]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge branch 'drm-next-5.1' of git://people.freedesktop.org/~agd5f/linux into drm...
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <linux/pm_runtime.h>
30 #include <drm/drm_plane_helper.h>
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include "../../../platform/x86/intel_ips.h"
34 #include <linux/module.h>
35 #include <drm/drm_atomic_helper.h>
36
37 /**
38 * DOC: RC6
39 *
40 * RC6 is a special power stage which allows the GPU to enter an very
41 * low-voltage mode when idle, using down to 0V while at this stage. This
42 * stage is entered automatically when the GPU is idle when RC6 support is
43 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44 *
45 * There are different RC6 modes available in Intel GPU, which differentiate
46 * among each other with the latency required to enter and leave RC6 and
47 * voltage consumed by the GPU in different states.
48 *
49 * The combination of the following flags define which states GPU is allowed
50 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51 * RC6pp is deepest RC6. Their support by hardware varies according to the
52 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53 * which brings the most power savings; deeper states save more power, but
54 * require higher latency to switch to and wake up.
55 */
56
57 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58 {
59 if (HAS_LLC(dev_priv)) {
60 /*
61 * WaCompressedResourceDisplayNewHashMode:skl,kbl
62 * Display WA #0390: skl,kbl
63 *
64 * Must match Sampler, Pixel Back End, and Media. See
65 * WaCompressedResourceSamplerPbeMediaNewHashMode.
66 */
67 I915_WRITE(CHICKEN_PAR1_1,
68 I915_READ(CHICKEN_PAR1_1) |
69 SKL_DE_COMPRESSED_HASH_MODE);
70 }
71
72 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73 I915_WRITE(CHICKEN_PAR1_1,
74 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
75
76 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77 I915_WRITE(GEN8_CHICKEN_DCPR_1,
78 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79
80 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
81 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
83 DISP_FBC_WM_DIS |
84 DISP_FBC_MEMORY_WAKE);
85
86 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
88 ILK_DPFC_DISABLE_DUMMY0);
89
90 if (IS_SKYLAKE(dev_priv)) {
91 /* WaDisableDopClockGating */
92 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
93 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
94 }
95 }
96
97 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98 {
99 gen9_init_clock_gating(dev_priv);
100
101 /* WaDisableSDEUnitClockGating:bxt */
102 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
103 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
104
105 /*
106 * FIXME:
107 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108 */
109 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
111
112 /*
113 * Wa: Backlight PWM may stop in the asserted state, causing backlight
114 * to stay fully on.
115 */
116 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
117 PWM1_GATING_DIS | PWM2_GATING_DIS);
118 }
119
120 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
121 {
122 gen9_init_clock_gating(dev_priv);
123
124 /*
125 * WaDisablePWMClockGating:glk
126 * Backlight PWM may stop in the asserted state, causing backlight
127 * to stay fully on.
128 */
129 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
130 PWM1_GATING_DIS | PWM2_GATING_DIS);
131
132 /* WaDDIIOTimeout:glk */
133 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
134 u32 val = I915_READ(CHICKEN_MISC_2);
135 val &= ~(GLK_CL0_PWR_DOWN |
136 GLK_CL1_PWR_DOWN |
137 GLK_CL2_PWR_DOWN);
138 I915_WRITE(CHICKEN_MISC_2, val);
139 }
140
141 }
142
143 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 {
145 u32 tmp;
146
147 tmp = I915_READ(CLKCFG);
148
149 switch (tmp & CLKCFG_FSB_MASK) {
150 case CLKCFG_FSB_533:
151 dev_priv->fsb_freq = 533; /* 133*4 */
152 break;
153 case CLKCFG_FSB_800:
154 dev_priv->fsb_freq = 800; /* 200*4 */
155 break;
156 case CLKCFG_FSB_667:
157 dev_priv->fsb_freq = 667; /* 167*4 */
158 break;
159 case CLKCFG_FSB_400:
160 dev_priv->fsb_freq = 400; /* 100*4 */
161 break;
162 }
163
164 switch (tmp & CLKCFG_MEM_MASK) {
165 case CLKCFG_MEM_533:
166 dev_priv->mem_freq = 533;
167 break;
168 case CLKCFG_MEM_667:
169 dev_priv->mem_freq = 667;
170 break;
171 case CLKCFG_MEM_800:
172 dev_priv->mem_freq = 800;
173 break;
174 }
175
176 /* detect pineview DDR3 setting */
177 tmp = I915_READ(CSHRDDR3CTL);
178 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
179 }
180
181 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 {
183 u16 ddrpll, csipll;
184
185 ddrpll = I915_READ16(DDRMPLL1);
186 csipll = I915_READ16(CSIPLL0);
187
188 switch (ddrpll & 0xff) {
189 case 0xc:
190 dev_priv->mem_freq = 800;
191 break;
192 case 0x10:
193 dev_priv->mem_freq = 1066;
194 break;
195 case 0x14:
196 dev_priv->mem_freq = 1333;
197 break;
198 case 0x18:
199 dev_priv->mem_freq = 1600;
200 break;
201 default:
202 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
203 ddrpll & 0xff);
204 dev_priv->mem_freq = 0;
205 break;
206 }
207
208 dev_priv->ips.r_t = dev_priv->mem_freq;
209
210 switch (csipll & 0x3ff) {
211 case 0x00c:
212 dev_priv->fsb_freq = 3200;
213 break;
214 case 0x00e:
215 dev_priv->fsb_freq = 3733;
216 break;
217 case 0x010:
218 dev_priv->fsb_freq = 4266;
219 break;
220 case 0x012:
221 dev_priv->fsb_freq = 4800;
222 break;
223 case 0x014:
224 dev_priv->fsb_freq = 5333;
225 break;
226 case 0x016:
227 dev_priv->fsb_freq = 5866;
228 break;
229 case 0x018:
230 dev_priv->fsb_freq = 6400;
231 break;
232 default:
233 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
234 csipll & 0x3ff);
235 dev_priv->fsb_freq = 0;
236 break;
237 }
238
239 if (dev_priv->fsb_freq == 3200) {
240 dev_priv->ips.c_m = 0;
241 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242 dev_priv->ips.c_m = 1;
243 } else {
244 dev_priv->ips.c_m = 2;
245 }
246 }
247
248 static const struct cxsr_latency cxsr_latency_table[] = {
249 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
250 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
251 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
252 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
253 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
254
255 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
256 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
257 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
258 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
259 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
260
261 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
262 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
263 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
264 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
265 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
266
267 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
268 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
269 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
270 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
271 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
272
273 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
274 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
275 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
276 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
277 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
278
279 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
280 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
281 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
282 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
283 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
284 };
285
286 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
287 bool is_ddr3,
288 int fsb,
289 int mem)
290 {
291 const struct cxsr_latency *latency;
292 int i;
293
294 if (fsb == 0 || mem == 0)
295 return NULL;
296
297 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
298 latency = &cxsr_latency_table[i];
299 if (is_desktop == latency->is_desktop &&
300 is_ddr3 == latency->is_ddr3 &&
301 fsb == latency->fsb_freq && mem == latency->mem_freq)
302 return latency;
303 }
304
305 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
306
307 return NULL;
308 }
309
310 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
311 {
312 u32 val;
313
314 mutex_lock(&dev_priv->pcu_lock);
315
316 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
317 if (enable)
318 val &= ~FORCE_DDR_HIGH_FREQ;
319 else
320 val |= FORCE_DDR_HIGH_FREQ;
321 val &= ~FORCE_DDR_LOW_FREQ;
322 val |= FORCE_DDR_FREQ_REQ_ACK;
323 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
324
325 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
326 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
327 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
328
329 mutex_unlock(&dev_priv->pcu_lock);
330 }
331
332 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
333 {
334 u32 val;
335
336 mutex_lock(&dev_priv->pcu_lock);
337
338 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
339 if (enable)
340 val |= DSP_MAXFIFO_PM5_ENABLE;
341 else
342 val &= ~DSP_MAXFIFO_PM5_ENABLE;
343 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
344
345 mutex_unlock(&dev_priv->pcu_lock);
346 }
347
348 #define FW_WM(value, plane) \
349 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
350
351 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
352 {
353 bool was_enabled;
354 u32 val;
355
356 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359 POSTING_READ(FW_BLC_SELF_VLV);
360 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363 POSTING_READ(FW_BLC_SELF);
364 } else if (IS_PINEVIEW(dev_priv)) {
365 val = I915_READ(DSPFW3);
366 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
367 if (enable)
368 val |= PINEVIEW_SELF_REFRESH_EN;
369 else
370 val &= ~PINEVIEW_SELF_REFRESH_EN;
371 I915_WRITE(DSPFW3, val);
372 POSTING_READ(DSPFW3);
373 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
376 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
377 I915_WRITE(FW_BLC_SELF, val);
378 POSTING_READ(FW_BLC_SELF);
379 } else if (IS_I915GM(dev_priv)) {
380 /*
381 * FIXME can't find a bit like this for 915G, and
382 * and yet it does have the related watermark in
383 * FW_BLC_SELF. What's going on?
384 */
385 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
387 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
388 I915_WRITE(INSTPM, val);
389 POSTING_READ(INSTPM);
390 } else {
391 return false;
392 }
393
394 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
395
396 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
397 enableddisabled(enable),
398 enableddisabled(was_enabled));
399
400 return was_enabled;
401 }
402
403 /**
404 * intel_set_memory_cxsr - Configure CxSR state
405 * @dev_priv: i915 device
406 * @enable: Allow vs. disallow CxSR
407 *
408 * Allow or disallow the system to enter a special CxSR
409 * (C-state self refresh) state. What typically happens in CxSR mode
410 * is that several display FIFOs may get combined into a single larger
411 * FIFO for a particular plane (so called max FIFO mode) to allow the
412 * system to defer memory fetches longer, and the memory will enter
413 * self refresh.
414 *
415 * Note that enabling CxSR does not guarantee that the system enter
416 * this special mode, nor does it guarantee that the system stays
417 * in that mode once entered. So this just allows/disallows the system
418 * to autonomously utilize the CxSR mode. Other factors such as core
419 * C-states will affect when/if the system actually enters/exits the
420 * CxSR mode.
421 *
422 * Note that on VLV/CHV this actually only controls the max FIFO mode,
423 * and the system is free to enter/exit memory self refresh at any time
424 * even when the use of CxSR has been disallowed.
425 *
426 * While the system is actually in the CxSR/max FIFO mode, some plane
427 * control registers will not get latched on vblank. Thus in order to
428 * guarantee the system will respond to changes in the plane registers
429 * we must always disallow CxSR prior to making changes to those registers.
430 * Unfortunately the system will re-evaluate the CxSR conditions at
431 * frame start which happens after vblank start (which is when the plane
432 * registers would get latched), so we can't proceed with the plane update
433 * during the same frame where we disallowed CxSR.
434 *
435 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
436 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
437 * the hardware w.r.t. HPLL SR when writing to plane registers.
438 * Disallowing just CxSR is sufficient.
439 */
440 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
441 {
442 bool ret;
443
444 mutex_lock(&dev_priv->wm.wm_mutex);
445 ret = _intel_set_memory_cxsr(dev_priv, enable);
446 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
447 dev_priv->wm.vlv.cxsr = enable;
448 else if (IS_G4X(dev_priv))
449 dev_priv->wm.g4x.cxsr = enable;
450 mutex_unlock(&dev_priv->wm.wm_mutex);
451
452 return ret;
453 }
454
455 /*
456 * Latency for FIFO fetches is dependent on several factors:
457 * - memory configuration (speed, channels)
458 * - chipset
459 * - current MCH state
460 * It can be fairly high in some situations, so here we assume a fairly
461 * pessimal value. It's a tradeoff between extra memory fetches (if we
462 * set this value too high, the FIFO will fetch frequently to stay full)
463 * and power consumption (set it too low to save power and we might see
464 * FIFO underruns and display "flicker").
465 *
466 * A value of 5us seems to be a good balance; safe for very low end
467 * platforms but not overly aggressive on lower latency configs.
468 */
469 static const int pessimal_latency_ns = 5000;
470
471 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
472 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
473
474 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
475 {
476 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479 enum pipe pipe = crtc->pipe;
480 int sprite0_start, sprite1_start;
481
482 switch (pipe) {
483 u32 dsparb, dsparb2, dsparb3;
484 case PIPE_A:
485 dsparb = I915_READ(DSPARB);
486 dsparb2 = I915_READ(DSPARB2);
487 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
488 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
489 break;
490 case PIPE_B:
491 dsparb = I915_READ(DSPARB);
492 dsparb2 = I915_READ(DSPARB2);
493 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
494 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
495 break;
496 case PIPE_C:
497 dsparb2 = I915_READ(DSPARB2);
498 dsparb3 = I915_READ(DSPARB3);
499 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
500 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
501 break;
502 default:
503 MISSING_CASE(pipe);
504 return;
505 }
506
507 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
508 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
509 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
510 fifo_state->plane[PLANE_CURSOR] = 63;
511 }
512
513 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
514 enum i9xx_plane_id i9xx_plane)
515 {
516 u32 dsparb = I915_READ(DSPARB);
517 int size;
518
519 size = dsparb & 0x7f;
520 if (i9xx_plane == PLANE_B)
521 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
522
523 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
524 dsparb, plane_name(i9xx_plane), size);
525
526 return size;
527 }
528
529 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
530 enum i9xx_plane_id i9xx_plane)
531 {
532 u32 dsparb = I915_READ(DSPARB);
533 int size;
534
535 size = dsparb & 0x1ff;
536 if (i9xx_plane == PLANE_B)
537 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
538 size >>= 1; /* Convert to cachelines */
539
540 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
541 dsparb, plane_name(i9xx_plane), size);
542
543 return size;
544 }
545
546 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
547 enum i9xx_plane_id i9xx_plane)
548 {
549 u32 dsparb = I915_READ(DSPARB);
550 int size;
551
552 size = dsparb & 0x7f;
553 size >>= 2; /* Convert to cachelines */
554
555 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
556 dsparb, plane_name(i9xx_plane), size);
557
558 return size;
559 }
560
561 /* Pineview has different values for various configs */
562 static const struct intel_watermark_params pineview_display_wm = {
563 .fifo_size = PINEVIEW_DISPLAY_FIFO,
564 .max_wm = PINEVIEW_MAX_WM,
565 .default_wm = PINEVIEW_DFT_WM,
566 .guard_size = PINEVIEW_GUARD_WM,
567 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
568 };
569 static const struct intel_watermark_params pineview_display_hplloff_wm = {
570 .fifo_size = PINEVIEW_DISPLAY_FIFO,
571 .max_wm = PINEVIEW_MAX_WM,
572 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
573 .guard_size = PINEVIEW_GUARD_WM,
574 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
575 };
576 static const struct intel_watermark_params pineview_cursor_wm = {
577 .fifo_size = PINEVIEW_CURSOR_FIFO,
578 .max_wm = PINEVIEW_CURSOR_MAX_WM,
579 .default_wm = PINEVIEW_CURSOR_DFT_WM,
580 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
581 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 };
583 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584 .fifo_size = PINEVIEW_CURSOR_FIFO,
585 .max_wm = PINEVIEW_CURSOR_MAX_WM,
586 .default_wm = PINEVIEW_CURSOR_DFT_WM,
587 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
588 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 };
590 static const struct intel_watermark_params i965_cursor_wm_info = {
591 .fifo_size = I965_CURSOR_FIFO,
592 .max_wm = I965_CURSOR_MAX_WM,
593 .default_wm = I965_CURSOR_DFT_WM,
594 .guard_size = 2,
595 .cacheline_size = I915_FIFO_LINE_SIZE,
596 };
597 static const struct intel_watermark_params i945_wm_info = {
598 .fifo_size = I945_FIFO_SIZE,
599 .max_wm = I915_MAX_WM,
600 .default_wm = 1,
601 .guard_size = 2,
602 .cacheline_size = I915_FIFO_LINE_SIZE,
603 };
604 static const struct intel_watermark_params i915_wm_info = {
605 .fifo_size = I915_FIFO_SIZE,
606 .max_wm = I915_MAX_WM,
607 .default_wm = 1,
608 .guard_size = 2,
609 .cacheline_size = I915_FIFO_LINE_SIZE,
610 };
611 static const struct intel_watermark_params i830_a_wm_info = {
612 .fifo_size = I855GM_FIFO_SIZE,
613 .max_wm = I915_MAX_WM,
614 .default_wm = 1,
615 .guard_size = 2,
616 .cacheline_size = I830_FIFO_LINE_SIZE,
617 };
618 static const struct intel_watermark_params i830_bc_wm_info = {
619 .fifo_size = I855GM_FIFO_SIZE,
620 .max_wm = I915_MAX_WM/2,
621 .default_wm = 1,
622 .guard_size = 2,
623 .cacheline_size = I830_FIFO_LINE_SIZE,
624 };
625 static const struct intel_watermark_params i845_wm_info = {
626 .fifo_size = I830_FIFO_SIZE,
627 .max_wm = I915_MAX_WM,
628 .default_wm = 1,
629 .guard_size = 2,
630 .cacheline_size = I830_FIFO_LINE_SIZE,
631 };
632
633 /**
634 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
635 * @pixel_rate: Pipe pixel rate in kHz
636 * @cpp: Plane bytes per pixel
637 * @latency: Memory wakeup latency in 0.1us units
638 *
639 * Compute the watermark using the method 1 or "small buffer"
640 * formula. The caller may additonally add extra cachelines
641 * to account for TLB misses and clock crossings.
642 *
643 * This method is concerned with the short term drain rate
644 * of the FIFO, ie. it does not account for blanking periods
645 * which would effectively reduce the average drain rate across
646 * a longer period. The name "small" refers to the fact the
647 * FIFO is relatively small compared to the amount of data
648 * fetched.
649 *
650 * The FIFO level vs. time graph might look something like:
651 *
652 * |\ |\
653 * | \ | \
654 * __---__---__ (- plane active, _ blanking)
655 * -> time
656 *
657 * or perhaps like this:
658 *
659 * |\|\ |\|\
660 * __----__----__ (- plane active, _ blanking)
661 * -> time
662 *
663 * Returns:
664 * The watermark in bytes
665 */
666 static unsigned int intel_wm_method1(unsigned int pixel_rate,
667 unsigned int cpp,
668 unsigned int latency)
669 {
670 u64 ret;
671
672 ret = (u64)pixel_rate * cpp * latency;
673 ret = DIV_ROUND_UP_ULL(ret, 10000);
674
675 return ret;
676 }
677
678 /**
679 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
680 * @pixel_rate: Pipe pixel rate in kHz
681 * @htotal: Pipe horizontal total
682 * @width: Plane width in pixels
683 * @cpp: Plane bytes per pixel
684 * @latency: Memory wakeup latency in 0.1us units
685 *
686 * Compute the watermark using the method 2 or "large buffer"
687 * formula. The caller may additonally add extra cachelines
688 * to account for TLB misses and clock crossings.
689 *
690 * This method is concerned with the long term drain rate
691 * of the FIFO, ie. it does account for blanking periods
692 * which effectively reduce the average drain rate across
693 * a longer period. The name "large" refers to the fact the
694 * FIFO is relatively large compared to the amount of data
695 * fetched.
696 *
697 * The FIFO level vs. time graph might look something like:
698 *
699 * |\___ |\___
700 * | \___ | \___
701 * | \ | \
702 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
703 * -> time
704 *
705 * Returns:
706 * The watermark in bytes
707 */
708 static unsigned int intel_wm_method2(unsigned int pixel_rate,
709 unsigned int htotal,
710 unsigned int width,
711 unsigned int cpp,
712 unsigned int latency)
713 {
714 unsigned int ret;
715
716 /*
717 * FIXME remove once all users are computing
718 * watermarks in the correct place.
719 */
720 if (WARN_ON_ONCE(htotal == 0))
721 htotal = 1;
722
723 ret = (latency * pixel_rate) / (htotal * 10000);
724 ret = (ret + 1) * width * cpp;
725
726 return ret;
727 }
728
729 /**
730 * intel_calculate_wm - calculate watermark level
731 * @pixel_rate: pixel clock
732 * @wm: chip FIFO params
733 * @fifo_size: size of the FIFO buffer
734 * @cpp: bytes per pixel
735 * @latency_ns: memory latency for the platform
736 *
737 * Calculate the watermark level (the level at which the display plane will
738 * start fetching from memory again). Each chip has a different display
739 * FIFO size and allocation, so the caller needs to figure that out and pass
740 * in the correct intel_watermark_params structure.
741 *
742 * As the pixel clock runs, the FIFO will be drained at a rate that depends
743 * on the pixel size. When it reaches the watermark level, it'll start
744 * fetching FIFO line sized based chunks from memory until the FIFO fills
745 * past the watermark point. If the FIFO drains completely, a FIFO underrun
746 * will occur, and a display engine hang could result.
747 */
748 static unsigned int intel_calculate_wm(int pixel_rate,
749 const struct intel_watermark_params *wm,
750 int fifo_size, int cpp,
751 unsigned int latency_ns)
752 {
753 int entries, wm_size;
754
755 /*
756 * Note: we need to make sure we don't overflow for various clock &
757 * latency values.
758 * clocks go from a few thousand to several hundred thousand.
759 * latency is usually a few thousand
760 */
761 entries = intel_wm_method1(pixel_rate, cpp,
762 latency_ns / 100);
763 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
764 wm->guard_size;
765 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
766
767 wm_size = fifo_size - entries;
768 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
769
770 /* Don't promote wm_size to unsigned... */
771 if (wm_size > wm->max_wm)
772 wm_size = wm->max_wm;
773 if (wm_size <= 0)
774 wm_size = wm->default_wm;
775
776 /*
777 * Bspec seems to indicate that the value shouldn't be lower than
778 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
779 * Lets go for 8 which is the burst size since certain platforms
780 * already use a hardcoded 8 (which is what the spec says should be
781 * done).
782 */
783 if (wm_size <= 8)
784 wm_size = 8;
785
786 return wm_size;
787 }
788
789 static bool is_disabling(int old, int new, int threshold)
790 {
791 return old >= threshold && new < threshold;
792 }
793
794 static bool is_enabling(int old, int new, int threshold)
795 {
796 return old < threshold && new >= threshold;
797 }
798
799 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
800 {
801 return dev_priv->wm.max_level + 1;
802 }
803
804 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
805 const struct intel_plane_state *plane_state)
806 {
807 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
808
809 /* FIXME check the 'enable' instead */
810 if (!crtc_state->base.active)
811 return false;
812
813 /*
814 * Treat cursor with fb as always visible since cursor updates
815 * can happen faster than the vrefresh rate, and the current
816 * watermark code doesn't handle that correctly. Cursor updates
817 * which set/clear the fb or change the cursor size are going
818 * to get throttled by intel_legacy_cursor_update() to work
819 * around this problem with the watermark code.
820 */
821 if (plane->id == PLANE_CURSOR)
822 return plane_state->base.fb != NULL;
823 else
824 return plane_state->base.visible;
825 }
826
827 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
828 {
829 struct intel_crtc *crtc, *enabled = NULL;
830
831 for_each_intel_crtc(&dev_priv->drm, crtc) {
832 if (intel_crtc_active(crtc)) {
833 if (enabled)
834 return NULL;
835 enabled = crtc;
836 }
837 }
838
839 return enabled;
840 }
841
842 static void pineview_update_wm(struct intel_crtc *unused_crtc)
843 {
844 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845 struct intel_crtc *crtc;
846 const struct cxsr_latency *latency;
847 u32 reg;
848 unsigned int wm;
849
850 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
851 dev_priv->is_ddr3,
852 dev_priv->fsb_freq,
853 dev_priv->mem_freq);
854 if (!latency) {
855 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856 intel_set_memory_cxsr(dev_priv, false);
857 return;
858 }
859
860 crtc = single_enabled_crtc(dev_priv);
861 if (crtc) {
862 const struct drm_display_mode *adjusted_mode =
863 &crtc->config->base.adjusted_mode;
864 const struct drm_framebuffer *fb =
865 crtc->base.primary->state->fb;
866 int cpp = fb->format->cpp[0];
867 int clock = adjusted_mode->crtc_clock;
868
869 /* Display SR */
870 wm = intel_calculate_wm(clock, &pineview_display_wm,
871 pineview_display_wm.fifo_size,
872 cpp, latency->display_sr);
873 reg = I915_READ(DSPFW1);
874 reg &= ~DSPFW_SR_MASK;
875 reg |= FW_WM(wm, SR);
876 I915_WRITE(DSPFW1, reg);
877 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
878
879 /* cursor SR */
880 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
881 pineview_display_wm.fifo_size,
882 4, latency->cursor_sr);
883 reg = I915_READ(DSPFW3);
884 reg &= ~DSPFW_CURSOR_SR_MASK;
885 reg |= FW_WM(wm, CURSOR_SR);
886 I915_WRITE(DSPFW3, reg);
887
888 /* Display HPLL off SR */
889 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
890 pineview_display_hplloff_wm.fifo_size,
891 cpp, latency->display_hpll_disable);
892 reg = I915_READ(DSPFW3);
893 reg &= ~DSPFW_HPLL_SR_MASK;
894 reg |= FW_WM(wm, HPLL_SR);
895 I915_WRITE(DSPFW3, reg);
896
897 /* cursor HPLL off SR */
898 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
899 pineview_display_hplloff_wm.fifo_size,
900 4, latency->cursor_hpll_disable);
901 reg = I915_READ(DSPFW3);
902 reg &= ~DSPFW_HPLL_CURSOR_MASK;
903 reg |= FW_WM(wm, HPLL_CURSOR);
904 I915_WRITE(DSPFW3, reg);
905 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
906
907 intel_set_memory_cxsr(dev_priv, true);
908 } else {
909 intel_set_memory_cxsr(dev_priv, false);
910 }
911 }
912
913 /*
914 * Documentation says:
915 * "If the line size is small, the TLB fetches can get in the way of the
916 * data fetches, causing some lag in the pixel data return which is not
917 * accounted for in the above formulas. The following adjustment only
918 * needs to be applied if eight whole lines fit in the buffer at once.
919 * The WM is adjusted upwards by the difference between the FIFO size
920 * and the size of 8 whole lines. This adjustment is always performed
921 * in the actual pixel depth regardless of whether FBC is enabled or not."
922 */
923 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
924 {
925 int tlb_miss = fifo_size * 64 - width * cpp * 8;
926
927 return max(0, tlb_miss);
928 }
929
930 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
931 const struct g4x_wm_values *wm)
932 {
933 enum pipe pipe;
934
935 for_each_pipe(dev_priv, pipe)
936 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
937
938 I915_WRITE(DSPFW1,
939 FW_WM(wm->sr.plane, SR) |
940 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
941 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
942 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
943 I915_WRITE(DSPFW2,
944 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
945 FW_WM(wm->sr.fbc, FBC_SR) |
946 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
947 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
948 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
949 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
950 I915_WRITE(DSPFW3,
951 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
952 FW_WM(wm->sr.cursor, CURSOR_SR) |
953 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
954 FW_WM(wm->hpll.plane, HPLL_SR));
955
956 POSTING_READ(DSPFW1);
957 }
958
959 #define FW_WM_VLV(value, plane) \
960 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
961
962 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963 const struct vlv_wm_values *wm)
964 {
965 enum pipe pipe;
966
967 for_each_pipe(dev_priv, pipe) {
968 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
969
970 I915_WRITE(VLV_DDL(pipe),
971 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
972 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
973 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
974 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
975 }
976
977 /*
978 * Zero the (unused) WM1 watermarks, and also clear all the
979 * high order bits so that there are no out of bounds values
980 * present in the registers during the reprogramming.
981 */
982 I915_WRITE(DSPHOWM, 0);
983 I915_WRITE(DSPHOWM1, 0);
984 I915_WRITE(DSPFW4, 0);
985 I915_WRITE(DSPFW5, 0);
986 I915_WRITE(DSPFW6, 0);
987
988 I915_WRITE(DSPFW1,
989 FW_WM(wm->sr.plane, SR) |
990 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
991 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
992 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
993 I915_WRITE(DSPFW2,
994 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
995 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
996 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
997 I915_WRITE(DSPFW3,
998 FW_WM(wm->sr.cursor, CURSOR_SR));
999
1000 if (IS_CHERRYVIEW(dev_priv)) {
1001 I915_WRITE(DSPFW7_CHV,
1002 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1003 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004 I915_WRITE(DSPFW8_CHV,
1005 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1006 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007 I915_WRITE(DSPFW9_CHV,
1008 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1009 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1010 I915_WRITE(DSPHOWM,
1011 FW_WM(wm->sr.plane >> 9, SR_HI) |
1012 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1013 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1014 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1015 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1016 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1017 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1018 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1019 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1020 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1021 } else {
1022 I915_WRITE(DSPFW7,
1023 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1024 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1025 I915_WRITE(DSPHOWM,
1026 FW_WM(wm->sr.plane >> 9, SR_HI) |
1027 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1028 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1029 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1030 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1031 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1032 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1033 }
1034
1035 POSTING_READ(DSPFW1);
1036 }
1037
1038 #undef FW_WM_VLV
1039
1040 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1041 {
1042 /* all latencies in usec */
1043 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1044 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1046
1047 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1048 }
1049
1050 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1051 {
1052 /*
1053 * DSPCNTR[13] supposedly controls whether the
1054 * primary plane can use the FIFO space otherwise
1055 * reserved for the sprite plane. It's not 100% clear
1056 * what the actual FIFO size is, but it looks like we
1057 * can happily set both primary and sprite watermarks
1058 * up to 127 cachelines. So that would seem to mean
1059 * that either DSPCNTR[13] doesn't do anything, or that
1060 * the total FIFO is >= 256 cachelines in size. Either
1061 * way, we don't seem to have to worry about this
1062 * repartitioning as the maximum watermark value the
1063 * register can hold for each plane is lower than the
1064 * minimum FIFO size.
1065 */
1066 switch (plane_id) {
1067 case PLANE_CURSOR:
1068 return 63;
1069 case PLANE_PRIMARY:
1070 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1071 case PLANE_SPRITE0:
1072 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1073 default:
1074 MISSING_CASE(plane_id);
1075 return 0;
1076 }
1077 }
1078
1079 static int g4x_fbc_fifo_size(int level)
1080 {
1081 switch (level) {
1082 case G4X_WM_LEVEL_SR:
1083 return 7;
1084 case G4X_WM_LEVEL_HPLL:
1085 return 15;
1086 default:
1087 MISSING_CASE(level);
1088 return 0;
1089 }
1090 }
1091
1092 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1093 const struct intel_plane_state *plane_state,
1094 int level)
1095 {
1096 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1097 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1098 const struct drm_display_mode *adjusted_mode =
1099 &crtc_state->base.adjusted_mode;
1100 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1101 unsigned int clock, htotal, cpp, width, wm;
1102
1103 if (latency == 0)
1104 return USHRT_MAX;
1105
1106 if (!intel_wm_plane_visible(crtc_state, plane_state))
1107 return 0;
1108
1109 /*
1110 * Not 100% sure which way ELK should go here as the
1111 * spec only says CL/CTG should assume 32bpp and BW
1112 * doesn't need to. But as these things followed the
1113 * mobile vs. desktop lines on gen3 as well, let's
1114 * assume ELK doesn't need this.
1115 *
1116 * The spec also fails to list such a restriction for
1117 * the HPLL watermark, which seems a little strange.
1118 * Let's use 32bpp for the HPLL watermark as well.
1119 */
1120 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1121 level != G4X_WM_LEVEL_NORMAL)
1122 cpp = 4;
1123 else
1124 cpp = plane_state->base.fb->format->cpp[0];
1125
1126 clock = adjusted_mode->crtc_clock;
1127 htotal = adjusted_mode->crtc_htotal;
1128
1129 if (plane->id == PLANE_CURSOR)
1130 width = plane_state->base.crtc_w;
1131 else
1132 width = drm_rect_width(&plane_state->base.dst);
1133
1134 if (plane->id == PLANE_CURSOR) {
1135 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1136 } else if (plane->id == PLANE_PRIMARY &&
1137 level == G4X_WM_LEVEL_NORMAL) {
1138 wm = intel_wm_method1(clock, cpp, latency);
1139 } else {
1140 unsigned int small, large;
1141
1142 small = intel_wm_method1(clock, cpp, latency);
1143 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1144
1145 wm = min(small, large);
1146 }
1147
1148 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1149 width, cpp);
1150
1151 wm = DIV_ROUND_UP(wm, 64) + 2;
1152
1153 return min_t(unsigned int, wm, USHRT_MAX);
1154 }
1155
1156 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1157 int level, enum plane_id plane_id, u16 value)
1158 {
1159 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1160 bool dirty = false;
1161
1162 for (; level < intel_wm_num_levels(dev_priv); level++) {
1163 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1164
1165 dirty |= raw->plane[plane_id] != value;
1166 raw->plane[plane_id] = value;
1167 }
1168
1169 return dirty;
1170 }
1171
1172 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1173 int level, u16 value)
1174 {
1175 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1176 bool dirty = false;
1177
1178 /* NORMAL level doesn't have an FBC watermark */
1179 level = max(level, G4X_WM_LEVEL_SR);
1180
1181 for (; level < intel_wm_num_levels(dev_priv); level++) {
1182 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1183
1184 dirty |= raw->fbc != value;
1185 raw->fbc = value;
1186 }
1187
1188 return dirty;
1189 }
1190
1191 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1192 const struct intel_plane_state *pstate,
1193 u32 pri_val);
1194
1195 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1196 const struct intel_plane_state *plane_state)
1197 {
1198 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1199 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1200 enum plane_id plane_id = plane->id;
1201 bool dirty = false;
1202 int level;
1203
1204 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1205 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1206 if (plane_id == PLANE_PRIMARY)
1207 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1208 goto out;
1209 }
1210
1211 for (level = 0; level < num_levels; level++) {
1212 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1213 int wm, max_wm;
1214
1215 wm = g4x_compute_wm(crtc_state, plane_state, level);
1216 max_wm = g4x_plane_fifo_size(plane_id, level);
1217
1218 if (wm > max_wm)
1219 break;
1220
1221 dirty |= raw->plane[plane_id] != wm;
1222 raw->plane[plane_id] = wm;
1223
1224 if (plane_id != PLANE_PRIMARY ||
1225 level == G4X_WM_LEVEL_NORMAL)
1226 continue;
1227
1228 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1229 raw->plane[plane_id]);
1230 max_wm = g4x_fbc_fifo_size(level);
1231
1232 /*
1233 * FBC wm is not mandatory as we
1234 * can always just disable its use.
1235 */
1236 if (wm > max_wm)
1237 wm = USHRT_MAX;
1238
1239 dirty |= raw->fbc != wm;
1240 raw->fbc = wm;
1241 }
1242
1243 /* mark watermarks as invalid */
1244 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1245
1246 if (plane_id == PLANE_PRIMARY)
1247 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1248
1249 out:
1250 if (dirty) {
1251 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1252 plane->base.name,
1253 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1254 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1255 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1256
1257 if (plane_id == PLANE_PRIMARY)
1258 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1259 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1260 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1261 }
1262
1263 return dirty;
1264 }
1265
1266 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1267 enum plane_id plane_id, int level)
1268 {
1269 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1270
1271 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1272 }
1273
1274 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1275 int level)
1276 {
1277 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1278
1279 if (level > dev_priv->wm.max_level)
1280 return false;
1281
1282 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1283 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1284 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1285 }
1286
1287 /* mark all levels starting from 'level' as invalid */
1288 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1289 struct g4x_wm_state *wm_state, int level)
1290 {
1291 if (level <= G4X_WM_LEVEL_NORMAL) {
1292 enum plane_id plane_id;
1293
1294 for_each_plane_id_on_crtc(crtc, plane_id)
1295 wm_state->wm.plane[plane_id] = USHRT_MAX;
1296 }
1297
1298 if (level <= G4X_WM_LEVEL_SR) {
1299 wm_state->cxsr = false;
1300 wm_state->sr.cursor = USHRT_MAX;
1301 wm_state->sr.plane = USHRT_MAX;
1302 wm_state->sr.fbc = USHRT_MAX;
1303 }
1304
1305 if (level <= G4X_WM_LEVEL_HPLL) {
1306 wm_state->hpll_en = false;
1307 wm_state->hpll.cursor = USHRT_MAX;
1308 wm_state->hpll.plane = USHRT_MAX;
1309 wm_state->hpll.fbc = USHRT_MAX;
1310 }
1311 }
1312
1313 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1314 {
1315 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1316 struct intel_atomic_state *state =
1317 to_intel_atomic_state(crtc_state->base.state);
1318 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1319 int num_active_planes = hweight32(crtc_state->active_planes &
1320 ~BIT(PLANE_CURSOR));
1321 const struct g4x_pipe_wm *raw;
1322 const struct intel_plane_state *old_plane_state;
1323 const struct intel_plane_state *new_plane_state;
1324 struct intel_plane *plane;
1325 enum plane_id plane_id;
1326 int i, level;
1327 unsigned int dirty = 0;
1328
1329 for_each_oldnew_intel_plane_in_state(state, plane,
1330 old_plane_state,
1331 new_plane_state, i) {
1332 if (new_plane_state->base.crtc != &crtc->base &&
1333 old_plane_state->base.crtc != &crtc->base)
1334 continue;
1335
1336 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337 dirty |= BIT(plane->id);
1338 }
1339
1340 if (!dirty)
1341 return 0;
1342
1343 level = G4X_WM_LEVEL_NORMAL;
1344 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1345 goto out;
1346
1347 raw = &crtc_state->wm.g4x.raw[level];
1348 for_each_plane_id_on_crtc(crtc, plane_id)
1349 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1350
1351 level = G4X_WM_LEVEL_SR;
1352
1353 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1354 goto out;
1355
1356 raw = &crtc_state->wm.g4x.raw[level];
1357 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1358 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1359 wm_state->sr.fbc = raw->fbc;
1360
1361 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1362
1363 level = G4X_WM_LEVEL_HPLL;
1364
1365 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1366 goto out;
1367
1368 raw = &crtc_state->wm.g4x.raw[level];
1369 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1370 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1371 wm_state->hpll.fbc = raw->fbc;
1372
1373 wm_state->hpll_en = wm_state->cxsr;
1374
1375 level++;
1376
1377 out:
1378 if (level == G4X_WM_LEVEL_NORMAL)
1379 return -EINVAL;
1380
1381 /* invalidate the higher levels */
1382 g4x_invalidate_wms(crtc, wm_state, level);
1383
1384 /*
1385 * Determine if the FBC watermark(s) can be used. IF
1386 * this isn't the case we prefer to disable the FBC
1387 ( watermark(s) rather than disable the SR/HPLL
1388 * level(s) entirely.
1389 */
1390 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1391
1392 if (level >= G4X_WM_LEVEL_SR &&
1393 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1394 wm_state->fbc_en = false;
1395 else if (level >= G4X_WM_LEVEL_HPLL &&
1396 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1397 wm_state->fbc_en = false;
1398
1399 return 0;
1400 }
1401
1402 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1403 {
1404 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1405 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1406 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1407 struct intel_atomic_state *intel_state =
1408 to_intel_atomic_state(new_crtc_state->base.state);
1409 const struct intel_crtc_state *old_crtc_state =
1410 intel_atomic_get_old_crtc_state(intel_state, crtc);
1411 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 enum plane_id plane_id;
1413
1414 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1415 *intermediate = *optimal;
1416
1417 intermediate->cxsr = false;
1418 intermediate->hpll_en = false;
1419 goto out;
1420 }
1421
1422 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423 !new_crtc_state->disable_cxsr;
1424 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425 !new_crtc_state->disable_cxsr;
1426 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1427
1428 for_each_plane_id_on_crtc(crtc, plane_id) {
1429 intermediate->wm.plane[plane_id] =
1430 max(optimal->wm.plane[plane_id],
1431 active->wm.plane[plane_id]);
1432
1433 WARN_ON(intermediate->wm.plane[plane_id] >
1434 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1435 }
1436
1437 intermediate->sr.plane = max(optimal->sr.plane,
1438 active->sr.plane);
1439 intermediate->sr.cursor = max(optimal->sr.cursor,
1440 active->sr.cursor);
1441 intermediate->sr.fbc = max(optimal->sr.fbc,
1442 active->sr.fbc);
1443
1444 intermediate->hpll.plane = max(optimal->hpll.plane,
1445 active->hpll.plane);
1446 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1447 active->hpll.cursor);
1448 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1449 active->hpll.fbc);
1450
1451 WARN_ON((intermediate->sr.plane >
1452 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1453 intermediate->sr.cursor >
1454 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1455 intermediate->cxsr);
1456 WARN_ON((intermediate->sr.plane >
1457 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1458 intermediate->sr.cursor >
1459 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1460 intermediate->hpll_en);
1461
1462 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1463 intermediate->fbc_en && intermediate->cxsr);
1464 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1465 intermediate->fbc_en && intermediate->hpll_en);
1466
1467 out:
1468 /*
1469 * If our intermediate WM are identical to the final WM, then we can
1470 * omit the post-vblank programming; only update if it's different.
1471 */
1472 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473 new_crtc_state->wm.need_postvbl_update = true;
1474
1475 return 0;
1476 }
1477
1478 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1479 struct g4x_wm_values *wm)
1480 {
1481 struct intel_crtc *crtc;
1482 int num_active_crtcs = 0;
1483
1484 wm->cxsr = true;
1485 wm->hpll_en = true;
1486 wm->fbc_en = true;
1487
1488 for_each_intel_crtc(&dev_priv->drm, crtc) {
1489 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1490
1491 if (!crtc->active)
1492 continue;
1493
1494 if (!wm_state->cxsr)
1495 wm->cxsr = false;
1496 if (!wm_state->hpll_en)
1497 wm->hpll_en = false;
1498 if (!wm_state->fbc_en)
1499 wm->fbc_en = false;
1500
1501 num_active_crtcs++;
1502 }
1503
1504 if (num_active_crtcs != 1) {
1505 wm->cxsr = false;
1506 wm->hpll_en = false;
1507 wm->fbc_en = false;
1508 }
1509
1510 for_each_intel_crtc(&dev_priv->drm, crtc) {
1511 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1512 enum pipe pipe = crtc->pipe;
1513
1514 wm->pipe[pipe] = wm_state->wm;
1515 if (crtc->active && wm->cxsr)
1516 wm->sr = wm_state->sr;
1517 if (crtc->active && wm->hpll_en)
1518 wm->hpll = wm_state->hpll;
1519 }
1520 }
1521
1522 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1523 {
1524 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1525 struct g4x_wm_values new_wm = {};
1526
1527 g4x_merge_wm(dev_priv, &new_wm);
1528
1529 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1530 return;
1531
1532 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1533 _intel_set_memory_cxsr(dev_priv, false);
1534
1535 g4x_write_wm_values(dev_priv, &new_wm);
1536
1537 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1538 _intel_set_memory_cxsr(dev_priv, true);
1539
1540 *old_wm = new_wm;
1541 }
1542
1543 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1544 struct intel_crtc_state *crtc_state)
1545 {
1546 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1548
1549 mutex_lock(&dev_priv->wm.wm_mutex);
1550 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1551 g4x_program_watermarks(dev_priv);
1552 mutex_unlock(&dev_priv->wm.wm_mutex);
1553 }
1554
1555 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1556 struct intel_crtc_state *crtc_state)
1557 {
1558 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1560
1561 if (!crtc_state->wm.need_postvbl_update)
1562 return;
1563
1564 mutex_lock(&dev_priv->wm.wm_mutex);
1565 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1566 g4x_program_watermarks(dev_priv);
1567 mutex_unlock(&dev_priv->wm.wm_mutex);
1568 }
1569
1570 /* latency must be in 0.1us units. */
1571 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 unsigned int htotal,
1573 unsigned int width,
1574 unsigned int cpp,
1575 unsigned int latency)
1576 {
1577 unsigned int ret;
1578
1579 ret = intel_wm_method2(pixel_rate, htotal,
1580 width, cpp, latency);
1581 ret = DIV_ROUND_UP(ret, 64);
1582
1583 return ret;
1584 }
1585
1586 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 {
1588 /* all latencies in usec */
1589 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1590
1591 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1592
1593 if (IS_CHERRYVIEW(dev_priv)) {
1594 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1595 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596
1597 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598 }
1599 }
1600
1601 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1602 const struct intel_plane_state *plane_state,
1603 int level)
1604 {
1605 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 const struct drm_display_mode *adjusted_mode =
1608 &crtc_state->base.adjusted_mode;
1609 unsigned int clock, htotal, cpp, width, wm;
1610
1611 if (dev_priv->wm.pri_latency[level] == 0)
1612 return USHRT_MAX;
1613
1614 if (!intel_wm_plane_visible(crtc_state, plane_state))
1615 return 0;
1616
1617 cpp = plane_state->base.fb->format->cpp[0];
1618 clock = adjusted_mode->crtc_clock;
1619 htotal = adjusted_mode->crtc_htotal;
1620 width = crtc_state->pipe_src_w;
1621
1622 if (plane->id == PLANE_CURSOR) {
1623 /*
1624 * FIXME the formula gives values that are
1625 * too big for the cursor FIFO, and hence we
1626 * would never be able to use cursors. For
1627 * now just hardcode the watermark.
1628 */
1629 wm = 63;
1630 } else {
1631 wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 dev_priv->wm.pri_latency[level] * 10);
1633 }
1634
1635 return min_t(unsigned int, wm, USHRT_MAX);
1636 }
1637
1638 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1639 {
1640 return (active_planes & (BIT(PLANE_SPRITE0) |
1641 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1642 }
1643
1644 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645 {
1646 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647 const struct g4x_pipe_wm *raw =
1648 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1651 int num_active_planes = hweight32(active_planes);
1652 const int fifo_size = 511;
1653 int fifo_extra, fifo_left = fifo_size;
1654 int sprite0_fifo_extra = 0;
1655 unsigned int total_rate;
1656 enum plane_id plane_id;
1657
1658 /*
1659 * When enabling sprite0 after sprite1 has already been enabled
1660 * we tend to get an underrun unless sprite0 already has some
1661 * FIFO space allcoated. Hence we always allocate at least one
1662 * cacheline for sprite0 whenever sprite1 is enabled.
1663 *
1664 * All other plane enable sequences appear immune to this problem.
1665 */
1666 if (vlv_need_sprite0_fifo_workaround(active_planes))
1667 sprite0_fifo_extra = 1;
1668
1669 total_rate = raw->plane[PLANE_PRIMARY] +
1670 raw->plane[PLANE_SPRITE0] +
1671 raw->plane[PLANE_SPRITE1] +
1672 sprite0_fifo_extra;
1673
1674 if (total_rate > fifo_size)
1675 return -EINVAL;
1676
1677 if (total_rate == 0)
1678 total_rate = 1;
1679
1680 for_each_plane_id_on_crtc(crtc, plane_id) {
1681 unsigned int rate;
1682
1683 if ((active_planes & BIT(plane_id)) == 0) {
1684 fifo_state->plane[plane_id] = 0;
1685 continue;
1686 }
1687
1688 rate = raw->plane[plane_id];
1689 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1690 fifo_left -= fifo_state->plane[plane_id];
1691 }
1692
1693 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1694 fifo_left -= sprite0_fifo_extra;
1695
1696 fifo_state->plane[PLANE_CURSOR] = 63;
1697
1698 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699
1700 /* spread the remainder evenly */
1701 for_each_plane_id_on_crtc(crtc, plane_id) {
1702 int plane_extra;
1703
1704 if (fifo_left == 0)
1705 break;
1706
1707 if ((active_planes & BIT(plane_id)) == 0)
1708 continue;
1709
1710 plane_extra = min(fifo_extra, fifo_left);
1711 fifo_state->plane[plane_id] += plane_extra;
1712 fifo_left -= plane_extra;
1713 }
1714
1715 WARN_ON(active_planes != 0 && fifo_left != 0);
1716
1717 /* give it all to the first plane if none are active */
1718 if (active_planes == 0) {
1719 WARN_ON(fifo_left != fifo_size);
1720 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1721 }
1722
1723 return 0;
1724 }
1725
1726 /* mark all levels starting from 'level' as invalid */
1727 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1728 struct vlv_wm_state *wm_state, int level)
1729 {
1730 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1731
1732 for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 enum plane_id plane_id;
1734
1735 for_each_plane_id_on_crtc(crtc, plane_id)
1736 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1737
1738 wm_state->sr[level].cursor = USHRT_MAX;
1739 wm_state->sr[level].plane = USHRT_MAX;
1740 }
1741 }
1742
1743 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1744 {
1745 if (wm > fifo_size)
1746 return USHRT_MAX;
1747 else
1748 return fifo_size - wm;
1749 }
1750
1751 /*
1752 * Starting from 'level' set all higher
1753 * levels to 'value' in the "raw" watermarks.
1754 */
1755 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756 int level, enum plane_id plane_id, u16 value)
1757 {
1758 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759 int num_levels = intel_wm_num_levels(dev_priv);
1760 bool dirty = false;
1761
1762 for (; level < num_levels; level++) {
1763 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764
1765 dirty |= raw->plane[plane_id] != value;
1766 raw->plane[plane_id] = value;
1767 }
1768
1769 return dirty;
1770 }
1771
1772 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1773 const struct intel_plane_state *plane_state)
1774 {
1775 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1776 enum plane_id plane_id = plane->id;
1777 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778 int level;
1779 bool dirty = false;
1780
1781 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1783 goto out;
1784 }
1785
1786 for (level = 0; level < num_levels; level++) {
1787 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1789 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790
1791 if (wm > max_wm)
1792 break;
1793
1794 dirty |= raw->plane[plane_id] != wm;
1795 raw->plane[plane_id] = wm;
1796 }
1797
1798 /* mark all higher levels as invalid */
1799 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800
1801 out:
1802 if (dirty)
1803 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804 plane->base.name,
1805 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1806 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1807 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1808
1809 return dirty;
1810 }
1811
1812 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1813 enum plane_id plane_id, int level)
1814 {
1815 const struct g4x_pipe_wm *raw =
1816 &crtc_state->wm.vlv.raw[level];
1817 const struct vlv_fifo_state *fifo_state =
1818 &crtc_state->wm.vlv.fifo_state;
1819
1820 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1821 }
1822
1823 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824 {
1825 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1826 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1827 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1828 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 }
1830
1831 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1832 {
1833 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1834 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1835 struct intel_atomic_state *state =
1836 to_intel_atomic_state(crtc_state->base.state);
1837 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1838 const struct vlv_fifo_state *fifo_state =
1839 &crtc_state->wm.vlv.fifo_state;
1840 int num_active_planes = hweight32(crtc_state->active_planes &
1841 ~BIT(PLANE_CURSOR));
1842 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 const struct intel_plane_state *old_plane_state;
1844 const struct intel_plane_state *new_plane_state;
1845 struct intel_plane *plane;
1846 enum plane_id plane_id;
1847 int level, ret, i;
1848 unsigned int dirty = 0;
1849
1850 for_each_oldnew_intel_plane_in_state(state, plane,
1851 old_plane_state,
1852 new_plane_state, i) {
1853 if (new_plane_state->base.crtc != &crtc->base &&
1854 old_plane_state->base.crtc != &crtc->base)
1855 continue;
1856
1857 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 dirty |= BIT(plane->id);
1859 }
1860
1861 /*
1862 * DSPARB registers may have been reset due to the
1863 * power well being turned off. Make sure we restore
1864 * them to a consistent state even if no primary/sprite
1865 * planes are initially active.
1866 */
1867 if (needs_modeset)
1868 crtc_state->fifo_changed = true;
1869
1870 if (!dirty)
1871 return 0;
1872
1873 /* cursor changes don't warrant a FIFO recompute */
1874 if (dirty & ~BIT(PLANE_CURSOR)) {
1875 const struct intel_crtc_state *old_crtc_state =
1876 intel_atomic_get_old_crtc_state(state, crtc);
1877 const struct vlv_fifo_state *old_fifo_state =
1878 &old_crtc_state->wm.vlv.fifo_state;
1879
1880 ret = vlv_compute_fifo(crtc_state);
1881 if (ret)
1882 return ret;
1883
1884 if (needs_modeset ||
1885 memcmp(old_fifo_state, fifo_state,
1886 sizeof(*fifo_state)) != 0)
1887 crtc_state->fifo_changed = true;
1888 }
1889
1890 /* initially allow all levels */
1891 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892 /*
1893 * Note that enabling cxsr with no primary/sprite planes
1894 * enabled can wedge the pipe. Hence we only allow cxsr
1895 * with exactly one enabled primary/sprite plane.
1896 */
1897 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898
1899 for (level = 0; level < wm_state->num_levels; level++) {
1900 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902
1903 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904 break;
1905
1906 for_each_plane_id_on_crtc(crtc, plane_id) {
1907 wm_state->wm[level].plane[plane_id] =
1908 vlv_invert_wm_value(raw->plane[plane_id],
1909 fifo_state->plane[plane_id]);
1910 }
1911
1912 wm_state->sr[level].plane =
1913 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914 raw->plane[PLANE_SPRITE0],
1915 raw->plane[PLANE_SPRITE1]),
1916 sr_fifo_size);
1917
1918 wm_state->sr[level].cursor =
1919 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1920 63);
1921 }
1922
1923 if (level == 0)
1924 return -EINVAL;
1925
1926 /* limit to only levels we can actually handle */
1927 wm_state->num_levels = level;
1928
1929 /* invalidate the higher levels */
1930 vlv_invalidate_wms(crtc, wm_state, level);
1931
1932 return 0;
1933 }
1934
1935 #define VLV_FIFO(plane, value) \
1936 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1937
1938 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1939 struct intel_crtc_state *crtc_state)
1940 {
1941 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 const struct vlv_fifo_state *fifo_state =
1944 &crtc_state->wm.vlv.fifo_state;
1945 int sprite0_start, sprite1_start, fifo_size;
1946
1947 if (!crtc_state->fifo_changed)
1948 return;
1949
1950 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1951 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1952 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953
1954 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1955 WARN_ON(fifo_size != 511);
1956
1957 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1958
1959 /*
1960 * uncore.lock serves a double purpose here. It allows us to
1961 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1962 * it protects the DSPARB registers from getting clobbered by
1963 * parallel updates from multiple pipes.
1964 *
1965 * intel_pipe_update_start() has already disabled interrupts
1966 * for us, so a plain spin_lock() is sufficient here.
1967 */
1968 spin_lock(&dev_priv->uncore.lock);
1969
1970 switch (crtc->pipe) {
1971 u32 dsparb, dsparb2, dsparb3;
1972 case PIPE_A:
1973 dsparb = I915_READ_FW(DSPARB);
1974 dsparb2 = I915_READ_FW(DSPARB2);
1975
1976 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1977 VLV_FIFO(SPRITEB, 0xff));
1978 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1979 VLV_FIFO(SPRITEB, sprite1_start));
1980
1981 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1982 VLV_FIFO(SPRITEB_HI, 0x1));
1983 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1984 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1985
1986 I915_WRITE_FW(DSPARB, dsparb);
1987 I915_WRITE_FW(DSPARB2, dsparb2);
1988 break;
1989 case PIPE_B:
1990 dsparb = I915_READ_FW(DSPARB);
1991 dsparb2 = I915_READ_FW(DSPARB2);
1992
1993 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1994 VLV_FIFO(SPRITED, 0xff));
1995 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1996 VLV_FIFO(SPRITED, sprite1_start));
1997
1998 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1999 VLV_FIFO(SPRITED_HI, 0xff));
2000 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2001 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2002
2003 I915_WRITE_FW(DSPARB, dsparb);
2004 I915_WRITE_FW(DSPARB2, dsparb2);
2005 break;
2006 case PIPE_C:
2007 dsparb3 = I915_READ_FW(DSPARB3);
2008 dsparb2 = I915_READ_FW(DSPARB2);
2009
2010 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2011 VLV_FIFO(SPRITEF, 0xff));
2012 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2013 VLV_FIFO(SPRITEF, sprite1_start));
2014
2015 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2016 VLV_FIFO(SPRITEF_HI, 0xff));
2017 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2018 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2019
2020 I915_WRITE_FW(DSPARB3, dsparb3);
2021 I915_WRITE_FW(DSPARB2, dsparb2);
2022 break;
2023 default:
2024 break;
2025 }
2026
2027 POSTING_READ_FW(DSPARB);
2028
2029 spin_unlock(&dev_priv->uncore.lock);
2030 }
2031
2032 #undef VLV_FIFO
2033
2034 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2035 {
2036 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2037 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2038 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2039 struct intel_atomic_state *intel_state =
2040 to_intel_atomic_state(new_crtc_state->base.state);
2041 const struct intel_crtc_state *old_crtc_state =
2042 intel_atomic_get_old_crtc_state(intel_state, crtc);
2043 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2044 int level;
2045
2046 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2047 *intermediate = *optimal;
2048
2049 intermediate->cxsr = false;
2050 goto out;
2051 }
2052
2053 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2054 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2055 !new_crtc_state->disable_cxsr;
2056
2057 for (level = 0; level < intermediate->num_levels; level++) {
2058 enum plane_id plane_id;
2059
2060 for_each_plane_id_on_crtc(crtc, plane_id) {
2061 intermediate->wm[level].plane[plane_id] =
2062 min(optimal->wm[level].plane[plane_id],
2063 active->wm[level].plane[plane_id]);
2064 }
2065
2066 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2067 active->sr[level].plane);
2068 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2069 active->sr[level].cursor);
2070 }
2071
2072 vlv_invalidate_wms(crtc, intermediate, level);
2073
2074 out:
2075 /*
2076 * If our intermediate WM are identical to the final WM, then we can
2077 * omit the post-vblank programming; only update if it's different.
2078 */
2079 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2080 new_crtc_state->wm.need_postvbl_update = true;
2081
2082 return 0;
2083 }
2084
2085 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2086 struct vlv_wm_values *wm)
2087 {
2088 struct intel_crtc *crtc;
2089 int num_active_crtcs = 0;
2090
2091 wm->level = dev_priv->wm.max_level;
2092 wm->cxsr = true;
2093
2094 for_each_intel_crtc(&dev_priv->drm, crtc) {
2095 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2096
2097 if (!crtc->active)
2098 continue;
2099
2100 if (!wm_state->cxsr)
2101 wm->cxsr = false;
2102
2103 num_active_crtcs++;
2104 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2105 }
2106
2107 if (num_active_crtcs != 1)
2108 wm->cxsr = false;
2109
2110 if (num_active_crtcs > 1)
2111 wm->level = VLV_WM_LEVEL_PM2;
2112
2113 for_each_intel_crtc(&dev_priv->drm, crtc) {
2114 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2115 enum pipe pipe = crtc->pipe;
2116
2117 wm->pipe[pipe] = wm_state->wm[wm->level];
2118 if (crtc->active && wm->cxsr)
2119 wm->sr = wm_state->sr[wm->level];
2120
2121 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2122 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2123 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2124 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2125 }
2126 }
2127
2128 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2129 {
2130 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2131 struct vlv_wm_values new_wm = {};
2132
2133 vlv_merge_wm(dev_priv, &new_wm);
2134
2135 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2136 return;
2137
2138 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2139 chv_set_memory_dvfs(dev_priv, false);
2140
2141 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2142 chv_set_memory_pm5(dev_priv, false);
2143
2144 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2145 _intel_set_memory_cxsr(dev_priv, false);
2146
2147 vlv_write_wm_values(dev_priv, &new_wm);
2148
2149 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2150 _intel_set_memory_cxsr(dev_priv, true);
2151
2152 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2153 chv_set_memory_pm5(dev_priv, true);
2154
2155 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2156 chv_set_memory_dvfs(dev_priv, true);
2157
2158 *old_wm = new_wm;
2159 }
2160
2161 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2162 struct intel_crtc_state *crtc_state)
2163 {
2164 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2165 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2166
2167 mutex_lock(&dev_priv->wm.wm_mutex);
2168 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2169 vlv_program_watermarks(dev_priv);
2170 mutex_unlock(&dev_priv->wm.wm_mutex);
2171 }
2172
2173 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2174 struct intel_crtc_state *crtc_state)
2175 {
2176 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2178
2179 if (!crtc_state->wm.need_postvbl_update)
2180 return;
2181
2182 mutex_lock(&dev_priv->wm.wm_mutex);
2183 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2184 vlv_program_watermarks(dev_priv);
2185 mutex_unlock(&dev_priv->wm.wm_mutex);
2186 }
2187
2188 static void i965_update_wm(struct intel_crtc *unused_crtc)
2189 {
2190 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2191 struct intel_crtc *crtc;
2192 int srwm = 1;
2193 int cursor_sr = 16;
2194 bool cxsr_enabled;
2195
2196 /* Calc sr entries for one plane configs */
2197 crtc = single_enabled_crtc(dev_priv);
2198 if (crtc) {
2199 /* self-refresh has much higher latency */
2200 static const int sr_latency_ns = 12000;
2201 const struct drm_display_mode *adjusted_mode =
2202 &crtc->config->base.adjusted_mode;
2203 const struct drm_framebuffer *fb =
2204 crtc->base.primary->state->fb;
2205 int clock = adjusted_mode->crtc_clock;
2206 int htotal = adjusted_mode->crtc_htotal;
2207 int hdisplay = crtc->config->pipe_src_w;
2208 int cpp = fb->format->cpp[0];
2209 int entries;
2210
2211 entries = intel_wm_method2(clock, htotal,
2212 hdisplay, cpp, sr_latency_ns / 100);
2213 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2214 srwm = I965_FIFO_SIZE - entries;
2215 if (srwm < 0)
2216 srwm = 1;
2217 srwm &= 0x1ff;
2218 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2219 entries, srwm);
2220
2221 entries = intel_wm_method2(clock, htotal,
2222 crtc->base.cursor->state->crtc_w, 4,
2223 sr_latency_ns / 100);
2224 entries = DIV_ROUND_UP(entries,
2225 i965_cursor_wm_info.cacheline_size) +
2226 i965_cursor_wm_info.guard_size;
2227
2228 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2229 if (cursor_sr > i965_cursor_wm_info.max_wm)
2230 cursor_sr = i965_cursor_wm_info.max_wm;
2231
2232 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2233 "cursor %d\n", srwm, cursor_sr);
2234
2235 cxsr_enabled = true;
2236 } else {
2237 cxsr_enabled = false;
2238 /* Turn off self refresh if both pipes are enabled */
2239 intel_set_memory_cxsr(dev_priv, false);
2240 }
2241
2242 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2243 srwm);
2244
2245 /* 965 has limitations... */
2246 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2247 FW_WM(8, CURSORB) |
2248 FW_WM(8, PLANEB) |
2249 FW_WM(8, PLANEA));
2250 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2251 FW_WM(8, PLANEC_OLD));
2252 /* update cursor SR watermark */
2253 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2254
2255 if (cxsr_enabled)
2256 intel_set_memory_cxsr(dev_priv, true);
2257 }
2258
2259 #undef FW_WM
2260
2261 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2262 {
2263 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2264 const struct intel_watermark_params *wm_info;
2265 u32 fwater_lo;
2266 u32 fwater_hi;
2267 int cwm, srwm = 1;
2268 int fifo_size;
2269 int planea_wm, planeb_wm;
2270 struct intel_crtc *crtc, *enabled = NULL;
2271
2272 if (IS_I945GM(dev_priv))
2273 wm_info = &i945_wm_info;
2274 else if (!IS_GEN(dev_priv, 2))
2275 wm_info = &i915_wm_info;
2276 else
2277 wm_info = &i830_a_wm_info;
2278
2279 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2280 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2281 if (intel_crtc_active(crtc)) {
2282 const struct drm_display_mode *adjusted_mode =
2283 &crtc->config->base.adjusted_mode;
2284 const struct drm_framebuffer *fb =
2285 crtc->base.primary->state->fb;
2286 int cpp;
2287
2288 if (IS_GEN(dev_priv, 2))
2289 cpp = 4;
2290 else
2291 cpp = fb->format->cpp[0];
2292
2293 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2294 wm_info, fifo_size, cpp,
2295 pessimal_latency_ns);
2296 enabled = crtc;
2297 } else {
2298 planea_wm = fifo_size - wm_info->guard_size;
2299 if (planea_wm > (long)wm_info->max_wm)
2300 planea_wm = wm_info->max_wm;
2301 }
2302
2303 if (IS_GEN(dev_priv, 2))
2304 wm_info = &i830_bc_wm_info;
2305
2306 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2307 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2308 if (intel_crtc_active(crtc)) {
2309 const struct drm_display_mode *adjusted_mode =
2310 &crtc->config->base.adjusted_mode;
2311 const struct drm_framebuffer *fb =
2312 crtc->base.primary->state->fb;
2313 int cpp;
2314
2315 if (IS_GEN(dev_priv, 2))
2316 cpp = 4;
2317 else
2318 cpp = fb->format->cpp[0];
2319
2320 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2321 wm_info, fifo_size, cpp,
2322 pessimal_latency_ns);
2323 if (enabled == NULL)
2324 enabled = crtc;
2325 else
2326 enabled = NULL;
2327 } else {
2328 planeb_wm = fifo_size - wm_info->guard_size;
2329 if (planeb_wm > (long)wm_info->max_wm)
2330 planeb_wm = wm_info->max_wm;
2331 }
2332
2333 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2334
2335 if (IS_I915GM(dev_priv) && enabled) {
2336 struct drm_i915_gem_object *obj;
2337
2338 obj = intel_fb_obj(enabled->base.primary->state->fb);
2339
2340 /* self-refresh seems busted with untiled */
2341 if (!i915_gem_object_is_tiled(obj))
2342 enabled = NULL;
2343 }
2344
2345 /*
2346 * Overlay gets an aggressive default since video jitter is bad.
2347 */
2348 cwm = 2;
2349
2350 /* Play safe and disable self-refresh before adjusting watermarks. */
2351 intel_set_memory_cxsr(dev_priv, false);
2352
2353 /* Calc sr entries for one plane configs */
2354 if (HAS_FW_BLC(dev_priv) && enabled) {
2355 /* self-refresh has much higher latency */
2356 static const int sr_latency_ns = 6000;
2357 const struct drm_display_mode *adjusted_mode =
2358 &enabled->config->base.adjusted_mode;
2359 const struct drm_framebuffer *fb =
2360 enabled->base.primary->state->fb;
2361 int clock = adjusted_mode->crtc_clock;
2362 int htotal = adjusted_mode->crtc_htotal;
2363 int hdisplay = enabled->config->pipe_src_w;
2364 int cpp;
2365 int entries;
2366
2367 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2368 cpp = 4;
2369 else
2370 cpp = fb->format->cpp[0];
2371
2372 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2373 sr_latency_ns / 100);
2374 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2375 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2376 srwm = wm_info->fifo_size - entries;
2377 if (srwm < 0)
2378 srwm = 1;
2379
2380 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2381 I915_WRITE(FW_BLC_SELF,
2382 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2383 else
2384 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2385 }
2386
2387 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2388 planea_wm, planeb_wm, cwm, srwm);
2389
2390 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2391 fwater_hi = (cwm & 0x1f);
2392
2393 /* Set request length to 8 cachelines per fetch */
2394 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2395 fwater_hi = fwater_hi | (1 << 8);
2396
2397 I915_WRITE(FW_BLC, fwater_lo);
2398 I915_WRITE(FW_BLC2, fwater_hi);
2399
2400 if (enabled)
2401 intel_set_memory_cxsr(dev_priv, true);
2402 }
2403
2404 static void i845_update_wm(struct intel_crtc *unused_crtc)
2405 {
2406 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2407 struct intel_crtc *crtc;
2408 const struct drm_display_mode *adjusted_mode;
2409 u32 fwater_lo;
2410 int planea_wm;
2411
2412 crtc = single_enabled_crtc(dev_priv);
2413 if (crtc == NULL)
2414 return;
2415
2416 adjusted_mode = &crtc->config->base.adjusted_mode;
2417 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2418 &i845_wm_info,
2419 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2420 4, pessimal_latency_ns);
2421 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2422 fwater_lo |= (3<<8) | planea_wm;
2423
2424 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2425
2426 I915_WRITE(FW_BLC, fwater_lo);
2427 }
2428
2429 /* latency must be in 0.1us units. */
2430 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2431 unsigned int cpp,
2432 unsigned int latency)
2433 {
2434 unsigned int ret;
2435
2436 ret = intel_wm_method1(pixel_rate, cpp, latency);
2437 ret = DIV_ROUND_UP(ret, 64) + 2;
2438
2439 return ret;
2440 }
2441
2442 /* latency must be in 0.1us units. */
2443 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2444 unsigned int htotal,
2445 unsigned int width,
2446 unsigned int cpp,
2447 unsigned int latency)
2448 {
2449 unsigned int ret;
2450
2451 ret = intel_wm_method2(pixel_rate, htotal,
2452 width, cpp, latency);
2453 ret = DIV_ROUND_UP(ret, 64) + 2;
2454
2455 return ret;
2456 }
2457
2458 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2459 {
2460 /*
2461 * Neither of these should be possible since this function shouldn't be
2462 * called if the CRTC is off or the plane is invisible. But let's be
2463 * extra paranoid to avoid a potential divide-by-zero if we screw up
2464 * elsewhere in the driver.
2465 */
2466 if (WARN_ON(!cpp))
2467 return 0;
2468 if (WARN_ON(!horiz_pixels))
2469 return 0;
2470
2471 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2472 }
2473
2474 struct ilk_wm_maximums {
2475 u16 pri;
2476 u16 spr;
2477 u16 cur;
2478 u16 fbc;
2479 };
2480
2481 /*
2482 * For both WM_PIPE and WM_LP.
2483 * mem_value must be in 0.1us units.
2484 */
2485 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2486 const struct intel_plane_state *pstate,
2487 u32 mem_value, bool is_lp)
2488 {
2489 u32 method1, method2;
2490 int cpp;
2491
2492 if (mem_value == 0)
2493 return U32_MAX;
2494
2495 if (!intel_wm_plane_visible(cstate, pstate))
2496 return 0;
2497
2498 cpp = pstate->base.fb->format->cpp[0];
2499
2500 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501
2502 if (!is_lp)
2503 return method1;
2504
2505 method2 = ilk_wm_method2(cstate->pixel_rate,
2506 cstate->base.adjusted_mode.crtc_htotal,
2507 drm_rect_width(&pstate->base.dst),
2508 cpp, mem_value);
2509
2510 return min(method1, method2);
2511 }
2512
2513 /*
2514 * For both WM_PIPE and WM_LP.
2515 * mem_value must be in 0.1us units.
2516 */
2517 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518 const struct intel_plane_state *pstate,
2519 u32 mem_value)
2520 {
2521 u32 method1, method2;
2522 int cpp;
2523
2524 if (mem_value == 0)
2525 return U32_MAX;
2526
2527 if (!intel_wm_plane_visible(cstate, pstate))
2528 return 0;
2529
2530 cpp = pstate->base.fb->format->cpp[0];
2531
2532 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2533 method2 = ilk_wm_method2(cstate->pixel_rate,
2534 cstate->base.adjusted_mode.crtc_htotal,
2535 drm_rect_width(&pstate->base.dst),
2536 cpp, mem_value);
2537 return min(method1, method2);
2538 }
2539
2540 /*
2541 * For both WM_PIPE and WM_LP.
2542 * mem_value must be in 0.1us units.
2543 */
2544 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2545 const struct intel_plane_state *pstate,
2546 u32 mem_value)
2547 {
2548 int cpp;
2549
2550 if (mem_value == 0)
2551 return U32_MAX;
2552
2553 if (!intel_wm_plane_visible(cstate, pstate))
2554 return 0;
2555
2556 cpp = pstate->base.fb->format->cpp[0];
2557
2558 return ilk_wm_method2(cstate->pixel_rate,
2559 cstate->base.adjusted_mode.crtc_htotal,
2560 pstate->base.crtc_w, cpp, mem_value);
2561 }
2562
2563 /* Only for WM_LP. */
2564 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2565 const struct intel_plane_state *pstate,
2566 u32 pri_val)
2567 {
2568 int cpp;
2569
2570 if (!intel_wm_plane_visible(cstate, pstate))
2571 return 0;
2572
2573 cpp = pstate->base.fb->format->cpp[0];
2574
2575 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2576 }
2577
2578 static unsigned int
2579 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2580 {
2581 if (INTEL_GEN(dev_priv) >= 8)
2582 return 3072;
2583 else if (INTEL_GEN(dev_priv) >= 7)
2584 return 768;
2585 else
2586 return 512;
2587 }
2588
2589 static unsigned int
2590 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2591 int level, bool is_sprite)
2592 {
2593 if (INTEL_GEN(dev_priv) >= 8)
2594 /* BDW primary/sprite plane watermarks */
2595 return level == 0 ? 255 : 2047;
2596 else if (INTEL_GEN(dev_priv) >= 7)
2597 /* IVB/HSW primary/sprite plane watermarks */
2598 return level == 0 ? 127 : 1023;
2599 else if (!is_sprite)
2600 /* ILK/SNB primary plane watermarks */
2601 return level == 0 ? 127 : 511;
2602 else
2603 /* ILK/SNB sprite plane watermarks */
2604 return level == 0 ? 63 : 255;
2605 }
2606
2607 static unsigned int
2608 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2609 {
2610 if (INTEL_GEN(dev_priv) >= 7)
2611 return level == 0 ? 63 : 255;
2612 else
2613 return level == 0 ? 31 : 63;
2614 }
2615
2616 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2617 {
2618 if (INTEL_GEN(dev_priv) >= 8)
2619 return 31;
2620 else
2621 return 15;
2622 }
2623
2624 /* Calculate the maximum primary/sprite plane watermark */
2625 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2626 int level,
2627 const struct intel_wm_config *config,
2628 enum intel_ddb_partitioning ddb_partitioning,
2629 bool is_sprite)
2630 {
2631 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2632
2633 /* if sprites aren't enabled, sprites get nothing */
2634 if (is_sprite && !config->sprites_enabled)
2635 return 0;
2636
2637 /* HSW allows LP1+ watermarks even with multiple pipes */
2638 if (level == 0 || config->num_pipes_active > 1) {
2639 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2640
2641 /*
2642 * For some reason the non self refresh
2643 * FIFO size is only half of the self
2644 * refresh FIFO size on ILK/SNB.
2645 */
2646 if (INTEL_GEN(dev_priv) <= 6)
2647 fifo_size /= 2;
2648 }
2649
2650 if (config->sprites_enabled) {
2651 /* level 0 is always calculated with 1:1 split */
2652 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2653 if (is_sprite)
2654 fifo_size *= 5;
2655 fifo_size /= 6;
2656 } else {
2657 fifo_size /= 2;
2658 }
2659 }
2660
2661 /* clamp to max that the registers can hold */
2662 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2663 }
2664
2665 /* Calculate the maximum cursor plane watermark */
2666 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2667 int level,
2668 const struct intel_wm_config *config)
2669 {
2670 /* HSW LP1+ watermarks w/ multiple pipes */
2671 if (level > 0 && config->num_pipes_active > 1)
2672 return 64;
2673
2674 /* otherwise just report max that registers can hold */
2675 return ilk_cursor_wm_reg_max(dev_priv, level);
2676 }
2677
2678 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2679 int level,
2680 const struct intel_wm_config *config,
2681 enum intel_ddb_partitioning ddb_partitioning,
2682 struct ilk_wm_maximums *max)
2683 {
2684 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2685 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2686 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2687 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2688 }
2689
2690 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2691 int level,
2692 struct ilk_wm_maximums *max)
2693 {
2694 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2695 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2696 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2697 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2698 }
2699
2700 static bool ilk_validate_wm_level(int level,
2701 const struct ilk_wm_maximums *max,
2702 struct intel_wm_level *result)
2703 {
2704 bool ret;
2705
2706 /* already determined to be invalid? */
2707 if (!result->enable)
2708 return false;
2709
2710 result->enable = result->pri_val <= max->pri &&
2711 result->spr_val <= max->spr &&
2712 result->cur_val <= max->cur;
2713
2714 ret = result->enable;
2715
2716 /*
2717 * HACK until we can pre-compute everything,
2718 * and thus fail gracefully if LP0 watermarks
2719 * are exceeded...
2720 */
2721 if (level == 0 && !result->enable) {
2722 if (result->pri_val > max->pri)
2723 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2724 level, result->pri_val, max->pri);
2725 if (result->spr_val > max->spr)
2726 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2727 level, result->spr_val, max->spr);
2728 if (result->cur_val > max->cur)
2729 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2730 level, result->cur_val, max->cur);
2731
2732 result->pri_val = min_t(u32, result->pri_val, max->pri);
2733 result->spr_val = min_t(u32, result->spr_val, max->spr);
2734 result->cur_val = min_t(u32, result->cur_val, max->cur);
2735 result->enable = true;
2736 }
2737
2738 return ret;
2739 }
2740
2741 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2742 const struct intel_crtc *intel_crtc,
2743 int level,
2744 struct intel_crtc_state *cstate,
2745 const struct intel_plane_state *pristate,
2746 const struct intel_plane_state *sprstate,
2747 const struct intel_plane_state *curstate,
2748 struct intel_wm_level *result)
2749 {
2750 u16 pri_latency = dev_priv->wm.pri_latency[level];
2751 u16 spr_latency = dev_priv->wm.spr_latency[level];
2752 u16 cur_latency = dev_priv->wm.cur_latency[level];
2753
2754 /* WM1+ latency values stored in 0.5us units */
2755 if (level > 0) {
2756 pri_latency *= 5;
2757 spr_latency *= 5;
2758 cur_latency *= 5;
2759 }
2760
2761 if (pristate) {
2762 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2763 pri_latency, level);
2764 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2765 }
2766
2767 if (sprstate)
2768 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2769
2770 if (curstate)
2771 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2772
2773 result->enable = true;
2774 }
2775
2776 static u32
2777 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2778 {
2779 const struct intel_atomic_state *intel_state =
2780 to_intel_atomic_state(cstate->base.state);
2781 const struct drm_display_mode *adjusted_mode =
2782 &cstate->base.adjusted_mode;
2783 u32 linetime, ips_linetime;
2784
2785 if (!cstate->base.active)
2786 return 0;
2787 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2788 return 0;
2789 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2790 return 0;
2791
2792 /* The WM are computed with base on how long it takes to fill a single
2793 * row at the given clock rate, multiplied by 8.
2794 * */
2795 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2796 adjusted_mode->crtc_clock);
2797 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2798 intel_state->cdclk.logical.cdclk);
2799
2800 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2801 PIPE_WM_LINETIME_TIME(linetime);
2802 }
2803
2804 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2805 u16 wm[8])
2806 {
2807 if (INTEL_GEN(dev_priv) >= 9) {
2808 u32 val;
2809 int ret, i;
2810 int level, max_level = ilk_wm_max_level(dev_priv);
2811
2812 /* read the first set of memory latencies[0:3] */
2813 val = 0; /* data0 to be programmed to 0 for first set */
2814 mutex_lock(&dev_priv->pcu_lock);
2815 ret = sandybridge_pcode_read(dev_priv,
2816 GEN9_PCODE_READ_MEM_LATENCY,
2817 &val);
2818 mutex_unlock(&dev_priv->pcu_lock);
2819
2820 if (ret) {
2821 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2822 return;
2823 }
2824
2825 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2826 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2827 GEN9_MEM_LATENCY_LEVEL_MASK;
2828 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2829 GEN9_MEM_LATENCY_LEVEL_MASK;
2830 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2831 GEN9_MEM_LATENCY_LEVEL_MASK;
2832
2833 /* read the second set of memory latencies[4:7] */
2834 val = 1; /* data0 to be programmed to 1 for second set */
2835 mutex_lock(&dev_priv->pcu_lock);
2836 ret = sandybridge_pcode_read(dev_priv,
2837 GEN9_PCODE_READ_MEM_LATENCY,
2838 &val);
2839 mutex_unlock(&dev_priv->pcu_lock);
2840 if (ret) {
2841 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2842 return;
2843 }
2844
2845 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2846 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2847 GEN9_MEM_LATENCY_LEVEL_MASK;
2848 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2849 GEN9_MEM_LATENCY_LEVEL_MASK;
2850 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2851 GEN9_MEM_LATENCY_LEVEL_MASK;
2852
2853 /*
2854 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2855 * need to be disabled. We make sure to sanitize the values out
2856 * of the punit to satisfy this requirement.
2857 */
2858 for (level = 1; level <= max_level; level++) {
2859 if (wm[level] == 0) {
2860 for (i = level + 1; i <= max_level; i++)
2861 wm[i] = 0;
2862 break;
2863 }
2864 }
2865
2866 /*
2867 * WaWmMemoryReadLatency:skl+,glk
2868 *
2869 * punit doesn't take into account the read latency so we need
2870 * to add 2us to the various latency levels we retrieve from the
2871 * punit when level 0 response data us 0us.
2872 */
2873 if (wm[0] == 0) {
2874 wm[0] += 2;
2875 for (level = 1; level <= max_level; level++) {
2876 if (wm[level] == 0)
2877 break;
2878 wm[level] += 2;
2879 }
2880 }
2881
2882 /*
2883 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2884 * If we could not get dimm info enable this WA to prevent from
2885 * any underrun. If not able to get Dimm info assume 16GB dimm
2886 * to avoid any underrun.
2887 */
2888 if (dev_priv->dram_info.is_16gb_dimm)
2889 wm[0] += 1;
2890
2891 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2892 u64 sskpd = I915_READ64(MCH_SSKPD);
2893
2894 wm[0] = (sskpd >> 56) & 0xFF;
2895 if (wm[0] == 0)
2896 wm[0] = sskpd & 0xF;
2897 wm[1] = (sskpd >> 4) & 0xFF;
2898 wm[2] = (sskpd >> 12) & 0xFF;
2899 wm[3] = (sskpd >> 20) & 0x1FF;
2900 wm[4] = (sskpd >> 32) & 0x1FF;
2901 } else if (INTEL_GEN(dev_priv) >= 6) {
2902 u32 sskpd = I915_READ(MCH_SSKPD);
2903
2904 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2905 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2906 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2907 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2908 } else if (INTEL_GEN(dev_priv) >= 5) {
2909 u32 mltr = I915_READ(MLTR_ILK);
2910
2911 /* ILK primary LP0 latency is 700 ns */
2912 wm[0] = 7;
2913 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2914 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2915 } else {
2916 MISSING_CASE(INTEL_DEVID(dev_priv));
2917 }
2918 }
2919
2920 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2921 u16 wm[5])
2922 {
2923 /* ILK sprite LP0 latency is 1300 ns */
2924 if (IS_GEN(dev_priv, 5))
2925 wm[0] = 13;
2926 }
2927
2928 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2929 u16 wm[5])
2930 {
2931 /* ILK cursor LP0 latency is 1300 ns */
2932 if (IS_GEN(dev_priv, 5))
2933 wm[0] = 13;
2934 }
2935
2936 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2937 {
2938 /* how many WM levels are we expecting */
2939 if (INTEL_GEN(dev_priv) >= 9)
2940 return 7;
2941 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2942 return 4;
2943 else if (INTEL_GEN(dev_priv) >= 6)
2944 return 3;
2945 else
2946 return 2;
2947 }
2948
2949 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2950 const char *name,
2951 const u16 wm[8])
2952 {
2953 int level, max_level = ilk_wm_max_level(dev_priv);
2954
2955 for (level = 0; level <= max_level; level++) {
2956 unsigned int latency = wm[level];
2957
2958 if (latency == 0) {
2959 DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2960 name, level);
2961 continue;
2962 }
2963
2964 /*
2965 * - latencies are in us on gen9.
2966 * - before then, WM1+ latency values are in 0.5us units
2967 */
2968 if (INTEL_GEN(dev_priv) >= 9)
2969 latency *= 10;
2970 else if (level > 0)
2971 latency *= 5;
2972
2973 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2974 name, level, wm[level],
2975 latency / 10, latency % 10);
2976 }
2977 }
2978
2979 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2980 u16 wm[5], u16 min)
2981 {
2982 int level, max_level = ilk_wm_max_level(dev_priv);
2983
2984 if (wm[0] >= min)
2985 return false;
2986
2987 wm[0] = max(wm[0], min);
2988 for (level = 1; level <= max_level; level++)
2989 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2990
2991 return true;
2992 }
2993
2994 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2995 {
2996 bool changed;
2997
2998 /*
2999 * The BIOS provided WM memory latency values are often
3000 * inadequate for high resolution displays. Adjust them.
3001 */
3002 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3003 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3004 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3005
3006 if (!changed)
3007 return;
3008
3009 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3010 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3011 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3012 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3013 }
3014
3015 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3016 {
3017 /*
3018 * On some SNB machines (Thinkpad X220 Tablet at least)
3019 * LP3 usage can cause vblank interrupts to be lost.
3020 * The DEIIR bit will go high but it looks like the CPU
3021 * never gets interrupted.
3022 *
3023 * It's not clear whether other interrupt source could
3024 * be affected or if this is somehow limited to vblank
3025 * interrupts only. To play it safe we disable LP3
3026 * watermarks entirely.
3027 */
3028 if (dev_priv->wm.pri_latency[3] == 0 &&
3029 dev_priv->wm.spr_latency[3] == 0 &&
3030 dev_priv->wm.cur_latency[3] == 0)
3031 return;
3032
3033 dev_priv->wm.pri_latency[3] = 0;
3034 dev_priv->wm.spr_latency[3] = 0;
3035 dev_priv->wm.cur_latency[3] = 0;
3036
3037 DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3038 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3039 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3040 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3041 }
3042
3043 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3044 {
3045 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3046
3047 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3048 sizeof(dev_priv->wm.pri_latency));
3049 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3050 sizeof(dev_priv->wm.pri_latency));
3051
3052 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3053 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3054
3055 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3056 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3057 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3058
3059 if (IS_GEN(dev_priv, 6)) {
3060 snb_wm_latency_quirk(dev_priv);
3061 snb_wm_lp3_irq_quirk(dev_priv);
3062 }
3063 }
3064
3065 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3066 {
3067 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3068 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3069 }
3070
3071 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3072 struct intel_pipe_wm *pipe_wm)
3073 {
3074 /* LP0 watermark maximums depend on this pipe alone */
3075 const struct intel_wm_config config = {
3076 .num_pipes_active = 1,
3077 .sprites_enabled = pipe_wm->sprites_enabled,
3078 .sprites_scaled = pipe_wm->sprites_scaled,
3079 };
3080 struct ilk_wm_maximums max;
3081
3082 /* LP0 watermarks always use 1/2 DDB partitioning */
3083 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3084
3085 /* At least LP0 must be valid */
3086 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3087 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3088 return false;
3089 }
3090
3091 return true;
3092 }
3093
3094 /* Compute new watermarks for the pipe */
3095 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3096 {
3097 struct drm_atomic_state *state = cstate->base.state;
3098 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3099 struct intel_pipe_wm *pipe_wm;
3100 struct drm_device *dev = state->dev;
3101 const struct drm_i915_private *dev_priv = to_i915(dev);
3102 struct drm_plane *plane;
3103 const struct drm_plane_state *plane_state;
3104 const struct intel_plane_state *pristate = NULL;
3105 const struct intel_plane_state *sprstate = NULL;
3106 const struct intel_plane_state *curstate = NULL;
3107 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3108 struct ilk_wm_maximums max;
3109
3110 pipe_wm = &cstate->wm.ilk.optimal;
3111
3112 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3113 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3114
3115 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3116 pristate = ps;
3117 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3118 sprstate = ps;
3119 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3120 curstate = ps;
3121 }
3122
3123 pipe_wm->pipe_enabled = cstate->base.active;
3124 if (sprstate) {
3125 pipe_wm->sprites_enabled = sprstate->base.visible;
3126 pipe_wm->sprites_scaled = sprstate->base.visible &&
3127 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3128 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3129 }
3130
3131 usable_level = max_level;
3132
3133 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3134 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3135 usable_level = 1;
3136
3137 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3138 if (pipe_wm->sprites_scaled)
3139 usable_level = 0;
3140
3141 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3142 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3143 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3144
3145 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3146 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3147
3148 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3149 return -EINVAL;
3150
3151 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3152
3153 for (level = 1; level <= usable_level; level++) {
3154 struct intel_wm_level *wm = &pipe_wm->wm[level];
3155
3156 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3157 pristate, sprstate, curstate, wm);
3158
3159 /*
3160 * Disable any watermark level that exceeds the
3161 * register maximums since such watermarks are
3162 * always invalid.
3163 */
3164 if (!ilk_validate_wm_level(level, &max, wm)) {
3165 memset(wm, 0, sizeof(*wm));
3166 break;
3167 }
3168 }
3169
3170 return 0;
3171 }
3172
3173 /*
3174 * Build a set of 'intermediate' watermark values that satisfy both the old
3175 * state and the new state. These can be programmed to the hardware
3176 * immediately.
3177 */
3178 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3179 {
3180 struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
3181 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3182 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3183 struct intel_atomic_state *intel_state =
3184 to_intel_atomic_state(newstate->base.state);
3185 const struct intel_crtc_state *oldstate =
3186 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3187 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3188 int level, max_level = ilk_wm_max_level(dev_priv);
3189
3190 /*
3191 * Start with the final, target watermarks, then combine with the
3192 * currently active watermarks to get values that are safe both before
3193 * and after the vblank.
3194 */
3195 *a = newstate->wm.ilk.optimal;
3196 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
3197 intel_state->skip_intermediate_wm)
3198 return 0;
3199
3200 a->pipe_enabled |= b->pipe_enabled;
3201 a->sprites_enabled |= b->sprites_enabled;
3202 a->sprites_scaled |= b->sprites_scaled;
3203
3204 for (level = 0; level <= max_level; level++) {
3205 struct intel_wm_level *a_wm = &a->wm[level];
3206 const struct intel_wm_level *b_wm = &b->wm[level];
3207
3208 a_wm->enable &= b_wm->enable;
3209 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3210 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3211 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3212 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3213 }
3214
3215 /*
3216 * We need to make sure that these merged watermark values are
3217 * actually a valid configuration themselves. If they're not,
3218 * there's no safe way to transition from the old state to
3219 * the new state, so we need to fail the atomic transaction.
3220 */
3221 if (!ilk_validate_pipe_wm(dev_priv, a))
3222 return -EINVAL;
3223
3224 /*
3225 * If our intermediate WM are identical to the final WM, then we can
3226 * omit the post-vblank programming; only update if it's different.
3227 */
3228 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3229 newstate->wm.need_postvbl_update = true;
3230
3231 return 0;
3232 }
3233
3234 /*
3235 * Merge the watermarks from all active pipes for a specific level.
3236 */
3237 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3238 int level,
3239 struct intel_wm_level *ret_wm)
3240 {
3241 const struct intel_crtc *intel_crtc;
3242
3243 ret_wm->enable = true;
3244
3245 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3246 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3247 const struct intel_wm_level *wm = &active->wm[level];
3248
3249 if (!active->pipe_enabled)
3250 continue;
3251
3252 /*
3253 * The watermark values may have been used in the past,
3254 * so we must maintain them in the registers for some
3255 * time even if the level is now disabled.
3256 */
3257 if (!wm->enable)
3258 ret_wm->enable = false;
3259
3260 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3261 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3262 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3263 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3264 }
3265 }
3266
3267 /*
3268 * Merge all low power watermarks for all active pipes.
3269 */
3270 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3271 const struct intel_wm_config *config,
3272 const struct ilk_wm_maximums *max,
3273 struct intel_pipe_wm *merged)
3274 {
3275 int level, max_level = ilk_wm_max_level(dev_priv);
3276 int last_enabled_level = max_level;
3277
3278 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3279 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3280 config->num_pipes_active > 1)
3281 last_enabled_level = 0;
3282
3283 /* ILK: FBC WM must be disabled always */
3284 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3285
3286 /* merge each WM1+ level */
3287 for (level = 1; level <= max_level; level++) {
3288 struct intel_wm_level *wm = &merged->wm[level];
3289
3290 ilk_merge_wm_level(dev_priv, level, wm);
3291
3292 if (level > last_enabled_level)
3293 wm->enable = false;
3294 else if (!ilk_validate_wm_level(level, max, wm))
3295 /* make sure all following levels get disabled */
3296 last_enabled_level = level - 1;
3297
3298 /*
3299 * The spec says it is preferred to disable
3300 * FBC WMs instead of disabling a WM level.
3301 */
3302 if (wm->fbc_val > max->fbc) {
3303 if (wm->enable)
3304 merged->fbc_wm_enabled = false;
3305 wm->fbc_val = 0;
3306 }
3307 }
3308
3309 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3310 /*
3311 * FIXME this is racy. FBC might get enabled later.
3312 * What we should check here is whether FBC can be
3313 * enabled sometime later.
3314 */
3315 if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3316 intel_fbc_is_active(dev_priv)) {
3317 for (level = 2; level <= max_level; level++) {
3318 struct intel_wm_level *wm = &merged->wm[level];
3319
3320 wm->enable = false;
3321 }
3322 }
3323 }
3324
3325 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3326 {
3327 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3328 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3329 }
3330
3331 /* The value we need to program into the WM_LPx latency field */
3332 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3333 int level)
3334 {
3335 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3336 return 2 * level;
3337 else
3338 return dev_priv->wm.pri_latency[level];
3339 }
3340
3341 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3342 const struct intel_pipe_wm *merged,
3343 enum intel_ddb_partitioning partitioning,
3344 struct ilk_wm_values *results)
3345 {
3346 struct intel_crtc *intel_crtc;
3347 int level, wm_lp;
3348
3349 results->enable_fbc_wm = merged->fbc_wm_enabled;
3350 results->partitioning = partitioning;
3351
3352 /* LP1+ register values */
3353 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3354 const struct intel_wm_level *r;
3355
3356 level = ilk_wm_lp_to_level(wm_lp, merged);
3357
3358 r = &merged->wm[level];
3359
3360 /*
3361 * Maintain the watermark values even if the level is
3362 * disabled. Doing otherwise could cause underruns.
3363 */
3364 results->wm_lp[wm_lp - 1] =
3365 (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3366 (r->pri_val << WM1_LP_SR_SHIFT) |
3367 r->cur_val;
3368
3369 if (r->enable)
3370 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3371
3372 if (INTEL_GEN(dev_priv) >= 8)
3373 results->wm_lp[wm_lp - 1] |=
3374 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3375 else
3376 results->wm_lp[wm_lp - 1] |=
3377 r->fbc_val << WM1_LP_FBC_SHIFT;
3378
3379 /*
3380 * Always set WM1S_LP_EN when spr_val != 0, even if the
3381 * level is disabled. Doing otherwise could cause underruns.
3382 */
3383 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3384 WARN_ON(wm_lp != 1);
3385 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3386 } else
3387 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3388 }
3389
3390 /* LP0 register values */
3391 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3392 enum pipe pipe = intel_crtc->pipe;
3393 const struct intel_wm_level *r =
3394 &intel_crtc->wm.active.ilk.wm[0];
3395
3396 if (WARN_ON(!r->enable))
3397 continue;
3398
3399 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3400
3401 results->wm_pipe[pipe] =
3402 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3403 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3404 r->cur_val;
3405 }
3406 }
3407
3408 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3409 * case both are at the same level. Prefer r1 in case they're the same. */
3410 static struct intel_pipe_wm *
3411 ilk_find_best_result(struct drm_i915_private *dev_priv,
3412 struct intel_pipe_wm *r1,
3413 struct intel_pipe_wm *r2)
3414 {
3415 int level, max_level = ilk_wm_max_level(dev_priv);
3416 int level1 = 0, level2 = 0;
3417
3418 for (level = 1; level <= max_level; level++) {
3419 if (r1->wm[level].enable)
3420 level1 = level;
3421 if (r2->wm[level].enable)
3422 level2 = level;
3423 }
3424
3425 if (level1 == level2) {
3426 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3427 return r2;
3428 else
3429 return r1;
3430 } else if (level1 > level2) {
3431 return r1;
3432 } else {
3433 return r2;
3434 }
3435 }
3436
3437 /* dirty bits used to track which watermarks need changes */
3438 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3439 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3440 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3441 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3442 #define WM_DIRTY_FBC (1 << 24)
3443 #define WM_DIRTY_DDB (1 << 25)
3444
3445 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3446 const struct ilk_wm_values *old,
3447 const struct ilk_wm_values *new)
3448 {
3449 unsigned int dirty = 0;
3450 enum pipe pipe;
3451 int wm_lp;
3452
3453 for_each_pipe(dev_priv, pipe) {
3454 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3455 dirty |= WM_DIRTY_LINETIME(pipe);
3456 /* Must disable LP1+ watermarks too */
3457 dirty |= WM_DIRTY_LP_ALL;
3458 }
3459
3460 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3461 dirty |= WM_DIRTY_PIPE(pipe);
3462 /* Must disable LP1+ watermarks too */
3463 dirty |= WM_DIRTY_LP_ALL;
3464 }
3465 }
3466
3467 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3468 dirty |= WM_DIRTY_FBC;
3469 /* Must disable LP1+ watermarks too */
3470 dirty |= WM_DIRTY_LP_ALL;
3471 }
3472
3473 if (old->partitioning != new->partitioning) {
3474 dirty |= WM_DIRTY_DDB;
3475 /* Must disable LP1+ watermarks too */
3476 dirty |= WM_DIRTY_LP_ALL;
3477 }
3478
3479 /* LP1+ watermarks already deemed dirty, no need to continue */
3480 if (dirty & WM_DIRTY_LP_ALL)
3481 return dirty;
3482
3483 /* Find the lowest numbered LP1+ watermark in need of an update... */
3484 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3485 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3486 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3487 break;
3488 }
3489
3490 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3491 for (; wm_lp <= 3; wm_lp++)
3492 dirty |= WM_DIRTY_LP(wm_lp);
3493
3494 return dirty;
3495 }
3496
3497 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3498 unsigned int dirty)
3499 {
3500 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3501 bool changed = false;
3502
3503 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3504 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3505 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3506 changed = true;
3507 }
3508 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3509 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3510 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3511 changed = true;
3512 }
3513 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3514 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3515 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3516 changed = true;
3517 }
3518
3519 /*
3520 * Don't touch WM1S_LP_EN here.
3521 * Doing so could cause underruns.
3522 */
3523
3524 return changed;
3525 }
3526
3527 /*
3528 * The spec says we shouldn't write when we don't need, because every write
3529 * causes WMs to be re-evaluated, expending some power.
3530 */
3531 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3532 struct ilk_wm_values *results)
3533 {
3534 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3535 unsigned int dirty;
3536 u32 val;
3537
3538 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3539 if (!dirty)
3540 return;
3541
3542 _ilk_disable_lp_wm(dev_priv, dirty);
3543
3544 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3545 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3546 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3547 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3548 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3549 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3550
3551 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3552 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3553 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3554 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3555 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3556 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3557
3558 if (dirty & WM_DIRTY_DDB) {
3559 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3560 val = I915_READ(WM_MISC);
3561 if (results->partitioning == INTEL_DDB_PART_1_2)
3562 val &= ~WM_MISC_DATA_PARTITION_5_6;
3563 else
3564 val |= WM_MISC_DATA_PARTITION_5_6;
3565 I915_WRITE(WM_MISC, val);
3566 } else {
3567 val = I915_READ(DISP_ARB_CTL2);
3568 if (results->partitioning == INTEL_DDB_PART_1_2)
3569 val &= ~DISP_DATA_PARTITION_5_6;
3570 else
3571 val |= DISP_DATA_PARTITION_5_6;
3572 I915_WRITE(DISP_ARB_CTL2, val);
3573 }
3574 }
3575
3576 if (dirty & WM_DIRTY_FBC) {
3577 val = I915_READ(DISP_ARB_CTL);
3578 if (results->enable_fbc_wm)
3579 val &= ~DISP_FBC_WM_DIS;
3580 else
3581 val |= DISP_FBC_WM_DIS;
3582 I915_WRITE(DISP_ARB_CTL, val);
3583 }
3584
3585 if (dirty & WM_DIRTY_LP(1) &&
3586 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3587 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3588
3589 if (INTEL_GEN(dev_priv) >= 7) {
3590 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3591 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3592 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3593 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3594 }
3595
3596 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3597 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3598 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3599 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3600 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3601 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3602
3603 dev_priv->wm.hw = *results;
3604 }
3605
3606 bool ilk_disable_lp_wm(struct drm_device *dev)
3607 {
3608 struct drm_i915_private *dev_priv = to_i915(dev);
3609
3610 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3611 }
3612
3613 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3614 {
3615 u8 enabled_slices;
3616
3617 /* Slice 1 will always be enabled */
3618 enabled_slices = 1;
3619
3620 /* Gen prior to GEN11 have only one DBuf slice */
3621 if (INTEL_GEN(dev_priv) < 11)
3622 return enabled_slices;
3623
3624 if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3625 enabled_slices++;
3626
3627 return enabled_slices;
3628 }
3629
3630 /*
3631 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3632 * so assume we'll always need it in order to avoid underruns.
3633 */
3634 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3635 {
3636 return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3637 }
3638
3639 static bool
3640 intel_has_sagv(struct drm_i915_private *dev_priv)
3641 {
3642 return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3643 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3644 }
3645
3646 /*
3647 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3648 * depending on power and performance requirements. The display engine access
3649 * to system memory is blocked during the adjustment time. Because of the
3650 * blocking time, having this enabled can cause full system hangs and/or pipe
3651 * underruns if we don't meet all of the following requirements:
3652 *
3653 * - <= 1 pipe enabled
3654 * - All planes can enable watermarks for latencies >= SAGV engine block time
3655 * - We're not using an interlaced display configuration
3656 */
3657 int
3658 intel_enable_sagv(struct drm_i915_private *dev_priv)
3659 {
3660 int ret;
3661
3662 if (!intel_has_sagv(dev_priv))
3663 return 0;
3664
3665 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3666 return 0;
3667
3668 DRM_DEBUG_KMS("Enabling SAGV\n");
3669 mutex_lock(&dev_priv->pcu_lock);
3670
3671 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3672 GEN9_SAGV_ENABLE);
3673
3674 /* We don't need to wait for SAGV when enabling */
3675 mutex_unlock(&dev_priv->pcu_lock);
3676
3677 /*
3678 * Some skl systems, pre-release machines in particular,
3679 * don't actually have SAGV.
3680 */
3681 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3682 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3683 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3684 return 0;
3685 } else if (ret < 0) {
3686 DRM_ERROR("Failed to enable SAGV\n");
3687 return ret;
3688 }
3689
3690 dev_priv->sagv_status = I915_SAGV_ENABLED;
3691 return 0;
3692 }
3693
3694 int
3695 intel_disable_sagv(struct drm_i915_private *dev_priv)
3696 {
3697 int ret;
3698
3699 if (!intel_has_sagv(dev_priv))
3700 return 0;
3701
3702 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3703 return 0;
3704
3705 DRM_DEBUG_KMS("Disabling SAGV\n");
3706 mutex_lock(&dev_priv->pcu_lock);
3707
3708 /* bspec says to keep retrying for at least 1 ms */
3709 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3710 GEN9_SAGV_DISABLE,
3711 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3712 1);
3713 mutex_unlock(&dev_priv->pcu_lock);
3714
3715 /*
3716 * Some skl systems, pre-release machines in particular,
3717 * don't actually have SAGV.
3718 */
3719 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3720 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3721 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3722 return 0;
3723 } else if (ret < 0) {
3724 DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3725 return ret;
3726 }
3727
3728 dev_priv->sagv_status = I915_SAGV_DISABLED;
3729 return 0;
3730 }
3731
3732 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3733 {
3734 struct drm_device *dev = state->dev;
3735 struct drm_i915_private *dev_priv = to_i915(dev);
3736 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3737 struct intel_crtc *crtc;
3738 struct intel_plane *plane;
3739 struct intel_crtc_state *cstate;
3740 enum pipe pipe;
3741 int level, latency;
3742 int sagv_block_time_us;
3743
3744 if (!intel_has_sagv(dev_priv))
3745 return false;
3746
3747 if (IS_GEN(dev_priv, 9))
3748 sagv_block_time_us = 30;
3749 else if (IS_GEN(dev_priv, 10))
3750 sagv_block_time_us = 20;
3751 else
3752 sagv_block_time_us = 10;
3753
3754 /*
3755 * SKL+ workaround: bspec recommends we disable SAGV when we have
3756 * more then one pipe enabled
3757 *
3758 * If there are no active CRTCs, no additional checks need be performed
3759 */
3760 if (hweight32(intel_state->active_crtcs) == 0)
3761 return true;
3762 else if (hweight32(intel_state->active_crtcs) > 1)
3763 return false;
3764
3765 /* Since we're now guaranteed to only have one active CRTC... */
3766 pipe = ffs(intel_state->active_crtcs) - 1;
3767 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3768 cstate = to_intel_crtc_state(crtc->base.state);
3769
3770 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3771 return false;
3772
3773 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3774 struct skl_plane_wm *wm =
3775 &cstate->wm.skl.optimal.planes[plane->id];
3776
3777 /* Skip this plane if it's not enabled */
3778 if (!wm->wm[0].plane_en)
3779 continue;
3780
3781 /* Find the highest enabled wm level for this plane */
3782 for (level = ilk_wm_max_level(dev_priv);
3783 !wm->wm[level].plane_en; --level)
3784 { }
3785
3786 latency = dev_priv->wm.skl_latency[level];
3787
3788 if (skl_needs_memory_bw_wa(dev_priv) &&
3789 plane->base.state->fb->modifier ==
3790 I915_FORMAT_MOD_X_TILED)
3791 latency += 15;
3792
3793 /*
3794 * If any of the planes on this pipe don't enable wm levels that
3795 * incur memory latencies higher than sagv_block_time_us we
3796 * can't enable SAGV.
3797 */
3798 if (latency < sagv_block_time_us)
3799 return false;
3800 }
3801
3802 return true;
3803 }
3804
3805 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3806 const struct intel_crtc_state *cstate,
3807 const u64 total_data_rate,
3808 const int num_active,
3809 struct skl_ddb_allocation *ddb)
3810 {
3811 const struct drm_display_mode *adjusted_mode;
3812 u64 total_data_bw;
3813 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3814
3815 WARN_ON(ddb_size == 0);
3816
3817 if (INTEL_GEN(dev_priv) < 11)
3818 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3819
3820 adjusted_mode = &cstate->base.adjusted_mode;
3821 total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3822
3823 /*
3824 * 12GB/s is maximum BW supported by single DBuf slice.
3825 *
3826 * FIXME dbuf slice code is broken:
3827 * - must wait for planes to stop using the slice before powering it off
3828 * - plane straddling both slices is illegal in multi-pipe scenarios
3829 * - should validate we stay within the hw bandwidth limits
3830 */
3831 if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3832 ddb->enabled_slices = 2;
3833 } else {
3834 ddb->enabled_slices = 1;
3835 ddb_size /= 2;
3836 }
3837
3838 return ddb_size;
3839 }
3840
3841 static void
3842 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3843 const struct intel_crtc_state *cstate,
3844 const u64 total_data_rate,
3845 struct skl_ddb_allocation *ddb,
3846 struct skl_ddb_entry *alloc, /* out */
3847 int *num_active /* out */)
3848 {
3849 struct drm_atomic_state *state = cstate->base.state;
3850 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3851 struct drm_crtc *for_crtc = cstate->base.crtc;
3852 const struct drm_crtc_state *crtc_state;
3853 const struct drm_crtc *crtc;
3854 u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3855 enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3856 u16 ddb_size;
3857 u32 i;
3858
3859 if (WARN_ON(!state) || !cstate->base.active) {
3860 alloc->start = 0;
3861 alloc->end = 0;
3862 *num_active = hweight32(dev_priv->active_crtcs);
3863 return;
3864 }
3865
3866 if (intel_state->active_pipe_changes)
3867 *num_active = hweight32(intel_state->active_crtcs);
3868 else
3869 *num_active = hweight32(dev_priv->active_crtcs);
3870
3871 ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3872 *num_active, ddb);
3873
3874 /*
3875 * If the state doesn't change the active CRTC's or there is no
3876 * modeset request, then there's no need to recalculate;
3877 * the existing pipe allocation limits should remain unchanged.
3878 * Note that we're safe from racing commits since any racing commit
3879 * that changes the active CRTC list or do modeset would need to
3880 * grab _all_ crtc locks, including the one we currently hold.
3881 */
3882 if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3883 /*
3884 * alloc may be cleared by clear_intel_crtc_state,
3885 * copy from old state to be sure
3886 */
3887 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3888 return;
3889 }
3890
3891 /*
3892 * Watermark/ddb requirement highly depends upon width of the
3893 * framebuffer, So instead of allocating DDB equally among pipes
3894 * distribute DDB based on resolution/width of the display.
3895 */
3896 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3897 const struct drm_display_mode *adjusted_mode;
3898 int hdisplay, vdisplay;
3899 enum pipe pipe;
3900
3901 if (!crtc_state->enable)
3902 continue;
3903
3904 pipe = to_intel_crtc(crtc)->pipe;
3905 adjusted_mode = &crtc_state->adjusted_mode;
3906 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3907 total_width += hdisplay;
3908
3909 if (pipe < for_pipe)
3910 width_before_pipe += hdisplay;
3911 else if (pipe == for_pipe)
3912 pipe_width = hdisplay;
3913 }
3914
3915 alloc->start = ddb_size * width_before_pipe / total_width;
3916 alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3917 }
3918
3919 static unsigned int skl_cursor_allocation(int num_active)
3920 {
3921 if (num_active == 1)
3922 return 32;
3923
3924 return 8;
3925 }
3926
3927 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3928 struct skl_ddb_entry *entry, u32 reg)
3929 {
3930
3931 entry->start = reg & DDB_ENTRY_MASK;
3932 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3933
3934 if (entry->end)
3935 entry->end += 1;
3936 }
3937
3938 static void
3939 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3940 const enum pipe pipe,
3941 const enum plane_id plane_id,
3942 struct skl_ddb_entry *ddb_y,
3943 struct skl_ddb_entry *ddb_uv)
3944 {
3945 u32 val, val2;
3946 u32 fourcc = 0;
3947
3948 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3949 if (plane_id == PLANE_CURSOR) {
3950 val = I915_READ(CUR_BUF_CFG(pipe));
3951 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3952 return;
3953 }
3954
3955 val = I915_READ(PLANE_CTL(pipe, plane_id));
3956
3957 /* No DDB allocated for disabled planes */
3958 if (val & PLANE_CTL_ENABLE)
3959 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
3960 val & PLANE_CTL_ORDER_RGBX,
3961 val & PLANE_CTL_ALPHA_MASK);
3962
3963 if (INTEL_GEN(dev_priv) >= 11) {
3964 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3965 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3966 } else {
3967 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3968 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3969
3970 if (fourcc == DRM_FORMAT_NV12)
3971 swap(val, val2);
3972
3973 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3974 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
3975 }
3976 }
3977
3978 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
3979 struct skl_ddb_entry *ddb_y,
3980 struct skl_ddb_entry *ddb_uv)
3981 {
3982 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3983 enum intel_display_power_domain power_domain;
3984 enum pipe pipe = crtc->pipe;
3985 intel_wakeref_t wakeref;
3986 enum plane_id plane_id;
3987
3988 power_domain = POWER_DOMAIN_PIPE(pipe);
3989 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
3990 if (!wakeref)
3991 return;
3992
3993 for_each_plane_id_on_crtc(crtc, plane_id)
3994 skl_ddb_get_hw_plane_state(dev_priv, pipe,
3995 plane_id,
3996 &ddb_y[plane_id],
3997 &ddb_uv[plane_id]);
3998
3999 intel_display_power_put(dev_priv, power_domain, wakeref);
4000 }
4001
4002 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4003 struct skl_ddb_allocation *ddb /* out */)
4004 {
4005 ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4006 }
4007
4008 /*
4009 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4010 * The bspec defines downscale amount as:
4011 *
4012 * """
4013 * Horizontal down scale amount = maximum[1, Horizontal source size /
4014 * Horizontal destination size]
4015 * Vertical down scale amount = maximum[1, Vertical source size /
4016 * Vertical destination size]
4017 * Total down scale amount = Horizontal down scale amount *
4018 * Vertical down scale amount
4019 * """
4020 *
4021 * Return value is provided in 16.16 fixed point form to retain fractional part.
4022 * Caller should take care of dividing & rounding off the value.
4023 */
4024 static uint_fixed_16_16_t
4025 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
4026 const struct intel_plane_state *pstate)
4027 {
4028 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4029 u32 src_w, src_h, dst_w, dst_h;
4030 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4031 uint_fixed_16_16_t downscale_h, downscale_w;
4032
4033 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4034 return u32_to_fixed16(0);
4035
4036 /* n.b., src is 16.16 fixed point, dst is whole integer */
4037 if (plane->id == PLANE_CURSOR) {
4038 /*
4039 * Cursors only support 0/180 degree rotation,
4040 * hence no need to account for rotation here.
4041 */
4042 src_w = pstate->base.src_w >> 16;
4043 src_h = pstate->base.src_h >> 16;
4044 dst_w = pstate->base.crtc_w;
4045 dst_h = pstate->base.crtc_h;
4046 } else {
4047 /*
4048 * Src coordinates are already rotated by 270 degrees for
4049 * the 90/270 degree plane rotation cases (to match the
4050 * GTT mapping), hence no need to account for rotation here.
4051 */
4052 src_w = drm_rect_width(&pstate->base.src) >> 16;
4053 src_h = drm_rect_height(&pstate->base.src) >> 16;
4054 dst_w = drm_rect_width(&pstate->base.dst);
4055 dst_h = drm_rect_height(&pstate->base.dst);
4056 }
4057
4058 fp_w_ratio = div_fixed16(src_w, dst_w);
4059 fp_h_ratio = div_fixed16(src_h, dst_h);
4060 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4061 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4062
4063 return mul_fixed16(downscale_w, downscale_h);
4064 }
4065
4066 static uint_fixed_16_16_t
4067 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4068 {
4069 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4070
4071 if (!crtc_state->base.enable)
4072 return pipe_downscale;
4073
4074 if (crtc_state->pch_pfit.enabled) {
4075 u32 src_w, src_h, dst_w, dst_h;
4076 u32 pfit_size = crtc_state->pch_pfit.size;
4077 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4078 uint_fixed_16_16_t downscale_h, downscale_w;
4079
4080 src_w = crtc_state->pipe_src_w;
4081 src_h = crtc_state->pipe_src_h;
4082 dst_w = pfit_size >> 16;
4083 dst_h = pfit_size & 0xffff;
4084
4085 if (!dst_w || !dst_h)
4086 return pipe_downscale;
4087
4088 fp_w_ratio = div_fixed16(src_w, dst_w);
4089 fp_h_ratio = div_fixed16(src_h, dst_h);
4090 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4091 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4092
4093 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4094 }
4095
4096 return pipe_downscale;
4097 }
4098
4099 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4100 struct intel_crtc_state *cstate)
4101 {
4102 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4103 struct drm_crtc_state *crtc_state = &cstate->base;
4104 struct drm_atomic_state *state = crtc_state->state;
4105 struct drm_plane *plane;
4106 const struct drm_plane_state *pstate;
4107 struct intel_plane_state *intel_pstate;
4108 int crtc_clock, dotclk;
4109 u32 pipe_max_pixel_rate;
4110 uint_fixed_16_16_t pipe_downscale;
4111 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4112
4113 if (!cstate->base.enable)
4114 return 0;
4115
4116 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4117 uint_fixed_16_16_t plane_downscale;
4118 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4119 int bpp;
4120
4121 if (!intel_wm_plane_visible(cstate,
4122 to_intel_plane_state(pstate)))
4123 continue;
4124
4125 if (WARN_ON(!pstate->fb))
4126 return -EINVAL;
4127
4128 intel_pstate = to_intel_plane_state(pstate);
4129 plane_downscale = skl_plane_downscale_amount(cstate,
4130 intel_pstate);
4131 bpp = pstate->fb->format->cpp[0] * 8;
4132 if (bpp == 64)
4133 plane_downscale = mul_fixed16(plane_downscale,
4134 fp_9_div_8);
4135
4136 max_downscale = max_fixed16(plane_downscale, max_downscale);
4137 }
4138 pipe_downscale = skl_pipe_downscale_amount(cstate);
4139
4140 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4141
4142 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4143 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4144
4145 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4146 dotclk *= 2;
4147
4148 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4149
4150 if (pipe_max_pixel_rate < crtc_clock) {
4151 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4152 return -EINVAL;
4153 }
4154
4155 return 0;
4156 }
4157
4158 static u64
4159 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4160 const struct intel_plane_state *intel_pstate,
4161 const int plane)
4162 {
4163 struct intel_plane *intel_plane =
4164 to_intel_plane(intel_pstate->base.plane);
4165 u32 data_rate;
4166 u32 width = 0, height = 0;
4167 struct drm_framebuffer *fb;
4168 u32 format;
4169 uint_fixed_16_16_t down_scale_amount;
4170 u64 rate;
4171
4172 if (!intel_pstate->base.visible)
4173 return 0;
4174
4175 fb = intel_pstate->base.fb;
4176 format = fb->format->format;
4177
4178 if (intel_plane->id == PLANE_CURSOR)
4179 return 0;
4180 if (plane == 1 && format != DRM_FORMAT_NV12)
4181 return 0;
4182
4183 /*
4184 * Src coordinates are already rotated by 270 degrees for
4185 * the 90/270 degree plane rotation cases (to match the
4186 * GTT mapping), hence no need to account for rotation here.
4187 */
4188 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4189 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4190
4191 /* UV plane does 1/2 pixel sub-sampling */
4192 if (plane == 1 && format == DRM_FORMAT_NV12) {
4193 width /= 2;
4194 height /= 2;
4195 }
4196
4197 data_rate = width * height;
4198
4199 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4200
4201 rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4202
4203 rate *= fb->format->cpp[plane];
4204 return rate;
4205 }
4206
4207 static u64
4208 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4209 u64 *plane_data_rate,
4210 u64 *uv_plane_data_rate)
4211 {
4212 struct drm_crtc_state *cstate = &intel_cstate->base;
4213 struct drm_atomic_state *state = cstate->state;
4214 struct drm_plane *plane;
4215 const struct drm_plane_state *pstate;
4216 u64 total_data_rate = 0;
4217
4218 if (WARN_ON(!state))
4219 return 0;
4220
4221 /* Calculate and cache data rate for each plane */
4222 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4223 enum plane_id plane_id = to_intel_plane(plane)->id;
4224 u64 rate;
4225 const struct intel_plane_state *intel_pstate =
4226 to_intel_plane_state(pstate);
4227
4228 /* packed/y */
4229 rate = skl_plane_relative_data_rate(intel_cstate,
4230 intel_pstate, 0);
4231 plane_data_rate[plane_id] = rate;
4232 total_data_rate += rate;
4233
4234 /* uv-plane */
4235 rate = skl_plane_relative_data_rate(intel_cstate,
4236 intel_pstate, 1);
4237 uv_plane_data_rate[plane_id] = rate;
4238 total_data_rate += rate;
4239 }
4240
4241 return total_data_rate;
4242 }
4243
4244 static u64
4245 icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4246 u64 *plane_data_rate)
4247 {
4248 struct drm_crtc_state *cstate = &intel_cstate->base;
4249 struct drm_atomic_state *state = cstate->state;
4250 struct drm_plane *plane;
4251 const struct drm_plane_state *pstate;
4252 u64 total_data_rate = 0;
4253
4254 if (WARN_ON(!state))
4255 return 0;
4256
4257 /* Calculate and cache data rate for each plane */
4258 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4259 const struct intel_plane_state *intel_pstate =
4260 to_intel_plane_state(pstate);
4261 enum plane_id plane_id = to_intel_plane(plane)->id;
4262 u64 rate;
4263
4264 if (!intel_pstate->linked_plane) {
4265 rate = skl_plane_relative_data_rate(intel_cstate,
4266 intel_pstate, 0);
4267 plane_data_rate[plane_id] = rate;
4268 total_data_rate += rate;
4269 } else {
4270 enum plane_id y_plane_id;
4271
4272 /*
4273 * The slave plane might not iterate in
4274 * drm_atomic_crtc_state_for_each_plane_state(),
4275 * and needs the master plane state which may be
4276 * NULL if we try get_new_plane_state(), so we
4277 * always calculate from the master.
4278 */
4279 if (intel_pstate->slave)
4280 continue;
4281
4282 /* Y plane rate is calculated on the slave */
4283 rate = skl_plane_relative_data_rate(intel_cstate,
4284 intel_pstate, 0);
4285 y_plane_id = intel_pstate->linked_plane->id;
4286 plane_data_rate[y_plane_id] = rate;
4287 total_data_rate += rate;
4288
4289 rate = skl_plane_relative_data_rate(intel_cstate,
4290 intel_pstate, 1);
4291 plane_data_rate[plane_id] = rate;
4292 total_data_rate += rate;
4293 }
4294 }
4295
4296 return total_data_rate;
4297 }
4298
4299 static int
4300 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4301 struct skl_ddb_allocation *ddb /* out */)
4302 {
4303 struct drm_atomic_state *state = cstate->base.state;
4304 struct drm_crtc *crtc = cstate->base.crtc;
4305 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4307 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4308 struct skl_plane_wm *wm;
4309 u16 alloc_size, start = 0;
4310 u16 total[I915_MAX_PLANES] = {};
4311 u16 uv_total[I915_MAX_PLANES] = {};
4312 u64 total_data_rate;
4313 enum plane_id plane_id;
4314 int num_active;
4315 u64 plane_data_rate[I915_MAX_PLANES] = {};
4316 u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4317 u32 blocks;
4318 int level;
4319
4320 /* Clear the partitioning for disabled planes. */
4321 memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
4322 memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4323
4324 if (WARN_ON(!state))
4325 return 0;
4326
4327 if (!cstate->base.active) {
4328 alloc->start = alloc->end = 0;
4329 return 0;
4330 }
4331
4332 if (INTEL_GEN(dev_priv) < 11)
4333 total_data_rate =
4334 skl_get_total_relative_data_rate(cstate,
4335 plane_data_rate,
4336 uv_plane_data_rate);
4337 else
4338 total_data_rate =
4339 icl_get_total_relative_data_rate(cstate,
4340 plane_data_rate);
4341
4342 skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
4343 ddb, alloc, &num_active);
4344 alloc_size = skl_ddb_entry_size(alloc);
4345 if (alloc_size == 0)
4346 return 0;
4347
4348 /* Allocate fixed number of blocks for cursor. */
4349 total[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4350 alloc_size -= total[PLANE_CURSOR];
4351 cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4352 alloc->end - total[PLANE_CURSOR];
4353 cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4354
4355 if (total_data_rate == 0)
4356 return 0;
4357
4358 /*
4359 * Find the highest watermark level for which we can satisfy the block
4360 * requirement of active planes.
4361 */
4362 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4363 blocks = 0;
4364 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4365 if (plane_id == PLANE_CURSOR)
4366 continue;
4367
4368 wm = &cstate->wm.skl.optimal.planes[plane_id];
4369 blocks += wm->wm[level].min_ddb_alloc;
4370 blocks += wm->uv_wm[level].min_ddb_alloc;
4371 }
4372
4373 if (blocks < alloc_size) {
4374 alloc_size -= blocks;
4375 break;
4376 }
4377 }
4378
4379 if (level < 0) {
4380 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4381 DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
4382 alloc_size);
4383 return -EINVAL;
4384 }
4385
4386 /*
4387 * Grant each plane the blocks it requires at the highest achievable
4388 * watermark level, plus an extra share of the leftover blocks
4389 * proportional to its relative data rate.
4390 */
4391 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4392 u64 rate;
4393 u16 extra;
4394
4395 if (plane_id == PLANE_CURSOR)
4396 continue;
4397
4398 /*
4399 * We've accounted for all active planes; remaining planes are
4400 * all disabled.
4401 */
4402 if (total_data_rate == 0)
4403 break;
4404
4405 wm = &cstate->wm.skl.optimal.planes[plane_id];
4406
4407 rate = plane_data_rate[plane_id];
4408 extra = min_t(u16, alloc_size,
4409 DIV64_U64_ROUND_UP(alloc_size * rate,
4410 total_data_rate));
4411 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4412 alloc_size -= extra;
4413 total_data_rate -= rate;
4414
4415 if (total_data_rate == 0)
4416 break;
4417
4418 rate = uv_plane_data_rate[plane_id];
4419 extra = min_t(u16, alloc_size,
4420 DIV64_U64_ROUND_UP(alloc_size * rate,
4421 total_data_rate));
4422 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4423 alloc_size -= extra;
4424 total_data_rate -= rate;
4425 }
4426 WARN_ON(alloc_size != 0 || total_data_rate != 0);
4427
4428 /* Set the actual DDB start/end points for each plane */
4429 start = alloc->start;
4430 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4431 struct skl_ddb_entry *plane_alloc, *uv_plane_alloc;
4432
4433 if (plane_id == PLANE_CURSOR)
4434 continue;
4435
4436 plane_alloc = &cstate->wm.skl.plane_ddb_y[plane_id];
4437 uv_plane_alloc = &cstate->wm.skl.plane_ddb_uv[plane_id];
4438
4439 /* Gen11+ uses a separate plane for UV watermarks */
4440 WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4441
4442 /* Leave disabled planes at (0,0) */
4443 if (total[plane_id]) {
4444 plane_alloc->start = start;
4445 start += total[plane_id];
4446 plane_alloc->end = start;
4447 }
4448
4449 if (uv_total[plane_id]) {
4450 uv_plane_alloc->start = start;
4451 start += uv_total[plane_id];
4452 uv_plane_alloc->end = start;
4453 }
4454 }
4455
4456 /*
4457 * When we calculated watermark values we didn't know how high
4458 * of a level we'd actually be able to hit, so we just marked
4459 * all levels as "enabled." Go back now and disable the ones
4460 * that aren't actually possible.
4461 */
4462 for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4463 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4464 wm = &cstate->wm.skl.optimal.planes[plane_id];
4465 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4466 }
4467 }
4468
4469 /*
4470 * Go back and disable the transition watermark if it turns out we
4471 * don't have enough DDB blocks for it.
4472 */
4473 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4474 wm = &cstate->wm.skl.optimal.planes[plane_id];
4475 if (wm->trans_wm.plane_res_b >= total[plane_id])
4476 memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4477 }
4478
4479 return 0;
4480 }
4481
4482 /*
4483 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4484 * for the read latency) and cpp should always be <= 8, so that
4485 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4486 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4487 */
4488 static uint_fixed_16_16_t
4489 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4490 u8 cpp, u32 latency, u32 dbuf_block_size)
4491 {
4492 u32 wm_intermediate_val;
4493 uint_fixed_16_16_t ret;
4494
4495 if (latency == 0)
4496 return FP_16_16_MAX;
4497
4498 wm_intermediate_val = latency * pixel_rate * cpp;
4499 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4500
4501 if (INTEL_GEN(dev_priv) >= 10)
4502 ret = add_fixed16_u32(ret, 1);
4503
4504 return ret;
4505 }
4506
4507 static uint_fixed_16_16_t
4508 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4509 uint_fixed_16_16_t plane_blocks_per_line)
4510 {
4511 u32 wm_intermediate_val;
4512 uint_fixed_16_16_t ret;
4513
4514 if (latency == 0)
4515 return FP_16_16_MAX;
4516
4517 wm_intermediate_val = latency * pixel_rate;
4518 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4519 pipe_htotal * 1000);
4520 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4521 return ret;
4522 }
4523
4524 static uint_fixed_16_16_t
4525 intel_get_linetime_us(const struct intel_crtc_state *cstate)
4526 {
4527 u32 pixel_rate;
4528 u32 crtc_htotal;
4529 uint_fixed_16_16_t linetime_us;
4530
4531 if (!cstate->base.active)
4532 return u32_to_fixed16(0);
4533
4534 pixel_rate = cstate->pixel_rate;
4535
4536 if (WARN_ON(pixel_rate == 0))
4537 return u32_to_fixed16(0);
4538
4539 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4540 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4541
4542 return linetime_us;
4543 }
4544
4545 static u32
4546 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4547 const struct intel_plane_state *pstate)
4548 {
4549 u64 adjusted_pixel_rate;
4550 uint_fixed_16_16_t downscale_amount;
4551
4552 /* Shouldn't reach here on disabled planes... */
4553 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4554 return 0;
4555
4556 /*
4557 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4558 * with additional adjustments for plane-specific scaling.
4559 */
4560 adjusted_pixel_rate = cstate->pixel_rate;
4561 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4562
4563 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4564 downscale_amount);
4565 }
4566
4567 static int
4568 skl_compute_plane_wm_params(const struct intel_crtc_state *cstate,
4569 const struct intel_plane_state *intel_pstate,
4570 struct skl_wm_params *wp, int color_plane)
4571 {
4572 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4573 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4574 const struct drm_plane_state *pstate = &intel_pstate->base;
4575 const struct drm_framebuffer *fb = pstate->fb;
4576 u32 interm_pbpl;
4577
4578 /* only NV12 format has two planes */
4579 if (color_plane == 1 && fb->format->format != DRM_FORMAT_NV12) {
4580 DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4581 return -EINVAL;
4582 }
4583
4584 wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4585 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4586 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4587 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4588 wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4589 wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4590 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4591 wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4592
4593 if (plane->id == PLANE_CURSOR) {
4594 wp->width = intel_pstate->base.crtc_w;
4595 } else {
4596 /*
4597 * Src coordinates are already rotated by 270 degrees for
4598 * the 90/270 degree plane rotation cases (to match the
4599 * GTT mapping), hence no need to account for rotation here.
4600 */
4601 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4602 }
4603
4604 if (color_plane == 1 && wp->is_planar)
4605 wp->width /= 2;
4606
4607 wp->cpp = fb->format->cpp[color_plane];
4608 wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4609 intel_pstate);
4610
4611 if (INTEL_GEN(dev_priv) >= 11 &&
4612 fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
4613 wp->dbuf_block_size = 256;
4614 else
4615 wp->dbuf_block_size = 512;
4616
4617 if (drm_rotation_90_or_270(pstate->rotation)) {
4618
4619 switch (wp->cpp) {
4620 case 1:
4621 wp->y_min_scanlines = 16;
4622 break;
4623 case 2:
4624 wp->y_min_scanlines = 8;
4625 break;
4626 case 4:
4627 wp->y_min_scanlines = 4;
4628 break;
4629 default:
4630 MISSING_CASE(wp->cpp);
4631 return -EINVAL;
4632 }
4633 } else {
4634 wp->y_min_scanlines = 4;
4635 }
4636
4637 if (skl_needs_memory_bw_wa(dev_priv))
4638 wp->y_min_scanlines *= 2;
4639
4640 wp->plane_bytes_per_line = wp->width * wp->cpp;
4641 if (wp->y_tiled) {
4642 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4643 wp->y_min_scanlines,
4644 wp->dbuf_block_size);
4645
4646 if (INTEL_GEN(dev_priv) >= 10)
4647 interm_pbpl++;
4648
4649 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4650 wp->y_min_scanlines);
4651 } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4652 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4653 wp->dbuf_block_size);
4654 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4655 } else {
4656 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4657 wp->dbuf_block_size) + 1;
4658 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4659 }
4660
4661 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4662 wp->plane_blocks_per_line);
4663 wp->linetime_us = fixed16_to_u32_round_up(
4664 intel_get_linetime_us(cstate));
4665
4666 return 0;
4667 }
4668
4669 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4670 {
4671 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4672 return true;
4673
4674 /* The number of lines are ignored for the level 0 watermark. */
4675 return level > 0;
4676 }
4677
4678 static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
4679 const struct intel_plane_state *intel_pstate,
4680 int level,
4681 const struct skl_wm_params *wp,
4682 const struct skl_wm_level *result_prev,
4683 struct skl_wm_level *result /* out */)
4684 {
4685 struct drm_i915_private *dev_priv =
4686 to_i915(intel_pstate->base.plane->dev);
4687 u32 latency = dev_priv->wm.skl_latency[level];
4688 uint_fixed_16_16_t method1, method2;
4689 uint_fixed_16_16_t selected_result;
4690 u32 res_blocks, res_lines, min_ddb_alloc = 0;
4691
4692 if (latency == 0) {
4693 /* reject it */
4694 result->min_ddb_alloc = U16_MAX;
4695 return;
4696 }
4697
4698 /* Display WA #1141: kbl,cfl */
4699 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4700 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4701 dev_priv->ipc_enabled)
4702 latency += 4;
4703
4704 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4705 latency += 15;
4706
4707 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4708 wp->cpp, latency, wp->dbuf_block_size);
4709 method2 = skl_wm_method2(wp->plane_pixel_rate,
4710 cstate->base.adjusted_mode.crtc_htotal,
4711 latency,
4712 wp->plane_blocks_per_line);
4713
4714 if (wp->y_tiled) {
4715 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4716 } else {
4717 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4718 wp->dbuf_block_size < 1) &&
4719 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4720 selected_result = method2;
4721 } else if (latency >= wp->linetime_us) {
4722 if (IS_GEN(dev_priv, 9) &&
4723 !IS_GEMINILAKE(dev_priv))
4724 selected_result = min_fixed16(method1, method2);
4725 else
4726 selected_result = method2;
4727 } else {
4728 selected_result = method1;
4729 }
4730 }
4731
4732 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4733 res_lines = div_round_up_fixed16(selected_result,
4734 wp->plane_blocks_per_line);
4735
4736 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
4737 /* Display WA #1125: skl,bxt,kbl */
4738 if (level == 0 && wp->rc_surface)
4739 res_blocks +=
4740 fixed16_to_u32_round_up(wp->y_tile_minimum);
4741
4742 /* Display WA #1126: skl,bxt,kbl */
4743 if (level >= 1 && level <= 7) {
4744 if (wp->y_tiled) {
4745 res_blocks +=
4746 fixed16_to_u32_round_up(wp->y_tile_minimum);
4747 res_lines += wp->y_min_scanlines;
4748 } else {
4749 res_blocks++;
4750 }
4751
4752 /*
4753 * Make sure result blocks for higher latency levels are
4754 * atleast as high as level below the current level.
4755 * Assumption in DDB algorithm optimization for special
4756 * cases. Also covers Display WA #1125 for RC.
4757 */
4758 if (result_prev->plane_res_b > res_blocks)
4759 res_blocks = result_prev->plane_res_b;
4760 }
4761 }
4762
4763 if (INTEL_GEN(dev_priv) >= 11) {
4764 if (wp->y_tiled) {
4765 int extra_lines;
4766
4767 if (res_lines % wp->y_min_scanlines == 0)
4768 extra_lines = wp->y_min_scanlines;
4769 else
4770 extra_lines = wp->y_min_scanlines * 2 -
4771 res_lines % wp->y_min_scanlines;
4772
4773 min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
4774 wp->plane_blocks_per_line);
4775 } else {
4776 min_ddb_alloc = res_blocks +
4777 DIV_ROUND_UP(res_blocks, 10);
4778 }
4779 }
4780
4781 if (!skl_wm_has_lines(dev_priv, level))
4782 res_lines = 0;
4783
4784 if (res_lines > 31) {
4785 /* reject it */
4786 result->min_ddb_alloc = U16_MAX;
4787 return;
4788 }
4789
4790 /*
4791 * If res_lines is valid, assume we can use this watermark level
4792 * for now. We'll come back and disable it after we calculate the
4793 * DDB allocation if it turns out we don't actually have enough
4794 * blocks to satisfy it.
4795 */
4796 result->plane_res_b = res_blocks;
4797 result->plane_res_l = res_lines;
4798 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
4799 result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4800 result->plane_en = true;
4801 }
4802
4803 static void
4804 skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4805 const struct intel_plane_state *intel_pstate,
4806 const struct skl_wm_params *wm_params,
4807 struct skl_wm_level *levels)
4808 {
4809 struct drm_i915_private *dev_priv =
4810 to_i915(intel_pstate->base.plane->dev);
4811 int level, max_level = ilk_wm_max_level(dev_priv);
4812 struct skl_wm_level *result_prev = &levels[0];
4813
4814 for (level = 0; level <= max_level; level++) {
4815 struct skl_wm_level *result = &levels[level];
4816
4817 skl_compute_plane_wm(cstate, intel_pstate, level, wm_params,
4818 result_prev, result);
4819
4820 result_prev = result;
4821 }
4822 }
4823
4824 static u32
4825 skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4826 {
4827 struct drm_atomic_state *state = cstate->base.state;
4828 struct drm_i915_private *dev_priv = to_i915(state->dev);
4829 uint_fixed_16_16_t linetime_us;
4830 u32 linetime_wm;
4831
4832 linetime_us = intel_get_linetime_us(cstate);
4833 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4834
4835 /* Display WA #1135: BXT:ALL GLK:ALL */
4836 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4837 linetime_wm /= 2;
4838
4839 return linetime_wm;
4840 }
4841
4842 static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4843 const struct skl_wm_params *wp,
4844 struct skl_plane_wm *wm)
4845 {
4846 struct drm_device *dev = cstate->base.crtc->dev;
4847 const struct drm_i915_private *dev_priv = to_i915(dev);
4848 u16 trans_min, trans_y_tile_min;
4849 const u16 trans_amount = 10; /* This is configurable amount */
4850 u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4851
4852 /* Transition WM are not recommended by HW team for GEN9 */
4853 if (INTEL_GEN(dev_priv) <= 9)
4854 return;
4855
4856 /* Transition WM don't make any sense if ipc is disabled */
4857 if (!dev_priv->ipc_enabled)
4858 return;
4859
4860 trans_min = 14;
4861 if (INTEL_GEN(dev_priv) >= 11)
4862 trans_min = 4;
4863
4864 trans_offset_b = trans_min + trans_amount;
4865
4866 /*
4867 * The spec asks for Selected Result Blocks for wm0 (the real value),
4868 * not Result Blocks (the integer value). Pay attention to the capital
4869 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4870 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4871 * and since we later will have to get the ceiling of the sum in the
4872 * transition watermarks calculation, we can just pretend Selected
4873 * Result Blocks is Result Blocks minus 1 and it should work for the
4874 * current platforms.
4875 */
4876 wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4877
4878 if (wp->y_tiled) {
4879 trans_y_tile_min =
4880 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4881 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4882 trans_offset_b;
4883 } else {
4884 res_blocks = wm0_sel_res_b + trans_offset_b;
4885
4886 /* WA BUG:1938466 add one block for non y-tile planes */
4887 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4888 res_blocks += 1;
4889
4890 }
4891
4892 /*
4893 * Just assume we can enable the transition watermark. After
4894 * computing the DDB we'll come back and disable it if that
4895 * assumption turns out to be false.
4896 */
4897 wm->trans_wm.plane_res_b = res_blocks + 1;
4898 wm->trans_wm.plane_en = true;
4899 }
4900
4901 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4902 const struct intel_plane_state *plane_state,
4903 enum plane_id plane_id, int color_plane)
4904 {
4905 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4906 struct skl_wm_params wm_params;
4907 int ret;
4908
4909 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4910 &wm_params, color_plane);
4911 if (ret)
4912 return ret;
4913
4914 skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->wm);
4915 skl_compute_transition_wm(crtc_state, &wm_params, wm);
4916
4917 return 0;
4918 }
4919
4920 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4921 const struct intel_plane_state *plane_state,
4922 enum plane_id plane_id)
4923 {
4924 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4925 struct skl_wm_params wm_params;
4926 int ret;
4927
4928 wm->is_planar = true;
4929
4930 /* uv plane watermarks must also be validated for NV12/Planar */
4931 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4932 &wm_params, 1);
4933 if (ret)
4934 return ret;
4935
4936 skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->uv_wm);
4937
4938 return 0;
4939 }
4940
4941 static int skl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4942 struct intel_crtc_state *crtc_state,
4943 const struct intel_plane_state *plane_state)
4944 {
4945 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4946 const struct drm_framebuffer *fb = plane_state->base.fb;
4947 enum plane_id plane_id = plane->id;
4948 int ret;
4949
4950 if (!intel_wm_plane_visible(crtc_state, plane_state))
4951 return 0;
4952
4953 ret = skl_build_plane_wm_single(crtc_state, plane_state,
4954 plane_id, 0);
4955 if (ret)
4956 return ret;
4957
4958 if (fb->format->is_yuv && fb->format->num_planes > 1) {
4959 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4960 plane_id);
4961 if (ret)
4962 return ret;
4963 }
4964
4965 return 0;
4966 }
4967
4968 static int icl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4969 struct intel_crtc_state *crtc_state,
4970 const struct intel_plane_state *plane_state)
4971 {
4972 enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
4973 int ret;
4974
4975 /* Watermarks calculated in master */
4976 if (plane_state->slave)
4977 return 0;
4978
4979 if (plane_state->linked_plane) {
4980 const struct drm_framebuffer *fb = plane_state->base.fb;
4981 enum plane_id y_plane_id = plane_state->linked_plane->id;
4982
4983 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
4984 WARN_ON(!fb->format->is_yuv ||
4985 fb->format->num_planes == 1);
4986
4987 ret = skl_build_plane_wm_single(crtc_state, plane_state,
4988 y_plane_id, 0);
4989 if (ret)
4990 return ret;
4991
4992 ret = skl_build_plane_wm_single(crtc_state, plane_state,
4993 plane_id, 1);
4994 if (ret)
4995 return ret;
4996 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
4997 ret = skl_build_plane_wm_single(crtc_state, plane_state,
4998 plane_id, 0);
4999 if (ret)
5000 return ret;
5001 }
5002
5003 return 0;
5004 }
5005
5006 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
5007 struct skl_pipe_wm *pipe_wm)
5008 {
5009 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5010 struct drm_crtc_state *crtc_state = &cstate->base;
5011 struct drm_plane *plane;
5012 const struct drm_plane_state *pstate;
5013 int ret;
5014
5015 /*
5016 * We'll only calculate watermarks for planes that are actually
5017 * enabled, so make sure all other planes are set as disabled.
5018 */
5019 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5020
5021 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
5022 const struct intel_plane_state *intel_pstate =
5023 to_intel_plane_state(pstate);
5024
5025 if (INTEL_GEN(dev_priv) >= 11)
5026 ret = icl_build_plane_wm(pipe_wm,
5027 cstate, intel_pstate);
5028 else
5029 ret = skl_build_plane_wm(pipe_wm,
5030 cstate, intel_pstate);
5031 if (ret)
5032 return ret;
5033 }
5034
5035 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5036
5037 return 0;
5038 }
5039
5040 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5041 i915_reg_t reg,
5042 const struct skl_ddb_entry *entry)
5043 {
5044 if (entry->end)
5045 I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5046 else
5047 I915_WRITE_FW(reg, 0);
5048 }
5049
5050 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5051 i915_reg_t reg,
5052 const struct skl_wm_level *level)
5053 {
5054 u32 val = 0;
5055
5056 if (level->plane_en) {
5057 val |= PLANE_WM_EN;
5058 val |= level->plane_res_b;
5059 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5060 }
5061
5062 I915_WRITE_FW(reg, val);
5063 }
5064
5065 void skl_write_plane_wm(struct intel_plane *plane,
5066 const struct intel_crtc_state *crtc_state)
5067 {
5068 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5069 int level, max_level = ilk_wm_max_level(dev_priv);
5070 enum plane_id plane_id = plane->id;
5071 enum pipe pipe = plane->pipe;
5072 const struct skl_plane_wm *wm =
5073 &crtc_state->wm.skl.optimal.planes[plane_id];
5074 const struct skl_ddb_entry *ddb_y =
5075 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5076 const struct skl_ddb_entry *ddb_uv =
5077 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5078
5079 for (level = 0; level <= max_level; level++) {
5080 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5081 &wm->wm[level]);
5082 }
5083 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5084 &wm->trans_wm);
5085
5086 if (INTEL_GEN(dev_priv) >= 11) {
5087 skl_ddb_entry_write(dev_priv,
5088 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5089 return;
5090 }
5091
5092 if (wm->is_planar)
5093 swap(ddb_y, ddb_uv);
5094
5095 skl_ddb_entry_write(dev_priv,
5096 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5097 skl_ddb_entry_write(dev_priv,
5098 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5099 }
5100
5101 void skl_write_cursor_wm(struct intel_plane *plane,
5102 const struct intel_crtc_state *crtc_state)
5103 {
5104 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5105 int level, max_level = ilk_wm_max_level(dev_priv);
5106 enum plane_id plane_id = plane->id;
5107 enum pipe pipe = plane->pipe;
5108 const struct skl_plane_wm *wm =
5109 &crtc_state->wm.skl.optimal.planes[plane_id];
5110 const struct skl_ddb_entry *ddb =
5111 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5112
5113 for (level = 0; level <= max_level; level++) {
5114 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5115 &wm->wm[level]);
5116 }
5117 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5118
5119 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5120 }
5121
5122 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5123 const struct skl_wm_level *l2)
5124 {
5125 return l1->plane_en == l2->plane_en &&
5126 l1->plane_res_l == l2->plane_res_l &&
5127 l1->plane_res_b == l2->plane_res_b;
5128 }
5129
5130 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5131 const struct skl_plane_wm *wm1,
5132 const struct skl_plane_wm *wm2)
5133 {
5134 int level, max_level = ilk_wm_max_level(dev_priv);
5135
5136 for (level = 0; level <= max_level; level++) {
5137 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5138 !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5139 return false;
5140 }
5141
5142 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5143 }
5144
5145 static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
5146 const struct skl_pipe_wm *wm1,
5147 const struct skl_pipe_wm *wm2)
5148 {
5149 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5150 enum plane_id plane_id;
5151
5152 for_each_plane_id_on_crtc(crtc, plane_id) {
5153 if (!skl_plane_wm_equals(dev_priv,
5154 &wm1->planes[plane_id],
5155 &wm2->planes[plane_id]))
5156 return false;
5157 }
5158
5159 return wm1->linetime == wm2->linetime;
5160 }
5161
5162 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5163 const struct skl_ddb_entry *b)
5164 {
5165 return a->start < b->end && b->start < a->end;
5166 }
5167
5168 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5169 const struct skl_ddb_entry entries[],
5170 int num_entries, int ignore_idx)
5171 {
5172 int i;
5173
5174 for (i = 0; i < num_entries; i++) {
5175 if (i != ignore_idx &&
5176 skl_ddb_entries_overlap(ddb, &entries[i]))
5177 return true;
5178 }
5179
5180 return false;
5181 }
5182
5183 static int skl_update_pipe_wm(struct intel_crtc_state *cstate,
5184 const struct skl_pipe_wm *old_pipe_wm,
5185 struct skl_pipe_wm *pipe_wm, /* out */
5186 bool *changed /* out */)
5187 {
5188 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5189 int ret;
5190
5191 ret = skl_build_pipe_wm(cstate, pipe_wm);
5192 if (ret)
5193 return ret;
5194
5195 *changed = !skl_pipe_wm_equals(crtc, old_pipe_wm, pipe_wm);
5196
5197 return 0;
5198 }
5199
5200 static u32
5201 pipes_modified(struct intel_atomic_state *state)
5202 {
5203 struct intel_crtc *crtc;
5204 struct intel_crtc_state *cstate;
5205 u32 i, ret = 0;
5206
5207 for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
5208 ret |= drm_crtc_mask(&crtc->base);
5209
5210 return ret;
5211 }
5212
5213 static int
5214 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5215 struct intel_crtc_state *new_crtc_state)
5216 {
5217 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
5218 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5219 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5220 struct intel_plane *plane;
5221
5222 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5223 struct intel_plane_state *plane_state;
5224 enum plane_id plane_id = plane->id;
5225
5226 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5227 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5228 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5229 &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5230 continue;
5231
5232 plane_state = intel_atomic_get_plane_state(state, plane);
5233 if (IS_ERR(plane_state))
5234 return PTR_ERR(plane_state);
5235
5236 new_crtc_state->update_planes |= BIT(plane_id);
5237 }
5238
5239 return 0;
5240 }
5241
5242 static int
5243 skl_compute_ddb(struct intel_atomic_state *state)
5244 {
5245 const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5246 struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5247 struct intel_crtc_state *old_crtc_state;
5248 struct intel_crtc_state *new_crtc_state;
5249 struct intel_crtc *crtc;
5250 int ret, i;
5251
5252 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5253
5254 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5255 new_crtc_state, i) {
5256 ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5257 if (ret)
5258 return ret;
5259
5260 ret = skl_ddb_add_affected_planes(old_crtc_state,
5261 new_crtc_state);
5262 if (ret)
5263 return ret;
5264 }
5265
5266 return 0;
5267 }
5268
5269 static void
5270 skl_print_wm_changes(struct intel_atomic_state *state)
5271 {
5272 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5273 const struct intel_crtc_state *old_crtc_state;
5274 const struct intel_crtc_state *new_crtc_state;
5275 struct intel_plane *plane;
5276 struct intel_crtc *crtc;
5277 int i;
5278
5279 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5280 new_crtc_state, i) {
5281 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5282 enum plane_id plane_id = plane->id;
5283 const struct skl_ddb_entry *old, *new;
5284
5285 old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5286 new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5287
5288 if (skl_ddb_entry_equal(old, new))
5289 continue;
5290
5291 DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5292 plane->base.base.id, plane->base.name,
5293 old->start, old->end,
5294 new->start, new->end);
5295 }
5296 }
5297 }
5298
5299 static int
5300 skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5301 {
5302 struct drm_device *dev = state->base.dev;
5303 const struct drm_i915_private *dev_priv = to_i915(dev);
5304 struct intel_crtc *crtc;
5305 struct intel_crtc_state *crtc_state;
5306 u32 realloc_pipes = pipes_modified(state);
5307 int ret, i;
5308
5309 /*
5310 * When we distrust bios wm we always need to recompute to set the
5311 * expected DDB allocations for each CRTC.
5312 */
5313 if (dev_priv->wm.distrust_bios_wm)
5314 (*changed) = true;
5315
5316 /*
5317 * If this transaction isn't actually touching any CRTC's, don't
5318 * bother with watermark calculation. Note that if we pass this
5319 * test, we're guaranteed to hold at least one CRTC state mutex,
5320 * which means we can safely use values like dev_priv->active_crtcs
5321 * since any racing commits that want to update them would need to
5322 * hold _all_ CRTC state mutexes.
5323 */
5324 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5325 (*changed) = true;
5326
5327 if (!*changed)
5328 return 0;
5329
5330 /*
5331 * If this is our first atomic update following hardware readout,
5332 * we can't trust the DDB that the BIOS programmed for us. Let's
5333 * pretend that all pipes switched active status so that we'll
5334 * ensure a full DDB recompute.
5335 */
5336 if (dev_priv->wm.distrust_bios_wm) {
5337 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5338 state->base.acquire_ctx);
5339 if (ret)
5340 return ret;
5341
5342 state->active_pipe_changes = ~0;
5343
5344 /*
5345 * We usually only initialize state->active_crtcs if we
5346 * we're doing a modeset; make sure this field is always
5347 * initialized during the sanitization process that happens
5348 * on the first commit too.
5349 */
5350 if (!state->modeset)
5351 state->active_crtcs = dev_priv->active_crtcs;
5352 }
5353
5354 /*
5355 * If the modeset changes which CRTC's are active, we need to
5356 * recompute the DDB allocation for *all* active pipes, even
5357 * those that weren't otherwise being modified in any way by this
5358 * atomic commit. Due to the shrinking of the per-pipe allocations
5359 * when new active CRTC's are added, it's possible for a pipe that
5360 * we were already using and aren't changing at all here to suddenly
5361 * become invalid if its DDB needs exceeds its new allocation.
5362 *
5363 * Note that if we wind up doing a full DDB recompute, we can't let
5364 * any other display updates race with this transaction, so we need
5365 * to grab the lock on *all* CRTC's.
5366 */
5367 if (state->active_pipe_changes || state->modeset) {
5368 realloc_pipes = ~0;
5369 state->wm_results.dirty_pipes = ~0;
5370 }
5371
5372 /*
5373 * We're not recomputing for the pipes not included in the commit, so
5374 * make sure we start with the current state.
5375 */
5376 for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
5377 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5378 if (IS_ERR(crtc_state))
5379 return PTR_ERR(crtc_state);
5380 }
5381
5382 return 0;
5383 }
5384
5385 /*
5386 * To make sure the cursor watermark registers are always consistent
5387 * with our computed state the following scenario needs special
5388 * treatment:
5389 *
5390 * 1. enable cursor
5391 * 2. move cursor entirely offscreen
5392 * 3. disable cursor
5393 *
5394 * Step 2. does call .disable_plane() but does not zero the watermarks
5395 * (since we consider an offscreen cursor still active for the purposes
5396 * of watermarks). Step 3. would not normally call .disable_plane()
5397 * because the actual plane visibility isn't changing, and we don't
5398 * deallocate the cursor ddb until the pipe gets disabled. So we must
5399 * force step 3. to call .disable_plane() to update the watermark
5400 * registers properly.
5401 *
5402 * Other planes do not suffer from this issues as their watermarks are
5403 * calculated based on the actual plane visibility. The only time this
5404 * can trigger for the other planes is during the initial readout as the
5405 * default value of the watermarks registers is not zero.
5406 */
5407 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5408 struct intel_crtc *crtc)
5409 {
5410 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5411 const struct intel_crtc_state *old_crtc_state =
5412 intel_atomic_get_old_crtc_state(state, crtc);
5413 struct intel_crtc_state *new_crtc_state =
5414 intel_atomic_get_new_crtc_state(state, crtc);
5415 struct intel_plane *plane;
5416
5417 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5418 struct intel_plane_state *plane_state;
5419 enum plane_id plane_id = plane->id;
5420
5421 /*
5422 * Force a full wm update for every plane on modeset.
5423 * Required because the reset value of the wm registers
5424 * is non-zero, whereas we want all disabled planes to
5425 * have zero watermarks. So if we turn off the relevant
5426 * power well the hardware state will go out of sync
5427 * with the software state.
5428 */
5429 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
5430 skl_plane_wm_equals(dev_priv,
5431 &old_crtc_state->wm.skl.optimal.planes[plane_id],
5432 &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5433 continue;
5434
5435 plane_state = intel_atomic_get_plane_state(state, plane);
5436 if (IS_ERR(plane_state))
5437 return PTR_ERR(plane_state);
5438
5439 new_crtc_state->update_planes |= BIT(plane_id);
5440 }
5441
5442 return 0;
5443 }
5444
5445 static int
5446 skl_compute_wm(struct intel_atomic_state *state)
5447 {
5448 struct intel_crtc *crtc;
5449 struct intel_crtc_state *cstate;
5450 struct intel_crtc_state *old_crtc_state;
5451 struct skl_ddb_values *results = &state->wm_results;
5452 struct skl_pipe_wm *pipe_wm;
5453 bool changed = false;
5454 int ret, i;
5455
5456 /* Clear all dirty flags */
5457 results->dirty_pipes = 0;
5458
5459 ret = skl_ddb_add_affected_pipes(state, &changed);
5460 if (ret || !changed)
5461 return ret;
5462
5463 /*
5464 * Calculate WM's for all pipes that are part of this transaction.
5465 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5466 * weren't otherwise being modified (and set bits in dirty_pipes) if
5467 * pipe allocations had to change.
5468 */
5469 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5470 cstate, i) {
5471 const struct skl_pipe_wm *old_pipe_wm =
5472 &old_crtc_state->wm.skl.optimal;
5473
5474 pipe_wm = &cstate->wm.skl.optimal;
5475 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, &changed);
5476 if (ret)
5477 return ret;
5478
5479 ret = skl_wm_add_affected_planes(state, crtc);
5480 if (ret)
5481 return ret;
5482
5483 if (changed)
5484 results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5485 }
5486
5487 ret = skl_compute_ddb(state);
5488 if (ret)
5489 return ret;
5490
5491 skl_print_wm_changes(state);
5492
5493 return 0;
5494 }
5495
5496 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5497 struct intel_crtc_state *cstate)
5498 {
5499 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5500 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5501 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5502 enum pipe pipe = crtc->pipe;
5503
5504 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5505 return;
5506
5507 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5508 }
5509
5510 static void skl_initial_wm(struct intel_atomic_state *state,
5511 struct intel_crtc_state *cstate)
5512 {
5513 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5514 struct drm_device *dev = intel_crtc->base.dev;
5515 struct drm_i915_private *dev_priv = to_i915(dev);
5516 struct skl_ddb_values *results = &state->wm_results;
5517
5518 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5519 return;
5520
5521 mutex_lock(&dev_priv->wm.wm_mutex);
5522
5523 if (cstate->base.active_changed)
5524 skl_atomic_update_crtc_wm(state, cstate);
5525
5526 mutex_unlock(&dev_priv->wm.wm_mutex);
5527 }
5528
5529 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5530 struct intel_wm_config *config)
5531 {
5532 struct intel_crtc *crtc;
5533
5534 /* Compute the currently _active_ config */
5535 for_each_intel_crtc(&dev_priv->drm, crtc) {
5536 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5537
5538 if (!wm->pipe_enabled)
5539 continue;
5540
5541 config->sprites_enabled |= wm->sprites_enabled;
5542 config->sprites_scaled |= wm->sprites_scaled;
5543 config->num_pipes_active++;
5544 }
5545 }
5546
5547 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5548 {
5549 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5550 struct ilk_wm_maximums max;
5551 struct intel_wm_config config = {};
5552 struct ilk_wm_values results = {};
5553 enum intel_ddb_partitioning partitioning;
5554
5555 ilk_compute_wm_config(dev_priv, &config);
5556
5557 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5558 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5559
5560 /* 5/6 split only in single pipe config on IVB+ */
5561 if (INTEL_GEN(dev_priv) >= 7 &&
5562 config.num_pipes_active == 1 && config.sprites_enabled) {
5563 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5564 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5565
5566 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5567 } else {
5568 best_lp_wm = &lp_wm_1_2;
5569 }
5570
5571 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5572 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5573
5574 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5575
5576 ilk_write_wm_values(dev_priv, &results);
5577 }
5578
5579 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5580 struct intel_crtc_state *cstate)
5581 {
5582 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5583 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5584
5585 mutex_lock(&dev_priv->wm.wm_mutex);
5586 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5587 ilk_program_watermarks(dev_priv);
5588 mutex_unlock(&dev_priv->wm.wm_mutex);
5589 }
5590
5591 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5592 struct intel_crtc_state *cstate)
5593 {
5594 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5595 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5596
5597 mutex_lock(&dev_priv->wm.wm_mutex);
5598 if (cstate->wm.need_postvbl_update) {
5599 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5600 ilk_program_watermarks(dev_priv);
5601 }
5602 mutex_unlock(&dev_priv->wm.wm_mutex);
5603 }
5604
5605 static inline void skl_wm_level_from_reg_val(u32 val,
5606 struct skl_wm_level *level)
5607 {
5608 level->plane_en = val & PLANE_WM_EN;
5609 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5610 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5611 PLANE_WM_LINES_MASK;
5612 }
5613
5614 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5615 struct skl_pipe_wm *out)
5616 {
5617 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5618 enum pipe pipe = crtc->pipe;
5619 int level, max_level;
5620 enum plane_id plane_id;
5621 u32 val;
5622
5623 max_level = ilk_wm_max_level(dev_priv);
5624
5625 for_each_plane_id_on_crtc(crtc, plane_id) {
5626 struct skl_plane_wm *wm = &out->planes[plane_id];
5627
5628 for (level = 0; level <= max_level; level++) {
5629 if (plane_id != PLANE_CURSOR)
5630 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5631 else
5632 val = I915_READ(CUR_WM(pipe, level));
5633
5634 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5635 }
5636
5637 if (plane_id != PLANE_CURSOR)
5638 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5639 else
5640 val = I915_READ(CUR_WM_TRANS(pipe));
5641
5642 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5643 }
5644
5645 if (!crtc->active)
5646 return;
5647
5648 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5649 }
5650
5651 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5652 {
5653 struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5654 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5655 struct intel_crtc *crtc;
5656 struct intel_crtc_state *cstate;
5657
5658 skl_ddb_get_hw_state(dev_priv, ddb);
5659 for_each_intel_crtc(&dev_priv->drm, crtc) {
5660 cstate = to_intel_crtc_state(crtc->base.state);
5661
5662 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5663
5664 if (crtc->active)
5665 hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5666 }
5667
5668 if (dev_priv->active_crtcs) {
5669 /* Fully recompute DDB on first atomic commit */
5670 dev_priv->wm.distrust_bios_wm = true;
5671 }
5672 }
5673
5674 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5675 {
5676 struct drm_device *dev = crtc->base.dev;
5677 struct drm_i915_private *dev_priv = to_i915(dev);
5678 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5679 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5680 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5681 enum pipe pipe = crtc->pipe;
5682 static const i915_reg_t wm0_pipe_reg[] = {
5683 [PIPE_A] = WM0_PIPEA_ILK,
5684 [PIPE_B] = WM0_PIPEB_ILK,
5685 [PIPE_C] = WM0_PIPEC_IVB,
5686 };
5687
5688 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5689 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5690 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5691
5692 memset(active, 0, sizeof(*active));
5693
5694 active->pipe_enabled = crtc->active;
5695
5696 if (active->pipe_enabled) {
5697 u32 tmp = hw->wm_pipe[pipe];
5698
5699 /*
5700 * For active pipes LP0 watermark is marked as
5701 * enabled, and LP1+ watermaks as disabled since
5702 * we can't really reverse compute them in case
5703 * multiple pipes are active.
5704 */
5705 active->wm[0].enable = true;
5706 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5707 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5708 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5709 active->linetime = hw->wm_linetime[pipe];
5710 } else {
5711 int level, max_level = ilk_wm_max_level(dev_priv);
5712
5713 /*
5714 * For inactive pipes, all watermark levels
5715 * should be marked as enabled but zeroed,
5716 * which is what we'd compute them to.
5717 */
5718 for (level = 0; level <= max_level; level++)
5719 active->wm[level].enable = true;
5720 }
5721
5722 crtc->wm.active.ilk = *active;
5723 }
5724
5725 #define _FW_WM(value, plane) \
5726 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5727 #define _FW_WM_VLV(value, plane) \
5728 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5729
5730 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5731 struct g4x_wm_values *wm)
5732 {
5733 u32 tmp;
5734
5735 tmp = I915_READ(DSPFW1);
5736 wm->sr.plane = _FW_WM(tmp, SR);
5737 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5738 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5739 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5740
5741 tmp = I915_READ(DSPFW2);
5742 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5743 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5744 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5745 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5746 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5747 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5748
5749 tmp = I915_READ(DSPFW3);
5750 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5751 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5752 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5753 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5754 }
5755
5756 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5757 struct vlv_wm_values *wm)
5758 {
5759 enum pipe pipe;
5760 u32 tmp;
5761
5762 for_each_pipe(dev_priv, pipe) {
5763 tmp = I915_READ(VLV_DDL(pipe));
5764
5765 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5766 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5767 wm->ddl[pipe].plane[PLANE_CURSOR] =
5768 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5769 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5770 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5771 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5772 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5773 }
5774
5775 tmp = I915_READ(DSPFW1);
5776 wm->sr.plane = _FW_WM(tmp, SR);
5777 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5778 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5779 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5780
5781 tmp = I915_READ(DSPFW2);
5782 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5783 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5784 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5785
5786 tmp = I915_READ(DSPFW3);
5787 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5788
5789 if (IS_CHERRYVIEW(dev_priv)) {
5790 tmp = I915_READ(DSPFW7_CHV);
5791 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5792 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5793
5794 tmp = I915_READ(DSPFW8_CHV);
5795 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5796 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5797
5798 tmp = I915_READ(DSPFW9_CHV);
5799 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5800 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5801
5802 tmp = I915_READ(DSPHOWM);
5803 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5804 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5805 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5806 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5807 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5808 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5809 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5810 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5811 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5812 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5813 } else {
5814 tmp = I915_READ(DSPFW7);
5815 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5816 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5817
5818 tmp = I915_READ(DSPHOWM);
5819 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5820 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5821 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5822 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5823 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5824 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5825 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5826 }
5827 }
5828
5829 #undef _FW_WM
5830 #undef _FW_WM_VLV
5831
5832 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5833 {
5834 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5835 struct intel_crtc *crtc;
5836
5837 g4x_read_wm_values(dev_priv, wm);
5838
5839 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5840
5841 for_each_intel_crtc(&dev_priv->drm, crtc) {
5842 struct intel_crtc_state *crtc_state =
5843 to_intel_crtc_state(crtc->base.state);
5844 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5845 struct g4x_pipe_wm *raw;
5846 enum pipe pipe = crtc->pipe;
5847 enum plane_id plane_id;
5848 int level, max_level;
5849
5850 active->cxsr = wm->cxsr;
5851 active->hpll_en = wm->hpll_en;
5852 active->fbc_en = wm->fbc_en;
5853
5854 active->sr = wm->sr;
5855 active->hpll = wm->hpll;
5856
5857 for_each_plane_id_on_crtc(crtc, plane_id) {
5858 active->wm.plane[plane_id] =
5859 wm->pipe[pipe].plane[plane_id];
5860 }
5861
5862 if (wm->cxsr && wm->hpll_en)
5863 max_level = G4X_WM_LEVEL_HPLL;
5864 else if (wm->cxsr)
5865 max_level = G4X_WM_LEVEL_SR;
5866 else
5867 max_level = G4X_WM_LEVEL_NORMAL;
5868
5869 level = G4X_WM_LEVEL_NORMAL;
5870 raw = &crtc_state->wm.g4x.raw[level];
5871 for_each_plane_id_on_crtc(crtc, plane_id)
5872 raw->plane[plane_id] = active->wm.plane[plane_id];
5873
5874 if (++level > max_level)
5875 goto out;
5876
5877 raw = &crtc_state->wm.g4x.raw[level];
5878 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5879 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5880 raw->plane[PLANE_SPRITE0] = 0;
5881 raw->fbc = active->sr.fbc;
5882
5883 if (++level > max_level)
5884 goto out;
5885
5886 raw = &crtc_state->wm.g4x.raw[level];
5887 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5888 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5889 raw->plane[PLANE_SPRITE0] = 0;
5890 raw->fbc = active->hpll.fbc;
5891
5892 out:
5893 for_each_plane_id_on_crtc(crtc, plane_id)
5894 g4x_raw_plane_wm_set(crtc_state, level,
5895 plane_id, USHRT_MAX);
5896 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5897
5898 crtc_state->wm.g4x.optimal = *active;
5899 crtc_state->wm.g4x.intermediate = *active;
5900
5901 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5902 pipe_name(pipe),
5903 wm->pipe[pipe].plane[PLANE_PRIMARY],
5904 wm->pipe[pipe].plane[PLANE_CURSOR],
5905 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5906 }
5907
5908 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5909 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5910 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5911 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5912 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5913 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5914 }
5915
5916 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5917 {
5918 struct intel_plane *plane;
5919 struct intel_crtc *crtc;
5920
5921 mutex_lock(&dev_priv->wm.wm_mutex);
5922
5923 for_each_intel_plane(&dev_priv->drm, plane) {
5924 struct intel_crtc *crtc =
5925 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5926 struct intel_crtc_state *crtc_state =
5927 to_intel_crtc_state(crtc->base.state);
5928 struct intel_plane_state *plane_state =
5929 to_intel_plane_state(plane->base.state);
5930 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5931 enum plane_id plane_id = plane->id;
5932 int level;
5933
5934 if (plane_state->base.visible)
5935 continue;
5936
5937 for (level = 0; level < 3; level++) {
5938 struct g4x_pipe_wm *raw =
5939 &crtc_state->wm.g4x.raw[level];
5940
5941 raw->plane[plane_id] = 0;
5942 wm_state->wm.plane[plane_id] = 0;
5943 }
5944
5945 if (plane_id == PLANE_PRIMARY) {
5946 for (level = 0; level < 3; level++) {
5947 struct g4x_pipe_wm *raw =
5948 &crtc_state->wm.g4x.raw[level];
5949 raw->fbc = 0;
5950 }
5951
5952 wm_state->sr.fbc = 0;
5953 wm_state->hpll.fbc = 0;
5954 wm_state->fbc_en = false;
5955 }
5956 }
5957
5958 for_each_intel_crtc(&dev_priv->drm, crtc) {
5959 struct intel_crtc_state *crtc_state =
5960 to_intel_crtc_state(crtc->base.state);
5961
5962 crtc_state->wm.g4x.intermediate =
5963 crtc_state->wm.g4x.optimal;
5964 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5965 }
5966
5967 g4x_program_watermarks(dev_priv);
5968
5969 mutex_unlock(&dev_priv->wm.wm_mutex);
5970 }
5971
5972 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
5973 {
5974 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5975 struct intel_crtc *crtc;
5976 u32 val;
5977
5978 vlv_read_wm_values(dev_priv, wm);
5979
5980 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5981 wm->level = VLV_WM_LEVEL_PM2;
5982
5983 if (IS_CHERRYVIEW(dev_priv)) {
5984 mutex_lock(&dev_priv->pcu_lock);
5985
5986 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5987 if (val & DSP_MAXFIFO_PM5_ENABLE)
5988 wm->level = VLV_WM_LEVEL_PM5;
5989
5990 /*
5991 * If DDR DVFS is disabled in the BIOS, Punit
5992 * will never ack the request. So if that happens
5993 * assume we don't have to enable/disable DDR DVFS
5994 * dynamically. To test that just set the REQ_ACK
5995 * bit to poke the Punit, but don't change the
5996 * HIGH/LOW bits so that we don't actually change
5997 * the current state.
5998 */
5999 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6000 val |= FORCE_DDR_FREQ_REQ_ACK;
6001 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6002
6003 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6004 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6005 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
6006 "assuming DDR DVFS is disabled\n");
6007 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6008 } else {
6009 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6010 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6011 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6012 }
6013
6014 mutex_unlock(&dev_priv->pcu_lock);
6015 }
6016
6017 for_each_intel_crtc(&dev_priv->drm, crtc) {
6018 struct intel_crtc_state *crtc_state =
6019 to_intel_crtc_state(crtc->base.state);
6020 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6021 const struct vlv_fifo_state *fifo_state =
6022 &crtc_state->wm.vlv.fifo_state;
6023 enum pipe pipe = crtc->pipe;
6024 enum plane_id plane_id;
6025 int level;
6026
6027 vlv_get_fifo_size(crtc_state);
6028
6029 active->num_levels = wm->level + 1;
6030 active->cxsr = wm->cxsr;
6031
6032 for (level = 0; level < active->num_levels; level++) {
6033 struct g4x_pipe_wm *raw =
6034 &crtc_state->wm.vlv.raw[level];
6035
6036 active->sr[level].plane = wm->sr.plane;
6037 active->sr[level].cursor = wm->sr.cursor;
6038
6039 for_each_plane_id_on_crtc(crtc, plane_id) {
6040 active->wm[level].plane[plane_id] =
6041 wm->pipe[pipe].plane[plane_id];
6042
6043 raw->plane[plane_id] =
6044 vlv_invert_wm_value(active->wm[level].plane[plane_id],
6045 fifo_state->plane[plane_id]);
6046 }
6047 }
6048
6049 for_each_plane_id_on_crtc(crtc, plane_id)
6050 vlv_raw_plane_wm_set(crtc_state, level,
6051 plane_id, USHRT_MAX);
6052 vlv_invalidate_wms(crtc, active, level);
6053
6054 crtc_state->wm.vlv.optimal = *active;
6055 crtc_state->wm.vlv.intermediate = *active;
6056
6057 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6058 pipe_name(pipe),
6059 wm->pipe[pipe].plane[PLANE_PRIMARY],
6060 wm->pipe[pipe].plane[PLANE_CURSOR],
6061 wm->pipe[pipe].plane[PLANE_SPRITE0],
6062 wm->pipe[pipe].plane[PLANE_SPRITE1]);
6063 }
6064
6065 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6066 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6067 }
6068
6069 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6070 {
6071 struct intel_plane *plane;
6072 struct intel_crtc *crtc;
6073
6074 mutex_lock(&dev_priv->wm.wm_mutex);
6075
6076 for_each_intel_plane(&dev_priv->drm, plane) {
6077 struct intel_crtc *crtc =
6078 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6079 struct intel_crtc_state *crtc_state =
6080 to_intel_crtc_state(crtc->base.state);
6081 struct intel_plane_state *plane_state =
6082 to_intel_plane_state(plane->base.state);
6083 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6084 const struct vlv_fifo_state *fifo_state =
6085 &crtc_state->wm.vlv.fifo_state;
6086 enum plane_id plane_id = plane->id;
6087 int level;
6088
6089 if (plane_state->base.visible)
6090 continue;
6091
6092 for (level = 0; level < wm_state->num_levels; level++) {
6093 struct g4x_pipe_wm *raw =
6094 &crtc_state->wm.vlv.raw[level];
6095
6096 raw->plane[plane_id] = 0;
6097
6098 wm_state->wm[level].plane[plane_id] =
6099 vlv_invert_wm_value(raw->plane[plane_id],
6100 fifo_state->plane[plane_id]);
6101 }
6102 }
6103
6104 for_each_intel_crtc(&dev_priv->drm, crtc) {
6105 struct intel_crtc_state *crtc_state =
6106 to_intel_crtc_state(crtc->base.state);
6107
6108 crtc_state->wm.vlv.intermediate =
6109 crtc_state->wm.vlv.optimal;
6110 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6111 }
6112
6113 vlv_program_watermarks(dev_priv);
6114
6115 mutex_unlock(&dev_priv->wm.wm_mutex);
6116 }
6117
6118 /*
6119 * FIXME should probably kill this and improve
6120 * the real watermark readout/sanitation instead
6121 */
6122 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6123 {
6124 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6125 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6126 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6127
6128 /*
6129 * Don't touch WM1S_LP_EN here.
6130 * Doing so could cause underruns.
6131 */
6132 }
6133
6134 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6135 {
6136 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6137 struct intel_crtc *crtc;
6138
6139 ilk_init_lp_watermarks(dev_priv);
6140
6141 for_each_intel_crtc(&dev_priv->drm, crtc)
6142 ilk_pipe_wm_get_hw_state(crtc);
6143
6144 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6145 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6146 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6147
6148 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6149 if (INTEL_GEN(dev_priv) >= 7) {
6150 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6151 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6152 }
6153
6154 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6155 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6156 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6157 else if (IS_IVYBRIDGE(dev_priv))
6158 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6159 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6160
6161 hw->enable_fbc_wm =
6162 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6163 }
6164
6165 /**
6166 * intel_update_watermarks - update FIFO watermark values based on current modes
6167 * @crtc: the #intel_crtc on which to compute the WM
6168 *
6169 * Calculate watermark values for the various WM regs based on current mode
6170 * and plane configuration.
6171 *
6172 * There are several cases to deal with here:
6173 * - normal (i.e. non-self-refresh)
6174 * - self-refresh (SR) mode
6175 * - lines are large relative to FIFO size (buffer can hold up to 2)
6176 * - lines are small relative to FIFO size (buffer can hold more than 2
6177 * lines), so need to account for TLB latency
6178 *
6179 * The normal calculation is:
6180 * watermark = dotclock * bytes per pixel * latency
6181 * where latency is platform & configuration dependent (we assume pessimal
6182 * values here).
6183 *
6184 * The SR calculation is:
6185 * watermark = (trunc(latency/line time)+1) * surface width *
6186 * bytes per pixel
6187 * where
6188 * line time = htotal / dotclock
6189 * surface width = hdisplay for normal plane and 64 for cursor
6190 * and latency is assumed to be high, as above.
6191 *
6192 * The final value programmed to the register should always be rounded up,
6193 * and include an extra 2 entries to account for clock crossings.
6194 *
6195 * We don't use the sprite, so we can ignore that. And on Crestline we have
6196 * to set the non-SR watermarks to 8.
6197 */
6198 void intel_update_watermarks(struct intel_crtc *crtc)
6199 {
6200 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6201
6202 if (dev_priv->display.update_wm)
6203 dev_priv->display.update_wm(crtc);
6204 }
6205
6206 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6207 {
6208 u32 val;
6209
6210 if (!HAS_IPC(dev_priv))
6211 return;
6212
6213 val = I915_READ(DISP_ARB_CTL2);
6214
6215 if (dev_priv->ipc_enabled)
6216 val |= DISP_IPC_ENABLE;
6217 else
6218 val &= ~DISP_IPC_ENABLE;
6219
6220 I915_WRITE(DISP_ARB_CTL2, val);
6221 }
6222
6223 void intel_init_ipc(struct drm_i915_private *dev_priv)
6224 {
6225 if (!HAS_IPC(dev_priv))
6226 return;
6227
6228 /* Display WA #1141: SKL:all KBL:all CFL */
6229 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6230 dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
6231 else
6232 dev_priv->ipc_enabled = true;
6233
6234 intel_enable_ipc(dev_priv);
6235 }
6236
6237 /*
6238 * Lock protecting IPS related data structures
6239 */
6240 DEFINE_SPINLOCK(mchdev_lock);
6241
6242 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6243 {
6244 u16 rgvswctl;
6245
6246 lockdep_assert_held(&mchdev_lock);
6247
6248 rgvswctl = I915_READ16(MEMSWCTL);
6249 if (rgvswctl & MEMCTL_CMD_STS) {
6250 DRM_DEBUG("gpu busy, RCS change rejected\n");
6251 return false; /* still busy with another command */
6252 }
6253
6254 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6255 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6256 I915_WRITE16(MEMSWCTL, rgvswctl);
6257 POSTING_READ16(MEMSWCTL);
6258
6259 rgvswctl |= MEMCTL_CMD_STS;
6260 I915_WRITE16(MEMSWCTL, rgvswctl);
6261
6262 return true;
6263 }
6264
6265 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6266 {
6267 u32 rgvmodectl;
6268 u8 fmax, fmin, fstart, vstart;
6269
6270 spin_lock_irq(&mchdev_lock);
6271
6272 rgvmodectl = I915_READ(MEMMODECTL);
6273
6274 /* Enable temp reporting */
6275 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6276 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6277
6278 /* 100ms RC evaluation intervals */
6279 I915_WRITE(RCUPEI, 100000);
6280 I915_WRITE(RCDNEI, 100000);
6281
6282 /* Set max/min thresholds to 90ms and 80ms respectively */
6283 I915_WRITE(RCBMAXAVG, 90000);
6284 I915_WRITE(RCBMINAVG, 80000);
6285
6286 I915_WRITE(MEMIHYST, 1);
6287
6288 /* Set up min, max, and cur for interrupt handling */
6289 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6290 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6291 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6292 MEMMODE_FSTART_SHIFT;
6293
6294 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6295 PXVFREQ_PX_SHIFT;
6296
6297 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6298 dev_priv->ips.fstart = fstart;
6299
6300 dev_priv->ips.max_delay = fstart;
6301 dev_priv->ips.min_delay = fmin;
6302 dev_priv->ips.cur_delay = fstart;
6303
6304 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6305 fmax, fmin, fstart);
6306
6307 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6308
6309 /*
6310 * Interrupts will be enabled in ironlake_irq_postinstall
6311 */
6312
6313 I915_WRITE(VIDSTART, vstart);
6314 POSTING_READ(VIDSTART);
6315
6316 rgvmodectl |= MEMMODE_SWMODE_EN;
6317 I915_WRITE(MEMMODECTL, rgvmodectl);
6318
6319 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6320 DRM_ERROR("stuck trying to change perf mode\n");
6321 mdelay(1);
6322
6323 ironlake_set_drps(dev_priv, fstart);
6324
6325 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6326 I915_READ(DDREC) + I915_READ(CSIEC);
6327 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6328 dev_priv->ips.last_count2 = I915_READ(GFXEC);
6329 dev_priv->ips.last_time2 = ktime_get_raw_ns();
6330
6331 spin_unlock_irq(&mchdev_lock);
6332 }
6333
6334 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6335 {
6336 u16 rgvswctl;
6337
6338 spin_lock_irq(&mchdev_lock);
6339
6340 rgvswctl = I915_READ16(MEMSWCTL);
6341
6342 /* Ack interrupts, disable EFC interrupt */
6343 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6344 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6345 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6346 I915_WRITE(DEIIR, DE_PCU_EVENT);
6347 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6348
6349 /* Go back to the starting frequency */
6350 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6351 mdelay(1);
6352 rgvswctl |= MEMCTL_CMD_STS;
6353 I915_WRITE(MEMSWCTL, rgvswctl);
6354 mdelay(1);
6355
6356 spin_unlock_irq(&mchdev_lock);
6357 }
6358
6359 /* There's a funny hw issue where the hw returns all 0 when reading from
6360 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6361 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6362 * all limits and the gpu stuck at whatever frequency it is at atm).
6363 */
6364 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6365 {
6366 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6367 u32 limits;
6368
6369 /* Only set the down limit when we've reached the lowest level to avoid
6370 * getting more interrupts, otherwise leave this clear. This prevents a
6371 * race in the hw when coming out of rc6: There's a tiny window where
6372 * the hw runs at the minimal clock before selecting the desired
6373 * frequency, if the down threshold expires in that window we will not
6374 * receive a down interrupt. */
6375 if (INTEL_GEN(dev_priv) >= 9) {
6376 limits = (rps->max_freq_softlimit) << 23;
6377 if (val <= rps->min_freq_softlimit)
6378 limits |= (rps->min_freq_softlimit) << 14;
6379 } else {
6380 limits = rps->max_freq_softlimit << 24;
6381 if (val <= rps->min_freq_softlimit)
6382 limits |= rps->min_freq_softlimit << 16;
6383 }
6384
6385 return limits;
6386 }
6387
6388 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6389 {
6390 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6391 u32 threshold_up = 0, threshold_down = 0; /* in % */
6392 u32 ei_up = 0, ei_down = 0;
6393
6394 lockdep_assert_held(&rps->power.mutex);
6395
6396 if (new_power == rps->power.mode)
6397 return;
6398
6399 /* Note the units here are not exactly 1us, but 1280ns. */
6400 switch (new_power) {
6401 case LOW_POWER:
6402 /* Upclock if more than 95% busy over 16ms */
6403 ei_up = 16000;
6404 threshold_up = 95;
6405
6406 /* Downclock if less than 85% busy over 32ms */
6407 ei_down = 32000;
6408 threshold_down = 85;
6409 break;
6410
6411 case BETWEEN:
6412 /* Upclock if more than 90% busy over 13ms */
6413 ei_up = 13000;
6414 threshold_up = 90;
6415
6416 /* Downclock if less than 75% busy over 32ms */
6417 ei_down = 32000;
6418 threshold_down = 75;
6419 break;
6420
6421 case HIGH_POWER:
6422 /* Upclock if more than 85% busy over 10ms */
6423 ei_up = 10000;
6424 threshold_up = 85;
6425
6426 /* Downclock if less than 60% busy over 32ms */
6427 ei_down = 32000;
6428 threshold_down = 60;
6429 break;
6430 }
6431
6432 /* When byt can survive without system hang with dynamic
6433 * sw freq adjustments, this restriction can be lifted.
6434 */
6435 if (IS_VALLEYVIEW(dev_priv))
6436 goto skip_hw_write;
6437
6438 I915_WRITE(GEN6_RP_UP_EI,
6439 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6440 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6441 GT_INTERVAL_FROM_US(dev_priv,
6442 ei_up * threshold_up / 100));
6443
6444 I915_WRITE(GEN6_RP_DOWN_EI,
6445 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6446 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6447 GT_INTERVAL_FROM_US(dev_priv,
6448 ei_down * threshold_down / 100));
6449
6450 I915_WRITE(GEN6_RP_CONTROL,
6451 GEN6_RP_MEDIA_TURBO |
6452 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6453 GEN6_RP_MEDIA_IS_GFX |
6454 GEN6_RP_ENABLE |
6455 GEN6_RP_UP_BUSY_AVG |
6456 GEN6_RP_DOWN_IDLE_AVG);
6457
6458 skip_hw_write:
6459 rps->power.mode = new_power;
6460 rps->power.up_threshold = threshold_up;
6461 rps->power.down_threshold = threshold_down;
6462 }
6463
6464 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6465 {
6466 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6467 int new_power;
6468
6469 new_power = rps->power.mode;
6470 switch (rps->power.mode) {
6471 case LOW_POWER:
6472 if (val > rps->efficient_freq + 1 &&
6473 val > rps->cur_freq)
6474 new_power = BETWEEN;
6475 break;
6476
6477 case BETWEEN:
6478 if (val <= rps->efficient_freq &&
6479 val < rps->cur_freq)
6480 new_power = LOW_POWER;
6481 else if (val >= rps->rp0_freq &&
6482 val > rps->cur_freq)
6483 new_power = HIGH_POWER;
6484 break;
6485
6486 case HIGH_POWER:
6487 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6488 val < rps->cur_freq)
6489 new_power = BETWEEN;
6490 break;
6491 }
6492 /* Max/min bins are special */
6493 if (val <= rps->min_freq_softlimit)
6494 new_power = LOW_POWER;
6495 if (val >= rps->max_freq_softlimit)
6496 new_power = HIGH_POWER;
6497
6498 mutex_lock(&rps->power.mutex);
6499 if (rps->power.interactive)
6500 new_power = HIGH_POWER;
6501 rps_set_power(dev_priv, new_power);
6502 mutex_unlock(&rps->power.mutex);
6503 }
6504
6505 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6506 {
6507 struct intel_rps *rps = &i915->gt_pm.rps;
6508
6509 if (INTEL_GEN(i915) < 6)
6510 return;
6511
6512 mutex_lock(&rps->power.mutex);
6513 if (interactive) {
6514 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6515 rps_set_power(i915, HIGH_POWER);
6516 } else {
6517 GEM_BUG_ON(!rps->power.interactive);
6518 rps->power.interactive--;
6519 }
6520 mutex_unlock(&rps->power.mutex);
6521 }
6522
6523 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6524 {
6525 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6526 u32 mask = 0;
6527
6528 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6529 if (val > rps->min_freq_softlimit)
6530 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6531 if (val < rps->max_freq_softlimit)
6532 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6533
6534 mask &= dev_priv->pm_rps_events;
6535
6536 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6537 }
6538
6539 /* gen6_set_rps is called to update the frequency request, but should also be
6540 * called when the range (min_delay and max_delay) is modified so that we can
6541 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6542 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6543 {
6544 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6545
6546 /* min/max delay may still have been modified so be sure to
6547 * write the limits value.
6548 */
6549 if (val != rps->cur_freq) {
6550 gen6_set_rps_thresholds(dev_priv, val);
6551
6552 if (INTEL_GEN(dev_priv) >= 9)
6553 I915_WRITE(GEN6_RPNSWREQ,
6554 GEN9_FREQUENCY(val));
6555 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6556 I915_WRITE(GEN6_RPNSWREQ,
6557 HSW_FREQUENCY(val));
6558 else
6559 I915_WRITE(GEN6_RPNSWREQ,
6560 GEN6_FREQUENCY(val) |
6561 GEN6_OFFSET(0) |
6562 GEN6_AGGRESSIVE_TURBO);
6563 }
6564
6565 /* Make sure we continue to get interrupts
6566 * until we hit the minimum or maximum frequencies.
6567 */
6568 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6569 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6570
6571 rps->cur_freq = val;
6572 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6573
6574 return 0;
6575 }
6576
6577 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6578 {
6579 int err;
6580
6581 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6582 "Odd GPU freq value\n"))
6583 val &= ~1;
6584
6585 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6586
6587 if (val != dev_priv->gt_pm.rps.cur_freq) {
6588 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6589 if (err)
6590 return err;
6591
6592 gen6_set_rps_thresholds(dev_priv, val);
6593 }
6594
6595 dev_priv->gt_pm.rps.cur_freq = val;
6596 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6597
6598 return 0;
6599 }
6600
6601 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6602 *
6603 * * If Gfx is Idle, then
6604 * 1. Forcewake Media well.
6605 * 2. Request idle freq.
6606 * 3. Release Forcewake of Media well.
6607 */
6608 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6609 {
6610 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6611 u32 val = rps->idle_freq;
6612 int err;
6613
6614 if (rps->cur_freq <= val)
6615 return;
6616
6617 /* The punit delays the write of the frequency and voltage until it
6618 * determines the GPU is awake. During normal usage we don't want to
6619 * waste power changing the frequency if the GPU is sleeping (rc6).
6620 * However, the GPU and driver is now idle and we do not want to delay
6621 * switching to minimum voltage (reducing power whilst idle) as we do
6622 * not expect to be woken in the near future and so must flush the
6623 * change by waking the device.
6624 *
6625 * We choose to take the media powerwell (either would do to trick the
6626 * punit into committing the voltage change) as that takes a lot less
6627 * power than the render powerwell.
6628 */
6629 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6630 err = valleyview_set_rps(dev_priv, val);
6631 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6632
6633 if (err)
6634 DRM_ERROR("Failed to set RPS for idle\n");
6635 }
6636
6637 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6638 {
6639 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6640
6641 mutex_lock(&dev_priv->pcu_lock);
6642 if (rps->enabled) {
6643 u8 freq;
6644
6645 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6646 gen6_rps_reset_ei(dev_priv);
6647 I915_WRITE(GEN6_PMINTRMSK,
6648 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6649
6650 gen6_enable_rps_interrupts(dev_priv);
6651
6652 /* Use the user's desired frequency as a guide, but for better
6653 * performance, jump directly to RPe as our starting frequency.
6654 */
6655 freq = max(rps->cur_freq,
6656 rps->efficient_freq);
6657
6658 if (intel_set_rps(dev_priv,
6659 clamp(freq,
6660 rps->min_freq_softlimit,
6661 rps->max_freq_softlimit)))
6662 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6663 }
6664 mutex_unlock(&dev_priv->pcu_lock);
6665 }
6666
6667 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6668 {
6669 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6670
6671 /* Flush our bottom-half so that it does not race with us
6672 * setting the idle frequency and so that it is bounded by
6673 * our rpm wakeref. And then disable the interrupts to stop any
6674 * futher RPS reclocking whilst we are asleep.
6675 */
6676 gen6_disable_rps_interrupts(dev_priv);
6677
6678 mutex_lock(&dev_priv->pcu_lock);
6679 if (rps->enabled) {
6680 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6681 vlv_set_rps_idle(dev_priv);
6682 else
6683 gen6_set_rps(dev_priv, rps->idle_freq);
6684 rps->last_adj = 0;
6685 I915_WRITE(GEN6_PMINTRMSK,
6686 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6687 }
6688 mutex_unlock(&dev_priv->pcu_lock);
6689 }
6690
6691 void gen6_rps_boost(struct i915_request *rq,
6692 struct intel_rps_client *rps_client)
6693 {
6694 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6695 unsigned long flags;
6696 bool boost;
6697
6698 /* This is intentionally racy! We peek at the state here, then
6699 * validate inside the RPS worker.
6700 */
6701 if (!rps->enabled)
6702 return;
6703
6704 if (i915_request_signaled(rq))
6705 return;
6706
6707 /* Serializes with i915_request_retire() */
6708 boost = false;
6709 spin_lock_irqsave(&rq->lock, flags);
6710 if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6711 boost = !atomic_fetch_inc(&rps->num_waiters);
6712 rq->waitboost = true;
6713 }
6714 spin_unlock_irqrestore(&rq->lock, flags);
6715 if (!boost)
6716 return;
6717
6718 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6719 schedule_work(&rps->work);
6720
6721 atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6722 }
6723
6724 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6725 {
6726 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6727 int err;
6728
6729 lockdep_assert_held(&dev_priv->pcu_lock);
6730 GEM_BUG_ON(val > rps->max_freq);
6731 GEM_BUG_ON(val < rps->min_freq);
6732
6733 if (!rps->enabled) {
6734 rps->cur_freq = val;
6735 return 0;
6736 }
6737
6738 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6739 err = valleyview_set_rps(dev_priv, val);
6740 else
6741 err = gen6_set_rps(dev_priv, val);
6742
6743 return err;
6744 }
6745
6746 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6747 {
6748 I915_WRITE(GEN6_RC_CONTROL, 0);
6749 I915_WRITE(GEN9_PG_ENABLE, 0);
6750 }
6751
6752 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6753 {
6754 I915_WRITE(GEN6_RP_CONTROL, 0);
6755 }
6756
6757 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6758 {
6759 I915_WRITE(GEN6_RC_CONTROL, 0);
6760 }
6761
6762 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6763 {
6764 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6765 I915_WRITE(GEN6_RP_CONTROL, 0);
6766 }
6767
6768 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6769 {
6770 I915_WRITE(GEN6_RC_CONTROL, 0);
6771 }
6772
6773 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6774 {
6775 I915_WRITE(GEN6_RP_CONTROL, 0);
6776 }
6777
6778 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6779 {
6780 /* We're doing forcewake before Disabling RC6,
6781 * This what the BIOS expects when going into suspend */
6782 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6783
6784 I915_WRITE(GEN6_RC_CONTROL, 0);
6785
6786 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6787 }
6788
6789 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6790 {
6791 I915_WRITE(GEN6_RP_CONTROL, 0);
6792 }
6793
6794 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6795 {
6796 bool enable_rc6 = true;
6797 unsigned long rc6_ctx_base;
6798 u32 rc_ctl;
6799 int rc_sw_target;
6800
6801 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6802 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6803 RC_SW_TARGET_STATE_SHIFT;
6804 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6805 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6806 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6807 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6808 rc_sw_target);
6809
6810 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6811 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6812 enable_rc6 = false;
6813 }
6814
6815 /*
6816 * The exact context size is not known for BXT, so assume a page size
6817 * for this check.
6818 */
6819 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6820 if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6821 (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6822 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6823 enable_rc6 = false;
6824 }
6825
6826 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6827 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6828 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6829 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6830 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6831 enable_rc6 = false;
6832 }
6833
6834 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6835 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6836 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6837 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6838 enable_rc6 = false;
6839 }
6840
6841 if (!I915_READ(GEN6_GFXPAUSE)) {
6842 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6843 enable_rc6 = false;
6844 }
6845
6846 if (!I915_READ(GEN8_MISC_CTRL0)) {
6847 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6848 enable_rc6 = false;
6849 }
6850
6851 return enable_rc6;
6852 }
6853
6854 static bool sanitize_rc6(struct drm_i915_private *i915)
6855 {
6856 struct intel_device_info *info = mkwrite_device_info(i915);
6857
6858 /* Powersaving is controlled by the host when inside a VM */
6859 if (intel_vgpu_active(i915))
6860 info->has_rc6 = 0;
6861
6862 if (info->has_rc6 &&
6863 IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6864 DRM_INFO("RC6 disabled by BIOS\n");
6865 info->has_rc6 = 0;
6866 }
6867
6868 /*
6869 * We assume that we do not have any deep rc6 levels if we don't have
6870 * have the previous rc6 level supported, i.e. we use HAS_RC6()
6871 * as the initial coarse check for rc6 in general, moving on to
6872 * progressively finer/deeper levels.
6873 */
6874 if (!info->has_rc6 && info->has_rc6p)
6875 info->has_rc6p = 0;
6876
6877 return info->has_rc6;
6878 }
6879
6880 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6881 {
6882 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6883
6884 /* All of these values are in units of 50MHz */
6885
6886 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6887 if (IS_GEN9_LP(dev_priv)) {
6888 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6889 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6890 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6891 rps->min_freq = (rp_state_cap >> 0) & 0xff;
6892 } else {
6893 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6894 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
6895 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6896 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6897 }
6898 /* hw_max = RP0 until we check for overclocking */
6899 rps->max_freq = rps->rp0_freq;
6900
6901 rps->efficient_freq = rps->rp1_freq;
6902 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6903 IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6904 u32 ddcc_status = 0;
6905
6906 if (sandybridge_pcode_read(dev_priv,
6907 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6908 &ddcc_status) == 0)
6909 rps->efficient_freq =
6910 clamp_t(u8,
6911 ((ddcc_status >> 8) & 0xff),
6912 rps->min_freq,
6913 rps->max_freq);
6914 }
6915
6916 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6917 /* Store the frequency values in 16.66 MHZ units, which is
6918 * the natural hardware unit for SKL
6919 */
6920 rps->rp0_freq *= GEN9_FREQ_SCALER;
6921 rps->rp1_freq *= GEN9_FREQ_SCALER;
6922 rps->min_freq *= GEN9_FREQ_SCALER;
6923 rps->max_freq *= GEN9_FREQ_SCALER;
6924 rps->efficient_freq *= GEN9_FREQ_SCALER;
6925 }
6926 }
6927
6928 static void reset_rps(struct drm_i915_private *dev_priv,
6929 int (*set)(struct drm_i915_private *, u8))
6930 {
6931 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6932 u8 freq = rps->cur_freq;
6933
6934 /* force a reset */
6935 rps->power.mode = -1;
6936 rps->cur_freq = -1;
6937
6938 if (set(dev_priv, freq))
6939 DRM_ERROR("Failed to reset RPS to initial values\n");
6940 }
6941
6942 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6943 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6944 {
6945 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6946
6947 /* Program defaults and thresholds for RPS */
6948 if (IS_GEN(dev_priv, 9))
6949 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6950 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6951
6952 /* 1 second timeout*/
6953 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6954 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6955
6956 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6957
6958 /* Leaning on the below call to gen6_set_rps to program/setup the
6959 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6960 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6961 reset_rps(dev_priv, gen6_set_rps);
6962
6963 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6964 }
6965
6966 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6967 {
6968 struct intel_engine_cs *engine;
6969 enum intel_engine_id id;
6970 u32 rc6_mode;
6971
6972 /* 1a: Software RC state - RC0 */
6973 I915_WRITE(GEN6_RC_STATE, 0);
6974
6975 /* 1b: Get forcewake during program sequence. Although the driver
6976 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6977 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6978
6979 /* 2a: Disable RC states. */
6980 I915_WRITE(GEN6_RC_CONTROL, 0);
6981
6982 /* 2b: Program RC6 thresholds.*/
6983 if (INTEL_GEN(dev_priv) >= 10) {
6984 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6985 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6986 } else if (IS_SKYLAKE(dev_priv)) {
6987 /*
6988 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6989 * when CPG is enabled
6990 */
6991 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6992 } else {
6993 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6994 }
6995
6996 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6997 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6998 for_each_engine(engine, dev_priv, id)
6999 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7000
7001 if (HAS_GUC(dev_priv))
7002 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7003
7004 I915_WRITE(GEN6_RC_SLEEP, 0);
7005
7006 /*
7007 * 2c: Program Coarse Power Gating Policies.
7008 *
7009 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7010 * use instead is a more conservative estimate for the maximum time
7011 * it takes us to service a CS interrupt and submit a new ELSP - that
7012 * is the time which the GPU is idle waiting for the CPU to select the
7013 * next request to execute. If the idle hysteresis is less than that
7014 * interrupt service latency, the hardware will automatically gate
7015 * the power well and we will then incur the wake up cost on top of
7016 * the service latency. A similar guide from intel_pstate is that we
7017 * do not want the enable hysteresis to less than the wakeup latency.
7018 *
7019 * igt/gem_exec_nop/sequential provides a rough estimate for the
7020 * service latency, and puts it around 10us for Broadwell (and other
7021 * big core) and around 40us for Broxton (and other low power cores).
7022 * [Note that for legacy ringbuffer submission, this is less than 1us!]
7023 * However, the wakeup latency on Broxton is closer to 100us. To be
7024 * conservative, we have to factor in a context switch on top (due
7025 * to ksoftirqd).
7026 */
7027 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7028 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7029
7030 /* 3a: Enable RC6 */
7031 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
7032
7033 /* WaRsUseTimeoutMode:cnl (pre-prod) */
7034 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
7035 rc6_mode = GEN7_RC_CTL_TO_MODE;
7036 else
7037 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
7038
7039 I915_WRITE(GEN6_RC_CONTROL,
7040 GEN6_RC_CTL_HW_ENABLE |
7041 GEN6_RC_CTL_RC6_ENABLE |
7042 rc6_mode);
7043
7044 /*
7045 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7046 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7047 */
7048 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7049 I915_WRITE(GEN9_PG_ENABLE, 0);
7050 else
7051 I915_WRITE(GEN9_PG_ENABLE,
7052 GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7053
7054 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7055 }
7056
7057 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7058 {
7059 struct intel_engine_cs *engine;
7060 enum intel_engine_id id;
7061
7062 /* 1a: Software RC state - RC0 */
7063 I915_WRITE(GEN6_RC_STATE, 0);
7064
7065 /* 1b: Get forcewake during program sequence. Although the driver
7066 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7067 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7068
7069 /* 2a: Disable RC states. */
7070 I915_WRITE(GEN6_RC_CONTROL, 0);
7071
7072 /* 2b: Program RC6 thresholds.*/
7073 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7074 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7075 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7076 for_each_engine(engine, dev_priv, id)
7077 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7078 I915_WRITE(GEN6_RC_SLEEP, 0);
7079 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7080
7081 /* 3: Enable RC6 */
7082
7083 I915_WRITE(GEN6_RC_CONTROL,
7084 GEN6_RC_CTL_HW_ENABLE |
7085 GEN7_RC_CTL_TO_MODE |
7086 GEN6_RC_CTL_RC6_ENABLE);
7087
7088 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7089 }
7090
7091 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7092 {
7093 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7094
7095 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7096
7097 /* 1 Program defaults and thresholds for RPS*/
7098 I915_WRITE(GEN6_RPNSWREQ,
7099 HSW_FREQUENCY(rps->rp1_freq));
7100 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7101 HSW_FREQUENCY(rps->rp1_freq));
7102 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7103 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7104
7105 /* Docs recommend 900MHz, and 300 MHz respectively */
7106 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7107 rps->max_freq_softlimit << 24 |
7108 rps->min_freq_softlimit << 16);
7109
7110 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7111 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7112 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7113 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7114
7115 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7116
7117 /* 2: Enable RPS */
7118 I915_WRITE(GEN6_RP_CONTROL,
7119 GEN6_RP_MEDIA_TURBO |
7120 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7121 GEN6_RP_MEDIA_IS_GFX |
7122 GEN6_RP_ENABLE |
7123 GEN6_RP_UP_BUSY_AVG |
7124 GEN6_RP_DOWN_IDLE_AVG);
7125
7126 reset_rps(dev_priv, gen6_set_rps);
7127
7128 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7129 }
7130
7131 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7132 {
7133 struct intel_engine_cs *engine;
7134 enum intel_engine_id id;
7135 u32 rc6vids, rc6_mask;
7136 u32 gtfifodbg;
7137 int ret;
7138
7139 I915_WRITE(GEN6_RC_STATE, 0);
7140
7141 /* Clear the DBG now so we don't confuse earlier errors */
7142 gtfifodbg = I915_READ(GTFIFODBG);
7143 if (gtfifodbg) {
7144 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7145 I915_WRITE(GTFIFODBG, gtfifodbg);
7146 }
7147
7148 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7149
7150 /* disable the counters and set deterministic thresholds */
7151 I915_WRITE(GEN6_RC_CONTROL, 0);
7152
7153 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7154 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7155 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7156 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7157 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7158
7159 for_each_engine(engine, dev_priv, id)
7160 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7161
7162 I915_WRITE(GEN6_RC_SLEEP, 0);
7163 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7164 if (IS_IVYBRIDGE(dev_priv))
7165 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7166 else
7167 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7168 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7169 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7170
7171 /* We don't use those on Haswell */
7172 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7173 if (HAS_RC6p(dev_priv))
7174 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7175 if (HAS_RC6pp(dev_priv))
7176 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7177 I915_WRITE(GEN6_RC_CONTROL,
7178 rc6_mask |
7179 GEN6_RC_CTL_EI_MODE(1) |
7180 GEN6_RC_CTL_HW_ENABLE);
7181
7182 rc6vids = 0;
7183 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7184 if (IS_GEN(dev_priv, 6) && ret) {
7185 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7186 } else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7187 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7188 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7189 rc6vids &= 0xffff00;
7190 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7191 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7192 if (ret)
7193 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7194 }
7195
7196 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7197 }
7198
7199 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7200 {
7201 /* Here begins a magic sequence of register writes to enable
7202 * auto-downclocking.
7203 *
7204 * Perhaps there might be some value in exposing these to
7205 * userspace...
7206 */
7207 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7208
7209 /* Power down if completely idle for over 50ms */
7210 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7211 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7212
7213 reset_rps(dev_priv, gen6_set_rps);
7214
7215 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7216 }
7217
7218 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7219 {
7220 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7221 const int min_freq = 15;
7222 const int scaling_factor = 180;
7223 unsigned int gpu_freq;
7224 unsigned int max_ia_freq, min_ring_freq;
7225 unsigned int max_gpu_freq, min_gpu_freq;
7226 struct cpufreq_policy *policy;
7227
7228 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7229
7230 if (rps->max_freq <= rps->min_freq)
7231 return;
7232
7233 policy = cpufreq_cpu_get(0);
7234 if (policy) {
7235 max_ia_freq = policy->cpuinfo.max_freq;
7236 cpufreq_cpu_put(policy);
7237 } else {
7238 /*
7239 * Default to measured freq if none found, PCU will ensure we
7240 * don't go over
7241 */
7242 max_ia_freq = tsc_khz;
7243 }
7244
7245 /* Convert from kHz to MHz */
7246 max_ia_freq /= 1000;
7247
7248 min_ring_freq = I915_READ(DCLK) & 0xf;
7249 /* convert DDR frequency from units of 266.6MHz to bandwidth */
7250 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7251
7252 min_gpu_freq = rps->min_freq;
7253 max_gpu_freq = rps->max_freq;
7254 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7255 /* Convert GT frequency to 50 HZ units */
7256 min_gpu_freq /= GEN9_FREQ_SCALER;
7257 max_gpu_freq /= GEN9_FREQ_SCALER;
7258 }
7259
7260 /*
7261 * For each potential GPU frequency, load a ring frequency we'd like
7262 * to use for memory access. We do this by specifying the IA frequency
7263 * the PCU should use as a reference to determine the ring frequency.
7264 */
7265 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7266 const int diff = max_gpu_freq - gpu_freq;
7267 unsigned int ia_freq = 0, ring_freq = 0;
7268
7269 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7270 /*
7271 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7272 * No floor required for ring frequency on SKL.
7273 */
7274 ring_freq = gpu_freq;
7275 } else if (INTEL_GEN(dev_priv) >= 8) {
7276 /* max(2 * GT, DDR). NB: GT is 50MHz units */
7277 ring_freq = max(min_ring_freq, gpu_freq);
7278 } else if (IS_HASWELL(dev_priv)) {
7279 ring_freq = mult_frac(gpu_freq, 5, 4);
7280 ring_freq = max(min_ring_freq, ring_freq);
7281 /* leave ia_freq as the default, chosen by cpufreq */
7282 } else {
7283 /* On older processors, there is no separate ring
7284 * clock domain, so in order to boost the bandwidth
7285 * of the ring, we need to upclock the CPU (ia_freq).
7286 *
7287 * For GPU frequencies less than 750MHz,
7288 * just use the lowest ring freq.
7289 */
7290 if (gpu_freq < min_freq)
7291 ia_freq = 800;
7292 else
7293 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7294 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7295 }
7296
7297 sandybridge_pcode_write(dev_priv,
7298 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7299 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7300 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7301 gpu_freq);
7302 }
7303 }
7304
7305 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7306 {
7307 u32 val, rp0;
7308
7309 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7310
7311 switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7312 case 8:
7313 /* (2 * 4) config */
7314 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7315 break;
7316 case 12:
7317 /* (2 * 6) config */
7318 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7319 break;
7320 case 16:
7321 /* (2 * 8) config */
7322 default:
7323 /* Setting (2 * 8) Min RP0 for any other combination */
7324 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7325 break;
7326 }
7327
7328 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7329
7330 return rp0;
7331 }
7332
7333 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7334 {
7335 u32 val, rpe;
7336
7337 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7338 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7339
7340 return rpe;
7341 }
7342
7343 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7344 {
7345 u32 val, rp1;
7346
7347 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7348 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7349
7350 return rp1;
7351 }
7352
7353 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7354 {
7355 u32 val, rpn;
7356
7357 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7358 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7359 FB_GFX_FREQ_FUSE_MASK);
7360
7361 return rpn;
7362 }
7363
7364 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7365 {
7366 u32 val, rp1;
7367
7368 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7369
7370 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7371
7372 return rp1;
7373 }
7374
7375 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7376 {
7377 u32 val, rp0;
7378
7379 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7380
7381 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7382 /* Clamp to max */
7383 rp0 = min_t(u32, rp0, 0xea);
7384
7385 return rp0;
7386 }
7387
7388 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7389 {
7390 u32 val, rpe;
7391
7392 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7393 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7394 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7395 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7396
7397 return rpe;
7398 }
7399
7400 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7401 {
7402 u32 val;
7403
7404 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7405 /*
7406 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7407 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7408 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7409 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7410 * to make sure it matches what Punit accepts.
7411 */
7412 return max_t(u32, val, 0xc0);
7413 }
7414
7415 /* Check that the pctx buffer wasn't move under us. */
7416 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7417 {
7418 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7419
7420 WARN_ON(pctx_addr != dev_priv->dsm.start +
7421 dev_priv->vlv_pctx->stolen->start);
7422 }
7423
7424
7425 /* Check that the pcbr address is not empty. */
7426 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7427 {
7428 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7429
7430 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7431 }
7432
7433 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7434 {
7435 resource_size_t pctx_paddr, paddr;
7436 resource_size_t pctx_size = 32*1024;
7437 u32 pcbr;
7438
7439 pcbr = I915_READ(VLV_PCBR);
7440 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7441 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7442 paddr = dev_priv->dsm.end + 1 - pctx_size;
7443 GEM_BUG_ON(paddr > U32_MAX);
7444
7445 pctx_paddr = (paddr & (~4095));
7446 I915_WRITE(VLV_PCBR, pctx_paddr);
7447 }
7448
7449 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7450 }
7451
7452 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7453 {
7454 struct drm_i915_gem_object *pctx;
7455 resource_size_t pctx_paddr;
7456 resource_size_t pctx_size = 24*1024;
7457 u32 pcbr;
7458
7459 pcbr = I915_READ(VLV_PCBR);
7460 if (pcbr) {
7461 /* BIOS set it up already, grab the pre-alloc'd space */
7462 resource_size_t pcbr_offset;
7463
7464 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7465 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7466 pcbr_offset,
7467 I915_GTT_OFFSET_NONE,
7468 pctx_size);
7469 goto out;
7470 }
7471
7472 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7473
7474 /*
7475 * From the Gunit register HAS:
7476 * The Gfx driver is expected to program this register and ensure
7477 * proper allocation within Gfx stolen memory. For example, this
7478 * register should be programmed such than the PCBR range does not
7479 * overlap with other ranges, such as the frame buffer, protected
7480 * memory, or any other relevant ranges.
7481 */
7482 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7483 if (!pctx) {
7484 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7485 goto out;
7486 }
7487
7488 GEM_BUG_ON(range_overflows_t(u64,
7489 dev_priv->dsm.start,
7490 pctx->stolen->start,
7491 U32_MAX));
7492 pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7493 I915_WRITE(VLV_PCBR, pctx_paddr);
7494
7495 out:
7496 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7497 dev_priv->vlv_pctx = pctx;
7498 }
7499
7500 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7501 {
7502 struct drm_i915_gem_object *pctx;
7503
7504 pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7505 if (pctx)
7506 i915_gem_object_put(pctx);
7507 }
7508
7509 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7510 {
7511 dev_priv->gt_pm.rps.gpll_ref_freq =
7512 vlv_get_cck_clock(dev_priv, "GPLL ref",
7513 CCK_GPLL_CLOCK_CONTROL,
7514 dev_priv->czclk_freq);
7515
7516 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7517 dev_priv->gt_pm.rps.gpll_ref_freq);
7518 }
7519
7520 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7521 {
7522 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7523 u32 val;
7524
7525 valleyview_setup_pctx(dev_priv);
7526
7527 vlv_init_gpll_ref_freq(dev_priv);
7528
7529 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7530 switch ((val >> 6) & 3) {
7531 case 0:
7532 case 1:
7533 dev_priv->mem_freq = 800;
7534 break;
7535 case 2:
7536 dev_priv->mem_freq = 1066;
7537 break;
7538 case 3:
7539 dev_priv->mem_freq = 1333;
7540 break;
7541 }
7542 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7543
7544 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7545 rps->rp0_freq = rps->max_freq;
7546 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7547 intel_gpu_freq(dev_priv, rps->max_freq),
7548 rps->max_freq);
7549
7550 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7551 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7552 intel_gpu_freq(dev_priv, rps->efficient_freq),
7553 rps->efficient_freq);
7554
7555 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7556 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7557 intel_gpu_freq(dev_priv, rps->rp1_freq),
7558 rps->rp1_freq);
7559
7560 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7561 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7562 intel_gpu_freq(dev_priv, rps->min_freq),
7563 rps->min_freq);
7564 }
7565
7566 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7567 {
7568 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7569 u32 val;
7570
7571 cherryview_setup_pctx(dev_priv);
7572
7573 vlv_init_gpll_ref_freq(dev_priv);
7574
7575 mutex_lock(&dev_priv->sb_lock);
7576 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7577 mutex_unlock(&dev_priv->sb_lock);
7578
7579 switch ((val >> 2) & 0x7) {
7580 case 3:
7581 dev_priv->mem_freq = 2000;
7582 break;
7583 default:
7584 dev_priv->mem_freq = 1600;
7585 break;
7586 }
7587 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7588
7589 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7590 rps->rp0_freq = rps->max_freq;
7591 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7592 intel_gpu_freq(dev_priv, rps->max_freq),
7593 rps->max_freq);
7594
7595 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7596 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7597 intel_gpu_freq(dev_priv, rps->efficient_freq),
7598 rps->efficient_freq);
7599
7600 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7601 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7602 intel_gpu_freq(dev_priv, rps->rp1_freq),
7603 rps->rp1_freq);
7604
7605 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7606 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7607 intel_gpu_freq(dev_priv, rps->min_freq),
7608 rps->min_freq);
7609
7610 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7611 rps->min_freq) & 1,
7612 "Odd GPU freq values\n");
7613 }
7614
7615 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7616 {
7617 valleyview_cleanup_pctx(dev_priv);
7618 }
7619
7620 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7621 {
7622 struct intel_engine_cs *engine;
7623 enum intel_engine_id id;
7624 u32 gtfifodbg, rc6_mode, pcbr;
7625
7626 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7627 GT_FIFO_FREE_ENTRIES_CHV);
7628 if (gtfifodbg) {
7629 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7630 gtfifodbg);
7631 I915_WRITE(GTFIFODBG, gtfifodbg);
7632 }
7633
7634 cherryview_check_pctx(dev_priv);
7635
7636 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7637 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7638 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7639
7640 /* Disable RC states. */
7641 I915_WRITE(GEN6_RC_CONTROL, 0);
7642
7643 /* 2a: Program RC6 thresholds.*/
7644 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7645 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7646 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7647
7648 for_each_engine(engine, dev_priv, id)
7649 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7650 I915_WRITE(GEN6_RC_SLEEP, 0);
7651
7652 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7653 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7654
7655 /* Allows RC6 residency counter to work */
7656 I915_WRITE(VLV_COUNTER_CONTROL,
7657 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7658 VLV_MEDIA_RC6_COUNT_EN |
7659 VLV_RENDER_RC6_COUNT_EN));
7660
7661 /* For now we assume BIOS is allocating and populating the PCBR */
7662 pcbr = I915_READ(VLV_PCBR);
7663
7664 /* 3: Enable RC6 */
7665 rc6_mode = 0;
7666 if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7667 rc6_mode = GEN7_RC_CTL_TO_MODE;
7668 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7669
7670 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7671 }
7672
7673 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7674 {
7675 u32 val;
7676
7677 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7678
7679 /* 1: Program defaults and thresholds for RPS*/
7680 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7681 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7682 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7683 I915_WRITE(GEN6_RP_UP_EI, 66000);
7684 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7685
7686 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7687
7688 /* 2: Enable RPS */
7689 I915_WRITE(GEN6_RP_CONTROL,
7690 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7691 GEN6_RP_MEDIA_IS_GFX |
7692 GEN6_RP_ENABLE |
7693 GEN6_RP_UP_BUSY_AVG |
7694 GEN6_RP_DOWN_IDLE_AVG);
7695
7696 /* Setting Fixed Bias */
7697 val = VLV_OVERRIDE_EN |
7698 VLV_SOC_TDP_EN |
7699 CHV_BIAS_CPU_50_SOC_50;
7700 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7701
7702 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7703
7704 /* RPS code assumes GPLL is used */
7705 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7706
7707 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7708 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7709
7710 reset_rps(dev_priv, valleyview_set_rps);
7711
7712 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7713 }
7714
7715 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7716 {
7717 struct intel_engine_cs *engine;
7718 enum intel_engine_id id;
7719 u32 gtfifodbg;
7720
7721 valleyview_check_pctx(dev_priv);
7722
7723 gtfifodbg = I915_READ(GTFIFODBG);
7724 if (gtfifodbg) {
7725 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7726 gtfifodbg);
7727 I915_WRITE(GTFIFODBG, gtfifodbg);
7728 }
7729
7730 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7731
7732 /* Disable RC states. */
7733 I915_WRITE(GEN6_RC_CONTROL, 0);
7734
7735 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7736 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7737 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7738
7739 for_each_engine(engine, dev_priv, id)
7740 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7741
7742 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7743
7744 /* Allows RC6 residency counter to work */
7745 I915_WRITE(VLV_COUNTER_CONTROL,
7746 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7747 VLV_MEDIA_RC0_COUNT_EN |
7748 VLV_RENDER_RC0_COUNT_EN |
7749 VLV_MEDIA_RC6_COUNT_EN |
7750 VLV_RENDER_RC6_COUNT_EN));
7751
7752 I915_WRITE(GEN6_RC_CONTROL,
7753 GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7754
7755 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7756 }
7757
7758 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7759 {
7760 u32 val;
7761
7762 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7763
7764 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7765 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7766 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7767 I915_WRITE(GEN6_RP_UP_EI, 66000);
7768 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7769
7770 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7771
7772 I915_WRITE(GEN6_RP_CONTROL,
7773 GEN6_RP_MEDIA_TURBO |
7774 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7775 GEN6_RP_MEDIA_IS_GFX |
7776 GEN6_RP_ENABLE |
7777 GEN6_RP_UP_BUSY_AVG |
7778 GEN6_RP_DOWN_IDLE_CONT);
7779
7780 /* Setting Fixed Bias */
7781 val = VLV_OVERRIDE_EN |
7782 VLV_SOC_TDP_EN |
7783 VLV_BIAS_CPU_125_SOC_875;
7784 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7785
7786 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7787
7788 /* RPS code assumes GPLL is used */
7789 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7790
7791 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7792 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7793
7794 reset_rps(dev_priv, valleyview_set_rps);
7795
7796 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7797 }
7798
7799 static unsigned long intel_pxfreq(u32 vidfreq)
7800 {
7801 unsigned long freq;
7802 int div = (vidfreq & 0x3f0000) >> 16;
7803 int post = (vidfreq & 0x3000) >> 12;
7804 int pre = (vidfreq & 0x7);
7805
7806 if (!pre)
7807 return 0;
7808
7809 freq = ((div * 133333) / ((1<<post) * pre));
7810
7811 return freq;
7812 }
7813
7814 static const struct cparams {
7815 u16 i;
7816 u16 t;
7817 u16 m;
7818 u16 c;
7819 } cparams[] = {
7820 { 1, 1333, 301, 28664 },
7821 { 1, 1066, 294, 24460 },
7822 { 1, 800, 294, 25192 },
7823 { 0, 1333, 276, 27605 },
7824 { 0, 1066, 276, 27605 },
7825 { 0, 800, 231, 23784 },
7826 };
7827
7828 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7829 {
7830 u64 total_count, diff, ret;
7831 u32 count1, count2, count3, m = 0, c = 0;
7832 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7833 int i;
7834
7835 lockdep_assert_held(&mchdev_lock);
7836
7837 diff1 = now - dev_priv->ips.last_time1;
7838
7839 /* Prevent division-by-zero if we are asking too fast.
7840 * Also, we don't get interesting results if we are polling
7841 * faster than once in 10ms, so just return the saved value
7842 * in such cases.
7843 */
7844 if (diff1 <= 10)
7845 return dev_priv->ips.chipset_power;
7846
7847 count1 = I915_READ(DMIEC);
7848 count2 = I915_READ(DDREC);
7849 count3 = I915_READ(CSIEC);
7850
7851 total_count = count1 + count2 + count3;
7852
7853 /* FIXME: handle per-counter overflow */
7854 if (total_count < dev_priv->ips.last_count1) {
7855 diff = ~0UL - dev_priv->ips.last_count1;
7856 diff += total_count;
7857 } else {
7858 diff = total_count - dev_priv->ips.last_count1;
7859 }
7860
7861 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7862 if (cparams[i].i == dev_priv->ips.c_m &&
7863 cparams[i].t == dev_priv->ips.r_t) {
7864 m = cparams[i].m;
7865 c = cparams[i].c;
7866 break;
7867 }
7868 }
7869
7870 diff = div_u64(diff, diff1);
7871 ret = ((m * diff) + c);
7872 ret = div_u64(ret, 10);
7873
7874 dev_priv->ips.last_count1 = total_count;
7875 dev_priv->ips.last_time1 = now;
7876
7877 dev_priv->ips.chipset_power = ret;
7878
7879 return ret;
7880 }
7881
7882 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7883 {
7884 intel_wakeref_t wakeref;
7885 unsigned long val = 0;
7886
7887 if (!IS_GEN(dev_priv, 5))
7888 return 0;
7889
7890 with_intel_runtime_pm(dev_priv, wakeref) {
7891 spin_lock_irq(&mchdev_lock);
7892 val = __i915_chipset_val(dev_priv);
7893 spin_unlock_irq(&mchdev_lock);
7894 }
7895
7896 return val;
7897 }
7898
7899 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7900 {
7901 unsigned long m, x, b;
7902 u32 tsfs;
7903
7904 tsfs = I915_READ(TSFS);
7905
7906 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7907 x = I915_READ8(TR1);
7908
7909 b = tsfs & TSFS_INTR_MASK;
7910
7911 return ((m * x) / 127) - b;
7912 }
7913
7914 static int _pxvid_to_vd(u8 pxvid)
7915 {
7916 if (pxvid == 0)
7917 return 0;
7918
7919 if (pxvid >= 8 && pxvid < 31)
7920 pxvid = 31;
7921
7922 return (pxvid + 2) * 125;
7923 }
7924
7925 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7926 {
7927 const int vd = _pxvid_to_vd(pxvid);
7928 const int vm = vd - 1125;
7929
7930 if (INTEL_INFO(dev_priv)->is_mobile)
7931 return vm > 0 ? vm : 0;
7932
7933 return vd;
7934 }
7935
7936 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7937 {
7938 u64 now, diff, diffms;
7939 u32 count;
7940
7941 lockdep_assert_held(&mchdev_lock);
7942
7943 now = ktime_get_raw_ns();
7944 diffms = now - dev_priv->ips.last_time2;
7945 do_div(diffms, NSEC_PER_MSEC);
7946
7947 /* Don't divide by 0 */
7948 if (!diffms)
7949 return;
7950
7951 count = I915_READ(GFXEC);
7952
7953 if (count < dev_priv->ips.last_count2) {
7954 diff = ~0UL - dev_priv->ips.last_count2;
7955 diff += count;
7956 } else {
7957 diff = count - dev_priv->ips.last_count2;
7958 }
7959
7960 dev_priv->ips.last_count2 = count;
7961 dev_priv->ips.last_time2 = now;
7962
7963 /* More magic constants... */
7964 diff = diff * 1181;
7965 diff = div_u64(diff, diffms * 10);
7966 dev_priv->ips.gfx_power = diff;
7967 }
7968
7969 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7970 {
7971 intel_wakeref_t wakeref;
7972
7973 if (!IS_GEN(dev_priv, 5))
7974 return;
7975
7976 with_intel_runtime_pm(dev_priv, wakeref) {
7977 spin_lock_irq(&mchdev_lock);
7978 __i915_update_gfx_val(dev_priv);
7979 spin_unlock_irq(&mchdev_lock);
7980 }
7981 }
7982
7983 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7984 {
7985 unsigned long t, corr, state1, corr2, state2;
7986 u32 pxvid, ext_v;
7987
7988 lockdep_assert_held(&mchdev_lock);
7989
7990 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7991 pxvid = (pxvid >> 24) & 0x7f;
7992 ext_v = pvid_to_extvid(dev_priv, pxvid);
7993
7994 state1 = ext_v;
7995
7996 t = i915_mch_val(dev_priv);
7997
7998 /* Revel in the empirically derived constants */
7999
8000 /* Correction factor in 1/100000 units */
8001 if (t > 80)
8002 corr = ((t * 2349) + 135940);
8003 else if (t >= 50)
8004 corr = ((t * 964) + 29317);
8005 else /* < 50 */
8006 corr = ((t * 301) + 1004);
8007
8008 corr = corr * ((150142 * state1) / 10000 - 78642);
8009 corr /= 100000;
8010 corr2 = (corr * dev_priv->ips.corr);
8011
8012 state2 = (corr2 * state1) / 10000;
8013 state2 /= 100; /* convert to mW */
8014
8015 __i915_update_gfx_val(dev_priv);
8016
8017 return dev_priv->ips.gfx_power + state2;
8018 }
8019
8020 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
8021 {
8022 intel_wakeref_t wakeref;
8023 unsigned long val = 0;
8024
8025 if (!IS_GEN(dev_priv, 5))
8026 return 0;
8027
8028 with_intel_runtime_pm(dev_priv, wakeref) {
8029 spin_lock_irq(&mchdev_lock);
8030 val = __i915_gfx_val(dev_priv);
8031 spin_unlock_irq(&mchdev_lock);
8032 }
8033
8034 return val;
8035 }
8036
8037 static struct drm_i915_private *i915_mch_dev;
8038
8039 static struct drm_i915_private *mchdev_get(void)
8040 {
8041 struct drm_i915_private *i915;
8042
8043 rcu_read_lock();
8044 i915 = i915_mch_dev;
8045 if (!kref_get_unless_zero(&i915->drm.ref))
8046 i915 = NULL;
8047 rcu_read_unlock();
8048
8049 return i915;
8050 }
8051
8052 /**
8053 * i915_read_mch_val - return value for IPS use
8054 *
8055 * Calculate and return a value for the IPS driver to use when deciding whether
8056 * we have thermal and power headroom to increase CPU or GPU power budget.
8057 */
8058 unsigned long i915_read_mch_val(void)
8059 {
8060 struct drm_i915_private *i915;
8061 unsigned long chipset_val = 0;
8062 unsigned long graphics_val = 0;
8063 intel_wakeref_t wakeref;
8064
8065 i915 = mchdev_get();
8066 if (!i915)
8067 return 0;
8068
8069 with_intel_runtime_pm(i915, wakeref) {
8070 spin_lock_irq(&mchdev_lock);
8071 chipset_val = __i915_chipset_val(i915);
8072 graphics_val = __i915_gfx_val(i915);
8073 spin_unlock_irq(&mchdev_lock);
8074 }
8075
8076 drm_dev_put(&i915->drm);
8077 return chipset_val + graphics_val;
8078 }
8079 EXPORT_SYMBOL_GPL(i915_read_mch_val);
8080
8081 /**
8082 * i915_gpu_raise - raise GPU frequency limit
8083 *
8084 * Raise the limit; IPS indicates we have thermal headroom.
8085 */
8086 bool i915_gpu_raise(void)
8087 {
8088 struct drm_i915_private *i915;
8089
8090 i915 = mchdev_get();
8091 if (!i915)
8092 return false;
8093
8094 spin_lock_irq(&mchdev_lock);
8095 if (i915->ips.max_delay > i915->ips.fmax)
8096 i915->ips.max_delay--;
8097 spin_unlock_irq(&mchdev_lock);
8098
8099 drm_dev_put(&i915->drm);
8100 return true;
8101 }
8102 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8103
8104 /**
8105 * i915_gpu_lower - lower GPU frequency limit
8106 *
8107 * IPS indicates we're close to a thermal limit, so throttle back the GPU
8108 * frequency maximum.
8109 */
8110 bool i915_gpu_lower(void)
8111 {
8112 struct drm_i915_private *i915;
8113
8114 i915 = mchdev_get();
8115 if (!i915)
8116 return false;
8117
8118 spin_lock_irq(&mchdev_lock);
8119 if (i915->ips.max_delay < i915->ips.min_delay)
8120 i915->ips.max_delay++;
8121 spin_unlock_irq(&mchdev_lock);
8122
8123 drm_dev_put(&i915->drm);
8124 return true;
8125 }
8126 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8127
8128 /**
8129 * i915_gpu_busy - indicate GPU business to IPS
8130 *
8131 * Tell the IPS driver whether or not the GPU is busy.
8132 */
8133 bool i915_gpu_busy(void)
8134 {
8135 struct drm_i915_private *i915;
8136 bool ret;
8137
8138 i915 = mchdev_get();
8139 if (!i915)
8140 return false;
8141
8142 ret = i915->gt.awake;
8143
8144 drm_dev_put(&i915->drm);
8145 return ret;
8146 }
8147 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8148
8149 /**
8150 * i915_gpu_turbo_disable - disable graphics turbo
8151 *
8152 * Disable graphics turbo by resetting the max frequency and setting the
8153 * current frequency to the default.
8154 */
8155 bool i915_gpu_turbo_disable(void)
8156 {
8157 struct drm_i915_private *i915;
8158 bool ret;
8159
8160 i915 = mchdev_get();
8161 if (!i915)
8162 return false;
8163
8164 spin_lock_irq(&mchdev_lock);
8165 i915->ips.max_delay = i915->ips.fstart;
8166 ret = ironlake_set_drps(i915, i915->ips.fstart);
8167 spin_unlock_irq(&mchdev_lock);
8168
8169 drm_dev_put(&i915->drm);
8170 return ret;
8171 }
8172 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8173
8174 /**
8175 * Tells the intel_ips driver that the i915 driver is now loaded, if
8176 * IPS got loaded first.
8177 *
8178 * This awkward dance is so that neither module has to depend on the
8179 * other in order for IPS to do the appropriate communication of
8180 * GPU turbo limits to i915.
8181 */
8182 static void
8183 ips_ping_for_i915_load(void)
8184 {
8185 void (*link)(void);
8186
8187 link = symbol_get(ips_link_to_i915_driver);
8188 if (link) {
8189 link();
8190 symbol_put(ips_link_to_i915_driver);
8191 }
8192 }
8193
8194 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8195 {
8196 /* We only register the i915 ips part with intel-ips once everything is
8197 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8198 rcu_assign_pointer(i915_mch_dev, dev_priv);
8199
8200 ips_ping_for_i915_load();
8201 }
8202
8203 void intel_gpu_ips_teardown(void)
8204 {
8205 rcu_assign_pointer(i915_mch_dev, NULL);
8206 }
8207
8208 static void intel_init_emon(struct drm_i915_private *dev_priv)
8209 {
8210 u32 lcfuse;
8211 u8 pxw[16];
8212 int i;
8213
8214 /* Disable to program */
8215 I915_WRITE(ECR, 0);
8216 POSTING_READ(ECR);
8217
8218 /* Program energy weights for various events */
8219 I915_WRITE(SDEW, 0x15040d00);
8220 I915_WRITE(CSIEW0, 0x007f0000);
8221 I915_WRITE(CSIEW1, 0x1e220004);
8222 I915_WRITE(CSIEW2, 0x04000004);
8223
8224 for (i = 0; i < 5; i++)
8225 I915_WRITE(PEW(i), 0);
8226 for (i = 0; i < 3; i++)
8227 I915_WRITE(DEW(i), 0);
8228
8229 /* Program P-state weights to account for frequency power adjustment */
8230 for (i = 0; i < 16; i++) {
8231 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8232 unsigned long freq = intel_pxfreq(pxvidfreq);
8233 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8234 PXVFREQ_PX_SHIFT;
8235 unsigned long val;
8236
8237 val = vid * vid;
8238 val *= (freq / 1000);
8239 val *= 255;
8240 val /= (127*127*900);
8241 if (val > 0xff)
8242 DRM_ERROR("bad pxval: %ld\n", val);
8243 pxw[i] = val;
8244 }
8245 /* Render standby states get 0 weight */
8246 pxw[14] = 0;
8247 pxw[15] = 0;
8248
8249 for (i = 0; i < 4; i++) {
8250 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8251 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8252 I915_WRITE(PXW(i), val);
8253 }
8254
8255 /* Adjust magic regs to magic values (more experimental results) */
8256 I915_WRITE(OGW0, 0);
8257 I915_WRITE(OGW1, 0);
8258 I915_WRITE(EG0, 0x00007f00);
8259 I915_WRITE(EG1, 0x0000000e);
8260 I915_WRITE(EG2, 0x000e0000);
8261 I915_WRITE(EG3, 0x68000300);
8262 I915_WRITE(EG4, 0x42000000);
8263 I915_WRITE(EG5, 0x00140031);
8264 I915_WRITE(EG6, 0);
8265 I915_WRITE(EG7, 0);
8266
8267 for (i = 0; i < 8; i++)
8268 I915_WRITE(PXWL(i), 0);
8269
8270 /* Enable PMON + select events */
8271 I915_WRITE(ECR, 0x80000019);
8272
8273 lcfuse = I915_READ(LCFUSE02);
8274
8275 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8276 }
8277
8278 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8279 {
8280 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8281
8282 /*
8283 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8284 * requirement.
8285 */
8286 if (!sanitize_rc6(dev_priv)) {
8287 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8288 pm_runtime_get(&dev_priv->drm.pdev->dev);
8289 }
8290
8291 mutex_lock(&dev_priv->pcu_lock);
8292
8293 /* Initialize RPS limits (for userspace) */
8294 if (IS_CHERRYVIEW(dev_priv))
8295 cherryview_init_gt_powersave(dev_priv);
8296 else if (IS_VALLEYVIEW(dev_priv))
8297 valleyview_init_gt_powersave(dev_priv);
8298 else if (INTEL_GEN(dev_priv) >= 6)
8299 gen6_init_rps_frequencies(dev_priv);
8300
8301 /* Derive initial user preferences/limits from the hardware limits */
8302 rps->idle_freq = rps->min_freq;
8303 rps->cur_freq = rps->idle_freq;
8304
8305 rps->max_freq_softlimit = rps->max_freq;
8306 rps->min_freq_softlimit = rps->min_freq;
8307
8308 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8309 rps->min_freq_softlimit =
8310 max_t(int,
8311 rps->efficient_freq,
8312 intel_freq_opcode(dev_priv, 450));
8313
8314 /* After setting max-softlimit, find the overclock max freq */
8315 if (IS_GEN(dev_priv, 6) ||
8316 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8317 u32 params = 0;
8318
8319 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
8320 if (params & BIT(31)) { /* OC supported */
8321 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8322 (rps->max_freq & 0xff) * 50,
8323 (params & 0xff) * 50);
8324 rps->max_freq = params & 0xff;
8325 }
8326 }
8327
8328 /* Finally allow us to boost to max by default */
8329 rps->boost_freq = rps->max_freq;
8330
8331 mutex_unlock(&dev_priv->pcu_lock);
8332 }
8333
8334 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8335 {
8336 if (IS_VALLEYVIEW(dev_priv))
8337 valleyview_cleanup_gt_powersave(dev_priv);
8338
8339 if (!HAS_RC6(dev_priv))
8340 pm_runtime_put(&dev_priv->drm.pdev->dev);
8341 }
8342
8343 /**
8344 * intel_suspend_gt_powersave - suspend PM work and helper threads
8345 * @dev_priv: i915 device
8346 *
8347 * We don't want to disable RC6 or other features here, we just want
8348 * to make sure any work we've queued has finished and won't bother
8349 * us while we're suspended.
8350 */
8351 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8352 {
8353 if (INTEL_GEN(dev_priv) < 6)
8354 return;
8355
8356 /* gen6_rps_idle() will be called later to disable interrupts */
8357 }
8358
8359 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8360 {
8361 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8362 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8363 intel_disable_gt_powersave(dev_priv);
8364
8365 if (INTEL_GEN(dev_priv) >= 11)
8366 gen11_reset_rps_interrupts(dev_priv);
8367 else if (INTEL_GEN(dev_priv) >= 6)
8368 gen6_reset_rps_interrupts(dev_priv);
8369 }
8370
8371 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8372 {
8373 lockdep_assert_held(&i915->pcu_lock);
8374
8375 if (!i915->gt_pm.llc_pstate.enabled)
8376 return;
8377
8378 /* Currently there is no HW configuration to be done to disable. */
8379
8380 i915->gt_pm.llc_pstate.enabled = false;
8381 }
8382
8383 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8384 {
8385 lockdep_assert_held(&dev_priv->pcu_lock);
8386
8387 if (!dev_priv->gt_pm.rc6.enabled)
8388 return;
8389
8390 if (INTEL_GEN(dev_priv) >= 9)
8391 gen9_disable_rc6(dev_priv);
8392 else if (IS_CHERRYVIEW(dev_priv))
8393 cherryview_disable_rc6(dev_priv);
8394 else if (IS_VALLEYVIEW(dev_priv))
8395 valleyview_disable_rc6(dev_priv);
8396 else if (INTEL_GEN(dev_priv) >= 6)
8397 gen6_disable_rc6(dev_priv);
8398
8399 dev_priv->gt_pm.rc6.enabled = false;
8400 }
8401
8402 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8403 {
8404 lockdep_assert_held(&dev_priv->pcu_lock);
8405
8406 if (!dev_priv->gt_pm.rps.enabled)
8407 return;
8408
8409 if (INTEL_GEN(dev_priv) >= 9)
8410 gen9_disable_rps(dev_priv);
8411 else if (IS_CHERRYVIEW(dev_priv))
8412 cherryview_disable_rps(dev_priv);
8413 else if (IS_VALLEYVIEW(dev_priv))
8414 valleyview_disable_rps(dev_priv);
8415 else if (INTEL_GEN(dev_priv) >= 6)
8416 gen6_disable_rps(dev_priv);
8417 else if (IS_IRONLAKE_M(dev_priv))
8418 ironlake_disable_drps(dev_priv);
8419
8420 dev_priv->gt_pm.rps.enabled = false;
8421 }
8422
8423 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8424 {
8425 mutex_lock(&dev_priv->pcu_lock);
8426
8427 intel_disable_rc6(dev_priv);
8428 intel_disable_rps(dev_priv);
8429 if (HAS_LLC(dev_priv))
8430 intel_disable_llc_pstate(dev_priv);
8431
8432 mutex_unlock(&dev_priv->pcu_lock);
8433 }
8434
8435 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8436 {
8437 lockdep_assert_held(&i915->pcu_lock);
8438
8439 if (i915->gt_pm.llc_pstate.enabled)
8440 return;
8441
8442 gen6_update_ring_freq(i915);
8443
8444 i915->gt_pm.llc_pstate.enabled = true;
8445 }
8446
8447 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8448 {
8449 lockdep_assert_held(&dev_priv->pcu_lock);
8450
8451 if (dev_priv->gt_pm.rc6.enabled)
8452 return;
8453
8454 if (IS_CHERRYVIEW(dev_priv))
8455 cherryview_enable_rc6(dev_priv);
8456 else if (IS_VALLEYVIEW(dev_priv))
8457 valleyview_enable_rc6(dev_priv);
8458 else if (INTEL_GEN(dev_priv) >= 9)
8459 gen9_enable_rc6(dev_priv);
8460 else if (IS_BROADWELL(dev_priv))
8461 gen8_enable_rc6(dev_priv);
8462 else if (INTEL_GEN(dev_priv) >= 6)
8463 gen6_enable_rc6(dev_priv);
8464
8465 dev_priv->gt_pm.rc6.enabled = true;
8466 }
8467
8468 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8469 {
8470 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8471
8472 lockdep_assert_held(&dev_priv->pcu_lock);
8473
8474 if (rps->enabled)
8475 return;
8476
8477 if (IS_CHERRYVIEW(dev_priv)) {
8478 cherryview_enable_rps(dev_priv);
8479 } else if (IS_VALLEYVIEW(dev_priv)) {
8480 valleyview_enable_rps(dev_priv);
8481 } else if (INTEL_GEN(dev_priv) >= 9) {
8482 gen9_enable_rps(dev_priv);
8483 } else if (IS_BROADWELL(dev_priv)) {
8484 gen8_enable_rps(dev_priv);
8485 } else if (INTEL_GEN(dev_priv) >= 6) {
8486 gen6_enable_rps(dev_priv);
8487 } else if (IS_IRONLAKE_M(dev_priv)) {
8488 ironlake_enable_drps(dev_priv);
8489 intel_init_emon(dev_priv);
8490 }
8491
8492 WARN_ON(rps->max_freq < rps->min_freq);
8493 WARN_ON(rps->idle_freq > rps->max_freq);
8494
8495 WARN_ON(rps->efficient_freq < rps->min_freq);
8496 WARN_ON(rps->efficient_freq > rps->max_freq);
8497
8498 rps->enabled = true;
8499 }
8500
8501 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8502 {
8503 /* Powersaving is controlled by the host when inside a VM */
8504 if (intel_vgpu_active(dev_priv))
8505 return;
8506
8507 mutex_lock(&dev_priv->pcu_lock);
8508
8509 if (HAS_RC6(dev_priv))
8510 intel_enable_rc6(dev_priv);
8511 intel_enable_rps(dev_priv);
8512 if (HAS_LLC(dev_priv))
8513 intel_enable_llc_pstate(dev_priv);
8514
8515 mutex_unlock(&dev_priv->pcu_lock);
8516 }
8517
8518 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8519 {
8520 /*
8521 * On Ibex Peak and Cougar Point, we need to disable clock
8522 * gating for the panel power sequencer or it will fail to
8523 * start up when no ports are active.
8524 */
8525 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8526 }
8527
8528 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8529 {
8530 enum pipe pipe;
8531
8532 for_each_pipe(dev_priv, pipe) {
8533 I915_WRITE(DSPCNTR(pipe),
8534 I915_READ(DSPCNTR(pipe)) |
8535 DISPPLANE_TRICKLE_FEED_DISABLE);
8536
8537 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8538 POSTING_READ(DSPSURF(pipe));
8539 }
8540 }
8541
8542 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8543 {
8544 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8545
8546 /*
8547 * Required for FBC
8548 * WaFbcDisableDpfcClockGating:ilk
8549 */
8550 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8551 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8552 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8553
8554 I915_WRITE(PCH_3DCGDIS0,
8555 MARIUNIT_CLOCK_GATE_DISABLE |
8556 SVSMUNIT_CLOCK_GATE_DISABLE);
8557 I915_WRITE(PCH_3DCGDIS1,
8558 VFMUNIT_CLOCK_GATE_DISABLE);
8559
8560 /*
8561 * According to the spec the following bits should be set in
8562 * order to enable memory self-refresh
8563 * The bit 22/21 of 0x42004
8564 * The bit 5 of 0x42020
8565 * The bit 15 of 0x45000
8566 */
8567 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8568 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8569 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8570 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8571 I915_WRITE(DISP_ARB_CTL,
8572 (I915_READ(DISP_ARB_CTL) |
8573 DISP_FBC_WM_DIS));
8574
8575 /*
8576 * Based on the document from hardware guys the following bits
8577 * should be set unconditionally in order to enable FBC.
8578 * The bit 22 of 0x42000
8579 * The bit 22 of 0x42004
8580 * The bit 7,8,9 of 0x42020.
8581 */
8582 if (IS_IRONLAKE_M(dev_priv)) {
8583 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8584 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8585 I915_READ(ILK_DISPLAY_CHICKEN1) |
8586 ILK_FBCQ_DIS);
8587 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8588 I915_READ(ILK_DISPLAY_CHICKEN2) |
8589 ILK_DPARB_GATE);
8590 }
8591
8592 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8593
8594 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8595 I915_READ(ILK_DISPLAY_CHICKEN2) |
8596 ILK_ELPIN_409_SELECT);
8597 I915_WRITE(_3D_CHICKEN2,
8598 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8599 _3D_CHICKEN2_WM_READ_PIPELINED);
8600
8601 /* WaDisableRenderCachePipelinedFlush:ilk */
8602 I915_WRITE(CACHE_MODE_0,
8603 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8604
8605 /* WaDisable_RenderCache_OperationalFlush:ilk */
8606 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8607
8608 g4x_disable_trickle_feed(dev_priv);
8609
8610 ibx_init_clock_gating(dev_priv);
8611 }
8612
8613 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8614 {
8615 int pipe;
8616 u32 val;
8617
8618 /*
8619 * On Ibex Peak and Cougar Point, we need to disable clock
8620 * gating for the panel power sequencer or it will fail to
8621 * start up when no ports are active.
8622 */
8623 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8624 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8625 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8626 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8627 DPLS_EDP_PPS_FIX_DIS);
8628 /* The below fixes the weird display corruption, a few pixels shifted
8629 * downward, on (only) LVDS of some HP laptops with IVY.
8630 */
8631 for_each_pipe(dev_priv, pipe) {
8632 val = I915_READ(TRANS_CHICKEN2(pipe));
8633 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8634 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8635 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8636 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8637 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8638 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8639 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8640 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8641 }
8642 /* WADP0ClockGatingDisable */
8643 for_each_pipe(dev_priv, pipe) {
8644 I915_WRITE(TRANS_CHICKEN1(pipe),
8645 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8646 }
8647 }
8648
8649 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8650 {
8651 u32 tmp;
8652
8653 tmp = I915_READ(MCH_SSKPD);
8654 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8655 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8656 tmp);
8657 }
8658
8659 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8660 {
8661 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8662
8663 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8664
8665 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8666 I915_READ(ILK_DISPLAY_CHICKEN2) |
8667 ILK_ELPIN_409_SELECT);
8668
8669 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8670 I915_WRITE(_3D_CHICKEN,
8671 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8672
8673 /* WaDisable_RenderCache_OperationalFlush:snb */
8674 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8675
8676 /*
8677 * BSpec recoomends 8x4 when MSAA is used,
8678 * however in practice 16x4 seems fastest.
8679 *
8680 * Note that PS/WM thread counts depend on the WIZ hashing
8681 * disable bit, which we don't touch here, but it's good
8682 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8683 */
8684 I915_WRITE(GEN6_GT_MODE,
8685 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8686
8687 I915_WRITE(CACHE_MODE_0,
8688 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8689
8690 I915_WRITE(GEN6_UCGCTL1,
8691 I915_READ(GEN6_UCGCTL1) |
8692 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8693 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8694
8695 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8696 * gating disable must be set. Failure to set it results in
8697 * flickering pixels due to Z write ordering failures after
8698 * some amount of runtime in the Mesa "fire" demo, and Unigine
8699 * Sanctuary and Tropics, and apparently anything else with
8700 * alpha test or pixel discard.
8701 *
8702 * According to the spec, bit 11 (RCCUNIT) must also be set,
8703 * but we didn't debug actual testcases to find it out.
8704 *
8705 * WaDisableRCCUnitClockGating:snb
8706 * WaDisableRCPBUnitClockGating:snb
8707 */
8708 I915_WRITE(GEN6_UCGCTL2,
8709 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8710 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8711
8712 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8713 I915_WRITE(_3D_CHICKEN3,
8714 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8715
8716 /*
8717 * Bspec says:
8718 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8719 * 3DSTATE_SF number of SF output attributes is more than 16."
8720 */
8721 I915_WRITE(_3D_CHICKEN3,
8722 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8723
8724 /*
8725 * According to the spec the following bits should be
8726 * set in order to enable memory self-refresh and fbc:
8727 * The bit21 and bit22 of 0x42000
8728 * The bit21 and bit22 of 0x42004
8729 * The bit5 and bit7 of 0x42020
8730 * The bit14 of 0x70180
8731 * The bit14 of 0x71180
8732 *
8733 * WaFbcAsynchFlipDisableFbcQueue:snb
8734 */
8735 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8736 I915_READ(ILK_DISPLAY_CHICKEN1) |
8737 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8738 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8739 I915_READ(ILK_DISPLAY_CHICKEN2) |
8740 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8741 I915_WRITE(ILK_DSPCLK_GATE_D,
8742 I915_READ(ILK_DSPCLK_GATE_D) |
8743 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8744 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8745
8746 g4x_disable_trickle_feed(dev_priv);
8747
8748 cpt_init_clock_gating(dev_priv);
8749
8750 gen6_check_mch_setup(dev_priv);
8751 }
8752
8753 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8754 {
8755 u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8756
8757 /*
8758 * WaVSThreadDispatchOverride:ivb,vlv
8759 *
8760 * This actually overrides the dispatch
8761 * mode for all thread types.
8762 */
8763 reg &= ~GEN7_FF_SCHED_MASK;
8764 reg |= GEN7_FF_TS_SCHED_HW;
8765 reg |= GEN7_FF_VS_SCHED_HW;
8766 reg |= GEN7_FF_DS_SCHED_HW;
8767
8768 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8769 }
8770
8771 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8772 {
8773 /*
8774 * TODO: this bit should only be enabled when really needed, then
8775 * disabled when not needed anymore in order to save power.
8776 */
8777 if (HAS_PCH_LPT_LP(dev_priv))
8778 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8779 I915_READ(SOUTH_DSPCLK_GATE_D) |
8780 PCH_LP_PARTITION_LEVEL_DISABLE);
8781
8782 /* WADPOClockGatingDisable:hsw */
8783 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8784 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8785 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8786 }
8787
8788 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8789 {
8790 if (HAS_PCH_LPT_LP(dev_priv)) {
8791 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8792
8793 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8794 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8795 }
8796 }
8797
8798 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8799 int general_prio_credits,
8800 int high_prio_credits)
8801 {
8802 u32 misccpctl;
8803 u32 val;
8804
8805 /* WaTempDisableDOPClkGating:bdw */
8806 misccpctl = I915_READ(GEN7_MISCCPCTL);
8807 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8808
8809 val = I915_READ(GEN8_L3SQCREG1);
8810 val &= ~L3_PRIO_CREDITS_MASK;
8811 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8812 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8813 I915_WRITE(GEN8_L3SQCREG1, val);
8814
8815 /*
8816 * Wait at least 100 clocks before re-enabling clock gating.
8817 * See the definition of L3SQCREG1 in BSpec.
8818 */
8819 POSTING_READ(GEN8_L3SQCREG1);
8820 udelay(1);
8821 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8822 }
8823
8824 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8825 {
8826 /* This is not an Wa. Enable to reduce Sampler power */
8827 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8828 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8829
8830 /* WaEnable32PlaneMode:icl */
8831 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
8832 _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
8833 }
8834
8835 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8836 {
8837 if (!HAS_PCH_CNP(dev_priv))
8838 return;
8839
8840 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8841 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8842 CNP_PWM_CGE_GATING_DISABLE);
8843 }
8844
8845 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8846 {
8847 u32 val;
8848 cnp_init_clock_gating(dev_priv);
8849
8850 /* This is not an Wa. Enable for better image quality */
8851 I915_WRITE(_3D_CHICKEN3,
8852 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8853
8854 /* WaEnableChickenDCPR:cnl */
8855 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8856 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8857
8858 /* WaFbcWakeMemOn:cnl */
8859 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8860 DISP_FBC_MEMORY_WAKE);
8861
8862 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8863 /* ReadHitWriteOnlyDisable:cnl */
8864 val |= RCCUNIT_CLKGATE_DIS;
8865 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8866 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8867 val |= SARBUNIT_CLKGATE_DIS;
8868 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8869
8870 /* Wa_2201832410:cnl */
8871 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8872 val |= GWUNIT_CLKGATE_DIS;
8873 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8874
8875 /* WaDisableVFclkgate:cnl */
8876 /* WaVFUnitClockGatingDisable:cnl */
8877 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8878 val |= VFUNIT_CLKGATE_DIS;
8879 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8880 }
8881
8882 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8883 {
8884 cnp_init_clock_gating(dev_priv);
8885 gen9_init_clock_gating(dev_priv);
8886
8887 /* WaFbcNukeOnHostModify:cfl */
8888 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8889 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8890 }
8891
8892 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8893 {
8894 gen9_init_clock_gating(dev_priv);
8895
8896 /* WaDisableSDEUnitClockGating:kbl */
8897 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8898 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8899 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8900
8901 /* WaDisableGamClockGating:kbl */
8902 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8903 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8904 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8905
8906 /* WaFbcNukeOnHostModify:kbl */
8907 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8908 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8909 }
8910
8911 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8912 {
8913 gen9_init_clock_gating(dev_priv);
8914
8915 /* WAC6entrylatency:skl */
8916 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8917 FBC_LLC_FULLY_OPEN);
8918
8919 /* WaFbcNukeOnHostModify:skl */
8920 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8921 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8922 }
8923
8924 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8925 {
8926 /* The GTT cache must be disabled if the system is using 2M pages. */
8927 bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8928 I915_GTT_PAGE_SIZE_2M);
8929 enum pipe pipe;
8930
8931 /* WaSwitchSolVfFArbitrationPriority:bdw */
8932 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8933
8934 /* WaPsrDPAMaskVBlankInSRD:bdw */
8935 I915_WRITE(CHICKEN_PAR1_1,
8936 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8937
8938 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8939 for_each_pipe(dev_priv, pipe) {
8940 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8941 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8942 BDW_DPRS_MASK_VBLANK_SRD);
8943 }
8944
8945 /* WaVSRefCountFullforceMissDisable:bdw */
8946 /* WaDSRefCountFullforceMissDisable:bdw */
8947 I915_WRITE(GEN7_FF_THREAD_MODE,
8948 I915_READ(GEN7_FF_THREAD_MODE) &
8949 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8950
8951 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8952 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8953
8954 /* WaDisableSDEUnitClockGating:bdw */
8955 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8956 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8957
8958 /* WaProgramL3SqcReg1Default:bdw */
8959 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8960
8961 /* WaGttCachingOffByDefault:bdw */
8962 I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8963
8964 /* WaKVMNotificationOnConfigChange:bdw */
8965 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8966 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8967
8968 lpt_init_clock_gating(dev_priv);
8969
8970 /* WaDisableDopClockGating:bdw
8971 *
8972 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8973 * clock gating.
8974 */
8975 I915_WRITE(GEN6_UCGCTL1,
8976 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8977 }
8978
8979 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8980 {
8981 /* L3 caching of data atomics doesn't work -- disable it. */
8982 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8983 I915_WRITE(HSW_ROW_CHICKEN3,
8984 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8985
8986 /* This is required by WaCatErrorRejectionIssue:hsw */
8987 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8988 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8989 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8990
8991 /* WaVSRefCountFullforceMissDisable:hsw */
8992 I915_WRITE(GEN7_FF_THREAD_MODE,
8993 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8994
8995 /* WaDisable_RenderCache_OperationalFlush:hsw */
8996 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8997
8998 /* enable HiZ Raw Stall Optimization */
8999 I915_WRITE(CACHE_MODE_0_GEN7,
9000 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9001
9002 /* WaDisable4x2SubspanOptimization:hsw */
9003 I915_WRITE(CACHE_MODE_1,
9004 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9005
9006 /*
9007 * BSpec recommends 8x4 when MSAA is used,
9008 * however in practice 16x4 seems fastest.
9009 *
9010 * Note that PS/WM thread counts depend on the WIZ hashing
9011 * disable bit, which we don't touch here, but it's good
9012 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9013 */
9014 I915_WRITE(GEN7_GT_MODE,
9015 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9016
9017 /* WaSampleCChickenBitEnable:hsw */
9018 I915_WRITE(HALF_SLICE_CHICKEN3,
9019 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9020
9021 /* WaSwitchSolVfFArbitrationPriority:hsw */
9022 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9023
9024 lpt_init_clock_gating(dev_priv);
9025 }
9026
9027 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9028 {
9029 u32 snpcr;
9030
9031 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9032
9033 /* WaDisableEarlyCull:ivb */
9034 I915_WRITE(_3D_CHICKEN3,
9035 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9036
9037 /* WaDisableBackToBackFlipFix:ivb */
9038 I915_WRITE(IVB_CHICKEN3,
9039 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9040 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9041
9042 /* WaDisablePSDDualDispatchEnable:ivb */
9043 if (IS_IVB_GT1(dev_priv))
9044 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9045 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9046
9047 /* WaDisable_RenderCache_OperationalFlush:ivb */
9048 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9049
9050 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9051 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9052 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9053
9054 /* WaApplyL3ControlAndL3ChickenMode:ivb */
9055 I915_WRITE(GEN7_L3CNTLREG1,
9056 GEN7_WA_FOR_GEN7_L3_CONTROL);
9057 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9058 GEN7_WA_L3_CHICKEN_MODE);
9059 if (IS_IVB_GT1(dev_priv))
9060 I915_WRITE(GEN7_ROW_CHICKEN2,
9061 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9062 else {
9063 /* must write both registers */
9064 I915_WRITE(GEN7_ROW_CHICKEN2,
9065 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9066 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9067 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9068 }
9069
9070 /* WaForceL3Serialization:ivb */
9071 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9072 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9073
9074 /*
9075 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9076 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9077 */
9078 I915_WRITE(GEN6_UCGCTL2,
9079 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9080
9081 /* This is required by WaCatErrorRejectionIssue:ivb */
9082 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9083 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9084 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9085
9086 g4x_disable_trickle_feed(dev_priv);
9087
9088 gen7_setup_fixed_func_scheduler(dev_priv);
9089
9090 if (0) { /* causes HiZ corruption on ivb:gt1 */
9091 /* enable HiZ Raw Stall Optimization */
9092 I915_WRITE(CACHE_MODE_0_GEN7,
9093 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9094 }
9095
9096 /* WaDisable4x2SubspanOptimization:ivb */
9097 I915_WRITE(CACHE_MODE_1,
9098 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9099
9100 /*
9101 * BSpec recommends 8x4 when MSAA is used,
9102 * however in practice 16x4 seems fastest.
9103 *
9104 * Note that PS/WM thread counts depend on the WIZ hashing
9105 * disable bit, which we don't touch here, but it's good
9106 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9107 */
9108 I915_WRITE(GEN7_GT_MODE,
9109 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9110
9111 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9112 snpcr &= ~GEN6_MBC_SNPCR_MASK;
9113 snpcr |= GEN6_MBC_SNPCR_MED;
9114 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9115
9116 if (!HAS_PCH_NOP(dev_priv))
9117 cpt_init_clock_gating(dev_priv);
9118
9119 gen6_check_mch_setup(dev_priv);
9120 }
9121
9122 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9123 {
9124 /* WaDisableEarlyCull:vlv */
9125 I915_WRITE(_3D_CHICKEN3,
9126 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9127
9128 /* WaDisableBackToBackFlipFix:vlv */
9129 I915_WRITE(IVB_CHICKEN3,
9130 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9131 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9132
9133 /* WaPsdDispatchEnable:vlv */
9134 /* WaDisablePSDDualDispatchEnable:vlv */
9135 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9136 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9137 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9138
9139 /* WaDisable_RenderCache_OperationalFlush:vlv */
9140 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9141
9142 /* WaForceL3Serialization:vlv */
9143 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9144 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9145
9146 /* WaDisableDopClockGating:vlv */
9147 I915_WRITE(GEN7_ROW_CHICKEN2,
9148 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9149
9150 /* This is required by WaCatErrorRejectionIssue:vlv */
9151 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9152 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9153 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9154
9155 gen7_setup_fixed_func_scheduler(dev_priv);
9156
9157 /*
9158 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9159 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9160 */
9161 I915_WRITE(GEN6_UCGCTL2,
9162 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9163
9164 /* WaDisableL3Bank2xClockGate:vlv
9165 * Disabling L3 clock gating- MMIO 940c[25] = 1
9166 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9167 I915_WRITE(GEN7_UCGCTL4,
9168 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9169
9170 /*
9171 * BSpec says this must be set, even though
9172 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9173 */
9174 I915_WRITE(CACHE_MODE_1,
9175 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9176
9177 /*
9178 * BSpec recommends 8x4 when MSAA is used,
9179 * however in practice 16x4 seems fastest.
9180 *
9181 * Note that PS/WM thread counts depend on the WIZ hashing
9182 * disable bit, which we don't touch here, but it's good
9183 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9184 */
9185 I915_WRITE(GEN7_GT_MODE,
9186 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9187
9188 /*
9189 * WaIncreaseL3CreditsForVLVB0:vlv
9190 * This is the hardware default actually.
9191 */
9192 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9193
9194 /*
9195 * WaDisableVLVClockGating_VBIIssue:vlv
9196 * Disable clock gating on th GCFG unit to prevent a delay
9197 * in the reporting of vblank events.
9198 */
9199 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9200 }
9201
9202 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9203 {
9204 /* WaVSRefCountFullforceMissDisable:chv */
9205 /* WaDSRefCountFullforceMissDisable:chv */
9206 I915_WRITE(GEN7_FF_THREAD_MODE,
9207 I915_READ(GEN7_FF_THREAD_MODE) &
9208 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9209
9210 /* WaDisableSemaphoreAndSyncFlipWait:chv */
9211 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9212 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9213
9214 /* WaDisableCSUnitClockGating:chv */
9215 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9216 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9217
9218 /* WaDisableSDEUnitClockGating:chv */
9219 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9220 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9221
9222 /*
9223 * WaProgramL3SqcReg1Default:chv
9224 * See gfxspecs/Related Documents/Performance Guide/
9225 * LSQC Setting Recommendations.
9226 */
9227 gen8_set_l3sqc_credits(dev_priv, 38, 2);
9228
9229 /*
9230 * GTT cache may not work with big pages, so if those
9231 * are ever enabled GTT cache may need to be disabled.
9232 */
9233 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9234 }
9235
9236 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9237 {
9238 u32 dspclk_gate;
9239
9240 I915_WRITE(RENCLK_GATE_D1, 0);
9241 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9242 GS_UNIT_CLOCK_GATE_DISABLE |
9243 CL_UNIT_CLOCK_GATE_DISABLE);
9244 I915_WRITE(RAMCLK_GATE_D, 0);
9245 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9246 OVRUNIT_CLOCK_GATE_DISABLE |
9247 OVCUNIT_CLOCK_GATE_DISABLE;
9248 if (IS_GM45(dev_priv))
9249 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9250 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9251
9252 /* WaDisableRenderCachePipelinedFlush */
9253 I915_WRITE(CACHE_MODE_0,
9254 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9255
9256 /* WaDisable_RenderCache_OperationalFlush:g4x */
9257 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9258
9259 g4x_disable_trickle_feed(dev_priv);
9260 }
9261
9262 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9263 {
9264 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9265 I915_WRITE(RENCLK_GATE_D2, 0);
9266 I915_WRITE(DSPCLK_GATE_D, 0);
9267 I915_WRITE(RAMCLK_GATE_D, 0);
9268 I915_WRITE16(DEUC, 0);
9269 I915_WRITE(MI_ARB_STATE,
9270 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9271
9272 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9273 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9274 }
9275
9276 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9277 {
9278 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9279 I965_RCC_CLOCK_GATE_DISABLE |
9280 I965_RCPB_CLOCK_GATE_DISABLE |
9281 I965_ISC_CLOCK_GATE_DISABLE |
9282 I965_FBC_CLOCK_GATE_DISABLE);
9283 I915_WRITE(RENCLK_GATE_D2, 0);
9284 I915_WRITE(MI_ARB_STATE,
9285 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9286
9287 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9288 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9289 }
9290
9291 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9292 {
9293 u32 dstate = I915_READ(D_STATE);
9294
9295 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9296 DSTATE_DOT_CLOCK_GATING;
9297 I915_WRITE(D_STATE, dstate);
9298
9299 if (IS_PINEVIEW(dev_priv))
9300 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9301
9302 /* IIR "flip pending" means done if this bit is set */
9303 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9304
9305 /* interrupts should cause a wake up from C3 */
9306 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9307
9308 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9309 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9310
9311 I915_WRITE(MI_ARB_STATE,
9312 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9313 }
9314
9315 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9316 {
9317 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9318
9319 /* interrupts should cause a wake up from C3 */
9320 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9321 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9322
9323 I915_WRITE(MEM_MODE,
9324 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9325 }
9326
9327 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9328 {
9329 I915_WRITE(MEM_MODE,
9330 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9331 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9332 }
9333
9334 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9335 {
9336 dev_priv->display.init_clock_gating(dev_priv);
9337 }
9338
9339 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9340 {
9341 if (HAS_PCH_LPT(dev_priv))
9342 lpt_suspend_hw(dev_priv);
9343 }
9344
9345 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9346 {
9347 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9348 }
9349
9350 /**
9351 * intel_init_clock_gating_hooks - setup the clock gating hooks
9352 * @dev_priv: device private
9353 *
9354 * Setup the hooks that configure which clocks of a given platform can be
9355 * gated and also apply various GT and display specific workarounds for these
9356 * platforms. Note that some GT specific workarounds are applied separately
9357 * when GPU contexts or batchbuffers start their execution.
9358 */
9359 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9360 {
9361 if (IS_ICELAKE(dev_priv))
9362 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9363 else if (IS_CANNONLAKE(dev_priv))
9364 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9365 else if (IS_COFFEELAKE(dev_priv))
9366 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9367 else if (IS_SKYLAKE(dev_priv))
9368 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9369 else if (IS_KABYLAKE(dev_priv))
9370 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9371 else if (IS_BROXTON(dev_priv))
9372 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9373 else if (IS_GEMINILAKE(dev_priv))
9374 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9375 else if (IS_BROADWELL(dev_priv))
9376 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9377 else if (IS_CHERRYVIEW(dev_priv))
9378 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9379 else if (IS_HASWELL(dev_priv))
9380 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9381 else if (IS_IVYBRIDGE(dev_priv))
9382 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9383 else if (IS_VALLEYVIEW(dev_priv))
9384 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9385 else if (IS_GEN(dev_priv, 6))
9386 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9387 else if (IS_GEN(dev_priv, 5))
9388 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9389 else if (IS_G4X(dev_priv))
9390 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9391 else if (IS_I965GM(dev_priv))
9392 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9393 else if (IS_I965G(dev_priv))
9394 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9395 else if (IS_GEN(dev_priv, 3))
9396 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9397 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9398 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9399 else if (IS_GEN(dev_priv, 2))
9400 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9401 else {
9402 MISSING_CASE(INTEL_DEVID(dev_priv));
9403 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9404 }
9405 }
9406
9407 /* Set up chip specific power management-related functions */
9408 void intel_init_pm(struct drm_i915_private *dev_priv)
9409 {
9410 /* For cxsr */
9411 if (IS_PINEVIEW(dev_priv))
9412 i915_pineview_get_mem_freq(dev_priv);
9413 else if (IS_GEN(dev_priv, 5))
9414 i915_ironlake_get_mem_freq(dev_priv);
9415
9416 /* For FIFO watermark updates */
9417 if (INTEL_GEN(dev_priv) >= 9) {
9418 skl_setup_wm_latency(dev_priv);
9419 dev_priv->display.initial_watermarks = skl_initial_wm;
9420 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9421 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9422 } else if (HAS_PCH_SPLIT(dev_priv)) {
9423 ilk_setup_wm_latency(dev_priv);
9424
9425 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9426 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9427 (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9428 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9429 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9430 dev_priv->display.compute_intermediate_wm =
9431 ilk_compute_intermediate_wm;
9432 dev_priv->display.initial_watermarks =
9433 ilk_initial_watermarks;
9434 dev_priv->display.optimize_watermarks =
9435 ilk_optimize_watermarks;
9436 } else {
9437 DRM_DEBUG_KMS("Failed to read display plane latency. "
9438 "Disable CxSR\n");
9439 }
9440 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9441 vlv_setup_wm_latency(dev_priv);
9442 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9443 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9444 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9445 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9446 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9447 } else if (IS_G4X(dev_priv)) {
9448 g4x_setup_wm_latency(dev_priv);
9449 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9450 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9451 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9452 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9453 } else if (IS_PINEVIEW(dev_priv)) {
9454 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9455 dev_priv->is_ddr3,
9456 dev_priv->fsb_freq,
9457 dev_priv->mem_freq)) {
9458 DRM_INFO("failed to find known CxSR latency "
9459 "(found ddr%s fsb freq %d, mem freq %d), "
9460 "disabling CxSR\n",
9461 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9462 dev_priv->fsb_freq, dev_priv->mem_freq);
9463 /* Disable CxSR and never update its watermark again */
9464 intel_set_memory_cxsr(dev_priv, false);
9465 dev_priv->display.update_wm = NULL;
9466 } else
9467 dev_priv->display.update_wm = pineview_update_wm;
9468 } else if (IS_GEN(dev_priv, 4)) {
9469 dev_priv->display.update_wm = i965_update_wm;
9470 } else if (IS_GEN(dev_priv, 3)) {
9471 dev_priv->display.update_wm = i9xx_update_wm;
9472 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9473 } else if (IS_GEN(dev_priv, 2)) {
9474 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9475 dev_priv->display.update_wm = i845_update_wm;
9476 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9477 } else {
9478 dev_priv->display.update_wm = i9xx_update_wm;
9479 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9480 }
9481 } else {
9482 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9483 }
9484 }
9485
9486 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9487 {
9488 u32 flags =
9489 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9490
9491 switch (flags) {
9492 case GEN6_PCODE_SUCCESS:
9493 return 0;
9494 case GEN6_PCODE_UNIMPLEMENTED_CMD:
9495 return -ENODEV;
9496 case GEN6_PCODE_ILLEGAL_CMD:
9497 return -ENXIO;
9498 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9499 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9500 return -EOVERFLOW;
9501 case GEN6_PCODE_TIMEOUT:
9502 return -ETIMEDOUT;
9503 default:
9504 MISSING_CASE(flags);
9505 return 0;
9506 }
9507 }
9508
9509 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9510 {
9511 u32 flags =
9512 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9513
9514 switch (flags) {
9515 case GEN6_PCODE_SUCCESS:
9516 return 0;
9517 case GEN6_PCODE_ILLEGAL_CMD:
9518 return -ENXIO;
9519 case GEN7_PCODE_TIMEOUT:
9520 return -ETIMEDOUT;
9521 case GEN7_PCODE_ILLEGAL_DATA:
9522 return -EINVAL;
9523 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9524 return -EOVERFLOW;
9525 default:
9526 MISSING_CASE(flags);
9527 return 0;
9528 }
9529 }
9530
9531 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9532 {
9533 int status;
9534
9535 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9536
9537 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9538 * use te fw I915_READ variants to reduce the amount of work
9539 * required when reading/writing.
9540 */
9541
9542 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9543 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9544 mbox, __builtin_return_address(0));
9545 return -EAGAIN;
9546 }
9547
9548 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9549 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9550 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9551
9552 if (__intel_wait_for_register_fw(dev_priv,
9553 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9554 500, 0, NULL)) {
9555 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9556 mbox, __builtin_return_address(0));
9557 return -ETIMEDOUT;
9558 }
9559
9560 *val = I915_READ_FW(GEN6_PCODE_DATA);
9561 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9562
9563 if (INTEL_GEN(dev_priv) > 6)
9564 status = gen7_check_mailbox_status(dev_priv);
9565 else
9566 status = gen6_check_mailbox_status(dev_priv);
9567
9568 if (status) {
9569 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9570 mbox, __builtin_return_address(0), status);
9571 return status;
9572 }
9573
9574 return 0;
9575 }
9576
9577 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9578 u32 mbox, u32 val,
9579 int fast_timeout_us, int slow_timeout_ms)
9580 {
9581 int status;
9582
9583 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9584
9585 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9586 * use te fw I915_READ variants to reduce the amount of work
9587 * required when reading/writing.
9588 */
9589
9590 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9591 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9592 val, mbox, __builtin_return_address(0));
9593 return -EAGAIN;
9594 }
9595
9596 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9597 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9598 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9599
9600 if (__intel_wait_for_register_fw(dev_priv,
9601 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9602 fast_timeout_us, slow_timeout_ms,
9603 NULL)) {
9604 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9605 val, mbox, __builtin_return_address(0));
9606 return -ETIMEDOUT;
9607 }
9608
9609 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9610
9611 if (INTEL_GEN(dev_priv) > 6)
9612 status = gen7_check_mailbox_status(dev_priv);
9613 else
9614 status = gen6_check_mailbox_status(dev_priv);
9615
9616 if (status) {
9617 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9618 val, mbox, __builtin_return_address(0), status);
9619 return status;
9620 }
9621
9622 return 0;
9623 }
9624
9625 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9626 u32 request, u32 reply_mask, u32 reply,
9627 u32 *status)
9628 {
9629 u32 val = request;
9630
9631 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9632
9633 return *status || ((val & reply_mask) == reply);
9634 }
9635
9636 /**
9637 * skl_pcode_request - send PCODE request until acknowledgment
9638 * @dev_priv: device private
9639 * @mbox: PCODE mailbox ID the request is targeted for
9640 * @request: request ID
9641 * @reply_mask: mask used to check for request acknowledgment
9642 * @reply: value used to check for request acknowledgment
9643 * @timeout_base_ms: timeout for polling with preemption enabled
9644 *
9645 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9646 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9647 * The request is acknowledged once the PCODE reply dword equals @reply after
9648 * applying @reply_mask. Polling is first attempted with preemption enabled
9649 * for @timeout_base_ms and if this times out for another 50 ms with
9650 * preemption disabled.
9651 *
9652 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9653 * other error as reported by PCODE.
9654 */
9655 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9656 u32 reply_mask, u32 reply, int timeout_base_ms)
9657 {
9658 u32 status;
9659 int ret;
9660
9661 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9662
9663 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9664 &status)
9665
9666 /*
9667 * Prime the PCODE by doing a request first. Normally it guarantees
9668 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9669 * _wait_for() doesn't guarantee when its passed condition is evaluated
9670 * first, so send the first request explicitly.
9671 */
9672 if (COND) {
9673 ret = 0;
9674 goto out;
9675 }
9676 ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9677 if (!ret)
9678 goto out;
9679
9680 /*
9681 * The above can time out if the number of requests was low (2 in the
9682 * worst case) _and_ PCODE was busy for some reason even after a
9683 * (queued) request and @timeout_base_ms delay. As a workaround retry
9684 * the poll with preemption disabled to maximize the number of
9685 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9686 * account for interrupts that could reduce the number of these
9687 * requests, and for any quirks of the PCODE firmware that delays
9688 * the request completion.
9689 */
9690 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9691 WARN_ON_ONCE(timeout_base_ms > 3);
9692 preempt_disable();
9693 ret = wait_for_atomic(COND, 50);
9694 preempt_enable();
9695
9696 out:
9697 return ret ? ret : status;
9698 #undef COND
9699 }
9700
9701 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9702 {
9703 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9704
9705 /*
9706 * N = val - 0xb7
9707 * Slow = Fast = GPLL ref * N
9708 */
9709 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9710 }
9711
9712 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9713 {
9714 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9715
9716 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9717 }
9718
9719 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9720 {
9721 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9722
9723 /*
9724 * N = val / 2
9725 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9726 */
9727 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9728 }
9729
9730 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9731 {
9732 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9733
9734 /* CHV needs even values */
9735 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9736 }
9737
9738 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9739 {
9740 if (INTEL_GEN(dev_priv) >= 9)
9741 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9742 GEN9_FREQ_SCALER);
9743 else if (IS_CHERRYVIEW(dev_priv))
9744 return chv_gpu_freq(dev_priv, val);
9745 else if (IS_VALLEYVIEW(dev_priv))
9746 return byt_gpu_freq(dev_priv, val);
9747 else
9748 return val * GT_FREQUENCY_MULTIPLIER;
9749 }
9750
9751 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9752 {
9753 if (INTEL_GEN(dev_priv) >= 9)
9754 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9755 GT_FREQUENCY_MULTIPLIER);
9756 else if (IS_CHERRYVIEW(dev_priv))
9757 return chv_freq_opcode(dev_priv, val);
9758 else if (IS_VALLEYVIEW(dev_priv))
9759 return byt_freq_opcode(dev_priv, val);
9760 else
9761 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9762 }
9763
9764 void intel_pm_setup(struct drm_i915_private *dev_priv)
9765 {
9766 mutex_init(&dev_priv->pcu_lock);
9767 mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9768
9769 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9770
9771 dev_priv->runtime_pm.suspended = false;
9772 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9773 }
9774
9775 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9776 const i915_reg_t reg)
9777 {
9778 u32 lower, upper, tmp;
9779 int loop = 2;
9780
9781 /*
9782 * The register accessed do not need forcewake. We borrow
9783 * uncore lock to prevent concurrent access to range reg.
9784 */
9785 lockdep_assert_held(&dev_priv->uncore.lock);
9786
9787 /*
9788 * vlv and chv residency counters are 40 bits in width.
9789 * With a control bit, we can choose between upper or lower
9790 * 32bit window into this counter.
9791 *
9792 * Although we always use the counter in high-range mode elsewhere,
9793 * userspace may attempt to read the value before rc6 is initialised,
9794 * before we have set the default VLV_COUNTER_CONTROL value. So always
9795 * set the high bit to be safe.
9796 */
9797 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9798 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9799 upper = I915_READ_FW(reg);
9800 do {
9801 tmp = upper;
9802
9803 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9804 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9805 lower = I915_READ_FW(reg);
9806
9807 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9808 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9809 upper = I915_READ_FW(reg);
9810 } while (upper != tmp && --loop);
9811
9812 /*
9813 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9814 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9815 * now.
9816 */
9817
9818 return lower | (u64)upper << 8;
9819 }
9820
9821 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9822 const i915_reg_t reg)
9823 {
9824 u64 time_hw, prev_hw, overflow_hw;
9825 unsigned int fw_domains;
9826 unsigned long flags;
9827 unsigned int i;
9828 u32 mul, div;
9829
9830 if (!HAS_RC6(dev_priv))
9831 return 0;
9832
9833 /*
9834 * Store previous hw counter values for counter wrap-around handling.
9835 *
9836 * There are only four interesting registers and they live next to each
9837 * other so we can use the relative address, compared to the smallest
9838 * one as the index into driver storage.
9839 */
9840 i = (i915_mmio_reg_offset(reg) -
9841 i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9842 if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9843 return 0;
9844
9845 fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9846
9847 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9848 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9849
9850 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9851 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9852 mul = 1000000;
9853 div = dev_priv->czclk_freq;
9854 overflow_hw = BIT_ULL(40);
9855 time_hw = vlv_residency_raw(dev_priv, reg);
9856 } else {
9857 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9858 if (IS_GEN9_LP(dev_priv)) {
9859 mul = 10000;
9860 div = 12;
9861 } else {
9862 mul = 1280;
9863 div = 1;
9864 }
9865
9866 overflow_hw = BIT_ULL(32);
9867 time_hw = I915_READ_FW(reg);
9868 }
9869
9870 /*
9871 * Counter wrap handling.
9872 *
9873 * But relying on a sufficient frequency of queries otherwise counters
9874 * can still wrap.
9875 */
9876 prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9877 dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9878
9879 /* RC6 delta from last sample. */
9880 if (time_hw >= prev_hw)
9881 time_hw -= prev_hw;
9882 else
9883 time_hw += overflow_hw - prev_hw;
9884
9885 /* Add delta to RC6 extended raw driver copy. */
9886 time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9887 dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9888
9889 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9890 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9891
9892 return mul_u64_u32_div(time_hw, mul, div);
9893 }
9894
9895 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9896 {
9897 u32 cagf;
9898
9899 if (INTEL_GEN(dev_priv) >= 9)
9900 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9901 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9902 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9903 else
9904 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9905
9906 return cagf;
9907 }