]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
2046f108d1cc695459fd34297dd8a7b614de3f9c
[thirdparty/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
43 */
44 #define LEGACY_REQUEST_SIZE 200
45
46 static unsigned int __intel_ring_space(unsigned int head,
47 unsigned int tail,
48 unsigned int size)
49 {
50 /*
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
53 * Pointer."
54 */
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
57 }
58
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
60 {
61 unsigned int space;
62
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
64
65 ring->space = space;
66 return space;
67 }
68
69 static int
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71 {
72 u32 cmd, *cs;
73
74 cmd = MI_FLUSH;
75
76 if (mode & EMIT_INVALIDATE)
77 cmd |= MI_READ_FLUSH;
78
79 cs = intel_ring_begin(rq, 2);
80 if (IS_ERR(cs))
81 return PTR_ERR(cs);
82
83 *cs++ = cmd;
84 *cs++ = MI_NOOP;
85 intel_ring_advance(rq, cs);
86
87 return 0;
88 }
89
90 static int
91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
92 {
93 u32 cmd, *cs;
94 int i;
95
96 /*
97 * read/write caches:
98 *
99 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
100 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
101 * also flushed at 2d versus 3d pipeline switches.
102 *
103 * read-only caches:
104 *
105 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
106 * MI_READ_FLUSH is set, and is always flushed on 965.
107 *
108 * I915_GEM_DOMAIN_COMMAND may not exist?
109 *
110 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
111 * invalidated when MI_EXE_FLUSH is set.
112 *
113 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
114 * invalidated with every MI_FLUSH.
115 *
116 * TLBs:
117 *
118 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
119 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
120 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
121 * are flushed at any MI_FLUSH.
122 */
123
124 cmd = MI_FLUSH;
125 if (mode & EMIT_INVALIDATE) {
126 cmd |= MI_EXE_FLUSH;
127 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
128 cmd |= MI_INVALIDATE_ISP;
129 }
130
131 i = 2;
132 if (mode & EMIT_INVALIDATE)
133 i += 20;
134
135 cs = intel_ring_begin(rq, i);
136 if (IS_ERR(cs))
137 return PTR_ERR(cs);
138
139 *cs++ = cmd;
140
141 /*
142 * A random delay to let the CS invalidate take effect? Without this
143 * delay, the GPU relocation path fails as the CS does not see
144 * the updated contents. Just as important, if we apply the flushes
145 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
146 * write and before the invalidate on the next batch), the relocations
147 * still fail. This implies that is a delay following invalidation
148 * that is required to reset the caches as opposed to a delay to
149 * ensure the memory is written.
150 */
151 if (mode & EMIT_INVALIDATE) {
152 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
153 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
154 *cs++ = 0;
155 *cs++ = 0;
156
157 for (i = 0; i < 12; i++)
158 *cs++ = MI_FLUSH;
159
160 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
161 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
162 *cs++ = 0;
163 *cs++ = 0;
164 }
165
166 *cs++ = cmd;
167
168 intel_ring_advance(rq, cs);
169
170 return 0;
171 }
172
173 /*
174 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
175 * implementing two workarounds on gen6. From section 1.4.7.1
176 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
177 *
178 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
179 * produced by non-pipelined state commands), software needs to first
180 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
181 * 0.
182 *
183 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
184 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
185 *
186 * And the workaround for these two requires this workaround first:
187 *
188 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
189 * BEFORE the pipe-control with a post-sync op and no write-cache
190 * flushes.
191 *
192 * And this last workaround is tricky because of the requirements on
193 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
194 * volume 2 part 1:
195 *
196 * "1 of the following must also be set:
197 * - Render Target Cache Flush Enable ([12] of DW1)
198 * - Depth Cache Flush Enable ([0] of DW1)
199 * - Stall at Pixel Scoreboard ([1] of DW1)
200 * - Depth Stall ([13] of DW1)
201 * - Post-Sync Operation ([13] of DW1)
202 * - Notify Enable ([8] of DW1)"
203 *
204 * The cache flushes require the workaround flush that triggered this
205 * one, so we can't use it. Depth stall would trigger the same.
206 * Post-sync nonzero is what triggered this second workaround, so we
207 * can't use that one either. Notify enable is IRQs, which aren't
208 * really our business. That leaves only stall at scoreboard.
209 */
210 static int
211 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
212 {
213 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
214 u32 *cs;
215
216 cs = intel_ring_begin(rq, 6);
217 if (IS_ERR(cs))
218 return PTR_ERR(cs);
219
220 *cs++ = GFX_OP_PIPE_CONTROL(5);
221 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
222 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
223 *cs++ = 0; /* low dword */
224 *cs++ = 0; /* high dword */
225 *cs++ = MI_NOOP;
226 intel_ring_advance(rq, cs);
227
228 cs = intel_ring_begin(rq, 6);
229 if (IS_ERR(cs))
230 return PTR_ERR(cs);
231
232 *cs++ = GFX_OP_PIPE_CONTROL(5);
233 *cs++ = PIPE_CONTROL_QW_WRITE;
234 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
235 *cs++ = 0;
236 *cs++ = 0;
237 *cs++ = MI_NOOP;
238 intel_ring_advance(rq, cs);
239
240 return 0;
241 }
242
243 static int
244 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
245 {
246 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
247 u32 *cs, flags = 0;
248 int ret;
249
250 /* Force SNB workarounds for PIPE_CONTROL flushes */
251 ret = intel_emit_post_sync_nonzero_flush(rq);
252 if (ret)
253 return ret;
254
255 /* Just flush everything. Experiments have shown that reducing the
256 * number of bits based on the write domains has little performance
257 * impact.
258 */
259 if (mode & EMIT_FLUSH) {
260 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
261 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
262 /*
263 * Ensure that any following seqno writes only happen
264 * when the render cache is indeed flushed.
265 */
266 flags |= PIPE_CONTROL_CS_STALL;
267 }
268 if (mode & EMIT_INVALIDATE) {
269 flags |= PIPE_CONTROL_TLB_INVALIDATE;
270 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
271 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
272 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
273 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
274 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
275 /*
276 * TLB invalidate requires a post-sync write.
277 */
278 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
279 }
280
281 cs = intel_ring_begin(rq, 4);
282 if (IS_ERR(cs))
283 return PTR_ERR(cs);
284
285 *cs++ = GFX_OP_PIPE_CONTROL(4);
286 *cs++ = flags;
287 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
288 *cs++ = 0;
289 intel_ring_advance(rq, cs);
290
291 return 0;
292 }
293
294 static int
295 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
296 {
297 u32 *cs;
298
299 cs = intel_ring_begin(rq, 4);
300 if (IS_ERR(cs))
301 return PTR_ERR(cs);
302
303 *cs++ = GFX_OP_PIPE_CONTROL(4);
304 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
305 *cs++ = 0;
306 *cs++ = 0;
307 intel_ring_advance(rq, cs);
308
309 return 0;
310 }
311
312 static int
313 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
314 {
315 u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
316 u32 *cs, flags = 0;
317
318 /*
319 * Ensure that any following seqno writes only happen when the render
320 * cache is indeed flushed.
321 *
322 * Workaround: 4th PIPE_CONTROL command (except the ones with only
323 * read-cache invalidate bits set) must have the CS_STALL bit set. We
324 * don't try to be clever and just set it unconditionally.
325 */
326 flags |= PIPE_CONTROL_CS_STALL;
327
328 /* Just flush everything. Experiments have shown that reducing the
329 * number of bits based on the write domains has little performance
330 * impact.
331 */
332 if (mode & EMIT_FLUSH) {
333 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
335 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
336 flags |= PIPE_CONTROL_FLUSH_ENABLE;
337 }
338 if (mode & EMIT_INVALIDATE) {
339 flags |= PIPE_CONTROL_TLB_INVALIDATE;
340 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
345 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
346 /*
347 * TLB invalidate requires a post-sync write.
348 */
349 flags |= PIPE_CONTROL_QW_WRITE;
350 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
351
352 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
353
354 /* Workaround: we must issue a pipe_control with CS-stall bit
355 * set before a pipe_control command that has the state cache
356 * invalidate bit set. */
357 gen7_render_ring_cs_stall_wa(rq);
358 }
359
360 cs = intel_ring_begin(rq, 4);
361 if (IS_ERR(cs))
362 return PTR_ERR(cs);
363
364 *cs++ = GFX_OP_PIPE_CONTROL(4);
365 *cs++ = flags;
366 *cs++ = scratch_addr;
367 *cs++ = 0;
368 intel_ring_advance(rq, cs);
369
370 return 0;
371 }
372
373 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
374 {
375 struct drm_i915_private *dev_priv = engine->i915;
376 struct page *page = virt_to_page(engine->status_page.page_addr);
377 phys_addr_t phys = PFN_PHYS(page_to_pfn(page));
378 u32 addr;
379
380 addr = lower_32_bits(phys);
381 if (INTEL_GEN(dev_priv) >= 4)
382 addr |= (phys >> 28) & 0xf0;
383
384 I915_WRITE(HWS_PGA, addr);
385 }
386
387 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
388 {
389 struct drm_i915_private *dev_priv = engine->i915;
390 i915_reg_t mmio;
391
392 /* The ring status page addresses are no longer next to the rest of
393 * the ring registers as of gen7.
394 */
395 if (IS_GEN7(dev_priv)) {
396 switch (engine->id) {
397 /*
398 * No more rings exist on Gen7. Default case is only to shut up
399 * gcc switch check warning.
400 */
401 default:
402 GEM_BUG_ON(engine->id);
403 case RCS:
404 mmio = RENDER_HWS_PGA_GEN7;
405 break;
406 case BCS:
407 mmio = BLT_HWS_PGA_GEN7;
408 break;
409 case VCS:
410 mmio = BSD_HWS_PGA_GEN7;
411 break;
412 case VECS:
413 mmio = VEBOX_HWS_PGA_GEN7;
414 break;
415 }
416 } else if (IS_GEN6(dev_priv)) {
417 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
418 } else {
419 mmio = RING_HWS_PGA(engine->mmio_base);
420 }
421
422 if (INTEL_GEN(dev_priv) >= 6) {
423 u32 mask = ~0u;
424
425 /*
426 * Keep the render interrupt unmasked as this papers over
427 * lost interrupts following a reset.
428 */
429 if (engine->id == RCS)
430 mask &= ~BIT(0);
431
432 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
433 }
434
435 I915_WRITE(mmio, engine->status_page.ggtt_offset);
436 POSTING_READ(mmio);
437
438 /* Flush the TLB for this page */
439 if (IS_GEN(dev_priv, 6, 7)) {
440 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
441
442 /* ring should be idle before issuing a sync flush*/
443 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
444
445 I915_WRITE(reg,
446 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
447 INSTPM_SYNC_FLUSH));
448 if (intel_wait_for_register(dev_priv,
449 reg, INSTPM_SYNC_FLUSH, 0,
450 1000))
451 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
452 engine->name);
453 }
454 }
455
456 static bool stop_ring(struct intel_engine_cs *engine)
457 {
458 struct drm_i915_private *dev_priv = engine->i915;
459
460 if (INTEL_GEN(dev_priv) > 2) {
461 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
462 if (intel_wait_for_register(dev_priv,
463 RING_MI_MODE(engine->mmio_base),
464 MODE_IDLE,
465 MODE_IDLE,
466 1000)) {
467 DRM_ERROR("%s : timed out trying to stop ring\n",
468 engine->name);
469 /* Sometimes we observe that the idle flag is not
470 * set even though the ring is empty. So double
471 * check before giving up.
472 */
473 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
474 return false;
475 }
476 }
477
478 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
479
480 I915_WRITE_HEAD(engine, 0);
481 I915_WRITE_TAIL(engine, 0);
482
483 /* The ring must be empty before it is disabled */
484 I915_WRITE_CTL(engine, 0);
485
486 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
487 }
488
489 static int init_ring_common(struct intel_engine_cs *engine)
490 {
491 struct drm_i915_private *dev_priv = engine->i915;
492 struct intel_ring *ring = engine->buffer;
493 int ret = 0;
494
495 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
496
497 if (!stop_ring(engine)) {
498 /* G45 ring initialization often fails to reset head to zero */
499 DRM_DEBUG_DRIVER("%s head not reset to zero "
500 "ctl %08x head %08x tail %08x start %08x\n",
501 engine->name,
502 I915_READ_CTL(engine),
503 I915_READ_HEAD(engine),
504 I915_READ_TAIL(engine),
505 I915_READ_START(engine));
506
507 if (!stop_ring(engine)) {
508 DRM_ERROR("failed to set %s head to zero "
509 "ctl %08x head %08x tail %08x start %08x\n",
510 engine->name,
511 I915_READ_CTL(engine),
512 I915_READ_HEAD(engine),
513 I915_READ_TAIL(engine),
514 I915_READ_START(engine));
515 ret = -EIO;
516 goto out;
517 }
518 }
519
520 if (HWS_NEEDS_PHYSICAL(dev_priv))
521 ring_setup_phys_status_page(engine);
522 else
523 intel_ring_setup_status_page(engine);
524
525 intel_engine_reset_breadcrumbs(engine);
526
527 /* Enforce ordering by reading HEAD register back */
528 I915_READ_HEAD(engine);
529
530 /* Initialize the ring. This must happen _after_ we've cleared the ring
531 * registers with the above sequence (the readback of the HEAD registers
532 * also enforces ordering), otherwise the hw might lose the new ring
533 * register values. */
534 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
535
536 /* WaClearRingBufHeadRegAtInit:ctg,elk */
537 if (I915_READ_HEAD(engine))
538 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
539 engine->name, I915_READ_HEAD(engine));
540
541 /* Check that the ring offsets point within the ring! */
542 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
543 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
544
545 intel_ring_update_space(ring);
546 I915_WRITE_HEAD(engine, ring->head);
547 I915_WRITE_TAIL(engine, ring->tail);
548 (void)I915_READ_TAIL(engine);
549
550 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
551
552 /* If the head is still not zero, the ring is dead */
553 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
554 RING_VALID, RING_VALID,
555 50)) {
556 DRM_ERROR("%s initialization failed "
557 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
558 engine->name,
559 I915_READ_CTL(engine),
560 I915_READ_CTL(engine) & RING_VALID,
561 I915_READ_HEAD(engine), ring->head,
562 I915_READ_TAIL(engine), ring->tail,
563 I915_READ_START(engine),
564 i915_ggtt_offset(ring->vma));
565 ret = -EIO;
566 goto out;
567 }
568
569 if (INTEL_GEN(dev_priv) > 2)
570 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
571
572 /* Papering over lost _interrupts_ immediately following the restart */
573 intel_engine_wakeup(engine);
574 out:
575 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
576
577 return ret;
578 }
579
580 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
581 {
582 intel_engine_stop_cs(engine);
583
584 if (engine->irq_seqno_barrier)
585 engine->irq_seqno_barrier(engine);
586
587 return i915_gem_find_active_request(engine);
588 }
589
590 static void skip_request(struct i915_request *rq)
591 {
592 void *vaddr = rq->ring->vaddr;
593 u32 head;
594
595 head = rq->infix;
596 if (rq->postfix < head) {
597 memset32(vaddr + head, MI_NOOP,
598 (rq->ring->size - head) / sizeof(u32));
599 head = 0;
600 }
601 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
602 }
603
604 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
605 {
606 GEM_TRACE("%s seqno=%x\n", engine->name, rq ? rq->global_seqno : 0);
607
608 /*
609 * Try to restore the logical GPU state to match the continuation
610 * of the request queue. If we skip the context/PD restore, then
611 * the next request may try to execute assuming that its context
612 * is valid and loaded on the GPU and so may try to access invalid
613 * memory, prompting repeated GPU hangs.
614 *
615 * If the request was guilty, we still restore the logical state
616 * in case the next request requires it (e.g. the aliasing ppgtt),
617 * but skip over the hung batch.
618 *
619 * If the request was innocent, we try to replay the request with
620 * the restored context.
621 */
622 if (rq) {
623 /* If the rq hung, jump to its breadcrumb and skip the batch */
624 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
625 if (rq->fence.error == -EIO)
626 skip_request(rq);
627 }
628 }
629
630 static void reset_finish(struct intel_engine_cs *engine)
631 {
632 }
633
634 static int intel_rcs_ctx_init(struct i915_request *rq)
635 {
636 int ret;
637
638 ret = intel_ctx_workarounds_emit(rq);
639 if (ret != 0)
640 return ret;
641
642 ret = i915_gem_render_state_emit(rq);
643 if (ret)
644 return ret;
645
646 return 0;
647 }
648
649 static int init_render_ring(struct intel_engine_cs *engine)
650 {
651 struct drm_i915_private *dev_priv = engine->i915;
652 int ret = init_ring_common(engine);
653 if (ret)
654 return ret;
655
656 intel_whitelist_workarounds_apply(engine);
657
658 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
659 if (IS_GEN(dev_priv, 4, 6))
660 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
661
662 /* We need to disable the AsyncFlip performance optimisations in order
663 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
664 * programmed to '1' on all products.
665 *
666 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
667 */
668 if (IS_GEN(dev_priv, 6, 7))
669 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
670
671 /* Required for the hardware to program scanline values for waiting */
672 /* WaEnableFlushTlbInvalidationMode:snb */
673 if (IS_GEN6(dev_priv))
674 I915_WRITE(GFX_MODE,
675 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
676
677 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
678 if (IS_GEN7(dev_priv))
679 I915_WRITE(GFX_MODE_GEN7,
680 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
681 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
682
683 if (IS_GEN6(dev_priv)) {
684 /* From the Sandybridge PRM, volume 1 part 3, page 24:
685 * "If this bit is set, STCunit will have LRA as replacement
686 * policy. [...] This bit must be reset. LRA replacement
687 * policy is not supported."
688 */
689 I915_WRITE(CACHE_MODE_0,
690 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
691 }
692
693 if (IS_GEN(dev_priv, 6, 7))
694 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
695
696 if (INTEL_GEN(dev_priv) >= 6)
697 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
698
699 return 0;
700 }
701
702 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
703 {
704 struct drm_i915_private *dev_priv = rq->i915;
705 struct intel_engine_cs *engine;
706 enum intel_engine_id id;
707 int num_rings = 0;
708
709 for_each_engine(engine, dev_priv, id) {
710 i915_reg_t mbox_reg;
711
712 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
713 continue;
714
715 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
716 if (i915_mmio_reg_valid(mbox_reg)) {
717 *cs++ = MI_LOAD_REGISTER_IMM(1);
718 *cs++ = i915_mmio_reg_offset(mbox_reg);
719 *cs++ = rq->global_seqno;
720 num_rings++;
721 }
722 }
723 if (num_rings & 1)
724 *cs++ = MI_NOOP;
725
726 return cs;
727 }
728
729 static void cancel_requests(struct intel_engine_cs *engine)
730 {
731 struct i915_request *request;
732 unsigned long flags;
733
734 spin_lock_irqsave(&engine->timeline.lock, flags);
735
736 /* Mark all submitted requests as skipped. */
737 list_for_each_entry(request, &engine->timeline.requests, link) {
738 GEM_BUG_ON(!request->global_seqno);
739 if (!i915_request_completed(request))
740 dma_fence_set_error(&request->fence, -EIO);
741 }
742 /* Remaining _unready_ requests will be nop'ed when submitted */
743
744 spin_unlock_irqrestore(&engine->timeline.lock, flags);
745 }
746
747 static void i9xx_submit_request(struct i915_request *request)
748 {
749 struct drm_i915_private *dev_priv = request->i915;
750
751 i915_request_submit(request);
752
753 I915_WRITE_TAIL(request->engine,
754 intel_ring_set_tail(request->ring, request->tail));
755 }
756
757 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
758 {
759 *cs++ = MI_STORE_DWORD_INDEX;
760 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
761 *cs++ = rq->global_seqno;
762 *cs++ = MI_USER_INTERRUPT;
763
764 rq->tail = intel_ring_offset(rq, cs);
765 assert_ring_tail_valid(rq->ring, rq->tail);
766 }
767
768 static const int i9xx_emit_breadcrumb_sz = 4;
769
770 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
771 {
772 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
773 }
774
775 static int
776 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
777 {
778 u32 dw1 = MI_SEMAPHORE_MBOX |
779 MI_SEMAPHORE_COMPARE |
780 MI_SEMAPHORE_REGISTER;
781 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
782 u32 *cs;
783
784 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
785
786 cs = intel_ring_begin(rq, 4);
787 if (IS_ERR(cs))
788 return PTR_ERR(cs);
789
790 *cs++ = dw1 | wait_mbox;
791 /* Throughout all of the GEM code, seqno passed implies our current
792 * seqno is >= the last seqno executed. However for hardware the
793 * comparison is strictly greater than.
794 */
795 *cs++ = signal->global_seqno - 1;
796 *cs++ = 0;
797 *cs++ = MI_NOOP;
798 intel_ring_advance(rq, cs);
799
800 return 0;
801 }
802
803 static void
804 gen5_seqno_barrier(struct intel_engine_cs *engine)
805 {
806 /* MI_STORE are internally buffered by the GPU and not flushed
807 * either by MI_FLUSH or SyncFlush or any other combination of
808 * MI commands.
809 *
810 * "Only the submission of the store operation is guaranteed.
811 * The write result will be complete (coherent) some time later
812 * (this is practically a finite period but there is no guaranteed
813 * latency)."
814 *
815 * Empirically, we observe that we need a delay of at least 75us to
816 * be sure that the seqno write is visible by the CPU.
817 */
818 usleep_range(125, 250);
819 }
820
821 static void
822 gen6_seqno_barrier(struct intel_engine_cs *engine)
823 {
824 struct drm_i915_private *dev_priv = engine->i915;
825
826 /* Workaround to force correct ordering between irq and seqno writes on
827 * ivb (and maybe also on snb) by reading from a CS register (like
828 * ACTHD) before reading the status page.
829 *
830 * Note that this effectively stalls the read by the time it takes to
831 * do a memory transaction, which more or less ensures that the write
832 * from the GPU has sufficient time to invalidate the CPU cacheline.
833 * Alternatively we could delay the interrupt from the CS ring to give
834 * the write time to land, but that would incur a delay after every
835 * batch i.e. much more frequent than a delay when waiting for the
836 * interrupt (with the same net latency).
837 *
838 * Also note that to prevent whole machine hangs on gen7, we have to
839 * take the spinlock to guard against concurrent cacheline access.
840 */
841 spin_lock_irq(&dev_priv->uncore.lock);
842 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
843 spin_unlock_irq(&dev_priv->uncore.lock);
844 }
845
846 static void
847 gen5_irq_enable(struct intel_engine_cs *engine)
848 {
849 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
850 }
851
852 static void
853 gen5_irq_disable(struct intel_engine_cs *engine)
854 {
855 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
856 }
857
858 static void
859 i9xx_irq_enable(struct intel_engine_cs *engine)
860 {
861 struct drm_i915_private *dev_priv = engine->i915;
862
863 dev_priv->irq_mask &= ~engine->irq_enable_mask;
864 I915_WRITE(IMR, dev_priv->irq_mask);
865 POSTING_READ_FW(RING_IMR(engine->mmio_base));
866 }
867
868 static void
869 i9xx_irq_disable(struct intel_engine_cs *engine)
870 {
871 struct drm_i915_private *dev_priv = engine->i915;
872
873 dev_priv->irq_mask |= engine->irq_enable_mask;
874 I915_WRITE(IMR, dev_priv->irq_mask);
875 }
876
877 static void
878 i8xx_irq_enable(struct intel_engine_cs *engine)
879 {
880 struct drm_i915_private *dev_priv = engine->i915;
881
882 dev_priv->irq_mask &= ~engine->irq_enable_mask;
883 I915_WRITE16(IMR, dev_priv->irq_mask);
884 POSTING_READ16(RING_IMR(engine->mmio_base));
885 }
886
887 static void
888 i8xx_irq_disable(struct intel_engine_cs *engine)
889 {
890 struct drm_i915_private *dev_priv = engine->i915;
891
892 dev_priv->irq_mask |= engine->irq_enable_mask;
893 I915_WRITE16(IMR, dev_priv->irq_mask);
894 }
895
896 static int
897 bsd_ring_flush(struct i915_request *rq, u32 mode)
898 {
899 u32 *cs;
900
901 cs = intel_ring_begin(rq, 2);
902 if (IS_ERR(cs))
903 return PTR_ERR(cs);
904
905 *cs++ = MI_FLUSH;
906 *cs++ = MI_NOOP;
907 intel_ring_advance(rq, cs);
908 return 0;
909 }
910
911 static void
912 gen6_irq_enable(struct intel_engine_cs *engine)
913 {
914 struct drm_i915_private *dev_priv = engine->i915;
915
916 I915_WRITE_IMR(engine,
917 ~(engine->irq_enable_mask |
918 engine->irq_keep_mask));
919 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
920 }
921
922 static void
923 gen6_irq_disable(struct intel_engine_cs *engine)
924 {
925 struct drm_i915_private *dev_priv = engine->i915;
926
927 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
928 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
929 }
930
931 static void
932 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
933 {
934 struct drm_i915_private *dev_priv = engine->i915;
935
936 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
937 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
938 }
939
940 static void
941 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
942 {
943 struct drm_i915_private *dev_priv = engine->i915;
944
945 I915_WRITE_IMR(engine, ~0);
946 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
947 }
948
949 static int
950 i965_emit_bb_start(struct i915_request *rq,
951 u64 offset, u32 length,
952 unsigned int dispatch_flags)
953 {
954 u32 *cs;
955
956 cs = intel_ring_begin(rq, 2);
957 if (IS_ERR(cs))
958 return PTR_ERR(cs);
959
960 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
961 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
962 *cs++ = offset;
963 intel_ring_advance(rq, cs);
964
965 return 0;
966 }
967
968 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
969 #define I830_BATCH_LIMIT SZ_256K
970 #define I830_TLB_ENTRIES (2)
971 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
972 static int
973 i830_emit_bb_start(struct i915_request *rq,
974 u64 offset, u32 len,
975 unsigned int dispatch_flags)
976 {
977 u32 *cs, cs_offset = i915_scratch_offset(rq->i915);
978
979 GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
980
981 cs = intel_ring_begin(rq, 6);
982 if (IS_ERR(cs))
983 return PTR_ERR(cs);
984
985 /* Evict the invalid PTE TLBs */
986 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
987 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
988 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
989 *cs++ = cs_offset;
990 *cs++ = 0xdeadbeef;
991 *cs++ = MI_NOOP;
992 intel_ring_advance(rq, cs);
993
994 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
995 if (len > I830_BATCH_LIMIT)
996 return -ENOSPC;
997
998 cs = intel_ring_begin(rq, 6 + 2);
999 if (IS_ERR(cs))
1000 return PTR_ERR(cs);
1001
1002 /* Blit the batch (which has now all relocs applied) to the
1003 * stable batch scratch bo area (so that the CS never
1004 * stumbles over its tlb invalidation bug) ...
1005 */
1006 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1007 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1008 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1009 *cs++ = cs_offset;
1010 *cs++ = 4096;
1011 *cs++ = offset;
1012
1013 *cs++ = MI_FLUSH;
1014 *cs++ = MI_NOOP;
1015 intel_ring_advance(rq, cs);
1016
1017 /* ... and execute it. */
1018 offset = cs_offset;
1019 }
1020
1021 cs = intel_ring_begin(rq, 2);
1022 if (IS_ERR(cs))
1023 return PTR_ERR(cs);
1024
1025 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1026 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1027 MI_BATCH_NON_SECURE);
1028 intel_ring_advance(rq, cs);
1029
1030 return 0;
1031 }
1032
1033 static int
1034 i915_emit_bb_start(struct i915_request *rq,
1035 u64 offset, u32 len,
1036 unsigned int dispatch_flags)
1037 {
1038 u32 *cs;
1039
1040 cs = intel_ring_begin(rq, 2);
1041 if (IS_ERR(cs))
1042 return PTR_ERR(cs);
1043
1044 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1045 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1046 MI_BATCH_NON_SECURE);
1047 intel_ring_advance(rq, cs);
1048
1049 return 0;
1050 }
1051
1052 int intel_ring_pin(struct intel_ring *ring)
1053 {
1054 struct i915_vma *vma = ring->vma;
1055 enum i915_map_type map =
1056 HAS_LLC(vma->vm->i915) ? I915_MAP_WB : I915_MAP_WC;
1057 unsigned int flags;
1058 void *addr;
1059 int ret;
1060
1061 GEM_BUG_ON(ring->vaddr);
1062
1063 flags = PIN_GLOBAL;
1064
1065 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1066 flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1067
1068 if (vma->obj->stolen)
1069 flags |= PIN_MAPPABLE;
1070 else
1071 flags |= PIN_HIGH;
1072
1073 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1074 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1075 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1076 else
1077 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1078 if (unlikely(ret))
1079 return ret;
1080 }
1081
1082 ret = i915_vma_pin(vma, 0, 0, flags);
1083 if (unlikely(ret))
1084 return ret;
1085
1086 if (i915_vma_is_map_and_fenceable(vma))
1087 addr = (void __force *)i915_vma_pin_iomap(vma);
1088 else
1089 addr = i915_gem_object_pin_map(vma->obj, map);
1090 if (IS_ERR(addr))
1091 goto err;
1092
1093 vma->obj->pin_global++;
1094
1095 ring->vaddr = addr;
1096 return 0;
1097
1098 err:
1099 i915_vma_unpin(vma);
1100 return PTR_ERR(addr);
1101 }
1102
1103 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1104 {
1105 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1106
1107 ring->tail = tail;
1108 ring->head = tail;
1109 ring->emit = tail;
1110 intel_ring_update_space(ring);
1111 }
1112
1113 void intel_ring_unpin(struct intel_ring *ring)
1114 {
1115 GEM_BUG_ON(!ring->vma);
1116 GEM_BUG_ON(!ring->vaddr);
1117
1118 /* Discard any unused bytes beyond that submitted to hw. */
1119 intel_ring_reset(ring, ring->tail);
1120
1121 if (i915_vma_is_map_and_fenceable(ring->vma))
1122 i915_vma_unpin_iomap(ring->vma);
1123 else
1124 i915_gem_object_unpin_map(ring->vma->obj);
1125 ring->vaddr = NULL;
1126
1127 ring->vma->obj->pin_global--;
1128 i915_vma_unpin(ring->vma);
1129 }
1130
1131 static struct i915_vma *
1132 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1133 {
1134 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1135 struct drm_i915_gem_object *obj;
1136 struct i915_vma *vma;
1137
1138 obj = i915_gem_object_create_stolen(dev_priv, size);
1139 if (!obj)
1140 obj = i915_gem_object_create_internal(dev_priv, size);
1141 if (IS_ERR(obj))
1142 return ERR_CAST(obj);
1143
1144 /*
1145 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1146 * if supported by the platform's GGTT.
1147 */
1148 if (vm->has_read_only)
1149 i915_gem_object_set_readonly(obj);
1150
1151 vma = i915_vma_instance(obj, vm, NULL);
1152 if (IS_ERR(vma))
1153 goto err;
1154
1155 return vma;
1156
1157 err:
1158 i915_gem_object_put(obj);
1159 return vma;
1160 }
1161
1162 struct intel_ring *
1163 intel_engine_create_ring(struct intel_engine_cs *engine,
1164 struct i915_timeline *timeline,
1165 int size)
1166 {
1167 struct intel_ring *ring;
1168 struct i915_vma *vma;
1169
1170 GEM_BUG_ON(!is_power_of_2(size));
1171 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1172 GEM_BUG_ON(timeline == &engine->timeline);
1173 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1174
1175 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1176 if (!ring)
1177 return ERR_PTR(-ENOMEM);
1178
1179 INIT_LIST_HEAD(&ring->request_list);
1180 ring->timeline = i915_timeline_get(timeline);
1181
1182 ring->size = size;
1183 /* Workaround an erratum on the i830 which causes a hang if
1184 * the TAIL pointer points to within the last 2 cachelines
1185 * of the buffer.
1186 */
1187 ring->effective_size = size;
1188 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1189 ring->effective_size -= 2 * CACHELINE_BYTES;
1190
1191 intel_ring_update_space(ring);
1192
1193 vma = intel_ring_create_vma(engine->i915, size);
1194 if (IS_ERR(vma)) {
1195 kfree(ring);
1196 return ERR_CAST(vma);
1197 }
1198 ring->vma = vma;
1199
1200 return ring;
1201 }
1202
1203 void
1204 intel_ring_free(struct intel_ring *ring)
1205 {
1206 struct drm_i915_gem_object *obj = ring->vma->obj;
1207
1208 i915_vma_close(ring->vma);
1209 __i915_gem_object_release_unless_active(obj);
1210
1211 i915_timeline_put(ring->timeline);
1212 kfree(ring);
1213 }
1214
1215 static void intel_ring_context_destroy(struct intel_context *ce)
1216 {
1217 GEM_BUG_ON(ce->pin_count);
1218
1219 if (!ce->state)
1220 return;
1221
1222 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1223 i915_gem_object_put(ce->state->obj);
1224 }
1225
1226 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1227 {
1228 struct i915_hw_ppgtt *ppgtt;
1229 int err = 0;
1230
1231 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1232 if (ppgtt)
1233 err = gen6_ppgtt_pin(ppgtt);
1234
1235 return err;
1236 }
1237
1238 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1239 {
1240 struct i915_hw_ppgtt *ppgtt;
1241
1242 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1243 if (ppgtt)
1244 gen6_ppgtt_unpin(ppgtt);
1245 }
1246
1247 static int __context_pin(struct intel_context *ce)
1248 {
1249 struct i915_vma *vma;
1250 int err;
1251
1252 vma = ce->state;
1253 if (!vma)
1254 return 0;
1255
1256 /*
1257 * Clear this page out of any CPU caches for coherent swap-in/out.
1258 * We only want to do this on the first bind so that we do not stall
1259 * on an active context (which by nature is already on the GPU).
1260 */
1261 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1262 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1263 if (err)
1264 return err;
1265 }
1266
1267 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1268 if (err)
1269 return err;
1270
1271 /*
1272 * And mark is as a globally pinned object to let the shrinker know
1273 * it cannot reclaim the object until we release it.
1274 */
1275 vma->obj->pin_global++;
1276
1277 return 0;
1278 }
1279
1280 static void __context_unpin(struct intel_context *ce)
1281 {
1282 struct i915_vma *vma;
1283
1284 vma = ce->state;
1285 if (!vma)
1286 return;
1287
1288 vma->obj->pin_global--;
1289 i915_vma_unpin(vma);
1290 }
1291
1292 static void intel_ring_context_unpin(struct intel_context *ce)
1293 {
1294 __context_unpin_ppgtt(ce->gem_context);
1295 __context_unpin(ce);
1296
1297 i915_gem_context_put(ce->gem_context);
1298 }
1299
1300 static struct i915_vma *
1301 alloc_context_vma(struct intel_engine_cs *engine)
1302 {
1303 struct drm_i915_private *i915 = engine->i915;
1304 struct drm_i915_gem_object *obj;
1305 struct i915_vma *vma;
1306 int err;
1307
1308 obj = i915_gem_object_create(i915, engine->context_size);
1309 if (IS_ERR(obj))
1310 return ERR_CAST(obj);
1311
1312 if (engine->default_state) {
1313 void *defaults, *vaddr;
1314
1315 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1316 if (IS_ERR(vaddr)) {
1317 err = PTR_ERR(vaddr);
1318 goto err_obj;
1319 }
1320
1321 defaults = i915_gem_object_pin_map(engine->default_state,
1322 I915_MAP_WB);
1323 if (IS_ERR(defaults)) {
1324 err = PTR_ERR(defaults);
1325 goto err_map;
1326 }
1327
1328 memcpy(vaddr, defaults, engine->context_size);
1329
1330 i915_gem_object_unpin_map(engine->default_state);
1331 i915_gem_object_unpin_map(obj);
1332 }
1333
1334 /*
1335 * Try to make the context utilize L3 as well as LLC.
1336 *
1337 * On VLV we don't have L3 controls in the PTEs so we
1338 * shouldn't touch the cache level, especially as that
1339 * would make the object snooped which might have a
1340 * negative performance impact.
1341 *
1342 * Snooping is required on non-llc platforms in execlist
1343 * mode, but since all GGTT accesses use PAT entry 0 we
1344 * get snooping anyway regardless of cache_level.
1345 *
1346 * This is only applicable for Ivy Bridge devices since
1347 * later platforms don't have L3 control bits in the PTE.
1348 */
1349 if (IS_IVYBRIDGE(i915)) {
1350 /* Ignore any error, regard it as a simple optimisation */
1351 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1352 }
1353
1354 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1355 if (IS_ERR(vma)) {
1356 err = PTR_ERR(vma);
1357 goto err_obj;
1358 }
1359
1360 return vma;
1361
1362 err_map:
1363 i915_gem_object_unpin_map(obj);
1364 err_obj:
1365 i915_gem_object_put(obj);
1366 return ERR_PTR(err);
1367 }
1368
1369 static struct intel_context *
1370 __ring_context_pin(struct intel_engine_cs *engine,
1371 struct i915_gem_context *ctx,
1372 struct intel_context *ce)
1373 {
1374 int err;
1375
1376 if (!ce->state && engine->context_size) {
1377 struct i915_vma *vma;
1378
1379 vma = alloc_context_vma(engine);
1380 if (IS_ERR(vma)) {
1381 err = PTR_ERR(vma);
1382 goto err;
1383 }
1384
1385 ce->state = vma;
1386 }
1387
1388 err = __context_pin(ce);
1389 if (err)
1390 goto err;
1391
1392 err = __context_pin_ppgtt(ce->gem_context);
1393 if (err)
1394 goto err_unpin;
1395
1396 i915_gem_context_get(ctx);
1397
1398 /* One ringbuffer to rule them all */
1399 GEM_BUG_ON(!engine->buffer);
1400 ce->ring = engine->buffer;
1401
1402 return ce;
1403
1404 err_unpin:
1405 __context_unpin(ce);
1406 err:
1407 ce->pin_count = 0;
1408 return ERR_PTR(err);
1409 }
1410
1411 static const struct intel_context_ops ring_context_ops = {
1412 .unpin = intel_ring_context_unpin,
1413 .destroy = intel_ring_context_destroy,
1414 };
1415
1416 static struct intel_context *
1417 intel_ring_context_pin(struct intel_engine_cs *engine,
1418 struct i915_gem_context *ctx)
1419 {
1420 struct intel_context *ce = to_intel_context(ctx, engine);
1421
1422 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1423
1424 if (likely(ce->pin_count++))
1425 return ce;
1426 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1427
1428 ce->ops = &ring_context_ops;
1429
1430 return __ring_context_pin(engine, ctx, ce);
1431 }
1432
1433 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1434 {
1435 struct i915_timeline *timeline;
1436 struct intel_ring *ring;
1437 int err;
1438
1439 intel_engine_setup_common(engine);
1440
1441 timeline = i915_timeline_create(engine->i915, engine->name);
1442 if (IS_ERR(timeline)) {
1443 err = PTR_ERR(timeline);
1444 goto err;
1445 }
1446
1447 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1448 i915_timeline_put(timeline);
1449 if (IS_ERR(ring)) {
1450 err = PTR_ERR(ring);
1451 goto err;
1452 }
1453
1454 err = intel_ring_pin(ring);
1455 if (err)
1456 goto err_ring;
1457
1458 GEM_BUG_ON(engine->buffer);
1459 engine->buffer = ring;
1460
1461 err = intel_engine_init_common(engine);
1462 if (err)
1463 goto err_unpin;
1464
1465 return 0;
1466
1467 err_unpin:
1468 intel_ring_unpin(ring);
1469 err_ring:
1470 intel_ring_free(ring);
1471 err:
1472 intel_engine_cleanup_common(engine);
1473 return err;
1474 }
1475
1476 void intel_engine_cleanup(struct intel_engine_cs *engine)
1477 {
1478 struct drm_i915_private *dev_priv = engine->i915;
1479
1480 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1481 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1482
1483 intel_ring_unpin(engine->buffer);
1484 intel_ring_free(engine->buffer);
1485
1486 if (engine->cleanup)
1487 engine->cleanup(engine);
1488
1489 intel_engine_cleanup_common(engine);
1490
1491 dev_priv->engine[engine->id] = NULL;
1492 kfree(engine);
1493 }
1494
1495 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1496 {
1497 struct intel_engine_cs *engine;
1498 enum intel_engine_id id;
1499
1500 /* Restart from the beginning of the rings for convenience */
1501 for_each_engine(engine, dev_priv, id)
1502 intel_ring_reset(engine->buffer, 0);
1503 }
1504
1505 static int load_pd_dir(struct i915_request *rq,
1506 const struct i915_hw_ppgtt *ppgtt)
1507 {
1508 const struct intel_engine_cs * const engine = rq->engine;
1509 u32 *cs;
1510
1511 cs = intel_ring_begin(rq, 6);
1512 if (IS_ERR(cs))
1513 return PTR_ERR(cs);
1514
1515 *cs++ = MI_LOAD_REGISTER_IMM(1);
1516 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1517 *cs++ = PP_DIR_DCLV_2G;
1518
1519 *cs++ = MI_LOAD_REGISTER_IMM(1);
1520 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1521 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1522
1523 intel_ring_advance(rq, cs);
1524
1525 return 0;
1526 }
1527
1528 static int flush_pd_dir(struct i915_request *rq)
1529 {
1530 const struct intel_engine_cs * const engine = rq->engine;
1531 u32 *cs;
1532
1533 cs = intel_ring_begin(rq, 4);
1534 if (IS_ERR(cs))
1535 return PTR_ERR(cs);
1536
1537 /* Stall until the page table load is complete */
1538 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1539 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1540 *cs++ = i915_scratch_offset(rq->i915);
1541 *cs++ = MI_NOOP;
1542
1543 intel_ring_advance(rq, cs);
1544 return 0;
1545 }
1546
1547 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1548 {
1549 struct drm_i915_private *i915 = rq->i915;
1550 struct intel_engine_cs *engine = rq->engine;
1551 enum intel_engine_id id;
1552 const int num_rings =
1553 /* Use an extended w/a on gen7 if signalling from other rings */
1554 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1555 INTEL_INFO(i915)->num_rings - 1 :
1556 0;
1557 bool force_restore = false;
1558 int len;
1559 u32 *cs;
1560
1561 flags |= MI_MM_SPACE_GTT;
1562 if (IS_HASWELL(i915))
1563 /* These flags are for resource streamer on HSW+ */
1564 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1565 else
1566 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1567
1568 len = 4;
1569 if (IS_GEN7(i915))
1570 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1571 if (flags & MI_FORCE_RESTORE) {
1572 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1573 flags &= ~MI_FORCE_RESTORE;
1574 force_restore = true;
1575 len += 2;
1576 }
1577
1578 cs = intel_ring_begin(rq, len);
1579 if (IS_ERR(cs))
1580 return PTR_ERR(cs);
1581
1582 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1583 if (IS_GEN7(i915)) {
1584 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1585 if (num_rings) {
1586 struct intel_engine_cs *signaller;
1587
1588 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1589 for_each_engine(signaller, i915, id) {
1590 if (signaller == engine)
1591 continue;
1592
1593 *cs++ = i915_mmio_reg_offset(
1594 RING_PSMI_CTL(signaller->mmio_base));
1595 *cs++ = _MASKED_BIT_ENABLE(
1596 GEN6_PSMI_SLEEP_MSG_DISABLE);
1597 }
1598 }
1599 }
1600
1601 if (force_restore) {
1602 /*
1603 * The HW doesn't handle being told to restore the current
1604 * context very well. Quite often it likes goes to go off and
1605 * sulk, especially when it is meant to be reloading PP_DIR.
1606 * A very simple fix to force the reload is to simply switch
1607 * away from the current context and back again.
1608 *
1609 * Note that the kernel_context will contain random state
1610 * following the INHIBIT_RESTORE. We accept this since we
1611 * never use the kernel_context state; it is merely a
1612 * placeholder we use to flush other contexts.
1613 */
1614 *cs++ = MI_SET_CONTEXT;
1615 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1616 engine)->state) |
1617 MI_MM_SPACE_GTT |
1618 MI_RESTORE_INHIBIT;
1619 }
1620
1621 *cs++ = MI_NOOP;
1622 *cs++ = MI_SET_CONTEXT;
1623 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1624 /*
1625 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1626 * WaMiSetContext_Hang:snb,ivb,vlv
1627 */
1628 *cs++ = MI_NOOP;
1629
1630 if (IS_GEN7(i915)) {
1631 if (num_rings) {
1632 struct intel_engine_cs *signaller;
1633 i915_reg_t last_reg = {}; /* keep gcc quiet */
1634
1635 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1636 for_each_engine(signaller, i915, id) {
1637 if (signaller == engine)
1638 continue;
1639
1640 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1641 *cs++ = i915_mmio_reg_offset(last_reg);
1642 *cs++ = _MASKED_BIT_DISABLE(
1643 GEN6_PSMI_SLEEP_MSG_DISABLE);
1644 }
1645
1646 /* Insert a delay before the next switch! */
1647 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1648 *cs++ = i915_mmio_reg_offset(last_reg);
1649 *cs++ = i915_scratch_offset(rq->i915);
1650 *cs++ = MI_NOOP;
1651 }
1652 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1653 }
1654
1655 intel_ring_advance(rq, cs);
1656
1657 return 0;
1658 }
1659
1660 static int remap_l3(struct i915_request *rq, int slice)
1661 {
1662 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1663 int i;
1664
1665 if (!remap_info)
1666 return 0;
1667
1668 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1669 if (IS_ERR(cs))
1670 return PTR_ERR(cs);
1671
1672 /*
1673 * Note: We do not worry about the concurrent register cacheline hang
1674 * here because no other code should access these registers other than
1675 * at initialization time.
1676 */
1677 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1678 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1679 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1680 *cs++ = remap_info[i];
1681 }
1682 *cs++ = MI_NOOP;
1683 intel_ring_advance(rq, cs);
1684
1685 return 0;
1686 }
1687
1688 static int switch_context(struct i915_request *rq)
1689 {
1690 struct intel_engine_cs *engine = rq->engine;
1691 struct i915_gem_context *ctx = rq->gem_context;
1692 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1693 unsigned int unwind_mm = 0;
1694 u32 hw_flags = 0;
1695 int ret, i;
1696
1697 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1698 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1699
1700 if (ppgtt) {
1701 int loops;
1702
1703 /*
1704 * Baytail takes a little more convincing that it really needs
1705 * to reload the PD between contexts. It is not just a little
1706 * longer, as adding more stalls after the load_pd_dir (i.e.
1707 * adding a long loop around flush_pd_dir) is not as effective
1708 * as reloading the PD umpteen times. 32 is derived from
1709 * experimentation (gem_exec_parallel/fds) and has no good
1710 * explanation.
1711 */
1712 loops = 1;
1713 if (engine->id == BCS && IS_VALLEYVIEW(engine->i915))
1714 loops = 32;
1715
1716 do {
1717 ret = load_pd_dir(rq, ppgtt);
1718 if (ret)
1719 goto err;
1720 } while (--loops);
1721
1722 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1723 unwind_mm = intel_engine_flag(engine);
1724 ppgtt->pd_dirty_rings &= ~unwind_mm;
1725 hw_flags = MI_FORCE_RESTORE;
1726 }
1727 }
1728
1729 if (rq->hw_context->state) {
1730 GEM_BUG_ON(engine->id != RCS);
1731
1732 /*
1733 * The kernel context(s) is treated as pure scratch and is not
1734 * expected to retain any state (as we sacrifice it during
1735 * suspend and on resume it may be corrupted). This is ok,
1736 * as nothing actually executes using the kernel context; it
1737 * is purely used for flushing user contexts.
1738 */
1739 if (i915_gem_context_is_kernel(ctx))
1740 hw_flags = MI_RESTORE_INHIBIT;
1741
1742 ret = mi_set_context(rq, hw_flags);
1743 if (ret)
1744 goto err_mm;
1745 }
1746
1747 if (ppgtt) {
1748 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1749 if (ret)
1750 goto err_mm;
1751
1752 ret = flush_pd_dir(rq);
1753 if (ret)
1754 goto err_mm;
1755
1756 /*
1757 * Not only do we need a full barrier (post-sync write) after
1758 * invalidating the TLBs, but we need to wait a little bit
1759 * longer. Whether this is merely delaying us, or the
1760 * subsequent flush is a key part of serialising with the
1761 * post-sync op, this extra pass appears vital before a
1762 * mm switch!
1763 */
1764 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1765 if (ret)
1766 goto err_mm;
1767
1768 ret = engine->emit_flush(rq, EMIT_FLUSH);
1769 if (ret)
1770 goto err_mm;
1771 }
1772
1773 if (ctx->remap_slice) {
1774 for (i = 0; i < MAX_L3_SLICES; i++) {
1775 if (!(ctx->remap_slice & BIT(i)))
1776 continue;
1777
1778 ret = remap_l3(rq, i);
1779 if (ret)
1780 goto err_mm;
1781 }
1782
1783 ctx->remap_slice = 0;
1784 }
1785
1786 return 0;
1787
1788 err_mm:
1789 if (unwind_mm)
1790 ppgtt->pd_dirty_rings |= unwind_mm;
1791 err:
1792 return ret;
1793 }
1794
1795 static int ring_request_alloc(struct i915_request *request)
1796 {
1797 int ret;
1798
1799 GEM_BUG_ON(!request->hw_context->pin_count);
1800
1801 /* Flush enough space to reduce the likelihood of waiting after
1802 * we start building the request - in which case we will just
1803 * have to repeat work.
1804 */
1805 request->reserved_space += LEGACY_REQUEST_SIZE;
1806
1807 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1808 if (ret)
1809 return ret;
1810
1811 ret = switch_context(request);
1812 if (ret)
1813 return ret;
1814
1815 request->reserved_space -= LEGACY_REQUEST_SIZE;
1816 return 0;
1817 }
1818
1819 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1820 {
1821 struct i915_request *target;
1822 long timeout;
1823
1824 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1825
1826 if (intel_ring_update_space(ring) >= bytes)
1827 return 0;
1828
1829 GEM_BUG_ON(list_empty(&ring->request_list));
1830 list_for_each_entry(target, &ring->request_list, ring_link) {
1831 /* Would completion of this request free enough space? */
1832 if (bytes <= __intel_ring_space(target->postfix,
1833 ring->emit, ring->size))
1834 break;
1835 }
1836
1837 if (WARN_ON(&target->ring_link == &ring->request_list))
1838 return -ENOSPC;
1839
1840 timeout = i915_request_wait(target,
1841 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1842 MAX_SCHEDULE_TIMEOUT);
1843 if (timeout < 0)
1844 return timeout;
1845
1846 i915_request_retire_upto(target);
1847
1848 intel_ring_update_space(ring);
1849 GEM_BUG_ON(ring->space < bytes);
1850 return 0;
1851 }
1852
1853 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1854 {
1855 GEM_BUG_ON(bytes > ring->effective_size);
1856 if (unlikely(bytes > ring->effective_size - ring->emit))
1857 bytes += ring->size - ring->emit;
1858
1859 if (unlikely(bytes > ring->space)) {
1860 int ret = wait_for_space(ring, bytes);
1861 if (unlikely(ret))
1862 return ret;
1863 }
1864
1865 GEM_BUG_ON(ring->space < bytes);
1866 return 0;
1867 }
1868
1869 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1870 {
1871 struct intel_ring *ring = rq->ring;
1872 const unsigned int remain_usable = ring->effective_size - ring->emit;
1873 const unsigned int bytes = num_dwords * sizeof(u32);
1874 unsigned int need_wrap = 0;
1875 unsigned int total_bytes;
1876 u32 *cs;
1877
1878 /* Packets must be qword aligned. */
1879 GEM_BUG_ON(num_dwords & 1);
1880
1881 total_bytes = bytes + rq->reserved_space;
1882 GEM_BUG_ON(total_bytes > ring->effective_size);
1883
1884 if (unlikely(total_bytes > remain_usable)) {
1885 const int remain_actual = ring->size - ring->emit;
1886
1887 if (bytes > remain_usable) {
1888 /*
1889 * Not enough space for the basic request. So need to
1890 * flush out the remainder and then wait for
1891 * base + reserved.
1892 */
1893 total_bytes += remain_actual;
1894 need_wrap = remain_actual | 1;
1895 } else {
1896 /*
1897 * The base request will fit but the reserved space
1898 * falls off the end. So we don't need an immediate
1899 * wrap and only need to effectively wait for the
1900 * reserved size from the start of ringbuffer.
1901 */
1902 total_bytes = rq->reserved_space + remain_actual;
1903 }
1904 }
1905
1906 if (unlikely(total_bytes > ring->space)) {
1907 int ret;
1908
1909 /*
1910 * Space is reserved in the ringbuffer for finalising the
1911 * request, as that cannot be allowed to fail. During request
1912 * finalisation, reserved_space is set to 0 to stop the
1913 * overallocation and the assumption is that then we never need
1914 * to wait (which has the risk of failing with EINTR).
1915 *
1916 * See also i915_request_alloc() and i915_request_add().
1917 */
1918 GEM_BUG_ON(!rq->reserved_space);
1919
1920 ret = wait_for_space(ring, total_bytes);
1921 if (unlikely(ret))
1922 return ERR_PTR(ret);
1923 }
1924
1925 if (unlikely(need_wrap)) {
1926 need_wrap &= ~1;
1927 GEM_BUG_ON(need_wrap > ring->space);
1928 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1929 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1930
1931 /* Fill the tail with MI_NOOP */
1932 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1933 ring->space -= need_wrap;
1934 ring->emit = 0;
1935 }
1936
1937 GEM_BUG_ON(ring->emit > ring->size - bytes);
1938 GEM_BUG_ON(ring->space < bytes);
1939 cs = ring->vaddr + ring->emit;
1940 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1941 ring->emit += bytes;
1942 ring->space -= bytes;
1943
1944 return cs;
1945 }
1946
1947 /* Align the ring tail to a cacheline boundary */
1948 int intel_ring_cacheline_align(struct i915_request *rq)
1949 {
1950 int num_dwords;
1951 void *cs;
1952
1953 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1954 if (num_dwords == 0)
1955 return 0;
1956
1957 num_dwords = CACHELINE_DWORDS - num_dwords;
1958 GEM_BUG_ON(num_dwords & 1);
1959
1960 cs = intel_ring_begin(rq, num_dwords);
1961 if (IS_ERR(cs))
1962 return PTR_ERR(cs);
1963
1964 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1965 intel_ring_advance(rq, cs);
1966
1967 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1968 return 0;
1969 }
1970
1971 static void gen6_bsd_submit_request(struct i915_request *request)
1972 {
1973 struct drm_i915_private *dev_priv = request->i915;
1974
1975 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1976
1977 /* Every tail move must follow the sequence below */
1978
1979 /* Disable notification that the ring is IDLE. The GT
1980 * will then assume that it is busy and bring it out of rc6.
1981 */
1982 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1983 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1984
1985 /* Clear the context id. Here be magic! */
1986 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1987
1988 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1989 if (__intel_wait_for_register_fw(dev_priv,
1990 GEN6_BSD_SLEEP_PSMI_CONTROL,
1991 GEN6_BSD_SLEEP_INDICATOR,
1992 0,
1993 1000, 0, NULL))
1994 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1995
1996 /* Now that the ring is fully powered up, update the tail */
1997 i9xx_submit_request(request);
1998
1999 /* Let the ring send IDLE messages to the GT again,
2000 * and so let it sleep to conserve power when idle.
2001 */
2002 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2003 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2004
2005 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2006 }
2007
2008 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2009 {
2010 u32 cmd, *cs;
2011
2012 cs = intel_ring_begin(rq, 4);
2013 if (IS_ERR(cs))
2014 return PTR_ERR(cs);
2015
2016 cmd = MI_FLUSH_DW;
2017
2018 /*
2019 * We always require a command barrier so that subsequent
2020 * commands, such as breadcrumb interrupts, are strictly ordered
2021 * wrt the contents of the write cache being flushed to memory
2022 * (and thus being coherent from the CPU).
2023 */
2024 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2025
2026 /*
2027 * Bspec vol 1c.3 - blitter engine command streamer:
2028 * "If ENABLED, all TLBs will be invalidated once the flush
2029 * operation is complete. This bit is only valid when the
2030 * Post-Sync Operation field is a value of 1h or 3h."
2031 */
2032 cmd |= flags;
2033
2034 *cs++ = cmd;
2035 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2036 *cs++ = 0;
2037 *cs++ = MI_NOOP;
2038
2039 intel_ring_advance(rq, cs);
2040
2041 return 0;
2042 }
2043
2044 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2045 {
2046 return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2047 }
2048
2049 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2050 {
2051 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2052 }
2053
2054 static int
2055 hsw_emit_bb_start(struct i915_request *rq,
2056 u64 offset, u32 len,
2057 unsigned int dispatch_flags)
2058 {
2059 u32 *cs;
2060
2061 cs = intel_ring_begin(rq, 2);
2062 if (IS_ERR(cs))
2063 return PTR_ERR(cs);
2064
2065 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2066 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2067 /* bit0-7 is the length on GEN6+ */
2068 *cs++ = offset;
2069 intel_ring_advance(rq, cs);
2070
2071 return 0;
2072 }
2073
2074 static int
2075 gen6_emit_bb_start(struct i915_request *rq,
2076 u64 offset, u32 len,
2077 unsigned int dispatch_flags)
2078 {
2079 u32 *cs;
2080
2081 cs = intel_ring_begin(rq, 2);
2082 if (IS_ERR(cs))
2083 return PTR_ERR(cs);
2084
2085 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2086 0 : MI_BATCH_NON_SECURE_I965);
2087 /* bit0-7 is the length on GEN6+ */
2088 *cs++ = offset;
2089 intel_ring_advance(rq, cs);
2090
2091 return 0;
2092 }
2093
2094 /* Blitter support (SandyBridge+) */
2095
2096 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2097 {
2098 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2099 }
2100
2101 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2102 struct intel_engine_cs *engine)
2103 {
2104 int i;
2105
2106 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2107 return;
2108
2109 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2110 engine->semaphore.sync_to = gen6_ring_sync_to;
2111 engine->semaphore.signal = gen6_signal;
2112
2113 /*
2114 * The current semaphore is only applied on pre-gen8
2115 * platform. And there is no VCS2 ring on the pre-gen8
2116 * platform. So the semaphore between RCS and VCS2 is
2117 * initialized as INVALID.
2118 */
2119 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2120 static const struct {
2121 u32 wait_mbox;
2122 i915_reg_t mbox_reg;
2123 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2124 [RCS_HW] = {
2125 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2126 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2127 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2128 },
2129 [VCS_HW] = {
2130 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2131 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2132 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2133 },
2134 [BCS_HW] = {
2135 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2136 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2137 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2138 },
2139 [VECS_HW] = {
2140 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2141 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2142 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2143 },
2144 };
2145 u32 wait_mbox;
2146 i915_reg_t mbox_reg;
2147
2148 if (i == engine->hw_id) {
2149 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2150 mbox_reg = GEN6_NOSYNC;
2151 } else {
2152 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2153 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2154 }
2155
2156 engine->semaphore.mbox.wait[i] = wait_mbox;
2157 engine->semaphore.mbox.signal[i] = mbox_reg;
2158 }
2159 }
2160
2161 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2162 struct intel_engine_cs *engine)
2163 {
2164 if (INTEL_GEN(dev_priv) >= 6) {
2165 engine->irq_enable = gen6_irq_enable;
2166 engine->irq_disable = gen6_irq_disable;
2167 engine->irq_seqno_barrier = gen6_seqno_barrier;
2168 } else if (INTEL_GEN(dev_priv) >= 5) {
2169 engine->irq_enable = gen5_irq_enable;
2170 engine->irq_disable = gen5_irq_disable;
2171 engine->irq_seqno_barrier = gen5_seqno_barrier;
2172 } else if (INTEL_GEN(dev_priv) >= 3) {
2173 engine->irq_enable = i9xx_irq_enable;
2174 engine->irq_disable = i9xx_irq_disable;
2175 } else {
2176 engine->irq_enable = i8xx_irq_enable;
2177 engine->irq_disable = i8xx_irq_disable;
2178 }
2179 }
2180
2181 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2182 {
2183 engine->submit_request = i9xx_submit_request;
2184 engine->cancel_requests = cancel_requests;
2185
2186 engine->park = NULL;
2187 engine->unpark = NULL;
2188 }
2189
2190 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2191 {
2192 i9xx_set_default_submission(engine);
2193 engine->submit_request = gen6_bsd_submit_request;
2194 }
2195
2196 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2197 struct intel_engine_cs *engine)
2198 {
2199 /* gen8+ are only supported with execlists */
2200 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2201
2202 intel_ring_init_irq(dev_priv, engine);
2203 intel_ring_init_semaphores(dev_priv, engine);
2204
2205 engine->init_hw = init_ring_common;
2206 engine->reset.prepare = reset_prepare;
2207 engine->reset.reset = reset_ring;
2208 engine->reset.finish = reset_finish;
2209
2210 engine->context_pin = intel_ring_context_pin;
2211 engine->request_alloc = ring_request_alloc;
2212
2213 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2214 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2215 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2216 int num_rings;
2217
2218 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2219
2220 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2221 engine->emit_breadcrumb_sz += num_rings * 3;
2222 if (num_rings & 1)
2223 engine->emit_breadcrumb_sz++;
2224 }
2225
2226 engine->set_default_submission = i9xx_set_default_submission;
2227
2228 if (INTEL_GEN(dev_priv) >= 6)
2229 engine->emit_bb_start = gen6_emit_bb_start;
2230 else if (INTEL_GEN(dev_priv) >= 4)
2231 engine->emit_bb_start = i965_emit_bb_start;
2232 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2233 engine->emit_bb_start = i830_emit_bb_start;
2234 else
2235 engine->emit_bb_start = i915_emit_bb_start;
2236 }
2237
2238 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2239 {
2240 struct drm_i915_private *dev_priv = engine->i915;
2241 int ret;
2242
2243 intel_ring_default_vfuncs(dev_priv, engine);
2244
2245 if (HAS_L3_DPF(dev_priv))
2246 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2247
2248 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2249
2250 if (INTEL_GEN(dev_priv) >= 6) {
2251 engine->init_context = intel_rcs_ctx_init;
2252 engine->emit_flush = gen7_render_ring_flush;
2253 if (IS_GEN6(dev_priv))
2254 engine->emit_flush = gen6_render_ring_flush;
2255 } else if (IS_GEN5(dev_priv)) {
2256 engine->emit_flush = gen4_render_ring_flush;
2257 } else {
2258 if (INTEL_GEN(dev_priv) < 4)
2259 engine->emit_flush = gen2_render_ring_flush;
2260 else
2261 engine->emit_flush = gen4_render_ring_flush;
2262 engine->irq_enable_mask = I915_USER_INTERRUPT;
2263 }
2264
2265 if (IS_HASWELL(dev_priv))
2266 engine->emit_bb_start = hsw_emit_bb_start;
2267
2268 engine->init_hw = init_render_ring;
2269
2270 ret = intel_init_ring_buffer(engine);
2271 if (ret)
2272 return ret;
2273
2274 return 0;
2275 }
2276
2277 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2278 {
2279 struct drm_i915_private *dev_priv = engine->i915;
2280
2281 intel_ring_default_vfuncs(dev_priv, engine);
2282
2283 if (INTEL_GEN(dev_priv) >= 6) {
2284 /* gen6 bsd needs a special wa for tail updates */
2285 if (IS_GEN6(dev_priv))
2286 engine->set_default_submission = gen6_bsd_set_default_submission;
2287 engine->emit_flush = gen6_bsd_ring_flush;
2288 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2289 } else {
2290 engine->emit_flush = bsd_ring_flush;
2291 if (IS_GEN5(dev_priv))
2292 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2293 else
2294 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2295 }
2296
2297 return intel_init_ring_buffer(engine);
2298 }
2299
2300 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2301 {
2302 struct drm_i915_private *dev_priv = engine->i915;
2303
2304 intel_ring_default_vfuncs(dev_priv, engine);
2305
2306 engine->emit_flush = gen6_ring_flush;
2307 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2308
2309 return intel_init_ring_buffer(engine);
2310 }
2311
2312 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2313 {
2314 struct drm_i915_private *dev_priv = engine->i915;
2315
2316 intel_ring_default_vfuncs(dev_priv, engine);
2317
2318 engine->emit_flush = gen6_ring_flush;
2319 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2320 engine->irq_enable = hsw_vebox_irq_enable;
2321 engine->irq_disable = hsw_vebox_irq_disable;
2322
2323 return intel_init_ring_buffer(engine);
2324 }