]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - drivers/gpu/drm/i915/intel_psr.c
Merge tag 'meson-clk-5.1-2' of https://github.com/BayLibre/clk-meson into clk-meson
[thirdparty/kernel/stable.git] / drivers / gpu / drm / i915 / intel_psr.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54 #include <drm/drmP.h>
55
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58
59 static bool psr_global_enabled(u32 debug)
60 {
61 switch (debug & I915_PSR_DEBUG_MODE_MASK) {
62 case I915_PSR_DEBUG_DEFAULT:
63 return i915_modparams.enable_psr;
64 case I915_PSR_DEBUG_DISABLE:
65 return false;
66 default:
67 return true;
68 }
69 }
70
71 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
72 const struct intel_crtc_state *crtc_state)
73 {
74 /* Disable PSR2 by default for all platforms */
75 if (i915_modparams.enable_psr == -1)
76 return false;
77
78 /* Cannot enable DSC and PSR2 simultaneously */
79 WARN_ON(crtc_state->dsc_params.compression_enable &&
80 crtc_state->has_psr2);
81
82 switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
83 case I915_PSR_DEBUG_FORCE_PSR1:
84 return false;
85 default:
86 return crtc_state->has_psr2;
87 }
88 }
89
90 static int edp_psr_shift(enum transcoder cpu_transcoder)
91 {
92 switch (cpu_transcoder) {
93 case TRANSCODER_A:
94 return EDP_PSR_TRANSCODER_A_SHIFT;
95 case TRANSCODER_B:
96 return EDP_PSR_TRANSCODER_B_SHIFT;
97 case TRANSCODER_C:
98 return EDP_PSR_TRANSCODER_C_SHIFT;
99 default:
100 MISSING_CASE(cpu_transcoder);
101 /* fallthrough */
102 case TRANSCODER_EDP:
103 return EDP_PSR_TRANSCODER_EDP_SHIFT;
104 }
105 }
106
107 void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug)
108 {
109 u32 debug_mask, mask;
110 enum transcoder cpu_transcoder;
111 u32 transcoders = BIT(TRANSCODER_EDP);
112
113 if (INTEL_GEN(dev_priv) >= 8)
114 transcoders |= BIT(TRANSCODER_A) |
115 BIT(TRANSCODER_B) |
116 BIT(TRANSCODER_C);
117
118 debug_mask = 0;
119 mask = 0;
120 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
121 int shift = edp_psr_shift(cpu_transcoder);
122
123 mask |= EDP_PSR_ERROR(shift);
124 debug_mask |= EDP_PSR_POST_EXIT(shift) |
125 EDP_PSR_PRE_ENTRY(shift);
126 }
127
128 if (debug & I915_PSR_DEBUG_IRQ)
129 mask |= debug_mask;
130
131 I915_WRITE(EDP_PSR_IMR, ~mask);
132 }
133
134 static void psr_event_print(u32 val, bool psr2_enabled)
135 {
136 DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
137 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
138 DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
139 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
140 DRM_DEBUG_KMS("\tPSR2 disabled\n");
141 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
142 DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
143 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
144 DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
145 if (val & PSR_EVENT_GRAPHICS_RESET)
146 DRM_DEBUG_KMS("\tGraphics reset\n");
147 if (val & PSR_EVENT_PCH_INTERRUPT)
148 DRM_DEBUG_KMS("\tPCH interrupt\n");
149 if (val & PSR_EVENT_MEMORY_UP)
150 DRM_DEBUG_KMS("\tMemory up\n");
151 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
152 DRM_DEBUG_KMS("\tFront buffer modification\n");
153 if (val & PSR_EVENT_WD_TIMER_EXPIRE)
154 DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
155 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
156 DRM_DEBUG_KMS("\tPIPE registers updated\n");
157 if (val & PSR_EVENT_REGISTER_UPDATE)
158 DRM_DEBUG_KMS("\tRegister updated\n");
159 if (val & PSR_EVENT_HDCP_ENABLE)
160 DRM_DEBUG_KMS("\tHDCP enabled\n");
161 if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
162 DRM_DEBUG_KMS("\tKVMR session enabled\n");
163 if (val & PSR_EVENT_VBI_ENABLE)
164 DRM_DEBUG_KMS("\tVBI enabled\n");
165 if (val & PSR_EVENT_LPSP_MODE_EXIT)
166 DRM_DEBUG_KMS("\tLPSP mode exited\n");
167 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
168 DRM_DEBUG_KMS("\tPSR disabled\n");
169 }
170
171 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
172 {
173 u32 transcoders = BIT(TRANSCODER_EDP);
174 enum transcoder cpu_transcoder;
175 ktime_t time_ns = ktime_get();
176 u32 mask = 0;
177
178 if (INTEL_GEN(dev_priv) >= 8)
179 transcoders |= BIT(TRANSCODER_A) |
180 BIT(TRANSCODER_B) |
181 BIT(TRANSCODER_C);
182
183 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
184 int shift = edp_psr_shift(cpu_transcoder);
185
186 if (psr_iir & EDP_PSR_ERROR(shift)) {
187 DRM_WARN("[transcoder %s] PSR aux error\n",
188 transcoder_name(cpu_transcoder));
189
190 dev_priv->psr.irq_aux_error = true;
191
192 /*
193 * If this interruption is not masked it will keep
194 * interrupting so fast that it prevents the scheduled
195 * work to run.
196 * Also after a PSR error, we don't want to arm PSR
197 * again so we don't care about unmask the interruption
198 * or unset irq_aux_error.
199 */
200 mask |= EDP_PSR_ERROR(shift);
201 }
202
203 if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) {
204 dev_priv->psr.last_entry_attempt = time_ns;
205 DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
206 transcoder_name(cpu_transcoder));
207 }
208
209 if (psr_iir & EDP_PSR_POST_EXIT(shift)) {
210 dev_priv->psr.last_exit = time_ns;
211 DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
212 transcoder_name(cpu_transcoder));
213
214 if (INTEL_GEN(dev_priv) >= 9) {
215 u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
216 bool psr2_enabled = dev_priv->psr.psr2_enabled;
217
218 I915_WRITE(PSR_EVENT(cpu_transcoder), val);
219 psr_event_print(val, psr2_enabled);
220 }
221 }
222 }
223
224 if (mask) {
225 mask |= I915_READ(EDP_PSR_IMR);
226 I915_WRITE(EDP_PSR_IMR, mask);
227
228 schedule_work(&dev_priv->psr.work);
229 }
230 }
231
232 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
233 {
234 uint8_t dprx = 0;
235
236 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
237 &dprx) != 1)
238 return false;
239 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
240 }
241
242 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
243 {
244 uint8_t alpm_caps = 0;
245
246 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
247 &alpm_caps) != 1)
248 return false;
249 return alpm_caps & DP_ALPM_CAP;
250 }
251
252 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
253 {
254 u8 val = 8; /* assume the worst if we can't read the value */
255
256 if (drm_dp_dpcd_readb(&intel_dp->aux,
257 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
258 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
259 else
260 DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
261 return val;
262 }
263
264 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
265 {
266 struct drm_i915_private *dev_priv =
267 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
268
269 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
270 sizeof(intel_dp->psr_dpcd));
271
272 if (!intel_dp->psr_dpcd[0])
273 return;
274 DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
275 intel_dp->psr_dpcd[0]);
276
277 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
278 DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
279 return;
280 }
281 dev_priv->psr.sink_support = true;
282 dev_priv->psr.sink_sync_latency =
283 intel_dp_get_sink_sync_latency(intel_dp);
284
285 WARN_ON(dev_priv->psr.dp);
286 dev_priv->psr.dp = intel_dp;
287
288 if (INTEL_GEN(dev_priv) >= 9 &&
289 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
290 bool y_req = intel_dp->psr_dpcd[1] &
291 DP_PSR2_SU_Y_COORDINATE_REQUIRED;
292 bool alpm = intel_dp_get_alpm_status(intel_dp);
293
294 /*
295 * All panels that supports PSR version 03h (PSR2 +
296 * Y-coordinate) can handle Y-coordinates in VSC but we are
297 * only sure that it is going to be used when required by the
298 * panel. This way panel is capable to do selective update
299 * without a aux frame sync.
300 *
301 * To support PSR version 02h and PSR version 03h without
302 * Y-coordinate requirement panels we would need to enable
303 * GTC first.
304 */
305 dev_priv->psr.sink_psr2_support = y_req && alpm;
306 DRM_DEBUG_KMS("PSR2 %ssupported\n",
307 dev_priv->psr.sink_psr2_support ? "" : "not ");
308
309 if (dev_priv->psr.sink_psr2_support) {
310 dev_priv->psr.colorimetry_support =
311 intel_dp_get_colorimetry_status(intel_dp);
312 }
313 }
314 }
315
316 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
317 const struct intel_crtc_state *crtc_state)
318 {
319 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
320 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
321 struct edp_vsc_psr psr_vsc;
322
323 if (dev_priv->psr.psr2_enabled) {
324 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
325 memset(&psr_vsc, 0, sizeof(psr_vsc));
326 psr_vsc.sdp_header.HB0 = 0;
327 psr_vsc.sdp_header.HB1 = 0x7;
328 if (dev_priv->psr.colorimetry_support) {
329 psr_vsc.sdp_header.HB2 = 0x5;
330 psr_vsc.sdp_header.HB3 = 0x13;
331 } else {
332 psr_vsc.sdp_header.HB2 = 0x4;
333 psr_vsc.sdp_header.HB3 = 0xe;
334 }
335 } else {
336 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
337 memset(&psr_vsc, 0, sizeof(psr_vsc));
338 psr_vsc.sdp_header.HB0 = 0;
339 psr_vsc.sdp_header.HB1 = 0x7;
340 psr_vsc.sdp_header.HB2 = 0x2;
341 psr_vsc.sdp_header.HB3 = 0x8;
342 }
343
344 intel_dig_port->write_infoframe(&intel_dig_port->base,
345 crtc_state,
346 DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
347 }
348
349 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
350 {
351 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
352 u32 aux_clock_divider, aux_ctl;
353 int i;
354 static const uint8_t aux_msg[] = {
355 [0] = DP_AUX_NATIVE_WRITE << 4,
356 [1] = DP_SET_POWER >> 8,
357 [2] = DP_SET_POWER & 0xff,
358 [3] = 1 - 1,
359 [4] = DP_SET_POWER_D0,
360 };
361 u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
362 EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
363 EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
364 EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
365
366 BUILD_BUG_ON(sizeof(aux_msg) > 20);
367 for (i = 0; i < sizeof(aux_msg); i += 4)
368 I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
369 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
370
371 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
372
373 /* Start with bits set for DDI_AUX_CTL register */
374 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
375 aux_clock_divider);
376
377 /* Select only valid bits for SRD_AUX_CTL */
378 aux_ctl &= psr_aux_mask;
379 I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
380 }
381
382 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
383 {
384 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
385 u8 dpcd_val = DP_PSR_ENABLE;
386
387 /* Enable ALPM at sink for psr2 */
388 if (dev_priv->psr.psr2_enabled) {
389 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
390 DP_ALPM_ENABLE);
391 dpcd_val |= DP_PSR_ENABLE_PSR2;
392 }
393
394 if (dev_priv->psr.link_standby)
395 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
396 if (!dev_priv->psr.psr2_enabled && INTEL_GEN(dev_priv) >= 8)
397 dpcd_val |= DP_PSR_CRC_VERIFICATION;
398 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
399
400 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
401 }
402
403 static void hsw_activate_psr1(struct intel_dp *intel_dp)
404 {
405 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
406 u32 max_sleep_time = 0x1f;
407 u32 val = EDP_PSR_ENABLE;
408
409 /* Let's use 6 as the minimum to cover all known cases including the
410 * off-by-one issue that HW has in some cases.
411 */
412 int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
413
414 /* sink_sync_latency of 8 means source has to wait for more than 8
415 * frames, we'll go with 9 frames for now
416 */
417 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
418 val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
419
420 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
421 if (IS_HASWELL(dev_priv))
422 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
423
424 if (dev_priv->psr.link_standby)
425 val |= EDP_PSR_LINK_STANDBY;
426
427 if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
428 val |= EDP_PSR_TP1_TIME_0us;
429 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
430 val |= EDP_PSR_TP1_TIME_100us;
431 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
432 val |= EDP_PSR_TP1_TIME_500us;
433 else
434 val |= EDP_PSR_TP1_TIME_2500us;
435
436 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
437 val |= EDP_PSR_TP2_TP3_TIME_0us;
438 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
439 val |= EDP_PSR_TP2_TP3_TIME_100us;
440 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
441 val |= EDP_PSR_TP2_TP3_TIME_500us;
442 else
443 val |= EDP_PSR_TP2_TP3_TIME_2500us;
444
445 if (intel_dp_source_supports_hbr2(intel_dp) &&
446 drm_dp_tps3_supported(intel_dp->dpcd))
447 val |= EDP_PSR_TP1_TP3_SEL;
448 else
449 val |= EDP_PSR_TP1_TP2_SEL;
450
451 if (INTEL_GEN(dev_priv) >= 8)
452 val |= EDP_PSR_CRC_ENABLE;
453
454 val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
455 I915_WRITE(EDP_PSR_CTL, val);
456 }
457
458 static void hsw_activate_psr2(struct intel_dp *intel_dp)
459 {
460 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
461 u32 val;
462
463 /* Let's use 6 as the minimum to cover all known cases including the
464 * off-by-one issue that HW has in some cases.
465 */
466 int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
467
468 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
469 val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
470
471 /* FIXME: selective update is probably totally broken because it doesn't
472 * mesh at all with our frontbuffer tracking. And the hw alone isn't
473 * good enough. */
474 val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
475 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
476 val |= EDP_Y_COORDINATE_ENABLE;
477
478 val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
479
480 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us >= 0 &&
481 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 50)
482 val |= EDP_PSR2_TP2_TIME_50us;
483 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
484 val |= EDP_PSR2_TP2_TIME_100us;
485 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
486 val |= EDP_PSR2_TP2_TIME_500us;
487 else
488 val |= EDP_PSR2_TP2_TIME_2500us;
489
490 I915_WRITE(EDP_PSR2_CTL, val);
491 }
492
493 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
494 struct intel_crtc_state *crtc_state)
495 {
496 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
497 int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
498 int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
499 int psr_max_h = 0, psr_max_v = 0;
500
501 /*
502 * FIXME psr2_support is messed up. It's both computed
503 * dynamically during PSR enable, and extracted from sink
504 * caps during eDP detection.
505 */
506 if (!dev_priv->psr.sink_psr2_support)
507 return false;
508
509 /*
510 * DSC and PSR2 cannot be enabled simultaneously. If a requested
511 * resolution requires DSC to be enabled, priority is given to DSC
512 * over PSR2.
513 */
514 if (crtc_state->dsc_params.compression_enable) {
515 DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
516 return false;
517 }
518
519 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
520 psr_max_h = 4096;
521 psr_max_v = 2304;
522 } else if (IS_GEN9(dev_priv)) {
523 psr_max_h = 3640;
524 psr_max_v = 2304;
525 }
526
527 if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
528 DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
529 crtc_hdisplay, crtc_vdisplay,
530 psr_max_h, psr_max_v);
531 return false;
532 }
533
534 return true;
535 }
536
537 void intel_psr_compute_config(struct intel_dp *intel_dp,
538 struct intel_crtc_state *crtc_state)
539 {
540 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
541 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
542 const struct drm_display_mode *adjusted_mode =
543 &crtc_state->base.adjusted_mode;
544 int psr_setup_time;
545
546 if (!CAN_PSR(dev_priv))
547 return;
548
549 if (intel_dp != dev_priv->psr.dp)
550 return;
551
552 /*
553 * HSW spec explicitly says PSR is tied to port A.
554 * BDW+ platforms with DDI implementation of PSR have different
555 * PSR registers per transcoder and we only implement transcoder EDP
556 * ones. Since by Display design transcoder EDP is tied to port A
557 * we can safely escape based on the port A.
558 */
559 if (dig_port->base.port != PORT_A) {
560 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
561 return;
562 }
563
564 if (dev_priv->psr.sink_not_reliable) {
565 DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
566 return;
567 }
568
569 if (IS_HASWELL(dev_priv) &&
570 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
571 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
572 return;
573 }
574
575 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
576 if (psr_setup_time < 0) {
577 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
578 intel_dp->psr_dpcd[1]);
579 return;
580 }
581
582 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
583 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
584 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
585 psr_setup_time);
586 return;
587 }
588
589 crtc_state->has_psr = true;
590 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
591 }
592
593 static void intel_psr_activate(struct intel_dp *intel_dp)
594 {
595 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
596
597 if (INTEL_GEN(dev_priv) >= 9)
598 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
599 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
600 WARN_ON(dev_priv->psr.active);
601 lockdep_assert_held(&dev_priv->psr.lock);
602
603 /* psr1 and psr2 are mutually exclusive.*/
604 if (dev_priv->psr.psr2_enabled)
605 hsw_activate_psr2(intel_dp);
606 else
607 hsw_activate_psr1(intel_dp);
608
609 dev_priv->psr.active = true;
610 }
611
612 static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv,
613 enum transcoder cpu_transcoder)
614 {
615 static const i915_reg_t regs[] = {
616 [TRANSCODER_A] = CHICKEN_TRANS_A,
617 [TRANSCODER_B] = CHICKEN_TRANS_B,
618 [TRANSCODER_C] = CHICKEN_TRANS_C,
619 [TRANSCODER_EDP] = CHICKEN_TRANS_EDP,
620 };
621
622 WARN_ON(INTEL_GEN(dev_priv) < 9);
623
624 if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) ||
625 !regs[cpu_transcoder].reg))
626 cpu_transcoder = TRANSCODER_A;
627
628 return regs[cpu_transcoder];
629 }
630
631 static void intel_psr_enable_source(struct intel_dp *intel_dp,
632 const struct intel_crtc_state *crtc_state)
633 {
634 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
635 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
636 u32 mask;
637
638 /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
639 * use hardcoded values PSR AUX transactions
640 */
641 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
642 hsw_psr_setup_aux(intel_dp);
643
644 if (dev_priv->psr.psr2_enabled) {
645 i915_reg_t reg = gen9_chicken_trans_reg(dev_priv,
646 cpu_transcoder);
647 u32 chicken = I915_READ(reg);
648
649 if (IS_GEN9(dev_priv) && !IS_GEMINILAKE(dev_priv))
650 chicken |= (PSR2_VSC_ENABLE_PROG_HEADER
651 | PSR2_ADD_VERTICAL_LINE_COUNT);
652
653 else
654 chicken &= ~VSC_DATA_SEL_SOFTWARE_CONTROL;
655 I915_WRITE(reg, chicken);
656 }
657
658 /*
659 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
660 * mask LPSP to avoid dependency on other drivers that might block
661 * runtime_pm besides preventing other hw tracking issues now we
662 * can rely on frontbuffer tracking.
663 */
664 mask = EDP_PSR_DEBUG_MASK_MEMUP |
665 EDP_PSR_DEBUG_MASK_HPD |
666 EDP_PSR_DEBUG_MASK_LPSP |
667 EDP_PSR_DEBUG_MASK_MAX_SLEEP;
668
669 if (INTEL_GEN(dev_priv) < 11)
670 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
671
672 I915_WRITE(EDP_PSR_DEBUG, mask);
673 }
674
675 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
676 const struct intel_crtc_state *crtc_state)
677 {
678 struct intel_dp *intel_dp = dev_priv->psr.dp;
679
680 if (dev_priv->psr.enabled)
681 return;
682
683 DRM_DEBUG_KMS("Enabling PSR%s\n",
684 dev_priv->psr.psr2_enabled ? "2" : "1");
685 intel_psr_setup_vsc(intel_dp, crtc_state);
686 intel_psr_enable_sink(intel_dp);
687 intel_psr_enable_source(intel_dp, crtc_state);
688 dev_priv->psr.enabled = true;
689
690 intel_psr_activate(intel_dp);
691 }
692
693 /**
694 * intel_psr_enable - Enable PSR
695 * @intel_dp: Intel DP
696 * @crtc_state: new CRTC state
697 *
698 * This function can only be called after the pipe is fully trained and enabled.
699 */
700 void intel_psr_enable(struct intel_dp *intel_dp,
701 const struct intel_crtc_state *crtc_state)
702 {
703 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
704
705 if (!crtc_state->has_psr)
706 return;
707
708 if (WARN_ON(!CAN_PSR(dev_priv)))
709 return;
710
711 WARN_ON(dev_priv->drrs.dp);
712
713 mutex_lock(&dev_priv->psr.lock);
714 if (dev_priv->psr.prepared) {
715 DRM_DEBUG_KMS("PSR already in use\n");
716 goto unlock;
717 }
718
719 dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
720 dev_priv->psr.busy_frontbuffer_bits = 0;
721 dev_priv->psr.prepared = true;
722 dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe;
723
724 if (psr_global_enabled(dev_priv->psr.debug))
725 intel_psr_enable_locked(dev_priv, crtc_state);
726 else
727 DRM_DEBUG_KMS("PSR disabled by flag\n");
728
729 unlock:
730 mutex_unlock(&dev_priv->psr.lock);
731 }
732
733 static void intel_psr_exit(struct drm_i915_private *dev_priv)
734 {
735 u32 val;
736
737 if (!dev_priv->psr.active) {
738 if (INTEL_GEN(dev_priv) >= 9)
739 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
740 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
741 return;
742 }
743
744 if (dev_priv->psr.psr2_enabled) {
745 val = I915_READ(EDP_PSR2_CTL);
746 WARN_ON(!(val & EDP_PSR2_ENABLE));
747 I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
748 } else {
749 val = I915_READ(EDP_PSR_CTL);
750 WARN_ON(!(val & EDP_PSR_ENABLE));
751 I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
752 }
753 dev_priv->psr.active = false;
754 }
755
756 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
757 {
758 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
759 i915_reg_t psr_status;
760 u32 psr_status_mask;
761
762 lockdep_assert_held(&dev_priv->psr.lock);
763
764 if (!dev_priv->psr.enabled)
765 return;
766
767 DRM_DEBUG_KMS("Disabling PSR%s\n",
768 dev_priv->psr.psr2_enabled ? "2" : "1");
769
770 intel_psr_exit(dev_priv);
771
772 if (dev_priv->psr.psr2_enabled) {
773 psr_status = EDP_PSR2_STATUS;
774 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
775 } else {
776 psr_status = EDP_PSR_STATUS;
777 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
778 }
779
780 /* Wait till PSR is idle */
781 if (intel_wait_for_register(dev_priv, psr_status, psr_status_mask, 0,
782 2000))
783 DRM_ERROR("Timed out waiting PSR idle state\n");
784
785 /* Disable PSR on Sink */
786 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
787
788 dev_priv->psr.enabled = false;
789 }
790
791 /**
792 * intel_psr_disable - Disable PSR
793 * @intel_dp: Intel DP
794 * @old_crtc_state: old CRTC state
795 *
796 * This function needs to be called before disabling pipe.
797 */
798 void intel_psr_disable(struct intel_dp *intel_dp,
799 const struct intel_crtc_state *old_crtc_state)
800 {
801 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
802
803 if (!old_crtc_state->has_psr)
804 return;
805
806 if (WARN_ON(!CAN_PSR(dev_priv)))
807 return;
808
809 mutex_lock(&dev_priv->psr.lock);
810 if (!dev_priv->psr.prepared) {
811 mutex_unlock(&dev_priv->psr.lock);
812 return;
813 }
814
815 intel_psr_disable_locked(intel_dp);
816
817 dev_priv->psr.prepared = false;
818 mutex_unlock(&dev_priv->psr.lock);
819 cancel_work_sync(&dev_priv->psr.work);
820 }
821
822 /**
823 * intel_psr_wait_for_idle - wait for PSR1 to idle
824 * @new_crtc_state: new CRTC state
825 * @out_value: PSR status in case of failure
826 *
827 * This function is expected to be called from pipe_update_start() where it is
828 * not expected to race with PSR enable or disable.
829 *
830 * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
831 */
832 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
833 u32 *out_value)
834 {
835 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
836 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
837
838 if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
839 return 0;
840
841 /* FIXME: Update this for PSR2 if we need to wait for idle */
842 if (READ_ONCE(dev_priv->psr.psr2_enabled))
843 return 0;
844
845 /*
846 * From bspec: Panel Self Refresh (BDW+)
847 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
848 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
849 * defensive enough to cover everything.
850 */
851
852 return __intel_wait_for_register(dev_priv, EDP_PSR_STATUS,
853 EDP_PSR_STATUS_STATE_MASK,
854 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
855 out_value);
856 }
857
858 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
859 {
860 i915_reg_t reg;
861 u32 mask;
862 int err;
863
864 if (!dev_priv->psr.enabled)
865 return false;
866
867 if (dev_priv->psr.psr2_enabled) {
868 reg = EDP_PSR2_STATUS;
869 mask = EDP_PSR2_STATUS_STATE_MASK;
870 } else {
871 reg = EDP_PSR_STATUS;
872 mask = EDP_PSR_STATUS_STATE_MASK;
873 }
874
875 mutex_unlock(&dev_priv->psr.lock);
876
877 err = intel_wait_for_register(dev_priv, reg, mask, 0, 50);
878 if (err)
879 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
880
881 /* After the unlocked wait, verify that PSR is still wanted! */
882 mutex_lock(&dev_priv->psr.lock);
883 return err == 0 && dev_priv->psr.enabled;
884 }
885
886 static bool switching_psr(struct drm_i915_private *dev_priv,
887 struct intel_crtc_state *crtc_state,
888 u32 mode)
889 {
890 /* Can't switch psr state anyway if PSR2 is not supported. */
891 if (!crtc_state || !crtc_state->has_psr2)
892 return false;
893
894 if (dev_priv->psr.psr2_enabled && mode == I915_PSR_DEBUG_FORCE_PSR1)
895 return true;
896
897 if (!dev_priv->psr.psr2_enabled && mode != I915_PSR_DEBUG_FORCE_PSR1)
898 return true;
899
900 return false;
901 }
902
903 int intel_psr_set_debugfs_mode(struct drm_i915_private *dev_priv,
904 struct drm_modeset_acquire_ctx *ctx,
905 u64 val)
906 {
907 struct drm_device *dev = &dev_priv->drm;
908 struct drm_connector_state *conn_state;
909 struct intel_crtc_state *crtc_state = NULL;
910 struct drm_crtc_commit *commit;
911 struct drm_crtc *crtc;
912 struct intel_dp *dp;
913 int ret;
914 bool enable;
915 u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
916
917 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
918 mode > I915_PSR_DEBUG_FORCE_PSR1) {
919 DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
920 return -EINVAL;
921 }
922
923 ret = drm_modeset_lock(&dev->mode_config.connection_mutex, ctx);
924 if (ret)
925 return ret;
926
927 /* dev_priv->psr.dp should be set once and then never touched again. */
928 dp = READ_ONCE(dev_priv->psr.dp);
929 conn_state = dp->attached_connector->base.state;
930 crtc = conn_state->crtc;
931 if (crtc) {
932 ret = drm_modeset_lock(&crtc->mutex, ctx);
933 if (ret)
934 return ret;
935
936 crtc_state = to_intel_crtc_state(crtc->state);
937 commit = crtc_state->base.commit;
938 } else {
939 commit = conn_state->commit;
940 }
941 if (commit) {
942 ret = wait_for_completion_interruptible(&commit->hw_done);
943 if (ret)
944 return ret;
945 }
946
947 ret = mutex_lock_interruptible(&dev_priv->psr.lock);
948 if (ret)
949 return ret;
950
951 enable = psr_global_enabled(val);
952
953 if (!enable || switching_psr(dev_priv, crtc_state, mode))
954 intel_psr_disable_locked(dev_priv->psr.dp);
955
956 dev_priv->psr.debug = val;
957 if (crtc)
958 dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
959
960 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
961
962 if (dev_priv->psr.prepared && enable)
963 intel_psr_enable_locked(dev_priv, crtc_state);
964
965 mutex_unlock(&dev_priv->psr.lock);
966 return ret;
967 }
968
969 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
970 {
971 struct i915_psr *psr = &dev_priv->psr;
972
973 intel_psr_disable_locked(psr->dp);
974 psr->sink_not_reliable = true;
975 /* let's make sure that sink is awaken */
976 drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
977 }
978
979 static void intel_psr_work(struct work_struct *work)
980 {
981 struct drm_i915_private *dev_priv =
982 container_of(work, typeof(*dev_priv), psr.work);
983
984 mutex_lock(&dev_priv->psr.lock);
985
986 if (!dev_priv->psr.enabled)
987 goto unlock;
988
989 if (READ_ONCE(dev_priv->psr.irq_aux_error))
990 intel_psr_handle_irq(dev_priv);
991
992 /*
993 * We have to make sure PSR is ready for re-enable
994 * otherwise it keeps disabled until next full enable/disable cycle.
995 * PSR might take some time to get fully disabled
996 * and be ready for re-enable.
997 */
998 if (!__psr_wait_for_idle_locked(dev_priv))
999 goto unlock;
1000
1001 /*
1002 * The delayed work can race with an invalidate hence we need to
1003 * recheck. Since psr_flush first clears this and then reschedules we
1004 * won't ever miss a flush when bailing out here.
1005 */
1006 if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1007 goto unlock;
1008
1009 intel_psr_activate(dev_priv->psr.dp);
1010 unlock:
1011 mutex_unlock(&dev_priv->psr.lock);
1012 }
1013
1014 /**
1015 * intel_psr_invalidate - Invalidade PSR
1016 * @dev_priv: i915 device
1017 * @frontbuffer_bits: frontbuffer plane tracking bits
1018 * @origin: which operation caused the invalidate
1019 *
1020 * Since the hardware frontbuffer tracking has gaps we need to integrate
1021 * with the software frontbuffer tracking. This function gets called every
1022 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1023 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1024 *
1025 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1026 */
1027 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1028 unsigned frontbuffer_bits, enum fb_op_origin origin)
1029 {
1030 if (!CAN_PSR(dev_priv))
1031 return;
1032
1033 if (origin == ORIGIN_FLIP)
1034 return;
1035
1036 mutex_lock(&dev_priv->psr.lock);
1037 if (!dev_priv->psr.enabled) {
1038 mutex_unlock(&dev_priv->psr.lock);
1039 return;
1040 }
1041
1042 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1043 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1044
1045 if (frontbuffer_bits)
1046 intel_psr_exit(dev_priv);
1047
1048 mutex_unlock(&dev_priv->psr.lock);
1049 }
1050
1051 /**
1052 * intel_psr_flush - Flush PSR
1053 * @dev_priv: i915 device
1054 * @frontbuffer_bits: frontbuffer plane tracking bits
1055 * @origin: which operation caused the flush
1056 *
1057 * Since the hardware frontbuffer tracking has gaps we need to integrate
1058 * with the software frontbuffer tracking. This function gets called every
1059 * time frontbuffer rendering has completed and flushed out to memory. PSR
1060 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1061 *
1062 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1063 */
1064 void intel_psr_flush(struct drm_i915_private *dev_priv,
1065 unsigned frontbuffer_bits, enum fb_op_origin origin)
1066 {
1067 if (!CAN_PSR(dev_priv))
1068 return;
1069
1070 if (origin == ORIGIN_FLIP)
1071 return;
1072
1073 mutex_lock(&dev_priv->psr.lock);
1074 if (!dev_priv->psr.enabled) {
1075 mutex_unlock(&dev_priv->psr.lock);
1076 return;
1077 }
1078
1079 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1080 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1081
1082 /* By definition flush = invalidate + flush */
1083 if (frontbuffer_bits) {
1084 /*
1085 * Display WA #0884: all
1086 * This documented WA for bxt can be safely applied
1087 * broadly so we can force HW tracking to exit PSR
1088 * instead of disabling and re-enabling.
1089 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1090 * but it makes more sense write to the current active
1091 * pipe.
1092 */
1093 I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
1094 }
1095
1096 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1097 schedule_work(&dev_priv->psr.work);
1098 mutex_unlock(&dev_priv->psr.lock);
1099 }
1100
1101 /**
1102 * intel_psr_init - Init basic PSR work and mutex.
1103 * @dev_priv: i915 device private
1104 *
1105 * This function is called only once at driver load to initialize basic
1106 * PSR stuff.
1107 */
1108 void intel_psr_init(struct drm_i915_private *dev_priv)
1109 {
1110 u32 val;
1111
1112 if (!HAS_PSR(dev_priv))
1113 return;
1114
1115 dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
1116 HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
1117
1118 if (!dev_priv->psr.sink_support)
1119 return;
1120
1121 if (i915_modparams.enable_psr == -1)
1122 if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1123 i915_modparams.enable_psr = 0;
1124
1125 /*
1126 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1127 * will still keep the error set even after the reset done in the
1128 * irq_preinstall and irq_uninstall hooks.
1129 * And enabling in this situation cause the screen to freeze in the
1130 * first time that PSR HW tries to activate so lets keep PSR disabled
1131 * to avoid any rendering problems.
1132 */
1133 val = I915_READ(EDP_PSR_IIR);
1134 val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP));
1135 if (val) {
1136 DRM_DEBUG_KMS("PSR interruption error set\n");
1137 dev_priv->psr.sink_not_reliable = true;
1138 return;
1139 }
1140
1141 /* Set link_standby x link_off defaults */
1142 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1143 /* HSW and BDW require workarounds that we don't implement. */
1144 dev_priv->psr.link_standby = false;
1145 else
1146 /* For new platforms let's respect VBT back again */
1147 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1148
1149 INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1150 mutex_init(&dev_priv->psr.lock);
1151 }
1152
1153 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1154 {
1155 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1156 struct i915_psr *psr = &dev_priv->psr;
1157 u8 val;
1158 const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1159 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1160 DP_PSR_LINK_CRC_ERROR;
1161
1162 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1163 return;
1164
1165 mutex_lock(&psr->lock);
1166
1167 if (!psr->enabled || psr->dp != intel_dp)
1168 goto exit;
1169
1170 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
1171 DRM_ERROR("PSR_STATUS dpcd read failed\n");
1172 goto exit;
1173 }
1174
1175 if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
1176 DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1177 intel_psr_disable_locked(intel_dp);
1178 psr->sink_not_reliable = true;
1179 }
1180
1181 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
1182 DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
1183 goto exit;
1184 }
1185
1186 if (val & DP_PSR_RFB_STORAGE_ERROR)
1187 DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1188 if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1189 DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1190 if (val & DP_PSR_LINK_CRC_ERROR)
1191 DRM_ERROR("PSR Link CRC error, disabling PSR\n");
1192
1193 if (val & ~errors)
1194 DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1195 val & ~errors);
1196 if (val & errors) {
1197 intel_psr_disable_locked(intel_dp);
1198 psr->sink_not_reliable = true;
1199 }
1200 /* clear status register */
1201 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
1202 exit:
1203 mutex_unlock(&psr->lock);
1204 }
1205
1206 bool intel_psr_enabled(struct intel_dp *intel_dp)
1207 {
1208 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1209 bool ret;
1210
1211 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1212 return false;
1213
1214 mutex_lock(&dev_priv->psr.lock);
1215 ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1216 mutex_unlock(&dev_priv->psr.lock);
1217
1218 return ret;
1219 }