]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
34
35 #include "display/intel_atomic.h"
36 #include "display/intel_display_types.h"
37 #include "display/intel_fbc.h"
38 #include "display/intel_sprite.h"
39
40 #include "gt/intel_llc.h"
41
42 #include "i915_drv.h"
43 #include "i915_fixed.h"
44 #include "i915_irq.h"
45 #include "i915_trace.h"
46 #include "intel_pm.h"
47 #include "intel_sideband.h"
48 #include "../../../platform/x86/intel_ips.h"
49
50 /* Stores plane specific WM parameters */
51 struct skl_wm_params {
52 bool x_tiled, y_tiled;
53 bool rc_surface;
54 bool is_planar;
55 u32 width;
56 u8 cpp;
57 u32 plane_pixel_rate;
58 u32 y_min_scanlines;
59 u32 plane_bytes_per_line;
60 uint_fixed_16_16_t plane_blocks_per_line;
61 uint_fixed_16_16_t y_tile_minimum;
62 u32 linetime_us;
63 u32 dbuf_block_size;
64 };
65
66 /* used in computing the new watermarks state */
67 struct intel_wm_config {
68 unsigned int num_pipes_active;
69 bool sprites_enabled;
70 bool sprites_scaled;
71 };
72
73 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
74 {
75 if (HAS_LLC(dev_priv)) {
76 /*
77 * WaCompressedResourceDisplayNewHashMode:skl,kbl
78 * Display WA #0390: skl,kbl
79 *
80 * Must match Sampler, Pixel Back End, and Media. See
81 * WaCompressedResourceSamplerPbeMediaNewHashMode.
82 */
83 I915_WRITE(CHICKEN_PAR1_1,
84 I915_READ(CHICKEN_PAR1_1) |
85 SKL_DE_COMPRESSED_HASH_MODE);
86 }
87
88 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
89 I915_WRITE(CHICKEN_PAR1_1,
90 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
91
92 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
93 I915_WRITE(GEN8_CHICKEN_DCPR_1,
94 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
95
96 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
97 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
98 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
99 DISP_FBC_WM_DIS |
100 DISP_FBC_MEMORY_WAKE);
101
102 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
103 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
104 ILK_DPFC_DISABLE_DUMMY0);
105
106 if (IS_SKYLAKE(dev_priv)) {
107 /* WaDisableDopClockGating */
108 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
109 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
110 }
111 }
112
113 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
114 {
115 gen9_init_clock_gating(dev_priv);
116
117 /* WaDisableSDEUnitClockGating:bxt */
118 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
119 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
120
121 /*
122 * FIXME:
123 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
124 */
125 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
126 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
127
128 /*
129 * Wa: Backlight PWM may stop in the asserted state, causing backlight
130 * to stay fully on.
131 */
132 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
133 PWM1_GATING_DIS | PWM2_GATING_DIS);
134
135 /*
136 * Lower the display internal timeout.
137 * This is needed to avoid any hard hangs when DSI port PLL
138 * is off and a MMIO access is attempted by any privilege
139 * application, using batch buffers or any other means.
140 */
141 I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
142 }
143
144 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
145 {
146 gen9_init_clock_gating(dev_priv);
147
148 /*
149 * WaDisablePWMClockGating:glk
150 * Backlight PWM may stop in the asserted state, causing backlight
151 * to stay fully on.
152 */
153 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
154 PWM1_GATING_DIS | PWM2_GATING_DIS);
155 }
156
157 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
158 {
159 u32 tmp;
160
161 tmp = I915_READ(CLKCFG);
162
163 switch (tmp & CLKCFG_FSB_MASK) {
164 case CLKCFG_FSB_533:
165 dev_priv->fsb_freq = 533; /* 133*4 */
166 break;
167 case CLKCFG_FSB_800:
168 dev_priv->fsb_freq = 800; /* 200*4 */
169 break;
170 case CLKCFG_FSB_667:
171 dev_priv->fsb_freq = 667; /* 167*4 */
172 break;
173 case CLKCFG_FSB_400:
174 dev_priv->fsb_freq = 400; /* 100*4 */
175 break;
176 }
177
178 switch (tmp & CLKCFG_MEM_MASK) {
179 case CLKCFG_MEM_533:
180 dev_priv->mem_freq = 533;
181 break;
182 case CLKCFG_MEM_667:
183 dev_priv->mem_freq = 667;
184 break;
185 case CLKCFG_MEM_800:
186 dev_priv->mem_freq = 800;
187 break;
188 }
189
190 /* detect pineview DDR3 setting */
191 tmp = I915_READ(CSHRDDR3CTL);
192 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
193 }
194
195 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
196 {
197 u16 ddrpll, csipll;
198
199 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
200 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
201
202 switch (ddrpll & 0xff) {
203 case 0xc:
204 dev_priv->mem_freq = 800;
205 break;
206 case 0x10:
207 dev_priv->mem_freq = 1066;
208 break;
209 case 0x14:
210 dev_priv->mem_freq = 1333;
211 break;
212 case 0x18:
213 dev_priv->mem_freq = 1600;
214 break;
215 default:
216 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
217 ddrpll & 0xff);
218 dev_priv->mem_freq = 0;
219 break;
220 }
221
222 switch (csipll & 0x3ff) {
223 case 0x00c:
224 dev_priv->fsb_freq = 3200;
225 break;
226 case 0x00e:
227 dev_priv->fsb_freq = 3733;
228 break;
229 case 0x010:
230 dev_priv->fsb_freq = 4266;
231 break;
232 case 0x012:
233 dev_priv->fsb_freq = 4800;
234 break;
235 case 0x014:
236 dev_priv->fsb_freq = 5333;
237 break;
238 case 0x016:
239 dev_priv->fsb_freq = 5866;
240 break;
241 case 0x018:
242 dev_priv->fsb_freq = 6400;
243 break;
244 default:
245 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
246 csipll & 0x3ff);
247 dev_priv->fsb_freq = 0;
248 break;
249 }
250 }
251
252 static const struct cxsr_latency cxsr_latency_table[] = {
253 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
254 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
255 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
256 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
257 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
258
259 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
260 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
261 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
262 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
263 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
264
265 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
266 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
267 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
268 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
269 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
270
271 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
272 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
273 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
274 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
275 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
276
277 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
278 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
279 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
280 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
281 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
282
283 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
284 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
285 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
286 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
287 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
288 };
289
290 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
291 bool is_ddr3,
292 int fsb,
293 int mem)
294 {
295 const struct cxsr_latency *latency;
296 int i;
297
298 if (fsb == 0 || mem == 0)
299 return NULL;
300
301 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
302 latency = &cxsr_latency_table[i];
303 if (is_desktop == latency->is_desktop &&
304 is_ddr3 == latency->is_ddr3 &&
305 fsb == latency->fsb_freq && mem == latency->mem_freq)
306 return latency;
307 }
308
309 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
310
311 return NULL;
312 }
313
314 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
315 {
316 u32 val;
317
318 vlv_punit_get(dev_priv);
319
320 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
321 if (enable)
322 val &= ~FORCE_DDR_HIGH_FREQ;
323 else
324 val |= FORCE_DDR_HIGH_FREQ;
325 val &= ~FORCE_DDR_LOW_FREQ;
326 val |= FORCE_DDR_FREQ_REQ_ACK;
327 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
328
329 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
330 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
331 drm_err(&dev_priv->drm,
332 "timed out waiting for Punit DDR DVFS request\n");
333
334 vlv_punit_put(dev_priv);
335 }
336
337 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
338 {
339 u32 val;
340
341 vlv_punit_get(dev_priv);
342
343 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
344 if (enable)
345 val |= DSP_MAXFIFO_PM5_ENABLE;
346 else
347 val &= ~DSP_MAXFIFO_PM5_ENABLE;
348 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
349
350 vlv_punit_put(dev_priv);
351 }
352
353 #define FW_WM(value, plane) \
354 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
355
356 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
357 {
358 bool was_enabled;
359 u32 val;
360
361 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
362 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
363 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
364 POSTING_READ(FW_BLC_SELF_VLV);
365 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
366 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
367 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
368 POSTING_READ(FW_BLC_SELF);
369 } else if (IS_PINEVIEW(dev_priv)) {
370 val = I915_READ(DSPFW3);
371 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
372 if (enable)
373 val |= PINEVIEW_SELF_REFRESH_EN;
374 else
375 val &= ~PINEVIEW_SELF_REFRESH_EN;
376 I915_WRITE(DSPFW3, val);
377 POSTING_READ(DSPFW3);
378 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
379 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
380 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
381 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
382 I915_WRITE(FW_BLC_SELF, val);
383 POSTING_READ(FW_BLC_SELF);
384 } else if (IS_I915GM(dev_priv)) {
385 /*
386 * FIXME can't find a bit like this for 915G, and
387 * and yet it does have the related watermark in
388 * FW_BLC_SELF. What's going on?
389 */
390 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
391 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
392 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
393 I915_WRITE(INSTPM, val);
394 POSTING_READ(INSTPM);
395 } else {
396 return false;
397 }
398
399 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
400
401 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
402 enableddisabled(enable),
403 enableddisabled(was_enabled));
404
405 return was_enabled;
406 }
407
408 /**
409 * intel_set_memory_cxsr - Configure CxSR state
410 * @dev_priv: i915 device
411 * @enable: Allow vs. disallow CxSR
412 *
413 * Allow or disallow the system to enter a special CxSR
414 * (C-state self refresh) state. What typically happens in CxSR mode
415 * is that several display FIFOs may get combined into a single larger
416 * FIFO for a particular plane (so called max FIFO mode) to allow the
417 * system to defer memory fetches longer, and the memory will enter
418 * self refresh.
419 *
420 * Note that enabling CxSR does not guarantee that the system enter
421 * this special mode, nor does it guarantee that the system stays
422 * in that mode once entered. So this just allows/disallows the system
423 * to autonomously utilize the CxSR mode. Other factors such as core
424 * C-states will affect when/if the system actually enters/exits the
425 * CxSR mode.
426 *
427 * Note that on VLV/CHV this actually only controls the max FIFO mode,
428 * and the system is free to enter/exit memory self refresh at any time
429 * even when the use of CxSR has been disallowed.
430 *
431 * While the system is actually in the CxSR/max FIFO mode, some plane
432 * control registers will not get latched on vblank. Thus in order to
433 * guarantee the system will respond to changes in the plane registers
434 * we must always disallow CxSR prior to making changes to those registers.
435 * Unfortunately the system will re-evaluate the CxSR conditions at
436 * frame start which happens after vblank start (which is when the plane
437 * registers would get latched), so we can't proceed with the plane update
438 * during the same frame where we disallowed CxSR.
439 *
440 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
441 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
442 * the hardware w.r.t. HPLL SR when writing to plane registers.
443 * Disallowing just CxSR is sufficient.
444 */
445 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
446 {
447 bool ret;
448
449 mutex_lock(&dev_priv->wm.wm_mutex);
450 ret = _intel_set_memory_cxsr(dev_priv, enable);
451 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
452 dev_priv->wm.vlv.cxsr = enable;
453 else if (IS_G4X(dev_priv))
454 dev_priv->wm.g4x.cxsr = enable;
455 mutex_unlock(&dev_priv->wm.wm_mutex);
456
457 return ret;
458 }
459
460 /*
461 * Latency for FIFO fetches is dependent on several factors:
462 * - memory configuration (speed, channels)
463 * - chipset
464 * - current MCH state
465 * It can be fairly high in some situations, so here we assume a fairly
466 * pessimal value. It's a tradeoff between extra memory fetches (if we
467 * set this value too high, the FIFO will fetch frequently to stay full)
468 * and power consumption (set it too low to save power and we might see
469 * FIFO underruns and display "flicker").
470 *
471 * A value of 5us seems to be a good balance; safe for very low end
472 * platforms but not overly aggressive on lower latency configs.
473 */
474 static const int pessimal_latency_ns = 5000;
475
476 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
477 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
478
479 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
480 {
481 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
482 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
483 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
484 enum pipe pipe = crtc->pipe;
485 int sprite0_start, sprite1_start;
486 u32 dsparb, dsparb2, dsparb3;
487
488 switch (pipe) {
489 case PIPE_A:
490 dsparb = I915_READ(DSPARB);
491 dsparb2 = I915_READ(DSPARB2);
492 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
493 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
494 break;
495 case PIPE_B:
496 dsparb = I915_READ(DSPARB);
497 dsparb2 = I915_READ(DSPARB2);
498 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
499 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
500 break;
501 case PIPE_C:
502 dsparb2 = I915_READ(DSPARB2);
503 dsparb3 = I915_READ(DSPARB3);
504 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
505 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
506 break;
507 default:
508 MISSING_CASE(pipe);
509 return;
510 }
511
512 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
513 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
514 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
515 fifo_state->plane[PLANE_CURSOR] = 63;
516 }
517
518 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
519 enum i9xx_plane_id i9xx_plane)
520 {
521 u32 dsparb = I915_READ(DSPARB);
522 int size;
523
524 size = dsparb & 0x7f;
525 if (i9xx_plane == PLANE_B)
526 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
527
528 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
529 dsparb, plane_name(i9xx_plane), size);
530
531 return size;
532 }
533
534 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
535 enum i9xx_plane_id i9xx_plane)
536 {
537 u32 dsparb = I915_READ(DSPARB);
538 int size;
539
540 size = dsparb & 0x1ff;
541 if (i9xx_plane == PLANE_B)
542 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
543 size >>= 1; /* Convert to cachelines */
544
545 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
546 dsparb, plane_name(i9xx_plane), size);
547
548 return size;
549 }
550
551 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
552 enum i9xx_plane_id i9xx_plane)
553 {
554 u32 dsparb = I915_READ(DSPARB);
555 int size;
556
557 size = dsparb & 0x7f;
558 size >>= 2; /* Convert to cachelines */
559
560 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
561 dsparb, plane_name(i9xx_plane), size);
562
563 return size;
564 }
565
566 /* Pineview has different values for various configs */
567 static const struct intel_watermark_params pnv_display_wm = {
568 .fifo_size = PINEVIEW_DISPLAY_FIFO,
569 .max_wm = PINEVIEW_MAX_WM,
570 .default_wm = PINEVIEW_DFT_WM,
571 .guard_size = PINEVIEW_GUARD_WM,
572 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 };
574
575 static const struct intel_watermark_params pnv_display_hplloff_wm = {
576 .fifo_size = PINEVIEW_DISPLAY_FIFO,
577 .max_wm = PINEVIEW_MAX_WM,
578 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
579 .guard_size = PINEVIEW_GUARD_WM,
580 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 };
582
583 static const struct intel_watermark_params pnv_cursor_wm = {
584 .fifo_size = PINEVIEW_CURSOR_FIFO,
585 .max_wm = PINEVIEW_CURSOR_MAX_WM,
586 .default_wm = PINEVIEW_CURSOR_DFT_WM,
587 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
588 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 };
590
591 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
592 .fifo_size = PINEVIEW_CURSOR_FIFO,
593 .max_wm = PINEVIEW_CURSOR_MAX_WM,
594 .default_wm = PINEVIEW_CURSOR_DFT_WM,
595 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
596 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
597 };
598
599 static const struct intel_watermark_params i965_cursor_wm_info = {
600 .fifo_size = I965_CURSOR_FIFO,
601 .max_wm = I965_CURSOR_MAX_WM,
602 .default_wm = I965_CURSOR_DFT_WM,
603 .guard_size = 2,
604 .cacheline_size = I915_FIFO_LINE_SIZE,
605 };
606
607 static const struct intel_watermark_params i945_wm_info = {
608 .fifo_size = I945_FIFO_SIZE,
609 .max_wm = I915_MAX_WM,
610 .default_wm = 1,
611 .guard_size = 2,
612 .cacheline_size = I915_FIFO_LINE_SIZE,
613 };
614
615 static const struct intel_watermark_params i915_wm_info = {
616 .fifo_size = I915_FIFO_SIZE,
617 .max_wm = I915_MAX_WM,
618 .default_wm = 1,
619 .guard_size = 2,
620 .cacheline_size = I915_FIFO_LINE_SIZE,
621 };
622
623 static const struct intel_watermark_params i830_a_wm_info = {
624 .fifo_size = I855GM_FIFO_SIZE,
625 .max_wm = I915_MAX_WM,
626 .default_wm = 1,
627 .guard_size = 2,
628 .cacheline_size = I830_FIFO_LINE_SIZE,
629 };
630
631 static const struct intel_watermark_params i830_bc_wm_info = {
632 .fifo_size = I855GM_FIFO_SIZE,
633 .max_wm = I915_MAX_WM/2,
634 .default_wm = 1,
635 .guard_size = 2,
636 .cacheline_size = I830_FIFO_LINE_SIZE,
637 };
638
639 static const struct intel_watermark_params i845_wm_info = {
640 .fifo_size = I830_FIFO_SIZE,
641 .max_wm = I915_MAX_WM,
642 .default_wm = 1,
643 .guard_size = 2,
644 .cacheline_size = I830_FIFO_LINE_SIZE,
645 };
646
647 /**
648 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
649 * @pixel_rate: Pipe pixel rate in kHz
650 * @cpp: Plane bytes per pixel
651 * @latency: Memory wakeup latency in 0.1us units
652 *
653 * Compute the watermark using the method 1 or "small buffer"
654 * formula. The caller may additonally add extra cachelines
655 * to account for TLB misses and clock crossings.
656 *
657 * This method is concerned with the short term drain rate
658 * of the FIFO, ie. it does not account for blanking periods
659 * which would effectively reduce the average drain rate across
660 * a longer period. The name "small" refers to the fact the
661 * FIFO is relatively small compared to the amount of data
662 * fetched.
663 *
664 * The FIFO level vs. time graph might look something like:
665 *
666 * |\ |\
667 * | \ | \
668 * __---__---__ (- plane active, _ blanking)
669 * -> time
670 *
671 * or perhaps like this:
672 *
673 * |\|\ |\|\
674 * __----__----__ (- plane active, _ blanking)
675 * -> time
676 *
677 * Returns:
678 * The watermark in bytes
679 */
680 static unsigned int intel_wm_method1(unsigned int pixel_rate,
681 unsigned int cpp,
682 unsigned int latency)
683 {
684 u64 ret;
685
686 ret = mul_u32_u32(pixel_rate, cpp * latency);
687 ret = DIV_ROUND_UP_ULL(ret, 10000);
688
689 return ret;
690 }
691
692 /**
693 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
694 * @pixel_rate: Pipe pixel rate in kHz
695 * @htotal: Pipe horizontal total
696 * @width: Plane width in pixels
697 * @cpp: Plane bytes per pixel
698 * @latency: Memory wakeup latency in 0.1us units
699 *
700 * Compute the watermark using the method 2 or "large buffer"
701 * formula. The caller may additonally add extra cachelines
702 * to account for TLB misses and clock crossings.
703 *
704 * This method is concerned with the long term drain rate
705 * of the FIFO, ie. it does account for blanking periods
706 * which effectively reduce the average drain rate across
707 * a longer period. The name "large" refers to the fact the
708 * FIFO is relatively large compared to the amount of data
709 * fetched.
710 *
711 * The FIFO level vs. time graph might look something like:
712 *
713 * |\___ |\___
714 * | \___ | \___
715 * | \ | \
716 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
717 * -> time
718 *
719 * Returns:
720 * The watermark in bytes
721 */
722 static unsigned int intel_wm_method2(unsigned int pixel_rate,
723 unsigned int htotal,
724 unsigned int width,
725 unsigned int cpp,
726 unsigned int latency)
727 {
728 unsigned int ret;
729
730 /*
731 * FIXME remove once all users are computing
732 * watermarks in the correct place.
733 */
734 if (WARN_ON_ONCE(htotal == 0))
735 htotal = 1;
736
737 ret = (latency * pixel_rate) / (htotal * 10000);
738 ret = (ret + 1) * width * cpp;
739
740 return ret;
741 }
742
743 /**
744 * intel_calculate_wm - calculate watermark level
745 * @pixel_rate: pixel clock
746 * @wm: chip FIFO params
747 * @fifo_size: size of the FIFO buffer
748 * @cpp: bytes per pixel
749 * @latency_ns: memory latency for the platform
750 *
751 * Calculate the watermark level (the level at which the display plane will
752 * start fetching from memory again). Each chip has a different display
753 * FIFO size and allocation, so the caller needs to figure that out and pass
754 * in the correct intel_watermark_params structure.
755 *
756 * As the pixel clock runs, the FIFO will be drained at a rate that depends
757 * on the pixel size. When it reaches the watermark level, it'll start
758 * fetching FIFO line sized based chunks from memory until the FIFO fills
759 * past the watermark point. If the FIFO drains completely, a FIFO underrun
760 * will occur, and a display engine hang could result.
761 */
762 static unsigned int intel_calculate_wm(int pixel_rate,
763 const struct intel_watermark_params *wm,
764 int fifo_size, int cpp,
765 unsigned int latency_ns)
766 {
767 int entries, wm_size;
768
769 /*
770 * Note: we need to make sure we don't overflow for various clock &
771 * latency values.
772 * clocks go from a few thousand to several hundred thousand.
773 * latency is usually a few thousand
774 */
775 entries = intel_wm_method1(pixel_rate, cpp,
776 latency_ns / 100);
777 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
778 wm->guard_size;
779 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
780
781 wm_size = fifo_size - entries;
782 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
783
784 /* Don't promote wm_size to unsigned... */
785 if (wm_size > wm->max_wm)
786 wm_size = wm->max_wm;
787 if (wm_size <= 0)
788 wm_size = wm->default_wm;
789
790 /*
791 * Bspec seems to indicate that the value shouldn't be lower than
792 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
793 * Lets go for 8 which is the burst size since certain platforms
794 * already use a hardcoded 8 (which is what the spec says should be
795 * done).
796 */
797 if (wm_size <= 8)
798 wm_size = 8;
799
800 return wm_size;
801 }
802
803 static bool is_disabling(int old, int new, int threshold)
804 {
805 return old >= threshold && new < threshold;
806 }
807
808 static bool is_enabling(int old, int new, int threshold)
809 {
810 return old < threshold && new >= threshold;
811 }
812
813 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
814 {
815 return dev_priv->wm.max_level + 1;
816 }
817
818 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
819 const struct intel_plane_state *plane_state)
820 {
821 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
822
823 /* FIXME check the 'enable' instead */
824 if (!crtc_state->hw.active)
825 return false;
826
827 /*
828 * Treat cursor with fb as always visible since cursor updates
829 * can happen faster than the vrefresh rate, and the current
830 * watermark code doesn't handle that correctly. Cursor updates
831 * which set/clear the fb or change the cursor size are going
832 * to get throttled by intel_legacy_cursor_update() to work
833 * around this problem with the watermark code.
834 */
835 if (plane->id == PLANE_CURSOR)
836 return plane_state->hw.fb != NULL;
837 else
838 return plane_state->uapi.visible;
839 }
840
841 static bool intel_crtc_active(struct intel_crtc *crtc)
842 {
843 /* Be paranoid as we can arrive here with only partial
844 * state retrieved from the hardware during setup.
845 *
846 * We can ditch the adjusted_mode.crtc_clock check as soon
847 * as Haswell has gained clock readout/fastboot support.
848 *
849 * We can ditch the crtc->primary->state->fb check as soon as we can
850 * properly reconstruct framebuffers.
851 *
852 * FIXME: The intel_crtc->active here should be switched to
853 * crtc->state->active once we have proper CRTC states wired up
854 * for atomic.
855 */
856 return crtc->active && crtc->base.primary->state->fb &&
857 crtc->config->hw.adjusted_mode.crtc_clock;
858 }
859
860 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
861 {
862 struct intel_crtc *crtc, *enabled = NULL;
863
864 for_each_intel_crtc(&dev_priv->drm, crtc) {
865 if (intel_crtc_active(crtc)) {
866 if (enabled)
867 return NULL;
868 enabled = crtc;
869 }
870 }
871
872 return enabled;
873 }
874
875 static void pnv_update_wm(struct intel_crtc *unused_crtc)
876 {
877 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
878 struct intel_crtc *crtc;
879 const struct cxsr_latency *latency;
880 u32 reg;
881 unsigned int wm;
882
883 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
884 dev_priv->is_ddr3,
885 dev_priv->fsb_freq,
886 dev_priv->mem_freq);
887 if (!latency) {
888 drm_dbg_kms(&dev_priv->drm,
889 "Unknown FSB/MEM found, disable CxSR\n");
890 intel_set_memory_cxsr(dev_priv, false);
891 return;
892 }
893
894 crtc = single_enabled_crtc(dev_priv);
895 if (crtc) {
896 const struct drm_display_mode *adjusted_mode =
897 &crtc->config->hw.adjusted_mode;
898 const struct drm_framebuffer *fb =
899 crtc->base.primary->state->fb;
900 int cpp = fb->format->cpp[0];
901 int clock = adjusted_mode->crtc_clock;
902
903 /* Display SR */
904 wm = intel_calculate_wm(clock, &pnv_display_wm,
905 pnv_display_wm.fifo_size,
906 cpp, latency->display_sr);
907 reg = I915_READ(DSPFW1);
908 reg &= ~DSPFW_SR_MASK;
909 reg |= FW_WM(wm, SR);
910 I915_WRITE(DSPFW1, reg);
911 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
912
913 /* cursor SR */
914 wm = intel_calculate_wm(clock, &pnv_cursor_wm,
915 pnv_display_wm.fifo_size,
916 4, latency->cursor_sr);
917 reg = I915_READ(DSPFW3);
918 reg &= ~DSPFW_CURSOR_SR_MASK;
919 reg |= FW_WM(wm, CURSOR_SR);
920 I915_WRITE(DSPFW3, reg);
921
922 /* Display HPLL off SR */
923 wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
924 pnv_display_hplloff_wm.fifo_size,
925 cpp, latency->display_hpll_disable);
926 reg = I915_READ(DSPFW3);
927 reg &= ~DSPFW_HPLL_SR_MASK;
928 reg |= FW_WM(wm, HPLL_SR);
929 I915_WRITE(DSPFW3, reg);
930
931 /* cursor HPLL off SR */
932 wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
933 pnv_display_hplloff_wm.fifo_size,
934 4, latency->cursor_hpll_disable);
935 reg = I915_READ(DSPFW3);
936 reg &= ~DSPFW_HPLL_CURSOR_MASK;
937 reg |= FW_WM(wm, HPLL_CURSOR);
938 I915_WRITE(DSPFW3, reg);
939 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
940
941 intel_set_memory_cxsr(dev_priv, true);
942 } else {
943 intel_set_memory_cxsr(dev_priv, false);
944 }
945 }
946
947 /*
948 * Documentation says:
949 * "If the line size is small, the TLB fetches can get in the way of the
950 * data fetches, causing some lag in the pixel data return which is not
951 * accounted for in the above formulas. The following adjustment only
952 * needs to be applied if eight whole lines fit in the buffer at once.
953 * The WM is adjusted upwards by the difference between the FIFO size
954 * and the size of 8 whole lines. This adjustment is always performed
955 * in the actual pixel depth regardless of whether FBC is enabled or not."
956 */
957 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
958 {
959 int tlb_miss = fifo_size * 64 - width * cpp * 8;
960
961 return max(0, tlb_miss);
962 }
963
964 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
965 const struct g4x_wm_values *wm)
966 {
967 enum pipe pipe;
968
969 for_each_pipe(dev_priv, pipe)
970 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
971
972 I915_WRITE(DSPFW1,
973 FW_WM(wm->sr.plane, SR) |
974 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
975 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
976 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
977 I915_WRITE(DSPFW2,
978 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
979 FW_WM(wm->sr.fbc, FBC_SR) |
980 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
981 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
982 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
983 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
984 I915_WRITE(DSPFW3,
985 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
986 FW_WM(wm->sr.cursor, CURSOR_SR) |
987 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
988 FW_WM(wm->hpll.plane, HPLL_SR));
989
990 POSTING_READ(DSPFW1);
991 }
992
993 #define FW_WM_VLV(value, plane) \
994 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
995
996 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
997 const struct vlv_wm_values *wm)
998 {
999 enum pipe pipe;
1000
1001 for_each_pipe(dev_priv, pipe) {
1002 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1003
1004 I915_WRITE(VLV_DDL(pipe),
1005 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1006 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1007 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1008 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1009 }
1010
1011 /*
1012 * Zero the (unused) WM1 watermarks, and also clear all the
1013 * high order bits so that there are no out of bounds values
1014 * present in the registers during the reprogramming.
1015 */
1016 I915_WRITE(DSPHOWM, 0);
1017 I915_WRITE(DSPHOWM1, 0);
1018 I915_WRITE(DSPFW4, 0);
1019 I915_WRITE(DSPFW5, 0);
1020 I915_WRITE(DSPFW6, 0);
1021
1022 I915_WRITE(DSPFW1,
1023 FW_WM(wm->sr.plane, SR) |
1024 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1025 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1026 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1027 I915_WRITE(DSPFW2,
1028 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1029 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1030 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1031 I915_WRITE(DSPFW3,
1032 FW_WM(wm->sr.cursor, CURSOR_SR));
1033
1034 if (IS_CHERRYVIEW(dev_priv)) {
1035 I915_WRITE(DSPFW7_CHV,
1036 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1037 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1038 I915_WRITE(DSPFW8_CHV,
1039 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1040 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1041 I915_WRITE(DSPFW9_CHV,
1042 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1043 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1044 I915_WRITE(DSPHOWM,
1045 FW_WM(wm->sr.plane >> 9, SR_HI) |
1046 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1047 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1048 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1049 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1050 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1051 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1052 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1053 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1054 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1055 } else {
1056 I915_WRITE(DSPFW7,
1057 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1058 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1059 I915_WRITE(DSPHOWM,
1060 FW_WM(wm->sr.plane >> 9, SR_HI) |
1061 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1062 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1063 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1064 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1065 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1066 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1067 }
1068
1069 POSTING_READ(DSPFW1);
1070 }
1071
1072 #undef FW_WM_VLV
1073
1074 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1075 {
1076 /* all latencies in usec */
1077 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1078 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1079 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1080
1081 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1082 }
1083
1084 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1085 {
1086 /*
1087 * DSPCNTR[13] supposedly controls whether the
1088 * primary plane can use the FIFO space otherwise
1089 * reserved for the sprite plane. It's not 100% clear
1090 * what the actual FIFO size is, but it looks like we
1091 * can happily set both primary and sprite watermarks
1092 * up to 127 cachelines. So that would seem to mean
1093 * that either DSPCNTR[13] doesn't do anything, or that
1094 * the total FIFO is >= 256 cachelines in size. Either
1095 * way, we don't seem to have to worry about this
1096 * repartitioning as the maximum watermark value the
1097 * register can hold for each plane is lower than the
1098 * minimum FIFO size.
1099 */
1100 switch (plane_id) {
1101 case PLANE_CURSOR:
1102 return 63;
1103 case PLANE_PRIMARY:
1104 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1105 case PLANE_SPRITE0:
1106 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1107 default:
1108 MISSING_CASE(plane_id);
1109 return 0;
1110 }
1111 }
1112
1113 static int g4x_fbc_fifo_size(int level)
1114 {
1115 switch (level) {
1116 case G4X_WM_LEVEL_SR:
1117 return 7;
1118 case G4X_WM_LEVEL_HPLL:
1119 return 15;
1120 default:
1121 MISSING_CASE(level);
1122 return 0;
1123 }
1124 }
1125
1126 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1127 const struct intel_plane_state *plane_state,
1128 int level)
1129 {
1130 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1131 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1132 const struct drm_display_mode *adjusted_mode =
1133 &crtc_state->hw.adjusted_mode;
1134 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1135 unsigned int clock, htotal, cpp, width, wm;
1136
1137 if (latency == 0)
1138 return USHRT_MAX;
1139
1140 if (!intel_wm_plane_visible(crtc_state, plane_state))
1141 return 0;
1142
1143 cpp = plane_state->hw.fb->format->cpp[0];
1144
1145 /*
1146 * Not 100% sure which way ELK should go here as the
1147 * spec only says CL/CTG should assume 32bpp and BW
1148 * doesn't need to. But as these things followed the
1149 * mobile vs. desktop lines on gen3 as well, let's
1150 * assume ELK doesn't need this.
1151 *
1152 * The spec also fails to list such a restriction for
1153 * the HPLL watermark, which seems a little strange.
1154 * Let's use 32bpp for the HPLL watermark as well.
1155 */
1156 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1157 level != G4X_WM_LEVEL_NORMAL)
1158 cpp = max(cpp, 4u);
1159
1160 clock = adjusted_mode->crtc_clock;
1161 htotal = adjusted_mode->crtc_htotal;
1162
1163 width = drm_rect_width(&plane_state->uapi.dst);
1164
1165 if (plane->id == PLANE_CURSOR) {
1166 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1167 } else if (plane->id == PLANE_PRIMARY &&
1168 level == G4X_WM_LEVEL_NORMAL) {
1169 wm = intel_wm_method1(clock, cpp, latency);
1170 } else {
1171 unsigned int small, large;
1172
1173 small = intel_wm_method1(clock, cpp, latency);
1174 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1175
1176 wm = min(small, large);
1177 }
1178
1179 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1180 width, cpp);
1181
1182 wm = DIV_ROUND_UP(wm, 64) + 2;
1183
1184 return min_t(unsigned int, wm, USHRT_MAX);
1185 }
1186
1187 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1188 int level, enum plane_id plane_id, u16 value)
1189 {
1190 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1191 bool dirty = false;
1192
1193 for (; level < intel_wm_num_levels(dev_priv); level++) {
1194 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1195
1196 dirty |= raw->plane[plane_id] != value;
1197 raw->plane[plane_id] = value;
1198 }
1199
1200 return dirty;
1201 }
1202
1203 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1204 int level, u16 value)
1205 {
1206 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1207 bool dirty = false;
1208
1209 /* NORMAL level doesn't have an FBC watermark */
1210 level = max(level, G4X_WM_LEVEL_SR);
1211
1212 for (; level < intel_wm_num_levels(dev_priv); level++) {
1213 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1214
1215 dirty |= raw->fbc != value;
1216 raw->fbc = value;
1217 }
1218
1219 return dirty;
1220 }
1221
1222 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1223 const struct intel_plane_state *plane_state,
1224 u32 pri_val);
1225
1226 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1227 const struct intel_plane_state *plane_state)
1228 {
1229 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1230 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1231 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1232 enum plane_id plane_id = plane->id;
1233 bool dirty = false;
1234 int level;
1235
1236 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1237 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1238 if (plane_id == PLANE_PRIMARY)
1239 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1240 goto out;
1241 }
1242
1243 for (level = 0; level < num_levels; level++) {
1244 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1245 int wm, max_wm;
1246
1247 wm = g4x_compute_wm(crtc_state, plane_state, level);
1248 max_wm = g4x_plane_fifo_size(plane_id, level);
1249
1250 if (wm > max_wm)
1251 break;
1252
1253 dirty |= raw->plane[plane_id] != wm;
1254 raw->plane[plane_id] = wm;
1255
1256 if (plane_id != PLANE_PRIMARY ||
1257 level == G4X_WM_LEVEL_NORMAL)
1258 continue;
1259
1260 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1261 raw->plane[plane_id]);
1262 max_wm = g4x_fbc_fifo_size(level);
1263
1264 /*
1265 * FBC wm is not mandatory as we
1266 * can always just disable its use.
1267 */
1268 if (wm > max_wm)
1269 wm = USHRT_MAX;
1270
1271 dirty |= raw->fbc != wm;
1272 raw->fbc = wm;
1273 }
1274
1275 /* mark watermarks as invalid */
1276 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1277
1278 if (plane_id == PLANE_PRIMARY)
1279 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1280
1281 out:
1282 if (dirty) {
1283 drm_dbg_kms(&dev_priv->drm,
1284 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1285 plane->base.name,
1286 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1287 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1288 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1289
1290 if (plane_id == PLANE_PRIMARY)
1291 drm_dbg_kms(&dev_priv->drm,
1292 "FBC watermarks: SR=%d, HPLL=%d\n",
1293 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1294 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1295 }
1296
1297 return dirty;
1298 }
1299
1300 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1301 enum plane_id plane_id, int level)
1302 {
1303 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1304
1305 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1306 }
1307
1308 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1309 int level)
1310 {
1311 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1312
1313 if (level > dev_priv->wm.max_level)
1314 return false;
1315
1316 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1317 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1318 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1319 }
1320
1321 /* mark all levels starting from 'level' as invalid */
1322 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1323 struct g4x_wm_state *wm_state, int level)
1324 {
1325 if (level <= G4X_WM_LEVEL_NORMAL) {
1326 enum plane_id plane_id;
1327
1328 for_each_plane_id_on_crtc(crtc, plane_id)
1329 wm_state->wm.plane[plane_id] = USHRT_MAX;
1330 }
1331
1332 if (level <= G4X_WM_LEVEL_SR) {
1333 wm_state->cxsr = false;
1334 wm_state->sr.cursor = USHRT_MAX;
1335 wm_state->sr.plane = USHRT_MAX;
1336 wm_state->sr.fbc = USHRT_MAX;
1337 }
1338
1339 if (level <= G4X_WM_LEVEL_HPLL) {
1340 wm_state->hpll_en = false;
1341 wm_state->hpll.cursor = USHRT_MAX;
1342 wm_state->hpll.plane = USHRT_MAX;
1343 wm_state->hpll.fbc = USHRT_MAX;
1344 }
1345 }
1346
1347 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1348 {
1349 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1350 struct intel_atomic_state *state =
1351 to_intel_atomic_state(crtc_state->uapi.state);
1352 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1353 int num_active_planes = hweight8(crtc_state->active_planes &
1354 ~BIT(PLANE_CURSOR));
1355 const struct g4x_pipe_wm *raw;
1356 const struct intel_plane_state *old_plane_state;
1357 const struct intel_plane_state *new_plane_state;
1358 struct intel_plane *plane;
1359 enum plane_id plane_id;
1360 int i, level;
1361 unsigned int dirty = 0;
1362
1363 for_each_oldnew_intel_plane_in_state(state, plane,
1364 old_plane_state,
1365 new_plane_state, i) {
1366 if (new_plane_state->hw.crtc != &crtc->base &&
1367 old_plane_state->hw.crtc != &crtc->base)
1368 continue;
1369
1370 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1371 dirty |= BIT(plane->id);
1372 }
1373
1374 if (!dirty)
1375 return 0;
1376
1377 level = G4X_WM_LEVEL_NORMAL;
1378 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1379 goto out;
1380
1381 raw = &crtc_state->wm.g4x.raw[level];
1382 for_each_plane_id_on_crtc(crtc, plane_id)
1383 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1384
1385 level = G4X_WM_LEVEL_SR;
1386
1387 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1388 goto out;
1389
1390 raw = &crtc_state->wm.g4x.raw[level];
1391 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1392 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1393 wm_state->sr.fbc = raw->fbc;
1394
1395 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1396
1397 level = G4X_WM_LEVEL_HPLL;
1398
1399 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1400 goto out;
1401
1402 raw = &crtc_state->wm.g4x.raw[level];
1403 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1404 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1405 wm_state->hpll.fbc = raw->fbc;
1406
1407 wm_state->hpll_en = wm_state->cxsr;
1408
1409 level++;
1410
1411 out:
1412 if (level == G4X_WM_LEVEL_NORMAL)
1413 return -EINVAL;
1414
1415 /* invalidate the higher levels */
1416 g4x_invalidate_wms(crtc, wm_state, level);
1417
1418 /*
1419 * Determine if the FBC watermark(s) can be used. IF
1420 * this isn't the case we prefer to disable the FBC
1421 ( watermark(s) rather than disable the SR/HPLL
1422 * level(s) entirely.
1423 */
1424 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1425
1426 if (level >= G4X_WM_LEVEL_SR &&
1427 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1428 wm_state->fbc_en = false;
1429 else if (level >= G4X_WM_LEVEL_HPLL &&
1430 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1431 wm_state->fbc_en = false;
1432
1433 return 0;
1434 }
1435
1436 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1437 {
1438 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1439 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1440 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1441 struct intel_atomic_state *intel_state =
1442 to_intel_atomic_state(new_crtc_state->uapi.state);
1443 const struct intel_crtc_state *old_crtc_state =
1444 intel_atomic_get_old_crtc_state(intel_state, crtc);
1445 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1446 enum plane_id plane_id;
1447
1448 if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1449 *intermediate = *optimal;
1450
1451 intermediate->cxsr = false;
1452 intermediate->hpll_en = false;
1453 goto out;
1454 }
1455
1456 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1457 !new_crtc_state->disable_cxsr;
1458 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1459 !new_crtc_state->disable_cxsr;
1460 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1461
1462 for_each_plane_id_on_crtc(crtc, plane_id) {
1463 intermediate->wm.plane[plane_id] =
1464 max(optimal->wm.plane[plane_id],
1465 active->wm.plane[plane_id]);
1466
1467 WARN_ON(intermediate->wm.plane[plane_id] >
1468 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1469 }
1470
1471 intermediate->sr.plane = max(optimal->sr.plane,
1472 active->sr.plane);
1473 intermediate->sr.cursor = max(optimal->sr.cursor,
1474 active->sr.cursor);
1475 intermediate->sr.fbc = max(optimal->sr.fbc,
1476 active->sr.fbc);
1477
1478 intermediate->hpll.plane = max(optimal->hpll.plane,
1479 active->hpll.plane);
1480 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1481 active->hpll.cursor);
1482 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1483 active->hpll.fbc);
1484
1485 WARN_ON((intermediate->sr.plane >
1486 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1487 intermediate->sr.cursor >
1488 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1489 intermediate->cxsr);
1490 WARN_ON((intermediate->sr.plane >
1491 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1492 intermediate->sr.cursor >
1493 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1494 intermediate->hpll_en);
1495
1496 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1497 intermediate->fbc_en && intermediate->cxsr);
1498 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1499 intermediate->fbc_en && intermediate->hpll_en);
1500
1501 out:
1502 /*
1503 * If our intermediate WM are identical to the final WM, then we can
1504 * omit the post-vblank programming; only update if it's different.
1505 */
1506 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1507 new_crtc_state->wm.need_postvbl_update = true;
1508
1509 return 0;
1510 }
1511
1512 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1513 struct g4x_wm_values *wm)
1514 {
1515 struct intel_crtc *crtc;
1516 int num_active_pipes = 0;
1517
1518 wm->cxsr = true;
1519 wm->hpll_en = true;
1520 wm->fbc_en = true;
1521
1522 for_each_intel_crtc(&dev_priv->drm, crtc) {
1523 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1524
1525 if (!crtc->active)
1526 continue;
1527
1528 if (!wm_state->cxsr)
1529 wm->cxsr = false;
1530 if (!wm_state->hpll_en)
1531 wm->hpll_en = false;
1532 if (!wm_state->fbc_en)
1533 wm->fbc_en = false;
1534
1535 num_active_pipes++;
1536 }
1537
1538 if (num_active_pipes != 1) {
1539 wm->cxsr = false;
1540 wm->hpll_en = false;
1541 wm->fbc_en = false;
1542 }
1543
1544 for_each_intel_crtc(&dev_priv->drm, crtc) {
1545 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1546 enum pipe pipe = crtc->pipe;
1547
1548 wm->pipe[pipe] = wm_state->wm;
1549 if (crtc->active && wm->cxsr)
1550 wm->sr = wm_state->sr;
1551 if (crtc->active && wm->hpll_en)
1552 wm->hpll = wm_state->hpll;
1553 }
1554 }
1555
1556 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1557 {
1558 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1559 struct g4x_wm_values new_wm = {};
1560
1561 g4x_merge_wm(dev_priv, &new_wm);
1562
1563 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1564 return;
1565
1566 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1567 _intel_set_memory_cxsr(dev_priv, false);
1568
1569 g4x_write_wm_values(dev_priv, &new_wm);
1570
1571 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1572 _intel_set_memory_cxsr(dev_priv, true);
1573
1574 *old_wm = new_wm;
1575 }
1576
1577 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1578 struct intel_crtc *crtc)
1579 {
1580 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1581 const struct intel_crtc_state *crtc_state =
1582 intel_atomic_get_new_crtc_state(state, crtc);
1583
1584 mutex_lock(&dev_priv->wm.wm_mutex);
1585 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1586 g4x_program_watermarks(dev_priv);
1587 mutex_unlock(&dev_priv->wm.wm_mutex);
1588 }
1589
1590 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1591 struct intel_crtc *crtc)
1592 {
1593 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1594 const struct intel_crtc_state *crtc_state =
1595 intel_atomic_get_new_crtc_state(state, crtc);
1596
1597 if (!crtc_state->wm.need_postvbl_update)
1598 return;
1599
1600 mutex_lock(&dev_priv->wm.wm_mutex);
1601 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1602 g4x_program_watermarks(dev_priv);
1603 mutex_unlock(&dev_priv->wm.wm_mutex);
1604 }
1605
1606 /* latency must be in 0.1us units. */
1607 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1608 unsigned int htotal,
1609 unsigned int width,
1610 unsigned int cpp,
1611 unsigned int latency)
1612 {
1613 unsigned int ret;
1614
1615 ret = intel_wm_method2(pixel_rate, htotal,
1616 width, cpp, latency);
1617 ret = DIV_ROUND_UP(ret, 64);
1618
1619 return ret;
1620 }
1621
1622 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1623 {
1624 /* all latencies in usec */
1625 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1626
1627 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1628
1629 if (IS_CHERRYVIEW(dev_priv)) {
1630 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1631 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1632
1633 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1634 }
1635 }
1636
1637 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1638 const struct intel_plane_state *plane_state,
1639 int level)
1640 {
1641 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1642 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1643 const struct drm_display_mode *adjusted_mode =
1644 &crtc_state->hw.adjusted_mode;
1645 unsigned int clock, htotal, cpp, width, wm;
1646
1647 if (dev_priv->wm.pri_latency[level] == 0)
1648 return USHRT_MAX;
1649
1650 if (!intel_wm_plane_visible(crtc_state, plane_state))
1651 return 0;
1652
1653 cpp = plane_state->hw.fb->format->cpp[0];
1654 clock = adjusted_mode->crtc_clock;
1655 htotal = adjusted_mode->crtc_htotal;
1656 width = crtc_state->pipe_src_w;
1657
1658 if (plane->id == PLANE_CURSOR) {
1659 /*
1660 * FIXME the formula gives values that are
1661 * too big for the cursor FIFO, and hence we
1662 * would never be able to use cursors. For
1663 * now just hardcode the watermark.
1664 */
1665 wm = 63;
1666 } else {
1667 wm = vlv_wm_method2(clock, htotal, width, cpp,
1668 dev_priv->wm.pri_latency[level] * 10);
1669 }
1670
1671 return min_t(unsigned int, wm, USHRT_MAX);
1672 }
1673
1674 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1675 {
1676 return (active_planes & (BIT(PLANE_SPRITE0) |
1677 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1678 }
1679
1680 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1681 {
1682 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1683 const struct g4x_pipe_wm *raw =
1684 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1685 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1686 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1687 int num_active_planes = hweight8(active_planes);
1688 const int fifo_size = 511;
1689 int fifo_extra, fifo_left = fifo_size;
1690 int sprite0_fifo_extra = 0;
1691 unsigned int total_rate;
1692 enum plane_id plane_id;
1693
1694 /*
1695 * When enabling sprite0 after sprite1 has already been enabled
1696 * we tend to get an underrun unless sprite0 already has some
1697 * FIFO space allcoated. Hence we always allocate at least one
1698 * cacheline for sprite0 whenever sprite1 is enabled.
1699 *
1700 * All other plane enable sequences appear immune to this problem.
1701 */
1702 if (vlv_need_sprite0_fifo_workaround(active_planes))
1703 sprite0_fifo_extra = 1;
1704
1705 total_rate = raw->plane[PLANE_PRIMARY] +
1706 raw->plane[PLANE_SPRITE0] +
1707 raw->plane[PLANE_SPRITE1] +
1708 sprite0_fifo_extra;
1709
1710 if (total_rate > fifo_size)
1711 return -EINVAL;
1712
1713 if (total_rate == 0)
1714 total_rate = 1;
1715
1716 for_each_plane_id_on_crtc(crtc, plane_id) {
1717 unsigned int rate;
1718
1719 if ((active_planes & BIT(plane_id)) == 0) {
1720 fifo_state->plane[plane_id] = 0;
1721 continue;
1722 }
1723
1724 rate = raw->plane[plane_id];
1725 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1726 fifo_left -= fifo_state->plane[plane_id];
1727 }
1728
1729 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1730 fifo_left -= sprite0_fifo_extra;
1731
1732 fifo_state->plane[PLANE_CURSOR] = 63;
1733
1734 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1735
1736 /* spread the remainder evenly */
1737 for_each_plane_id_on_crtc(crtc, plane_id) {
1738 int plane_extra;
1739
1740 if (fifo_left == 0)
1741 break;
1742
1743 if ((active_planes & BIT(plane_id)) == 0)
1744 continue;
1745
1746 plane_extra = min(fifo_extra, fifo_left);
1747 fifo_state->plane[plane_id] += plane_extra;
1748 fifo_left -= plane_extra;
1749 }
1750
1751 WARN_ON(active_planes != 0 && fifo_left != 0);
1752
1753 /* give it all to the first plane if none are active */
1754 if (active_planes == 0) {
1755 WARN_ON(fifo_left != fifo_size);
1756 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1757 }
1758
1759 return 0;
1760 }
1761
1762 /* mark all levels starting from 'level' as invalid */
1763 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1764 struct vlv_wm_state *wm_state, int level)
1765 {
1766 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1767
1768 for (; level < intel_wm_num_levels(dev_priv); level++) {
1769 enum plane_id plane_id;
1770
1771 for_each_plane_id_on_crtc(crtc, plane_id)
1772 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1773
1774 wm_state->sr[level].cursor = USHRT_MAX;
1775 wm_state->sr[level].plane = USHRT_MAX;
1776 }
1777 }
1778
1779 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1780 {
1781 if (wm > fifo_size)
1782 return USHRT_MAX;
1783 else
1784 return fifo_size - wm;
1785 }
1786
1787 /*
1788 * Starting from 'level' set all higher
1789 * levels to 'value' in the "raw" watermarks.
1790 */
1791 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1792 int level, enum plane_id plane_id, u16 value)
1793 {
1794 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1795 int num_levels = intel_wm_num_levels(dev_priv);
1796 bool dirty = false;
1797
1798 for (; level < num_levels; level++) {
1799 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1800
1801 dirty |= raw->plane[plane_id] != value;
1802 raw->plane[plane_id] = value;
1803 }
1804
1805 return dirty;
1806 }
1807
1808 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1809 const struct intel_plane_state *plane_state)
1810 {
1811 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1812 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1813 enum plane_id plane_id = plane->id;
1814 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1815 int level;
1816 bool dirty = false;
1817
1818 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1819 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1820 goto out;
1821 }
1822
1823 for (level = 0; level < num_levels; level++) {
1824 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1825 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1826 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1827
1828 if (wm > max_wm)
1829 break;
1830
1831 dirty |= raw->plane[plane_id] != wm;
1832 raw->plane[plane_id] = wm;
1833 }
1834
1835 /* mark all higher levels as invalid */
1836 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1837
1838 out:
1839 if (dirty)
1840 drm_dbg_kms(&dev_priv->drm,
1841 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1842 plane->base.name,
1843 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1844 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1845 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1846
1847 return dirty;
1848 }
1849
1850 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1851 enum plane_id plane_id, int level)
1852 {
1853 const struct g4x_pipe_wm *raw =
1854 &crtc_state->wm.vlv.raw[level];
1855 const struct vlv_fifo_state *fifo_state =
1856 &crtc_state->wm.vlv.fifo_state;
1857
1858 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1859 }
1860
1861 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1862 {
1863 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1864 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1865 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1866 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1867 }
1868
1869 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1870 {
1871 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1872 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1873 struct intel_atomic_state *state =
1874 to_intel_atomic_state(crtc_state->uapi.state);
1875 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1876 const struct vlv_fifo_state *fifo_state =
1877 &crtc_state->wm.vlv.fifo_state;
1878 int num_active_planes = hweight8(crtc_state->active_planes &
1879 ~BIT(PLANE_CURSOR));
1880 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1881 const struct intel_plane_state *old_plane_state;
1882 const struct intel_plane_state *new_plane_state;
1883 struct intel_plane *plane;
1884 enum plane_id plane_id;
1885 int level, ret, i;
1886 unsigned int dirty = 0;
1887
1888 for_each_oldnew_intel_plane_in_state(state, plane,
1889 old_plane_state,
1890 new_plane_state, i) {
1891 if (new_plane_state->hw.crtc != &crtc->base &&
1892 old_plane_state->hw.crtc != &crtc->base)
1893 continue;
1894
1895 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1896 dirty |= BIT(plane->id);
1897 }
1898
1899 /*
1900 * DSPARB registers may have been reset due to the
1901 * power well being turned off. Make sure we restore
1902 * them to a consistent state even if no primary/sprite
1903 * planes are initially active.
1904 */
1905 if (needs_modeset)
1906 crtc_state->fifo_changed = true;
1907
1908 if (!dirty)
1909 return 0;
1910
1911 /* cursor changes don't warrant a FIFO recompute */
1912 if (dirty & ~BIT(PLANE_CURSOR)) {
1913 const struct intel_crtc_state *old_crtc_state =
1914 intel_atomic_get_old_crtc_state(state, crtc);
1915 const struct vlv_fifo_state *old_fifo_state =
1916 &old_crtc_state->wm.vlv.fifo_state;
1917
1918 ret = vlv_compute_fifo(crtc_state);
1919 if (ret)
1920 return ret;
1921
1922 if (needs_modeset ||
1923 memcmp(old_fifo_state, fifo_state,
1924 sizeof(*fifo_state)) != 0)
1925 crtc_state->fifo_changed = true;
1926 }
1927
1928 /* initially allow all levels */
1929 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1930 /*
1931 * Note that enabling cxsr with no primary/sprite planes
1932 * enabled can wedge the pipe. Hence we only allow cxsr
1933 * with exactly one enabled primary/sprite plane.
1934 */
1935 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1936
1937 for (level = 0; level < wm_state->num_levels; level++) {
1938 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1939 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1940
1941 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1942 break;
1943
1944 for_each_plane_id_on_crtc(crtc, plane_id) {
1945 wm_state->wm[level].plane[plane_id] =
1946 vlv_invert_wm_value(raw->plane[plane_id],
1947 fifo_state->plane[plane_id]);
1948 }
1949
1950 wm_state->sr[level].plane =
1951 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1952 raw->plane[PLANE_SPRITE0],
1953 raw->plane[PLANE_SPRITE1]),
1954 sr_fifo_size);
1955
1956 wm_state->sr[level].cursor =
1957 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1958 63);
1959 }
1960
1961 if (level == 0)
1962 return -EINVAL;
1963
1964 /* limit to only levels we can actually handle */
1965 wm_state->num_levels = level;
1966
1967 /* invalidate the higher levels */
1968 vlv_invalidate_wms(crtc, wm_state, level);
1969
1970 return 0;
1971 }
1972
1973 #define VLV_FIFO(plane, value) \
1974 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1975
1976 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1977 struct intel_crtc *crtc)
1978 {
1979 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1980 struct intel_uncore *uncore = &dev_priv->uncore;
1981 const struct intel_crtc_state *crtc_state =
1982 intel_atomic_get_new_crtc_state(state, crtc);
1983 const struct vlv_fifo_state *fifo_state =
1984 &crtc_state->wm.vlv.fifo_state;
1985 int sprite0_start, sprite1_start, fifo_size;
1986 u32 dsparb, dsparb2, dsparb3;
1987
1988 if (!crtc_state->fifo_changed)
1989 return;
1990
1991 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1992 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1993 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1994
1995 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1996 drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1997
1998 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1999
2000 /*
2001 * uncore.lock serves a double purpose here. It allows us to
2002 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2003 * it protects the DSPARB registers from getting clobbered by
2004 * parallel updates from multiple pipes.
2005 *
2006 * intel_pipe_update_start() has already disabled interrupts
2007 * for us, so a plain spin_lock() is sufficient here.
2008 */
2009 spin_lock(&uncore->lock);
2010
2011 switch (crtc->pipe) {
2012 case PIPE_A:
2013 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2014 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2015
2016 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2017 VLV_FIFO(SPRITEB, 0xff));
2018 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2019 VLV_FIFO(SPRITEB, sprite1_start));
2020
2021 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2022 VLV_FIFO(SPRITEB_HI, 0x1));
2023 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2024 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2025
2026 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2027 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2028 break;
2029 case PIPE_B:
2030 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2031 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2032
2033 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2034 VLV_FIFO(SPRITED, 0xff));
2035 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2036 VLV_FIFO(SPRITED, sprite1_start));
2037
2038 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2039 VLV_FIFO(SPRITED_HI, 0xff));
2040 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2041 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2042
2043 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2044 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2045 break;
2046 case PIPE_C:
2047 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2048 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2049
2050 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2051 VLV_FIFO(SPRITEF, 0xff));
2052 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2053 VLV_FIFO(SPRITEF, sprite1_start));
2054
2055 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2056 VLV_FIFO(SPRITEF_HI, 0xff));
2057 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2058 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2059
2060 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2061 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2062 break;
2063 default:
2064 break;
2065 }
2066
2067 intel_uncore_posting_read_fw(uncore, DSPARB);
2068
2069 spin_unlock(&uncore->lock);
2070 }
2071
2072 #undef VLV_FIFO
2073
2074 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2075 {
2076 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2077 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2078 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2079 struct intel_atomic_state *intel_state =
2080 to_intel_atomic_state(new_crtc_state->uapi.state);
2081 const struct intel_crtc_state *old_crtc_state =
2082 intel_atomic_get_old_crtc_state(intel_state, crtc);
2083 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2084 int level;
2085
2086 if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2087 *intermediate = *optimal;
2088
2089 intermediate->cxsr = false;
2090 goto out;
2091 }
2092
2093 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2094 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2095 !new_crtc_state->disable_cxsr;
2096
2097 for (level = 0; level < intermediate->num_levels; level++) {
2098 enum plane_id plane_id;
2099
2100 for_each_plane_id_on_crtc(crtc, plane_id) {
2101 intermediate->wm[level].plane[plane_id] =
2102 min(optimal->wm[level].plane[plane_id],
2103 active->wm[level].plane[plane_id]);
2104 }
2105
2106 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2107 active->sr[level].plane);
2108 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2109 active->sr[level].cursor);
2110 }
2111
2112 vlv_invalidate_wms(crtc, intermediate, level);
2113
2114 out:
2115 /*
2116 * If our intermediate WM are identical to the final WM, then we can
2117 * omit the post-vblank programming; only update if it's different.
2118 */
2119 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2120 new_crtc_state->wm.need_postvbl_update = true;
2121
2122 return 0;
2123 }
2124
2125 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2126 struct vlv_wm_values *wm)
2127 {
2128 struct intel_crtc *crtc;
2129 int num_active_pipes = 0;
2130
2131 wm->level = dev_priv->wm.max_level;
2132 wm->cxsr = true;
2133
2134 for_each_intel_crtc(&dev_priv->drm, crtc) {
2135 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2136
2137 if (!crtc->active)
2138 continue;
2139
2140 if (!wm_state->cxsr)
2141 wm->cxsr = false;
2142
2143 num_active_pipes++;
2144 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2145 }
2146
2147 if (num_active_pipes != 1)
2148 wm->cxsr = false;
2149
2150 if (num_active_pipes > 1)
2151 wm->level = VLV_WM_LEVEL_PM2;
2152
2153 for_each_intel_crtc(&dev_priv->drm, crtc) {
2154 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2155 enum pipe pipe = crtc->pipe;
2156
2157 wm->pipe[pipe] = wm_state->wm[wm->level];
2158 if (crtc->active && wm->cxsr)
2159 wm->sr = wm_state->sr[wm->level];
2160
2161 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2162 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2163 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2164 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2165 }
2166 }
2167
2168 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2169 {
2170 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2171 struct vlv_wm_values new_wm = {};
2172
2173 vlv_merge_wm(dev_priv, &new_wm);
2174
2175 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2176 return;
2177
2178 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2179 chv_set_memory_dvfs(dev_priv, false);
2180
2181 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2182 chv_set_memory_pm5(dev_priv, false);
2183
2184 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2185 _intel_set_memory_cxsr(dev_priv, false);
2186
2187 vlv_write_wm_values(dev_priv, &new_wm);
2188
2189 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2190 _intel_set_memory_cxsr(dev_priv, true);
2191
2192 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2193 chv_set_memory_pm5(dev_priv, true);
2194
2195 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2196 chv_set_memory_dvfs(dev_priv, true);
2197
2198 *old_wm = new_wm;
2199 }
2200
2201 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2202 struct intel_crtc *crtc)
2203 {
2204 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2205 const struct intel_crtc_state *crtc_state =
2206 intel_atomic_get_new_crtc_state(state, crtc);
2207
2208 mutex_lock(&dev_priv->wm.wm_mutex);
2209 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2210 vlv_program_watermarks(dev_priv);
2211 mutex_unlock(&dev_priv->wm.wm_mutex);
2212 }
2213
2214 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2215 struct intel_crtc *crtc)
2216 {
2217 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2218 const struct intel_crtc_state *crtc_state =
2219 intel_atomic_get_new_crtc_state(state, crtc);
2220
2221 if (!crtc_state->wm.need_postvbl_update)
2222 return;
2223
2224 mutex_lock(&dev_priv->wm.wm_mutex);
2225 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2226 vlv_program_watermarks(dev_priv);
2227 mutex_unlock(&dev_priv->wm.wm_mutex);
2228 }
2229
2230 static void i965_update_wm(struct intel_crtc *unused_crtc)
2231 {
2232 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2233 struct intel_crtc *crtc;
2234 int srwm = 1;
2235 int cursor_sr = 16;
2236 bool cxsr_enabled;
2237
2238 /* Calc sr entries for one plane configs */
2239 crtc = single_enabled_crtc(dev_priv);
2240 if (crtc) {
2241 /* self-refresh has much higher latency */
2242 static const int sr_latency_ns = 12000;
2243 const struct drm_display_mode *adjusted_mode =
2244 &crtc->config->hw.adjusted_mode;
2245 const struct drm_framebuffer *fb =
2246 crtc->base.primary->state->fb;
2247 int clock = adjusted_mode->crtc_clock;
2248 int htotal = adjusted_mode->crtc_htotal;
2249 int hdisplay = crtc->config->pipe_src_w;
2250 int cpp = fb->format->cpp[0];
2251 int entries;
2252
2253 entries = intel_wm_method2(clock, htotal,
2254 hdisplay, cpp, sr_latency_ns / 100);
2255 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2256 srwm = I965_FIFO_SIZE - entries;
2257 if (srwm < 0)
2258 srwm = 1;
2259 srwm &= 0x1ff;
2260 drm_dbg_kms(&dev_priv->drm,
2261 "self-refresh entries: %d, wm: %d\n",
2262 entries, srwm);
2263
2264 entries = intel_wm_method2(clock, htotal,
2265 crtc->base.cursor->state->crtc_w, 4,
2266 sr_latency_ns / 100);
2267 entries = DIV_ROUND_UP(entries,
2268 i965_cursor_wm_info.cacheline_size) +
2269 i965_cursor_wm_info.guard_size;
2270
2271 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2272 if (cursor_sr > i965_cursor_wm_info.max_wm)
2273 cursor_sr = i965_cursor_wm_info.max_wm;
2274
2275 drm_dbg_kms(&dev_priv->drm,
2276 "self-refresh watermark: display plane %d "
2277 "cursor %d\n", srwm, cursor_sr);
2278
2279 cxsr_enabled = true;
2280 } else {
2281 cxsr_enabled = false;
2282 /* Turn off self refresh if both pipes are enabled */
2283 intel_set_memory_cxsr(dev_priv, false);
2284 }
2285
2286 drm_dbg_kms(&dev_priv->drm,
2287 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2288 srwm);
2289
2290 /* 965 has limitations... */
2291 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2292 FW_WM(8, CURSORB) |
2293 FW_WM(8, PLANEB) |
2294 FW_WM(8, PLANEA));
2295 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2296 FW_WM(8, PLANEC_OLD));
2297 /* update cursor SR watermark */
2298 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2299
2300 if (cxsr_enabled)
2301 intel_set_memory_cxsr(dev_priv, true);
2302 }
2303
2304 #undef FW_WM
2305
2306 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2307 {
2308 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2309 const struct intel_watermark_params *wm_info;
2310 u32 fwater_lo;
2311 u32 fwater_hi;
2312 int cwm, srwm = 1;
2313 int fifo_size;
2314 int planea_wm, planeb_wm;
2315 struct intel_crtc *crtc, *enabled = NULL;
2316
2317 if (IS_I945GM(dev_priv))
2318 wm_info = &i945_wm_info;
2319 else if (!IS_GEN(dev_priv, 2))
2320 wm_info = &i915_wm_info;
2321 else
2322 wm_info = &i830_a_wm_info;
2323
2324 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2325 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2326 if (intel_crtc_active(crtc)) {
2327 const struct drm_display_mode *adjusted_mode =
2328 &crtc->config->hw.adjusted_mode;
2329 const struct drm_framebuffer *fb =
2330 crtc->base.primary->state->fb;
2331 int cpp;
2332
2333 if (IS_GEN(dev_priv, 2))
2334 cpp = 4;
2335 else
2336 cpp = fb->format->cpp[0];
2337
2338 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2339 wm_info, fifo_size, cpp,
2340 pessimal_latency_ns);
2341 enabled = crtc;
2342 } else {
2343 planea_wm = fifo_size - wm_info->guard_size;
2344 if (planea_wm > (long)wm_info->max_wm)
2345 planea_wm = wm_info->max_wm;
2346 }
2347
2348 if (IS_GEN(dev_priv, 2))
2349 wm_info = &i830_bc_wm_info;
2350
2351 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2352 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2353 if (intel_crtc_active(crtc)) {
2354 const struct drm_display_mode *adjusted_mode =
2355 &crtc->config->hw.adjusted_mode;
2356 const struct drm_framebuffer *fb =
2357 crtc->base.primary->state->fb;
2358 int cpp;
2359
2360 if (IS_GEN(dev_priv, 2))
2361 cpp = 4;
2362 else
2363 cpp = fb->format->cpp[0];
2364
2365 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2366 wm_info, fifo_size, cpp,
2367 pessimal_latency_ns);
2368 if (enabled == NULL)
2369 enabled = crtc;
2370 else
2371 enabled = NULL;
2372 } else {
2373 planeb_wm = fifo_size - wm_info->guard_size;
2374 if (planeb_wm > (long)wm_info->max_wm)
2375 planeb_wm = wm_info->max_wm;
2376 }
2377
2378 drm_dbg_kms(&dev_priv->drm,
2379 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2380
2381 if (IS_I915GM(dev_priv) && enabled) {
2382 struct drm_i915_gem_object *obj;
2383
2384 obj = intel_fb_obj(enabled->base.primary->state->fb);
2385
2386 /* self-refresh seems busted with untiled */
2387 if (!i915_gem_object_is_tiled(obj))
2388 enabled = NULL;
2389 }
2390
2391 /*
2392 * Overlay gets an aggressive default since video jitter is bad.
2393 */
2394 cwm = 2;
2395
2396 /* Play safe and disable self-refresh before adjusting watermarks. */
2397 intel_set_memory_cxsr(dev_priv, false);
2398
2399 /* Calc sr entries for one plane configs */
2400 if (HAS_FW_BLC(dev_priv) && enabled) {
2401 /* self-refresh has much higher latency */
2402 static const int sr_latency_ns = 6000;
2403 const struct drm_display_mode *adjusted_mode =
2404 &enabled->config->hw.adjusted_mode;
2405 const struct drm_framebuffer *fb =
2406 enabled->base.primary->state->fb;
2407 int clock = adjusted_mode->crtc_clock;
2408 int htotal = adjusted_mode->crtc_htotal;
2409 int hdisplay = enabled->config->pipe_src_w;
2410 int cpp;
2411 int entries;
2412
2413 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2414 cpp = 4;
2415 else
2416 cpp = fb->format->cpp[0];
2417
2418 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2419 sr_latency_ns / 100);
2420 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2421 drm_dbg_kms(&dev_priv->drm,
2422 "self-refresh entries: %d\n", entries);
2423 srwm = wm_info->fifo_size - entries;
2424 if (srwm < 0)
2425 srwm = 1;
2426
2427 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2428 I915_WRITE(FW_BLC_SELF,
2429 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2430 else
2431 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2432 }
2433
2434 drm_dbg_kms(&dev_priv->drm,
2435 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2436 planea_wm, planeb_wm, cwm, srwm);
2437
2438 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2439 fwater_hi = (cwm & 0x1f);
2440
2441 /* Set request length to 8 cachelines per fetch */
2442 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2443 fwater_hi = fwater_hi | (1 << 8);
2444
2445 I915_WRITE(FW_BLC, fwater_lo);
2446 I915_WRITE(FW_BLC2, fwater_hi);
2447
2448 if (enabled)
2449 intel_set_memory_cxsr(dev_priv, true);
2450 }
2451
2452 static void i845_update_wm(struct intel_crtc *unused_crtc)
2453 {
2454 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2455 struct intel_crtc *crtc;
2456 const struct drm_display_mode *adjusted_mode;
2457 u32 fwater_lo;
2458 int planea_wm;
2459
2460 crtc = single_enabled_crtc(dev_priv);
2461 if (crtc == NULL)
2462 return;
2463
2464 adjusted_mode = &crtc->config->hw.adjusted_mode;
2465 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2466 &i845_wm_info,
2467 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2468 4, pessimal_latency_ns);
2469 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2470 fwater_lo |= (3<<8) | planea_wm;
2471
2472 drm_dbg_kms(&dev_priv->drm,
2473 "Setting FIFO watermarks - A: %d\n", planea_wm);
2474
2475 I915_WRITE(FW_BLC, fwater_lo);
2476 }
2477
2478 /* latency must be in 0.1us units. */
2479 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2480 unsigned int cpp,
2481 unsigned int latency)
2482 {
2483 unsigned int ret;
2484
2485 ret = intel_wm_method1(pixel_rate, cpp, latency);
2486 ret = DIV_ROUND_UP(ret, 64) + 2;
2487
2488 return ret;
2489 }
2490
2491 /* latency must be in 0.1us units. */
2492 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2493 unsigned int htotal,
2494 unsigned int width,
2495 unsigned int cpp,
2496 unsigned int latency)
2497 {
2498 unsigned int ret;
2499
2500 ret = intel_wm_method2(pixel_rate, htotal,
2501 width, cpp, latency);
2502 ret = DIV_ROUND_UP(ret, 64) + 2;
2503
2504 return ret;
2505 }
2506
2507 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2508 {
2509 /*
2510 * Neither of these should be possible since this function shouldn't be
2511 * called if the CRTC is off or the plane is invisible. But let's be
2512 * extra paranoid to avoid a potential divide-by-zero if we screw up
2513 * elsewhere in the driver.
2514 */
2515 if (WARN_ON(!cpp))
2516 return 0;
2517 if (WARN_ON(!horiz_pixels))
2518 return 0;
2519
2520 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2521 }
2522
2523 struct ilk_wm_maximums {
2524 u16 pri;
2525 u16 spr;
2526 u16 cur;
2527 u16 fbc;
2528 };
2529
2530 /*
2531 * For both WM_PIPE and WM_LP.
2532 * mem_value must be in 0.1us units.
2533 */
2534 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2535 const struct intel_plane_state *plane_state,
2536 u32 mem_value, bool is_lp)
2537 {
2538 u32 method1, method2;
2539 int cpp;
2540
2541 if (mem_value == 0)
2542 return U32_MAX;
2543
2544 if (!intel_wm_plane_visible(crtc_state, plane_state))
2545 return 0;
2546
2547 cpp = plane_state->hw.fb->format->cpp[0];
2548
2549 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2550
2551 if (!is_lp)
2552 return method1;
2553
2554 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2555 crtc_state->hw.adjusted_mode.crtc_htotal,
2556 drm_rect_width(&plane_state->uapi.dst),
2557 cpp, mem_value);
2558
2559 return min(method1, method2);
2560 }
2561
2562 /*
2563 * For both WM_PIPE and WM_LP.
2564 * mem_value must be in 0.1us units.
2565 */
2566 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2567 const struct intel_plane_state *plane_state,
2568 u32 mem_value)
2569 {
2570 u32 method1, method2;
2571 int cpp;
2572
2573 if (mem_value == 0)
2574 return U32_MAX;
2575
2576 if (!intel_wm_plane_visible(crtc_state, plane_state))
2577 return 0;
2578
2579 cpp = plane_state->hw.fb->format->cpp[0];
2580
2581 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2582 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2583 crtc_state->hw.adjusted_mode.crtc_htotal,
2584 drm_rect_width(&plane_state->uapi.dst),
2585 cpp, mem_value);
2586 return min(method1, method2);
2587 }
2588
2589 /*
2590 * For both WM_PIPE and WM_LP.
2591 * mem_value must be in 0.1us units.
2592 */
2593 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2594 const struct intel_plane_state *plane_state,
2595 u32 mem_value)
2596 {
2597 int cpp;
2598
2599 if (mem_value == 0)
2600 return U32_MAX;
2601
2602 if (!intel_wm_plane_visible(crtc_state, plane_state))
2603 return 0;
2604
2605 cpp = plane_state->hw.fb->format->cpp[0];
2606
2607 return ilk_wm_method2(crtc_state->pixel_rate,
2608 crtc_state->hw.adjusted_mode.crtc_htotal,
2609 drm_rect_width(&plane_state->uapi.dst),
2610 cpp, mem_value);
2611 }
2612
2613 /* Only for WM_LP. */
2614 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2615 const struct intel_plane_state *plane_state,
2616 u32 pri_val)
2617 {
2618 int cpp;
2619
2620 if (!intel_wm_plane_visible(crtc_state, plane_state))
2621 return 0;
2622
2623 cpp = plane_state->hw.fb->format->cpp[0];
2624
2625 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2626 cpp);
2627 }
2628
2629 static unsigned int
2630 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2631 {
2632 if (INTEL_GEN(dev_priv) >= 8)
2633 return 3072;
2634 else if (INTEL_GEN(dev_priv) >= 7)
2635 return 768;
2636 else
2637 return 512;
2638 }
2639
2640 static unsigned int
2641 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2642 int level, bool is_sprite)
2643 {
2644 if (INTEL_GEN(dev_priv) >= 8)
2645 /* BDW primary/sprite plane watermarks */
2646 return level == 0 ? 255 : 2047;
2647 else if (INTEL_GEN(dev_priv) >= 7)
2648 /* IVB/HSW primary/sprite plane watermarks */
2649 return level == 0 ? 127 : 1023;
2650 else if (!is_sprite)
2651 /* ILK/SNB primary plane watermarks */
2652 return level == 0 ? 127 : 511;
2653 else
2654 /* ILK/SNB sprite plane watermarks */
2655 return level == 0 ? 63 : 255;
2656 }
2657
2658 static unsigned int
2659 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2660 {
2661 if (INTEL_GEN(dev_priv) >= 7)
2662 return level == 0 ? 63 : 255;
2663 else
2664 return level == 0 ? 31 : 63;
2665 }
2666
2667 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2668 {
2669 if (INTEL_GEN(dev_priv) >= 8)
2670 return 31;
2671 else
2672 return 15;
2673 }
2674
2675 /* Calculate the maximum primary/sprite plane watermark */
2676 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2677 int level,
2678 const struct intel_wm_config *config,
2679 enum intel_ddb_partitioning ddb_partitioning,
2680 bool is_sprite)
2681 {
2682 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2683
2684 /* if sprites aren't enabled, sprites get nothing */
2685 if (is_sprite && !config->sprites_enabled)
2686 return 0;
2687
2688 /* HSW allows LP1+ watermarks even with multiple pipes */
2689 if (level == 0 || config->num_pipes_active > 1) {
2690 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2691
2692 /*
2693 * For some reason the non self refresh
2694 * FIFO size is only half of the self
2695 * refresh FIFO size on ILK/SNB.
2696 */
2697 if (INTEL_GEN(dev_priv) <= 6)
2698 fifo_size /= 2;
2699 }
2700
2701 if (config->sprites_enabled) {
2702 /* level 0 is always calculated with 1:1 split */
2703 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2704 if (is_sprite)
2705 fifo_size *= 5;
2706 fifo_size /= 6;
2707 } else {
2708 fifo_size /= 2;
2709 }
2710 }
2711
2712 /* clamp to max that the registers can hold */
2713 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2714 }
2715
2716 /* Calculate the maximum cursor plane watermark */
2717 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2718 int level,
2719 const struct intel_wm_config *config)
2720 {
2721 /* HSW LP1+ watermarks w/ multiple pipes */
2722 if (level > 0 && config->num_pipes_active > 1)
2723 return 64;
2724
2725 /* otherwise just report max that registers can hold */
2726 return ilk_cursor_wm_reg_max(dev_priv, level);
2727 }
2728
2729 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2730 int level,
2731 const struct intel_wm_config *config,
2732 enum intel_ddb_partitioning ddb_partitioning,
2733 struct ilk_wm_maximums *max)
2734 {
2735 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2736 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2737 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2738 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2739 }
2740
2741 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2742 int level,
2743 struct ilk_wm_maximums *max)
2744 {
2745 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2746 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2747 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2748 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2749 }
2750
2751 static bool ilk_validate_wm_level(int level,
2752 const struct ilk_wm_maximums *max,
2753 struct intel_wm_level *result)
2754 {
2755 bool ret;
2756
2757 /* already determined to be invalid? */
2758 if (!result->enable)
2759 return false;
2760
2761 result->enable = result->pri_val <= max->pri &&
2762 result->spr_val <= max->spr &&
2763 result->cur_val <= max->cur;
2764
2765 ret = result->enable;
2766
2767 /*
2768 * HACK until we can pre-compute everything,
2769 * and thus fail gracefully if LP0 watermarks
2770 * are exceeded...
2771 */
2772 if (level == 0 && !result->enable) {
2773 if (result->pri_val > max->pri)
2774 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2775 level, result->pri_val, max->pri);
2776 if (result->spr_val > max->spr)
2777 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2778 level, result->spr_val, max->spr);
2779 if (result->cur_val > max->cur)
2780 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2781 level, result->cur_val, max->cur);
2782
2783 result->pri_val = min_t(u32, result->pri_val, max->pri);
2784 result->spr_val = min_t(u32, result->spr_val, max->spr);
2785 result->cur_val = min_t(u32, result->cur_val, max->cur);
2786 result->enable = true;
2787 }
2788
2789 return ret;
2790 }
2791
2792 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2793 const struct intel_crtc *crtc,
2794 int level,
2795 struct intel_crtc_state *crtc_state,
2796 const struct intel_plane_state *pristate,
2797 const struct intel_plane_state *sprstate,
2798 const struct intel_plane_state *curstate,
2799 struct intel_wm_level *result)
2800 {
2801 u16 pri_latency = dev_priv->wm.pri_latency[level];
2802 u16 spr_latency = dev_priv->wm.spr_latency[level];
2803 u16 cur_latency = dev_priv->wm.cur_latency[level];
2804
2805 /* WM1+ latency values stored in 0.5us units */
2806 if (level > 0) {
2807 pri_latency *= 5;
2808 spr_latency *= 5;
2809 cur_latency *= 5;
2810 }
2811
2812 if (pristate) {
2813 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2814 pri_latency, level);
2815 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2816 }
2817
2818 if (sprstate)
2819 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2820
2821 if (curstate)
2822 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2823
2824 result->enable = true;
2825 }
2826
2827 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2828 u16 wm[8])
2829 {
2830 struct intel_uncore *uncore = &dev_priv->uncore;
2831
2832 if (INTEL_GEN(dev_priv) >= 9) {
2833 u32 val;
2834 int ret, i;
2835 int level, max_level = ilk_wm_max_level(dev_priv);
2836
2837 /* read the first set of memory latencies[0:3] */
2838 val = 0; /* data0 to be programmed to 0 for first set */
2839 ret = sandybridge_pcode_read(dev_priv,
2840 GEN9_PCODE_READ_MEM_LATENCY,
2841 &val, NULL);
2842
2843 if (ret) {
2844 drm_err(&dev_priv->drm,
2845 "SKL Mailbox read error = %d\n", ret);
2846 return;
2847 }
2848
2849 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2850 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2851 GEN9_MEM_LATENCY_LEVEL_MASK;
2852 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2853 GEN9_MEM_LATENCY_LEVEL_MASK;
2854 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2855 GEN9_MEM_LATENCY_LEVEL_MASK;
2856
2857 /* read the second set of memory latencies[4:7] */
2858 val = 1; /* data0 to be programmed to 1 for second set */
2859 ret = sandybridge_pcode_read(dev_priv,
2860 GEN9_PCODE_READ_MEM_LATENCY,
2861 &val, NULL);
2862 if (ret) {
2863 drm_err(&dev_priv->drm,
2864 "SKL Mailbox read error = %d\n", ret);
2865 return;
2866 }
2867
2868 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2869 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2870 GEN9_MEM_LATENCY_LEVEL_MASK;
2871 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2872 GEN9_MEM_LATENCY_LEVEL_MASK;
2873 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2874 GEN9_MEM_LATENCY_LEVEL_MASK;
2875
2876 /*
2877 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2878 * need to be disabled. We make sure to sanitize the values out
2879 * of the punit to satisfy this requirement.
2880 */
2881 for (level = 1; level <= max_level; level++) {
2882 if (wm[level] == 0) {
2883 for (i = level + 1; i <= max_level; i++)
2884 wm[i] = 0;
2885 break;
2886 }
2887 }
2888
2889 /*
2890 * WaWmMemoryReadLatency:skl+,glk
2891 *
2892 * punit doesn't take into account the read latency so we need
2893 * to add 2us to the various latency levels we retrieve from the
2894 * punit when level 0 response data us 0us.
2895 */
2896 if (wm[0] == 0) {
2897 wm[0] += 2;
2898 for (level = 1; level <= max_level; level++) {
2899 if (wm[level] == 0)
2900 break;
2901 wm[level] += 2;
2902 }
2903 }
2904
2905 /*
2906 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2907 * If we could not get dimm info enable this WA to prevent from
2908 * any underrun. If not able to get Dimm info assume 16GB dimm
2909 * to avoid any underrun.
2910 */
2911 if (dev_priv->dram_info.is_16gb_dimm)
2912 wm[0] += 1;
2913
2914 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2915 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2916
2917 wm[0] = (sskpd >> 56) & 0xFF;
2918 if (wm[0] == 0)
2919 wm[0] = sskpd & 0xF;
2920 wm[1] = (sskpd >> 4) & 0xFF;
2921 wm[2] = (sskpd >> 12) & 0xFF;
2922 wm[3] = (sskpd >> 20) & 0x1FF;
2923 wm[4] = (sskpd >> 32) & 0x1FF;
2924 } else if (INTEL_GEN(dev_priv) >= 6) {
2925 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2926
2927 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2928 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2929 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2930 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2931 } else if (INTEL_GEN(dev_priv) >= 5) {
2932 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2933
2934 /* ILK primary LP0 latency is 700 ns */
2935 wm[0] = 7;
2936 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2937 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2938 } else {
2939 MISSING_CASE(INTEL_DEVID(dev_priv));
2940 }
2941 }
2942
2943 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2944 u16 wm[5])
2945 {
2946 /* ILK sprite LP0 latency is 1300 ns */
2947 if (IS_GEN(dev_priv, 5))
2948 wm[0] = 13;
2949 }
2950
2951 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2952 u16 wm[5])
2953 {
2954 /* ILK cursor LP0 latency is 1300 ns */
2955 if (IS_GEN(dev_priv, 5))
2956 wm[0] = 13;
2957 }
2958
2959 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2960 {
2961 /* how many WM levels are we expecting */
2962 if (INTEL_GEN(dev_priv) >= 9)
2963 return 7;
2964 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2965 return 4;
2966 else if (INTEL_GEN(dev_priv) >= 6)
2967 return 3;
2968 else
2969 return 2;
2970 }
2971
2972 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2973 const char *name,
2974 const u16 wm[8])
2975 {
2976 int level, max_level = ilk_wm_max_level(dev_priv);
2977
2978 for (level = 0; level <= max_level; level++) {
2979 unsigned int latency = wm[level];
2980
2981 if (latency == 0) {
2982 drm_dbg_kms(&dev_priv->drm,
2983 "%s WM%d latency not provided\n",
2984 name, level);
2985 continue;
2986 }
2987
2988 /*
2989 * - latencies are in us on gen9.
2990 * - before then, WM1+ latency values are in 0.5us units
2991 */
2992 if (INTEL_GEN(dev_priv) >= 9)
2993 latency *= 10;
2994 else if (level > 0)
2995 latency *= 5;
2996
2997 drm_dbg_kms(&dev_priv->drm,
2998 "%s WM%d latency %u (%u.%u usec)\n", name, level,
2999 wm[level], latency / 10, latency % 10);
3000 }
3001 }
3002
3003 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3004 u16 wm[5], u16 min)
3005 {
3006 int level, max_level = ilk_wm_max_level(dev_priv);
3007
3008 if (wm[0] >= min)
3009 return false;
3010
3011 wm[0] = max(wm[0], min);
3012 for (level = 1; level <= max_level; level++)
3013 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3014
3015 return true;
3016 }
3017
3018 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3019 {
3020 bool changed;
3021
3022 /*
3023 * The BIOS provided WM memory latency values are often
3024 * inadequate for high resolution displays. Adjust them.
3025 */
3026 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3027 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3028 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3029
3030 if (!changed)
3031 return;
3032
3033 drm_dbg_kms(&dev_priv->drm,
3034 "WM latency values increased to avoid potential underruns\n");
3035 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3036 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3037 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3038 }
3039
3040 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3041 {
3042 /*
3043 * On some SNB machines (Thinkpad X220 Tablet at least)
3044 * LP3 usage can cause vblank interrupts to be lost.
3045 * The DEIIR bit will go high but it looks like the CPU
3046 * never gets interrupted.
3047 *
3048 * It's not clear whether other interrupt source could
3049 * be affected or if this is somehow limited to vblank
3050 * interrupts only. To play it safe we disable LP3
3051 * watermarks entirely.
3052 */
3053 if (dev_priv->wm.pri_latency[3] == 0 &&
3054 dev_priv->wm.spr_latency[3] == 0 &&
3055 dev_priv->wm.cur_latency[3] == 0)
3056 return;
3057
3058 dev_priv->wm.pri_latency[3] = 0;
3059 dev_priv->wm.spr_latency[3] = 0;
3060 dev_priv->wm.cur_latency[3] = 0;
3061
3062 drm_dbg_kms(&dev_priv->drm,
3063 "LP3 watermarks disabled due to potential for lost interrupts\n");
3064 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3065 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3066 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3067 }
3068
3069 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3070 {
3071 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3072
3073 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3074 sizeof(dev_priv->wm.pri_latency));
3075 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3076 sizeof(dev_priv->wm.pri_latency));
3077
3078 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3079 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3080
3081 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3082 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3083 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3084
3085 if (IS_GEN(dev_priv, 6)) {
3086 snb_wm_latency_quirk(dev_priv);
3087 snb_wm_lp3_irq_quirk(dev_priv);
3088 }
3089 }
3090
3091 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3092 {
3093 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3094 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3095 }
3096
3097 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3098 struct intel_pipe_wm *pipe_wm)
3099 {
3100 /* LP0 watermark maximums depend on this pipe alone */
3101 const struct intel_wm_config config = {
3102 .num_pipes_active = 1,
3103 .sprites_enabled = pipe_wm->sprites_enabled,
3104 .sprites_scaled = pipe_wm->sprites_scaled,
3105 };
3106 struct ilk_wm_maximums max;
3107
3108 /* LP0 watermarks always use 1/2 DDB partitioning */
3109 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3110
3111 /* At least LP0 must be valid */
3112 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3113 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3114 return false;
3115 }
3116
3117 return true;
3118 }
3119
3120 /* Compute new watermarks for the pipe */
3121 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3122 {
3123 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3124 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3125 struct intel_pipe_wm *pipe_wm;
3126 struct intel_plane *plane;
3127 const struct intel_plane_state *plane_state;
3128 const struct intel_plane_state *pristate = NULL;
3129 const struct intel_plane_state *sprstate = NULL;
3130 const struct intel_plane_state *curstate = NULL;
3131 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3132 struct ilk_wm_maximums max;
3133
3134 pipe_wm = &crtc_state->wm.ilk.optimal;
3135
3136 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3137 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3138 pristate = plane_state;
3139 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3140 sprstate = plane_state;
3141 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3142 curstate = plane_state;
3143 }
3144
3145 pipe_wm->pipe_enabled = crtc_state->hw.active;
3146 if (sprstate) {
3147 pipe_wm->sprites_enabled = sprstate->uapi.visible;
3148 pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3149 (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3150 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3151 }
3152
3153 usable_level = max_level;
3154
3155 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3156 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3157 usable_level = 1;
3158
3159 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3160 if (pipe_wm->sprites_scaled)
3161 usable_level = 0;
3162
3163 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3164 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3165 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3166
3167 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3168 return -EINVAL;
3169
3170 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3171
3172 for (level = 1; level <= usable_level; level++) {
3173 struct intel_wm_level *wm = &pipe_wm->wm[level];
3174
3175 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3176 pristate, sprstate, curstate, wm);
3177
3178 /*
3179 * Disable any watermark level that exceeds the
3180 * register maximums since such watermarks are
3181 * always invalid.
3182 */
3183 if (!ilk_validate_wm_level(level, &max, wm)) {
3184 memset(wm, 0, sizeof(*wm));
3185 break;
3186 }
3187 }
3188
3189 return 0;
3190 }
3191
3192 /*
3193 * Build a set of 'intermediate' watermark values that satisfy both the old
3194 * state and the new state. These can be programmed to the hardware
3195 * immediately.
3196 */
3197 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3198 {
3199 struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3200 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3201 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3202 struct intel_atomic_state *intel_state =
3203 to_intel_atomic_state(newstate->uapi.state);
3204 const struct intel_crtc_state *oldstate =
3205 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3206 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3207 int level, max_level = ilk_wm_max_level(dev_priv);
3208
3209 /*
3210 * Start with the final, target watermarks, then combine with the
3211 * currently active watermarks to get values that are safe both before
3212 * and after the vblank.
3213 */
3214 *a = newstate->wm.ilk.optimal;
3215 if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3216 intel_state->skip_intermediate_wm)
3217 return 0;
3218
3219 a->pipe_enabled |= b->pipe_enabled;
3220 a->sprites_enabled |= b->sprites_enabled;
3221 a->sprites_scaled |= b->sprites_scaled;
3222
3223 for (level = 0; level <= max_level; level++) {
3224 struct intel_wm_level *a_wm = &a->wm[level];
3225 const struct intel_wm_level *b_wm = &b->wm[level];
3226
3227 a_wm->enable &= b_wm->enable;
3228 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3229 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3230 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3231 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3232 }
3233
3234 /*
3235 * We need to make sure that these merged watermark values are
3236 * actually a valid configuration themselves. If they're not,
3237 * there's no safe way to transition from the old state to
3238 * the new state, so we need to fail the atomic transaction.
3239 */
3240 if (!ilk_validate_pipe_wm(dev_priv, a))
3241 return -EINVAL;
3242
3243 /*
3244 * If our intermediate WM are identical to the final WM, then we can
3245 * omit the post-vblank programming; only update if it's different.
3246 */
3247 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3248 newstate->wm.need_postvbl_update = true;
3249
3250 return 0;
3251 }
3252
3253 /*
3254 * Merge the watermarks from all active pipes for a specific level.
3255 */
3256 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3257 int level,
3258 struct intel_wm_level *ret_wm)
3259 {
3260 const struct intel_crtc *intel_crtc;
3261
3262 ret_wm->enable = true;
3263
3264 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3265 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3266 const struct intel_wm_level *wm = &active->wm[level];
3267
3268 if (!active->pipe_enabled)
3269 continue;
3270
3271 /*
3272 * The watermark values may have been used in the past,
3273 * so we must maintain them in the registers for some
3274 * time even if the level is now disabled.
3275 */
3276 if (!wm->enable)
3277 ret_wm->enable = false;
3278
3279 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3280 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3281 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3282 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3283 }
3284 }
3285
3286 /*
3287 * Merge all low power watermarks for all active pipes.
3288 */
3289 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3290 const struct intel_wm_config *config,
3291 const struct ilk_wm_maximums *max,
3292 struct intel_pipe_wm *merged)
3293 {
3294 int level, max_level = ilk_wm_max_level(dev_priv);
3295 int last_enabled_level = max_level;
3296
3297 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3298 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3299 config->num_pipes_active > 1)
3300 last_enabled_level = 0;
3301
3302 /* ILK: FBC WM must be disabled always */
3303 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3304
3305 /* merge each WM1+ level */
3306 for (level = 1; level <= max_level; level++) {
3307 struct intel_wm_level *wm = &merged->wm[level];
3308
3309 ilk_merge_wm_level(dev_priv, level, wm);
3310
3311 if (level > last_enabled_level)
3312 wm->enable = false;
3313 else if (!ilk_validate_wm_level(level, max, wm))
3314 /* make sure all following levels get disabled */
3315 last_enabled_level = level - 1;
3316
3317 /*
3318 * The spec says it is preferred to disable
3319 * FBC WMs instead of disabling a WM level.
3320 */
3321 if (wm->fbc_val > max->fbc) {
3322 if (wm->enable)
3323 merged->fbc_wm_enabled = false;
3324 wm->fbc_val = 0;
3325 }
3326 }
3327
3328 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3329 /*
3330 * FIXME this is racy. FBC might get enabled later.
3331 * What we should check here is whether FBC can be
3332 * enabled sometime later.
3333 */
3334 if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3335 intel_fbc_is_active(dev_priv)) {
3336 for (level = 2; level <= max_level; level++) {
3337 struct intel_wm_level *wm = &merged->wm[level];
3338
3339 wm->enable = false;
3340 }
3341 }
3342 }
3343
3344 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3345 {
3346 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3347 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3348 }
3349
3350 /* The value we need to program into the WM_LPx latency field */
3351 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3352 int level)
3353 {
3354 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3355 return 2 * level;
3356 else
3357 return dev_priv->wm.pri_latency[level];
3358 }
3359
3360 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3361 const struct intel_pipe_wm *merged,
3362 enum intel_ddb_partitioning partitioning,
3363 struct ilk_wm_values *results)
3364 {
3365 struct intel_crtc *intel_crtc;
3366 int level, wm_lp;
3367
3368 results->enable_fbc_wm = merged->fbc_wm_enabled;
3369 results->partitioning = partitioning;
3370
3371 /* LP1+ register values */
3372 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3373 const struct intel_wm_level *r;
3374
3375 level = ilk_wm_lp_to_level(wm_lp, merged);
3376
3377 r = &merged->wm[level];
3378
3379 /*
3380 * Maintain the watermark values even if the level is
3381 * disabled. Doing otherwise could cause underruns.
3382 */
3383 results->wm_lp[wm_lp - 1] =
3384 (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3385 (r->pri_val << WM1_LP_SR_SHIFT) |
3386 r->cur_val;
3387
3388 if (r->enable)
3389 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3390
3391 if (INTEL_GEN(dev_priv) >= 8)
3392 results->wm_lp[wm_lp - 1] |=
3393 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3394 else
3395 results->wm_lp[wm_lp - 1] |=
3396 r->fbc_val << WM1_LP_FBC_SHIFT;
3397
3398 /*
3399 * Always set WM1S_LP_EN when spr_val != 0, even if the
3400 * level is disabled. Doing otherwise could cause underruns.
3401 */
3402 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3403 drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3404 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3405 } else
3406 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3407 }
3408
3409 /* LP0 register values */
3410 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3411 enum pipe pipe = intel_crtc->pipe;
3412 const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
3413 const struct intel_wm_level *r = &pipe_wm->wm[0];
3414
3415 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3416 continue;
3417
3418 results->wm_pipe[pipe] =
3419 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3420 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3421 r->cur_val;
3422 }
3423 }
3424
3425 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3426 * case both are at the same level. Prefer r1 in case they're the same. */
3427 static struct intel_pipe_wm *
3428 ilk_find_best_result(struct drm_i915_private *dev_priv,
3429 struct intel_pipe_wm *r1,
3430 struct intel_pipe_wm *r2)
3431 {
3432 int level, max_level = ilk_wm_max_level(dev_priv);
3433 int level1 = 0, level2 = 0;
3434
3435 for (level = 1; level <= max_level; level++) {
3436 if (r1->wm[level].enable)
3437 level1 = level;
3438 if (r2->wm[level].enable)
3439 level2 = level;
3440 }
3441
3442 if (level1 == level2) {
3443 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3444 return r2;
3445 else
3446 return r1;
3447 } else if (level1 > level2) {
3448 return r1;
3449 } else {
3450 return r2;
3451 }
3452 }
3453
3454 /* dirty bits used to track which watermarks need changes */
3455 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3456 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3457 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3458 #define WM_DIRTY_FBC (1 << 24)
3459 #define WM_DIRTY_DDB (1 << 25)
3460
3461 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3462 const struct ilk_wm_values *old,
3463 const struct ilk_wm_values *new)
3464 {
3465 unsigned int dirty = 0;
3466 enum pipe pipe;
3467 int wm_lp;
3468
3469 for_each_pipe(dev_priv, pipe) {
3470 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3471 dirty |= WM_DIRTY_PIPE(pipe);
3472 /* Must disable LP1+ watermarks too */
3473 dirty |= WM_DIRTY_LP_ALL;
3474 }
3475 }
3476
3477 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3478 dirty |= WM_DIRTY_FBC;
3479 /* Must disable LP1+ watermarks too */
3480 dirty |= WM_DIRTY_LP_ALL;
3481 }
3482
3483 if (old->partitioning != new->partitioning) {
3484 dirty |= WM_DIRTY_DDB;
3485 /* Must disable LP1+ watermarks too */
3486 dirty |= WM_DIRTY_LP_ALL;
3487 }
3488
3489 /* LP1+ watermarks already deemed dirty, no need to continue */
3490 if (dirty & WM_DIRTY_LP_ALL)
3491 return dirty;
3492
3493 /* Find the lowest numbered LP1+ watermark in need of an update... */
3494 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3495 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3496 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3497 break;
3498 }
3499
3500 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3501 for (; wm_lp <= 3; wm_lp++)
3502 dirty |= WM_DIRTY_LP(wm_lp);
3503
3504 return dirty;
3505 }
3506
3507 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3508 unsigned int dirty)
3509 {
3510 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3511 bool changed = false;
3512
3513 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3514 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3515 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3516 changed = true;
3517 }
3518 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3519 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3520 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3521 changed = true;
3522 }
3523 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3524 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3525 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3526 changed = true;
3527 }
3528
3529 /*
3530 * Don't touch WM1S_LP_EN here.
3531 * Doing so could cause underruns.
3532 */
3533
3534 return changed;
3535 }
3536
3537 /*
3538 * The spec says we shouldn't write when we don't need, because every write
3539 * causes WMs to be re-evaluated, expending some power.
3540 */
3541 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3542 struct ilk_wm_values *results)
3543 {
3544 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3545 unsigned int dirty;
3546 u32 val;
3547
3548 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3549 if (!dirty)
3550 return;
3551
3552 _ilk_disable_lp_wm(dev_priv, dirty);
3553
3554 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3555 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3556 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3557 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3558 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3559 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3560
3561 if (dirty & WM_DIRTY_DDB) {
3562 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3563 val = I915_READ(WM_MISC);
3564 if (results->partitioning == INTEL_DDB_PART_1_2)
3565 val &= ~WM_MISC_DATA_PARTITION_5_6;
3566 else
3567 val |= WM_MISC_DATA_PARTITION_5_6;
3568 I915_WRITE(WM_MISC, val);
3569 } else {
3570 val = I915_READ(DISP_ARB_CTL2);
3571 if (results->partitioning == INTEL_DDB_PART_1_2)
3572 val &= ~DISP_DATA_PARTITION_5_6;
3573 else
3574 val |= DISP_DATA_PARTITION_5_6;
3575 I915_WRITE(DISP_ARB_CTL2, val);
3576 }
3577 }
3578
3579 if (dirty & WM_DIRTY_FBC) {
3580 val = I915_READ(DISP_ARB_CTL);
3581 if (results->enable_fbc_wm)
3582 val &= ~DISP_FBC_WM_DIS;
3583 else
3584 val |= DISP_FBC_WM_DIS;
3585 I915_WRITE(DISP_ARB_CTL, val);
3586 }
3587
3588 if (dirty & WM_DIRTY_LP(1) &&
3589 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3590 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3591
3592 if (INTEL_GEN(dev_priv) >= 7) {
3593 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3594 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3595 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3596 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3597 }
3598
3599 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3600 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3601 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3602 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3603 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3604 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3605
3606 dev_priv->wm.hw = *results;
3607 }
3608
3609 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3610 {
3611 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3612 }
3613
3614 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3615 {
3616 int i;
3617 int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3618 u8 enabled_slices_mask = 0;
3619
3620 for (i = 0; i < max_slices; i++) {
3621 if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3622 enabled_slices_mask |= BIT(i);
3623 }
3624
3625 return enabled_slices_mask;
3626 }
3627
3628 /*
3629 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3630 * so assume we'll always need it in order to avoid underruns.
3631 */
3632 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3633 {
3634 return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3635 }
3636
3637 static bool
3638 intel_has_sagv(struct drm_i915_private *dev_priv)
3639 {
3640 /* HACK! */
3641 if (IS_GEN(dev_priv, 12))
3642 return false;
3643
3644 return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3645 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3646 }
3647
3648 static void
3649 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3650 {
3651 if (INTEL_GEN(dev_priv) >= 12) {
3652 u32 val = 0;
3653 int ret;
3654
3655 ret = sandybridge_pcode_read(dev_priv,
3656 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3657 &val, NULL);
3658 if (!ret) {
3659 dev_priv->sagv_block_time_us = val;
3660 return;
3661 }
3662
3663 drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3664 } else if (IS_GEN(dev_priv, 11)) {
3665 dev_priv->sagv_block_time_us = 10;
3666 return;
3667 } else if (IS_GEN(dev_priv, 10)) {
3668 dev_priv->sagv_block_time_us = 20;
3669 return;
3670 } else if (IS_GEN(dev_priv, 9)) {
3671 dev_priv->sagv_block_time_us = 30;
3672 return;
3673 } else {
3674 MISSING_CASE(INTEL_GEN(dev_priv));
3675 }
3676
3677 /* Default to an unusable block time */
3678 dev_priv->sagv_block_time_us = -1;
3679 }
3680
3681 /*
3682 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3683 * depending on power and performance requirements. The display engine access
3684 * to system memory is blocked during the adjustment time. Because of the
3685 * blocking time, having this enabled can cause full system hangs and/or pipe
3686 * underruns if we don't meet all of the following requirements:
3687 *
3688 * - <= 1 pipe enabled
3689 * - All planes can enable watermarks for latencies >= SAGV engine block time
3690 * - We're not using an interlaced display configuration
3691 */
3692 int
3693 intel_enable_sagv(struct drm_i915_private *dev_priv)
3694 {
3695 int ret;
3696
3697 if (!intel_has_sagv(dev_priv))
3698 return 0;
3699
3700 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3701 return 0;
3702
3703 drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3704 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3705 GEN9_SAGV_ENABLE);
3706
3707 /* We don't need to wait for SAGV when enabling */
3708
3709 /*
3710 * Some skl systems, pre-release machines in particular,
3711 * don't actually have SAGV.
3712 */
3713 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3714 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3715 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3716 return 0;
3717 } else if (ret < 0) {
3718 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3719 return ret;
3720 }
3721
3722 dev_priv->sagv_status = I915_SAGV_ENABLED;
3723 return 0;
3724 }
3725
3726 int
3727 intel_disable_sagv(struct drm_i915_private *dev_priv)
3728 {
3729 int ret;
3730
3731 if (!intel_has_sagv(dev_priv))
3732 return 0;
3733
3734 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3735 return 0;
3736
3737 drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3738 /* bspec says to keep retrying for at least 1 ms */
3739 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3740 GEN9_SAGV_DISABLE,
3741 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3742 1);
3743 /*
3744 * Some skl systems, pre-release machines in particular,
3745 * don't actually have SAGV.
3746 */
3747 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3748 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3749 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3750 return 0;
3751 } else if (ret < 0) {
3752 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3753 return ret;
3754 }
3755
3756 dev_priv->sagv_status = I915_SAGV_DISABLED;
3757 return 0;
3758 }
3759
3760 bool intel_can_enable_sagv(struct intel_atomic_state *state)
3761 {
3762 struct drm_device *dev = state->base.dev;
3763 struct drm_i915_private *dev_priv = to_i915(dev);
3764 struct intel_crtc *crtc;
3765 struct intel_plane *plane;
3766 struct intel_crtc_state *crtc_state;
3767 enum pipe pipe;
3768 int level, latency;
3769
3770 if (!intel_has_sagv(dev_priv))
3771 return false;
3772
3773 /*
3774 * If there are no active CRTCs, no additional checks need be performed
3775 */
3776 if (hweight8(state->active_pipes) == 0)
3777 return true;
3778
3779 /*
3780 * SKL+ workaround: bspec recommends we disable SAGV when we have
3781 * more then one pipe enabled
3782 */
3783 if (hweight8(state->active_pipes) > 1)
3784 return false;
3785
3786 /* Since we're now guaranteed to only have one active CRTC... */
3787 pipe = ffs(state->active_pipes) - 1;
3788 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3789 crtc_state = to_intel_crtc_state(crtc->base.state);
3790
3791 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3792 return false;
3793
3794 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3795 struct skl_plane_wm *wm =
3796 &crtc_state->wm.skl.optimal.planes[plane->id];
3797
3798 /* Skip this plane if it's not enabled */
3799 if (!wm->wm[0].plane_en)
3800 continue;
3801
3802 /* Find the highest enabled wm level for this plane */
3803 for (level = ilk_wm_max_level(dev_priv);
3804 !wm->wm[level].plane_en; --level)
3805 { }
3806
3807 latency = dev_priv->wm.skl_latency[level];
3808
3809 if (skl_needs_memory_bw_wa(dev_priv) &&
3810 plane->base.state->fb->modifier ==
3811 I915_FORMAT_MOD_X_TILED)
3812 latency += 15;
3813
3814 /*
3815 * If any of the planes on this pipe don't enable wm levels that
3816 * incur memory latencies higher than sagv_block_time_us we
3817 * can't enable SAGV.
3818 */
3819 if (latency < dev_priv->sagv_block_time_us)
3820 return false;
3821 }
3822
3823 return true;
3824 }
3825
3826 /*
3827 * Calculate initial DBuf slice offset, based on slice size
3828 * and mask(i.e if slice size is 1024 and second slice is enabled
3829 * offset would be 1024)
3830 */
3831 static unsigned int
3832 icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
3833 u32 slice_size,
3834 u32 ddb_size)
3835 {
3836 unsigned int offset = 0;
3837
3838 if (!dbuf_slice_mask)
3839 return 0;
3840
3841 offset = (ffs(dbuf_slice_mask) - 1) * slice_size;
3842
3843 WARN_ON(offset >= ddb_size);
3844 return offset;
3845 }
3846
3847 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
3848 {
3849 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3850
3851 drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
3852
3853 if (INTEL_GEN(dev_priv) < 11)
3854 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3855
3856 return ddb_size;
3857 }
3858
3859 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
3860 u8 active_pipes);
3861
3862 static void
3863 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3864 const struct intel_crtc_state *crtc_state,
3865 const u64 total_data_rate,
3866 struct skl_ddb_entry *alloc, /* out */
3867 int *num_active /* out */)
3868 {
3869 struct drm_atomic_state *state = crtc_state->uapi.state;
3870 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3871 struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3872 const struct intel_crtc *crtc;
3873 u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
3874 enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3875 u16 ddb_size;
3876 u32 ddb_range_size;
3877 u32 i;
3878 u32 dbuf_slice_mask;
3879 u32 active_pipes;
3880 u32 offset;
3881 u32 slice_size;
3882 u32 total_slice_mask;
3883 u32 start, end;
3884
3885 if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
3886 alloc->start = 0;
3887 alloc->end = 0;
3888 *num_active = hweight8(dev_priv->active_pipes);
3889 return;
3890 }
3891
3892 if (intel_state->active_pipe_changes)
3893 active_pipes = intel_state->active_pipes;
3894 else
3895 active_pipes = dev_priv->active_pipes;
3896
3897 *num_active = hweight8(active_pipes);
3898
3899 ddb_size = intel_get_ddb_size(dev_priv);
3900
3901 slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3902
3903 /*
3904 * If the state doesn't change the active CRTC's or there is no
3905 * modeset request, then there's no need to recalculate;
3906 * the existing pipe allocation limits should remain unchanged.
3907 * Note that we're safe from racing commits since any racing commit
3908 * that changes the active CRTC list or do modeset would need to
3909 * grab _all_ crtc locks, including the one we currently hold.
3910 */
3911 if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3912 /*
3913 * alloc may be cleared by clear_intel_crtc_state,
3914 * copy from old state to be sure
3915 */
3916 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3917 return;
3918 }
3919
3920 /*
3921 * Get allowed DBuf slices for correspondent pipe and platform.
3922 */
3923 dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);
3924
3925 DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
3926 dbuf_slice_mask,
3927 pipe_name(for_pipe), active_pipes);
3928
3929 /*
3930 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
3931 * and slice size is 1024, the offset would be 1024
3932 */
3933 offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
3934 slice_size, ddb_size);
3935
3936 /*
3937 * Figure out total size of allowed DBuf slices, which is basically
3938 * a number of allowed slices for that pipe multiplied by slice size.
3939 * Inside of this
3940 * range ddb entries are still allocated in proportion to display width.
3941 */
3942 ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;
3943
3944 /*
3945 * Watermark/ddb requirement highly depends upon width of the
3946 * framebuffer, So instead of allocating DDB equally among pipes
3947 * distribute DDB based on resolution/width of the display.
3948 */
3949 total_slice_mask = dbuf_slice_mask;
3950 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3951 const struct drm_display_mode *adjusted_mode =
3952 &crtc_state->hw.adjusted_mode;
3953 enum pipe pipe = crtc->pipe;
3954 int hdisplay, vdisplay;
3955 u32 pipe_dbuf_slice_mask;
3956
3957 if (!crtc_state->hw.active)
3958 continue;
3959
3960 pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
3961 active_pipes);
3962
3963 /*
3964 * According to BSpec pipe can share one dbuf slice with another
3965 * pipes or pipe can use multiple dbufs, in both cases we
3966 * account for other pipes only if they have exactly same mask.
3967 * However we need to account how many slices we should enable
3968 * in total.
3969 */
3970 total_slice_mask |= pipe_dbuf_slice_mask;
3971
3972 /*
3973 * Do not account pipes using other slice sets
3974 * luckily as of current BSpec slice sets do not partially
3975 * intersect(pipes share either same one slice or same slice set
3976 * i.e no partial intersection), so it is enough to check for
3977 * equality for now.
3978 */
3979 if (dbuf_slice_mask != pipe_dbuf_slice_mask)
3980 continue;
3981
3982 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3983
3984 total_width_in_range += hdisplay;
3985
3986 if (pipe < for_pipe)
3987 width_before_pipe_in_range += hdisplay;
3988 else if (pipe == for_pipe)
3989 pipe_width = hdisplay;
3990 }
3991
3992 /*
3993 * FIXME: For now we always enable slice S1 as per
3994 * the Bspec display initialization sequence.
3995 */
3996 intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);
3997
3998 start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
3999 end = ddb_range_size *
4000 (width_before_pipe_in_range + pipe_width) / total_width_in_range;
4001
4002 alloc->start = offset + start;
4003 alloc->end = offset + end;
4004
4005 DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
4006 alloc->start, alloc->end);
4007 DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
4008 intel_state->enabled_dbuf_slices_mask,
4009 INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
4010 }
4011
4012 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4013 int width, const struct drm_format_info *format,
4014 u64 modifier, unsigned int rotation,
4015 u32 plane_pixel_rate, struct skl_wm_params *wp,
4016 int color_plane);
4017 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4018 int level,
4019 const struct skl_wm_params *wp,
4020 const struct skl_wm_level *result_prev,
4021 struct skl_wm_level *result /* out */);
4022
4023 static unsigned int
4024 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4025 int num_active)
4026 {
4027 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4028 int level, max_level = ilk_wm_max_level(dev_priv);
4029 struct skl_wm_level wm = {};
4030 int ret, min_ddb_alloc = 0;
4031 struct skl_wm_params wp;
4032
4033 ret = skl_compute_wm_params(crtc_state, 256,
4034 drm_format_info(DRM_FORMAT_ARGB8888),
4035 DRM_FORMAT_MOD_LINEAR,
4036 DRM_MODE_ROTATE_0,
4037 crtc_state->pixel_rate, &wp, 0);
4038 drm_WARN_ON(&dev_priv->drm, ret);
4039
4040 for (level = 0; level <= max_level; level++) {
4041 skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
4042 if (wm.min_ddb_alloc == U16_MAX)
4043 break;
4044
4045 min_ddb_alloc = wm.min_ddb_alloc;
4046 }
4047
4048 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4049 }
4050
4051 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4052 struct skl_ddb_entry *entry, u32 reg)
4053 {
4054
4055 entry->start = reg & DDB_ENTRY_MASK;
4056 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4057
4058 if (entry->end)
4059 entry->end += 1;
4060 }
4061
4062 static void
4063 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4064 const enum pipe pipe,
4065 const enum plane_id plane_id,
4066 struct skl_ddb_entry *ddb_y,
4067 struct skl_ddb_entry *ddb_uv)
4068 {
4069 u32 val, val2;
4070 u32 fourcc = 0;
4071
4072 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4073 if (plane_id == PLANE_CURSOR) {
4074 val = I915_READ(CUR_BUF_CFG(pipe));
4075 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4076 return;
4077 }
4078
4079 val = I915_READ(PLANE_CTL(pipe, plane_id));
4080
4081 /* No DDB allocated for disabled planes */
4082 if (val & PLANE_CTL_ENABLE)
4083 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4084 val & PLANE_CTL_ORDER_RGBX,
4085 val & PLANE_CTL_ALPHA_MASK);
4086
4087 if (INTEL_GEN(dev_priv) >= 11) {
4088 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4089 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4090 } else {
4091 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4092 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4093
4094 if (fourcc &&
4095 drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4096 swap(val, val2);
4097
4098 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4099 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4100 }
4101 }
4102
4103 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4104 struct skl_ddb_entry *ddb_y,
4105 struct skl_ddb_entry *ddb_uv)
4106 {
4107 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4108 enum intel_display_power_domain power_domain;
4109 enum pipe pipe = crtc->pipe;
4110 intel_wakeref_t wakeref;
4111 enum plane_id plane_id;
4112
4113 power_domain = POWER_DOMAIN_PIPE(pipe);
4114 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4115 if (!wakeref)
4116 return;
4117
4118 for_each_plane_id_on_crtc(crtc, plane_id)
4119 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4120 plane_id,
4121 &ddb_y[plane_id],
4122 &ddb_uv[plane_id]);
4123
4124 intel_display_power_put(dev_priv, power_domain, wakeref);
4125 }
4126
4127 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4128 {
4129 dev_priv->enabled_dbuf_slices_mask =
4130 intel_enabled_dbuf_slices_mask(dev_priv);
4131 }
4132
4133 /*
4134 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4135 * The bspec defines downscale amount as:
4136 *
4137 * """
4138 * Horizontal down scale amount = maximum[1, Horizontal source size /
4139 * Horizontal destination size]
4140 * Vertical down scale amount = maximum[1, Vertical source size /
4141 * Vertical destination size]
4142 * Total down scale amount = Horizontal down scale amount *
4143 * Vertical down scale amount
4144 * """
4145 *
4146 * Return value is provided in 16.16 fixed point form to retain fractional part.
4147 * Caller should take care of dividing & rounding off the value.
4148 */
4149 static uint_fixed_16_16_t
4150 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4151 const struct intel_plane_state *plane_state)
4152 {
4153 u32 src_w, src_h, dst_w, dst_h;
4154 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4155 uint_fixed_16_16_t downscale_h, downscale_w;
4156
4157 if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4158 return u32_to_fixed16(0);
4159
4160 /*
4161 * Src coordinates are already rotated by 270 degrees for
4162 * the 90/270 degree plane rotation cases (to match the
4163 * GTT mapping), hence no need to account for rotation here.
4164 *
4165 * n.b., src is 16.16 fixed point, dst is whole integer.
4166 */
4167 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4168 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4169 dst_w = drm_rect_width(&plane_state->uapi.dst);
4170 dst_h = drm_rect_height(&plane_state->uapi.dst);
4171
4172 fp_w_ratio = div_fixed16(src_w, dst_w);
4173 fp_h_ratio = div_fixed16(src_h, dst_h);
4174 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4175 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4176
4177 return mul_fixed16(downscale_w, downscale_h);
4178 }
4179
4180 struct dbuf_slice_conf_entry {
4181 u8 active_pipes;
4182 u8 dbuf_mask[I915_MAX_PIPES];
4183 };
4184
4185 /*
4186 * Table taken from Bspec 12716
4187 * Pipes do have some preferred DBuf slice affinity,
4188 * plus there are some hardcoded requirements on how
4189 * those should be distributed for multipipe scenarios.
4190 * For more DBuf slices algorithm can get even more messy
4191 * and less readable, so decided to use a table almost
4192 * as is from BSpec itself - that way it is at least easier
4193 * to compare, change and check.
4194 */
4195 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4196 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4197 {
4198 {
4199 .active_pipes = BIT(PIPE_A),
4200 .dbuf_mask = {
4201 [PIPE_A] = BIT(DBUF_S1),
4202 },
4203 },
4204 {
4205 .active_pipes = BIT(PIPE_B),
4206 .dbuf_mask = {
4207 [PIPE_B] = BIT(DBUF_S1),
4208 },
4209 },
4210 {
4211 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4212 .dbuf_mask = {
4213 [PIPE_A] = BIT(DBUF_S1),
4214 [PIPE_B] = BIT(DBUF_S2),
4215 },
4216 },
4217 {
4218 .active_pipes = BIT(PIPE_C),
4219 .dbuf_mask = {
4220 [PIPE_C] = BIT(DBUF_S2),
4221 },
4222 },
4223 {
4224 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4225 .dbuf_mask = {
4226 [PIPE_A] = BIT(DBUF_S1),
4227 [PIPE_C] = BIT(DBUF_S2),
4228 },
4229 },
4230 {
4231 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4232 .dbuf_mask = {
4233 [PIPE_B] = BIT(DBUF_S1),
4234 [PIPE_C] = BIT(DBUF_S2),
4235 },
4236 },
4237 {
4238 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4239 .dbuf_mask = {
4240 [PIPE_A] = BIT(DBUF_S1),
4241 [PIPE_B] = BIT(DBUF_S1),
4242 [PIPE_C] = BIT(DBUF_S2),
4243 },
4244 },
4245 {}
4246 };
4247
4248 /*
4249 * Table taken from Bspec 49255
4250 * Pipes do have some preferred DBuf slice affinity,
4251 * plus there are some hardcoded requirements on how
4252 * those should be distributed for multipipe scenarios.
4253 * For more DBuf slices algorithm can get even more messy
4254 * and less readable, so decided to use a table almost
4255 * as is from BSpec itself - that way it is at least easier
4256 * to compare, change and check.
4257 */
4258 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4259 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4260 {
4261 {
4262 .active_pipes = BIT(PIPE_A),
4263 .dbuf_mask = {
4264 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4265 },
4266 },
4267 {
4268 .active_pipes = BIT(PIPE_B),
4269 .dbuf_mask = {
4270 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4271 },
4272 },
4273 {
4274 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4275 .dbuf_mask = {
4276 [PIPE_A] = BIT(DBUF_S2),
4277 [PIPE_B] = BIT(DBUF_S1),
4278 },
4279 },
4280 {
4281 .active_pipes = BIT(PIPE_C),
4282 .dbuf_mask = {
4283 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4284 },
4285 },
4286 {
4287 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4288 .dbuf_mask = {
4289 [PIPE_A] = BIT(DBUF_S1),
4290 [PIPE_C] = BIT(DBUF_S2),
4291 },
4292 },
4293 {
4294 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4295 .dbuf_mask = {
4296 [PIPE_B] = BIT(DBUF_S1),
4297 [PIPE_C] = BIT(DBUF_S2),
4298 },
4299 },
4300 {
4301 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4302 .dbuf_mask = {
4303 [PIPE_A] = BIT(DBUF_S1),
4304 [PIPE_B] = BIT(DBUF_S1),
4305 [PIPE_C] = BIT(DBUF_S2),
4306 },
4307 },
4308 {
4309 .active_pipes = BIT(PIPE_D),
4310 .dbuf_mask = {
4311 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4312 },
4313 },
4314 {
4315 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4316 .dbuf_mask = {
4317 [PIPE_A] = BIT(DBUF_S1),
4318 [PIPE_D] = BIT(DBUF_S2),
4319 },
4320 },
4321 {
4322 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4323 .dbuf_mask = {
4324 [PIPE_B] = BIT(DBUF_S1),
4325 [PIPE_D] = BIT(DBUF_S2),
4326 },
4327 },
4328 {
4329 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4330 .dbuf_mask = {
4331 [PIPE_A] = BIT(DBUF_S1),
4332 [PIPE_B] = BIT(DBUF_S1),
4333 [PIPE_D] = BIT(DBUF_S2),
4334 },
4335 },
4336 {
4337 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4338 .dbuf_mask = {
4339 [PIPE_C] = BIT(DBUF_S1),
4340 [PIPE_D] = BIT(DBUF_S2),
4341 },
4342 },
4343 {
4344 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4345 .dbuf_mask = {
4346 [PIPE_A] = BIT(DBUF_S1),
4347 [PIPE_C] = BIT(DBUF_S2),
4348 [PIPE_D] = BIT(DBUF_S2),
4349 },
4350 },
4351 {
4352 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4353 .dbuf_mask = {
4354 [PIPE_B] = BIT(DBUF_S1),
4355 [PIPE_C] = BIT(DBUF_S2),
4356 [PIPE_D] = BIT(DBUF_S2),
4357 },
4358 },
4359 {
4360 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4361 .dbuf_mask = {
4362 [PIPE_A] = BIT(DBUF_S1),
4363 [PIPE_B] = BIT(DBUF_S1),
4364 [PIPE_C] = BIT(DBUF_S2),
4365 [PIPE_D] = BIT(DBUF_S2),
4366 },
4367 },
4368 {}
4369 };
4370
4371 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4372 const struct dbuf_slice_conf_entry *dbuf_slices)
4373 {
4374 int i;
4375
4376 for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4377 if (dbuf_slices[i].active_pipes == active_pipes)
4378 return dbuf_slices[i].dbuf_mask[pipe];
4379 }
4380 return 0;
4381 }
4382
4383 /*
4384 * This function finds an entry with same enabled pipe configuration and
4385 * returns correspondent DBuf slice mask as stated in BSpec for particular
4386 * platform.
4387 */
4388 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4389 {
4390 /*
4391 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4392 * required calculating "pipe ratio" in order to determine
4393 * if one or two slices can be used for single pipe configurations
4394 * as additional constraint to the existing table.
4395 * However based on recent info, it should be not "pipe ratio"
4396 * but rather ratio between pixel_rate and cdclk with additional
4397 * constants, so for now we are using only table until this is
4398 * clarified. Also this is the reason why crtc_state param is
4399 * still here - we will need it once those additional constraints
4400 * pop up.
4401 */
4402 return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4403 }
4404
4405 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4406 {
4407 return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4408 }
4409
4410 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4411 u8 active_pipes)
4412 {
4413 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4414 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4415 enum pipe pipe = crtc->pipe;
4416
4417 if (IS_GEN(dev_priv, 12))
4418 return tgl_compute_dbuf_slices(pipe, active_pipes);
4419 else if (IS_GEN(dev_priv, 11))
4420 return icl_compute_dbuf_slices(pipe, active_pipes);
4421 /*
4422 * For anything else just return one slice yet.
4423 * Should be extended for other platforms.
4424 */
4425 return BIT(DBUF_S1);
4426 }
4427
4428 static u64
4429 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4430 const struct intel_plane_state *plane_state,
4431 int color_plane)
4432 {
4433 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4434 const struct drm_framebuffer *fb = plane_state->hw.fb;
4435 u32 data_rate;
4436 u32 width = 0, height = 0;
4437 uint_fixed_16_16_t down_scale_amount;
4438 u64 rate;
4439
4440 if (!plane_state->uapi.visible)
4441 return 0;
4442
4443 if (plane->id == PLANE_CURSOR)
4444 return 0;
4445
4446 if (color_plane == 1 &&
4447 !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4448 return 0;
4449
4450 /*
4451 * Src coordinates are already rotated by 270 degrees for
4452 * the 90/270 degree plane rotation cases (to match the
4453 * GTT mapping), hence no need to account for rotation here.
4454 */
4455 width = drm_rect_width(&plane_state->uapi.src) >> 16;
4456 height = drm_rect_height(&plane_state->uapi.src) >> 16;
4457
4458 /* UV plane does 1/2 pixel sub-sampling */
4459 if (color_plane == 1) {
4460 width /= 2;
4461 height /= 2;
4462 }
4463
4464 data_rate = width * height;
4465
4466 down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4467
4468 rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4469
4470 rate *= fb->format->cpp[color_plane];
4471 return rate;
4472 }
4473
4474 static u64
4475 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4476 u64 *plane_data_rate,
4477 u64 *uv_plane_data_rate)
4478 {
4479 struct intel_plane *plane;
4480 const struct intel_plane_state *plane_state;
4481 u64 total_data_rate = 0;
4482
4483 /* Calculate and cache data rate for each plane */
4484 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4485 enum plane_id plane_id = plane->id;
4486 u64 rate;
4487
4488 /* packed/y */
4489 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4490 plane_data_rate[plane_id] = rate;
4491 total_data_rate += rate;
4492
4493 /* uv-plane */
4494 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4495 uv_plane_data_rate[plane_id] = rate;
4496 total_data_rate += rate;
4497 }
4498
4499 return total_data_rate;
4500 }
4501
4502 static u64
4503 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4504 u64 *plane_data_rate)
4505 {
4506 struct intel_plane *plane;
4507 const struct intel_plane_state *plane_state;
4508 u64 total_data_rate = 0;
4509
4510 /* Calculate and cache data rate for each plane */
4511 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4512 enum plane_id plane_id = plane->id;
4513 u64 rate;
4514
4515 if (!plane_state->planar_linked_plane) {
4516 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4517 plane_data_rate[plane_id] = rate;
4518 total_data_rate += rate;
4519 } else {
4520 enum plane_id y_plane_id;
4521
4522 /*
4523 * The slave plane might not iterate in
4524 * intel_atomic_crtc_state_for_each_plane_state(),
4525 * and needs the master plane state which may be
4526 * NULL if we try get_new_plane_state(), so we
4527 * always calculate from the master.
4528 */
4529 if (plane_state->planar_slave)
4530 continue;
4531
4532 /* Y plane rate is calculated on the slave */
4533 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4534 y_plane_id = plane_state->planar_linked_plane->id;
4535 plane_data_rate[y_plane_id] = rate;
4536 total_data_rate += rate;
4537
4538 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4539 plane_data_rate[plane_id] = rate;
4540 total_data_rate += rate;
4541 }
4542 }
4543
4544 return total_data_rate;
4545 }
4546
4547 static int
4548 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4549 {
4550 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4551 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4552 struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4553 u16 alloc_size, start = 0;
4554 u16 total[I915_MAX_PLANES] = {};
4555 u16 uv_total[I915_MAX_PLANES] = {};
4556 u64 total_data_rate;
4557 enum plane_id plane_id;
4558 int num_active;
4559 u64 plane_data_rate[I915_MAX_PLANES] = {};
4560 u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4561 u32 blocks;
4562 int level;
4563
4564 /* Clear the partitioning for disabled planes. */
4565 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4566 memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4567
4568 if (!crtc_state->hw.active) {
4569 alloc->start = alloc->end = 0;
4570 return 0;
4571 }
4572
4573 if (INTEL_GEN(dev_priv) >= 11)
4574 total_data_rate =
4575 icl_get_total_relative_data_rate(crtc_state,
4576 plane_data_rate);
4577 else
4578 total_data_rate =
4579 skl_get_total_relative_data_rate(crtc_state,
4580 plane_data_rate,
4581 uv_plane_data_rate);
4582
4583
4584 skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4585 alloc, &num_active);
4586 alloc_size = skl_ddb_entry_size(alloc);
4587 if (alloc_size == 0)
4588 return 0;
4589
4590 /* Allocate fixed number of blocks for cursor. */
4591 total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4592 alloc_size -= total[PLANE_CURSOR];
4593 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4594 alloc->end - total[PLANE_CURSOR];
4595 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4596
4597 if (total_data_rate == 0)
4598 return 0;
4599
4600 /*
4601 * Find the highest watermark level for which we can satisfy the block
4602 * requirement of active planes.
4603 */
4604 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4605 blocks = 0;
4606 for_each_plane_id_on_crtc(crtc, plane_id) {
4607 const struct skl_plane_wm *wm =
4608 &crtc_state->wm.skl.optimal.planes[plane_id];
4609
4610 if (plane_id == PLANE_CURSOR) {
4611 if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4612 drm_WARN_ON(&dev_priv->drm,
4613 wm->wm[level].min_ddb_alloc != U16_MAX);
4614 blocks = U32_MAX;
4615 break;
4616 }
4617 continue;
4618 }
4619
4620 blocks += wm->wm[level].min_ddb_alloc;
4621 blocks += wm->uv_wm[level].min_ddb_alloc;
4622 }
4623
4624 if (blocks <= alloc_size) {
4625 alloc_size -= blocks;
4626 break;
4627 }
4628 }
4629
4630 if (level < 0) {
4631 drm_dbg_kms(&dev_priv->drm,
4632 "Requested display configuration exceeds system DDB limitations");
4633 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
4634 blocks, alloc_size);
4635 return -EINVAL;
4636 }
4637
4638 /*
4639 * Grant each plane the blocks it requires at the highest achievable
4640 * watermark level, plus an extra share of the leftover blocks
4641 * proportional to its relative data rate.
4642 */
4643 for_each_plane_id_on_crtc(crtc, plane_id) {
4644 const struct skl_plane_wm *wm =
4645 &crtc_state->wm.skl.optimal.planes[plane_id];
4646 u64 rate;
4647 u16 extra;
4648
4649 if (plane_id == PLANE_CURSOR)
4650 continue;
4651
4652 /*
4653 * We've accounted for all active planes; remaining planes are
4654 * all disabled.
4655 */
4656 if (total_data_rate == 0)
4657 break;
4658
4659 rate = plane_data_rate[plane_id];
4660 extra = min_t(u16, alloc_size,
4661 DIV64_U64_ROUND_UP(alloc_size * rate,
4662 total_data_rate));
4663 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4664 alloc_size -= extra;
4665 total_data_rate -= rate;
4666
4667 if (total_data_rate == 0)
4668 break;
4669
4670 rate = uv_plane_data_rate[plane_id];
4671 extra = min_t(u16, alloc_size,
4672 DIV64_U64_ROUND_UP(alloc_size * rate,
4673 total_data_rate));
4674 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4675 alloc_size -= extra;
4676 total_data_rate -= rate;
4677 }
4678 drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4679
4680 /* Set the actual DDB start/end points for each plane */
4681 start = alloc->start;
4682 for_each_plane_id_on_crtc(crtc, plane_id) {
4683 struct skl_ddb_entry *plane_alloc =
4684 &crtc_state->wm.skl.plane_ddb_y[plane_id];
4685 struct skl_ddb_entry *uv_plane_alloc =
4686 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4687
4688 if (plane_id == PLANE_CURSOR)
4689 continue;
4690
4691 /* Gen11+ uses a separate plane for UV watermarks */
4692 drm_WARN_ON(&dev_priv->drm,
4693 INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4694
4695 /* Leave disabled planes at (0,0) */
4696 if (total[plane_id]) {
4697 plane_alloc->start = start;
4698 start += total[plane_id];
4699 plane_alloc->end = start;
4700 }
4701
4702 if (uv_total[plane_id]) {
4703 uv_plane_alloc->start = start;
4704 start += uv_total[plane_id];
4705 uv_plane_alloc->end = start;
4706 }
4707 }
4708
4709 /*
4710 * When we calculated watermark values we didn't know how high
4711 * of a level we'd actually be able to hit, so we just marked
4712 * all levels as "enabled." Go back now and disable the ones
4713 * that aren't actually possible.
4714 */
4715 for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4716 for_each_plane_id_on_crtc(crtc, plane_id) {
4717 struct skl_plane_wm *wm =
4718 &crtc_state->wm.skl.optimal.planes[plane_id];
4719
4720 /*
4721 * We only disable the watermarks for each plane if
4722 * they exceed the ddb allocation of said plane. This
4723 * is done so that we don't end up touching cursor
4724 * watermarks needlessly when some other plane reduces
4725 * our max possible watermark level.
4726 *
4727 * Bspec has this to say about the PLANE_WM enable bit:
4728 * "All the watermarks at this level for all enabled
4729 * planes must be enabled before the level will be used."
4730 * So this is actually safe to do.
4731 */
4732 if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4733 wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4734 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4735
4736 /*
4737 * Wa_1408961008:icl, ehl
4738 * Underruns with WM1+ disabled
4739 */
4740 if (IS_GEN(dev_priv, 11) &&
4741 level == 1 && wm->wm[0].plane_en) {
4742 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4743 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4744 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4745 }
4746 }
4747 }
4748
4749 /*
4750 * Go back and disable the transition watermark if it turns out we
4751 * don't have enough DDB blocks for it.
4752 */
4753 for_each_plane_id_on_crtc(crtc, plane_id) {
4754 struct skl_plane_wm *wm =
4755 &crtc_state->wm.skl.optimal.planes[plane_id];
4756
4757 if (wm->trans_wm.plane_res_b >= total[plane_id])
4758 memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4759 }
4760
4761 return 0;
4762 }
4763
4764 /*
4765 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4766 * for the read latency) and cpp should always be <= 8, so that
4767 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4768 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4769 */
4770 static uint_fixed_16_16_t
4771 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4772 u8 cpp, u32 latency, u32 dbuf_block_size)
4773 {
4774 u32 wm_intermediate_val;
4775 uint_fixed_16_16_t ret;
4776
4777 if (latency == 0)
4778 return FP_16_16_MAX;
4779
4780 wm_intermediate_val = latency * pixel_rate * cpp;
4781 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4782
4783 if (INTEL_GEN(dev_priv) >= 10)
4784 ret = add_fixed16_u32(ret, 1);
4785
4786 return ret;
4787 }
4788
4789 static uint_fixed_16_16_t
4790 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4791 uint_fixed_16_16_t plane_blocks_per_line)
4792 {
4793 u32 wm_intermediate_val;
4794 uint_fixed_16_16_t ret;
4795
4796 if (latency == 0)
4797 return FP_16_16_MAX;
4798
4799 wm_intermediate_val = latency * pixel_rate;
4800 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4801 pipe_htotal * 1000);
4802 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4803 return ret;
4804 }
4805
4806 static uint_fixed_16_16_t
4807 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4808 {
4809 u32 pixel_rate;
4810 u32 crtc_htotal;
4811 uint_fixed_16_16_t linetime_us;
4812
4813 if (!crtc_state->hw.active)
4814 return u32_to_fixed16(0);
4815
4816 pixel_rate = crtc_state->pixel_rate;
4817
4818 if (WARN_ON(pixel_rate == 0))
4819 return u32_to_fixed16(0);
4820
4821 crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4822 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4823
4824 return linetime_us;
4825 }
4826
4827 static u32
4828 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
4829 const struct intel_plane_state *plane_state)
4830 {
4831 u64 adjusted_pixel_rate;
4832 uint_fixed_16_16_t downscale_amount;
4833
4834 /* Shouldn't reach here on disabled planes... */
4835 if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4836 return 0;
4837
4838 /*
4839 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4840 * with additional adjustments for plane-specific scaling.
4841 */
4842 adjusted_pixel_rate = crtc_state->pixel_rate;
4843 downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4844
4845 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4846 downscale_amount);
4847 }
4848
4849 static int
4850 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4851 int width, const struct drm_format_info *format,
4852 u64 modifier, unsigned int rotation,
4853 u32 plane_pixel_rate, struct skl_wm_params *wp,
4854 int color_plane)
4855 {
4856 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4857 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4858 u32 interm_pbpl;
4859
4860 /* only planar format has two planes */
4861 if (color_plane == 1 &&
4862 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4863 drm_dbg_kms(&dev_priv->drm,
4864 "Non planar format have single plane\n");
4865 return -EINVAL;
4866 }
4867
4868 wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4869 modifier == I915_FORMAT_MOD_Yf_TILED ||
4870 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4871 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4872 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4873 wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4874 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4875 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4876
4877 wp->width = width;
4878 if (color_plane == 1 && wp->is_planar)
4879 wp->width /= 2;
4880
4881 wp->cpp = format->cpp[color_plane];
4882 wp->plane_pixel_rate = plane_pixel_rate;
4883
4884 if (INTEL_GEN(dev_priv) >= 11 &&
4885 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
4886 wp->dbuf_block_size = 256;
4887 else
4888 wp->dbuf_block_size = 512;
4889
4890 if (drm_rotation_90_or_270(rotation)) {
4891 switch (wp->cpp) {
4892 case 1:
4893 wp->y_min_scanlines = 16;
4894 break;
4895 case 2:
4896 wp->y_min_scanlines = 8;
4897 break;
4898 case 4:
4899 wp->y_min_scanlines = 4;
4900 break;
4901 default:
4902 MISSING_CASE(wp->cpp);
4903 return -EINVAL;
4904 }
4905 } else {
4906 wp->y_min_scanlines = 4;
4907 }
4908
4909 if (skl_needs_memory_bw_wa(dev_priv))
4910 wp->y_min_scanlines *= 2;
4911
4912 wp->plane_bytes_per_line = wp->width * wp->cpp;
4913 if (wp->y_tiled) {
4914 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4915 wp->y_min_scanlines,
4916 wp->dbuf_block_size);
4917
4918 if (INTEL_GEN(dev_priv) >= 10)
4919 interm_pbpl++;
4920
4921 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4922 wp->y_min_scanlines);
4923 } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4924 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4925 wp->dbuf_block_size);
4926 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4927 } else {
4928 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4929 wp->dbuf_block_size) + 1;
4930 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4931 }
4932
4933 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4934 wp->plane_blocks_per_line);
4935
4936 wp->linetime_us = fixed16_to_u32_round_up(
4937 intel_get_linetime_us(crtc_state));
4938
4939 return 0;
4940 }
4941
4942 static int
4943 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4944 const struct intel_plane_state *plane_state,
4945 struct skl_wm_params *wp, int color_plane)
4946 {
4947 const struct drm_framebuffer *fb = plane_state->hw.fb;
4948 int width;
4949
4950 /*
4951 * Src coordinates are already rotated by 270 degrees for
4952 * the 90/270 degree plane rotation cases (to match the
4953 * GTT mapping), hence no need to account for rotation here.
4954 */
4955 width = drm_rect_width(&plane_state->uapi.src) >> 16;
4956
4957 return skl_compute_wm_params(crtc_state, width,
4958 fb->format, fb->modifier,
4959 plane_state->hw.rotation,
4960 skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4961 wp, color_plane);
4962 }
4963
4964 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4965 {
4966 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4967 return true;
4968
4969 /* The number of lines are ignored for the level 0 watermark. */
4970 return level > 0;
4971 }
4972
4973 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4974 int level,
4975 const struct skl_wm_params *wp,
4976 const struct skl_wm_level *result_prev,
4977 struct skl_wm_level *result /* out */)
4978 {
4979 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4980 u32 latency = dev_priv->wm.skl_latency[level];
4981 uint_fixed_16_16_t method1, method2;
4982 uint_fixed_16_16_t selected_result;
4983 u32 res_blocks, res_lines, min_ddb_alloc = 0;
4984
4985 if (latency == 0) {
4986 /* reject it */
4987 result->min_ddb_alloc = U16_MAX;
4988 return;
4989 }
4990
4991 /*
4992 * WaIncreaseLatencyIPCEnabled: kbl,cfl
4993 * Display WA #1141: kbl,cfl
4994 */
4995 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
4996 dev_priv->ipc_enabled)
4997 latency += 4;
4998
4999 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5000 latency += 15;
5001
5002 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5003 wp->cpp, latency, wp->dbuf_block_size);
5004 method2 = skl_wm_method2(wp->plane_pixel_rate,
5005 crtc_state->hw.adjusted_mode.crtc_htotal,
5006 latency,
5007 wp->plane_blocks_per_line);
5008
5009 if (wp->y_tiled) {
5010 selected_result = max_fixed16(method2, wp->y_tile_minimum);
5011 } else {
5012 if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5013 wp->dbuf_block_size < 1) &&
5014 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5015 selected_result = method2;
5016 } else if (latency >= wp->linetime_us) {
5017 if (IS_GEN(dev_priv, 9) &&
5018 !IS_GEMINILAKE(dev_priv))
5019 selected_result = min_fixed16(method1, method2);
5020 else
5021 selected_result = method2;
5022 } else {
5023 selected_result = method1;
5024 }
5025 }
5026
5027 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5028 res_lines = div_round_up_fixed16(selected_result,
5029 wp->plane_blocks_per_line);
5030
5031 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
5032 /* Display WA #1125: skl,bxt,kbl */
5033 if (level == 0 && wp->rc_surface)
5034 res_blocks +=
5035 fixed16_to_u32_round_up(wp->y_tile_minimum);
5036
5037 /* Display WA #1126: skl,bxt,kbl */
5038 if (level >= 1 && level <= 7) {
5039 if (wp->y_tiled) {
5040 res_blocks +=
5041 fixed16_to_u32_round_up(wp->y_tile_minimum);
5042 res_lines += wp->y_min_scanlines;
5043 } else {
5044 res_blocks++;
5045 }
5046
5047 /*
5048 * Make sure result blocks for higher latency levels are
5049 * atleast as high as level below the current level.
5050 * Assumption in DDB algorithm optimization for special
5051 * cases. Also covers Display WA #1125 for RC.
5052 */
5053 if (result_prev->plane_res_b > res_blocks)
5054 res_blocks = result_prev->plane_res_b;
5055 }
5056 }
5057
5058 if (INTEL_GEN(dev_priv) >= 11) {
5059 if (wp->y_tiled) {
5060 int extra_lines;
5061
5062 if (res_lines % wp->y_min_scanlines == 0)
5063 extra_lines = wp->y_min_scanlines;
5064 else
5065 extra_lines = wp->y_min_scanlines * 2 -
5066 res_lines % wp->y_min_scanlines;
5067
5068 min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
5069 wp->plane_blocks_per_line);
5070 } else {
5071 min_ddb_alloc = res_blocks +
5072 DIV_ROUND_UP(res_blocks, 10);
5073 }
5074 }
5075
5076 if (!skl_wm_has_lines(dev_priv, level))
5077 res_lines = 0;
5078
5079 if (res_lines > 31) {
5080 /* reject it */
5081 result->min_ddb_alloc = U16_MAX;
5082 return;
5083 }
5084
5085 /*
5086 * If res_lines is valid, assume we can use this watermark level
5087 * for now. We'll come back and disable it after we calculate the
5088 * DDB allocation if it turns out we don't actually have enough
5089 * blocks to satisfy it.
5090 */
5091 result->plane_res_b = res_blocks;
5092 result->plane_res_l = res_lines;
5093 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5094 result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5095 result->plane_en = true;
5096 }
5097
5098 static void
5099 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5100 const struct skl_wm_params *wm_params,
5101 struct skl_wm_level *levels)
5102 {
5103 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5104 int level, max_level = ilk_wm_max_level(dev_priv);
5105 struct skl_wm_level *result_prev = &levels[0];
5106
5107 for (level = 0; level <= max_level; level++) {
5108 struct skl_wm_level *result = &levels[level];
5109
5110 skl_compute_plane_wm(crtc_state, level, wm_params,
5111 result_prev, result);
5112
5113 result_prev = result;
5114 }
5115 }
5116
5117 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5118 const struct skl_wm_params *wp,
5119 struct skl_plane_wm *wm)
5120 {
5121 struct drm_device *dev = crtc_state->uapi.crtc->dev;
5122 const struct drm_i915_private *dev_priv = to_i915(dev);
5123 u16 trans_min, trans_amount, trans_y_tile_min;
5124 u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5125
5126 /* Transition WM don't make any sense if ipc is disabled */
5127 if (!dev_priv->ipc_enabled)
5128 return;
5129
5130 /*
5131 * WaDisableTWM:skl,kbl,cfl,bxt
5132 * Transition WM are not recommended by HW team for GEN9
5133 */
5134 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
5135 return;
5136
5137 if (INTEL_GEN(dev_priv) >= 11)
5138 trans_min = 4;
5139 else
5140 trans_min = 14;
5141
5142 /* Display WA #1140: glk,cnl */
5143 if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
5144 trans_amount = 0;
5145 else
5146 trans_amount = 10; /* This is configurable amount */
5147
5148 trans_offset_b = trans_min + trans_amount;
5149
5150 /*
5151 * The spec asks for Selected Result Blocks for wm0 (the real value),
5152 * not Result Blocks (the integer value). Pay attention to the capital
5153 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
5154 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5155 * and since we later will have to get the ceiling of the sum in the
5156 * transition watermarks calculation, we can just pretend Selected
5157 * Result Blocks is Result Blocks minus 1 and it should work for the
5158 * current platforms.
5159 */
5160 wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5161
5162 if (wp->y_tiled) {
5163 trans_y_tile_min =
5164 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5165 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5166 trans_offset_b;
5167 } else {
5168 res_blocks = wm0_sel_res_b + trans_offset_b;
5169
5170 /* WA BUG:1938466 add one block for non y-tile planes */
5171 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
5172 res_blocks += 1;
5173 }
5174
5175 /*
5176 * Just assume we can enable the transition watermark. After
5177 * computing the DDB we'll come back and disable it if that
5178 * assumption turns out to be false.
5179 */
5180 wm->trans_wm.plane_res_b = res_blocks + 1;
5181 wm->trans_wm.plane_en = true;
5182 }
5183
5184 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5185 const struct intel_plane_state *plane_state,
5186 enum plane_id plane_id, int color_plane)
5187 {
5188 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5189 struct skl_wm_params wm_params;
5190 int ret;
5191
5192 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5193 &wm_params, color_plane);
5194 if (ret)
5195 return ret;
5196
5197 skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5198 skl_compute_transition_wm(crtc_state, &wm_params, wm);
5199
5200 return 0;
5201 }
5202
5203 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5204 const struct intel_plane_state *plane_state,
5205 enum plane_id plane_id)
5206 {
5207 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5208 struct skl_wm_params wm_params;
5209 int ret;
5210
5211 wm->is_planar = true;
5212
5213 /* uv plane watermarks must also be validated for NV12/Planar */
5214 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5215 &wm_params, 1);
5216 if (ret)
5217 return ret;
5218
5219 skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5220
5221 return 0;
5222 }
5223
5224 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5225 const struct intel_plane_state *plane_state)
5226 {
5227 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5228 const struct drm_framebuffer *fb = plane_state->hw.fb;
5229 enum plane_id plane_id = plane->id;
5230 int ret;
5231
5232 if (!intel_wm_plane_visible(crtc_state, plane_state))
5233 return 0;
5234
5235 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5236 plane_id, 0);
5237 if (ret)
5238 return ret;
5239
5240 if (fb->format->is_yuv && fb->format->num_planes > 1) {
5241 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5242 plane_id);
5243 if (ret)
5244 return ret;
5245 }
5246
5247 return 0;
5248 }
5249
5250 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5251 const struct intel_plane_state *plane_state)
5252 {
5253 enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5254 int ret;
5255
5256 /* Watermarks calculated in master */
5257 if (plane_state->planar_slave)
5258 return 0;
5259
5260 if (plane_state->planar_linked_plane) {
5261 const struct drm_framebuffer *fb = plane_state->hw.fb;
5262 enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5263
5264 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5265 WARN_ON(!fb->format->is_yuv ||
5266 fb->format->num_planes == 1);
5267
5268 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5269 y_plane_id, 0);
5270 if (ret)
5271 return ret;
5272
5273 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5274 plane_id, 1);
5275 if (ret)
5276 return ret;
5277 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5278 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5279 plane_id, 0);
5280 if (ret)
5281 return ret;
5282 }
5283
5284 return 0;
5285 }
5286
5287 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5288 {
5289 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5290 struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5291 struct intel_plane *plane;
5292 const struct intel_plane_state *plane_state;
5293 int ret;
5294
5295 /*
5296 * We'll only calculate watermarks for planes that are actually
5297 * enabled, so make sure all other planes are set as disabled.
5298 */
5299 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5300
5301 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
5302 crtc_state) {
5303
5304 if (INTEL_GEN(dev_priv) >= 11)
5305 ret = icl_build_plane_wm(crtc_state, plane_state);
5306 else
5307 ret = skl_build_plane_wm(crtc_state, plane_state);
5308 if (ret)
5309 return ret;
5310 }
5311
5312 return 0;
5313 }
5314
5315 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5316 i915_reg_t reg,
5317 const struct skl_ddb_entry *entry)
5318 {
5319 if (entry->end)
5320 intel_de_write_fw(dev_priv, reg,
5321 (entry->end - 1) << 16 | entry->start);
5322 else
5323 intel_de_write_fw(dev_priv, reg, 0);
5324 }
5325
5326 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5327 i915_reg_t reg,
5328 const struct skl_wm_level *level)
5329 {
5330 u32 val = 0;
5331
5332 if (level->plane_en)
5333 val |= PLANE_WM_EN;
5334 if (level->ignore_lines)
5335 val |= PLANE_WM_IGNORE_LINES;
5336 val |= level->plane_res_b;
5337 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5338
5339 intel_de_write_fw(dev_priv, reg, val);
5340 }
5341
5342 void skl_write_plane_wm(struct intel_plane *plane,
5343 const struct intel_crtc_state *crtc_state)
5344 {
5345 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5346 int level, max_level = ilk_wm_max_level(dev_priv);
5347 enum plane_id plane_id = plane->id;
5348 enum pipe pipe = plane->pipe;
5349 const struct skl_plane_wm *wm =
5350 &crtc_state->wm.skl.optimal.planes[plane_id];
5351 const struct skl_ddb_entry *ddb_y =
5352 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5353 const struct skl_ddb_entry *ddb_uv =
5354 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5355
5356 for (level = 0; level <= max_level; level++) {
5357 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5358 &wm->wm[level]);
5359 }
5360 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5361 &wm->trans_wm);
5362
5363 if (INTEL_GEN(dev_priv) >= 11) {
5364 skl_ddb_entry_write(dev_priv,
5365 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5366 return;
5367 }
5368
5369 if (wm->is_planar)
5370 swap(ddb_y, ddb_uv);
5371
5372 skl_ddb_entry_write(dev_priv,
5373 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5374 skl_ddb_entry_write(dev_priv,
5375 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5376 }
5377
5378 void skl_write_cursor_wm(struct intel_plane *plane,
5379 const struct intel_crtc_state *crtc_state)
5380 {
5381 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5382 int level, max_level = ilk_wm_max_level(dev_priv);
5383 enum plane_id plane_id = plane->id;
5384 enum pipe pipe = plane->pipe;
5385 const struct skl_plane_wm *wm =
5386 &crtc_state->wm.skl.optimal.planes[plane_id];
5387 const struct skl_ddb_entry *ddb =
5388 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5389
5390 for (level = 0; level <= max_level; level++) {
5391 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5392 &wm->wm[level]);
5393 }
5394 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5395
5396 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5397 }
5398
5399 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5400 const struct skl_wm_level *l2)
5401 {
5402 return l1->plane_en == l2->plane_en &&
5403 l1->ignore_lines == l2->ignore_lines &&
5404 l1->plane_res_l == l2->plane_res_l &&
5405 l1->plane_res_b == l2->plane_res_b;
5406 }
5407
5408 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5409 const struct skl_plane_wm *wm1,
5410 const struct skl_plane_wm *wm2)
5411 {
5412 int level, max_level = ilk_wm_max_level(dev_priv);
5413
5414 for (level = 0; level <= max_level; level++) {
5415 /*
5416 * We don't check uv_wm as the hardware doesn't actually
5417 * use it. It only gets used for calculating the required
5418 * ddb allocation.
5419 */
5420 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5421 return false;
5422 }
5423
5424 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5425 }
5426
5427 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5428 const struct skl_ddb_entry *b)
5429 {
5430 return a->start < b->end && b->start < a->end;
5431 }
5432
5433 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5434 const struct skl_ddb_entry *entries,
5435 int num_entries, int ignore_idx)
5436 {
5437 int i;
5438
5439 for (i = 0; i < num_entries; i++) {
5440 if (i != ignore_idx &&
5441 skl_ddb_entries_overlap(ddb, &entries[i]))
5442 return true;
5443 }
5444
5445 return false;
5446 }
5447
5448 static int
5449 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5450 struct intel_crtc_state *new_crtc_state)
5451 {
5452 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5453 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5454 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5455 struct intel_plane *plane;
5456
5457 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5458 struct intel_plane_state *plane_state;
5459 enum plane_id plane_id = plane->id;
5460
5461 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5462 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5463 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5464 &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5465 continue;
5466
5467 plane_state = intel_atomic_get_plane_state(state, plane);
5468 if (IS_ERR(plane_state))
5469 return PTR_ERR(plane_state);
5470
5471 new_crtc_state->update_planes |= BIT(plane_id);
5472 }
5473
5474 return 0;
5475 }
5476
5477 static int
5478 skl_compute_ddb(struct intel_atomic_state *state)
5479 {
5480 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5481 struct intel_crtc_state *old_crtc_state;
5482 struct intel_crtc_state *new_crtc_state;
5483 struct intel_crtc *crtc;
5484 int ret, i;
5485
5486 state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5487
5488 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5489 new_crtc_state, i) {
5490 ret = skl_allocate_pipe_ddb(new_crtc_state);
5491 if (ret)
5492 return ret;
5493
5494 ret = skl_ddb_add_affected_planes(old_crtc_state,
5495 new_crtc_state);
5496 if (ret)
5497 return ret;
5498 }
5499
5500 return 0;
5501 }
5502
5503 static char enast(bool enable)
5504 {
5505 return enable ? '*' : ' ';
5506 }
5507
5508 static void
5509 skl_print_wm_changes(struct intel_atomic_state *state)
5510 {
5511 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5512 const struct intel_crtc_state *old_crtc_state;
5513 const struct intel_crtc_state *new_crtc_state;
5514 struct intel_plane *plane;
5515 struct intel_crtc *crtc;
5516 int i;
5517
5518 if (!drm_debug_enabled(DRM_UT_KMS))
5519 return;
5520
5521 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5522 new_crtc_state, i) {
5523 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5524
5525 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5526 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5527
5528 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5529 enum plane_id plane_id = plane->id;
5530 const struct skl_ddb_entry *old, *new;
5531
5532 old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5533 new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5534
5535 if (skl_ddb_entry_equal(old, new))
5536 continue;
5537
5538 drm_dbg_kms(&dev_priv->drm,
5539 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5540 plane->base.base.id, plane->base.name,
5541 old->start, old->end, new->start, new->end,
5542 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5543 }
5544
5545 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5546 enum plane_id plane_id = plane->id;
5547 const struct skl_plane_wm *old_wm, *new_wm;
5548
5549 old_wm = &old_pipe_wm->planes[plane_id];
5550 new_wm = &new_pipe_wm->planes[plane_id];
5551
5552 if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5553 continue;
5554
5555 drm_dbg_kms(&dev_priv->drm,
5556 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5557 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5558 plane->base.base.id, plane->base.name,
5559 enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5560 enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5561 enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5562 enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5563 enast(old_wm->trans_wm.plane_en),
5564 enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5565 enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5566 enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5567 enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5568 enast(new_wm->trans_wm.plane_en));
5569
5570 drm_dbg_kms(&dev_priv->drm,
5571 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5572 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5573 plane->base.base.id, plane->base.name,
5574 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5575 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5576 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5577 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5578 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5579 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5580 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5581 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5582 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5583
5584 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5585 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5586 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5587 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5588 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5589 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5590 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5591 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5592 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5593
5594 drm_dbg_kms(&dev_priv->drm,
5595 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5596 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5597 plane->base.base.id, plane->base.name,
5598 old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5599 old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5600 old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5601 old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5602 old_wm->trans_wm.plane_res_b,
5603 new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5604 new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5605 new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5606 new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5607 new_wm->trans_wm.plane_res_b);
5608
5609 drm_dbg_kms(&dev_priv->drm,
5610 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5611 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5612 plane->base.base.id, plane->base.name,
5613 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5614 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5615 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5616 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5617 old_wm->trans_wm.min_ddb_alloc,
5618 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5619 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5620 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5621 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5622 new_wm->trans_wm.min_ddb_alloc);
5623 }
5624 }
5625 }
5626
5627 static int intel_add_all_pipes(struct intel_atomic_state *state)
5628 {
5629 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5630 struct intel_crtc *crtc;
5631
5632 for_each_intel_crtc(&dev_priv->drm, crtc) {
5633 struct intel_crtc_state *crtc_state;
5634
5635 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5636 if (IS_ERR(crtc_state))
5637 return PTR_ERR(crtc_state);
5638 }
5639
5640 return 0;
5641 }
5642
5643 static int
5644 skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5645 {
5646 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5647 int ret;
5648
5649 /*
5650 * If this is our first atomic update following hardware readout,
5651 * we can't trust the DDB that the BIOS programmed for us. Let's
5652 * pretend that all pipes switched active status so that we'll
5653 * ensure a full DDB recompute.
5654 */
5655 if (dev_priv->wm.distrust_bios_wm) {
5656 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5657 state->base.acquire_ctx);
5658 if (ret)
5659 return ret;
5660
5661 state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5662
5663 /*
5664 * We usually only initialize state->active_pipes if we
5665 * we're doing a modeset; make sure this field is always
5666 * initialized during the sanitization process that happens
5667 * on the first commit too.
5668 */
5669 if (!state->modeset)
5670 state->active_pipes = dev_priv->active_pipes;
5671 }
5672
5673 /*
5674 * If the modeset changes which CRTC's are active, we need to
5675 * recompute the DDB allocation for *all* active pipes, even
5676 * those that weren't otherwise being modified in any way by this
5677 * atomic commit. Due to the shrinking of the per-pipe allocations
5678 * when new active CRTC's are added, it's possible for a pipe that
5679 * we were already using and aren't changing at all here to suddenly
5680 * become invalid if its DDB needs exceeds its new allocation.
5681 *
5682 * Note that if we wind up doing a full DDB recompute, we can't let
5683 * any other display updates race with this transaction, so we need
5684 * to grab the lock on *all* CRTC's.
5685 */
5686 if (state->active_pipe_changes || state->modeset) {
5687 ret = intel_add_all_pipes(state);
5688 if (ret)
5689 return ret;
5690 }
5691
5692 return 0;
5693 }
5694
5695 /*
5696 * To make sure the cursor watermark registers are always consistent
5697 * with our computed state the following scenario needs special
5698 * treatment:
5699 *
5700 * 1. enable cursor
5701 * 2. move cursor entirely offscreen
5702 * 3. disable cursor
5703 *
5704 * Step 2. does call .disable_plane() but does not zero the watermarks
5705 * (since we consider an offscreen cursor still active for the purposes
5706 * of watermarks). Step 3. would not normally call .disable_plane()
5707 * because the actual plane visibility isn't changing, and we don't
5708 * deallocate the cursor ddb until the pipe gets disabled. So we must
5709 * force step 3. to call .disable_plane() to update the watermark
5710 * registers properly.
5711 *
5712 * Other planes do not suffer from this issues as their watermarks are
5713 * calculated based on the actual plane visibility. The only time this
5714 * can trigger for the other planes is during the initial readout as the
5715 * default value of the watermarks registers is not zero.
5716 */
5717 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5718 struct intel_crtc *crtc)
5719 {
5720 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5721 const struct intel_crtc_state *old_crtc_state =
5722 intel_atomic_get_old_crtc_state(state, crtc);
5723 struct intel_crtc_state *new_crtc_state =
5724 intel_atomic_get_new_crtc_state(state, crtc);
5725 struct intel_plane *plane;
5726
5727 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5728 struct intel_plane_state *plane_state;
5729 enum plane_id plane_id = plane->id;
5730
5731 /*
5732 * Force a full wm update for every plane on modeset.
5733 * Required because the reset value of the wm registers
5734 * is non-zero, whereas we want all disabled planes to
5735 * have zero watermarks. So if we turn off the relevant
5736 * power well the hardware state will go out of sync
5737 * with the software state.
5738 */
5739 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5740 skl_plane_wm_equals(dev_priv,
5741 &old_crtc_state->wm.skl.optimal.planes[plane_id],
5742 &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5743 continue;
5744
5745 plane_state = intel_atomic_get_plane_state(state, plane);
5746 if (IS_ERR(plane_state))
5747 return PTR_ERR(plane_state);
5748
5749 new_crtc_state->update_planes |= BIT(plane_id);
5750 }
5751
5752 return 0;
5753 }
5754
5755 static int
5756 skl_compute_wm(struct intel_atomic_state *state)
5757 {
5758 struct intel_crtc *crtc;
5759 struct intel_crtc_state *new_crtc_state;
5760 struct intel_crtc_state *old_crtc_state;
5761 int ret, i;
5762
5763 ret = skl_ddb_add_affected_pipes(state);
5764 if (ret)
5765 return ret;
5766
5767 /*
5768 * Calculate WM's for all pipes that are part of this transaction.
5769 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5770 * weren't otherwise being modified if pipe allocations had to change.
5771 */
5772 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5773 new_crtc_state, i) {
5774 ret = skl_build_pipe_wm(new_crtc_state);
5775 if (ret)
5776 return ret;
5777 }
5778
5779 ret = skl_compute_ddb(state);
5780 if (ret)
5781 return ret;
5782
5783 /*
5784 * skl_compute_ddb() will have adjusted the final watermarks
5785 * based on how much ddb is available. Now we can actually
5786 * check if the final watermarks changed.
5787 */
5788 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5789 new_crtc_state, i) {
5790 ret = skl_wm_add_affected_planes(state, crtc);
5791 if (ret)
5792 return ret;
5793 }
5794
5795 skl_print_wm_changes(state);
5796
5797 return 0;
5798 }
5799
5800 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5801 struct intel_wm_config *config)
5802 {
5803 struct intel_crtc *crtc;
5804
5805 /* Compute the currently _active_ config */
5806 for_each_intel_crtc(&dev_priv->drm, crtc) {
5807 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5808
5809 if (!wm->pipe_enabled)
5810 continue;
5811
5812 config->sprites_enabled |= wm->sprites_enabled;
5813 config->sprites_scaled |= wm->sprites_scaled;
5814 config->num_pipes_active++;
5815 }
5816 }
5817
5818 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5819 {
5820 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5821 struct ilk_wm_maximums max;
5822 struct intel_wm_config config = {};
5823 struct ilk_wm_values results = {};
5824 enum intel_ddb_partitioning partitioning;
5825
5826 ilk_compute_wm_config(dev_priv, &config);
5827
5828 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5829 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5830
5831 /* 5/6 split only in single pipe config on IVB+ */
5832 if (INTEL_GEN(dev_priv) >= 7 &&
5833 config.num_pipes_active == 1 && config.sprites_enabled) {
5834 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5835 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5836
5837 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5838 } else {
5839 best_lp_wm = &lp_wm_1_2;
5840 }
5841
5842 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5843 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5844
5845 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5846
5847 ilk_write_wm_values(dev_priv, &results);
5848 }
5849
5850 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5851 struct intel_crtc *crtc)
5852 {
5853 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5854 const struct intel_crtc_state *crtc_state =
5855 intel_atomic_get_new_crtc_state(state, crtc);
5856
5857 mutex_lock(&dev_priv->wm.wm_mutex);
5858 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5859 ilk_program_watermarks(dev_priv);
5860 mutex_unlock(&dev_priv->wm.wm_mutex);
5861 }
5862
5863 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5864 struct intel_crtc *crtc)
5865 {
5866 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5867 const struct intel_crtc_state *crtc_state =
5868 intel_atomic_get_new_crtc_state(state, crtc);
5869
5870 if (!crtc_state->wm.need_postvbl_update)
5871 return;
5872
5873 mutex_lock(&dev_priv->wm.wm_mutex);
5874 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
5875 ilk_program_watermarks(dev_priv);
5876 mutex_unlock(&dev_priv->wm.wm_mutex);
5877 }
5878
5879 static inline void skl_wm_level_from_reg_val(u32 val,
5880 struct skl_wm_level *level)
5881 {
5882 level->plane_en = val & PLANE_WM_EN;
5883 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5884 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5885 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5886 PLANE_WM_LINES_MASK;
5887 }
5888
5889 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5890 struct skl_pipe_wm *out)
5891 {
5892 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5893 enum pipe pipe = crtc->pipe;
5894 int level, max_level;
5895 enum plane_id plane_id;
5896 u32 val;
5897
5898 max_level = ilk_wm_max_level(dev_priv);
5899
5900 for_each_plane_id_on_crtc(crtc, plane_id) {
5901 struct skl_plane_wm *wm = &out->planes[plane_id];
5902
5903 for (level = 0; level <= max_level; level++) {
5904 if (plane_id != PLANE_CURSOR)
5905 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5906 else
5907 val = I915_READ(CUR_WM(pipe, level));
5908
5909 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5910 }
5911
5912 if (plane_id != PLANE_CURSOR)
5913 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5914 else
5915 val = I915_READ(CUR_WM_TRANS(pipe));
5916
5917 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5918 }
5919
5920 if (!crtc->active)
5921 return;
5922 }
5923
5924 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5925 {
5926 struct intel_crtc *crtc;
5927 struct intel_crtc_state *crtc_state;
5928
5929 skl_ddb_get_hw_state(dev_priv);
5930 for_each_intel_crtc(&dev_priv->drm, crtc) {
5931 crtc_state = to_intel_crtc_state(crtc->base.state);
5932
5933 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5934 }
5935
5936 if (dev_priv->active_pipes) {
5937 /* Fully recompute DDB on first atomic commit */
5938 dev_priv->wm.distrust_bios_wm = true;
5939 }
5940 }
5941
5942 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5943 {
5944 struct drm_device *dev = crtc->base.dev;
5945 struct drm_i915_private *dev_priv = to_i915(dev);
5946 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5947 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
5948 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5949 enum pipe pipe = crtc->pipe;
5950 static const i915_reg_t wm0_pipe_reg[] = {
5951 [PIPE_A] = WM0_PIPEA_ILK,
5952 [PIPE_B] = WM0_PIPEB_ILK,
5953 [PIPE_C] = WM0_PIPEC_IVB,
5954 };
5955
5956 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5957
5958 memset(active, 0, sizeof(*active));
5959
5960 active->pipe_enabled = crtc->active;
5961
5962 if (active->pipe_enabled) {
5963 u32 tmp = hw->wm_pipe[pipe];
5964
5965 /*
5966 * For active pipes LP0 watermark is marked as
5967 * enabled, and LP1+ watermaks as disabled since
5968 * we can't really reverse compute them in case
5969 * multiple pipes are active.
5970 */
5971 active->wm[0].enable = true;
5972 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5973 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5974 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5975 } else {
5976 int level, max_level = ilk_wm_max_level(dev_priv);
5977
5978 /*
5979 * For inactive pipes, all watermark levels
5980 * should be marked as enabled but zeroed,
5981 * which is what we'd compute them to.
5982 */
5983 for (level = 0; level <= max_level; level++)
5984 active->wm[level].enable = true;
5985 }
5986
5987 crtc->wm.active.ilk = *active;
5988 }
5989
5990 #define _FW_WM(value, plane) \
5991 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5992 #define _FW_WM_VLV(value, plane) \
5993 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5994
5995 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5996 struct g4x_wm_values *wm)
5997 {
5998 u32 tmp;
5999
6000 tmp = I915_READ(DSPFW1);
6001 wm->sr.plane = _FW_WM(tmp, SR);
6002 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6003 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6004 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6005
6006 tmp = I915_READ(DSPFW2);
6007 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6008 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6009 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6010 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6011 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6012 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6013
6014 tmp = I915_READ(DSPFW3);
6015 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6016 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6017 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6018 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6019 }
6020
6021 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6022 struct vlv_wm_values *wm)
6023 {
6024 enum pipe pipe;
6025 u32 tmp;
6026
6027 for_each_pipe(dev_priv, pipe) {
6028 tmp = I915_READ(VLV_DDL(pipe));
6029
6030 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6031 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6032 wm->ddl[pipe].plane[PLANE_CURSOR] =
6033 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6034 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6035 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6036 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6037 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6038 }
6039
6040 tmp = I915_READ(DSPFW1);
6041 wm->sr.plane = _FW_WM(tmp, SR);
6042 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6043 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6044 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6045
6046 tmp = I915_READ(DSPFW2);
6047 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6048 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6049 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6050
6051 tmp = I915_READ(DSPFW3);
6052 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6053
6054 if (IS_CHERRYVIEW(dev_priv)) {
6055 tmp = I915_READ(DSPFW7_CHV);
6056 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6057 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6058
6059 tmp = I915_READ(DSPFW8_CHV);
6060 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6061 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6062
6063 tmp = I915_READ(DSPFW9_CHV);
6064 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6065 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6066
6067 tmp = I915_READ(DSPHOWM);
6068 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6069 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6070 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6071 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6072 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6073 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6074 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6075 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6076 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6077 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6078 } else {
6079 tmp = I915_READ(DSPFW7);
6080 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6081 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6082
6083 tmp = I915_READ(DSPHOWM);
6084 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6085 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6086 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6087 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6088 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6089 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6090 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6091 }
6092 }
6093
6094 #undef _FW_WM
6095 #undef _FW_WM_VLV
6096
6097 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6098 {
6099 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6100 struct intel_crtc *crtc;
6101
6102 g4x_read_wm_values(dev_priv, wm);
6103
6104 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
6105
6106 for_each_intel_crtc(&dev_priv->drm, crtc) {
6107 struct intel_crtc_state *crtc_state =
6108 to_intel_crtc_state(crtc->base.state);
6109 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6110 struct g4x_pipe_wm *raw;
6111 enum pipe pipe = crtc->pipe;
6112 enum plane_id plane_id;
6113 int level, max_level;
6114
6115 active->cxsr = wm->cxsr;
6116 active->hpll_en = wm->hpll_en;
6117 active->fbc_en = wm->fbc_en;
6118
6119 active->sr = wm->sr;
6120 active->hpll = wm->hpll;
6121
6122 for_each_plane_id_on_crtc(crtc, plane_id) {
6123 active->wm.plane[plane_id] =
6124 wm->pipe[pipe].plane[plane_id];
6125 }
6126
6127 if (wm->cxsr && wm->hpll_en)
6128 max_level = G4X_WM_LEVEL_HPLL;
6129 else if (wm->cxsr)
6130 max_level = G4X_WM_LEVEL_SR;
6131 else
6132 max_level = G4X_WM_LEVEL_NORMAL;
6133
6134 level = G4X_WM_LEVEL_NORMAL;
6135 raw = &crtc_state->wm.g4x.raw[level];
6136 for_each_plane_id_on_crtc(crtc, plane_id)
6137 raw->plane[plane_id] = active->wm.plane[plane_id];
6138
6139 if (++level > max_level)
6140 goto out;
6141
6142 raw = &crtc_state->wm.g4x.raw[level];
6143 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6144 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6145 raw->plane[PLANE_SPRITE0] = 0;
6146 raw->fbc = active->sr.fbc;
6147
6148 if (++level > max_level)
6149 goto out;
6150
6151 raw = &crtc_state->wm.g4x.raw[level];
6152 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6153 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6154 raw->plane[PLANE_SPRITE0] = 0;
6155 raw->fbc = active->hpll.fbc;
6156
6157 out:
6158 for_each_plane_id_on_crtc(crtc, plane_id)
6159 g4x_raw_plane_wm_set(crtc_state, level,
6160 plane_id, USHRT_MAX);
6161 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6162
6163 crtc_state->wm.g4x.optimal = *active;
6164 crtc_state->wm.g4x.intermediate = *active;
6165
6166 drm_dbg_kms(&dev_priv->drm,
6167 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6168 pipe_name(pipe),
6169 wm->pipe[pipe].plane[PLANE_PRIMARY],
6170 wm->pipe[pipe].plane[PLANE_CURSOR],
6171 wm->pipe[pipe].plane[PLANE_SPRITE0]);
6172 }
6173
6174 drm_dbg_kms(&dev_priv->drm,
6175 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6176 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6177 drm_dbg_kms(&dev_priv->drm,
6178 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6179 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6180 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6181 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6182 }
6183
6184 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6185 {
6186 struct intel_plane *plane;
6187 struct intel_crtc *crtc;
6188
6189 mutex_lock(&dev_priv->wm.wm_mutex);
6190
6191 for_each_intel_plane(&dev_priv->drm, plane) {
6192 struct intel_crtc *crtc =
6193 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6194 struct intel_crtc_state *crtc_state =
6195 to_intel_crtc_state(crtc->base.state);
6196 struct intel_plane_state *plane_state =
6197 to_intel_plane_state(plane->base.state);
6198 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6199 enum plane_id plane_id = plane->id;
6200 int level;
6201
6202 if (plane_state->uapi.visible)
6203 continue;
6204
6205 for (level = 0; level < 3; level++) {
6206 struct g4x_pipe_wm *raw =
6207 &crtc_state->wm.g4x.raw[level];
6208
6209 raw->plane[plane_id] = 0;
6210 wm_state->wm.plane[plane_id] = 0;
6211 }
6212
6213 if (plane_id == PLANE_PRIMARY) {
6214 for (level = 0; level < 3; level++) {
6215 struct g4x_pipe_wm *raw =
6216 &crtc_state->wm.g4x.raw[level];
6217 raw->fbc = 0;
6218 }
6219
6220 wm_state->sr.fbc = 0;
6221 wm_state->hpll.fbc = 0;
6222 wm_state->fbc_en = false;
6223 }
6224 }
6225
6226 for_each_intel_crtc(&dev_priv->drm, crtc) {
6227 struct intel_crtc_state *crtc_state =
6228 to_intel_crtc_state(crtc->base.state);
6229
6230 crtc_state->wm.g4x.intermediate =
6231 crtc_state->wm.g4x.optimal;
6232 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6233 }
6234
6235 g4x_program_watermarks(dev_priv);
6236
6237 mutex_unlock(&dev_priv->wm.wm_mutex);
6238 }
6239
6240 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6241 {
6242 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6243 struct intel_crtc *crtc;
6244 u32 val;
6245
6246 vlv_read_wm_values(dev_priv, wm);
6247
6248 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6249 wm->level = VLV_WM_LEVEL_PM2;
6250
6251 if (IS_CHERRYVIEW(dev_priv)) {
6252 vlv_punit_get(dev_priv);
6253
6254 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6255 if (val & DSP_MAXFIFO_PM5_ENABLE)
6256 wm->level = VLV_WM_LEVEL_PM5;
6257
6258 /*
6259 * If DDR DVFS is disabled in the BIOS, Punit
6260 * will never ack the request. So if that happens
6261 * assume we don't have to enable/disable DDR DVFS
6262 * dynamically. To test that just set the REQ_ACK
6263 * bit to poke the Punit, but don't change the
6264 * HIGH/LOW bits so that we don't actually change
6265 * the current state.
6266 */
6267 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6268 val |= FORCE_DDR_FREQ_REQ_ACK;
6269 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6270
6271 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6272 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6273 drm_dbg_kms(&dev_priv->drm,
6274 "Punit not acking DDR DVFS request, "
6275 "assuming DDR DVFS is disabled\n");
6276 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6277 } else {
6278 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6279 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6280 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6281 }
6282
6283 vlv_punit_put(dev_priv);
6284 }
6285
6286 for_each_intel_crtc(&dev_priv->drm, crtc) {
6287 struct intel_crtc_state *crtc_state =
6288 to_intel_crtc_state(crtc->base.state);
6289 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6290 const struct vlv_fifo_state *fifo_state =
6291 &crtc_state->wm.vlv.fifo_state;
6292 enum pipe pipe = crtc->pipe;
6293 enum plane_id plane_id;
6294 int level;
6295
6296 vlv_get_fifo_size(crtc_state);
6297
6298 active->num_levels = wm->level + 1;
6299 active->cxsr = wm->cxsr;
6300
6301 for (level = 0; level < active->num_levels; level++) {
6302 struct g4x_pipe_wm *raw =
6303 &crtc_state->wm.vlv.raw[level];
6304
6305 active->sr[level].plane = wm->sr.plane;
6306 active->sr[level].cursor = wm->sr.cursor;
6307
6308 for_each_plane_id_on_crtc(crtc, plane_id) {
6309 active->wm[level].plane[plane_id] =
6310 wm->pipe[pipe].plane[plane_id];
6311
6312 raw->plane[plane_id] =
6313 vlv_invert_wm_value(active->wm[level].plane[plane_id],
6314 fifo_state->plane[plane_id]);
6315 }
6316 }
6317
6318 for_each_plane_id_on_crtc(crtc, plane_id)
6319 vlv_raw_plane_wm_set(crtc_state, level,
6320 plane_id, USHRT_MAX);
6321 vlv_invalidate_wms(crtc, active, level);
6322
6323 crtc_state->wm.vlv.optimal = *active;
6324 crtc_state->wm.vlv.intermediate = *active;
6325
6326 drm_dbg_kms(&dev_priv->drm,
6327 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6328 pipe_name(pipe),
6329 wm->pipe[pipe].plane[PLANE_PRIMARY],
6330 wm->pipe[pipe].plane[PLANE_CURSOR],
6331 wm->pipe[pipe].plane[PLANE_SPRITE0],
6332 wm->pipe[pipe].plane[PLANE_SPRITE1]);
6333 }
6334
6335 drm_dbg_kms(&dev_priv->drm,
6336 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6337 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6338 }
6339
6340 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6341 {
6342 struct intel_plane *plane;
6343 struct intel_crtc *crtc;
6344
6345 mutex_lock(&dev_priv->wm.wm_mutex);
6346
6347 for_each_intel_plane(&dev_priv->drm, plane) {
6348 struct intel_crtc *crtc =
6349 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6350 struct intel_crtc_state *crtc_state =
6351 to_intel_crtc_state(crtc->base.state);
6352 struct intel_plane_state *plane_state =
6353 to_intel_plane_state(plane->base.state);
6354 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6355 const struct vlv_fifo_state *fifo_state =
6356 &crtc_state->wm.vlv.fifo_state;
6357 enum plane_id plane_id = plane->id;
6358 int level;
6359
6360 if (plane_state->uapi.visible)
6361 continue;
6362
6363 for (level = 0; level < wm_state->num_levels; level++) {
6364 struct g4x_pipe_wm *raw =
6365 &crtc_state->wm.vlv.raw[level];
6366
6367 raw->plane[plane_id] = 0;
6368
6369 wm_state->wm[level].plane[plane_id] =
6370 vlv_invert_wm_value(raw->plane[plane_id],
6371 fifo_state->plane[plane_id]);
6372 }
6373 }
6374
6375 for_each_intel_crtc(&dev_priv->drm, crtc) {
6376 struct intel_crtc_state *crtc_state =
6377 to_intel_crtc_state(crtc->base.state);
6378
6379 crtc_state->wm.vlv.intermediate =
6380 crtc_state->wm.vlv.optimal;
6381 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6382 }
6383
6384 vlv_program_watermarks(dev_priv);
6385
6386 mutex_unlock(&dev_priv->wm.wm_mutex);
6387 }
6388
6389 /*
6390 * FIXME should probably kill this and improve
6391 * the real watermark readout/sanitation instead
6392 */
6393 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6394 {
6395 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6396 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6397 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6398
6399 /*
6400 * Don't touch WM1S_LP_EN here.
6401 * Doing so could cause underruns.
6402 */
6403 }
6404
6405 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6406 {
6407 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6408 struct intel_crtc *crtc;
6409
6410 ilk_init_lp_watermarks(dev_priv);
6411
6412 for_each_intel_crtc(&dev_priv->drm, crtc)
6413 ilk_pipe_wm_get_hw_state(crtc);
6414
6415 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6416 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6417 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6418
6419 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6420 if (INTEL_GEN(dev_priv) >= 7) {
6421 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6422 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6423 }
6424
6425 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6426 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6427 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6428 else if (IS_IVYBRIDGE(dev_priv))
6429 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6430 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6431
6432 hw->enable_fbc_wm =
6433 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6434 }
6435
6436 /**
6437 * intel_update_watermarks - update FIFO watermark values based on current modes
6438 * @crtc: the #intel_crtc on which to compute the WM
6439 *
6440 * Calculate watermark values for the various WM regs based on current mode
6441 * and plane configuration.
6442 *
6443 * There are several cases to deal with here:
6444 * - normal (i.e. non-self-refresh)
6445 * - self-refresh (SR) mode
6446 * - lines are large relative to FIFO size (buffer can hold up to 2)
6447 * - lines are small relative to FIFO size (buffer can hold more than 2
6448 * lines), so need to account for TLB latency
6449 *
6450 * The normal calculation is:
6451 * watermark = dotclock * bytes per pixel * latency
6452 * where latency is platform & configuration dependent (we assume pessimal
6453 * values here).
6454 *
6455 * The SR calculation is:
6456 * watermark = (trunc(latency/line time)+1) * surface width *
6457 * bytes per pixel
6458 * where
6459 * line time = htotal / dotclock
6460 * surface width = hdisplay for normal plane and 64 for cursor
6461 * and latency is assumed to be high, as above.
6462 *
6463 * The final value programmed to the register should always be rounded up,
6464 * and include an extra 2 entries to account for clock crossings.
6465 *
6466 * We don't use the sprite, so we can ignore that. And on Crestline we have
6467 * to set the non-SR watermarks to 8.
6468 */
6469 void intel_update_watermarks(struct intel_crtc *crtc)
6470 {
6471 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6472
6473 if (dev_priv->display.update_wm)
6474 dev_priv->display.update_wm(crtc);
6475 }
6476
6477 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6478 {
6479 u32 val;
6480
6481 if (!HAS_IPC(dev_priv))
6482 return;
6483
6484 val = I915_READ(DISP_ARB_CTL2);
6485
6486 if (dev_priv->ipc_enabled)
6487 val |= DISP_IPC_ENABLE;
6488 else
6489 val &= ~DISP_IPC_ENABLE;
6490
6491 I915_WRITE(DISP_ARB_CTL2, val);
6492 }
6493
6494 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6495 {
6496 /* Display WA #0477 WaDisableIPC: skl */
6497 if (IS_SKYLAKE(dev_priv))
6498 return false;
6499
6500 /* Display WA #1141: SKL:all KBL:all CFL */
6501 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6502 return dev_priv->dram_info.symmetric_memory;
6503
6504 return true;
6505 }
6506
6507 void intel_init_ipc(struct drm_i915_private *dev_priv)
6508 {
6509 if (!HAS_IPC(dev_priv))
6510 return;
6511
6512 dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6513
6514 intel_enable_ipc(dev_priv);
6515 }
6516
6517 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6518 {
6519 /*
6520 * On Ibex Peak and Cougar Point, we need to disable clock
6521 * gating for the panel power sequencer or it will fail to
6522 * start up when no ports are active.
6523 */
6524 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6525 }
6526
6527 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6528 {
6529 enum pipe pipe;
6530
6531 for_each_pipe(dev_priv, pipe) {
6532 I915_WRITE(DSPCNTR(pipe),
6533 I915_READ(DSPCNTR(pipe)) |
6534 DISPPLANE_TRICKLE_FEED_DISABLE);
6535
6536 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6537 POSTING_READ(DSPSURF(pipe));
6538 }
6539 }
6540
6541 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6542 {
6543 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6544
6545 /*
6546 * Required for FBC
6547 * WaFbcDisableDpfcClockGating:ilk
6548 */
6549 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6550 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6551 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6552
6553 I915_WRITE(PCH_3DCGDIS0,
6554 MARIUNIT_CLOCK_GATE_DISABLE |
6555 SVSMUNIT_CLOCK_GATE_DISABLE);
6556 I915_WRITE(PCH_3DCGDIS1,
6557 VFMUNIT_CLOCK_GATE_DISABLE);
6558
6559 /*
6560 * According to the spec the following bits should be set in
6561 * order to enable memory self-refresh
6562 * The bit 22/21 of 0x42004
6563 * The bit 5 of 0x42020
6564 * The bit 15 of 0x45000
6565 */
6566 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6567 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6568 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6569 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6570 I915_WRITE(DISP_ARB_CTL,
6571 (I915_READ(DISP_ARB_CTL) |
6572 DISP_FBC_WM_DIS));
6573
6574 /*
6575 * Based on the document from hardware guys the following bits
6576 * should be set unconditionally in order to enable FBC.
6577 * The bit 22 of 0x42000
6578 * The bit 22 of 0x42004
6579 * The bit 7,8,9 of 0x42020.
6580 */
6581 if (IS_IRONLAKE_M(dev_priv)) {
6582 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6583 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6584 I915_READ(ILK_DISPLAY_CHICKEN1) |
6585 ILK_FBCQ_DIS);
6586 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6587 I915_READ(ILK_DISPLAY_CHICKEN2) |
6588 ILK_DPARB_GATE);
6589 }
6590
6591 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6592
6593 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6594 I915_READ(ILK_DISPLAY_CHICKEN2) |
6595 ILK_ELPIN_409_SELECT);
6596 I915_WRITE(_3D_CHICKEN2,
6597 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6598 _3D_CHICKEN2_WM_READ_PIPELINED);
6599
6600 /* WaDisableRenderCachePipelinedFlush:ilk */
6601 I915_WRITE(CACHE_MODE_0,
6602 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6603
6604 /* WaDisable_RenderCache_OperationalFlush:ilk */
6605 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6606
6607 g4x_disable_trickle_feed(dev_priv);
6608
6609 ibx_init_clock_gating(dev_priv);
6610 }
6611
6612 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6613 {
6614 enum pipe pipe;
6615 u32 val;
6616
6617 /*
6618 * On Ibex Peak and Cougar Point, we need to disable clock
6619 * gating for the panel power sequencer or it will fail to
6620 * start up when no ports are active.
6621 */
6622 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6623 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6624 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6625 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6626 DPLS_EDP_PPS_FIX_DIS);
6627 /* The below fixes the weird display corruption, a few pixels shifted
6628 * downward, on (only) LVDS of some HP laptops with IVY.
6629 */
6630 for_each_pipe(dev_priv, pipe) {
6631 val = I915_READ(TRANS_CHICKEN2(pipe));
6632 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6633 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6634 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6635 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6636 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6637 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6638 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6639 }
6640 /* WADP0ClockGatingDisable */
6641 for_each_pipe(dev_priv, pipe) {
6642 I915_WRITE(TRANS_CHICKEN1(pipe),
6643 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6644 }
6645 }
6646
6647 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6648 {
6649 u32 tmp;
6650
6651 tmp = I915_READ(MCH_SSKPD);
6652 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6653 drm_dbg_kms(&dev_priv->drm,
6654 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6655 tmp);
6656 }
6657
6658 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6659 {
6660 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6661
6662 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6663
6664 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6665 I915_READ(ILK_DISPLAY_CHICKEN2) |
6666 ILK_ELPIN_409_SELECT);
6667
6668 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6669 I915_WRITE(_3D_CHICKEN,
6670 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6671
6672 /* WaDisable_RenderCache_OperationalFlush:snb */
6673 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6674
6675 /*
6676 * BSpec recoomends 8x4 when MSAA is used,
6677 * however in practice 16x4 seems fastest.
6678 *
6679 * Note that PS/WM thread counts depend on the WIZ hashing
6680 * disable bit, which we don't touch here, but it's good
6681 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6682 */
6683 I915_WRITE(GEN6_GT_MODE,
6684 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6685
6686 I915_WRITE(CACHE_MODE_0,
6687 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6688
6689 I915_WRITE(GEN6_UCGCTL1,
6690 I915_READ(GEN6_UCGCTL1) |
6691 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6692 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6693
6694 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6695 * gating disable must be set. Failure to set it results in
6696 * flickering pixels due to Z write ordering failures after
6697 * some amount of runtime in the Mesa "fire" demo, and Unigine
6698 * Sanctuary and Tropics, and apparently anything else with
6699 * alpha test or pixel discard.
6700 *
6701 * According to the spec, bit 11 (RCCUNIT) must also be set,
6702 * but we didn't debug actual testcases to find it out.
6703 *
6704 * WaDisableRCCUnitClockGating:snb
6705 * WaDisableRCPBUnitClockGating:snb
6706 */
6707 I915_WRITE(GEN6_UCGCTL2,
6708 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6709 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6710
6711 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6712 I915_WRITE(_3D_CHICKEN3,
6713 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6714
6715 /*
6716 * Bspec says:
6717 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6718 * 3DSTATE_SF number of SF output attributes is more than 16."
6719 */
6720 I915_WRITE(_3D_CHICKEN3,
6721 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6722
6723 /*
6724 * According to the spec the following bits should be
6725 * set in order to enable memory self-refresh and fbc:
6726 * The bit21 and bit22 of 0x42000
6727 * The bit21 and bit22 of 0x42004
6728 * The bit5 and bit7 of 0x42020
6729 * The bit14 of 0x70180
6730 * The bit14 of 0x71180
6731 *
6732 * WaFbcAsynchFlipDisableFbcQueue:snb
6733 */
6734 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6735 I915_READ(ILK_DISPLAY_CHICKEN1) |
6736 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6737 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6738 I915_READ(ILK_DISPLAY_CHICKEN2) |
6739 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6740 I915_WRITE(ILK_DSPCLK_GATE_D,
6741 I915_READ(ILK_DSPCLK_GATE_D) |
6742 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6743 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6744
6745 g4x_disable_trickle_feed(dev_priv);
6746
6747 cpt_init_clock_gating(dev_priv);
6748
6749 gen6_check_mch_setup(dev_priv);
6750 }
6751
6752 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6753 {
6754 u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6755
6756 /*
6757 * WaVSThreadDispatchOverride:ivb,vlv
6758 *
6759 * This actually overrides the dispatch
6760 * mode for all thread types.
6761 */
6762 reg &= ~GEN7_FF_SCHED_MASK;
6763 reg |= GEN7_FF_TS_SCHED_HW;
6764 reg |= GEN7_FF_VS_SCHED_HW;
6765 reg |= GEN7_FF_DS_SCHED_HW;
6766
6767 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6768 }
6769
6770 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6771 {
6772 /*
6773 * TODO: this bit should only be enabled when really needed, then
6774 * disabled when not needed anymore in order to save power.
6775 */
6776 if (HAS_PCH_LPT_LP(dev_priv))
6777 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6778 I915_READ(SOUTH_DSPCLK_GATE_D) |
6779 PCH_LP_PARTITION_LEVEL_DISABLE);
6780
6781 /* WADPOClockGatingDisable:hsw */
6782 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6783 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6784 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6785 }
6786
6787 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6788 {
6789 if (HAS_PCH_LPT_LP(dev_priv)) {
6790 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6791
6792 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6793 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6794 }
6795 }
6796
6797 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6798 int general_prio_credits,
6799 int high_prio_credits)
6800 {
6801 u32 misccpctl;
6802 u32 val;
6803
6804 /* WaTempDisableDOPClkGating:bdw */
6805 misccpctl = I915_READ(GEN7_MISCCPCTL);
6806 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6807
6808 val = I915_READ(GEN8_L3SQCREG1);
6809 val &= ~L3_PRIO_CREDITS_MASK;
6810 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
6811 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
6812 I915_WRITE(GEN8_L3SQCREG1, val);
6813
6814 /*
6815 * Wait at least 100 clocks before re-enabling clock gating.
6816 * See the definition of L3SQCREG1 in BSpec.
6817 */
6818 POSTING_READ(GEN8_L3SQCREG1);
6819 udelay(1);
6820 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6821 }
6822
6823 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
6824 {
6825 /* This is not an Wa. Enable to reduce Sampler power */
6826 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
6827 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6828
6829 /*Wa_14010594013:icl, ehl */
6830 intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
6831 0, CNL_DELAY_PMRSP);
6832 }
6833
6834 static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
6835 {
6836 u32 vd_pg_enable = 0;
6837 unsigned int i;
6838
6839 /* This is not a WA. Enable VD HCP & MFX_ENC powergate */
6840 for (i = 0; i < I915_MAX_VCS; i++) {
6841 if (HAS_ENGINE(dev_priv, _VCS(i)))
6842 vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
6843 VDN_MFX_POWERGATE_ENABLE(i);
6844 }
6845
6846 I915_WRITE(POWERGATE_ENABLE,
6847 I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6848
6849 /* Wa_1409825376:tgl (pre-prod)*/
6850 if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
6851 I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
6852 TGL_VRH_GATING_DIS);
6853 }
6854
6855 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
6856 {
6857 if (!HAS_PCH_CNP(dev_priv))
6858 return;
6859
6860 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6861 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
6862 CNP_PWM_CGE_GATING_DISABLE);
6863 }
6864
6865 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6866 {
6867 u32 val;
6868 cnp_init_clock_gating(dev_priv);
6869
6870 /* This is not an Wa. Enable for better image quality */
6871 I915_WRITE(_3D_CHICKEN3,
6872 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
6873
6874 /* WaEnableChickenDCPR:cnl */
6875 I915_WRITE(GEN8_CHICKEN_DCPR_1,
6876 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
6877
6878 /* WaFbcWakeMemOn:cnl */
6879 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
6880 DISP_FBC_MEMORY_WAKE);
6881
6882 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
6883 /* ReadHitWriteOnlyDisable:cnl */
6884 val |= RCCUNIT_CLKGATE_DIS;
6885 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
6886 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6887 val |= SARBUNIT_CLKGATE_DIS;
6888 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6889
6890 /* Wa_2201832410:cnl */
6891 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
6892 val |= GWUNIT_CLKGATE_DIS;
6893 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
6894
6895 /* WaDisableVFclkgate:cnl */
6896 /* WaVFUnitClockGatingDisable:cnl */
6897 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
6898 val |= VFUNIT_CLKGATE_DIS;
6899 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6900 }
6901
6902 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
6903 {
6904 cnp_init_clock_gating(dev_priv);
6905 gen9_init_clock_gating(dev_priv);
6906
6907 /* WaFbcNukeOnHostModify:cfl */
6908 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6909 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6910 }
6911
6912 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6913 {
6914 gen9_init_clock_gating(dev_priv);
6915
6916 /* WaDisableSDEUnitClockGating:kbl */
6917 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6918 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6919 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6920
6921 /* WaDisableGamClockGating:kbl */
6922 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6923 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6924 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6925
6926 /* WaFbcNukeOnHostModify:kbl */
6927 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6928 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6929 }
6930
6931 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6932 {
6933 gen9_init_clock_gating(dev_priv);
6934
6935 /* WAC6entrylatency:skl */
6936 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
6937 FBC_LLC_FULLY_OPEN);
6938
6939 /* WaFbcNukeOnHostModify:skl */
6940 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6941 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6942 }
6943
6944 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
6945 {
6946 enum pipe pipe;
6947
6948 /* WaSwitchSolVfFArbitrationPriority:bdw */
6949 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6950
6951 /* WaPsrDPAMaskVBlankInSRD:bdw */
6952 I915_WRITE(CHICKEN_PAR1_1,
6953 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6954
6955 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6956 for_each_pipe(dev_priv, pipe) {
6957 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6958 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6959 BDW_DPRS_MASK_VBLANK_SRD);
6960 }
6961
6962 /* WaVSRefCountFullforceMissDisable:bdw */
6963 /* WaDSRefCountFullforceMissDisable:bdw */
6964 I915_WRITE(GEN7_FF_THREAD_MODE,
6965 I915_READ(GEN7_FF_THREAD_MODE) &
6966 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6967
6968 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6969 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6970
6971 /* WaDisableSDEUnitClockGating:bdw */
6972 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6973 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6974
6975 /* WaProgramL3SqcReg1Default:bdw */
6976 gen8_set_l3sqc_credits(dev_priv, 30, 2);
6977
6978 /* WaKVMNotificationOnConfigChange:bdw */
6979 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
6980 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
6981
6982 lpt_init_clock_gating(dev_priv);
6983
6984 /* WaDisableDopClockGating:bdw
6985 *
6986 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
6987 * clock gating.
6988 */
6989 I915_WRITE(GEN6_UCGCTL1,
6990 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6991 }
6992
6993 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
6994 {
6995 /* L3 caching of data atomics doesn't work -- disable it. */
6996 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6997 I915_WRITE(HSW_ROW_CHICKEN3,
6998 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6999
7000 /* This is required by WaCatErrorRejectionIssue:hsw */
7001 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7002 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7003 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7004
7005 /* WaVSRefCountFullforceMissDisable:hsw */
7006 I915_WRITE(GEN7_FF_THREAD_MODE,
7007 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7008
7009 /* WaDisable_RenderCache_OperationalFlush:hsw */
7010 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7011
7012 /* enable HiZ Raw Stall Optimization */
7013 I915_WRITE(CACHE_MODE_0_GEN7,
7014 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7015
7016 /* WaDisable4x2SubspanOptimization:hsw */
7017 I915_WRITE(CACHE_MODE_1,
7018 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7019
7020 /*
7021 * BSpec recommends 8x4 when MSAA is used,
7022 * however in practice 16x4 seems fastest.
7023 *
7024 * Note that PS/WM thread counts depend on the WIZ hashing
7025 * disable bit, which we don't touch here, but it's good
7026 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7027 */
7028 I915_WRITE(GEN7_GT_MODE,
7029 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7030
7031 /* WaSampleCChickenBitEnable:hsw */
7032 I915_WRITE(HALF_SLICE_CHICKEN3,
7033 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7034
7035 /* WaSwitchSolVfFArbitrationPriority:hsw */
7036 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7037
7038 lpt_init_clock_gating(dev_priv);
7039 }
7040
7041 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7042 {
7043 u32 snpcr;
7044
7045 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7046
7047 /* WaDisableEarlyCull:ivb */
7048 I915_WRITE(_3D_CHICKEN3,
7049 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7050
7051 /* WaDisableBackToBackFlipFix:ivb */
7052 I915_WRITE(IVB_CHICKEN3,
7053 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7054 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7055
7056 /* WaDisablePSDDualDispatchEnable:ivb */
7057 if (IS_IVB_GT1(dev_priv))
7058 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7059 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7060
7061 /* WaDisable_RenderCache_OperationalFlush:ivb */
7062 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7063
7064 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7065 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7066 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7067
7068 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7069 I915_WRITE(GEN7_L3CNTLREG1,
7070 GEN7_WA_FOR_GEN7_L3_CONTROL);
7071 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7072 GEN7_WA_L3_CHICKEN_MODE);
7073 if (IS_IVB_GT1(dev_priv))
7074 I915_WRITE(GEN7_ROW_CHICKEN2,
7075 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7076 else {
7077 /* must write both registers */
7078 I915_WRITE(GEN7_ROW_CHICKEN2,
7079 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7080 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7081 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7082 }
7083
7084 /* WaForceL3Serialization:ivb */
7085 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7086 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7087
7088 /*
7089 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7090 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7091 */
7092 I915_WRITE(GEN6_UCGCTL2,
7093 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7094
7095 /* This is required by WaCatErrorRejectionIssue:ivb */
7096 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7097 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7098 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7099
7100 g4x_disable_trickle_feed(dev_priv);
7101
7102 gen7_setup_fixed_func_scheduler(dev_priv);
7103
7104 if (0) { /* causes HiZ corruption on ivb:gt1 */
7105 /* enable HiZ Raw Stall Optimization */
7106 I915_WRITE(CACHE_MODE_0_GEN7,
7107 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7108 }
7109
7110 /* WaDisable4x2SubspanOptimization:ivb */
7111 I915_WRITE(CACHE_MODE_1,
7112 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7113
7114 /*
7115 * BSpec recommends 8x4 when MSAA is used,
7116 * however in practice 16x4 seems fastest.
7117 *
7118 * Note that PS/WM thread counts depend on the WIZ hashing
7119 * disable bit, which we don't touch here, but it's good
7120 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7121 */
7122 I915_WRITE(GEN7_GT_MODE,
7123 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7124
7125 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7126 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7127 snpcr |= GEN6_MBC_SNPCR_MED;
7128 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7129
7130 if (!HAS_PCH_NOP(dev_priv))
7131 cpt_init_clock_gating(dev_priv);
7132
7133 gen6_check_mch_setup(dev_priv);
7134 }
7135
7136 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7137 {
7138 /* WaDisableEarlyCull:vlv */
7139 I915_WRITE(_3D_CHICKEN3,
7140 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7141
7142 /* WaDisableBackToBackFlipFix:vlv */
7143 I915_WRITE(IVB_CHICKEN3,
7144 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7145 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7146
7147 /* WaPsdDispatchEnable:vlv */
7148 /* WaDisablePSDDualDispatchEnable:vlv */
7149 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7150 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7151 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7152
7153 /* WaDisable_RenderCache_OperationalFlush:vlv */
7154 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7155
7156 /* WaForceL3Serialization:vlv */
7157 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7158 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7159
7160 /* WaDisableDopClockGating:vlv */
7161 I915_WRITE(GEN7_ROW_CHICKEN2,
7162 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7163
7164 /* This is required by WaCatErrorRejectionIssue:vlv */
7165 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7166 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7167 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7168
7169 gen7_setup_fixed_func_scheduler(dev_priv);
7170
7171 /*
7172 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7173 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7174 */
7175 I915_WRITE(GEN6_UCGCTL2,
7176 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7177
7178 /* WaDisableL3Bank2xClockGate:vlv
7179 * Disabling L3 clock gating- MMIO 940c[25] = 1
7180 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7181 I915_WRITE(GEN7_UCGCTL4,
7182 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7183
7184 /*
7185 * BSpec says this must be set, even though
7186 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7187 */
7188 I915_WRITE(CACHE_MODE_1,
7189 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7190
7191 /*
7192 * BSpec recommends 8x4 when MSAA is used,
7193 * however in practice 16x4 seems fastest.
7194 *
7195 * Note that PS/WM thread counts depend on the WIZ hashing
7196 * disable bit, which we don't touch here, but it's good
7197 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7198 */
7199 I915_WRITE(GEN7_GT_MODE,
7200 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7201
7202 /*
7203 * WaIncreaseL3CreditsForVLVB0:vlv
7204 * This is the hardware default actually.
7205 */
7206 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7207
7208 /*
7209 * WaDisableVLVClockGating_VBIIssue:vlv
7210 * Disable clock gating on th GCFG unit to prevent a delay
7211 * in the reporting of vblank events.
7212 */
7213 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7214 }
7215
7216 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7217 {
7218 /* WaVSRefCountFullforceMissDisable:chv */
7219 /* WaDSRefCountFullforceMissDisable:chv */
7220 I915_WRITE(GEN7_FF_THREAD_MODE,
7221 I915_READ(GEN7_FF_THREAD_MODE) &
7222 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7223
7224 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7225 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7226 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7227
7228 /* WaDisableCSUnitClockGating:chv */
7229 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7230 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7231
7232 /* WaDisableSDEUnitClockGating:chv */
7233 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7234 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7235
7236 /*
7237 * WaProgramL3SqcReg1Default:chv
7238 * See gfxspecs/Related Documents/Performance Guide/
7239 * LSQC Setting Recommendations.
7240 */
7241 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7242 }
7243
7244 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7245 {
7246 u32 dspclk_gate;
7247
7248 I915_WRITE(RENCLK_GATE_D1, 0);
7249 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7250 GS_UNIT_CLOCK_GATE_DISABLE |
7251 CL_UNIT_CLOCK_GATE_DISABLE);
7252 I915_WRITE(RAMCLK_GATE_D, 0);
7253 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7254 OVRUNIT_CLOCK_GATE_DISABLE |
7255 OVCUNIT_CLOCK_GATE_DISABLE;
7256 if (IS_GM45(dev_priv))
7257 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7258 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7259
7260 /* WaDisableRenderCachePipelinedFlush */
7261 I915_WRITE(CACHE_MODE_0,
7262 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7263
7264 /* WaDisable_RenderCache_OperationalFlush:g4x */
7265 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7266
7267 g4x_disable_trickle_feed(dev_priv);
7268 }
7269
7270 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7271 {
7272 struct intel_uncore *uncore = &dev_priv->uncore;
7273
7274 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7275 intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7276 intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7277 intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7278 intel_uncore_write16(uncore, DEUC, 0);
7279 intel_uncore_write(uncore,
7280 MI_ARB_STATE,
7281 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7282
7283 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7284 intel_uncore_write(uncore,
7285 CACHE_MODE_0,
7286 _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7287 }
7288
7289 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7290 {
7291 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7292 I965_RCC_CLOCK_GATE_DISABLE |
7293 I965_RCPB_CLOCK_GATE_DISABLE |
7294 I965_ISC_CLOCK_GATE_DISABLE |
7295 I965_FBC_CLOCK_GATE_DISABLE);
7296 I915_WRITE(RENCLK_GATE_D2, 0);
7297 I915_WRITE(MI_ARB_STATE,
7298 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7299
7300 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7301 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7302 }
7303
7304 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7305 {
7306 u32 dstate = I915_READ(D_STATE);
7307
7308 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7309 DSTATE_DOT_CLOCK_GATING;
7310 I915_WRITE(D_STATE, dstate);
7311
7312 if (IS_PINEVIEW(dev_priv))
7313 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7314
7315 /* IIR "flip pending" means done if this bit is set */
7316 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7317
7318 /* interrupts should cause a wake up from C3 */
7319 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7320
7321 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7322 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7323
7324 I915_WRITE(MI_ARB_STATE,
7325 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7326 }
7327
7328 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7329 {
7330 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7331
7332 /* interrupts should cause a wake up from C3 */
7333 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7334 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7335
7336 I915_WRITE(MEM_MODE,
7337 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7338 }
7339
7340 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7341 {
7342 I915_WRITE(MEM_MODE,
7343 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7344 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7345 }
7346
7347 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7348 {
7349 dev_priv->display.init_clock_gating(dev_priv);
7350 }
7351
7352 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7353 {
7354 if (HAS_PCH_LPT(dev_priv))
7355 lpt_suspend_hw(dev_priv);
7356 }
7357
7358 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7359 {
7360 drm_dbg_kms(&dev_priv->drm,
7361 "No clock gating settings or workarounds applied.\n");
7362 }
7363
7364 /**
7365 * intel_init_clock_gating_hooks - setup the clock gating hooks
7366 * @dev_priv: device private
7367 *
7368 * Setup the hooks that configure which clocks of a given platform can be
7369 * gated and also apply various GT and display specific workarounds for these
7370 * platforms. Note that some GT specific workarounds are applied separately
7371 * when GPU contexts or batchbuffers start their execution.
7372 */
7373 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7374 {
7375 if (IS_GEN(dev_priv, 12))
7376 dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7377 else if (IS_GEN(dev_priv, 11))
7378 dev_priv->display.init_clock_gating = icl_init_clock_gating;
7379 else if (IS_CANNONLAKE(dev_priv))
7380 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7381 else if (IS_COFFEELAKE(dev_priv))
7382 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7383 else if (IS_SKYLAKE(dev_priv))
7384 dev_priv->display.init_clock_gating = skl_init_clock_gating;
7385 else if (IS_KABYLAKE(dev_priv))
7386 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7387 else if (IS_BROXTON(dev_priv))
7388 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7389 else if (IS_GEMINILAKE(dev_priv))
7390 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7391 else if (IS_BROADWELL(dev_priv))
7392 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7393 else if (IS_CHERRYVIEW(dev_priv))
7394 dev_priv->display.init_clock_gating = chv_init_clock_gating;
7395 else if (IS_HASWELL(dev_priv))
7396 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7397 else if (IS_IVYBRIDGE(dev_priv))
7398 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7399 else if (IS_VALLEYVIEW(dev_priv))
7400 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7401 else if (IS_GEN(dev_priv, 6))
7402 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7403 else if (IS_GEN(dev_priv, 5))
7404 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7405 else if (IS_G4X(dev_priv))
7406 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7407 else if (IS_I965GM(dev_priv))
7408 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7409 else if (IS_I965G(dev_priv))
7410 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7411 else if (IS_GEN(dev_priv, 3))
7412 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7413 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7414 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7415 else if (IS_GEN(dev_priv, 2))
7416 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7417 else {
7418 MISSING_CASE(INTEL_DEVID(dev_priv));
7419 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7420 }
7421 }
7422
7423 /* Set up chip specific power management-related functions */
7424 void intel_init_pm(struct drm_i915_private *dev_priv)
7425 {
7426 /* For cxsr */
7427 if (IS_PINEVIEW(dev_priv))
7428 pnv_get_mem_freq(dev_priv);
7429 else if (IS_GEN(dev_priv, 5))
7430 ilk_get_mem_freq(dev_priv);
7431
7432 if (intel_has_sagv(dev_priv))
7433 skl_setup_sagv_block_time(dev_priv);
7434
7435 /* For FIFO watermark updates */
7436 if (INTEL_GEN(dev_priv) >= 9) {
7437 skl_setup_wm_latency(dev_priv);
7438 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7439 } else if (HAS_PCH_SPLIT(dev_priv)) {
7440 ilk_setup_wm_latency(dev_priv);
7441
7442 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7443 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7444 (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7445 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7446 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7447 dev_priv->display.compute_intermediate_wm =
7448 ilk_compute_intermediate_wm;
7449 dev_priv->display.initial_watermarks =
7450 ilk_initial_watermarks;
7451 dev_priv->display.optimize_watermarks =
7452 ilk_optimize_watermarks;
7453 } else {
7454 drm_dbg_kms(&dev_priv->drm,
7455 "Failed to read display plane latency. "
7456 "Disable CxSR\n");
7457 }
7458 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7459 vlv_setup_wm_latency(dev_priv);
7460 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7461 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7462 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7463 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7464 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7465 } else if (IS_G4X(dev_priv)) {
7466 g4x_setup_wm_latency(dev_priv);
7467 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7468 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7469 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7470 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7471 } else if (IS_PINEVIEW(dev_priv)) {
7472 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7473 dev_priv->is_ddr3,
7474 dev_priv->fsb_freq,
7475 dev_priv->mem_freq)) {
7476 drm_info(&dev_priv->drm,
7477 "failed to find known CxSR latency "
7478 "(found ddr%s fsb freq %d, mem freq %d), "
7479 "disabling CxSR\n",
7480 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7481 dev_priv->fsb_freq, dev_priv->mem_freq);
7482 /* Disable CxSR and never update its watermark again */
7483 intel_set_memory_cxsr(dev_priv, false);
7484 dev_priv->display.update_wm = NULL;
7485 } else
7486 dev_priv->display.update_wm = pnv_update_wm;
7487 } else if (IS_GEN(dev_priv, 4)) {
7488 dev_priv->display.update_wm = i965_update_wm;
7489 } else if (IS_GEN(dev_priv, 3)) {
7490 dev_priv->display.update_wm = i9xx_update_wm;
7491 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7492 } else if (IS_GEN(dev_priv, 2)) {
7493 if (INTEL_NUM_PIPES(dev_priv) == 1) {
7494 dev_priv->display.update_wm = i845_update_wm;
7495 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7496 } else {
7497 dev_priv->display.update_wm = i9xx_update_wm;
7498 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7499 }
7500 } else {
7501 drm_err(&dev_priv->drm,
7502 "unexpected fall-through in %s\n", __func__);
7503 }
7504 }
7505
7506 void intel_pm_setup(struct drm_i915_private *dev_priv)
7507 {
7508 dev_priv->runtime_pm.suspended = false;
7509 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7510 }