]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Flush GPU relocs harder for gen3
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
43 */
44 #define LEGACY_REQUEST_SIZE 200
45
46 static unsigned int __intel_ring_space(unsigned int head,
47 unsigned int tail,
48 unsigned int size)
49 {
50 /*
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
53 * Pointer."
54 */
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
57 }
58
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
60 {
61 unsigned int space;
62
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
64
65 ring->space = space;
66 return space;
67 }
68
69 static int
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71 {
72 unsigned int num_store_dw;
73 u32 cmd, *cs;
74
75 cmd = MI_FLUSH;
76 num_store_dw = 0;
77 if (mode & EMIT_INVALIDATE)
78 cmd |= MI_READ_FLUSH;
79 if (mode & EMIT_FLUSH)
80 num_store_dw = 4;
81
82 cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
83 if (IS_ERR(cs))
84 return PTR_ERR(cs);
85
86 *cs++ = cmd;
87 while (num_store_dw--) {
88 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
89 *cs++ = i915_scratch_offset(rq->i915);
90 *cs++ = 0;
91 }
92 *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
93
94 intel_ring_advance(rq, cs);
95
96 return 0;
97 }
98
99 static int
100 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
101 {
102 u32 cmd, *cs;
103 int i;
104
105 /*
106 * read/write caches:
107 *
108 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
109 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
110 * also flushed at 2d versus 3d pipeline switches.
111 *
112 * read-only caches:
113 *
114 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
115 * MI_READ_FLUSH is set, and is always flushed on 965.
116 *
117 * I915_GEM_DOMAIN_COMMAND may not exist?
118 *
119 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
120 * invalidated when MI_EXE_FLUSH is set.
121 *
122 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
123 * invalidated with every MI_FLUSH.
124 *
125 * TLBs:
126 *
127 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
128 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
129 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
130 * are flushed at any MI_FLUSH.
131 */
132
133 cmd = MI_FLUSH;
134 if (mode & EMIT_INVALIDATE) {
135 cmd |= MI_EXE_FLUSH;
136 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
137 cmd |= MI_INVALIDATE_ISP;
138 }
139
140 i = 2;
141 if (mode & EMIT_INVALIDATE)
142 i += 20;
143
144 cs = intel_ring_begin(rq, i);
145 if (IS_ERR(cs))
146 return PTR_ERR(cs);
147
148 *cs++ = cmd;
149
150 /*
151 * A random delay to let the CS invalidate take effect? Without this
152 * delay, the GPU relocation path fails as the CS does not see
153 * the updated contents. Just as important, if we apply the flushes
154 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
155 * write and before the invalidate on the next batch), the relocations
156 * still fail. This implies that is a delay following invalidation
157 * that is required to reset the caches as opposed to a delay to
158 * ensure the memory is written.
159 */
160 if (mode & EMIT_INVALIDATE) {
161 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
162 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
163 *cs++ = 0;
164 *cs++ = 0;
165
166 for (i = 0; i < 12; i++)
167 *cs++ = MI_FLUSH;
168
169 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
170 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
171 *cs++ = 0;
172 *cs++ = 0;
173 }
174
175 *cs++ = cmd;
176
177 intel_ring_advance(rq, cs);
178
179 return 0;
180 }
181
182 /*
183 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
184 * implementing two workarounds on gen6. From section 1.4.7.1
185 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
186 *
187 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
188 * produced by non-pipelined state commands), software needs to first
189 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
190 * 0.
191 *
192 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
193 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
194 *
195 * And the workaround for these two requires this workaround first:
196 *
197 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
198 * BEFORE the pipe-control with a post-sync op and no write-cache
199 * flushes.
200 *
201 * And this last workaround is tricky because of the requirements on
202 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
203 * volume 2 part 1:
204 *
205 * "1 of the following must also be set:
206 * - Render Target Cache Flush Enable ([12] of DW1)
207 * - Depth Cache Flush Enable ([0] of DW1)
208 * - Stall at Pixel Scoreboard ([1] of DW1)
209 * - Depth Stall ([13] of DW1)
210 * - Post-Sync Operation ([13] of DW1)
211 * - Notify Enable ([8] of DW1)"
212 *
213 * The cache flushes require the workaround flush that triggered this
214 * one, so we can't use it. Depth stall would trigger the same.
215 * Post-sync nonzero is what triggered this second workaround, so we
216 * can't use that one either. Notify enable is IRQs, which aren't
217 * really our business. That leaves only stall at scoreboard.
218 */
219 static int
220 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
221 {
222 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
223 u32 *cs;
224
225 cs = intel_ring_begin(rq, 6);
226 if (IS_ERR(cs))
227 return PTR_ERR(cs);
228
229 *cs++ = GFX_OP_PIPE_CONTROL(5);
230 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
231 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
232 *cs++ = 0; /* low dword */
233 *cs++ = 0; /* high dword */
234 *cs++ = MI_NOOP;
235 intel_ring_advance(rq, cs);
236
237 cs = intel_ring_begin(rq, 6);
238 if (IS_ERR(cs))
239 return PTR_ERR(cs);
240
241 *cs++ = GFX_OP_PIPE_CONTROL(5);
242 *cs++ = PIPE_CONTROL_QW_WRITE;
243 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
244 *cs++ = 0;
245 *cs++ = 0;
246 *cs++ = MI_NOOP;
247 intel_ring_advance(rq, cs);
248
249 return 0;
250 }
251
252 static int
253 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
254 {
255 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
256 u32 *cs, flags = 0;
257 int ret;
258
259 /* Force SNB workarounds for PIPE_CONTROL flushes */
260 ret = intel_emit_post_sync_nonzero_flush(rq);
261 if (ret)
262 return ret;
263
264 /* Just flush everything. Experiments have shown that reducing the
265 * number of bits based on the write domains has little performance
266 * impact.
267 */
268 if (mode & EMIT_FLUSH) {
269 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
270 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
271 /*
272 * Ensure that any following seqno writes only happen
273 * when the render cache is indeed flushed.
274 */
275 flags |= PIPE_CONTROL_CS_STALL;
276 }
277 if (mode & EMIT_INVALIDATE) {
278 flags |= PIPE_CONTROL_TLB_INVALIDATE;
279 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
280 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
284 /*
285 * TLB invalidate requires a post-sync write.
286 */
287 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
288 }
289
290 cs = intel_ring_begin(rq, 4);
291 if (IS_ERR(cs))
292 return PTR_ERR(cs);
293
294 *cs++ = GFX_OP_PIPE_CONTROL(4);
295 *cs++ = flags;
296 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
297 *cs++ = 0;
298 intel_ring_advance(rq, cs);
299
300 return 0;
301 }
302
303 static int
304 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
305 {
306 u32 *cs;
307
308 cs = intel_ring_begin(rq, 4);
309 if (IS_ERR(cs))
310 return PTR_ERR(cs);
311
312 *cs++ = GFX_OP_PIPE_CONTROL(4);
313 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
314 *cs++ = 0;
315 *cs++ = 0;
316 intel_ring_advance(rq, cs);
317
318 return 0;
319 }
320
321 static int
322 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
323 {
324 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
325 u32 *cs, flags = 0;
326
327 /*
328 * Ensure that any following seqno writes only happen when the render
329 * cache is indeed flushed.
330 *
331 * Workaround: 4th PIPE_CONTROL command (except the ones with only
332 * read-cache invalidate bits set) must have the CS_STALL bit set. We
333 * don't try to be clever and just set it unconditionally.
334 */
335 flags |= PIPE_CONTROL_CS_STALL;
336
337 /* Just flush everything. Experiments have shown that reducing the
338 * number of bits based on the write domains has little performance
339 * impact.
340 */
341 if (mode & EMIT_FLUSH) {
342 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
343 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
344 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
345 flags |= PIPE_CONTROL_FLUSH_ENABLE;
346 }
347 if (mode & EMIT_INVALIDATE) {
348 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
355 /*
356 * TLB invalidate requires a post-sync write.
357 */
358 flags |= PIPE_CONTROL_QW_WRITE;
359 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360
361 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
362
363 /* Workaround: we must issue a pipe_control with CS-stall bit
364 * set before a pipe_control command that has the state cache
365 * invalidate bit set. */
366 gen7_render_ring_cs_stall_wa(rq);
367 }
368
369 cs = intel_ring_begin(rq, 4);
370 if (IS_ERR(cs))
371 return PTR_ERR(cs);
372
373 *cs++ = GFX_OP_PIPE_CONTROL(4);
374 *cs++ = flags;
375 *cs++ = scratch_addr;
376 *cs++ = 0;
377 intel_ring_advance(rq, cs);
378
379 return 0;
380 }
381
382 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
383 {
384 struct drm_i915_private *dev_priv = engine->i915;
385 struct page *page = virt_to_page(engine->status_page.page_addr);
386 phys_addr_t phys = PFN_PHYS(page_to_pfn(page));
387 u32 addr;
388
389 addr = lower_32_bits(phys);
390 if (INTEL_GEN(dev_priv) >= 4)
391 addr |= (phys >> 28) & 0xf0;
392
393 I915_WRITE(HWS_PGA, addr);
394 }
395
396 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
397 {
398 struct drm_i915_private *dev_priv = engine->i915;
399 i915_reg_t mmio;
400
401 /* The ring status page addresses are no longer next to the rest of
402 * the ring registers as of gen7.
403 */
404 if (IS_GEN7(dev_priv)) {
405 switch (engine->id) {
406 /*
407 * No more rings exist on Gen7. Default case is only to shut up
408 * gcc switch check warning.
409 */
410 default:
411 GEM_BUG_ON(engine->id);
412 case RCS:
413 mmio = RENDER_HWS_PGA_GEN7;
414 break;
415 case BCS:
416 mmio = BLT_HWS_PGA_GEN7;
417 break;
418 case VCS:
419 mmio = BSD_HWS_PGA_GEN7;
420 break;
421 case VECS:
422 mmio = VEBOX_HWS_PGA_GEN7;
423 break;
424 }
425 } else if (IS_GEN6(dev_priv)) {
426 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
427 } else {
428 mmio = RING_HWS_PGA(engine->mmio_base);
429 }
430
431 if (INTEL_GEN(dev_priv) >= 6) {
432 u32 mask = ~0u;
433
434 /*
435 * Keep the render interrupt unmasked as this papers over
436 * lost interrupts following a reset.
437 */
438 if (engine->id == RCS)
439 mask &= ~BIT(0);
440
441 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
442 }
443
444 I915_WRITE(mmio, engine->status_page.ggtt_offset);
445 POSTING_READ(mmio);
446
447 /* Flush the TLB for this page */
448 if (IS_GEN(dev_priv, 6, 7)) {
449 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
450
451 /* ring should be idle before issuing a sync flush*/
452 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
453
454 I915_WRITE(reg,
455 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
456 INSTPM_SYNC_FLUSH));
457 if (intel_wait_for_register(dev_priv,
458 reg, INSTPM_SYNC_FLUSH, 0,
459 1000))
460 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
461 engine->name);
462 }
463 }
464
465 static bool stop_ring(struct intel_engine_cs *engine)
466 {
467 struct drm_i915_private *dev_priv = engine->i915;
468
469 if (INTEL_GEN(dev_priv) > 2) {
470 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
471 if (intel_wait_for_register(dev_priv,
472 RING_MI_MODE(engine->mmio_base),
473 MODE_IDLE,
474 MODE_IDLE,
475 1000)) {
476 DRM_ERROR("%s : timed out trying to stop ring\n",
477 engine->name);
478 /* Sometimes we observe that the idle flag is not
479 * set even though the ring is empty. So double
480 * check before giving up.
481 */
482 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
483 return false;
484 }
485 }
486
487 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
488
489 I915_WRITE_HEAD(engine, 0);
490 I915_WRITE_TAIL(engine, 0);
491
492 /* The ring must be empty before it is disabled */
493 I915_WRITE_CTL(engine, 0);
494
495 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
496 }
497
498 static int init_ring_common(struct intel_engine_cs *engine)
499 {
500 struct drm_i915_private *dev_priv = engine->i915;
501 struct intel_ring *ring = engine->buffer;
502 int ret = 0;
503
504 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
505
506 if (!stop_ring(engine)) {
507 /* G45 ring initialization often fails to reset head to zero */
508 DRM_DEBUG_DRIVER("%s head not reset to zero "
509 "ctl %08x head %08x tail %08x start %08x\n",
510 engine->name,
511 I915_READ_CTL(engine),
512 I915_READ_HEAD(engine),
513 I915_READ_TAIL(engine),
514 I915_READ_START(engine));
515
516 if (!stop_ring(engine)) {
517 DRM_ERROR("failed to set %s head to zero "
518 "ctl %08x head %08x tail %08x start %08x\n",
519 engine->name,
520 I915_READ_CTL(engine),
521 I915_READ_HEAD(engine),
522 I915_READ_TAIL(engine),
523 I915_READ_START(engine));
524 ret = -EIO;
525 goto out;
526 }
527 }
528
529 if (HWS_NEEDS_PHYSICAL(dev_priv))
530 ring_setup_phys_status_page(engine);
531 else
532 intel_ring_setup_status_page(engine);
533
534 intel_engine_reset_breadcrumbs(engine);
535
536 /* Enforce ordering by reading HEAD register back */
537 I915_READ_HEAD(engine);
538
539 /* Initialize the ring. This must happen _after_ we've cleared the ring
540 * registers with the above sequence (the readback of the HEAD registers
541 * also enforces ordering), otherwise the hw might lose the new ring
542 * register values. */
543 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
544
545 /* WaClearRingBufHeadRegAtInit:ctg,elk */
546 if (I915_READ_HEAD(engine))
547 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
548 engine->name, I915_READ_HEAD(engine));
549
550 /* Check that the ring offsets point within the ring! */
551 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
552 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
553
554 intel_ring_update_space(ring);
555 I915_WRITE_HEAD(engine, ring->head);
556 I915_WRITE_TAIL(engine, ring->tail);
557 (void)I915_READ_TAIL(engine);
558
559 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
560
561 /* If the head is still not zero, the ring is dead */
562 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
563 RING_VALID, RING_VALID,
564 50)) {
565 DRM_ERROR("%s initialization failed "
566 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
567 engine->name,
568 I915_READ_CTL(engine),
569 I915_READ_CTL(engine) & RING_VALID,
570 I915_READ_HEAD(engine), ring->head,
571 I915_READ_TAIL(engine), ring->tail,
572 I915_READ_START(engine),
573 i915_ggtt_offset(ring->vma));
574 ret = -EIO;
575 goto out;
576 }
577
578 if (INTEL_GEN(dev_priv) > 2)
579 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
580
581 /* Papering over lost _interrupts_ immediately following the restart */
582 intel_engine_wakeup(engine);
583 out:
584 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
585
586 return ret;
587 }
588
589 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
590 {
591 intel_engine_stop_cs(engine);
592
593 if (engine->irq_seqno_barrier)
594 engine->irq_seqno_barrier(engine);
595
596 return i915_gem_find_active_request(engine);
597 }
598
599 static void skip_request(struct i915_request *rq)
600 {
601 void *vaddr = rq->ring->vaddr;
602 u32 head;
603
604 head = rq->infix;
605 if (rq->postfix < head) {
606 memset32(vaddr + head, MI_NOOP,
607 (rq->ring->size - head) / sizeof(u32));
608 head = 0;
609 }
610 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
611 }
612
613 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
614 {
615 GEM_TRACE("%s seqno=%x\n", engine->name, rq ? rq->global_seqno : 0);
616
617 /*
618 * Try to restore the logical GPU state to match the continuation
619 * of the request queue. If we skip the context/PD restore, then
620 * the next request may try to execute assuming that its context
621 * is valid and loaded on the GPU and so may try to access invalid
622 * memory, prompting repeated GPU hangs.
623 *
624 * If the request was guilty, we still restore the logical state
625 * in case the next request requires it (e.g. the aliasing ppgtt),
626 * but skip over the hung batch.
627 *
628 * If the request was innocent, we try to replay the request with
629 * the restored context.
630 */
631 if (rq) {
632 /* If the rq hung, jump to its breadcrumb and skip the batch */
633 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
634 if (rq->fence.error == -EIO)
635 skip_request(rq);
636 }
637 }
638
639 static void reset_finish(struct intel_engine_cs *engine)
640 {
641 }
642
643 static int intel_rcs_ctx_init(struct i915_request *rq)
644 {
645 int ret;
646
647 ret = intel_ctx_workarounds_emit(rq);
648 if (ret != 0)
649 return ret;
650
651 ret = i915_gem_render_state_emit(rq);
652 if (ret)
653 return ret;
654
655 return 0;
656 }
657
658 static int init_render_ring(struct intel_engine_cs *engine)
659 {
660 struct drm_i915_private *dev_priv = engine->i915;
661 int ret = init_ring_common(engine);
662 if (ret)
663 return ret;
664
665 intel_whitelist_workarounds_apply(engine);
666
667 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
668 if (IS_GEN(dev_priv, 4, 6))
669 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
670
671 /* We need to disable the AsyncFlip performance optimisations in order
672 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
673 * programmed to '1' on all products.
674 *
675 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
676 */
677 if (IS_GEN(dev_priv, 6, 7))
678 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
679
680 /* Required for the hardware to program scanline values for waiting */
681 /* WaEnableFlushTlbInvalidationMode:snb */
682 if (IS_GEN6(dev_priv))
683 I915_WRITE(GFX_MODE,
684 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
685
686 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
687 if (IS_GEN7(dev_priv))
688 I915_WRITE(GFX_MODE_GEN7,
689 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
690 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
691
692 if (IS_GEN6(dev_priv)) {
693 /* From the Sandybridge PRM, volume 1 part 3, page 24:
694 * "If this bit is set, STCunit will have LRA as replacement
695 * policy. [...] This bit must be reset. LRA replacement
696 * policy is not supported."
697 */
698 I915_WRITE(CACHE_MODE_0,
699 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
700 }
701
702 if (IS_GEN(dev_priv, 6, 7))
703 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
704
705 if (INTEL_GEN(dev_priv) >= 6)
706 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
707
708 return 0;
709 }
710
711 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
712 {
713 struct drm_i915_private *dev_priv = rq->i915;
714 struct intel_engine_cs *engine;
715 enum intel_engine_id id;
716 int num_rings = 0;
717
718 for_each_engine(engine, dev_priv, id) {
719 i915_reg_t mbox_reg;
720
721 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
722 continue;
723
724 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
725 if (i915_mmio_reg_valid(mbox_reg)) {
726 *cs++ = MI_LOAD_REGISTER_IMM(1);
727 *cs++ = i915_mmio_reg_offset(mbox_reg);
728 *cs++ = rq->global_seqno;
729 num_rings++;
730 }
731 }
732 if (num_rings & 1)
733 *cs++ = MI_NOOP;
734
735 return cs;
736 }
737
738 static void cancel_requests(struct intel_engine_cs *engine)
739 {
740 struct i915_request *request;
741 unsigned long flags;
742
743 spin_lock_irqsave(&engine->timeline.lock, flags);
744
745 /* Mark all submitted requests as skipped. */
746 list_for_each_entry(request, &engine->timeline.requests, link) {
747 GEM_BUG_ON(!request->global_seqno);
748 if (!i915_request_completed(request))
749 dma_fence_set_error(&request->fence, -EIO);
750 }
751 /* Remaining _unready_ requests will be nop'ed when submitted */
752
753 spin_unlock_irqrestore(&engine->timeline.lock, flags);
754 }
755
756 static void i9xx_submit_request(struct i915_request *request)
757 {
758 struct drm_i915_private *dev_priv = request->i915;
759
760 i915_request_submit(request);
761
762 I915_WRITE_TAIL(request->engine,
763 intel_ring_set_tail(request->ring, request->tail));
764 }
765
766 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
767 {
768 *cs++ = MI_STORE_DWORD_INDEX;
769 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
770 *cs++ = rq->global_seqno;
771 *cs++ = MI_USER_INTERRUPT;
772
773 rq->tail = intel_ring_offset(rq, cs);
774 assert_ring_tail_valid(rq->ring, rq->tail);
775 }
776
777 static const int i9xx_emit_breadcrumb_sz = 4;
778
779 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
780 {
781 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
782 }
783
784 static int
785 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
786 {
787 u32 dw1 = MI_SEMAPHORE_MBOX |
788 MI_SEMAPHORE_COMPARE |
789 MI_SEMAPHORE_REGISTER;
790 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
791 u32 *cs;
792
793 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
794
795 cs = intel_ring_begin(rq, 4);
796 if (IS_ERR(cs))
797 return PTR_ERR(cs);
798
799 *cs++ = dw1 | wait_mbox;
800 /* Throughout all of the GEM code, seqno passed implies our current
801 * seqno is >= the last seqno executed. However for hardware the
802 * comparison is strictly greater than.
803 */
804 *cs++ = signal->global_seqno - 1;
805 *cs++ = 0;
806 *cs++ = MI_NOOP;
807 intel_ring_advance(rq, cs);
808
809 return 0;
810 }
811
812 static void
813 gen5_seqno_barrier(struct intel_engine_cs *engine)
814 {
815 /* MI_STORE are internally buffered by the GPU and not flushed
816 * either by MI_FLUSH or SyncFlush or any other combination of
817 * MI commands.
818 *
819 * "Only the submission of the store operation is guaranteed.
820 * The write result will be complete (coherent) some time later
821 * (this is practically a finite period but there is no guaranteed
822 * latency)."
823 *
824 * Empirically, we observe that we need a delay of at least 75us to
825 * be sure that the seqno write is visible by the CPU.
826 */
827 usleep_range(125, 250);
828 }
829
830 static void
831 gen6_seqno_barrier(struct intel_engine_cs *engine)
832 {
833 struct drm_i915_private *dev_priv = engine->i915;
834
835 /* Workaround to force correct ordering between irq and seqno writes on
836 * ivb (and maybe also on snb) by reading from a CS register (like
837 * ACTHD) before reading the status page.
838 *
839 * Note that this effectively stalls the read by the time it takes to
840 * do a memory transaction, which more or less ensures that the write
841 * from the GPU has sufficient time to invalidate the CPU cacheline.
842 * Alternatively we could delay the interrupt from the CS ring to give
843 * the write time to land, but that would incur a delay after every
844 * batch i.e. much more frequent than a delay when waiting for the
845 * interrupt (with the same net latency).
846 *
847 * Also note that to prevent whole machine hangs on gen7, we have to
848 * take the spinlock to guard against concurrent cacheline access.
849 */
850 spin_lock_irq(&dev_priv->uncore.lock);
851 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
852 spin_unlock_irq(&dev_priv->uncore.lock);
853 }
854
855 static void
856 gen5_irq_enable(struct intel_engine_cs *engine)
857 {
858 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
859 }
860
861 static void
862 gen5_irq_disable(struct intel_engine_cs *engine)
863 {
864 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
865 }
866
867 static void
868 i9xx_irq_enable(struct intel_engine_cs *engine)
869 {
870 struct drm_i915_private *dev_priv = engine->i915;
871
872 dev_priv->irq_mask &= ~engine->irq_enable_mask;
873 I915_WRITE(IMR, dev_priv->irq_mask);
874 POSTING_READ_FW(RING_IMR(engine->mmio_base));
875 }
876
877 static void
878 i9xx_irq_disable(struct intel_engine_cs *engine)
879 {
880 struct drm_i915_private *dev_priv = engine->i915;
881
882 dev_priv->irq_mask |= engine->irq_enable_mask;
883 I915_WRITE(IMR, dev_priv->irq_mask);
884 }
885
886 static void
887 i8xx_irq_enable(struct intel_engine_cs *engine)
888 {
889 struct drm_i915_private *dev_priv = engine->i915;
890
891 dev_priv->irq_mask &= ~engine->irq_enable_mask;
892 I915_WRITE16(IMR, dev_priv->irq_mask);
893 POSTING_READ16(RING_IMR(engine->mmio_base));
894 }
895
896 static void
897 i8xx_irq_disable(struct intel_engine_cs *engine)
898 {
899 struct drm_i915_private *dev_priv = engine->i915;
900
901 dev_priv->irq_mask |= engine->irq_enable_mask;
902 I915_WRITE16(IMR, dev_priv->irq_mask);
903 }
904
905 static int
906 bsd_ring_flush(struct i915_request *rq, u32 mode)
907 {
908 u32 *cs;
909
910 cs = intel_ring_begin(rq, 2);
911 if (IS_ERR(cs))
912 return PTR_ERR(cs);
913
914 *cs++ = MI_FLUSH;
915 *cs++ = MI_NOOP;
916 intel_ring_advance(rq, cs);
917 return 0;
918 }
919
920 static void
921 gen6_irq_enable(struct intel_engine_cs *engine)
922 {
923 struct drm_i915_private *dev_priv = engine->i915;
924
925 I915_WRITE_IMR(engine,
926 ~(engine->irq_enable_mask |
927 engine->irq_keep_mask));
928 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
929 }
930
931 static void
932 gen6_irq_disable(struct intel_engine_cs *engine)
933 {
934 struct drm_i915_private *dev_priv = engine->i915;
935
936 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
937 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
938 }
939
940 static void
941 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
942 {
943 struct drm_i915_private *dev_priv = engine->i915;
944
945 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
946 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
947 }
948
949 static void
950 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
951 {
952 struct drm_i915_private *dev_priv = engine->i915;
953
954 I915_WRITE_IMR(engine, ~0);
955 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
956 }
957
958 static int
959 i965_emit_bb_start(struct i915_request *rq,
960 u64 offset, u32 length,
961 unsigned int dispatch_flags)
962 {
963 u32 *cs;
964
965 cs = intel_ring_begin(rq, 2);
966 if (IS_ERR(cs))
967 return PTR_ERR(cs);
968
969 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
970 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
971 *cs++ = offset;
972 intel_ring_advance(rq, cs);
973
974 return 0;
975 }
976
977 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
978 #define I830_BATCH_LIMIT SZ_256K
979 #define I830_TLB_ENTRIES (2)
980 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
981 static int
982 i830_emit_bb_start(struct i915_request *rq,
983 u64 offset, u32 len,
984 unsigned int dispatch_flags)
985 {
986 u32 *cs, cs_offset = i915_scratch_offset(rq->i915);
987
988 GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
989
990 cs = intel_ring_begin(rq, 6);
991 if (IS_ERR(cs))
992 return PTR_ERR(cs);
993
994 /* Evict the invalid PTE TLBs */
995 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
996 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
997 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
998 *cs++ = cs_offset;
999 *cs++ = 0xdeadbeef;
1000 *cs++ = MI_NOOP;
1001 intel_ring_advance(rq, cs);
1002
1003 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1004 if (len > I830_BATCH_LIMIT)
1005 return -ENOSPC;
1006
1007 cs = intel_ring_begin(rq, 6 + 2);
1008 if (IS_ERR(cs))
1009 return PTR_ERR(cs);
1010
1011 /* Blit the batch (which has now all relocs applied) to the
1012 * stable batch scratch bo area (so that the CS never
1013 * stumbles over its tlb invalidation bug) ...
1014 */
1015 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1016 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1017 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1018 *cs++ = cs_offset;
1019 *cs++ = 4096;
1020 *cs++ = offset;
1021
1022 *cs++ = MI_FLUSH;
1023 *cs++ = MI_NOOP;
1024 intel_ring_advance(rq, cs);
1025
1026 /* ... and execute it. */
1027 offset = cs_offset;
1028 }
1029
1030 cs = intel_ring_begin(rq, 2);
1031 if (IS_ERR(cs))
1032 return PTR_ERR(cs);
1033
1034 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1035 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1036 MI_BATCH_NON_SECURE);
1037 intel_ring_advance(rq, cs);
1038
1039 return 0;
1040 }
1041
1042 static int
1043 i915_emit_bb_start(struct i915_request *rq,
1044 u64 offset, u32 len,
1045 unsigned int dispatch_flags)
1046 {
1047 u32 *cs;
1048
1049 cs = intel_ring_begin(rq, 2);
1050 if (IS_ERR(cs))
1051 return PTR_ERR(cs);
1052
1053 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1054 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1055 MI_BATCH_NON_SECURE);
1056 intel_ring_advance(rq, cs);
1057
1058 return 0;
1059 }
1060
1061 int intel_ring_pin(struct intel_ring *ring)
1062 {
1063 struct i915_vma *vma = ring->vma;
1064 enum i915_map_type map =
1065 HAS_LLC(vma->vm->i915) ? I915_MAP_WB : I915_MAP_WC;
1066 unsigned int flags;
1067 void *addr;
1068 int ret;
1069
1070 GEM_BUG_ON(ring->vaddr);
1071
1072 flags = PIN_GLOBAL;
1073
1074 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1075 flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1076
1077 if (vma->obj->stolen)
1078 flags |= PIN_MAPPABLE;
1079 else
1080 flags |= PIN_HIGH;
1081
1082 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1083 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1084 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1085 else
1086 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1087 if (unlikely(ret))
1088 return ret;
1089 }
1090
1091 ret = i915_vma_pin(vma, 0, 0, flags);
1092 if (unlikely(ret))
1093 return ret;
1094
1095 if (i915_vma_is_map_and_fenceable(vma))
1096 addr = (void __force *)i915_vma_pin_iomap(vma);
1097 else
1098 addr = i915_gem_object_pin_map(vma->obj, map);
1099 if (IS_ERR(addr))
1100 goto err;
1101
1102 vma->obj->pin_global++;
1103
1104 ring->vaddr = addr;
1105 return 0;
1106
1107 err:
1108 i915_vma_unpin(vma);
1109 return PTR_ERR(addr);
1110 }
1111
1112 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1113 {
1114 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1115
1116 ring->tail = tail;
1117 ring->head = tail;
1118 ring->emit = tail;
1119 intel_ring_update_space(ring);
1120 }
1121
1122 void intel_ring_unpin(struct intel_ring *ring)
1123 {
1124 GEM_BUG_ON(!ring->vma);
1125 GEM_BUG_ON(!ring->vaddr);
1126
1127 /* Discard any unused bytes beyond that submitted to hw. */
1128 intel_ring_reset(ring, ring->tail);
1129
1130 if (i915_vma_is_map_and_fenceable(ring->vma))
1131 i915_vma_unpin_iomap(ring->vma);
1132 else
1133 i915_gem_object_unpin_map(ring->vma->obj);
1134 ring->vaddr = NULL;
1135
1136 ring->vma->obj->pin_global--;
1137 i915_vma_unpin(ring->vma);
1138 }
1139
1140 static struct i915_vma *
1141 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1142 {
1143 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1144 struct drm_i915_gem_object *obj;
1145 struct i915_vma *vma;
1146
1147 obj = i915_gem_object_create_stolen(dev_priv, size);
1148 if (!obj)
1149 obj = i915_gem_object_create_internal(dev_priv, size);
1150 if (IS_ERR(obj))
1151 return ERR_CAST(obj);
1152
1153 /*
1154 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1155 * if supported by the platform's GGTT.
1156 */
1157 if (vm->has_read_only)
1158 i915_gem_object_set_readonly(obj);
1159
1160 vma = i915_vma_instance(obj, vm, NULL);
1161 if (IS_ERR(vma))
1162 goto err;
1163
1164 return vma;
1165
1166 err:
1167 i915_gem_object_put(obj);
1168 return vma;
1169 }
1170
1171 struct intel_ring *
1172 intel_engine_create_ring(struct intel_engine_cs *engine,
1173 struct i915_timeline *timeline,
1174 int size)
1175 {
1176 struct intel_ring *ring;
1177 struct i915_vma *vma;
1178
1179 GEM_BUG_ON(!is_power_of_2(size));
1180 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1181 GEM_BUG_ON(timeline == &engine->timeline);
1182 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1183
1184 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1185 if (!ring)
1186 return ERR_PTR(-ENOMEM);
1187
1188 INIT_LIST_HEAD(&ring->request_list);
1189 ring->timeline = i915_timeline_get(timeline);
1190
1191 ring->size = size;
1192 /* Workaround an erratum on the i830 which causes a hang if
1193 * the TAIL pointer points to within the last 2 cachelines
1194 * of the buffer.
1195 */
1196 ring->effective_size = size;
1197 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1198 ring->effective_size -= 2 * CACHELINE_BYTES;
1199
1200 intel_ring_update_space(ring);
1201
1202 vma = intel_ring_create_vma(engine->i915, size);
1203 if (IS_ERR(vma)) {
1204 kfree(ring);
1205 return ERR_CAST(vma);
1206 }
1207 ring->vma = vma;
1208
1209 return ring;
1210 }
1211
1212 void
1213 intel_ring_free(struct intel_ring *ring)
1214 {
1215 struct drm_i915_gem_object *obj = ring->vma->obj;
1216
1217 i915_vma_close(ring->vma);
1218 __i915_gem_object_release_unless_active(obj);
1219
1220 i915_timeline_put(ring->timeline);
1221 kfree(ring);
1222 }
1223
1224 static void intel_ring_context_destroy(struct intel_context *ce)
1225 {
1226 GEM_BUG_ON(ce->pin_count);
1227
1228 if (!ce->state)
1229 return;
1230
1231 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1232 i915_gem_object_put(ce->state->obj);
1233 }
1234
1235 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1236 {
1237 struct i915_hw_ppgtt *ppgtt;
1238 int err = 0;
1239
1240 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1241 if (ppgtt)
1242 err = gen6_ppgtt_pin(ppgtt);
1243
1244 return err;
1245 }
1246
1247 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1248 {
1249 struct i915_hw_ppgtt *ppgtt;
1250
1251 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1252 if (ppgtt)
1253 gen6_ppgtt_unpin(ppgtt);
1254 }
1255
1256 static int __context_pin(struct intel_context *ce)
1257 {
1258 struct i915_vma *vma;
1259 int err;
1260
1261 vma = ce->state;
1262 if (!vma)
1263 return 0;
1264
1265 /*
1266 * Clear this page out of any CPU caches for coherent swap-in/out.
1267 * We only want to do this on the first bind so that we do not stall
1268 * on an active context (which by nature is already on the GPU).
1269 */
1270 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1271 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1272 if (err)
1273 return err;
1274 }
1275
1276 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1277 if (err)
1278 return err;
1279
1280 /*
1281 * And mark is as a globally pinned object to let the shrinker know
1282 * it cannot reclaim the object until we release it.
1283 */
1284 vma->obj->pin_global++;
1285
1286 return 0;
1287 }
1288
1289 static void __context_unpin(struct intel_context *ce)
1290 {
1291 struct i915_vma *vma;
1292
1293 vma = ce->state;
1294 if (!vma)
1295 return;
1296
1297 vma->obj->pin_global--;
1298 i915_vma_unpin(vma);
1299 }
1300
1301 static void intel_ring_context_unpin(struct intel_context *ce)
1302 {
1303 __context_unpin_ppgtt(ce->gem_context);
1304 __context_unpin(ce);
1305
1306 i915_gem_context_put(ce->gem_context);
1307 }
1308
1309 static struct i915_vma *
1310 alloc_context_vma(struct intel_engine_cs *engine)
1311 {
1312 struct drm_i915_private *i915 = engine->i915;
1313 struct drm_i915_gem_object *obj;
1314 struct i915_vma *vma;
1315 int err;
1316
1317 obj = i915_gem_object_create(i915, engine->context_size);
1318 if (IS_ERR(obj))
1319 return ERR_CAST(obj);
1320
1321 if (engine->default_state) {
1322 void *defaults, *vaddr;
1323
1324 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1325 if (IS_ERR(vaddr)) {
1326 err = PTR_ERR(vaddr);
1327 goto err_obj;
1328 }
1329
1330 defaults = i915_gem_object_pin_map(engine->default_state,
1331 I915_MAP_WB);
1332 if (IS_ERR(defaults)) {
1333 err = PTR_ERR(defaults);
1334 goto err_map;
1335 }
1336
1337 memcpy(vaddr, defaults, engine->context_size);
1338
1339 i915_gem_object_unpin_map(engine->default_state);
1340 i915_gem_object_unpin_map(obj);
1341 }
1342
1343 /*
1344 * Try to make the context utilize L3 as well as LLC.
1345 *
1346 * On VLV we don't have L3 controls in the PTEs so we
1347 * shouldn't touch the cache level, especially as that
1348 * would make the object snooped which might have a
1349 * negative performance impact.
1350 *
1351 * Snooping is required on non-llc platforms in execlist
1352 * mode, but since all GGTT accesses use PAT entry 0 we
1353 * get snooping anyway regardless of cache_level.
1354 *
1355 * This is only applicable for Ivy Bridge devices since
1356 * later platforms don't have L3 control bits in the PTE.
1357 */
1358 if (IS_IVYBRIDGE(i915)) {
1359 /* Ignore any error, regard it as a simple optimisation */
1360 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1361 }
1362
1363 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1364 if (IS_ERR(vma)) {
1365 err = PTR_ERR(vma);
1366 goto err_obj;
1367 }
1368
1369 return vma;
1370
1371 err_map:
1372 i915_gem_object_unpin_map(obj);
1373 err_obj:
1374 i915_gem_object_put(obj);
1375 return ERR_PTR(err);
1376 }
1377
1378 static struct intel_context *
1379 __ring_context_pin(struct intel_engine_cs *engine,
1380 struct i915_gem_context *ctx,
1381 struct intel_context *ce)
1382 {
1383 int err;
1384
1385 if (!ce->state && engine->context_size) {
1386 struct i915_vma *vma;
1387
1388 vma = alloc_context_vma(engine);
1389 if (IS_ERR(vma)) {
1390 err = PTR_ERR(vma);
1391 goto err;
1392 }
1393
1394 ce->state = vma;
1395 }
1396
1397 err = __context_pin(ce);
1398 if (err)
1399 goto err;
1400
1401 err = __context_pin_ppgtt(ce->gem_context);
1402 if (err)
1403 goto err_unpin;
1404
1405 i915_gem_context_get(ctx);
1406
1407 /* One ringbuffer to rule them all */
1408 GEM_BUG_ON(!engine->buffer);
1409 ce->ring = engine->buffer;
1410
1411 return ce;
1412
1413 err_unpin:
1414 __context_unpin(ce);
1415 err:
1416 ce->pin_count = 0;
1417 return ERR_PTR(err);
1418 }
1419
1420 static const struct intel_context_ops ring_context_ops = {
1421 .unpin = intel_ring_context_unpin,
1422 .destroy = intel_ring_context_destroy,
1423 };
1424
1425 static struct intel_context *
1426 intel_ring_context_pin(struct intel_engine_cs *engine,
1427 struct i915_gem_context *ctx)
1428 {
1429 struct intel_context *ce = to_intel_context(ctx, engine);
1430
1431 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1432
1433 if (likely(ce->pin_count++))
1434 return ce;
1435 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1436
1437 ce->ops = &ring_context_ops;
1438
1439 return __ring_context_pin(engine, ctx, ce);
1440 }
1441
1442 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1443 {
1444 struct i915_timeline *timeline;
1445 struct intel_ring *ring;
1446 int err;
1447
1448 intel_engine_setup_common(engine);
1449
1450 timeline = i915_timeline_create(engine->i915, engine->name);
1451 if (IS_ERR(timeline)) {
1452 err = PTR_ERR(timeline);
1453 goto err;
1454 }
1455
1456 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1457 i915_timeline_put(timeline);
1458 if (IS_ERR(ring)) {
1459 err = PTR_ERR(ring);
1460 goto err;
1461 }
1462
1463 err = intel_ring_pin(ring);
1464 if (err)
1465 goto err_ring;
1466
1467 GEM_BUG_ON(engine->buffer);
1468 engine->buffer = ring;
1469
1470 err = intel_engine_init_common(engine);
1471 if (err)
1472 goto err_unpin;
1473
1474 return 0;
1475
1476 err_unpin:
1477 intel_ring_unpin(ring);
1478 err_ring:
1479 intel_ring_free(ring);
1480 err:
1481 intel_engine_cleanup_common(engine);
1482 return err;
1483 }
1484
1485 void intel_engine_cleanup(struct intel_engine_cs *engine)
1486 {
1487 struct drm_i915_private *dev_priv = engine->i915;
1488
1489 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1490 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1491
1492 intel_ring_unpin(engine->buffer);
1493 intel_ring_free(engine->buffer);
1494
1495 if (engine->cleanup)
1496 engine->cleanup(engine);
1497
1498 intel_engine_cleanup_common(engine);
1499
1500 dev_priv->engine[engine->id] = NULL;
1501 kfree(engine);
1502 }
1503
1504 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1505 {
1506 struct intel_engine_cs *engine;
1507 enum intel_engine_id id;
1508
1509 /* Restart from the beginning of the rings for convenience */
1510 for_each_engine(engine, dev_priv, id)
1511 intel_ring_reset(engine->buffer, 0);
1512 }
1513
1514 static int load_pd_dir(struct i915_request *rq,
1515 const struct i915_hw_ppgtt *ppgtt)
1516 {
1517 const struct intel_engine_cs * const engine = rq->engine;
1518 u32 *cs;
1519
1520 cs = intel_ring_begin(rq, 6);
1521 if (IS_ERR(cs))
1522 return PTR_ERR(cs);
1523
1524 *cs++ = MI_LOAD_REGISTER_IMM(1);
1525 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1526 *cs++ = PP_DIR_DCLV_2G;
1527
1528 *cs++ = MI_LOAD_REGISTER_IMM(1);
1529 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1530 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1531
1532 intel_ring_advance(rq, cs);
1533
1534 return 0;
1535 }
1536
1537 static int flush_pd_dir(struct i915_request *rq)
1538 {
1539 const struct intel_engine_cs * const engine = rq->engine;
1540 u32 *cs;
1541
1542 cs = intel_ring_begin(rq, 4);
1543 if (IS_ERR(cs))
1544 return PTR_ERR(cs);
1545
1546 /* Stall until the page table load is complete */
1547 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1548 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1549 *cs++ = i915_scratch_offset(rq->i915);
1550 *cs++ = MI_NOOP;
1551
1552 intel_ring_advance(rq, cs);
1553 return 0;
1554 }
1555
1556 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1557 {
1558 struct drm_i915_private *i915 = rq->i915;
1559 struct intel_engine_cs *engine = rq->engine;
1560 enum intel_engine_id id;
1561 const int num_rings =
1562 /* Use an extended w/a on gen7 if signalling from other rings */
1563 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1564 INTEL_INFO(i915)->num_rings - 1 :
1565 0;
1566 bool force_restore = false;
1567 int len;
1568 u32 *cs;
1569
1570 flags |= MI_MM_SPACE_GTT;
1571 if (IS_HASWELL(i915))
1572 /* These flags are for resource streamer on HSW+ */
1573 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1574 else
1575 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1576
1577 len = 4;
1578 if (IS_GEN7(i915))
1579 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1580 if (flags & MI_FORCE_RESTORE) {
1581 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1582 flags &= ~MI_FORCE_RESTORE;
1583 force_restore = true;
1584 len += 2;
1585 }
1586
1587 cs = intel_ring_begin(rq, len);
1588 if (IS_ERR(cs))
1589 return PTR_ERR(cs);
1590
1591 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1592 if (IS_GEN7(i915)) {
1593 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1594 if (num_rings) {
1595 struct intel_engine_cs *signaller;
1596
1597 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1598 for_each_engine(signaller, i915, id) {
1599 if (signaller == engine)
1600 continue;
1601
1602 *cs++ = i915_mmio_reg_offset(
1603 RING_PSMI_CTL(signaller->mmio_base));
1604 *cs++ = _MASKED_BIT_ENABLE(
1605 GEN6_PSMI_SLEEP_MSG_DISABLE);
1606 }
1607 }
1608 }
1609
1610 if (force_restore) {
1611 /*
1612 * The HW doesn't handle being told to restore the current
1613 * context very well. Quite often it likes goes to go off and
1614 * sulk, especially when it is meant to be reloading PP_DIR.
1615 * A very simple fix to force the reload is to simply switch
1616 * away from the current context and back again.
1617 *
1618 * Note that the kernel_context will contain random state
1619 * following the INHIBIT_RESTORE. We accept this since we
1620 * never use the kernel_context state; it is merely a
1621 * placeholder we use to flush other contexts.
1622 */
1623 *cs++ = MI_SET_CONTEXT;
1624 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1625 engine)->state) |
1626 MI_MM_SPACE_GTT |
1627 MI_RESTORE_INHIBIT;
1628 }
1629
1630 *cs++ = MI_NOOP;
1631 *cs++ = MI_SET_CONTEXT;
1632 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1633 /*
1634 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1635 * WaMiSetContext_Hang:snb,ivb,vlv
1636 */
1637 *cs++ = MI_NOOP;
1638
1639 if (IS_GEN7(i915)) {
1640 if (num_rings) {
1641 struct intel_engine_cs *signaller;
1642 i915_reg_t last_reg = {}; /* keep gcc quiet */
1643
1644 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1645 for_each_engine(signaller, i915, id) {
1646 if (signaller == engine)
1647 continue;
1648
1649 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1650 *cs++ = i915_mmio_reg_offset(last_reg);
1651 *cs++ = _MASKED_BIT_DISABLE(
1652 GEN6_PSMI_SLEEP_MSG_DISABLE);
1653 }
1654
1655 /* Insert a delay before the next switch! */
1656 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1657 *cs++ = i915_mmio_reg_offset(last_reg);
1658 *cs++ = i915_scratch_offset(rq->i915);
1659 *cs++ = MI_NOOP;
1660 }
1661 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1662 }
1663
1664 intel_ring_advance(rq, cs);
1665
1666 return 0;
1667 }
1668
1669 static int remap_l3(struct i915_request *rq, int slice)
1670 {
1671 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1672 int i;
1673
1674 if (!remap_info)
1675 return 0;
1676
1677 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1678 if (IS_ERR(cs))
1679 return PTR_ERR(cs);
1680
1681 /*
1682 * Note: We do not worry about the concurrent register cacheline hang
1683 * here because no other code should access these registers other than
1684 * at initialization time.
1685 */
1686 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1687 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1688 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1689 *cs++ = remap_info[i];
1690 }
1691 *cs++ = MI_NOOP;
1692 intel_ring_advance(rq, cs);
1693
1694 return 0;
1695 }
1696
1697 static int switch_context(struct i915_request *rq)
1698 {
1699 struct intel_engine_cs *engine = rq->engine;
1700 struct i915_gem_context *ctx = rq->gem_context;
1701 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1702 unsigned int unwind_mm = 0;
1703 u32 hw_flags = 0;
1704 int ret, i;
1705
1706 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1707 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1708
1709 if (ppgtt) {
1710 int loops;
1711
1712 /*
1713 * Baytail takes a little more convincing that it really needs
1714 * to reload the PD between contexts. It is not just a little
1715 * longer, as adding more stalls after the load_pd_dir (i.e.
1716 * adding a long loop around flush_pd_dir) is not as effective
1717 * as reloading the PD umpteen times. 32 is derived from
1718 * experimentation (gem_exec_parallel/fds) and has no good
1719 * explanation.
1720 */
1721 loops = 1;
1722 if (engine->id == BCS && IS_VALLEYVIEW(engine->i915))
1723 loops = 32;
1724
1725 do {
1726 ret = load_pd_dir(rq, ppgtt);
1727 if (ret)
1728 goto err;
1729 } while (--loops);
1730
1731 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1732 unwind_mm = intel_engine_flag(engine);
1733 ppgtt->pd_dirty_rings &= ~unwind_mm;
1734 hw_flags = MI_FORCE_RESTORE;
1735 }
1736 }
1737
1738 if (rq->hw_context->state) {
1739 GEM_BUG_ON(engine->id != RCS);
1740
1741 /*
1742 * The kernel context(s) is treated as pure scratch and is not
1743 * expected to retain any state (as we sacrifice it during
1744 * suspend and on resume it may be corrupted). This is ok,
1745 * as nothing actually executes using the kernel context; it
1746 * is purely used for flushing user contexts.
1747 */
1748 if (i915_gem_context_is_kernel(ctx))
1749 hw_flags = MI_RESTORE_INHIBIT;
1750
1751 ret = mi_set_context(rq, hw_flags);
1752 if (ret)
1753 goto err_mm;
1754 }
1755
1756 if (ppgtt) {
1757 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1758 if (ret)
1759 goto err_mm;
1760
1761 ret = flush_pd_dir(rq);
1762 if (ret)
1763 goto err_mm;
1764
1765 /*
1766 * Not only do we need a full barrier (post-sync write) after
1767 * invalidating the TLBs, but we need to wait a little bit
1768 * longer. Whether this is merely delaying us, or the
1769 * subsequent flush is a key part of serialising with the
1770 * post-sync op, this extra pass appears vital before a
1771 * mm switch!
1772 */
1773 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1774 if (ret)
1775 goto err_mm;
1776
1777 ret = engine->emit_flush(rq, EMIT_FLUSH);
1778 if (ret)
1779 goto err_mm;
1780 }
1781
1782 if (ctx->remap_slice) {
1783 for (i = 0; i < MAX_L3_SLICES; i++) {
1784 if (!(ctx->remap_slice & BIT(i)))
1785 continue;
1786
1787 ret = remap_l3(rq, i);
1788 if (ret)
1789 goto err_mm;
1790 }
1791
1792 ctx->remap_slice = 0;
1793 }
1794
1795 return 0;
1796
1797 err_mm:
1798 if (unwind_mm)
1799 ppgtt->pd_dirty_rings |= unwind_mm;
1800 err:
1801 return ret;
1802 }
1803
1804 static int ring_request_alloc(struct i915_request *request)
1805 {
1806 int ret;
1807
1808 GEM_BUG_ON(!request->hw_context->pin_count);
1809
1810 /* Flush enough space to reduce the likelihood of waiting after
1811 * we start building the request - in which case we will just
1812 * have to repeat work.
1813 */
1814 request->reserved_space += LEGACY_REQUEST_SIZE;
1815
1816 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1817 if (ret)
1818 return ret;
1819
1820 ret = switch_context(request);
1821 if (ret)
1822 return ret;
1823
1824 request->reserved_space -= LEGACY_REQUEST_SIZE;
1825 return 0;
1826 }
1827
1828 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1829 {
1830 struct i915_request *target;
1831 long timeout;
1832
1833 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1834
1835 if (intel_ring_update_space(ring) >= bytes)
1836 return 0;
1837
1838 GEM_BUG_ON(list_empty(&ring->request_list));
1839 list_for_each_entry(target, &ring->request_list, ring_link) {
1840 /* Would completion of this request free enough space? */
1841 if (bytes <= __intel_ring_space(target->postfix,
1842 ring->emit, ring->size))
1843 break;
1844 }
1845
1846 if (WARN_ON(&target->ring_link == &ring->request_list))
1847 return -ENOSPC;
1848
1849 timeout = i915_request_wait(target,
1850 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1851 MAX_SCHEDULE_TIMEOUT);
1852 if (timeout < 0)
1853 return timeout;
1854
1855 i915_request_retire_upto(target);
1856
1857 intel_ring_update_space(ring);
1858 GEM_BUG_ON(ring->space < bytes);
1859 return 0;
1860 }
1861
1862 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1863 {
1864 GEM_BUG_ON(bytes > ring->effective_size);
1865 if (unlikely(bytes > ring->effective_size - ring->emit))
1866 bytes += ring->size - ring->emit;
1867
1868 if (unlikely(bytes > ring->space)) {
1869 int ret = wait_for_space(ring, bytes);
1870 if (unlikely(ret))
1871 return ret;
1872 }
1873
1874 GEM_BUG_ON(ring->space < bytes);
1875 return 0;
1876 }
1877
1878 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1879 {
1880 struct intel_ring *ring = rq->ring;
1881 const unsigned int remain_usable = ring->effective_size - ring->emit;
1882 const unsigned int bytes = num_dwords * sizeof(u32);
1883 unsigned int need_wrap = 0;
1884 unsigned int total_bytes;
1885 u32 *cs;
1886
1887 /* Packets must be qword aligned. */
1888 GEM_BUG_ON(num_dwords & 1);
1889
1890 total_bytes = bytes + rq->reserved_space;
1891 GEM_BUG_ON(total_bytes > ring->effective_size);
1892
1893 if (unlikely(total_bytes > remain_usable)) {
1894 const int remain_actual = ring->size - ring->emit;
1895
1896 if (bytes > remain_usable) {
1897 /*
1898 * Not enough space for the basic request. So need to
1899 * flush out the remainder and then wait for
1900 * base + reserved.
1901 */
1902 total_bytes += remain_actual;
1903 need_wrap = remain_actual | 1;
1904 } else {
1905 /*
1906 * The base request will fit but the reserved space
1907 * falls off the end. So we don't need an immediate
1908 * wrap and only need to effectively wait for the
1909 * reserved size from the start of ringbuffer.
1910 */
1911 total_bytes = rq->reserved_space + remain_actual;
1912 }
1913 }
1914
1915 if (unlikely(total_bytes > ring->space)) {
1916 int ret;
1917
1918 /*
1919 * Space is reserved in the ringbuffer for finalising the
1920 * request, as that cannot be allowed to fail. During request
1921 * finalisation, reserved_space is set to 0 to stop the
1922 * overallocation and the assumption is that then we never need
1923 * to wait (which has the risk of failing with EINTR).
1924 *
1925 * See also i915_request_alloc() and i915_request_add().
1926 */
1927 GEM_BUG_ON(!rq->reserved_space);
1928
1929 ret = wait_for_space(ring, total_bytes);
1930 if (unlikely(ret))
1931 return ERR_PTR(ret);
1932 }
1933
1934 if (unlikely(need_wrap)) {
1935 need_wrap &= ~1;
1936 GEM_BUG_ON(need_wrap > ring->space);
1937 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1938 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1939
1940 /* Fill the tail with MI_NOOP */
1941 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1942 ring->space -= need_wrap;
1943 ring->emit = 0;
1944 }
1945
1946 GEM_BUG_ON(ring->emit > ring->size - bytes);
1947 GEM_BUG_ON(ring->space < bytes);
1948 cs = ring->vaddr + ring->emit;
1949 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1950 ring->emit += bytes;
1951 ring->space -= bytes;
1952
1953 return cs;
1954 }
1955
1956 /* Align the ring tail to a cacheline boundary */
1957 int intel_ring_cacheline_align(struct i915_request *rq)
1958 {
1959 int num_dwords;
1960 void *cs;
1961
1962 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1963 if (num_dwords == 0)
1964 return 0;
1965
1966 num_dwords = CACHELINE_DWORDS - num_dwords;
1967 GEM_BUG_ON(num_dwords & 1);
1968
1969 cs = intel_ring_begin(rq, num_dwords);
1970 if (IS_ERR(cs))
1971 return PTR_ERR(cs);
1972
1973 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1974 intel_ring_advance(rq, cs);
1975
1976 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1977 return 0;
1978 }
1979
1980 static void gen6_bsd_submit_request(struct i915_request *request)
1981 {
1982 struct drm_i915_private *dev_priv = request->i915;
1983
1984 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1985
1986 /* Every tail move must follow the sequence below */
1987
1988 /* Disable notification that the ring is IDLE. The GT
1989 * will then assume that it is busy and bring it out of rc6.
1990 */
1991 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1992 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1993
1994 /* Clear the context id. Here be magic! */
1995 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1996
1997 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1998 if (__intel_wait_for_register_fw(dev_priv,
1999 GEN6_BSD_SLEEP_PSMI_CONTROL,
2000 GEN6_BSD_SLEEP_INDICATOR,
2001 0,
2002 1000, 0, NULL))
2003 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2004
2005 /* Now that the ring is fully powered up, update the tail */
2006 i9xx_submit_request(request);
2007
2008 /* Let the ring send IDLE messages to the GT again,
2009 * and so let it sleep to conserve power when idle.
2010 */
2011 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2012 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2013
2014 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2015 }
2016
2017 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2018 {
2019 u32 cmd, *cs;
2020
2021 cs = intel_ring_begin(rq, 4);
2022 if (IS_ERR(cs))
2023 return PTR_ERR(cs);
2024
2025 cmd = MI_FLUSH_DW;
2026
2027 /*
2028 * We always require a command barrier so that subsequent
2029 * commands, such as breadcrumb interrupts, are strictly ordered
2030 * wrt the contents of the write cache being flushed to memory
2031 * (and thus being coherent from the CPU).
2032 */
2033 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2034
2035 /*
2036 * Bspec vol 1c.3 - blitter engine command streamer:
2037 * "If ENABLED, all TLBs will be invalidated once the flush
2038 * operation is complete. This bit is only valid when the
2039 * Post-Sync Operation field is a value of 1h or 3h."
2040 */
2041 cmd |= flags;
2042
2043 *cs++ = cmd;
2044 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2045 *cs++ = 0;
2046 *cs++ = MI_NOOP;
2047
2048 intel_ring_advance(rq, cs);
2049
2050 return 0;
2051 }
2052
2053 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2054 {
2055 return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2056 }
2057
2058 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2059 {
2060 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2061 }
2062
2063 static int
2064 hsw_emit_bb_start(struct i915_request *rq,
2065 u64 offset, u32 len,
2066 unsigned int dispatch_flags)
2067 {
2068 u32 *cs;
2069
2070 cs = intel_ring_begin(rq, 2);
2071 if (IS_ERR(cs))
2072 return PTR_ERR(cs);
2073
2074 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2075 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2076 /* bit0-7 is the length on GEN6+ */
2077 *cs++ = offset;
2078 intel_ring_advance(rq, cs);
2079
2080 return 0;
2081 }
2082
2083 static int
2084 gen6_emit_bb_start(struct i915_request *rq,
2085 u64 offset, u32 len,
2086 unsigned int dispatch_flags)
2087 {
2088 u32 *cs;
2089
2090 cs = intel_ring_begin(rq, 2);
2091 if (IS_ERR(cs))
2092 return PTR_ERR(cs);
2093
2094 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2095 0 : MI_BATCH_NON_SECURE_I965);
2096 /* bit0-7 is the length on GEN6+ */
2097 *cs++ = offset;
2098 intel_ring_advance(rq, cs);
2099
2100 return 0;
2101 }
2102
2103 /* Blitter support (SandyBridge+) */
2104
2105 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2106 {
2107 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2108 }
2109
2110 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2111 struct intel_engine_cs *engine)
2112 {
2113 int i;
2114
2115 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2116 return;
2117
2118 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2119 engine->semaphore.sync_to = gen6_ring_sync_to;
2120 engine->semaphore.signal = gen6_signal;
2121
2122 /*
2123 * The current semaphore is only applied on pre-gen8
2124 * platform. And there is no VCS2 ring on the pre-gen8
2125 * platform. So the semaphore between RCS and VCS2 is
2126 * initialized as INVALID.
2127 */
2128 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2129 static const struct {
2130 u32 wait_mbox;
2131 i915_reg_t mbox_reg;
2132 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2133 [RCS_HW] = {
2134 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2135 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2136 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2137 },
2138 [VCS_HW] = {
2139 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2140 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2141 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2142 },
2143 [BCS_HW] = {
2144 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2145 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2146 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2147 },
2148 [VECS_HW] = {
2149 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2150 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2151 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2152 },
2153 };
2154 u32 wait_mbox;
2155 i915_reg_t mbox_reg;
2156
2157 if (i == engine->hw_id) {
2158 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2159 mbox_reg = GEN6_NOSYNC;
2160 } else {
2161 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2162 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2163 }
2164
2165 engine->semaphore.mbox.wait[i] = wait_mbox;
2166 engine->semaphore.mbox.signal[i] = mbox_reg;
2167 }
2168 }
2169
2170 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2171 struct intel_engine_cs *engine)
2172 {
2173 if (INTEL_GEN(dev_priv) >= 6) {
2174 engine->irq_enable = gen6_irq_enable;
2175 engine->irq_disable = gen6_irq_disable;
2176 engine->irq_seqno_barrier = gen6_seqno_barrier;
2177 } else if (INTEL_GEN(dev_priv) >= 5) {
2178 engine->irq_enable = gen5_irq_enable;
2179 engine->irq_disable = gen5_irq_disable;
2180 engine->irq_seqno_barrier = gen5_seqno_barrier;
2181 } else if (INTEL_GEN(dev_priv) >= 3) {
2182 engine->irq_enable = i9xx_irq_enable;
2183 engine->irq_disable = i9xx_irq_disable;
2184 } else {
2185 engine->irq_enable = i8xx_irq_enable;
2186 engine->irq_disable = i8xx_irq_disable;
2187 }
2188 }
2189
2190 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2191 {
2192 engine->submit_request = i9xx_submit_request;
2193 engine->cancel_requests = cancel_requests;
2194
2195 engine->park = NULL;
2196 engine->unpark = NULL;
2197 }
2198
2199 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2200 {
2201 i9xx_set_default_submission(engine);
2202 engine->submit_request = gen6_bsd_submit_request;
2203 }
2204
2205 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2206 struct intel_engine_cs *engine)
2207 {
2208 /* gen8+ are only supported with execlists */
2209 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2210
2211 intel_ring_init_irq(dev_priv, engine);
2212 intel_ring_init_semaphores(dev_priv, engine);
2213
2214 engine->init_hw = init_ring_common;
2215 engine->reset.prepare = reset_prepare;
2216 engine->reset.reset = reset_ring;
2217 engine->reset.finish = reset_finish;
2218
2219 engine->context_pin = intel_ring_context_pin;
2220 engine->request_alloc = ring_request_alloc;
2221
2222 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2223 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2224 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2225 int num_rings;
2226
2227 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2228
2229 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2230 engine->emit_breadcrumb_sz += num_rings * 3;
2231 if (num_rings & 1)
2232 engine->emit_breadcrumb_sz++;
2233 }
2234
2235 engine->set_default_submission = i9xx_set_default_submission;
2236
2237 if (INTEL_GEN(dev_priv) >= 6)
2238 engine->emit_bb_start = gen6_emit_bb_start;
2239 else if (INTEL_GEN(dev_priv) >= 4)
2240 engine->emit_bb_start = i965_emit_bb_start;
2241 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2242 engine->emit_bb_start = i830_emit_bb_start;
2243 else
2244 engine->emit_bb_start = i915_emit_bb_start;
2245 }
2246
2247 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2248 {
2249 struct drm_i915_private *dev_priv = engine->i915;
2250 int ret;
2251
2252 intel_ring_default_vfuncs(dev_priv, engine);
2253
2254 if (HAS_L3_DPF(dev_priv))
2255 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2256
2257 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2258
2259 if (INTEL_GEN(dev_priv) >= 6) {
2260 engine->init_context = intel_rcs_ctx_init;
2261 engine->emit_flush = gen7_render_ring_flush;
2262 if (IS_GEN6(dev_priv))
2263 engine->emit_flush = gen6_render_ring_flush;
2264 } else if (IS_GEN5(dev_priv)) {
2265 engine->emit_flush = gen4_render_ring_flush;
2266 } else {
2267 if (INTEL_GEN(dev_priv) < 4)
2268 engine->emit_flush = gen2_render_ring_flush;
2269 else
2270 engine->emit_flush = gen4_render_ring_flush;
2271 engine->irq_enable_mask = I915_USER_INTERRUPT;
2272 }
2273
2274 if (IS_HASWELL(dev_priv))
2275 engine->emit_bb_start = hsw_emit_bb_start;
2276
2277 engine->init_hw = init_render_ring;
2278
2279 ret = intel_init_ring_buffer(engine);
2280 if (ret)
2281 return ret;
2282
2283 return 0;
2284 }
2285
2286 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2287 {
2288 struct drm_i915_private *dev_priv = engine->i915;
2289
2290 intel_ring_default_vfuncs(dev_priv, engine);
2291
2292 if (INTEL_GEN(dev_priv) >= 6) {
2293 /* gen6 bsd needs a special wa for tail updates */
2294 if (IS_GEN6(dev_priv))
2295 engine->set_default_submission = gen6_bsd_set_default_submission;
2296 engine->emit_flush = gen6_bsd_ring_flush;
2297 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2298 } else {
2299 engine->emit_flush = bsd_ring_flush;
2300 if (IS_GEN5(dev_priv))
2301 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2302 else
2303 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2304 }
2305
2306 return intel_init_ring_buffer(engine);
2307 }
2308
2309 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2310 {
2311 struct drm_i915_private *dev_priv = engine->i915;
2312
2313 intel_ring_default_vfuncs(dev_priv, engine);
2314
2315 engine->emit_flush = gen6_ring_flush;
2316 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2317
2318 return intel_init_ring_buffer(engine);
2319 }
2320
2321 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2322 {
2323 struct drm_i915_private *dev_priv = engine->i915;
2324
2325 intel_ring_default_vfuncs(dev_priv, engine);
2326
2327 engine->emit_flush = gen6_ring_flush;
2328 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2329 engine->irq_enable = hsw_vebox_irq_enable;
2330 engine->irq_disable = hsw_vebox_irq_disable;
2331
2332 return intel_init_ring_buffer(engine);
2333 }