]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge branch 'drm-next-5.1' of git://people.freedesktop.org/~agd5f/linux into drm...
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "i915_gem_render_state.h"
139 #include "i915_reset.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 struct intel_engine_cs *engine,
169 struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171 struct i915_gem_context *ctx,
172 struct intel_engine_cs *engine,
173 struct intel_ring *ring);
174
175 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
176 {
177 return (i915_ggtt_offset(engine->status_page.vma) +
178 I915_GEM_HWS_INDEX_ADDR);
179 }
180
181 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
182 {
183 return rb_entry(rb, struct i915_priolist, node);
184 }
185
186 static inline int rq_prio(const struct i915_request *rq)
187 {
188 return rq->sched.attr.priority;
189 }
190
191 static int queue_prio(const struct intel_engine_execlists *execlists)
192 {
193 struct i915_priolist *p;
194 struct rb_node *rb;
195
196 rb = rb_first_cached(&execlists->queue);
197 if (!rb)
198 return INT_MIN;
199
200 /*
201 * As the priolist[] are inverted, with the highest priority in [0],
202 * we have to flip the index value to become priority.
203 */
204 p = to_priolist(rb);
205 return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
206 }
207
208 static inline bool need_preempt(const struct intel_engine_cs *engine,
209 const struct i915_request *rq)
210 {
211 const int last_prio = rq_prio(rq);
212
213 if (!intel_engine_has_preemption(engine))
214 return false;
215
216 if (i915_request_completed(rq))
217 return false;
218
219 /*
220 * Check if the current priority hint merits a preemption attempt.
221 *
222 * We record the highest value priority we saw during rescheduling
223 * prior to this dequeue, therefore we know that if it is strictly
224 * less than the current tail of ESLP[0], we do not need to force
225 * a preempt-to-idle cycle.
226 *
227 * However, the priority hint is a mere hint that we may need to
228 * preempt. If that hint is stale or we may be trying to preempt
229 * ourselves, ignore the request.
230 */
231 if (!__execlists_need_preempt(engine->execlists.queue_priority_hint,
232 last_prio))
233 return false;
234
235 /*
236 * Check against the first request in ELSP[1], it will, thanks to the
237 * power of PI, be the highest priority of that context.
238 */
239 if (!list_is_last(&rq->link, &engine->timeline.requests) &&
240 rq_prio(list_next_entry(rq, link)) > last_prio)
241 return true;
242
243 /*
244 * If the inflight context did not trigger the preemption, then maybe
245 * it was the set of queued requests? Pick the highest priority in
246 * the queue (the first active priolist) and see if it deserves to be
247 * running instead of ELSP[0].
248 *
249 * The highest priority request in the queue can not be either
250 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
251 * context, it's priority would not exceed ELSP[0] aka last_prio.
252 */
253 return queue_prio(&engine->execlists) > last_prio;
254 }
255
256 __maybe_unused static inline bool
257 assert_priority_queue(const struct intel_engine_execlists *execlists,
258 const struct i915_request *prev,
259 const struct i915_request *next)
260 {
261 if (!prev)
262 return true;
263
264 /*
265 * Without preemption, the prev may refer to the still active element
266 * which we refuse to let go.
267 *
268 * Even with preemption, there are times when we think it is better not
269 * to preempt and leave an ostensibly lower priority request in flight.
270 */
271 if (port_request(execlists->port) == prev)
272 return true;
273
274 return rq_prio(prev) >= rq_prio(next);
275 }
276
277 /*
278 * The context descriptor encodes various attributes of a context,
279 * including its GTT address and some flags. Because it's fairly
280 * expensive to calculate, we'll just do it once and cache the result,
281 * which remains valid until the context is unpinned.
282 *
283 * This is what a descriptor looks like, from LSB to MSB::
284 *
285 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
286 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
287 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
288 * bits 53-54: mbz, reserved for use by hardware
289 * bits 55-63: group ID, currently unused and set to 0
290 *
291 * Starting from Gen11, the upper dword of the descriptor has a new format:
292 *
293 * bits 32-36: reserved
294 * bits 37-47: SW context ID
295 * bits 48:53: engine instance
296 * bit 54: mbz, reserved for use by hardware
297 * bits 55-60: SW counter
298 * bits 61-63: engine class
299 *
300 * engine info, SW context ID and SW counter need to form a unique number
301 * (Context ID) per lrc.
302 */
303 static void
304 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
305 struct intel_engine_cs *engine,
306 struct intel_context *ce)
307 {
308 u64 desc;
309
310 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
311 BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
312
313 desc = ctx->desc_template; /* bits 0-11 */
314 GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
315
316 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
317 /* bits 12-31 */
318 GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
319
320 /*
321 * The following 32bits are copied into the OA reports (dword 2).
322 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
323 * anything below.
324 */
325 if (INTEL_GEN(ctx->i915) >= 11) {
326 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
327 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
328 /* bits 37-47 */
329
330 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
331 /* bits 48-53 */
332
333 /* TODO: decide what to do with SW counter (bits 55-60) */
334
335 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
336 /* bits 61-63 */
337 } else {
338 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
339 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
340 }
341
342 ce->lrc_desc = desc;
343 }
344
345 static void unwind_wa_tail(struct i915_request *rq)
346 {
347 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
348 assert_ring_tail_valid(rq->ring, rq->tail);
349 }
350
351 static struct i915_request *
352 __unwind_incomplete_requests(struct intel_engine_cs *engine)
353 {
354 struct i915_request *rq, *rn, *active = NULL;
355 struct list_head *uninitialized_var(pl);
356 int prio = I915_PRIORITY_INVALID | I915_PRIORITY_NEWCLIENT;
357
358 lockdep_assert_held(&engine->timeline.lock);
359
360 list_for_each_entry_safe_reverse(rq, rn,
361 &engine->timeline.requests,
362 link) {
363 if (i915_request_completed(rq))
364 break;
365
366 __i915_request_unsubmit(rq);
367 unwind_wa_tail(rq);
368
369 GEM_BUG_ON(rq->hw_context->active);
370
371 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
372 if (rq_prio(rq) != prio) {
373 prio = rq_prio(rq);
374 pl = i915_sched_lookup_priolist(engine, prio);
375 }
376 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
377
378 list_add(&rq->sched.link, pl);
379
380 active = rq;
381 }
382
383 /*
384 * The active request is now effectively the start of a new client
385 * stream, so give it the equivalent small priority bump to prevent
386 * it being gazumped a second time by another peer.
387 */
388 if (!(prio & I915_PRIORITY_NEWCLIENT)) {
389 prio |= I915_PRIORITY_NEWCLIENT;
390 active->sched.attr.priority = prio;
391 list_move_tail(&active->sched.link,
392 i915_sched_lookup_priolist(engine, prio));
393 }
394
395 return active;
396 }
397
398 void
399 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
400 {
401 struct intel_engine_cs *engine =
402 container_of(execlists, typeof(*engine), execlists);
403
404 __unwind_incomplete_requests(engine);
405 }
406
407 static inline void
408 execlists_context_status_change(struct i915_request *rq, unsigned long status)
409 {
410 /*
411 * Only used when GVT-g is enabled now. When GVT-g is disabled,
412 * The compiler should eliminate this function as dead-code.
413 */
414 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
415 return;
416
417 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
418 status, rq);
419 }
420
421 inline void
422 execlists_user_begin(struct intel_engine_execlists *execlists,
423 const struct execlist_port *port)
424 {
425 execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
426 }
427
428 inline void
429 execlists_user_end(struct intel_engine_execlists *execlists)
430 {
431 execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
432 }
433
434 static inline void
435 execlists_context_schedule_in(struct i915_request *rq)
436 {
437 GEM_BUG_ON(rq->hw_context->active);
438
439 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
440 intel_engine_context_in(rq->engine);
441 rq->hw_context->active = rq->engine;
442 }
443
444 static inline void
445 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
446 {
447 rq->hw_context->active = NULL;
448 intel_engine_context_out(rq->engine);
449 execlists_context_status_change(rq, status);
450 trace_i915_request_out(rq);
451 }
452
453 static u64 execlists_update_context(struct i915_request *rq)
454 {
455 struct intel_context *ce = rq->hw_context;
456
457 ce->lrc_reg_state[CTX_RING_TAIL + 1] =
458 intel_ring_set_tail(rq->ring, rq->tail);
459
460 /*
461 * Make sure the context image is complete before we submit it to HW.
462 *
463 * Ostensibly, writes (including the WCB) should be flushed prior to
464 * an uncached write such as our mmio register access, the empirical
465 * evidence (esp. on Braswell) suggests that the WC write into memory
466 * may not be visible to the HW prior to the completion of the UC
467 * register write and that we may begin execution from the context
468 * before its image is complete leading to invalid PD chasing.
469 *
470 * Furthermore, Braswell, at least, wants a full mb to be sure that
471 * the writes are coherent in memory (visible to the GPU) prior to
472 * execution, and not just visible to other CPUs (as is the result of
473 * wmb).
474 */
475 mb();
476 return ce->lrc_desc;
477 }
478
479 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
480 {
481 if (execlists->ctrl_reg) {
482 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
483 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
484 } else {
485 writel(upper_32_bits(desc), execlists->submit_reg);
486 writel(lower_32_bits(desc), execlists->submit_reg);
487 }
488 }
489
490 static void execlists_submit_ports(struct intel_engine_cs *engine)
491 {
492 struct intel_engine_execlists *execlists = &engine->execlists;
493 struct execlist_port *port = execlists->port;
494 unsigned int n;
495
496 /*
497 * We can skip acquiring intel_runtime_pm_get() here as it was taken
498 * on our behalf by the request (see i915_gem_mark_busy()) and it will
499 * not be relinquished until the device is idle (see
500 * i915_gem_idle_work_handler()). As a precaution, we make sure
501 * that all ELSP are drained i.e. we have processed the CSB,
502 * before allowing ourselves to idle and calling intel_runtime_pm_put().
503 */
504 GEM_BUG_ON(!engine->i915->gt.awake);
505
506 /*
507 * ELSQ note: the submit queue is not cleared after being submitted
508 * to the HW so we need to make sure we always clean it up. This is
509 * currently ensured by the fact that we always write the same number
510 * of elsq entries, keep this in mind before changing the loop below.
511 */
512 for (n = execlists_num_ports(execlists); n--; ) {
513 struct i915_request *rq;
514 unsigned int count;
515 u64 desc;
516
517 rq = port_unpack(&port[n], &count);
518 if (rq) {
519 GEM_BUG_ON(count > !n);
520 if (!count++)
521 execlists_context_schedule_in(rq);
522 port_set(&port[n], port_pack(rq, count));
523 desc = execlists_update_context(rq);
524 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
525
526 GEM_TRACE("%s in[%d]: ctx=%d.%d, global=%d (fence %llx:%lld) (current %d:%d), prio=%d\n",
527 engine->name, n,
528 port[n].context_id, count,
529 rq->global_seqno,
530 rq->fence.context, rq->fence.seqno,
531 hwsp_seqno(rq),
532 intel_engine_get_seqno(engine),
533 rq_prio(rq));
534 } else {
535 GEM_BUG_ON(!n);
536 desc = 0;
537 }
538
539 write_desc(execlists, desc, n);
540 }
541
542 /* we need to manually load the submit queue */
543 if (execlists->ctrl_reg)
544 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
545
546 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
547 }
548
549 static bool ctx_single_port_submission(const struct intel_context *ce)
550 {
551 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
552 i915_gem_context_force_single_submission(ce->gem_context));
553 }
554
555 static bool can_merge_ctx(const struct intel_context *prev,
556 const struct intel_context *next)
557 {
558 if (prev != next)
559 return false;
560
561 if (ctx_single_port_submission(prev))
562 return false;
563
564 return true;
565 }
566
567 static void port_assign(struct execlist_port *port, struct i915_request *rq)
568 {
569 GEM_BUG_ON(rq == port_request(port));
570
571 if (port_isset(port))
572 i915_request_put(port_request(port));
573
574 port_set(port, port_pack(i915_request_get(rq), port_count(port)));
575 }
576
577 static void inject_preempt_context(struct intel_engine_cs *engine)
578 {
579 struct intel_engine_execlists *execlists = &engine->execlists;
580 struct intel_context *ce =
581 to_intel_context(engine->i915->preempt_context, engine);
582 unsigned int n;
583
584 GEM_BUG_ON(execlists->preempt_complete_status !=
585 upper_32_bits(ce->lrc_desc));
586
587 /*
588 * Switch to our empty preempt context so
589 * the state of the GPU is known (idle).
590 */
591 GEM_TRACE("%s\n", engine->name);
592 for (n = execlists_num_ports(execlists); --n; )
593 write_desc(execlists, 0, n);
594
595 write_desc(execlists, ce->lrc_desc, n);
596
597 /* we need to manually load the submit queue */
598 if (execlists->ctrl_reg)
599 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
600
601 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
602 execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
603
604 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
605 }
606
607 static void complete_preempt_context(struct intel_engine_execlists *execlists)
608 {
609 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
610
611 if (inject_preempt_hang(execlists))
612 return;
613
614 execlists_cancel_port_requests(execlists);
615 __unwind_incomplete_requests(container_of(execlists,
616 struct intel_engine_cs,
617 execlists));
618 }
619
620 static void execlists_dequeue(struct intel_engine_cs *engine)
621 {
622 struct intel_engine_execlists * const execlists = &engine->execlists;
623 struct execlist_port *port = execlists->port;
624 const struct execlist_port * const last_port =
625 &execlists->port[execlists->port_mask];
626 struct i915_request *last = port_request(port);
627 struct rb_node *rb;
628 bool submit = false;
629
630 /*
631 * Hardware submission is through 2 ports. Conceptually each port
632 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
633 * static for a context, and unique to each, so we only execute
634 * requests belonging to a single context from each ring. RING_HEAD
635 * is maintained by the CS in the context image, it marks the place
636 * where it got up to last time, and through RING_TAIL we tell the CS
637 * where we want to execute up to this time.
638 *
639 * In this list the requests are in order of execution. Consecutive
640 * requests from the same context are adjacent in the ringbuffer. We
641 * can combine these requests into a single RING_TAIL update:
642 *
643 * RING_HEAD...req1...req2
644 * ^- RING_TAIL
645 * since to execute req2 the CS must first execute req1.
646 *
647 * Our goal then is to point each port to the end of a consecutive
648 * sequence of requests as being the most optimal (fewest wake ups
649 * and context switches) submission.
650 */
651
652 if (last) {
653 /*
654 * Don't resubmit or switch until all outstanding
655 * preemptions (lite-restore) are seen. Then we
656 * know the next preemption status we see corresponds
657 * to this ELSP update.
658 */
659 GEM_BUG_ON(!execlists_is_active(execlists,
660 EXECLISTS_ACTIVE_USER));
661 GEM_BUG_ON(!port_count(&port[0]));
662
663 /*
664 * If we write to ELSP a second time before the HW has had
665 * a chance to respond to the previous write, we can confuse
666 * the HW and hit "undefined behaviour". After writing to ELSP,
667 * we must then wait until we see a context-switch event from
668 * the HW to indicate that it has had a chance to respond.
669 */
670 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
671 return;
672
673 if (need_preempt(engine, last)) {
674 inject_preempt_context(engine);
675 return;
676 }
677
678 /*
679 * In theory, we could coalesce more requests onto
680 * the second port (the first port is active, with
681 * no preemptions pending). However, that means we
682 * then have to deal with the possible lite-restore
683 * of the second port (as we submit the ELSP, there
684 * may be a context-switch) but also we may complete
685 * the resubmission before the context-switch. Ergo,
686 * coalescing onto the second port will cause a
687 * preemption event, but we cannot predict whether
688 * that will affect port[0] or port[1].
689 *
690 * If the second port is already active, we can wait
691 * until the next context-switch before contemplating
692 * new requests. The GPU will be busy and we should be
693 * able to resubmit the new ELSP before it idles,
694 * avoiding pipeline bubbles (momentary pauses where
695 * the driver is unable to keep up the supply of new
696 * work). However, we have to double check that the
697 * priorities of the ports haven't been switch.
698 */
699 if (port_count(&port[1]))
700 return;
701
702 /*
703 * WaIdleLiteRestore:bdw,skl
704 * Apply the wa NOOPs to prevent
705 * ring:HEAD == rq:TAIL as we resubmit the
706 * request. See gen8_emit_fini_breadcrumb() for
707 * where we prepare the padding after the
708 * end of the request.
709 */
710 last->tail = last->wa_tail;
711 }
712
713 while ((rb = rb_first_cached(&execlists->queue))) {
714 struct i915_priolist *p = to_priolist(rb);
715 struct i915_request *rq, *rn;
716 int i;
717
718 priolist_for_each_request_consume(rq, rn, p, i) {
719 GEM_BUG_ON(!assert_priority_queue(execlists, last, rq));
720
721 /*
722 * Can we combine this request with the current port?
723 * It has to be the same context/ringbuffer and not
724 * have any exceptions (e.g. GVT saying never to
725 * combine contexts).
726 *
727 * If we can combine the requests, we can execute both
728 * by updating the RING_TAIL to point to the end of the
729 * second request, and so we never need to tell the
730 * hardware about the first.
731 */
732 if (last &&
733 !can_merge_ctx(rq->hw_context, last->hw_context)) {
734 /*
735 * If we are on the second port and cannot
736 * combine this request with the last, then we
737 * are done.
738 */
739 if (port == last_port)
740 goto done;
741
742 /*
743 * If GVT overrides us we only ever submit
744 * port[0], leaving port[1] empty. Note that we
745 * also have to be careful that we don't queue
746 * the same context (even though a different
747 * request) to the second port.
748 */
749 if (ctx_single_port_submission(last->hw_context) ||
750 ctx_single_port_submission(rq->hw_context))
751 goto done;
752
753 GEM_BUG_ON(last->hw_context == rq->hw_context);
754
755 if (submit)
756 port_assign(port, last);
757 port++;
758
759 GEM_BUG_ON(port_isset(port));
760 }
761
762 list_del_init(&rq->sched.link);
763
764 __i915_request_submit(rq);
765 trace_i915_request_in(rq, port_index(port, execlists));
766
767 last = rq;
768 submit = true;
769 }
770
771 rb_erase_cached(&p->node, &execlists->queue);
772 if (p->priority != I915_PRIORITY_NORMAL)
773 kmem_cache_free(engine->i915->priorities, p);
774 }
775
776 done:
777 /*
778 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
779 *
780 * We choose the priority hint such that if we add a request of greater
781 * priority than this, we kick the submission tasklet to decide on
782 * the right order of submitting the requests to hardware. We must
783 * also be prepared to reorder requests as they are in-flight on the
784 * HW. We derive the priority hint then as the first "hole" in
785 * the HW submission ports and if there are no available slots,
786 * the priority of the lowest executing request, i.e. last.
787 *
788 * When we do receive a higher priority request ready to run from the
789 * user, see queue_request(), the priority hint is bumped to that
790 * request triggering preemption on the next dequeue (or subsequent
791 * interrupt for secondary ports).
792 */
793 execlists->queue_priority_hint =
794 port != execlists->port ? rq_prio(last) : INT_MIN;
795
796 if (submit) {
797 port_assign(port, last);
798 execlists_submit_ports(engine);
799 }
800
801 /* We must always keep the beast fed if we have work piled up */
802 GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
803 !port_isset(execlists->port));
804
805 /* Re-evaluate the executing context setup after each preemptive kick */
806 if (last)
807 execlists_user_begin(execlists, execlists->port);
808
809 /* If the engine is now idle, so should be the flag; and vice versa. */
810 GEM_BUG_ON(execlists_is_active(&engine->execlists,
811 EXECLISTS_ACTIVE_USER) ==
812 !port_isset(engine->execlists.port));
813 }
814
815 void
816 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
817 {
818 struct execlist_port *port = execlists->port;
819 unsigned int num_ports = execlists_num_ports(execlists);
820
821 while (num_ports-- && port_isset(port)) {
822 struct i915_request *rq = port_request(port);
823
824 GEM_TRACE("%s:port%u global=%d (fence %llx:%lld), (current %d:%d)\n",
825 rq->engine->name,
826 (unsigned int)(port - execlists->port),
827 rq->global_seqno,
828 rq->fence.context, rq->fence.seqno,
829 hwsp_seqno(rq),
830 intel_engine_get_seqno(rq->engine));
831
832 GEM_BUG_ON(!execlists->active);
833 execlists_context_schedule_out(rq,
834 i915_request_completed(rq) ?
835 INTEL_CONTEXT_SCHEDULE_OUT :
836 INTEL_CONTEXT_SCHEDULE_PREEMPTED);
837
838 i915_request_put(rq);
839
840 memset(port, 0, sizeof(*port));
841 port++;
842 }
843
844 execlists_clear_all_active(execlists);
845 }
846
847 static inline void
848 invalidate_csb_entries(const u32 *first, const u32 *last)
849 {
850 clflush((void *)first);
851 clflush((void *)last);
852 }
853
854 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
855 {
856 const unsigned int reset_value = GEN8_CSB_ENTRIES - 1;
857
858 /*
859 * After a reset, the HW starts writing into CSB entry [0]. We
860 * therefore have to set our HEAD pointer back one entry so that
861 * the *first* entry we check is entry 0. To complicate this further,
862 * as we don't wait for the first interrupt after reset, we have to
863 * fake the HW write to point back to the last entry so that our
864 * inline comparison of our cached head position against the last HW
865 * write works even before the first interrupt.
866 */
867 execlists->csb_head = reset_value;
868 WRITE_ONCE(*execlists->csb_write, reset_value);
869
870 invalidate_csb_entries(&execlists->csb_status[0],
871 &execlists->csb_status[GEN8_CSB_ENTRIES - 1]);
872 }
873
874 static void nop_submission_tasklet(unsigned long data)
875 {
876 /* The driver is wedged; don't process any more events. */
877 }
878
879 static void execlists_cancel_requests(struct intel_engine_cs *engine)
880 {
881 struct intel_engine_execlists * const execlists = &engine->execlists;
882 struct i915_request *rq, *rn;
883 struct rb_node *rb;
884 unsigned long flags;
885
886 GEM_TRACE("%s current %d\n",
887 engine->name, intel_engine_get_seqno(engine));
888
889 /*
890 * Before we call engine->cancel_requests(), we should have exclusive
891 * access to the submission state. This is arranged for us by the
892 * caller disabling the interrupt generation, the tasklet and other
893 * threads that may then access the same state, giving us a free hand
894 * to reset state. However, we still need to let lockdep be aware that
895 * we know this state may be accessed in hardirq context, so we
896 * disable the irq around this manipulation and we want to keep
897 * the spinlock focused on its duties and not accidentally conflate
898 * coverage to the submission's irq state. (Similarly, although we
899 * shouldn't need to disable irq around the manipulation of the
900 * submission's irq state, we also wish to remind ourselves that
901 * it is irq state.)
902 */
903 spin_lock_irqsave(&engine->timeline.lock, flags);
904
905 /* Cancel the requests on the HW and clear the ELSP tracker. */
906 execlists_cancel_port_requests(execlists);
907 execlists_user_end(execlists);
908
909 /* Mark all executing requests as skipped. */
910 list_for_each_entry(rq, &engine->timeline.requests, link) {
911 GEM_BUG_ON(!rq->global_seqno);
912
913 if (!i915_request_signaled(rq))
914 dma_fence_set_error(&rq->fence, -EIO);
915
916 i915_request_mark_complete(rq);
917 }
918
919 /* Flush the queued requests to the timeline list (for retiring). */
920 while ((rb = rb_first_cached(&execlists->queue))) {
921 struct i915_priolist *p = to_priolist(rb);
922 int i;
923
924 priolist_for_each_request_consume(rq, rn, p, i) {
925 list_del_init(&rq->sched.link);
926 __i915_request_submit(rq);
927 dma_fence_set_error(&rq->fence, -EIO);
928 i915_request_mark_complete(rq);
929 }
930
931 rb_erase_cached(&p->node, &execlists->queue);
932 if (p->priority != I915_PRIORITY_NORMAL)
933 kmem_cache_free(engine->i915->priorities, p);
934 }
935
936 intel_write_status_page(engine,
937 I915_GEM_HWS_INDEX,
938 intel_engine_last_submit(engine));
939
940 /* Remaining _unready_ requests will be nop'ed when submitted */
941
942 execlists->queue_priority_hint = INT_MIN;
943 execlists->queue = RB_ROOT_CACHED;
944 GEM_BUG_ON(port_isset(execlists->port));
945
946 GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
947 execlists->tasklet.func = nop_submission_tasklet;
948
949 spin_unlock_irqrestore(&engine->timeline.lock, flags);
950 }
951
952 static inline bool
953 reset_in_progress(const struct intel_engine_execlists *execlists)
954 {
955 return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
956 }
957
958 static void process_csb(struct intel_engine_cs *engine)
959 {
960 struct intel_engine_execlists * const execlists = &engine->execlists;
961 struct execlist_port *port = execlists->port;
962 const u32 * const buf = execlists->csb_status;
963 u8 head, tail;
964
965 lockdep_assert_held(&engine->timeline.lock);
966
967 /*
968 * Note that csb_write, csb_status may be either in HWSP or mmio.
969 * When reading from the csb_write mmio register, we have to be
970 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
971 * the low 4bits. As it happens we know the next 4bits are always
972 * zero and so we can simply masked off the low u8 of the register
973 * and treat it identically to reading from the HWSP (without having
974 * to use explicit shifting and masking, and probably bifurcating
975 * the code to handle the legacy mmio read).
976 */
977 head = execlists->csb_head;
978 tail = READ_ONCE(*execlists->csb_write);
979 GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
980 if (unlikely(head == tail))
981 return;
982
983 /*
984 * Hopefully paired with a wmb() in HW!
985 *
986 * We must complete the read of the write pointer before any reads
987 * from the CSB, so that we do not see stale values. Without an rmb
988 * (lfence) the HW may speculatively perform the CSB[] reads *before*
989 * we perform the READ_ONCE(*csb_write).
990 */
991 rmb();
992
993 do {
994 struct i915_request *rq;
995 unsigned int status;
996 unsigned int count;
997
998 if (++head == GEN8_CSB_ENTRIES)
999 head = 0;
1000
1001 /*
1002 * We are flying near dragons again.
1003 *
1004 * We hold a reference to the request in execlist_port[]
1005 * but no more than that. We are operating in softirq
1006 * context and so cannot hold any mutex or sleep. That
1007 * prevents us stopping the requests we are processing
1008 * in port[] from being retired simultaneously (the
1009 * breadcrumb will be complete before we see the
1010 * context-switch). As we only hold the reference to the
1011 * request, any pointer chasing underneath the request
1012 * is subject to a potential use-after-free. Thus we
1013 * store all of the bookkeeping within port[] as
1014 * required, and avoid using unguarded pointers beneath
1015 * request itself. The same applies to the atomic
1016 * status notifier.
1017 */
1018
1019 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1020 engine->name, head,
1021 buf[2 * head + 0], buf[2 * head + 1],
1022 execlists->active);
1023
1024 status = buf[2 * head];
1025 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1026 GEN8_CTX_STATUS_PREEMPTED))
1027 execlists_set_active(execlists,
1028 EXECLISTS_ACTIVE_HWACK);
1029 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1030 execlists_clear_active(execlists,
1031 EXECLISTS_ACTIVE_HWACK);
1032
1033 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1034 continue;
1035
1036 /* We should never get a COMPLETED | IDLE_ACTIVE! */
1037 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1038
1039 if (status & GEN8_CTX_STATUS_COMPLETE &&
1040 buf[2*head + 1] == execlists->preempt_complete_status) {
1041 GEM_TRACE("%s preempt-idle\n", engine->name);
1042 complete_preempt_context(execlists);
1043 continue;
1044 }
1045
1046 if (status & GEN8_CTX_STATUS_PREEMPTED &&
1047 execlists_is_active(execlists,
1048 EXECLISTS_ACTIVE_PREEMPT))
1049 continue;
1050
1051 GEM_BUG_ON(!execlists_is_active(execlists,
1052 EXECLISTS_ACTIVE_USER));
1053
1054 rq = port_unpack(port, &count);
1055 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%lld) (current %d:%d), prio=%d\n",
1056 engine->name,
1057 port->context_id, count,
1058 rq ? rq->global_seqno : 0,
1059 rq ? rq->fence.context : 0,
1060 rq ? rq->fence.seqno : 0,
1061 rq ? hwsp_seqno(rq) : 0,
1062 intel_engine_get_seqno(engine),
1063 rq ? rq_prio(rq) : 0);
1064
1065 /* Check the context/desc id for this event matches */
1066 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1067
1068 GEM_BUG_ON(count == 0);
1069 if (--count == 0) {
1070 /*
1071 * On the final event corresponding to the
1072 * submission of this context, we expect either
1073 * an element-switch event or a completion
1074 * event (and on completion, the active-idle
1075 * marker). No more preemptions, lite-restore
1076 * or otherwise.
1077 */
1078 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1079 GEM_BUG_ON(port_isset(&port[1]) &&
1080 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1081 GEM_BUG_ON(!port_isset(&port[1]) &&
1082 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1083
1084 /*
1085 * We rely on the hardware being strongly
1086 * ordered, that the breadcrumb write is
1087 * coherent (visible from the CPU) before the
1088 * user interrupt and CSB is processed.
1089 */
1090 GEM_BUG_ON(!i915_request_completed(rq));
1091
1092 execlists_context_schedule_out(rq,
1093 INTEL_CONTEXT_SCHEDULE_OUT);
1094 i915_request_put(rq);
1095
1096 GEM_TRACE("%s completed ctx=%d\n",
1097 engine->name, port->context_id);
1098
1099 port = execlists_port_complete(execlists, port);
1100 if (port_isset(port))
1101 execlists_user_begin(execlists, port);
1102 else
1103 execlists_user_end(execlists);
1104 } else {
1105 port_set(port, port_pack(rq, count));
1106 }
1107 } while (head != tail);
1108
1109 execlists->csb_head = head;
1110
1111 /*
1112 * Gen11 has proven to fail wrt global observation point between
1113 * entry and tail update, failing on the ordering and thus
1114 * we see an old entry in the context status buffer.
1115 *
1116 * Forcibly evict out entries for the next gpu csb update,
1117 * to increase the odds that we get a fresh entries with non
1118 * working hardware. The cost for doing so comes out mostly with
1119 * the wash as hardware, working or not, will need to do the
1120 * invalidation before.
1121 */
1122 invalidate_csb_entries(&buf[0], &buf[GEN8_CSB_ENTRIES - 1]);
1123 }
1124
1125 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1126 {
1127 lockdep_assert_held(&engine->timeline.lock);
1128
1129 process_csb(engine);
1130 if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1131 execlists_dequeue(engine);
1132 }
1133
1134 /*
1135 * Check the unread Context Status Buffers and manage the submission of new
1136 * contexts to the ELSP accordingly.
1137 */
1138 static void execlists_submission_tasklet(unsigned long data)
1139 {
1140 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1141 unsigned long flags;
1142
1143 GEM_TRACE("%s awake?=%d, active=%x\n",
1144 engine->name,
1145 !!engine->i915->gt.awake,
1146 engine->execlists.active);
1147
1148 spin_lock_irqsave(&engine->timeline.lock, flags);
1149 __execlists_submission_tasklet(engine);
1150 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1151 }
1152
1153 static void queue_request(struct intel_engine_cs *engine,
1154 struct i915_sched_node *node,
1155 int prio)
1156 {
1157 list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1158 }
1159
1160 static void __submit_queue_imm(struct intel_engine_cs *engine)
1161 {
1162 struct intel_engine_execlists * const execlists = &engine->execlists;
1163
1164 if (reset_in_progress(execlists))
1165 return; /* defer until we restart the engine following reset */
1166
1167 if (execlists->tasklet.func == execlists_submission_tasklet)
1168 __execlists_submission_tasklet(engine);
1169 else
1170 tasklet_hi_schedule(&execlists->tasklet);
1171 }
1172
1173 static void submit_queue(struct intel_engine_cs *engine, int prio)
1174 {
1175 if (prio > engine->execlists.queue_priority_hint) {
1176 engine->execlists.queue_priority_hint = prio;
1177 __submit_queue_imm(engine);
1178 }
1179 }
1180
1181 static void execlists_submit_request(struct i915_request *request)
1182 {
1183 struct intel_engine_cs *engine = request->engine;
1184 unsigned long flags;
1185
1186 /* Will be called from irq-context when using foreign fences. */
1187 spin_lock_irqsave(&engine->timeline.lock, flags);
1188
1189 queue_request(engine, &request->sched, rq_prio(request));
1190
1191 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1192 GEM_BUG_ON(list_empty(&request->sched.link));
1193
1194 submit_queue(engine, rq_prio(request));
1195
1196 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1197 }
1198
1199 static void execlists_context_destroy(struct intel_context *ce)
1200 {
1201 GEM_BUG_ON(ce->pin_count);
1202
1203 if (!ce->state)
1204 return;
1205
1206 intel_ring_free(ce->ring);
1207
1208 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1209 i915_gem_object_put(ce->state->obj);
1210 }
1211
1212 static void execlists_context_unpin(struct intel_context *ce)
1213 {
1214 struct intel_engine_cs *engine;
1215
1216 /*
1217 * The tasklet may still be using a pointer to our state, via an
1218 * old request. However, since we know we only unpin the context
1219 * on retirement of the following request, we know that the last
1220 * request referencing us will have had a completion CS interrupt.
1221 * If we see that it is still active, it means that the tasklet hasn't
1222 * had the chance to run yet; let it run before we teardown the
1223 * reference it may use.
1224 */
1225 engine = READ_ONCE(ce->active);
1226 if (unlikely(engine)) {
1227 unsigned long flags;
1228
1229 spin_lock_irqsave(&engine->timeline.lock, flags);
1230 process_csb(engine);
1231 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1232
1233 GEM_BUG_ON(READ_ONCE(ce->active));
1234 }
1235
1236 i915_gem_context_unpin_hw_id(ce->gem_context);
1237
1238 intel_ring_unpin(ce->ring);
1239
1240 ce->state->obj->pin_global--;
1241 i915_gem_object_unpin_map(ce->state->obj);
1242 i915_vma_unpin(ce->state);
1243
1244 i915_gem_context_put(ce->gem_context);
1245 }
1246
1247 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1248 {
1249 unsigned int flags;
1250 int err;
1251
1252 /*
1253 * Clear this page out of any CPU caches for coherent swap-in/out.
1254 * We only want to do this on the first bind so that we do not stall
1255 * on an active context (which by nature is already on the GPU).
1256 */
1257 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1258 err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1259 if (err)
1260 return err;
1261 }
1262
1263 flags = PIN_GLOBAL | PIN_HIGH;
1264 flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1265
1266 return i915_vma_pin(vma, 0, 0, flags);
1267 }
1268
1269 static void
1270 __execlists_update_reg_state(struct intel_engine_cs *engine,
1271 struct intel_context *ce)
1272 {
1273 u32 *regs = ce->lrc_reg_state;
1274 struct intel_ring *ring = ce->ring;
1275
1276 regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1277 regs[CTX_RING_HEAD + 1] = ring->head;
1278 regs[CTX_RING_TAIL + 1] = ring->tail;
1279
1280 /* RPCS */
1281 if (engine->class == RENDER_CLASS)
1282 regs[CTX_R_PWR_CLK_STATE + 1] = gen8_make_rpcs(engine->i915,
1283 &ce->sseu);
1284 }
1285
1286 static struct intel_context *
1287 __execlists_context_pin(struct intel_engine_cs *engine,
1288 struct i915_gem_context *ctx,
1289 struct intel_context *ce)
1290 {
1291 void *vaddr;
1292 int ret;
1293
1294 ret = execlists_context_deferred_alloc(ctx, engine, ce);
1295 if (ret)
1296 goto err;
1297 GEM_BUG_ON(!ce->state);
1298
1299 ret = __context_pin(ctx, ce->state);
1300 if (ret)
1301 goto err;
1302
1303 vaddr = i915_gem_object_pin_map(ce->state->obj,
1304 i915_coherent_map_type(ctx->i915) |
1305 I915_MAP_OVERRIDE);
1306 if (IS_ERR(vaddr)) {
1307 ret = PTR_ERR(vaddr);
1308 goto unpin_vma;
1309 }
1310
1311 ret = intel_ring_pin(ce->ring);
1312 if (ret)
1313 goto unpin_map;
1314
1315 ret = i915_gem_context_pin_hw_id(ctx);
1316 if (ret)
1317 goto unpin_ring;
1318
1319 intel_lr_context_descriptor_update(ctx, engine, ce);
1320
1321 GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1322
1323 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1324
1325 __execlists_update_reg_state(engine, ce);
1326
1327 ce->state->obj->pin_global++;
1328 i915_gem_context_get(ctx);
1329 return ce;
1330
1331 unpin_ring:
1332 intel_ring_unpin(ce->ring);
1333 unpin_map:
1334 i915_gem_object_unpin_map(ce->state->obj);
1335 unpin_vma:
1336 __i915_vma_unpin(ce->state);
1337 err:
1338 ce->pin_count = 0;
1339 return ERR_PTR(ret);
1340 }
1341
1342 static const struct intel_context_ops execlists_context_ops = {
1343 .unpin = execlists_context_unpin,
1344 .destroy = execlists_context_destroy,
1345 };
1346
1347 static struct intel_context *
1348 execlists_context_pin(struct intel_engine_cs *engine,
1349 struct i915_gem_context *ctx)
1350 {
1351 struct intel_context *ce = to_intel_context(ctx, engine);
1352
1353 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1354 GEM_BUG_ON(!ctx->ppgtt);
1355
1356 if (likely(ce->pin_count++))
1357 return ce;
1358 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1359
1360 ce->ops = &execlists_context_ops;
1361
1362 return __execlists_context_pin(engine, ctx, ce);
1363 }
1364
1365 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1366 {
1367 u32 *cs;
1368
1369 GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1370
1371 cs = intel_ring_begin(rq, 6);
1372 if (IS_ERR(cs))
1373 return PTR_ERR(cs);
1374
1375 /*
1376 * Check if we have been preempted before we even get started.
1377 *
1378 * After this point i915_request_started() reports true, even if
1379 * we get preempted and so are no longer running.
1380 */
1381 *cs++ = MI_ARB_CHECK;
1382 *cs++ = MI_NOOP;
1383
1384 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1385 *cs++ = rq->timeline->hwsp_offset;
1386 *cs++ = 0;
1387 *cs++ = rq->fence.seqno - 1;
1388
1389 intel_ring_advance(rq, cs);
1390 return 0;
1391 }
1392
1393 static int emit_pdps(struct i915_request *rq)
1394 {
1395 const struct intel_engine_cs * const engine = rq->engine;
1396 struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
1397 int err, i;
1398 u32 *cs;
1399
1400 GEM_BUG_ON(intel_vgpu_active(rq->i915));
1401
1402 /*
1403 * Beware ye of the dragons, this sequence is magic!
1404 *
1405 * Small changes to this sequence can cause anything from
1406 * GPU hangs to forcewake errors and machine lockups!
1407 */
1408
1409 /* Flush any residual operations from the context load */
1410 err = engine->emit_flush(rq, EMIT_FLUSH);
1411 if (err)
1412 return err;
1413
1414 /* Magic required to prevent forcewake errors! */
1415 err = engine->emit_flush(rq, EMIT_INVALIDATE);
1416 if (err)
1417 return err;
1418
1419 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1420 if (IS_ERR(cs))
1421 return PTR_ERR(cs);
1422
1423 /* Ensure the LRI have landed before we invalidate & continue */
1424 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1425 for (i = GEN8_3LVL_PDPES; i--; ) {
1426 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1427
1428 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1429 *cs++ = upper_32_bits(pd_daddr);
1430 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1431 *cs++ = lower_32_bits(pd_daddr);
1432 }
1433 *cs++ = MI_NOOP;
1434
1435 intel_ring_advance(rq, cs);
1436
1437 /* Be doubly sure the LRI have landed before proceeding */
1438 err = engine->emit_flush(rq, EMIT_FLUSH);
1439 if (err)
1440 return err;
1441
1442 /* Re-invalidate the TLB for luck */
1443 return engine->emit_flush(rq, EMIT_INVALIDATE);
1444 }
1445
1446 static int execlists_request_alloc(struct i915_request *request)
1447 {
1448 int ret;
1449
1450 GEM_BUG_ON(!request->hw_context->pin_count);
1451
1452 /*
1453 * Flush enough space to reduce the likelihood of waiting after
1454 * we start building the request - in which case we will just
1455 * have to repeat work.
1456 */
1457 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1458
1459 /*
1460 * Note that after this point, we have committed to using
1461 * this request as it is being used to both track the
1462 * state of engine initialisation and liveness of the
1463 * golden renderstate above. Think twice before you try
1464 * to cancel/unwind this request now.
1465 */
1466
1467 /* Unconditionally invalidate GPU caches and TLBs. */
1468 if (i915_vm_is_48bit(&request->gem_context->ppgtt->vm))
1469 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1470 else
1471 ret = emit_pdps(request);
1472 if (ret)
1473 return ret;
1474
1475 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1476 return 0;
1477 }
1478
1479 /*
1480 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1481 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1482 * but there is a slight complication as this is applied in WA batch where the
1483 * values are only initialized once so we cannot take register value at the
1484 * beginning and reuse it further; hence we save its value to memory, upload a
1485 * constant value with bit21 set and then we restore it back with the saved value.
1486 * To simplify the WA, a constant value is formed by using the default value
1487 * of this register. This shouldn't be a problem because we are only modifying
1488 * it for a short period and this batch in non-premptible. We can ofcourse
1489 * use additional instructions that read the actual value of the register
1490 * at that time and set our bit of interest but it makes the WA complicated.
1491 *
1492 * This WA is also required for Gen9 so extracting as a function avoids
1493 * code duplication.
1494 */
1495 static u32 *
1496 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1497 {
1498 /* NB no one else is allowed to scribble over scratch + 256! */
1499 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1500 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1501 *batch++ = i915_scratch_offset(engine->i915) + 256;
1502 *batch++ = 0;
1503
1504 *batch++ = MI_LOAD_REGISTER_IMM(1);
1505 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1506 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1507
1508 batch = gen8_emit_pipe_control(batch,
1509 PIPE_CONTROL_CS_STALL |
1510 PIPE_CONTROL_DC_FLUSH_ENABLE,
1511 0);
1512
1513 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1514 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1515 *batch++ = i915_scratch_offset(engine->i915) + 256;
1516 *batch++ = 0;
1517
1518 return batch;
1519 }
1520
1521 /*
1522 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1523 * initialized at the beginning and shared across all contexts but this field
1524 * helps us to have multiple batches at different offsets and select them based
1525 * on a criteria. At the moment this batch always start at the beginning of the page
1526 * and at this point we don't have multiple wa_ctx batch buffers.
1527 *
1528 * The number of WA applied are not known at the beginning; we use this field
1529 * to return the no of DWORDS written.
1530 *
1531 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1532 * so it adds NOOPs as padding to make it cacheline aligned.
1533 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1534 * makes a complete batch buffer.
1535 */
1536 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1537 {
1538 /* WaDisableCtxRestoreArbitration:bdw,chv */
1539 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1540
1541 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1542 if (IS_BROADWELL(engine->i915))
1543 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1544
1545 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1546 /* Actual scratch location is at 128 bytes offset */
1547 batch = gen8_emit_pipe_control(batch,
1548 PIPE_CONTROL_FLUSH_L3 |
1549 PIPE_CONTROL_GLOBAL_GTT_IVB |
1550 PIPE_CONTROL_CS_STALL |
1551 PIPE_CONTROL_QW_WRITE,
1552 i915_scratch_offset(engine->i915) +
1553 2 * CACHELINE_BYTES);
1554
1555 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1556
1557 /* Pad to end of cacheline */
1558 while ((unsigned long)batch % CACHELINE_BYTES)
1559 *batch++ = MI_NOOP;
1560
1561 /*
1562 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1563 * execution depends on the length specified in terms of cache lines
1564 * in the register CTX_RCS_INDIRECT_CTX
1565 */
1566
1567 return batch;
1568 }
1569
1570 struct lri {
1571 i915_reg_t reg;
1572 u32 value;
1573 };
1574
1575 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1576 {
1577 GEM_BUG_ON(!count || count > 63);
1578
1579 *batch++ = MI_LOAD_REGISTER_IMM(count);
1580 do {
1581 *batch++ = i915_mmio_reg_offset(lri->reg);
1582 *batch++ = lri->value;
1583 } while (lri++, --count);
1584 *batch++ = MI_NOOP;
1585
1586 return batch;
1587 }
1588
1589 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1590 {
1591 static const struct lri lri[] = {
1592 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1593 {
1594 COMMON_SLICE_CHICKEN2,
1595 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1596 0),
1597 },
1598
1599 /* BSpec: 11391 */
1600 {
1601 FF_SLICE_CHICKEN,
1602 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1603 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1604 },
1605
1606 /* BSpec: 11299 */
1607 {
1608 _3D_CHICKEN3,
1609 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1610 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1611 }
1612 };
1613
1614 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1615
1616 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1617 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1618
1619 batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1620
1621 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1622 if (HAS_POOLED_EU(engine->i915)) {
1623 /*
1624 * EU pool configuration is setup along with golden context
1625 * during context initialization. This value depends on
1626 * device type (2x6 or 3x6) and needs to be updated based
1627 * on which subslice is disabled especially for 2x6
1628 * devices, however it is safe to load default
1629 * configuration of 3x6 device instead of masking off
1630 * corresponding bits because HW ignores bits of a disabled
1631 * subslice and drops down to appropriate config. Please
1632 * see render_state_setup() in i915_gem_render_state.c for
1633 * possible configurations, to avoid duplication they are
1634 * not shown here again.
1635 */
1636 *batch++ = GEN9_MEDIA_POOL_STATE;
1637 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1638 *batch++ = 0x00777000;
1639 *batch++ = 0;
1640 *batch++ = 0;
1641 *batch++ = 0;
1642 }
1643
1644 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1645
1646 /* Pad to end of cacheline */
1647 while ((unsigned long)batch % CACHELINE_BYTES)
1648 *batch++ = MI_NOOP;
1649
1650 return batch;
1651 }
1652
1653 static u32 *
1654 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1655 {
1656 int i;
1657
1658 /*
1659 * WaPipeControlBefore3DStateSamplePattern: cnl
1660 *
1661 * Ensure the engine is idle prior to programming a
1662 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1663 */
1664 batch = gen8_emit_pipe_control(batch,
1665 PIPE_CONTROL_CS_STALL,
1666 0);
1667 /*
1668 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1669 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1670 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1671 * confusing. Since gen8_emit_pipe_control() already advances the
1672 * batch by 6 dwords, we advance the other 10 here, completing a
1673 * cacheline. It's not clear if the workaround requires this padding
1674 * before other commands, or if it's just the regular padding we would
1675 * already have for the workaround bb, so leave it here for now.
1676 */
1677 for (i = 0; i < 10; i++)
1678 *batch++ = MI_NOOP;
1679
1680 /* Pad to end of cacheline */
1681 while ((unsigned long)batch % CACHELINE_BYTES)
1682 *batch++ = MI_NOOP;
1683
1684 return batch;
1685 }
1686
1687 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1688
1689 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1690 {
1691 struct drm_i915_gem_object *obj;
1692 struct i915_vma *vma;
1693 int err;
1694
1695 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1696 if (IS_ERR(obj))
1697 return PTR_ERR(obj);
1698
1699 vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1700 if (IS_ERR(vma)) {
1701 err = PTR_ERR(vma);
1702 goto err;
1703 }
1704
1705 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1706 if (err)
1707 goto err;
1708
1709 engine->wa_ctx.vma = vma;
1710 return 0;
1711
1712 err:
1713 i915_gem_object_put(obj);
1714 return err;
1715 }
1716
1717 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1718 {
1719 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1720 }
1721
1722 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1723
1724 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1725 {
1726 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1727 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1728 &wa_ctx->per_ctx };
1729 wa_bb_func_t wa_bb_fn[2];
1730 struct page *page;
1731 void *batch, *batch_ptr;
1732 unsigned int i;
1733 int ret;
1734
1735 if (GEM_DEBUG_WARN_ON(engine->id != RCS))
1736 return -EINVAL;
1737
1738 switch (INTEL_GEN(engine->i915)) {
1739 case 11:
1740 return 0;
1741 case 10:
1742 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1743 wa_bb_fn[1] = NULL;
1744 break;
1745 case 9:
1746 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1747 wa_bb_fn[1] = NULL;
1748 break;
1749 case 8:
1750 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1751 wa_bb_fn[1] = NULL;
1752 break;
1753 default:
1754 MISSING_CASE(INTEL_GEN(engine->i915));
1755 return 0;
1756 }
1757
1758 ret = lrc_setup_wa_ctx(engine);
1759 if (ret) {
1760 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1761 return ret;
1762 }
1763
1764 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1765 batch = batch_ptr = kmap_atomic(page);
1766
1767 /*
1768 * Emit the two workaround batch buffers, recording the offset from the
1769 * start of the workaround batch buffer object for each and their
1770 * respective sizes.
1771 */
1772 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1773 wa_bb[i]->offset = batch_ptr - batch;
1774 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1775 CACHELINE_BYTES))) {
1776 ret = -EINVAL;
1777 break;
1778 }
1779 if (wa_bb_fn[i])
1780 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1781 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1782 }
1783
1784 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1785
1786 kunmap_atomic(batch);
1787 if (ret)
1788 lrc_destroy_wa_ctx(engine);
1789
1790 return ret;
1791 }
1792
1793 static void enable_execlists(struct intel_engine_cs *engine)
1794 {
1795 struct drm_i915_private *dev_priv = engine->i915;
1796
1797 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1798
1799 /*
1800 * Make sure we're not enabling the new 12-deep CSB
1801 * FIFO as that requires a slightly updated handling
1802 * in the ctx switch irq. Since we're currently only
1803 * using only 2 elements of the enhanced execlists the
1804 * deeper FIFO it's not needed and it's not worth adding
1805 * more statements to the irq handler to support it.
1806 */
1807 if (INTEL_GEN(dev_priv) >= 11)
1808 I915_WRITE(RING_MODE_GEN7(engine),
1809 _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1810 else
1811 I915_WRITE(RING_MODE_GEN7(engine),
1812 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1813
1814 I915_WRITE(RING_MI_MODE(engine->mmio_base),
1815 _MASKED_BIT_DISABLE(STOP_RING));
1816
1817 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1818 i915_ggtt_offset(engine->status_page.vma));
1819 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1820 }
1821
1822 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1823 {
1824 struct drm_i915_private *dev_priv = engine->i915;
1825 bool unexpected = false;
1826
1827 if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1828 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1829 unexpected = true;
1830 }
1831
1832 return unexpected;
1833 }
1834
1835 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1836 {
1837 intel_engine_apply_workarounds(engine);
1838 intel_engine_apply_whitelist(engine);
1839
1840 intel_mocs_init_engine(engine);
1841
1842 intel_engine_reset_breadcrumbs(engine);
1843
1844 if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1845 struct drm_printer p = drm_debug_printer(__func__);
1846
1847 intel_engine_dump(engine, &p, NULL);
1848 }
1849
1850 enable_execlists(engine);
1851
1852 return 0;
1853 }
1854
1855 static void execlists_reset_prepare(struct intel_engine_cs *engine)
1856 {
1857 struct intel_engine_execlists * const execlists = &engine->execlists;
1858 unsigned long flags;
1859
1860 GEM_TRACE("%s: depth<-%d\n", engine->name,
1861 atomic_read(&execlists->tasklet.count));
1862
1863 /*
1864 * Prevent request submission to the hardware until we have
1865 * completed the reset in i915_gem_reset_finish(). If a request
1866 * is completed by one engine, it may then queue a request
1867 * to a second via its execlists->tasklet *just* as we are
1868 * calling engine->init_hw() and also writing the ELSP.
1869 * Turning off the execlists->tasklet until the reset is over
1870 * prevents the race.
1871 */
1872 __tasklet_disable_sync_once(&execlists->tasklet);
1873 GEM_BUG_ON(!reset_in_progress(execlists));
1874
1875 /* And flush any current direct submission. */
1876 spin_lock_irqsave(&engine->timeline.lock, flags);
1877 process_csb(engine); /* drain preemption events */
1878 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1879 }
1880
1881 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
1882 {
1883 struct intel_engine_execlists * const execlists = &engine->execlists;
1884 struct i915_request *rq;
1885 unsigned long flags;
1886 u32 *regs;
1887
1888 spin_lock_irqsave(&engine->timeline.lock, flags);
1889
1890 /*
1891 * Catch up with any missed context-switch interrupts.
1892 *
1893 * Ideally we would just read the remaining CSB entries now that we
1894 * know the gpu is idle. However, the CSB registers are sometimes^W
1895 * often trashed across a GPU reset! Instead we have to rely on
1896 * guessing the missed context-switch events by looking at what
1897 * requests were completed.
1898 */
1899 execlists_cancel_port_requests(execlists);
1900
1901 /* Push back any incomplete requests for replay after the reset. */
1902 rq = __unwind_incomplete_requests(engine);
1903
1904 /* Following the reset, we need to reload the CSB read/write pointers */
1905 reset_csb_pointers(&engine->execlists);
1906
1907 GEM_TRACE("%s seqno=%d, current=%d, stalled? %s\n",
1908 engine->name,
1909 rq ? rq->global_seqno : 0,
1910 intel_engine_get_seqno(engine),
1911 yesno(stalled));
1912 if (!rq)
1913 goto out_unlock;
1914
1915 /*
1916 * If the request was innocent, we leave the request in the ELSP
1917 * and will try to replay it on restarting. The context image may
1918 * have been corrupted by the reset, in which case we may have
1919 * to service a new GPU hang, but more likely we can continue on
1920 * without impact.
1921 *
1922 * If the request was guilty, we presume the context is corrupt
1923 * and have to at least restore the RING register in the context
1924 * image back to the expected values to skip over the guilty request.
1925 */
1926 i915_reset_request(rq, stalled);
1927 if (!stalled)
1928 goto out_unlock;
1929
1930 /*
1931 * We want a simple context + ring to execute the breadcrumb update.
1932 * We cannot rely on the context being intact across the GPU hang,
1933 * so clear it and rebuild just what we need for the breadcrumb.
1934 * All pending requests for this context will be zapped, and any
1935 * future request will be after userspace has had the opportunity
1936 * to recreate its own state.
1937 */
1938 regs = rq->hw_context->lrc_reg_state;
1939 if (engine->pinned_default_state) {
1940 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1941 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1942 engine->context_size - PAGE_SIZE);
1943 }
1944
1945 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1946 rq->ring->head = intel_ring_wrap(rq->ring, rq->postfix);
1947 intel_ring_update_space(rq->ring);
1948
1949 execlists_init_reg_state(regs, rq->gem_context, engine, rq->ring);
1950 __execlists_update_reg_state(engine, rq->hw_context);
1951
1952 out_unlock:
1953 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1954 }
1955
1956 static void execlists_reset_finish(struct intel_engine_cs *engine)
1957 {
1958 struct intel_engine_execlists * const execlists = &engine->execlists;
1959
1960 /*
1961 * After a GPU reset, we may have requests to replay. Do so now while
1962 * we still have the forcewake to be sure that the GPU is not allowed
1963 * to sleep before we restart and reload a context.
1964 *
1965 */
1966 GEM_BUG_ON(!reset_in_progress(execlists));
1967 if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1968 execlists->tasklet.func(execlists->tasklet.data);
1969
1970 tasklet_enable(&execlists->tasklet);
1971 GEM_TRACE("%s: depth->%d\n", engine->name,
1972 atomic_read(&execlists->tasklet.count));
1973 }
1974
1975 static int gen8_emit_bb_start(struct i915_request *rq,
1976 u64 offset, u32 len,
1977 const unsigned int flags)
1978 {
1979 u32 *cs;
1980
1981 cs = intel_ring_begin(rq, 6);
1982 if (IS_ERR(cs))
1983 return PTR_ERR(cs);
1984
1985 /*
1986 * WaDisableCtxRestoreArbitration:bdw,chv
1987 *
1988 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1989 * particular all the gen that do not need the w/a at all!), if we
1990 * took care to make sure that on every switch into this context
1991 * (both ordinary and for preemption) that arbitrartion was enabled
1992 * we would be fine. However, there doesn't seem to be a downside to
1993 * being paranoid and making sure it is set before each batch and
1994 * every context-switch.
1995 *
1996 * Note that if we fail to enable arbitration before the request
1997 * is complete, then we do not see the context-switch interrupt and
1998 * the engine hangs (with RING_HEAD == RING_TAIL).
1999 *
2000 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
2001 */
2002 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2003
2004 /* FIXME(BDW): Address space and security selectors. */
2005 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2006 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2007 *cs++ = lower_32_bits(offset);
2008 *cs++ = upper_32_bits(offset);
2009
2010 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2011 *cs++ = MI_NOOP;
2012
2013 intel_ring_advance(rq, cs);
2014
2015 return 0;
2016 }
2017
2018 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2019 {
2020 struct drm_i915_private *dev_priv = engine->i915;
2021 I915_WRITE_IMR(engine,
2022 ~(engine->irq_enable_mask | engine->irq_keep_mask));
2023 POSTING_READ_FW(RING_IMR(engine->mmio_base));
2024 }
2025
2026 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2027 {
2028 struct drm_i915_private *dev_priv = engine->i915;
2029 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2030 }
2031
2032 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2033 {
2034 u32 cmd, *cs;
2035
2036 cs = intel_ring_begin(request, 4);
2037 if (IS_ERR(cs))
2038 return PTR_ERR(cs);
2039
2040 cmd = MI_FLUSH_DW + 1;
2041
2042 /* We always require a command barrier so that subsequent
2043 * commands, such as breadcrumb interrupts, are strictly ordered
2044 * wrt the contents of the write cache being flushed to memory
2045 * (and thus being coherent from the CPU).
2046 */
2047 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2048
2049 if (mode & EMIT_INVALIDATE) {
2050 cmd |= MI_INVALIDATE_TLB;
2051 if (request->engine->class == VIDEO_DECODE_CLASS)
2052 cmd |= MI_INVALIDATE_BSD;
2053 }
2054
2055 *cs++ = cmd;
2056 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2057 *cs++ = 0; /* upper addr */
2058 *cs++ = 0; /* value */
2059 intel_ring_advance(request, cs);
2060
2061 return 0;
2062 }
2063
2064 static int gen8_emit_flush_render(struct i915_request *request,
2065 u32 mode)
2066 {
2067 struct intel_engine_cs *engine = request->engine;
2068 u32 scratch_addr =
2069 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2070 bool vf_flush_wa = false, dc_flush_wa = false;
2071 u32 *cs, flags = 0;
2072 int len;
2073
2074 flags |= PIPE_CONTROL_CS_STALL;
2075
2076 if (mode & EMIT_FLUSH) {
2077 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2078 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2079 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2080 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2081 }
2082
2083 if (mode & EMIT_INVALIDATE) {
2084 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2085 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2086 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2087 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2088 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2089 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2090 flags |= PIPE_CONTROL_QW_WRITE;
2091 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2092
2093 /*
2094 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2095 * pipe control.
2096 */
2097 if (IS_GEN(request->i915, 9))
2098 vf_flush_wa = true;
2099
2100 /* WaForGAMHang:kbl */
2101 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2102 dc_flush_wa = true;
2103 }
2104
2105 len = 6;
2106
2107 if (vf_flush_wa)
2108 len += 6;
2109
2110 if (dc_flush_wa)
2111 len += 12;
2112
2113 cs = intel_ring_begin(request, len);
2114 if (IS_ERR(cs))
2115 return PTR_ERR(cs);
2116
2117 if (vf_flush_wa)
2118 cs = gen8_emit_pipe_control(cs, 0, 0);
2119
2120 if (dc_flush_wa)
2121 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2122 0);
2123
2124 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2125
2126 if (dc_flush_wa)
2127 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2128
2129 intel_ring_advance(request, cs);
2130
2131 return 0;
2132 }
2133
2134 /*
2135 * Reserve space for 2 NOOPs at the end of each request to be
2136 * used as a workaround for not being allowed to do lite
2137 * restore with HEAD==TAIL (WaIdleLiteRestore).
2138 */
2139 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2140 {
2141 /* Ensure there's always at least one preemption point per-request. */
2142 *cs++ = MI_ARB_CHECK;
2143 *cs++ = MI_NOOP;
2144 request->wa_tail = intel_ring_offset(request, cs);
2145
2146 return cs;
2147 }
2148
2149 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2150 {
2151 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2152 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2153
2154 cs = gen8_emit_ggtt_write(cs,
2155 request->fence.seqno,
2156 request->timeline->hwsp_offset);
2157
2158 cs = gen8_emit_ggtt_write(cs,
2159 request->global_seqno,
2160 intel_hws_seqno_address(request->engine));
2161
2162 *cs++ = MI_USER_INTERRUPT;
2163 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2164
2165 request->tail = intel_ring_offset(request, cs);
2166 assert_ring_tail_valid(request->ring, request->tail);
2167
2168 return gen8_emit_wa_tail(request, cs);
2169 }
2170
2171 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2172 {
2173 cs = gen8_emit_ggtt_write_rcs(cs,
2174 request->fence.seqno,
2175 request->timeline->hwsp_offset,
2176 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2177 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2178 PIPE_CONTROL_DC_FLUSH_ENABLE |
2179 PIPE_CONTROL_FLUSH_ENABLE |
2180 PIPE_CONTROL_CS_STALL);
2181
2182 cs = gen8_emit_ggtt_write_rcs(cs,
2183 request->global_seqno,
2184 intel_hws_seqno_address(request->engine),
2185 PIPE_CONTROL_CS_STALL);
2186
2187 *cs++ = MI_USER_INTERRUPT;
2188 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2189
2190 request->tail = intel_ring_offset(request, cs);
2191 assert_ring_tail_valid(request->ring, request->tail);
2192
2193 return gen8_emit_wa_tail(request, cs);
2194 }
2195
2196 static int gen8_init_rcs_context(struct i915_request *rq)
2197 {
2198 int ret;
2199
2200 ret = intel_engine_emit_ctx_wa(rq);
2201 if (ret)
2202 return ret;
2203
2204 ret = intel_rcs_context_init_mocs(rq);
2205 /*
2206 * Failing to program the MOCS is non-fatal.The system will not
2207 * run at peak performance. So generate an error and carry on.
2208 */
2209 if (ret)
2210 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2211
2212 return i915_gem_render_state_emit(rq);
2213 }
2214
2215 /**
2216 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2217 * @engine: Engine Command Streamer.
2218 */
2219 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2220 {
2221 struct drm_i915_private *dev_priv;
2222
2223 /*
2224 * Tasklet cannot be active at this point due intel_mark_active/idle
2225 * so this is just for documentation.
2226 */
2227 if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2228 &engine->execlists.tasklet.state)))
2229 tasklet_kill(&engine->execlists.tasklet);
2230
2231 dev_priv = engine->i915;
2232
2233 if (engine->buffer) {
2234 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2235 }
2236
2237 if (engine->cleanup)
2238 engine->cleanup(engine);
2239
2240 intel_engine_cleanup_common(engine);
2241
2242 lrc_destroy_wa_ctx(engine);
2243
2244 engine->i915 = NULL;
2245 dev_priv->engine[engine->id] = NULL;
2246 kfree(engine);
2247 }
2248
2249 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2250 {
2251 engine->submit_request = execlists_submit_request;
2252 engine->cancel_requests = execlists_cancel_requests;
2253 engine->schedule = i915_schedule;
2254 engine->execlists.tasklet.func = execlists_submission_tasklet;
2255
2256 engine->reset.prepare = execlists_reset_prepare;
2257
2258 engine->park = NULL;
2259 engine->unpark = NULL;
2260
2261 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2262 if (engine->i915->preempt_context)
2263 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2264
2265 engine->i915->caps.scheduler =
2266 I915_SCHEDULER_CAP_ENABLED |
2267 I915_SCHEDULER_CAP_PRIORITY;
2268 if (intel_engine_has_preemption(engine))
2269 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2270 }
2271
2272 static void
2273 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2274 {
2275 /* Default vfuncs which can be overriden by each engine. */
2276 engine->init_hw = gen8_init_common_ring;
2277
2278 engine->reset.prepare = execlists_reset_prepare;
2279 engine->reset.reset = execlists_reset;
2280 engine->reset.finish = execlists_reset_finish;
2281
2282 engine->context_pin = execlists_context_pin;
2283 engine->request_alloc = execlists_request_alloc;
2284
2285 engine->emit_flush = gen8_emit_flush;
2286 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2287 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2288
2289 engine->set_default_submission = intel_execlists_set_default_submission;
2290
2291 if (INTEL_GEN(engine->i915) < 11) {
2292 engine->irq_enable = gen8_logical_ring_enable_irq;
2293 engine->irq_disable = gen8_logical_ring_disable_irq;
2294 } else {
2295 /*
2296 * TODO: On Gen11 interrupt masks need to be clear
2297 * to allow C6 entry. Keep interrupts enabled at
2298 * and take the hit of generating extra interrupts
2299 * until a more refined solution exists.
2300 */
2301 }
2302 engine->emit_bb_start = gen8_emit_bb_start;
2303 }
2304
2305 static inline void
2306 logical_ring_default_irqs(struct intel_engine_cs *engine)
2307 {
2308 unsigned int shift = 0;
2309
2310 if (INTEL_GEN(engine->i915) < 11) {
2311 const u8 irq_shifts[] = {
2312 [RCS] = GEN8_RCS_IRQ_SHIFT,
2313 [BCS] = GEN8_BCS_IRQ_SHIFT,
2314 [VCS] = GEN8_VCS1_IRQ_SHIFT,
2315 [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2316 [VECS] = GEN8_VECS_IRQ_SHIFT,
2317 };
2318
2319 shift = irq_shifts[engine->id];
2320 }
2321
2322 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2323 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2324 }
2325
2326 static int
2327 logical_ring_setup(struct intel_engine_cs *engine)
2328 {
2329 int err;
2330
2331 err = intel_engine_setup_common(engine);
2332 if (err)
2333 return err;
2334
2335 /* Intentionally left blank. */
2336 engine->buffer = NULL;
2337
2338 tasklet_init(&engine->execlists.tasklet,
2339 execlists_submission_tasklet, (unsigned long)engine);
2340
2341 logical_ring_default_vfuncs(engine);
2342 logical_ring_default_irqs(engine);
2343
2344 return 0;
2345 }
2346
2347 static int logical_ring_init(struct intel_engine_cs *engine)
2348 {
2349 struct drm_i915_private *i915 = engine->i915;
2350 struct intel_engine_execlists * const execlists = &engine->execlists;
2351 int ret;
2352
2353 ret = intel_engine_init_common(engine);
2354 if (ret)
2355 return ret;
2356
2357 intel_engine_init_workarounds(engine);
2358
2359 if (HAS_LOGICAL_RING_ELSQ(i915)) {
2360 execlists->submit_reg = i915->regs +
2361 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2362 execlists->ctrl_reg = i915->regs +
2363 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2364 } else {
2365 execlists->submit_reg = i915->regs +
2366 i915_mmio_reg_offset(RING_ELSP(engine));
2367 }
2368
2369 execlists->preempt_complete_status = ~0u;
2370 if (i915->preempt_context) {
2371 struct intel_context *ce =
2372 to_intel_context(i915->preempt_context, engine);
2373
2374 execlists->preempt_complete_status =
2375 upper_32_bits(ce->lrc_desc);
2376 }
2377
2378 execlists->csb_status =
2379 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2380
2381 execlists->csb_write =
2382 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
2383
2384 reset_csb_pointers(execlists);
2385
2386 return 0;
2387 }
2388
2389 int logical_render_ring_init(struct intel_engine_cs *engine)
2390 {
2391 int ret;
2392
2393 ret = logical_ring_setup(engine);
2394 if (ret)
2395 return ret;
2396
2397 /* Override some for render ring. */
2398 engine->init_context = gen8_init_rcs_context;
2399 engine->emit_flush = gen8_emit_flush_render;
2400 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2401
2402 ret = logical_ring_init(engine);
2403 if (ret)
2404 return ret;
2405
2406 ret = intel_init_workaround_bb(engine);
2407 if (ret) {
2408 /*
2409 * We continue even if we fail to initialize WA batch
2410 * because we only expect rare glitches but nothing
2411 * critical to prevent us from using GPU
2412 */
2413 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2414 ret);
2415 }
2416
2417 intel_engine_init_whitelist(engine);
2418
2419 return 0;
2420 }
2421
2422 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2423 {
2424 int err;
2425
2426 err = logical_ring_setup(engine);
2427 if (err)
2428 return err;
2429
2430 return logical_ring_init(engine);
2431 }
2432
2433 u32 gen8_make_rpcs(struct drm_i915_private *i915, struct intel_sseu *req_sseu)
2434 {
2435 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
2436 bool subslice_pg = sseu->has_subslice_pg;
2437 struct intel_sseu ctx_sseu;
2438 u8 slices, subslices;
2439 u32 rpcs = 0;
2440
2441 /*
2442 * No explicit RPCS request is needed to ensure full
2443 * slice/subslice/EU enablement prior to Gen9.
2444 */
2445 if (INTEL_GEN(i915) < 9)
2446 return 0;
2447
2448 /*
2449 * If i915/perf is active, we want a stable powergating configuration
2450 * on the system.
2451 *
2452 * We could choose full enablement, but on ICL we know there are use
2453 * cases which disable slices for functional, apart for performance
2454 * reasons. So in this case we select a known stable subset.
2455 */
2456 if (!i915->perf.oa.exclusive_stream) {
2457 ctx_sseu = *req_sseu;
2458 } else {
2459 ctx_sseu = intel_device_default_sseu(i915);
2460
2461 if (IS_GEN(i915, 11)) {
2462 /*
2463 * We only need subslice count so it doesn't matter
2464 * which ones we select - just turn off low bits in the
2465 * amount of half of all available subslices per slice.
2466 */
2467 ctx_sseu.subslice_mask =
2468 ~(~0 << (hweight8(ctx_sseu.subslice_mask) / 2));
2469 ctx_sseu.slice_mask = 0x1;
2470 }
2471 }
2472
2473 slices = hweight8(ctx_sseu.slice_mask);
2474 subslices = hweight8(ctx_sseu.subslice_mask);
2475
2476 /*
2477 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
2478 * wide and Icelake has up to eight subslices, specfial programming is
2479 * needed in order to correctly enable all subslices.
2480 *
2481 * According to documentation software must consider the configuration
2482 * as 2x4x8 and hardware will translate this to 1x8x8.
2483 *
2484 * Furthemore, even though SScount is three bits, maximum documented
2485 * value for it is four. From this some rules/restrictions follow:
2486 *
2487 * 1.
2488 * If enabled subslice count is greater than four, two whole slices must
2489 * be enabled instead.
2490 *
2491 * 2.
2492 * When more than one slice is enabled, hardware ignores the subslice
2493 * count altogether.
2494 *
2495 * From these restrictions it follows that it is not possible to enable
2496 * a count of subslices between the SScount maximum of four restriction,
2497 * and the maximum available number on a particular SKU. Either all
2498 * subslices are enabled, or a count between one and four on the first
2499 * slice.
2500 */
2501 if (IS_GEN(i915, 11) &&
2502 slices == 1 &&
2503 subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
2504 GEM_BUG_ON(subslices & 1);
2505
2506 subslice_pg = false;
2507 slices *= 2;
2508 }
2509
2510 /*
2511 * Starting in Gen9, render power gating can leave
2512 * slice/subslice/EU in a partially enabled state. We
2513 * must make an explicit request through RPCS for full
2514 * enablement.
2515 */
2516 if (sseu->has_slice_pg) {
2517 u32 mask, val = slices;
2518
2519 if (INTEL_GEN(i915) >= 11) {
2520 mask = GEN11_RPCS_S_CNT_MASK;
2521 val <<= GEN11_RPCS_S_CNT_SHIFT;
2522 } else {
2523 mask = GEN8_RPCS_S_CNT_MASK;
2524 val <<= GEN8_RPCS_S_CNT_SHIFT;
2525 }
2526
2527 GEM_BUG_ON(val & ~mask);
2528 val &= mask;
2529
2530 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2531 }
2532
2533 if (subslice_pg) {
2534 u32 val = subslices;
2535
2536 val <<= GEN8_RPCS_SS_CNT_SHIFT;
2537
2538 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
2539 val &= GEN8_RPCS_SS_CNT_MASK;
2540
2541 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2542 }
2543
2544 if (sseu->has_eu_pg) {
2545 u32 val;
2546
2547 val = ctx_sseu.min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
2548 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
2549 val &= GEN8_RPCS_EU_MIN_MASK;
2550
2551 rpcs |= val;
2552
2553 val = ctx_sseu.max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
2554 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
2555 val &= GEN8_RPCS_EU_MAX_MASK;
2556
2557 rpcs |= val;
2558
2559 rpcs |= GEN8_RPCS_ENABLE;
2560 }
2561
2562 return rpcs;
2563 }
2564
2565 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2566 {
2567 u32 indirect_ctx_offset;
2568
2569 switch (INTEL_GEN(engine->i915)) {
2570 default:
2571 MISSING_CASE(INTEL_GEN(engine->i915));
2572 /* fall through */
2573 case 11:
2574 indirect_ctx_offset =
2575 GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2576 break;
2577 case 10:
2578 indirect_ctx_offset =
2579 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2580 break;
2581 case 9:
2582 indirect_ctx_offset =
2583 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2584 break;
2585 case 8:
2586 indirect_ctx_offset =
2587 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2588 break;
2589 }
2590
2591 return indirect_ctx_offset;
2592 }
2593
2594 static void execlists_init_reg_state(u32 *regs,
2595 struct i915_gem_context *ctx,
2596 struct intel_engine_cs *engine,
2597 struct intel_ring *ring)
2598 {
2599 struct drm_i915_private *dev_priv = engine->i915;
2600 u32 base = engine->mmio_base;
2601 bool rcs = engine->class == RENDER_CLASS;
2602
2603 /* A context is actually a big batch buffer with several
2604 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2605 * values we are setting here are only for the first context restore:
2606 * on a subsequent save, the GPU will recreate this batchbuffer with new
2607 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2608 * we are not initializing here).
2609 */
2610 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2611 MI_LRI_FORCE_POSTED;
2612
2613 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2614 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2615 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2616 if (INTEL_GEN(dev_priv) < 11) {
2617 regs[CTX_CONTEXT_CONTROL + 1] |=
2618 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2619 CTX_CTRL_RS_CTX_ENABLE);
2620 }
2621 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2622 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2623 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2624 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2625 RING_CTL_SIZE(ring->size) | RING_VALID);
2626 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2627 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2628 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2629 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2630 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2631 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2632 if (rcs) {
2633 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2634
2635 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2636 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2637 RING_INDIRECT_CTX_OFFSET(base), 0);
2638 if (wa_ctx->indirect_ctx.size) {
2639 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2640
2641 regs[CTX_RCS_INDIRECT_CTX + 1] =
2642 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2643 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2644
2645 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2646 intel_lr_indirect_ctx_offset(engine) << 6;
2647 }
2648
2649 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2650 if (wa_ctx->per_ctx.size) {
2651 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2652
2653 regs[CTX_BB_PER_CTX_PTR + 1] =
2654 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2655 }
2656 }
2657
2658 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2659
2660 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2661 /* PDP values well be assigned later if needed */
2662 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2663 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2664 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2665 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2666 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2667 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2668 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2669 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2670
2671 if (i915_vm_is_48bit(&ctx->ppgtt->vm)) {
2672 /* 64b PPGTT (48bit canonical)
2673 * PDP0_DESCRIPTOR contains the base address to PML4 and
2674 * other PDP Descriptors are ignored.
2675 */
2676 ASSIGN_CTX_PML4(ctx->ppgtt, regs);
2677 } else {
2678 ASSIGN_CTX_PDP(ctx->ppgtt, regs, 3);
2679 ASSIGN_CTX_PDP(ctx->ppgtt, regs, 2);
2680 ASSIGN_CTX_PDP(ctx->ppgtt, regs, 1);
2681 ASSIGN_CTX_PDP(ctx->ppgtt, regs, 0);
2682 }
2683
2684 if (rcs) {
2685 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2686 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2687
2688 i915_oa_init_reg_state(engine, ctx, regs);
2689 }
2690
2691 regs[CTX_END] = MI_BATCH_BUFFER_END;
2692 if (INTEL_GEN(dev_priv) >= 10)
2693 regs[CTX_END] |= BIT(0);
2694 }
2695
2696 static int
2697 populate_lr_context(struct i915_gem_context *ctx,
2698 struct drm_i915_gem_object *ctx_obj,
2699 struct intel_engine_cs *engine,
2700 struct intel_ring *ring)
2701 {
2702 void *vaddr;
2703 u32 *regs;
2704 int ret;
2705
2706 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2707 if (ret) {
2708 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2709 return ret;
2710 }
2711
2712 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2713 if (IS_ERR(vaddr)) {
2714 ret = PTR_ERR(vaddr);
2715 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2716 return ret;
2717 }
2718 ctx_obj->mm.dirty = true;
2719
2720 if (engine->default_state) {
2721 /*
2722 * We only want to copy over the template context state;
2723 * skipping over the headers reserved for GuC communication,
2724 * leaving those as zero.
2725 */
2726 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2727 void *defaults;
2728
2729 defaults = i915_gem_object_pin_map(engine->default_state,
2730 I915_MAP_WB);
2731 if (IS_ERR(defaults)) {
2732 ret = PTR_ERR(defaults);
2733 goto err_unpin_ctx;
2734 }
2735
2736 memcpy(vaddr + start, defaults + start, engine->context_size);
2737 i915_gem_object_unpin_map(engine->default_state);
2738 }
2739
2740 /* The second page of the context object contains some fields which must
2741 * be set up prior to the first execution. */
2742 regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2743 execlists_init_reg_state(regs, ctx, engine, ring);
2744 if (!engine->default_state)
2745 regs[CTX_CONTEXT_CONTROL + 1] |=
2746 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2747 if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2748 regs[CTX_CONTEXT_CONTROL + 1] |=
2749 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2750 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2751
2752 err_unpin_ctx:
2753 i915_gem_object_unpin_map(ctx_obj);
2754 return ret;
2755 }
2756
2757 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2758 struct intel_engine_cs *engine,
2759 struct intel_context *ce)
2760 {
2761 struct drm_i915_gem_object *ctx_obj;
2762 struct i915_vma *vma;
2763 u32 context_size;
2764 struct intel_ring *ring;
2765 struct i915_timeline *timeline;
2766 int ret;
2767
2768 if (ce->state)
2769 return 0;
2770
2771 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2772
2773 /*
2774 * Before the actual start of the context image, we insert a few pages
2775 * for our own use and for sharing with the GuC.
2776 */
2777 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2778
2779 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2780 if (IS_ERR(ctx_obj))
2781 return PTR_ERR(ctx_obj);
2782
2783 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2784 if (IS_ERR(vma)) {
2785 ret = PTR_ERR(vma);
2786 goto error_deref_obj;
2787 }
2788
2789 timeline = i915_timeline_create(ctx->i915, ctx->name, NULL);
2790 if (IS_ERR(timeline)) {
2791 ret = PTR_ERR(timeline);
2792 goto error_deref_obj;
2793 }
2794
2795 ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2796 i915_timeline_put(timeline);
2797 if (IS_ERR(ring)) {
2798 ret = PTR_ERR(ring);
2799 goto error_deref_obj;
2800 }
2801
2802 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2803 if (ret) {
2804 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2805 goto error_ring_free;
2806 }
2807
2808 ce->ring = ring;
2809 ce->state = vma;
2810
2811 return 0;
2812
2813 error_ring_free:
2814 intel_ring_free(ring);
2815 error_deref_obj:
2816 i915_gem_object_put(ctx_obj);
2817 return ret;
2818 }
2819
2820 void intel_lr_context_resume(struct drm_i915_private *i915)
2821 {
2822 struct intel_engine_cs *engine;
2823 struct i915_gem_context *ctx;
2824 enum intel_engine_id id;
2825
2826 /*
2827 * Because we emit WA_TAIL_DWORDS there may be a disparity
2828 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2829 * that stored in context. As we only write new commands from
2830 * ce->ring->tail onwards, everything before that is junk. If the GPU
2831 * starts reading from its RING_HEAD from the context, it may try to
2832 * execute that junk and die.
2833 *
2834 * So to avoid that we reset the context images upon resume. For
2835 * simplicity, we just zero everything out.
2836 */
2837 list_for_each_entry(ctx, &i915->contexts.list, link) {
2838 for_each_engine(engine, i915, id) {
2839 struct intel_context *ce =
2840 to_intel_context(ctx, engine);
2841
2842 if (!ce->state)
2843 continue;
2844
2845 intel_ring_reset(ce->ring, 0);
2846
2847 if (ce->pin_count) /* otherwise done in context_pin */
2848 __execlists_update_reg_state(engine, ce);
2849 }
2850 }
2851 }
2852
2853 void intel_execlists_show_requests(struct intel_engine_cs *engine,
2854 struct drm_printer *m,
2855 void (*show_request)(struct drm_printer *m,
2856 struct i915_request *rq,
2857 const char *prefix),
2858 unsigned int max)
2859 {
2860 const struct intel_engine_execlists *execlists = &engine->execlists;
2861 struct i915_request *rq, *last;
2862 unsigned long flags;
2863 unsigned int count;
2864 struct rb_node *rb;
2865
2866 spin_lock_irqsave(&engine->timeline.lock, flags);
2867
2868 last = NULL;
2869 count = 0;
2870 list_for_each_entry(rq, &engine->timeline.requests, link) {
2871 if (count++ < max - 1)
2872 show_request(m, rq, "\t\tE ");
2873 else
2874 last = rq;
2875 }
2876 if (last) {
2877 if (count > max) {
2878 drm_printf(m,
2879 "\t\t...skipping %d executing requests...\n",
2880 count - max);
2881 }
2882 show_request(m, last, "\t\tE ");
2883 }
2884
2885 last = NULL;
2886 count = 0;
2887 if (execlists->queue_priority_hint != INT_MIN)
2888 drm_printf(m, "\t\tQueue priority hint: %d\n",
2889 execlists->queue_priority_hint);
2890 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
2891 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
2892 int i;
2893
2894 priolist_for_each_request(rq, p, i) {
2895 if (count++ < max - 1)
2896 show_request(m, rq, "\t\tQ ");
2897 else
2898 last = rq;
2899 }
2900 }
2901 if (last) {
2902 if (count > max) {
2903 drm_printf(m,
2904 "\t\t...skipping %d queued requests...\n",
2905 count - max);
2906 }
2907 show_request(m, last, "\t\tQ ");
2908 }
2909
2910 spin_unlock_irqrestore(&engine->timeline.lock, flags);
2911 }
2912
2913 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2914 #include "selftests/intel_lrc.c"
2915 #endif