
651 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
652 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
653 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
654 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
655
656 if (crtc->config.pipe_bpp > 24)
657 hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
658 else
659 hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
660
661 if (crtc->config.has_hdmi_sink)
662 hdmi_val |= HDMI_MODE_SELECT_HDMI;
663
664 if (crtc->config.has_audio) {
665 WARN_ON(!crtc->config.has_hdmi_sink);
666 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
667 pipe_name(crtc->pipe));
668 hdmi_val |= SDVO_AUDIO_ENABLE;
669 intel_write_eld(&encoder->base, adjusted_mode);
670 }
671
672 if (HAS_PCH_CPT(dev))
673 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
674 else if (IS_CHERRYVIEW(dev))
675 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
676 else
677 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
678
679 I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
680 POSTING_READ(intel_hdmi->hdmi_reg);
681 }
682
683 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
684 enum pipe *pipe)
685 {
686 struct drm_device *dev = encoder->base.dev;
687 struct drm_i915_private *dev_priv = dev->dev_private;
688 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
689 enum intel_display_power_domain power_domain;
690 u32 tmp;
691
692 power_domain = intel_display_port_power_domain(encoder);
693 if (!intel_display_power_is_enabled(dev_priv, power_domain))
694 return false;
695
696 tmp = I915_READ(intel_hdmi->hdmi_reg);
697
698 if (!(tmp & SDVO_ENABLE))
699 return false;
700
701 if (HAS_PCH_CPT(dev))
702 *pipe = PORT_TO_PIPE_CPT(tmp);
703 else if (IS_CHERRYVIEW(dev))
704 *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
705 else
706 *pipe = PORT_TO_PIPE(tmp);
707
708 return true;
709 }
710
711 static void intel_hdmi_get_config(struct intel_encoder *encoder,
712 struct intel_crtc_config *pipe_config)
713 {
714 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
715 struct drm_device *dev = encoder->base.dev;
716 struct drm_i915_private *dev_priv = dev->dev_private;
717 u32 tmp, flags = 0;
718 int dotclock;
719
720 tmp = I915_READ(intel_hdmi->hdmi_reg);
721
722 if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
723 flags |= DRM_MODE_FLAG_PHSYNC;
724 else
725 flags |= DRM_MODE_FLAG_NHSYNC;
726
727 if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
728 flags |= DRM_MODE_FLAG_PVSYNC;
729 else
730 flags |= DRM_MODE_FLAG_NVSYNC;
731
732 if (tmp & HDMI_MODE_SELECT_HDMI)
733 pipe_config->has_hdmi_sink = true;
734
735 if (tmp & SDVO_AUDIO_ENABLE)
736 pipe_config->has_audio = true;
737
738 if (!HAS_PCH_SPLIT(dev) &&
739 tmp & HDMI_COLOR_RANGE_16_235)
740 pipe_config->limited_color_range = true;
741
742 pipe_config->adjusted_mode.flags |= flags;
743
744 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
745 dotclock = pipe_config->port_clock * 2 / 3;
746 else
747 dotclock = pipe_config->port_clock;
748
749 if (HAS_PCH_SPLIT(dev_priv->dev))
750 ironlake_check_encoder_dotclock(pipe_config, dotclock);
751
752 pipe_config->adjusted_mode.crtc_clock = dotclock;
753 }
754
755 static void intel_enable_hdmi(struct intel_encoder *encoder)
756 {
757 struct drm_device *dev = encoder->base.dev;
758 struct drm_i915_private *dev_priv = dev->dev_private;
759 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
760 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
761 u32 temp;
762 u32 enable_bits = SDVO_ENABLE;
763
764 if (intel_crtc->config.has_audio)
765 enable_bits |= SDVO_AUDIO_ENABLE;
766
767 temp = I915_READ(intel_hdmi->hdmi_reg);
768
769 /* HW workaround for IBX, we need to move the port to transcoder A
770 * before disabling it, so restore the transcoder select bit here. */
771 if (HAS_PCH_IBX(dev))
772 enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
773
774 /* HW workaround, need to toggle enable bit off and on for 12bpc, but
775 * we do this anyway which shows more stable in testing.
776 */
777 if (HAS_PCH_SPLIT(dev)) {
778 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
779 POSTING_READ(intel_hdmi->hdmi_reg);
780 }
781
782 temp |= enable_bits;
783
784 I915_WRITE(intel_hdmi->hdmi_reg, temp);
785 POSTING_READ(intel_hdmi->hdmi_reg);
786
787 /* HW workaround, need to write this twice for issue that may result
788 * in first write getting masked.
789 */
790 if (HAS_PCH_SPLIT(dev)) {
791 I915_WRITE(intel_hdmi->hdmi_reg, temp);
792 POSTING_READ(intel_hdmi->hdmi_reg);
793 }
794 }
795
796 static void vlv_enable_hdmi(struct intel_encoder *encoder)
797 {
798 }
799
800 static void intel_disable_hdmi(struct intel_encoder *encoder)
801 {
802 struct drm_device *dev = encoder->base.dev;
803 struct drm_i915_private *dev_priv = dev->dev_private;
804 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
805 u32 temp;
806 u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE;
807
808 temp = I915_READ(intel_hdmi->hdmi_reg);
809
810 /* HW workaround for IBX, we need to move the port to transcoder A
811 * before disabling it. */
812 if (HAS_PCH_IBX(dev)) {
813 struct drm_crtc *crtc = encoder->base.crtc;
814 int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1;
815
816 if (temp & SDVO_PIPE_B_SELECT) {
817 temp &= ~SDVO_PIPE_B_SELECT;
818 I915_WRITE(intel_hdmi->hdmi_reg, temp);
819 POSTING_READ(intel_hdmi->hdmi_reg);
820
821 /* Again we need to write this twice. */
822 I915_WRITE(intel_hdmi->hdmi_reg, temp);
823 POSTING_READ(intel_hdmi->hdmi_reg);
824
825 /* Transcoder selection bits only update
826 * effectively on vblank. */
827 if (crtc)
828 intel_wait_for_vblank(dev, pipe);
829 else
830 msleep(50);
831 }
832 }
833
834 /* HW workaround, need to toggle enable bit off and on for 12bpc, but
835 * we do this anyway which shows more stable in testing.
836 */
837 if (HAS_PCH_SPLIT(dev)) {
838 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
839 POSTING_READ(intel_hdmi->hdmi_reg);
840 }
841
842 temp &= ~enable_bits;
843
844 I915_WRITE(intel_hdmi->hdmi_reg, temp);
845 POSTING_READ(intel_hdmi->hdmi_reg);
846
847 /* HW workaround, need to write this twice for issue that may result
848 * in first write getting masked.
849 */
850 if (HAS_PCH_SPLIT(dev)) {
851 I915_WRITE(intel_hdmi->hdmi_reg, temp);
852 POSTING_READ(intel_hdmi->hdmi_reg);
853 }
854 }
855
856 static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
857 {
858 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
859
860 if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
861 return 165000;
862 else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
863 return 300000;
864 else
865 return 225000;
866 }
867
868 static enum drm_mode_status
869 intel_hdmi_mode_valid(struct drm_connector *connector,
870 struct drm_display_mode *mode)
871 {
872 int clock = mode->clock;
873
874 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
875 clock *= 2;
876
877 if (clock > hdmi_portclock_limit(intel_attached_hdmi(connector),
878 true))
879 return MODE_CLOCK_HIGH;
880 if (clock < 20000)
881 return MODE_CLOCK_LOW;
882
883 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
884 return MODE_NO_DBLESCAN;
885
886 return MODE_OK;
887 }
888
889 static bool hdmi_12bpc_possible(struct intel_crtc *crtc)
890 {
891 struct drm_device *dev = crtc->base.dev;
892 struct intel_encoder *encoder;
893 int count = 0, count_hdmi = 0;
894
895 if (HAS_GMCH_DISPLAY(dev))
896 return false;
897
898 for_each_intel_encoder(dev, encoder) {
899 if (encoder->new_crtc != crtc)
900 continue;
901
902 count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
903 count++;
904 }
905
906 /*
907 * HDMI 12bpc affects the clocks, so it's only possible
908 * when not cloning with other encoder types.
909 */
910 return count_hdmi > 0 && count_hdmi == count;
911 }
912
913 bool intel_hdmi_compute_config(struct intel_encoder *encoder,
914 struct intel_crtc_config *pipe_config)
915 {
916 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
917 struct drm_device *dev = encoder->base.dev;
918 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
919 int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2;
920 int portclock_limit = hdmi_portclock_limit(intel_hdmi, false);
921 int desired_bpp;
922
923 pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
924
925 if (intel_hdmi->color_range_auto) {
926 /* See CEA-861-E - 5.1 Default Encoding Parameters */
927 if (pipe_config->has_hdmi_sink &&
928 drm_match_cea_mode(adjusted_mode) > 1)
929 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
930 else
931 intel_hdmi->color_range = 0;
932 }
933
934 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
935 pipe_config->pixel_multiplier = 2;
936 }
937
938 if (intel_hdmi->color_range)
939 pipe_config->limited_color_range = true;
940
941 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
942 pipe_config->has_pch_encoder = true;
943
944 if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
945 pipe_config->has_audio = true;
946
947 /*
948 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
949 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
950 * outputs. We also need to check that the higher clock still fits
951 * within limits.
952 */
953 if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
954 clock_12bpc <= portclock_limit &&
955 hdmi_12bpc_possible(encoder->new_crtc)) {
956 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
957 desired_bpp = 12*3;
958
959 /* Need to adjust the port link by 1.5x for 12bpc. */
960 pipe_config->port_clock = clock_12bpc;
961 } else {
962 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
963 desired_bpp = 8*3;
964 }
965
966 if (!pipe_config->bw_constrained) {
967 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
968 pipe_config->pipe_bpp = desired_bpp;
969 }
970
971 if (adjusted_mode->crtc_clock > portclock_limit) {
972 DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
973 return false;
974 }
975
976 return true;
977 }
978
979 static void
980 intel_hdmi_unset_edid(struct drm_connector *connector)
981 {
982 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
983
984 intel_hdmi->has_hdmi_sink = false;
985 intel_hdmi->has_audio = false;
986 intel_hdmi->rgb_quant_range_selectable = false;
987
988 kfree(to_intel_connector(connector)->detect_edid);
989 to_intel_connector(connector)->detect_edid = NULL;
990 }
991
992 static bool
993 intel_hdmi_set_edid(struct drm_connector *connector)
994 {
995 struct drm_i915_private *dev_priv = to_i915(connector->dev);
996 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
997 struct intel_encoder *intel_encoder =
998 &hdmi_to_dig_port(intel_hdmi)->base;
999 enum intel_display_power_domain power_domain;
1000 struct edid *edid;
1001 bool connected = false;
1002
1003 power_domain = intel_display_port_power_domain(intel_encoder);
1004 intel_display_power_get(dev_priv, power_domain);
1005
1006 edid = drm_get_edid(connector,
1007 intel_gmbus_get_adapter(dev_priv,
1008 intel_hdmi->ddc_bus));
1009
1010 intel_display_power_put(dev_priv, power_domain);
1011
1012 to_intel_connector(connector)->detect_edid = edid;
1013 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
1014 intel_hdmi->rgb_quant_range_selectable =
1015 drm_rgb_quant_range_selectable(edid);
1016
1017 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1018 if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1019 intel_hdmi->has_audio =
1020 intel_hdmi->force_audio == HDMI_AUDIO_ON;
1021
1022 if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
1023 intel_hdmi->has_hdmi_sink =
1024 drm_detect_hdmi_monitor(edid);
1025
1026 connected = true;
1027 }
1028
1029 return connected;
1030 }
1031
1032 static enum drm_connector_status
1033 intel_hdmi_detect(struct drm_connector *connector, bool force)
1034 {
1035 enum drm_connector_status status;
1036
1037 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1038 connector->base.id, connector->name);
1039
1040 intel_hdmi_unset_edid(connector);
1041
1042 if (intel_hdmi_set_edid(connector)) {
1043 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1044
1045 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1046 status = connector_status_connected;
1047 } else
1048 status = connector_status_disconnected;
1049
1050 return status;
1051 }
1052
1053 static void
1054 intel_hdmi_force(struct drm_connector *connector)
1055 {
1056 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1057
1058 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1059 connector->base.id, connector->name);
1060
1061 intel_hdmi_unset_edid(connector);
1062
1063 if (connector->status != connector_status_connected)
1064 return;
1065
1066 intel_hdmi_set_edid(connector);
1067 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1068 }
1069
1070 static int intel_hdmi_get_modes(struct drm_connector *connector)
1071 {
1072 struct edid *edid;
1073
1074 edid = to_intel_connector(connector)->detect_edid;
1075 if (edid == NULL)
1076 return 0;
1077
1078 return intel_connector_update_modes(connector, edid);
1079 }
1080
1081 static bool
1082 intel_hdmi_detect_audio(struct drm_connector *connector)
1083 {
1084 bool has_audio = false;
1085 struct edid *edid;
1086
1087 edid = to_intel_connector(connector)->detect_edid;
1088 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
1089 has_audio = drm_detect_monitor_audio(edid);
1090
1091 return has_audio;
1092 }
1093
1094 static int
1095 intel_hdmi_set_property(struct drm_connector *connector,
1096 struct drm_property *property,
1097 uint64_t val)
1098 {
1099 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1100 struct intel_digital_port *intel_dig_port =
1101 hdmi_to_dig_port(intel_hdmi);
1102 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1103 int ret;
1104
1105 ret = drm_object_property_set_value(&connector->base, property, val);
1106 if (ret)
1107 return ret;
1108
1109 if (property == dev_priv->force_audio_property) {
1110 enum hdmi_force_audio i = val;
1111 bool has_audio;
1112
1113 if (i == intel_hdmi->force_audio)
1114 return 0;
1115
1116 intel_hdmi->force_audio = i;
1117
1118 if (i == HDMI_AUDIO_AUTO)
1119 has_audio = intel_hdmi_detect_audio(connector);
1120 else
1121 has_audio = (i == HDMI_AUDIO_ON);
1122
1123 if (i == HDMI_AUDIO_OFF_DVI)
1124 intel_hdmi->has_hdmi_sink = 0;
1125
1126 intel_hdmi->has_audio = has_audio;
1127 goto done;
1128 }
1129
1130 if (property == dev_priv->broadcast_rgb_property) {
1131 bool old_auto = intel_hdmi->color_range_auto;
1132 uint32_t old_range = intel_hdmi->color_range;
1133
1134 switch (val) {
1135 case INTEL_BROADCAST_RGB_AUTO:
1136 intel_hdmi->color_range_auto = true;
1137 break;
1138 case INTEL_BROADCAST_RGB_FULL:
1139 intel_hdmi->color_range_auto = false;
1140 intel_hdmi->color_range = 0;
1141 break;
1142 case INTEL_BROADCAST_RGB_LIMITED:
1143 intel_hdmi->color_range_auto = false;
1144 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
1145 break;
1146 default:
1147 return -EINVAL;
1148 }
1149
1150 if (old_auto == intel_hdmi->color_range_auto &&
1151 old_range == intel_hdmi->color_range)
1152 return 0;
1153
1154 goto done;
1155 }
1156
1157 if (property == connector->dev->mode_config.aspect_ratio_property) {
1158 switch (val) {
1159 case DRM_MODE_PICTURE_ASPECT_NONE:
1160 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1161 break;
1162 case DRM_MODE_PICTURE_ASPECT_4_3:
1163 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1164 break;
1165 case DRM_MODE_PICTURE_ASPECT_16_9:
1166 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1167 break;
1168 default:
1169 return -EINVAL;
1170 }
1171 goto done;
1172 }
1173
1174 return -EINVAL;
1175
1176 done:
1177 if (intel_dig_port->base.base.crtc)
1178 intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1179
1180 return 0;
1181 }
1182
1183 static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1184 {
1185 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1186 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1187 struct drm_display_mode *adjusted_mode =
1188 &intel_crtc->config.adjusted_mode;
1189
1190 intel_hdmi_prepare(encoder);
1191
1192 intel_hdmi->set_infoframes(&encoder->base,
1193 intel_crtc->config.has_hdmi_sink,
1194 adjusted_mode);
1195 }
1196
1197 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1198 {
1199 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1200 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1201 struct drm_device *dev = encoder->base.dev;
1202 struct drm_i915_private *dev_priv = dev->dev_private;
1203 struct intel_crtc *intel_crtc =
1204 to_intel_crtc(encoder->base.crtc);
1205 struct drm_display_mode *adjusted_mode =
1206 &intel_crtc->config.adjusted_mode;
1207 enum dpio_channel port = vlv_dport_to_channel(dport);
1208 int pipe = intel_crtc->pipe;
1209 u32 val;
1210
1211 /* Enable clock channels for this port */
1212 mutex_lock(&dev_priv->dpio_lock);
1213 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1214 val = 0;
1215 if (pipe)
1216 val |= (1<<21);
1217 else
1218 val &= ~(1<<21);
1219 val |= 0x001000c4;
1220 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1221
1222 /* HDMI 1.0V-2dB */
1223 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1224 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1225 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1226 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1227 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1228 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1229 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1230 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1231
1232 /* Program lane clock */
1233 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1234 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1235 mutex_unlock(&dev_priv->dpio_lock);
1236
1237 intel_hdmi->set_infoframes(&encoder->base,
1238 intel_crtc->config.has_hdmi_sink,
1239 adjusted_mode);
1240
1241 intel_enable_hdmi(encoder);
1242
1243 vlv_wait_port_ready(dev_priv, dport);
1244 }
1245
1246 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1247 {
1248 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1249 struct drm_device *dev = encoder->base.dev;
1250 struct drm_i915_private *dev_priv = dev->dev_private;
1251 struct intel_crtc *intel_crtc =
1252 to_intel_crtc(encoder->base.crtc);
1253 enum dpio_channel port = vlv_dport_to_channel(dport);
1254 int pipe = intel_crtc->pipe;
1255
1256 intel_hdmi_prepare(encoder);
1257
1258 /* Program Tx lane resets to default */
1259 mutex_lock(&dev_priv->dpio_lock);
1260 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1261 DPIO_PCS_TX_LANE2_RESET |
1262 DPIO_PCS_TX_LANE1_RESET);
1263 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1264 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1265 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1266 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1267 DPIO_PCS_CLK_SOFT_RESET);
1268
1269 /* Fix up inter-pair skew failure */
1270 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1271 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1272 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1273
1274 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1275 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1276 mutex_unlock(&dev_priv->dpio_lock);
1277 }
1278
1279 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1280 {
1281 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1282 struct drm_device *dev = encoder->base.dev;
1283 struct drm_i915_private *dev_priv = dev->dev_private;
1284 struct intel_crtc *intel_crtc =
1285 to_intel_crtc(encoder->base.crtc);
1286 enum dpio_channel ch = vlv_dport_to_channel(dport);
1287 enum pipe pipe = intel_crtc->pipe;
1288 u32 val;
1289
1290 intel_hdmi_prepare(encoder);
1291
1292 mutex_lock(&dev_priv->dpio_lock);
1293
1294 /* program left/right clock distribution */
1295 if (pipe != PIPE_B) {
1296 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1297 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1298 if (ch == DPIO_CH0)
1299 val |= CHV_BUFLEFTENA1_FORCE;
1300 if (ch == DPIO_CH1)
1301 val |= CHV_BUFRIGHTENA1_FORCE;
1302 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1303 } else {
1304 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1305 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1306 if (ch == DPIO_CH0)
1307 val |= CHV_BUFLEFTENA2_FORCE;
1308 if (ch == DPIO_CH1)
1309 val |= CHV_BUFRIGHTENA2_FORCE;
1310 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1311 }
1312
1313 /* program clock channel usage */
1314 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1315 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1316 if (pipe != PIPE_B)
1317 val &= ~CHV_PCS_USEDCLKCHANNEL;
1318 else
1319 val |= CHV_PCS_USEDCLKCHANNEL;
1320 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1321
1322 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1323 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1324 if (pipe != PIPE_B)
1325 val &= ~CHV_PCS_USEDCLKCHANNEL;
1326 else
1327 val |= CHV_PCS_USEDCLKCHANNEL;
1328 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1329
1330 /*
1331 * This a a bit weird since generally CL
1332 * matches the pipe, but here we need to
1333 * pick the CL based on the port.
1334 */
1335 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1336 if (pipe != PIPE_B)
1337 val &= ~CHV_CMN_USEDCLKCHANNEL;
1338 else
1339 val |= CHV_CMN_USEDCLKCHANNEL;
1340 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1341
1342 mutex_unlock(&dev_priv->dpio_lock);
1343 }
1344
1345 static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1346 {
1347 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1348 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1349 struct intel_crtc *intel_crtc =
1350 to_intel_crtc(encoder->base.crtc);
1351 enum dpio_channel port = vlv_dport_to_channel(dport);
1352 int pipe = intel_crtc->pipe;
1353
1354 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
1355 mutex_lock(&dev_priv->dpio_lock);
1356 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1357 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1358 mutex_unlock(&dev_priv->dpio_lock);
1359 }
1360
1361 static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1362 {
1363 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1364 struct drm_device *dev = encoder->base.dev;
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 struct intel_crtc *intel_crtc =
1367 to_intel_crtc(encoder->base.crtc);
1368 enum dpio_channel ch = vlv_dport_to_channel(dport);
1369 enum pipe pipe = intel_crtc->pipe;
1370 u32 val;
1371
1372 mutex_lock(&dev_priv->dpio_lock);
1373
1374 /* Propagate soft reset to data lane reset */
1375 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1376 val |= CHV_PCS_REQ_SOFTRESET_EN;
1377 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1378
1379 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1380 val |= CHV_PCS_REQ_SOFTRESET_EN;
1381 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1382
1383 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1384 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1385 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1386
1387 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1388 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1389 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1390
1391 mutex_unlock(&dev_priv->dpio_lock);
1392 }
1393
1394 static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1395 {
1396 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1397 struct drm_device *dev = encoder->base.dev;
1398 struct drm_i915_private *dev_priv = dev->dev_private;
1399 struct intel_crtc *intel_crtc =
1400 to_intel_crtc(encoder->base.crtc);
1401 enum dpio_channel ch = vlv_dport_to_channel(dport);
1402 int pipe = intel_crtc->pipe;
1403 int data, i;
1404 u32 val;
1405
1406 mutex_lock(&dev_priv->dpio_lock);
1407
1408 /* allow hardware to manage TX FIFO reset source */
1409 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1410 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1411 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1412
1413 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1414 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1415 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1416
1417 /* Deassert soft data lane reset*/
1418 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1419 val |= CHV_PCS_REQ_SOFTRESET_EN;
1420 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1421
1422 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1423 val |= CHV_PCS_REQ_SOFTRESET_EN;
1424 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1425
1426 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1427 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1428 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1429
1430 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1431 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1432 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1433
1434 /* Program Tx latency optimal setting */
1435 for (i = 0; i < 4; i++) {
1436 /* Set the latency optimal bit */
1437 data = (i == 1) ? 0x0 : 0x6;
1438 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
1439 data << DPIO_FRC_LATENCY_SHFIT);
1440
1441 /* Set the upar bit */
1442 data = (i == 1) ? 0x0 : 0x1;
1443 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1444 data << DPIO_UPAR_SHIFT);
1445 }
1446
1447 /* Data lane stagger programming */
1448 /* FIXME: Fix up value only after power analysis */
1449
1450 /* Clear calc init */
1451 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1452 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1453 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1454 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1455 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1456
1457 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1458 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1459 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1460 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1461 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1462
1463 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
1464 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1465 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1466 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
1467
1468 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
1469 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1470 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1471 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
1472
1473 /* FIXME: Program the support xxx V-dB */
1474 /* Use 800mV-0dB */
1475 for (i = 0; i < 4; i++) {
1476 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
1477 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
1478 val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
1479 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
1480 }
1481
1482 for (i = 0; i < 4; i++) {
1483 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1484 val &= ~DPIO_SWING_MARGIN000_MASK;
1485 val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1486 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
1487 }
1488
1489 /* Disable unique transition scale */
1490 for (i = 0; i < 4; i++) {
1491 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
1492 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
1493 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
1494 }
1495
1496 /* Additional steps for 1200mV-0dB */
1497 #if 0
1498 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
1499 if (ch)
1500 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
1501 else
1502 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
1503 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
1504
1505 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
1506 vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
1507 (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
1508 #endif
1509 /* Start swing calculation */
1510 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1511 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1512 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1513
1514 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1515 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1516 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1517
1518 /* LRC Bypass */
1519 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1520 val |= DPIO_LRC_BYPASS;
1521 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
1522
1523 mutex_unlock(&dev_priv->dpio_lock);
1524
1525 intel_enable_hdmi(encoder);
1526
1527 vlv_wait_port_ready(dev_priv, dport);
1528 }
1529
1530 static void intel_hdmi_destroy(struct drm_connector *connector)
1531 {
1532 kfree(to_intel_connector(connector)->detect_edid);
1533 drm_connector_cleanup(connector);
1534 kfree(connector);
1535 }
1536
1537 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1538 .dpms = intel_connector_dpms,
1539 .detect = intel_hdmi_detect,
1540 .force = intel_hdmi_force,
1541 .fill_modes = drm_helper_probe_single_connector_modes,
1542 .set_property = intel_hdmi_set_property,
1543 .destroy = intel_hdmi_destroy,
1544 };
1545
1546 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
1547 .get_modes = intel_hdmi_get_modes,
1548 .mode_valid = intel_hdmi_mode_valid,
1549 .best_encoder = intel_best_encoder,
1550 };
1551
1552 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
1553 .destroy = intel_encoder_destroy,
1554 };
1555
1556 static void
1557 intel_attach_aspect_ratio_property(struct drm_connector *connector)
1558 {
1559 if (!drm_mode_create_aspect_ratio_property(connector->dev))
1560 drm_object_attach_property(&connector->base,
1561 connector->dev->mode_config.aspect_ratio_property,
1562 DRM_MODE_PICTURE_ASPECT_NONE);
1563 }
1564
1565 static void
1566 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
1567 {
1568 intel_attach_force_audio_property(connector);
1569 intel_attach_broadcast_rgb_property(connector);
1570 intel_hdmi->color_range_auto = true;
1571 intel_attach_aspect_ratio_property(connector);
1572 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1573 }
1574
1575 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
1576 struct intel_connector *intel_connector)
1577 {
1578 struct drm_connector *connector = &intel_connector->base;
1579 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
1580 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1581 struct drm_device *dev = intel_encoder->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 enum port port = intel_dig_port->port;
1584
1585 drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
1586 DRM_MODE_CONNECTOR_HDMIA);
1587 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
1588
1589 connector->interlace_allowed = 1;
1590 connector->doublescan_allowed = 0;
1591 connector->stereo_allowed = 1;
1592
1593 switch (port) {
1594 case PORT_B:
1595 intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
1596 intel_encoder->hpd_pin = HPD_PORT_B;
1597 break;
1598 case PORT_C:
1599 intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
1600 intel_encoder->hpd_pin = HPD_PORT_C;
1601 break;
1602 case PORT_D:
1603 if (IS_CHERRYVIEW(dev))
1604 intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV;
1605 else
1606 intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
1607 intel_encoder->hpd_pin = HPD_PORT_D;
1608 break;
1609 case PORT_A:
1610 intel_encoder->hpd_pin = HPD_PORT_A;
1611 /* Internal port only for eDP. */
1612 default:
1613 BUG();
1614 }
1615
1616 if (IS_VALLEYVIEW(dev)) {
1617 intel_hdmi->write_infoframe = vlv_write_infoframe;
1618 intel_hdmi->set_infoframes = vlv_set_infoframes;
1619 } else if (IS_G4X(dev)) {
1620 intel_hdmi->write_infoframe = g4x_write_infoframe;
1621 intel_hdmi->set_infoframes = g4x_set_infoframes;
1622 } else if (HAS_DDI(dev)) {
1623 intel_hdmi->write_infoframe = hsw_write_infoframe;
1624 intel_hdmi->set_infoframes = hsw_set_infoframes;
1625 } else if (HAS_PCH_IBX(dev)) {
1626 intel_hdmi->write_infoframe = ibx_write_infoframe;
1627 intel_hdmi->set_infoframes = ibx_set_infoframes;
1628 } else {
1629 intel_hdmi->write_infoframe = cpt_write_infoframe;
1630 intel_hdmi->set_infoframes = cpt_set_infoframes;
1631 }
1632
1633 if (HAS_DDI(dev))
1634 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
1635 else
1636 intel_connector->get_hw_state = intel_connector_get_hw_state;
1637 intel_connector->unregister = intel_connector_unregister;
1638
1639 intel_hdmi_add_properties(intel_hdmi, connector);
1640
1641 intel_connector_attach_encoder(intel_connector, intel_encoder);
1642 drm_connector_register(connector);
1643
1644 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1645 * 0xd. Failure to do so will result in spurious interrupts being
1646 * generated on the port when a cable is not attached.
1647 */
1648 if (IS_G4X(dev) && !IS_GM45(dev)) {
1649 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1650 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1651 }
1652 }
1653
1654 void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
1655 {
1656 struct intel_digital_port *intel_dig_port;
1657 struct intel_encoder *intel_encoder;
1658 struct intel_connector *intel_connector;
1659
1660 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
1661 if (!intel_dig_port)
1662 return;
1663
1664 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
1665 if (!intel_connector) {
1666 kfree(intel_dig_port);
1667 return;
1668 }
1669
1670 intel_encoder = &intel_dig_port->base;
1671
1672 drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
1673 DRM_MODE_ENCODER_TMDS);
1674
1675 intel_encoder->compute_config = intel_hdmi_compute_config;
1676 intel_encoder->disable = intel_disable_hdmi;
1677 intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
1678 intel_encoder->get_config = intel_hdmi_get_config;
1679 if (IS_CHERRYVIEW(dev)) {
1680 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
1681 intel_encoder->pre_enable = chv_hdmi_pre_enable;
1682 intel_encoder->enable = vlv_enable_hdmi;
1683 intel_encoder->post_disable = chv_hdmi_post_disable;
1684 } else if (IS_VALLEYVIEW(dev)) {
1685 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
1686 intel_encoder->pre_enable = vlv_hdmi_pre_enable;
1687 intel_encoder->enable = vlv_enable_hdmi;
1688 intel_encoder->post_disable = vlv_hdmi_post_disable;
1689 } else {
1690 intel_encoder->pre_enable = intel_hdmi_pre_enable;
1691 intel_encoder->enable = intel_enable_hdmi;
1692 }
1693
1694 intel_encoder->type = INTEL_OUTPUT_HDMI;
1695 if (IS_CHERRYVIEW(dev)) {
1696 if (port == PORT_D)
1697 intel_encoder->crtc_mask = 1 << 2;
1698 else
1699 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1700 } else {
1701 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
1702 }
1703 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
1704 /*
1705 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
1706 * to work on real hardware. And since g4x can send infoframes to
1707 * only one port anyway, nothing is lost by allowing it.
1708 */
1709 if (IS_G4X(dev))
1710 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
1711
1712 intel_dig_port->port = port;
1713 intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
1714 intel_dig_port->dp.output_reg = 0;
1715
1716 intel_hdmi_init_connector(intel_dig_port, intel_connector);
1717 }